]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-complex.c
Eliminate ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR macros
[thirdparty/gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "flags.h"
27 #include "gimple.h"
28 #include "gimplify.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "gimple-ssa.h"
32 #include "tree-cfg.h"
33 #include "tree-phinodes.h"
34 #include "ssa-iterators.h"
35 #include "stringpool.h"
36 #include "tree-ssanames.h"
37 #include "expr.h"
38 #include "tree-dfa.h"
39 #include "tree-ssa.h"
40 #include "tree-iterator.h"
41 #include "tree-pass.h"
42 #include "tree-ssa-propagate.h"
43 #include "tree-hasher.h"
44 #include "cfgloop.h"
45
46
47 /* For each complex ssa name, a lattice value. We're interested in finding
48 out whether a complex number is degenerate in some way, having only real
49 or only complex parts. */
50
51 enum
52 {
53 UNINITIALIZED = 0,
54 ONLY_REAL = 1,
55 ONLY_IMAG = 2,
56 VARYING = 3
57 };
58
59 /* The type complex_lattice_t holds combinations of the above
60 constants. */
61 typedef int complex_lattice_t;
62
63 #define PAIR(a, b) ((a) << 2 | (b))
64
65
66 static vec<complex_lattice_t> complex_lattice_values;
67
68 /* For each complex variable, a pair of variables for the components exists in
69 the hashtable. */
70 static int_tree_htab_type complex_variable_components;
71
72 /* For each complex SSA_NAME, a pair of ssa names for the components. */
73 static vec<tree> complex_ssa_name_components;
74
75 /* Lookup UID in the complex_variable_components hashtable and return the
76 associated tree. */
77 static tree
78 cvc_lookup (unsigned int uid)
79 {
80 struct int_tree_map *h, in;
81 in.uid = uid;
82 h = complex_variable_components.find_with_hash (&in, uid);
83 return h ? h->to : NULL;
84 }
85
86 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
87
88 static void
89 cvc_insert (unsigned int uid, tree to)
90 {
91 struct int_tree_map *h;
92 int_tree_map **loc;
93
94 h = XNEW (struct int_tree_map);
95 h->uid = uid;
96 h->to = to;
97 loc = complex_variable_components.find_slot_with_hash (h, uid, INSERT);
98 *loc = h;
99 }
100
101 /* Return true if T is not a zero constant. In the case of real values,
102 we're only interested in +0.0. */
103
104 static int
105 some_nonzerop (tree t)
106 {
107 int zerop = false;
108
109 /* Operations with real or imaginary part of a complex number zero
110 cannot be treated the same as operations with a real or imaginary
111 operand if we care about the signs of zeros in the result. */
112 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
113 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
114 else if (TREE_CODE (t) == FIXED_CST)
115 zerop = fixed_zerop (t);
116 else if (TREE_CODE (t) == INTEGER_CST)
117 zerop = integer_zerop (t);
118
119 return !zerop;
120 }
121
122
123 /* Compute a lattice value from the components of a complex type REAL
124 and IMAG. */
125
126 static complex_lattice_t
127 find_lattice_value_parts (tree real, tree imag)
128 {
129 int r, i;
130 complex_lattice_t ret;
131
132 r = some_nonzerop (real);
133 i = some_nonzerop (imag);
134 ret = r * ONLY_REAL + i * ONLY_IMAG;
135
136 /* ??? On occasion we could do better than mapping 0+0i to real, but we
137 certainly don't want to leave it UNINITIALIZED, which eventually gets
138 mapped to VARYING. */
139 if (ret == UNINITIALIZED)
140 ret = ONLY_REAL;
141
142 return ret;
143 }
144
145
146 /* Compute a lattice value from gimple_val T. */
147
148 static complex_lattice_t
149 find_lattice_value (tree t)
150 {
151 tree real, imag;
152
153 switch (TREE_CODE (t))
154 {
155 case SSA_NAME:
156 return complex_lattice_values[SSA_NAME_VERSION (t)];
157
158 case COMPLEX_CST:
159 real = TREE_REALPART (t);
160 imag = TREE_IMAGPART (t);
161 break;
162
163 default:
164 gcc_unreachable ();
165 }
166
167 return find_lattice_value_parts (real, imag);
168 }
169
170 /* Determine if LHS is something for which we're interested in seeing
171 simulation results. */
172
173 static bool
174 is_complex_reg (tree lhs)
175 {
176 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
177 }
178
179 /* Mark the incoming parameters to the function as VARYING. */
180
181 static void
182 init_parameter_lattice_values (void)
183 {
184 tree parm, ssa_name;
185
186 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
187 if (is_complex_reg (parm)
188 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
189 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
190 }
191
192 /* Initialize simulation state for each statement. Return false if we
193 found no statements we want to simulate, and thus there's nothing
194 for the entire pass to do. */
195
196 static bool
197 init_dont_simulate_again (void)
198 {
199 basic_block bb;
200 gimple_stmt_iterator gsi;
201 gimple phi;
202 bool saw_a_complex_op = false;
203
204 FOR_EACH_BB (bb)
205 {
206 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
207 {
208 phi = gsi_stmt (gsi);
209 prop_set_simulate_again (phi,
210 is_complex_reg (gimple_phi_result (phi)));
211 }
212
213 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
214 {
215 gimple stmt;
216 tree op0, op1;
217 bool sim_again_p;
218
219 stmt = gsi_stmt (gsi);
220 op0 = op1 = NULL_TREE;
221
222 /* Most control-altering statements must be initially
223 simulated, else we won't cover the entire cfg. */
224 sim_again_p = stmt_ends_bb_p (stmt);
225
226 switch (gimple_code (stmt))
227 {
228 case GIMPLE_CALL:
229 if (gimple_call_lhs (stmt))
230 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
231 break;
232
233 case GIMPLE_ASSIGN:
234 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
235 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
236 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
237 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
238 else
239 op0 = gimple_assign_rhs1 (stmt);
240 if (gimple_num_ops (stmt) > 2)
