]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-data-ref.c
tree-ssa.h: New.
[thirdparty/gcc.git] / gcc / tree-data-ref.c
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
24
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
30
31 The goals of this analysis are:
32
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
36
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
39
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
45
46 - to define a knowledge base for storing the data dependence
47 information,
48
49 - to define an interface to access this data.
50
51
52 Definitions:
53
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
58
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
63
64 References:
65
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
69
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
71 by Utpal Banerjee.
72
73
74 */
75
76 #include "config.h"
77 #include "system.h"
78 #include "coretypes.h"
79 #include "gimple-pretty-print.h"
80 #include "tree-ssa.h"
81 #include "cfgloop.h"
82 #include "tree-data-ref.h"
83 #include "tree-scalar-evolution.h"
84 #include "dumpfile.h"
85 #include "langhooks.h"
86 #include "tree-affine.h"
87 #include "params.h"
88
89 static struct datadep_stats
90 {
91 int num_dependence_tests;
92 int num_dependence_dependent;
93 int num_dependence_independent;
94 int num_dependence_undetermined;
95
96 int num_subscript_tests;
97 int num_subscript_undetermined;
98 int num_same_subscript_function;
99
100 int num_ziv;
101 int num_ziv_independent;
102 int num_ziv_dependent;
103 int num_ziv_unimplemented;
104
105 int num_siv;
106 int num_siv_independent;
107 int num_siv_dependent;
108 int num_siv_unimplemented;
109
110 int num_miv;
111 int num_miv_independent;
112 int num_miv_dependent;
113 int num_miv_unimplemented;
114 } dependence_stats;
115
116 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
117 struct data_reference *,
118 struct data_reference *,
119 struct loop *);
120 /* Returns true iff A divides B. */
121
122 static inline bool
123 tree_fold_divides_p (const_tree a, const_tree b)
124 {
125 gcc_assert (TREE_CODE (a) == INTEGER_CST);
126 gcc_assert (TREE_CODE (b) == INTEGER_CST);
127 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
128 }
129
130 /* Returns true iff A divides B. */
131
132 static inline bool
133 int_divides_p (int a, int b)
134 {
135 return ((b % a) == 0);
136 }
137
138 \f
139
140 /* Dump into FILE all the data references from DATAREFS. */
141
142 static void
143 dump_data_references (FILE *file, vec<data_reference_p> datarefs)
144 {
145 unsigned int i;
146 struct data_reference *dr;
147
148 FOR_EACH_VEC_ELT (datarefs, i, dr)
149 dump_data_reference (file, dr);
150 }
151
152 /* Unified dump into FILE all the data references from DATAREFS. */
153
154 DEBUG_FUNCTION void
155 debug (vec<data_reference_p> &ref)
156 {
157 dump_data_references (stderr, ref);
158 }
159
160 DEBUG_FUNCTION void
161 debug (vec<data_reference_p> *ptr)
162 {
163 if (ptr)
164 debug (*ptr);
165 else
166 fprintf (stderr, "<nil>\n");
167 }
168
169
170 /* Dump into STDERR all the data references from DATAREFS. */
171
172 DEBUG_FUNCTION void
173 debug_data_references (vec<data_reference_p> datarefs)
174 {
175 dump_data_references (stderr, datarefs);
176 }
177
178 /* Print to STDERR the data_reference DR. */
179
180 DEBUG_FUNCTION void
181 debug_data_reference (struct data_reference *dr)
182 {
183 dump_data_reference (stderr, dr);
184 }
185
186 /* Dump function for a DATA_REFERENCE structure. */
187
188 void
189 dump_data_reference (FILE *outf,
190 struct data_reference *dr)
191 {
192 unsigned int i;
193
194 fprintf (outf, "#(Data Ref: \n");
195 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
196 fprintf (outf, "# stmt: ");
197 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
198 fprintf (outf, "# ref: ");
199 print_generic_stmt (outf, DR_REF (dr), 0);
200 fprintf (outf, "# base_object: ");