241 op1 = gimple_assign_rhs2 (stmt);
242 break;
243
244 case GIMPLE_COND:
245 op0 = gimple_cond_lhs (stmt);
246 op1 = gimple_cond_rhs (stmt);
247 break;
248
249 default:
250 break;
251 }
252
253 if (op0 || op1)
254 switch (gimple_expr_code (stmt))
255 {
256 case EQ_EXPR:
257 case NE_EXPR:
258 case PLUS_EXPR:
259 case MINUS_EXPR:
260 case MULT_EXPR:
261 case TRUNC_DIV_EXPR:
262 case CEIL_DIV_EXPR:
263 case FLOOR_DIV_EXPR:
264 case ROUND_DIV_EXPR:
265 case RDIV_EXPR:
266 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
267 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
268 saw_a_complex_op = true;
269 break;
270
271 case NEGATE_EXPR:
272 case CONJ_EXPR:
273 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
274 saw_a_complex_op = true;
275 break;
276
277 case REALPART_EXPR:
278 case IMAGPART_EXPR:
279 /* The total store transformation performed during
280 gimplification creates such uninitialized loads
281 and we need to lower the statement to be able
282 to fix things up. */
283 if (TREE_CODE (op0) == SSA_NAME
284 && ssa_undefined_value_p (op0))
285 saw_a_complex_op = true;
286 break;
287
288 default:
289 break;
290 }
291
292 prop_set_simulate_again (stmt, sim_again_p);
293 }
294 }
295
296 return saw_a_complex_op;
297 }
298
299
300 /* Evaluate statement STMT against the complex lattice defined above. */
301
302 static enum ssa_prop_result
303 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
304 tree *result_p)
305 {
306 complex_lattice_t new_l, old_l, op1_l, op2_l;
307 unsigned int ver;
308 tree lhs;
309
310 lhs = gimple_get_lhs (stmt);
311 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
312 if (!lhs)
313 return SSA_PROP_VARYING;
314
315 /* These conditions should be satisfied due to the initial filter
316 set up in init_dont_simulate_again. */
317 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
318 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
319
320 *result_p = lhs;
321 ver = SSA_NAME_VERSION (lhs);
322 old_l = complex_lattice_values[ver];
323
324 switch (gimple_expr_code (stmt))
325 {
326 case SSA_NAME:
327 case COMPLEX_CST:
328 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
329 break;
330
331 case COMPLEX_EXPR:
332 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
333 gimple_assign_rhs2 (stmt));
334 break;
335
336 case PLUS_EXPR:
337 case MINUS_EXPR:
338 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
339 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
340
341 /* We've set up the lattice values such that IOR neatly
342 models addition. */
343 new_l = op1_l | op2_l;
344 break;
345
346 case MULT_EXPR:
347 case RDIV_EXPR:
348 case TRUNC_DIV_EXPR:
349 case CEIL_DIV_EXPR:
350 case FLOOR_DIV_EXPR:
351 case ROUND_DIV_EXPR:
352 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
353 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
354
355 /* Obviously, if either varies, so does the result. */
356 if (op1_l == VARYING || op2_l == VARYING)
357 new_l = VARYING;
358 /* Don't prematurely promote variables if we've not yet seen
359 their inputs. */
360 else if (op1_l == UNINITIALIZED)
361 new_l = op2_l;
362 else if (op2_l == UNINITIALIZED)
363 new_l = op1_l;
364 else
365 {
366 /* At this point both numbers have only one component. If the
367 numbers are of opposite kind, the result is imaginary,
368 otherwise the result is real. The add/subtract translates
369 the real/imag from/to 0/1; the ^ performs the comparison. */
370 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
371
372 /* Don't allow the lattice value to flip-flop indefinitely. */
373 new_l |= old_l;
374 }
375 break;
376
377 case NEGATE_EXPR:
378 case CONJ_EXPR:
379 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
380 break;
381
382 default:
383 new_l = VARYING;
384 break;
385 }
386
387 /* If nothing changed this round, let the propagator know. */
388 if (new_l == old_l)
389 return SSA_PROP_NOT_INTERESTING;
390
391 complex_lattice_values[ver] = new_l;
392 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
393 }
394
395 /* Evaluate a PHI node against the complex lattice defined above. */
396
397 static enum ssa_prop_result
398 complex_visit_phi (gimple phi)
399 {
400 complex_lattice_t new_l, old_l;
401 unsigned int ver;
402 tree lhs;
403 int i;
404
405 lhs = gimple_phi_result (phi);
406
407 /* This condition should be satisfied due to the initial filter
408 set up in init_dont_simulate_again. */
409 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
410
411 /* We've set up the lattice values such that IOR neatly models PHI meet. */
412 new_l = UNINITIALIZED;
413 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
414 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
415
416 ver = SSA_NAME_VERSION (lhs);
417 old_l = complex_lattice_values[ver];
418
419 if (new_l == old_l)
420 return SSA_PROP_NOT_INTERESTING;
421
422 complex_lattice_values[ver] = new_l;
423 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
424 }
425
426 /* Create one backing variable for a complex component of ORIG. */
427
428 static tree
429 create_one_component_var (tree type, tree orig, const char *prefix,
430 const char *suffix, enum tree_code code)
431 {
432 tree r = create_tmp_var (type, prefix);
433
434 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
435 DECL_ARTIFICIAL (r) = 1;
436
437 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
438 {
439 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
440
441 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
442
443 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
444 DECL_HAS_DEBUG_EXPR_P (r) = 1;
445 DECL_IGNORED_P (r) = 0;
446 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
447 }
448 else
449 {
450 DECL_IGNORED_P (r) = 1;
451 TREE_NO_WARNING (r) = 1;
452 }
453
454 return r;
455 }
456
457 /* Retrieve a value for a complex component of VAR. */
458
459 static tree
460 get_component_var (tree var, bool imag_p)
461 {
462 size_t decl_index = DECL_UID (var) * 2 + imag_p;
463 tree ret = cvc_lookup (decl_index);
464
465 if (ret == NULL)
466 {
467 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
468 imag_p ? "CI" : "CR",
469 imag_p ? "$imag" : "$real",
470 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
471 cvc_insert (decl_index, ret);
472 }
473
474 return ret;
475 }
476
477 /* Retrieve a value for a complex component of SSA_NAME. */
478
479 static tree
480 get_component_ssa_name (tree ssa_name, bool imag_p)
481 {
482 complex_lattice_t lattice = find_lattice_value (ssa_name);
483 size_t ssa_name_index;
484 tree ret;
485
486 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
487 {
488 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
489 if (SCALAR_FLOAT_TYPE_P (inner_type))
490 return build_real (inner_type, dconst0);
491 else
492 return build_int_cst (inner_type, 0);
493 }
494
495 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
496 ret = complex_ssa_name_components[ssa_name_index];
497 if (ret == NULL)
498 {
499 if (SSA_NAME_VAR (ssa_name))
500 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
501 else
502 ret = TREE_TYPE (TREE_TYPE (ssa_name));
503 ret = make_ssa_name (ret, NULL);
504
505 /* Copy some properties from the original. In particular, whether it
506 is used in an abnormal phi, and whether it's uninitialized. */
507 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
508 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
509 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
510 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
511 {
512 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
513 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
514 }
515
516 complex_ssa_name_components[ssa_name_index] = ret;
517 }
518
519 return ret;
520 }
521
522 /* Set a value for a complex component of SSA_NAME, return a
523 gimple_seq of stuff that needs doing. */
524
525 static gimple_seq
526 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
527 {
528 complex_lattice_t lattice = find_lattice_value (ssa_name);
529 size_t ssa_name_index;
530 tree comp;
531 gimple last;
532 gimple_seq list;
533
534 /* We know the value must be zero, else there's a bug in our lattice
535 analysis. But the value may well be a variable known to contain
536 zero. We should be safe ignoring it. */
537 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
538 return NULL;
539
540 /* If we've already assigned an SSA_NAME to this component, then this
541 means that our walk of the basic blocks found a use before the set.
542 This is fine. Now we should create an initialization for the value
543 we created earlier. */
544 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
545 comp = complex_ssa_name_components[ssa_name_index];
546 if (comp)
547 ;
548
549 /* If we've nothing assigned, and the value we're given is already stable,
550 then install that as the value for this SSA_NAME. This preemptively
551 copy-propagates the value, which avoids unnecessary memory allocation. */
552 else if (is_gimple_min_invariant (value)
553 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
554 {
555 complex_ssa_name_components[ssa_name_index] = value;
556 return NULL;
557 }
558 else if (TREE_CODE (value) == SSA_NAME
559 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
560 {
561 /* Replace an anonymous base value with the variable from cvc_lookup.
562 This should result in better debug info. */
563 if (SSA_NAME_VAR (ssa_name)
564 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
565 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
566 {
567 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
568 replace_ssa_name_symbol (value, comp);
569 }
570
571 complex_ssa_name_components[ssa_name_index] = value;
572 return NULL;
573 }
574
575 /* Finally, we need to stabilize the result by installing the value into
576 a new ssa name. */
577 else
578 comp = get_component_ssa_name (ssa_name, imag_p);
579
580 /* Do all the work to assign VALUE to COMP. */
581 list = NULL;
582 value = force_gimple_operand (value, &list, false, NULL);
583 last = gimple_build_assign (comp, value);
584 gimple_seq_add_stmt (&list, last);
585 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
586
587 return list;
588 }
589
590 /* Extract the real or imaginary part of a complex variable or constant.
591 Make sure that it's a proper gimple_val and gimplify it if not.
592 Emit any new code before gsi. */
593
594 static tree
595 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
596 bool gimple_p)
597 {
598 switch (TREE_CODE (t))
599 {
600 case COMPLEX_CST:
601 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
602
603 case COMPLEX_EXPR:
604 gcc_unreachable ();
605
606 case VAR_DECL:
607 case RESULT_DECL:
608 case PARM_DECL:
609 case COMPONENT_REF:
610 case ARRAY_REF:
611 case VIEW_CONVERT_EXPR:
612 case MEM_REF:
613 {
614 tree inner_type = TREE_TYPE (TREE_TYPE (t));
615
616 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
617 inner_type, unshare_expr (t));
618
619 if (gimple_p)
620 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
621 GSI_SAME_STMT);
622
623 return t;
624 }
625
626 case SSA_NAME:
627 return get_component_ssa_name (t, imagpart_p);
628
629 default:
630 gcc_unreachable ();
631 }
632 }
633
634 /* Update the complex components of the ssa name on the lhs of STMT. */
635
636 static void
637 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
638 tree i)
639 {
640 tree lhs;
641 gimple_seq list;
642
643 lhs = gimple_get_lhs (stmt);
644
645 list = set_component_ssa_name (lhs, false, r);
646 if (list)
647 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
648
649 list = set_component_ssa_name (lhs, true, i);
650 if (list)
651 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
652 }
653
654 static void
655 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
656 {