201 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
202
203 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
204 {
205 fprintf (outf, "# Access function %d: ", i);
206 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
207 }
208 fprintf (outf, "#)\n");
209 }
210
211 /* Unified dump function for a DATA_REFERENCE structure. */
212
213 DEBUG_FUNCTION void
214 debug (data_reference &ref)
215 {
216 dump_data_reference (stderr, &ref);
217 }
218
219 DEBUG_FUNCTION void
220 debug (data_reference *ptr)
221 {
222 if (ptr)
223 debug (*ptr);
224 else
225 fprintf (stderr, "<nil>\n");
226 }
227
228
229 /* Dumps the affine function described by FN to the file OUTF. */
230
231 static void
232 dump_affine_function (FILE *outf, affine_fn fn)
233 {
234 unsigned i;
235 tree coef;
236
237 print_generic_expr (outf, fn[0], TDF_SLIM);
238 for (i = 1; fn.iterate (i, &coef); i++)
239 {
240 fprintf (outf, " + ");
241 print_generic_expr (outf, coef, TDF_SLIM);
242 fprintf (outf, " * x_%u", i);
243 }
244 }
245
246 /* Dumps the conflict function CF to the file OUTF. */
247
248 static void
249 dump_conflict_function (FILE *outf, conflict_function *cf)
250 {
251 unsigned i;
252
253 if (cf->n == NO_DEPENDENCE)
254 fprintf (outf, "no dependence");
255 else if (cf->n == NOT_KNOWN)
256 fprintf (outf, "not known");
257 else
258 {
259 for (i = 0; i < cf->n; i++)
260 {
261 if (i != 0)
262 fprintf (outf, " ");
263 fprintf (outf, "[");
264 dump_affine_function (outf, cf->fns[i]);
265 fprintf (outf, "]");
266 }
267 }
268 }
269
270 /* Dump function for a SUBSCRIPT structure. */
271
272 static void
273 dump_subscript (FILE *outf, struct subscript *subscript)
274 {
275 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
276
277 fprintf (outf, "\n (subscript \n");
278 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
279 dump_conflict_function (outf, cf);
280 if (CF_NONTRIVIAL_P (cf))
281 {
282 tree last_iteration = SUB_LAST_CONFLICT (subscript);
283 fprintf (outf, "\n last_conflict: ");
284 print_generic_expr (outf, last_iteration, 0);
285 }
286
287 cf = SUB_CONFLICTS_IN_B (subscript);
288 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
289 dump_conflict_function (outf, cf);
290 if (CF_NONTRIVIAL_P (cf))
291 {
292 tree last_iteration = SUB_LAST_CONFLICT (subscript);
293 fprintf (outf, "\n last_conflict: ");
294 print_generic_expr (outf, last_iteration, 0);
295 }
296
297 fprintf (outf, "\n (Subscript distance: ");
298 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
299 fprintf (outf, " ))\n");
300 }
301
302 /* Print the classic direction vector DIRV to OUTF. */
303
304 static void
305 print_direction_vector (FILE *outf,
306 lambda_vector dirv,
307 int length)
308 {
309 int eq;
310
311 for (eq = 0; eq < length; eq++)
312 {
313 enum data_dependence_direction dir = ((enum data_dependence_direction)
314 dirv[eq]);
315
316 switch (dir)
317 {
318 case dir_positive:
319 fprintf (outf, " +");
320 break;
321 case dir_negative:
322 fprintf (outf, " -");
323 break;
324 case dir_equal:
325 fprintf (outf, " =");
326 break;
327 case dir_positive_or_equal:
328 fprintf (outf, " +=");
329 break;
330 case dir_positive_or_negative:
331 fprintf (outf, " +-");
332 break;
333 case dir_negative_or_equal:
334 fprintf (outf, " -=");
335 break;
336 case dir_star:
337 fprintf (outf, " *");
338 break;
339 default:
340 fprintf (outf, "indep");
341 break;
342 }
343 }
344 fprintf (outf, "\n");
345 }
346
347 /* Print a vector of direction vectors. */
348
349 static void
350 print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
351 int length)
352 {
353 unsigned j;
354 lambda_vector v;
355
356 FOR_EACH_VEC_ELT (dir_vects, j, v)
357 print_direction_vector (outf, v, length);
358 }
359
360 /* Print out a vector VEC of length N to OUTFILE. */
361
362 static inline void
363 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
364 {
365 int i;
366
367 for (i = 0; i < n; i++)
368 fprintf (outfile, "%3d ", vector[i]);