657 gimple_seq list;
658
659 list = set_component_ssa_name (lhs, false, r);
660 if (list)
661 gsi_insert_seq_on_edge (e, list);
662
663 list = set_component_ssa_name (lhs, true, i);
664 if (list)
665 gsi_insert_seq_on_edge (e, list);
666 }
667
668
669 /* Update an assignment to a complex variable in place. */
670
671 static void
672 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
673 {
674 gimple stmt;
675
676 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
677 stmt = gsi_stmt (*gsi);
678 update_stmt (stmt);
679 if (maybe_clean_eh_stmt (stmt))
680 gimple_purge_dead_eh_edges (gimple_bb (stmt));
681
682 if (gimple_in_ssa_p (cfun))
683 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
684 }
685
686
687 /* Generate code at the entry point of the function to initialize the
688 component variables for a complex parameter. */
689
690 static void
691 update_parameter_components (void)
692 {
693 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
694 tree parm;
695
696 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
697 {
698 tree type = TREE_TYPE (parm);
699 tree ssa_name, r, i;
700
701 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
702 continue;
703
704 type = TREE_TYPE (type);
705 ssa_name = ssa_default_def (cfun, parm);
706 if (!ssa_name)
707 continue;
708
709 r = build1 (REALPART_EXPR, type, ssa_name);
710 i = build1 (IMAGPART_EXPR, type, ssa_name);
711 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
712 }
713 }
714
715 /* Generate code to set the component variables of a complex variable
716 to match the PHI statements in block BB. */
717
718 static void
719 update_phi_components (basic_block bb)
720 {
721 gimple_stmt_iterator gsi;
722
723 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
724 {
725 gimple phi = gsi_stmt (gsi);
726
727 if (is_complex_reg (gimple_phi_result (phi)))
728 {
729 tree lr, li;
730 gimple pr = NULL, pi = NULL;
731 unsigned int i, n;
732
733 lr = get_component_ssa_name (gimple_phi_result (phi), false);
734 if (TREE_CODE (lr) == SSA_NAME)
735 pr = create_phi_node (lr, bb);
736
737 li = get_component_ssa_name (gimple_phi_result (phi), true);
738 if (TREE_CODE (li) == SSA_NAME)
739 pi = create_phi_node (li, bb);
740
741 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
742 {
743 tree comp, arg = gimple_phi_arg_def (phi, i);
744 if (pr)
745 {
746 comp = extract_component (NULL, arg, false, false);
747 SET_PHI_ARG_DEF (pr, i, comp);
748 }
749 if (pi)
750 {
751 comp = extract_component (NULL, arg, true, false);
752 SET_PHI_ARG_DEF (pi, i, comp);
753 }
754 }
755 }
756 }
757 }
758
759 /* Expand a complex move to scalars. */
760
761 static void
762 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
763 {
764 tree inner_type = TREE_TYPE (type);
765 tree r, i, lhs, rhs;
766 gimple stmt = gsi_stmt (*gsi);
767
768 if (is_gimple_assign (stmt))
769 {
770 lhs = gimple_assign_lhs (stmt);
771 if (gimple_num_ops (stmt) == 2)
772 rhs = gimple_assign_rhs1 (stmt);
773 else
774 rhs = NULL_TREE;
775 }
776 else if (is_gimple_call (stmt))
777 {
778 lhs = gimple_call_lhs (stmt);
779 rhs = NULL_TREE;
780 }
781 else
782 gcc_unreachable ();
783
784 if (TREE_CODE (lhs) == SSA_NAME)
785 {
786 if (is_ctrl_altering_stmt (stmt))
787 {
788 edge e;
789
790 /* The value is not assigned on the exception edges, so we need not
791 concern ourselves there. We do need to update on the fallthru
792 edge. Find it. */
793 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
794 if (!e)
795 gcc_unreachable ();
796
797 r = build1 (REALPART_EXPR, inner_type, lhs);
798 i = build1 (IMAGPART_EXPR, inner_type, lhs);
799 update_complex_components_on_edge (e, lhs, r, i);
800 }
801 else if (is_gimple_call (stmt)
802 || gimple_has_side_effects (stmt)
803 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
804 {
805 r = build1 (REALPART_EXPR, inner_type, lhs);
806 i = build1 (IMAGPART_EXPR, inner_type, lhs);
807 update_complex_components (gsi, stmt, r, i);
808 }
809 else
810 {
811 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
812 {
813 r = extract_component (gsi, rhs, 0, true);
814 i = extract_component (gsi, rhs, 1, true);
815 }
816 else
817 {
818 r = gimple_assign_rhs1 (stmt);
819 i = gimple_assign_rhs2 (stmt);
820 }
821 update_complex_assignment (gsi, r, i);
822 }
823 }
824 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
825 {
826 tree x;
827 gimple t;
828
829 r = extract_component (gsi, rhs, 0, false);
830 i = extract_component (gsi, rhs, 1, false);
831
832 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
833 t = gimple_build_assign (x, r);
834 gsi_insert_before (gsi, t, GSI_SAME_STMT);
835
836 if (stmt == gsi_stmt (*gsi))
837 {
838 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
839 gimple_assign_set_lhs (stmt, x);
840 gimple_assign_set_rhs1 (stmt, i);
841 }
842 else
843 {
844 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
845 t = gimple_build_assign (x, i);
846 gsi_insert_before (gsi, t, GSI_SAME_STMT);
847
848 stmt = gsi_stmt (*gsi);
849 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
850 gimple_return_set_retval (stmt, lhs);
851 }
852
853 update_stmt (stmt);
854 }
855 }
856
857 /* Expand complex addition to scalars:
858 a + b = (ar + br) + i(ai + bi)
859 a - b = (ar - br) + i(ai + bi)
860 */
861
862 static void
863 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
864 tree ar, tree ai, tree br, tree bi,
865 enum tree_code code,
866 complex_lattice_t al, complex_lattice_t bl)
867 {
868 tree rr, ri;
869
870 switch (PAIR (al, bl))
871 {
872 case PAIR (ONLY_REAL, ONLY_REAL):
873 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
874 ri = ai;
875 break;
876
877 case PAIR (ONLY_REAL, ONLY_IMAG):
878 rr = ar;
879 if (code == MINUS_EXPR)
880 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
881 else
882 ri = bi;
883 break;
884
885 case PAIR (ONLY_IMAG, ONLY_REAL):
886 if (code == MINUS_EXPR)
887 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
888 else
889 rr = br;
890 ri = ai;
891 break;
892
893 case PAIR (ONLY_IMAG, ONLY_IMAG):
894 rr = ar;
895 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
896 break;
897
898 case PAIR (VARYING, ONLY_REAL):
899 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
900 ri = ai;
901 break;
902
903 case PAIR (VARYING, ONLY_IMAG):
904 rr = ar;
905 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
906 break;
907
908 case PAIR (ONLY_REAL, VARYING):
909 if (code == MINUS_EXPR)
910 goto general;
911 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
912 ri = bi;
913 break;
914
915 case PAIR (ONLY_IMAG, VARYING):
916 if (code == MINUS_EXPR)
917 goto general;
918 rr = br;
919 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
920 break;
921
922 case PAIR (VARYING, VARYING):
923 general:
924 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
925 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
926 break;
927
928 default:
929 gcc_unreachable ();
930 }
931
932 update_complex_assignment (gsi, rr, ri);
933 }
934
935 /* Expand a complex multiplication or division to a libcall to the c99
936 compliant routines. */
937
938 static void
939 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
940 tree br, tree bi, enum tree_code code)
941 {
942 enum machine_mode mode;
943 enum built_in_function bcode;
944 tree fn, type, lhs;
945 gimple old_stmt, stmt;
946
947 old_stmt = gsi_stmt (*gsi);
948 lhs = gimple_assign_lhs (old_stmt);
949 type = TREE_TYPE (lhs);
950
951 mode = TYPE_MODE (type);
952 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
953
954 if (code == MULT_EXPR)
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957 else if (code == RDIV_EXPR)
958 bcode = ((enum built_in_function)
959 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
960 else
961 gcc_unreachable ();
962 fn = builtin_decl_explicit (bcode);
963
964 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
965 gimple_call_set_lhs (stmt, lhs);
966 update_stmt (stmt);
967 gsi_replace (gsi, stmt, false);
968
969 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
970 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
971
972 if (gimple_in_ssa_p (cfun))
973 {
974 type = TREE_TYPE (type);
975 update_complex_components (gsi, stmt,
976 build1 (REALPART_EXPR, type, lhs),
977 build1 (IMAGPART_EXPR, type, lhs));
978 SSA_NAME_DEF_STMT (lhs) = stmt;
979 }
980 }
981
982 /* Expand complex multiplication to scalars:
983 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
984 */
985
986 static void
987 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
988 tree ar, tree ai, tree br, tree bi,
989 complex_lattice_t al, complex_lattice_t bl)
990 {
991 tree rr, ri;
992
993 if (al < bl)
994 {
995 complex_lattice_t tl;
996 rr = ar, ar = br, br = rr;
997 ri = ai, ai = bi, bi = ri;
998 tl = al, al = bl, bl = tl;
999 }
1000
1001 switch (PAIR (al, bl))
1002 {
1003 case PAIR (ONLY_REAL, ONLY_REAL):
1004 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1005 ri = ai;
1006 break;
1007
1008 case PAIR (ONLY_IMAG, ONLY_REAL):
1009 rr = ar;
1010 if (TREE_CODE (ai) == REAL_CST
1011 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1012 ri = br;
1013 else
1014 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1015 break;
1016
1017 case PAIR (ONLY_IMAG, ONLY_IMAG):
1018 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1019 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1020 ri = ar;
1021 break;
1022
1023 case PAIR (VARYING, ONLY_REAL):
1024 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1025 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1026 break;
1027
1028 case PAIR (VARYING, ONLY_IMAG):
1029 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1030 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1031 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1032 break;
1033
1034 case PAIR (VARYING, VARYING):
1035 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1036 {
1037 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1038 return;
1039 }
1040 else
1041 {
1042 tree t1, t2, t3, t4;
1043
1044 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1045 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1046 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1047
1048 /* Avoid expanding redundant multiplication for the common
1049 case of squaring a complex number. */
1050 if (ar == br && ai == bi)
1051 t4 = t3;
1052 else
1053 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1054
1055 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1056 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1057 }
1058 break;
1059
1060 default:
1061 gcc_unreachable ();
1062 }
1063
1064 update_complex_assignment (gsi, rr, ri);
1065 }
1066
1067 /* Keep this algorithm in sync with fold-const.c:const_binop().
1068
1069 Expand complex division to scalars, straightforward algorithm.
1070 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1071 t = br*br + bi*bi
1072 */
1073
1074 static void
1075 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1076 tree ar, tree ai, tree br, tree bi,
1077 enum tree_code code)
1078 {
1079 tree rr, ri, div, t1, t2, t3;
1080
1081 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1082 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1083 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1084
1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1087 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1088 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1089
1090 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1091 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1092 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1093 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1094
1095 update_complex_assignment (gsi, rr, ri);
1096 }
1097
1098 /* Keep this algorithm in sync with fold-const.c:const_binop().