369 fprintf (outfile, "\n");
370 }
371
372 /* Print a vector of distance vectors. */
373
374 static void
375 print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
376 int length)
377 {
378 unsigned j;
379 lambda_vector v;
380
381 FOR_EACH_VEC_ELT (dist_vects, j, v)
382 print_lambda_vector (outf, v, length);
383 }
384
385 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
386
387 static void
388 dump_data_dependence_relation (FILE *outf,
389 struct data_dependence_relation *ddr)
390 {
391 struct data_reference *dra, *drb;
392
393 fprintf (outf, "(Data Dep: \n");
394
395 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
396 {
397 if (ddr)
398 {
399 dra = DDR_A (ddr);
400 drb = DDR_B (ddr);
401 if (dra)
402 dump_data_reference (outf, dra);
403 else
404 fprintf (outf, " (nil)\n");
405 if (drb)
406 dump_data_reference (outf, drb);
407 else
408 fprintf (outf, " (nil)\n");
409 }
410 fprintf (outf, " (don't know)\n)\n");
411 return;
412 }
413
414 dra = DDR_A (ddr);
415 drb = DDR_B (ddr);
416 dump_data_reference (outf, dra);
417 dump_data_reference (outf, drb);
418
419 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
420 fprintf (outf, " (no dependence)\n");
421
422 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
423 {
424 unsigned int i;
425 struct loop *loopi;
426
427 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
428 {
429 fprintf (outf, " access_fn_A: ");
430 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
431 fprintf (outf, " access_fn_B: ");
432 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
433 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
434 }
435
436 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
437 fprintf (outf, " loop nest: (");
438 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
439 fprintf (outf, "%d ", loopi->num);
440 fprintf (outf, ")\n");
441
442 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
443 {
444 fprintf (outf, " distance_vector: ");
445 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
446 DDR_NB_LOOPS (ddr));
447 }
448
449 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
450 {
451 fprintf (outf, " direction_vector: ");
452 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
453 DDR_NB_LOOPS (ddr));
454 }
455 }
456
457 fprintf (outf, ")\n");
458 }
459
460 /* Debug version. */
461
462 DEBUG_FUNCTION void
463 debug_data_dependence_relation (struct data_dependence_relation *ddr)
464 {
465 dump_data_dependence_relation (stderr, ddr);
466 }
467
468 /* Dump into FILE all the dependence relations from DDRS. */
469
470 void
471 dump_data_dependence_relations (FILE *file,
472 vec<ddr_p> ddrs)
473 {
474 unsigned int i;
475 struct data_dependence_relation *ddr;
476
477 FOR_EACH_VEC_ELT (ddrs, i, ddr)
478 dump_data_dependence_relation (file, ddr);
479 }
480
481 DEBUG_FUNCTION void
482 debug (vec<ddr_p> &ref)
483 {
484 dump_data_dependence_relations (stderr, ref);
485 }
486
487 DEBUG_FUNCTION void
488 debug (vec<ddr_p> *ptr)
489 {
490 if (ptr)
491 debug (*ptr);
492 else
493 fprintf (stderr, "<nil>\n");
494 }
495
496
497 /* Dump to STDERR all the dependence relations from DDRS. */
498
499 DEBUG_FUNCTION void
500 debug_data_dependence_relations (vec<ddr_p> ddrs)
501 {
502 dump_data_dependence_relations (stderr, ddrs);
503 }
504
505 /* Dumps the distance and direction vectors in FILE. DDRS contains
506 the dependence relations, and VECT_SIZE is the size of the
507 dependence vectors, or in other words the number of loops in the
508 considered nest. */
509
510 static void
511 dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
512 {
513 unsigned int i, j;
514 struct data_dependence_relation *ddr;
515 lambda_vector v;
516
517 FOR_EACH_VEC_ELT (ddrs, i, ddr)
518 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
519 {
520 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
521 {
522 fprintf (file, "DISTANCE_V (");
523 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
524 fprintf (file, ")\n");
525 }
526
527 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
528 {
529 fprintf (file, "DIRECTION_V (");
530 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
531 fprintf (file, ")\n");
532 }
533 }
534
535 fprintf (file, "\n\n");
536 }
537
538 /* Dumps the data dependence relations DDRS in FILE. */
539
540 static void
541 dump_ddrs (FILE *file, vec<ddr_p> ddrs)
542 {
543 unsigned int i;
544 struct data_dependence_relation *ddr;
545
546 FOR_EACH_VEC_ELT (ddrs, i, ddr)
547 dump_data_dependence_relation (file, ddr);
548
549 fprintf (file, "\n\n");
550 }
551
552 DEBUG_FUNCTION void
553 debug_ddrs (vec<ddr_p> ddrs)
554 {
555 dump_ddrs (stderr, ddrs);
556 }
557
558 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
559 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
560 constant of type ssizetype, and returns true. If we cannot do this
561 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
562 is returned. */
563
564 static bool
565 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
566 tree *var, tree *off)
567 {
568 tree var0, var1;
569 tree off0, off1;
570 enum tree_code ocode = code;
571
572 *var = NULL_TREE;
573 *off = NULL_TREE;
574
575 switch (code)
576 {
577 case INTEGER_CST:
578 *var = build_int_cst (type, 0);
579 *off = fold_convert (ssizetype, op0);
580 return true;
581
582 case POINTER_PLUS_EXPR:
583 ocode = PLUS_EXPR;
584 /* FALLTHROUGH */
585 case PLUS_EXPR:
586 case MINUS_EXPR:
587 split_constant_offset (op0, &var0, &off0);
588 split_constant_offset (op1, &var1, &off1);
589 *var = fold_build2 (code, type, var0, var1);
590 *off = size_binop (ocode, off0, off1);
591 return true;
592
593 case MULT_EXPR:
594 if (TREE_CODE (op1) != INTEGER_CST)
595 return false;
596
597 split_constant_offset (op0, &var0, &off0);
598 *var = fold_build2 (MULT_EXPR, type, var0, op1);
599 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
600 return true;
601
602 case ADDR_EXPR:
603 {
604 tree base, poffset;
605 HOST_WIDE_INT pbitsize, pbitpos;
606 enum machine_mode pmode;
607 int punsignedp, pvolatilep;
608
609 op0 = TREE_OPERAND (op0, 0);
610 base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
611 &pmode, &punsignedp, &pvolatilep, false);
612
613 if (pbitpos % BITS_PER_UNIT != 0)
614 return false;
615 base = build_fold_addr_expr (base);
616 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
617
618 if (poffset)
619 {
620 split_constant_offset (poffset, &poffset, &off1);
621 off0 = size_binop (PLUS_EXPR, off0, off1);
622 if (POINTER_TYPE_P (TREE_TYPE (base)))
623 base = fold_build_pointer_plus (base, poffset);
624 else
625 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
626 fold_convert (TREE_TYPE (base), poffset));
627 }
628
629 var0 = fold_convert (type, base);
630
631 /* If variable length types are involved, punt, otherwise casts
632 might be converted into ARRAY_REFs in gimplify_conversion.
633 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
634 possibly no longer appears in current GIMPLE, might resurface.
635 This perhaps could run
636 if (CONVERT_EXPR_P (var0))
637 {
638 gimplify_conversion (&var0);
639 // Attempt to fill in any within var0 found ARRAY_REF's
640 // element size from corresponding op embedded ARRAY_REF,
641 // if unsuccessful, just punt.
642 } */
643 while (POINTER_TYPE_P (type))
644 type = TREE_TYPE (type);
645 if (int_size_in_bytes (type) < 0)
646 return false;
647
648 *var = var0;
649 *off = off0;
650 return true;
651 }
652
653 case SSA_NAME:
654 {
655 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
656 enum tree_code subcode;
657
658 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
659 return false;
660
661 var0 = gimple_assign_rhs1 (def_stmt);
662 subcode = gimple_assign_rhs_code (def_stmt);
663 var1 = gimple_assign_rhs2 (def_stmt);
664
665 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
666 }
667 CASE_CONVERT:
668 {
669 /* We must not introduce undefined overflow, and we must not change the value.