1099
1100 Expand complex division to scalars, modified algorithm to minimize
1101 overflow with wide input ranges. */
1102
1103 static void
1104 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1105 tree ar, tree ai, tree br, tree bi,
1106 enum tree_code code)
1107 {
1108 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1109 basic_block bb_cond, bb_true, bb_false, bb_join;
1110 gimple stmt;
1111
1112 /* Examine |br| < |bi|, and branch. */
1113 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1114 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1115 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1116 LT_EXPR, boolean_type_node, t1, t2);
1117 STRIP_NOPS (compare);
1118
1119 bb_cond = bb_true = bb_false = bb_join = NULL;
1120 rr = ri = tr = ti = NULL;
1121 if (TREE_CODE (compare) != INTEGER_CST)
1122 {
1123 edge e;
1124 gimple stmt;
1125 tree cond, tmp;
1126
1127 tmp = create_tmp_var (boolean_type_node, NULL);
1128 stmt = gimple_build_assign (tmp, compare);
1129 if (gimple_in_ssa_p (cfun))
1130 {
1131 tmp = make_ssa_name (tmp, stmt);
1132 gimple_assign_set_lhs (stmt, tmp);
1133 }
1134
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1136
1137 cond = fold_build2_loc (gimple_location (stmt),
1138 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1139 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1140 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1141
1142 /* Split the original block, and create the TRUE and FALSE blocks. */
1143 e = split_block (gsi_bb (*gsi), stmt);
1144 bb_cond = e->src;
1145 bb_join = e->dest;
1146 bb_true = create_empty_bb (bb_cond);
1147 bb_false = create_empty_bb (bb_true);
1148
1149 /* Wire the blocks together. */
1150 e->flags = EDGE_TRUE_VALUE;
1151 redirect_edge_succ (e, bb_true);
1152 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1153 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1154 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1155 if (current_loops)
1156 {
1157 add_bb_to_loop (bb_true, bb_cond->loop_father);
1158 add_bb_to_loop (bb_false, bb_cond->loop_father);
1159 }
1160
1161 /* Update dominance info. Note that bb_join's data was
1162 updated by split_block. */
1163 if (dom_info_available_p (CDI_DOMINATORS))
1164 {
1165 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1166 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1167 }
1168
1169 rr = create_tmp_reg (inner_type, NULL);
1170 ri = create_tmp_reg (inner_type, NULL);
1171 }
1172
1173 /* In the TRUE branch, we compute
1174 ratio = br/bi;
1175 div = (br * ratio) + bi;
1176 tr = (ar * ratio) + ai;
1177 ti = (ai * ratio) - ar;
1178 tr = tr / div;
1179 ti = ti / div; */
1180 if (bb_true || integer_nonzerop (compare))
1181 {
1182 if (bb_true)
1183 {
1184 *gsi = gsi_last_bb (bb_true);
1185 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1186 }
1187
1188 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1189
1190 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1191 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1192
1193 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1194 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1195
1196 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1197 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1198
1199 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1200 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1201
1202 if (bb_true)
1203 {
1204 stmt = gimple_build_assign (rr, tr);
1205 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1206 stmt = gimple_build_assign (ri, ti);
1207 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1208 gsi_remove (gsi, true);
1209 }
1210 }
1211
1212 /* In the FALSE branch, we compute
1213 ratio = d/c;
1214 divisor = (d * ratio) + c;
1215 tr = (b * ratio) + a;
1216 ti = b - (a * ratio);
1217 tr = tr / div;
1218 ti = ti / div; */
1219 if (bb_false || integer_zerop (compare))
1220 {
1221 if (bb_false)
1222 {
1223 *gsi = gsi_last_bb (bb_false);
1224 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1225 }
1226
1227 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1228
1229 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1230 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1231
1232 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1233 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1234
1235 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1236 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1237
1238 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1239 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1240
1241 if (bb_false)
1242 {
1243 stmt = gimple_build_assign (rr, tr);
1244 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1245 stmt = gimple_build_assign (ri, ti);
1246 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1247 gsi_remove (gsi, true);
1248 }
1249 }
1250
1251 if (bb_join)
1252 *gsi = gsi_start_bb (bb_join);
1253 else
1254 rr = tr, ri = ti;
1255
1256 update_complex_assignment (gsi, rr, ri);
1257 }
1258
1259 /* Expand complex division to scalars. */
1260
1261 static void
1262 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1263 tree ar, tree ai, tree br, tree bi,
1264 enum tree_code code,
1265 complex_lattice_t al, complex_lattice_t bl)
1266 {
1267 tree rr, ri;
1268
1269 switch (PAIR (al, bl))
1270 {
1271 case PAIR (ONLY_REAL, ONLY_REAL):
1272 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1273 ri = ai;
1274 break;
1275
1276 case PAIR (ONLY_REAL, ONLY_IMAG):
1277 rr = ai;
1278 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1279 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1280 break;
1281
1282 case PAIR (ONLY_IMAG, ONLY_REAL):
1283 rr = ar;
1284 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1285 break;
1286
1287 case PAIR (ONLY_IMAG, ONLY_IMAG):
1288 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1289 ri = ar;