670 Hence we're okay if the inner type doesn't overflow to start with
671 (pointer or signed), the outer type also is an integer or pointer
672 and the outer precision is at least as large as the inner. */
673 tree itype = TREE_TYPE (op0);
674 if ((POINTER_TYPE_P (itype)
675 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
676 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
677 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
678 {
679 split_constant_offset (op0, &var0, off);
680 *var = fold_convert (type, var0);
681 return true;
682 }
683 return false;
684 }
685
686 default:
687 return false;
688 }
689 }
690
691 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
692 will be ssizetype. */
693
694 void
695 split_constant_offset (tree exp, tree *var, tree *off)
696 {
697 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
698 enum tree_code code;
699
700 *var = exp;
701 *off = ssize_int (0);
702 STRIP_NOPS (exp);
703
704 if (tree_is_chrec (exp)
705 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
706 return;
707
708 otype = TREE_TYPE (exp);
709 code = TREE_CODE (exp);
710 extract_ops_from_tree (exp, &code, &op0, &op1);
711 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
712 {
713 *var = fold_convert (type, e);
714 *off = o;
715 }
716 }
717
718 /* Returns the address ADDR of an object in a canonical shape (without nop
719 casts, and with type of pointer to the object). */
720
721 static tree
722 canonicalize_base_object_address (tree addr)
723 {
724 tree orig = addr;
725
726 STRIP_NOPS (addr);
727
728 /* The base address may be obtained by casting from integer, in that case
729 keep the cast. */
730 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
731 return orig;
732
733 if (TREE_CODE (addr) != ADDR_EXPR)
734 return addr;
735
736 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
737 }
738
739 /* Analyzes the behavior of the memory reference DR in the innermost loop or
740 basic block that contains it. Returns true if analysis succeed or false
741 otherwise. */
742
743 bool
744 dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
745 {
746 gimple stmt = DR_STMT (dr);
747 struct loop *loop = loop_containing_stmt (stmt);
748 tree ref = DR_REF (dr);
749 HOST_WIDE_INT pbitsize, pbitpos;
750 tree base, poffset;
751 enum machine_mode pmode;
752 int punsignedp, pvolatilep;
753 affine_iv base_iv, offset_iv;
754 tree init, dinit, step;
755 bool in_loop = (loop && loop->num);
756
757 if (dump_file && (dump_flags & TDF_DETAILS))
758 fprintf (dump_file, "analyze_innermost: ");
759
760 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset,
761 &pmode, &punsignedp, &pvolatilep, false);
762 gcc_assert (base != NULL_TREE);
763
764 if (pbitpos % BITS_PER_UNIT != 0)
765 {
766 if (dump_file && (dump_flags & TDF_DETAILS))
767 fprintf (dump_file, "failed: bit offset alignment.\n");
768 return false;
769 }
770
771 if (TREE_CODE (base) == MEM_REF)
772 {
773 if (!integer_zerop (TREE_OPERAND (base, 1)))
774 {
775 double_int moff = mem_ref_offset (base);
776 tree mofft = double_int_to_tree (sizetype, moff);
777 if (!poffset)
778 poffset = mofft;
779 else
780 poffset = size_binop (PLUS_EXPR, poffset, mofft);
781 }
782 base = TREE_OPERAND (base, 0);
783 }
784 else
785 base = build_fold_addr_expr (base);
786
787 if (in_loop)
788 {
789 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
790 nest ? true : false))
791 {
792 if (nest)
793 {
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 fprintf (dump_file, "failed: evolution of base is not"
796 " affine.\n");
797 return false;
798 }
799 else
800 {
801 base_iv.base = base;
802 base_iv.step = ssize_int (0);
803 base_iv.no_overflow = true;
804 }
805 }
806 }
807 else
808 {
809 base_iv.base = base;
810 base_iv.step = ssize_int (0);
811 base_iv.no_overflow = true;
812 }
813
814 if (!poffset)
815 {
816 offset_iv.base = ssize_int (0);
817 offset_iv.step = ssize_int (0);
818 }
819 else
820 {
821 if (!in_loop)
822 {
823 offset_iv.base = poffset;
824 offset_iv.step = ssize_int (0);
825 }
826 else if (!simple_iv (loop, loop_containing_stmt (stmt),
827 poffset, &offset_iv,
828 nest ? true : false))
829 {
830 if (nest)
831 {
832 if (dump_file && (dump_flags & TDF_DETAILS))
833 fprintf (dump_file, "failed: evolution of offset is not"
834 " affine.\n");
835 return false;
836 }
837 else
838 {
839 offset_iv.base = poffset;
840 offset_iv.step = ssize_int (0);
841 }
842 }
843 }
844
845 init = ssize_int (pbitpos / BITS_PER_UNIT);
846 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
847 init = size_binop (PLUS_EXPR, init, dinit);
848 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
849 init = size_binop (PLUS_EXPR, init, dinit);
850
851 step = size_binop (PLUS_EXPR,
852 fold_convert (ssizetype, base_iv.step),
853 fold_convert (ssizetype, offset_iv.step));
854
855 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
856
857 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
858 DR_INIT (dr) = init;
859 DR_STEP (dr) = step;
860
861 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
862
863 if (dump_file && (dump_flags & TDF_DETAILS))
864 fprintf (dump_file, "success.\n");
865
866 return true;
867 }
868
869 /* Determines the base object and the list of indices of memory reference
870 DR, analyzed in LOOP and instantiated in loop nest NEST. */
871
872 static void
873 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
874 {
875 vec<tree> access_fns = vNULL;
876 tree ref, op;
877 tree base, off, access_fn;
878 basic_block before_loop;
879
880 /* If analyzing a basic-block there are no indices to analyze
881 and thus no access functions. */
882 if (!nest)
883 {
884 DR_BASE_OBJECT (dr) = DR_REF (dr);
885 DR_ACCESS_FNS (dr).create (0);
886 return;
887 }
888
889 ref = DR_REF (dr);
890 before_loop = block_before_loop (nest);
891
892 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
893 into a two element array with a constant index. The base is
894 then just the immediate underlying object. */
895 if (TREE_CODE (ref) == REALPART_EXPR)
896 {
897 ref = TREE_OPERAND (ref, 0);
898 access_fns.safe_push (integer_zero_node);
899 }
900 else if (TREE_CODE (ref) == IMAGPART_EXPR)
901 {
902 ref = TREE_OPERAND (ref, 0);
903 access_fns.safe_push (integer_one_node);
904 }
905
906 /* Analyze access functions of dimensions we know to be independent. */
907 while (handled_component_p (ref))
908 {
909 if (TREE_CODE (ref) == ARRAY_REF)
910 {
911 op = TREE_OPERAND (ref, 1);
912 access_fn = analyze_scalar_evolution (loop, op);
913 access_fn = instantiate_scev (before_loop, loop, access_fn);
914 access_fns.safe_push (access_fn);
915 }
916 else if (TREE_CODE (ref) == COMPONENT_REF
917 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
918 {
919 /* For COMPONENT_REFs of records (but not unions!) use the
920 FIELD_DECL offset as constant access function so we can
921 disambiguate a[i].f1 and a[i].f2. */
922 tree off = component_ref_field_offset (ref);
923 off = size_binop (PLUS_EXPR,
924 size_binop (MULT_EXPR,
925 fold_convert (bitsizetype, off),
926 bitsize_int (BITS_PER_UNIT)),
927 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
928 access_fns.safe_push (off);
929 }
930 else
931 /* If we have an unhandled component we could not translate
932 to an access function stop analyzing. We have determined
933 our base object in this case. */
934 break;
935
936 ref = TREE_OPERAND (ref, 0);
937 }
938
939 /* If the address operand of a MEM_REF base has an evolution in the
940 analyzed nest, add it as an additional independent access-function. */
941 if (TREE_CODE (ref) == MEM_REF)
942 {
943 op = TREE_OPERAND (ref, 0);
944 access_fn = analyze_scalar_evolution (loop, op);
945 access_fn = instantiate_scev (before_loop, loop, access_fn);
946 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
947 {
948 tree orig_type;
949 tree memoff = TREE_OPERAND (ref, 1);
950 base = initial_condition (access_fn);
951 orig_type = TREE_TYPE (base);
952 STRIP_USELESS_TYPE_CONVERSION (base);
953 split_constant_offset (base, &base, &off);
954 /* Fold the MEM_REF offset into the evolutions initial
955 value to make more bases comparable. */
956 if (!integer_zerop (memoff))
957 {
958 off = size_binop (PLUS_EXPR, off,
959 fold_convert (ssizetype, memoff));
960 memoff = build_int_cst (TREE_TYPE (memoff), 0);
961 }
962 access_fn = chrec_replace_initial_condition
963 (access_fn, fold_convert (orig_type, off));
964 /* ??? This is still not a suitable base object for
965 dr_may_alias_p - the base object needs to be an
966 access that covers the object as whole. With
967 an evolution in the pointer this cannot be
968 guaranteed.