1290 break;
1291
1292 case PAIR (VARYING, ONLY_REAL):
1293 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1294 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1295 break;
1296
1297 case PAIR (VARYING, ONLY_IMAG):
1298 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1299 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1300 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1301
1302 case PAIR (ONLY_REAL, VARYING):
1303 case PAIR (ONLY_IMAG, VARYING):
1304 case PAIR (VARYING, VARYING):
1305 switch (flag_complex_method)
1306 {
1307 case 0:
1308 /* straightforward implementation of complex divide acceptable. */
1309 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1310 break;
1311
1312 case 2:
1313 if (SCALAR_FLOAT_TYPE_P (inner_type))
1314 {
1315 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1316 break;
1317 }
1318 /* FALLTHRU */
1319
1320 case 1:
1321 /* wide ranges of inputs must work for complex divide. */
1322 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1323 break;
1324
1325 default:
1326 gcc_unreachable ();
1327 }
1328 return;
1329
1330 default:
1331 gcc_unreachable ();
1332 }
1333
1334 update_complex_assignment (gsi, rr, ri);
1335 }
1336
1337 /* Expand complex negation to scalars:
1338 -a = (-ar) + i(-ai)
1339 */
1340
1341 static void
1342 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1343 tree ar, tree ai)
1344 {
1345 tree rr, ri;
1346
1347 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1348 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1349
1350 update_complex_assignment (gsi, rr, ri);
1351 }
1352
1353 /* Expand complex conjugate to scalars:
1354 ~a = (ar) + i(-ai)
1355 */
1356
1357 static void
1358 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1359 tree ar, tree ai)
1360 {
1361 tree ri;
1362
1363 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1364
1365 update_complex_assignment (gsi, ar, ri);
1366 }
1367
1368 /* Expand complex comparison (EQ or NE only). */
1369
1370 static void
1371 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1372 tree br, tree bi, enum tree_code code)
1373 {
1374 tree cr, ci, cc, type;
1375 gimple stmt;
1376
1377 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1378 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1379 cc = gimplify_build2 (gsi,
1380 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1381 boolean_type_node, cr, ci);
1382
1383 stmt = gsi_stmt (*gsi);
1384
1385 switch (gimple_code (stmt))
1386 {
1387 case GIMPLE_RETURN:
1388 type = TREE_TYPE (gimple_return_retval (stmt));
1389 gimple_return_set_retval (stmt, fold_convert (type, cc));
1390 break;
1391
1392 case GIMPLE_ASSIGN:
1393 type = TREE_TYPE (gimple_assign_lhs (stmt));
1394 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1395 stmt = gsi_stmt (*gsi);
1396 break;
1397
1398 case GIMPLE_COND:
1399 gimple_cond_set_code (stmt, EQ_EXPR);
1400 gimple_cond_set_lhs (stmt, cc);
1401 gimple_cond_set_rhs (stmt, boolean_true_node);
1402 break;
1403
1404 default:
1405 gcc_unreachable ();
1406 }
1407
1408 update_stmt (stmt);
1409 }
1410
1411 /* Expand inline asm that sets some complex SSA_NAMEs. */
1412
1413 static void
1414 expand_complex_asm (gimple_stmt_iterator *gsi)
1415 {
1416 gimple stmt = gsi_stmt (*gsi);
1417 unsigned int i;
1418
1419 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1420 {
1421 tree link = gimple_asm_output_op (stmt, i);
1422 tree op = TREE_VALUE (link);
1423 if (TREE_CODE (op) == SSA_NAME
1424 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1425 {
1426 tree type = TREE_TYPE (op);
1427 tree inner_type = TREE_TYPE (type);
1428 tree r = build1 (REALPART_EXPR, inner_type, op);
1429 tree i = build1 (IMAGPART_EXPR, inner_type, op);
1430 gimple_seq list = set_component_ssa_name (op, false, r);
1431
1432 if (list)
1433 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1434
1435 list = set_component_ssa_name (op, true, i);
1436 if (list)
1437 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1438 }
1439 }
1440 }
1441
1442 /* Process one statement. If we identify a complex operation, expand it. */
1443
1444 static void
1445 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1446 {
1447 gimple stmt = gsi_stmt (*gsi);
1448 tree type, inner_type, lhs;
1449 tree ac, ar, ai, bc, br, bi;
1450 complex_lattice_t al, bl;
1451 enum tree_code code;
1452
1453 if (gimple_code (stmt) == GIMPLE_ASM)
1454 {
1455 expand_complex_asm (gsi);
1456 return;
1457 }
1458
1459 lhs = gimple_get_lhs (stmt);
1460 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1461 return;
1462
1463 type = TREE_TYPE (gimple_op (stmt, 0));
1464 code = gimple_expr_code (stmt);
1465
1466 /* Initial filter for operations we handle. */
1467 switch (code)
1468 {
1469 case PLUS_EXPR:
1470 case MINUS_EXPR:
1471 case MULT_EXPR:
1472 case TRUNC_DIV_EXPR:
1473 case CEIL_DIV_EXPR:
1474 case FLOOR_DIV_EXPR:
1475 case ROUND_DIV_EXPR:
1476 case RDIV_EXPR:
1477 case NEGATE_EXPR:
1478 case CONJ_EXPR:
1479 if (TREE_CODE (type) != COMPLEX_TYPE)
1480 return;
1481 inner_type = TREE_TYPE (type);
1482 break;
1483
1484 case EQ_EXPR:
1485 case NE_EXPR:
1486 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1487 subcode, so we need to access the operands using gimple_op. */
1488 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1489 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1490 return;
1491 break;
1492
1493 default:
1494 {
1495 tree rhs;
1496
1497 /* GIMPLE_COND may also fallthru here, but we do not need to
1498 do anything with it. */
1499 if (gimple_code (stmt) == GIMPLE_COND)
1500 return;
1501
1502 if (TREE_CODE (type) == COMPLEX_TYPE)
1503 expand_complex_move (gsi, type);
1504 else if (is_gimple_assign (stmt)
1505 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1506 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1507 && TREE_CODE (lhs) == SSA_NAME)
1508 {