969 As a band-aid, mark the access so we can special-case
970 it in dr_may_alias_p. */
971 ref = fold_build2_loc (EXPR_LOCATION (ref),
972 MEM_REF, TREE_TYPE (ref),
973 base, memoff);
974 DR_UNCONSTRAINED_BASE (dr) = true;
975 access_fns.safe_push (access_fn);
976 }
977 }
978 else if (DECL_P (ref))
979 {
980 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
981 ref = build2 (MEM_REF, TREE_TYPE (ref),
982 build_fold_addr_expr (ref),
983 build_int_cst (reference_alias_ptr_type (ref), 0));
984 }
985
986 DR_BASE_OBJECT (dr) = ref;
987 DR_ACCESS_FNS (dr) = access_fns;
988 }
989
990 /* Extracts the alias analysis information from the memory reference DR. */
991
992 static void
993 dr_analyze_alias (struct data_reference *dr)
994 {
995 tree ref = DR_REF (dr);
996 tree base = get_base_address (ref), addr;
997
998 if (INDIRECT_REF_P (base)
999 || TREE_CODE (base) == MEM_REF)
1000 {
1001 addr = TREE_OPERAND (base, 0);
1002 if (TREE_CODE (addr) == SSA_NAME)
1003 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1004 }
1005 }
1006
1007 /* Frees data reference DR. */
1008
1009 void
1010 free_data_ref (data_reference_p dr)
1011 {
1012 DR_ACCESS_FNS (dr).release ();
1013 free (dr);
1014 }
1015
1016 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1017 is read if IS_READ is true, write otherwise. Returns the
1018 data_reference description of MEMREF. NEST is the outermost loop
1019 in which the reference should be instantiated, LOOP is the loop in
1020 which the data reference should be analyzed. */
1021
1022 struct data_reference *
1023 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt,
1024 bool is_read)
1025 {
1026 struct data_reference *dr;
1027
1028 if (dump_file && (dump_flags & TDF_DETAILS))
1029 {
1030 fprintf (dump_file, "Creating dr for ");
1031 print_generic_expr (dump_file, memref, TDF_SLIM);
1032 fprintf (dump_file, "\n");
1033 }
1034
1035 dr = XCNEW (struct data_reference);
1036 DR_STMT (dr) = stmt;
1037 DR_REF (dr) = memref;
1038 DR_IS_READ (dr) = is_read;
1039
1040 dr_analyze_innermost (dr, nest);
1041 dr_analyze_indices (dr, nest, loop);
1042 dr_analyze_alias (dr);
1043
1044 if (dump_file && (dump_flags & TDF_DETAILS))
1045 {
1046 unsigned i;
1047 fprintf (dump_file, "\tbase_address: ");
1048 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1049 fprintf (dump_file, "\n\toffset from base address: ");
1050 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1051 fprintf (dump_file, "\n\tconstant offset from base address: ");
1052 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
1053 fprintf (dump_file, "\n\tstep: ");
1054 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1055 fprintf (dump_file, "\n\taligned to: ");
1056 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1057 fprintf (dump_file, "\n\tbase_object: ");
1058 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1059 fprintf (dump_file, "\n");
1060 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1061 {
1062 fprintf (dump_file, "\tAccess function %d: ", i);
1063 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1064 }
1065 }
1066
1067 return dr;
1068 }
1069
1070 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1071 expressions. */
1072 static bool
1073 dr_equal_offsets_p1 (tree offset1, tree offset2)
1074 {
1075 bool res;
1076
1077 STRIP_NOPS (offset1);
1078 STRIP_NOPS (offset2);
1079
1080 if (offset1 == offset2)
1081 return true;
1082
1083 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1084 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1085 return false;
1086
1087 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1088 TREE_OPERAND (offset2, 0));
1089
1090 if (!res || !BINARY_CLASS_P (offset1))
1091 return res;
1092