1509 rhs = gimple_assign_rhs1 (stmt);
1510 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1511 gimple_assign_rhs_code (stmt)
1512 == IMAGPART_EXPR,
1513 false);
1514 gimple_assign_set_rhs_from_tree (gsi, rhs);
1515 stmt = gsi_stmt (*gsi);
1516 update_stmt (stmt);
1517 }
1518 }
1519 return;
1520 }
1521
1522 /* Extract the components of the two complex values. Make sure and
1523 handle the common case of the same value used twice specially. */
1524 if (is_gimple_assign (stmt))
1525 {
1526 ac = gimple_assign_rhs1 (stmt);
1527 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1528 }
1529 /* GIMPLE_CALL can not get here. */
1530 else
1531 {
1532 ac = gimple_cond_lhs (stmt);
1533 bc = gimple_cond_rhs (stmt);
1534 }
1535
1536 ar = extract_component (gsi, ac, false, true);
1537 ai = extract_component (gsi, ac, true, true);
1538
1539 if (ac == bc)
1540 br = ar, bi = ai;
1541 else if (bc)
1542 {
1543 br = extract_component (gsi, bc, 0, true);
1544 bi = extract_component (gsi, bc, 1, true);
1545 }
1546 else
1547 br = bi = NULL_TREE;
1548
1549 if (gimple_in_ssa_p (cfun))
1550 {
1551 al = find_lattice_value (ac);
1552 if (al == UNINITIALIZED)
1553 al = VARYING;
1554
1555 if (TREE_CODE_CLASS (code) == tcc_unary)
1556 bl = UNINITIALIZED;
1557 else if (ac == bc)
1558 bl = al;
1559 else
1560 {
1561 bl = find_lattice_value (bc);
1562 if (bl == UNINITIALIZED)
1563 bl = VARYING;
1564 }
1565 }
1566 else
1567 al = bl = VARYING;
1568
1569 switch (code)
1570 {
1571 case PLUS_EXPR:
1572 case MINUS_EXPR:
1573 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1574 break;
1575
1576 case MULT_EXPR:
1577 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1578 break;
1579
1580 case TRUNC_DIV_EXPR:
1581 case CEIL_DIV_EXPR:
1582 case FLOOR_DIV_EXPR:
1583 case ROUND_DIV_EXPR:
1584 case RDIV_EXPR:
1585 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1586 break;
1587
1588 case NEGATE_EXPR:
1589 expand_complex_negation (gsi, inner_type, ar, ai);
1590 break;
1591
1592 case CONJ_EXPR:
1593 expand_complex_conjugate (gsi, inner_type, ar, ai);
1594 break;
1595
1596 case EQ_EXPR:
1597 case NE_EXPR:
1598 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1599 break;
1600
1601 default:
1602 gcc_unreachable ();
1603 }
1604 }
1605
1606 \f
1607 /* Entry point for complex operation lowering during optimization. */
1608
1609 static unsigned int
1610 tree_lower_complex (void)
1611 {
1612 int old_last_basic_block;
1613 gimple_stmt_iterator gsi;
1614 basic_block bb;
1615
1616 if (!init_dont_simulate_again ())
1617 return 0;
1618
1619 complex_lattice_values.create (num_ssa_names);
1620 complex_lattice_values.safe_grow_cleared (num_ssa_names);
1621
1622 init_parameter_lattice_values ();
1623 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1624
1625 complex_variable_components.create (10);
1626
1627 complex_ssa_name_components.create (2 * num_ssa_names);
1628 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1629
1630 update_parameter_components ();
1631
1632 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1633 old_last_basic_block = last_basic_block;
1634 FOR_EACH_BB (bb)
1635 {
1636 if (bb->index >= old_last_basic_block)
1637 continue;
1638
1639 update_phi_components (bb);
1640 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1641 expand_complex_operations_1 (&gsi);
1642 }
1643
1644 gsi_commit_edge_inserts ();
1645
1646 complex_variable_components.dispose ();
1647 complex_ssa_name_components.release ();
1648 complex_lattice_values.release ();
1649 return 0;
1650 }
1651
1652 namespace {
1653
1654 const pass_data pass_data_lower_complex =
1655 {
1656 GIMPLE_PASS, /* type */
1657 "cplxlower", /* name */
1658 OPTGROUP_NONE, /* optinfo_flags */
1659 false, /* has_gate */
1660 true, /* has_execute */
1661 TV_NONE, /* tv_id */
1662 PROP_ssa, /* properties_required */
1663 PROP_gimple_lcx, /* properties_provided */
1664 0, /* properties_destroyed */
1665 0, /* todo_flags_start */
1666 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
1667 };
1668
1669 class pass_lower_complex : public gimple_opt_pass
1670 {
1671 public:
1672 pass_lower_complex (gcc::context *ctxt)
1673 : gimple_opt_pass (pass_data_lower_complex, ctxt)
1674 {}
1675
1676 /* opt_pass methods: */
1677 opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1678 unsigned int execute () { return tree_lower_complex (); }
1679
1680 }; // class pass_lower_complex
1681
1682 } // anon namespace
1683
1684 gimple_opt_pass *
1685 make_pass_lower_complex (gcc::context *ctxt)
1686 {
1687 return new pass_lower_complex (ctxt);
1688 }
1689
1690 \f
1691 static bool
1692 gate_no_optimization (void)
1693 {
1694 /* With errors, normal optimization passes are not run. If we don't
1695 lower complex operations at all, rtl expansion will abort. */
1696 return !(cfun->curr_properties & PROP_gimple_lcx);
1697 }
1698
1699 namespace {
1700
1701 const pass_data pass_data_lower_complex_O0 =
1702 {
1703 GIMPLE_PASS, /* type */
1704 "cplxlower0", /* name */
1705 OPTGROUP_NONE, /* optinfo_flags */
1706 true, /* has_gate */
1707 true, /* has_execute */
1708 TV_NONE, /* tv_id */
1709 PROP_cfg, /* properties_required */
1710 PROP_gimple_lcx, /* properties_provided */
1711 0, /* properties_destroyed */
1712 0, /* todo_flags_start */
1713 ( TODO_update_ssa | TODO_verify_stmts ), /* todo_flags_finish */
1714 };
1715
1716 class pass_lower_complex_O0 : public gimple_opt_pass
1717 {
1718 public:
1719 pass_lower_complex_O0 (gcc::context *ctxt)
1720 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1721 {}
1722
1723 /* opt_pass methods: */
1724 bool gate () { return gate_no_optimization (); }
1725 unsigned int execute () { return tree_lower_complex (); }
1726
1727 }; // class pass_lower_complex_O0
1728
1729 } // anon namespace
1730
1731 gimple_opt_pass *
1732 make_pass_lower_complex_O0 (gcc::context *ctxt)
1733 {
1734 return new pass_lower_complex_O0 (ctxt);
1735 }