1093 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1094 TREE_OPERAND (offset2, 1));
1095
1096 return res;
1097 }
1098
1099 /* Check if DRA and DRB have equal offsets. */
1100 bool
1101 dr_equal_offsets_p (struct data_reference *dra,
1102 struct data_reference *drb)
1103 {
1104 tree offset1, offset2;
1105
1106 offset1 = DR_OFFSET (dra);
1107 offset2 = DR_OFFSET (drb);
1108
1109 return dr_equal_offsets_p1 (offset1, offset2);
1110 }
1111
1112 /* Returns true if FNA == FNB. */
1113
1114 static bool
1115 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1116 {
1117 unsigned i, n = fna.length ();
1118
1119 if (n != fnb.length ())
1120 return false;
1121
1122 for (i = 0; i < n; i++)
1123 if (!operand_equal_p (fna[i], fnb[i], 0))
1124 return false;
1125
1126 return true;
1127 }
1128
1129 /* If all the functions in CF are the same, returns one of them,
1130 otherwise returns NULL. */
1131
1132 static affine_fn
1133 common_affine_function (conflict_function *cf)
1134 {
1135 unsigned i;
1136 affine_fn comm;
1137
1138 if (!CF_NONTRIVIAL_P (cf))
1139 return affine_fn();
1140
1141 comm = cf->fns[0];
1142
1143 for (i = 1; i < cf->n; i++)
1144 if (!affine_function_equal_p (comm, cf->fns[i]))
1145 return affine_fn();
1146
1147 return comm;
1148 }
1149
1150 /* Returns the base of the affine function FN. */
1151
1152 static tree
1153 affine_function_base (affine_fn fn)
1154 {
1155 return fn[0];
1156 }
1157
1158 /* Returns true if FN is a constant. */
1159
1160 static bool
1161 affine_function_constant_p (affine_fn fn)
1162 {
1163 unsigned i;
1164 tree coef;
1165
1166 for (i = 1; fn.iterate (i, &coef); i++)
1167 if (!integer_zerop (coef))
1168 return false;
1169
1170 return true;
1171 }
1172
1173 /* Returns true if FN is the zero constant function. */
1174
1175 static bool
1176 affine_function_zero_p (affine_fn fn)
1177 {
1178 return (integer_zerop (affine_function_base (fn))
1179 && affine_function_constant_p (fn));
1180 }
1181
1182 /* Returns a signed integer type with the largest precision from TA
1183 and TB. */
1184
1185 static tree
1186 signed_type_for_types (tree ta, tree tb)
1187 {
1188 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1189 return signed_type_for (ta);
1190 else
1191 return signed_type_for (tb);
1192 }
1193
1194 /* Applies operation OP on affine functions FNA and FNB, and returns the
1195 result. */
1196
1197 static affine_fn
1198 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1199 {
1200 unsigned i, n, m;
1201 affine_fn ret;
1202 tree coef;
1203
1204 if (fnb.length () > fna.length ())
1205 {
1206 n = fna.length ();
1207 m = fnb.length ();
1208 }
1209 else
1210 {
1211 n = fnb.length ();
1212 m = fna.length ();
1213 }
1214
1215 ret.create (m);
1216 for (i = 0; i < n; i++)
1217 {
1218 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1219 TREE_TYPE (fnb[i]));
1220 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
1221 }
1222
1223 for (; fna.iterate (i, &coef); i++)
1224 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1225 coef, integer_zero_node));
1226 for (; fnb.iterate (i, &coef); i++)
1227 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1228 integer_zero_node, coef));
1229
1230 return ret;
1231 }
1232
1233 /* Returns the sum of affine functions FNA and FNB. */
1234
1235 static affine_fn
1236 affine_fn_plus (affine_fn fna, affine_fn fnb)
1237 {
1238 return affine_fn_op (PLUS_EXPR, fna, fnb);
1239 }
1240
1241 /* Returns the difference of affine functions FNA and FNB. */
1242
1243 static affine_fn
1244 affine_fn_minus (affine_fn fna, affine_fn fnb)
1245 {
1246 return affine_fn_op (MINUS_EXPR, fna, fnb);
1247 }
1248
1249 /* Frees affine function FN. */
1250
1251 static void
1252 affine_fn_free (affine_fn fn)
1253 {
1254 fn.release ();
1255 }
1256
1257 /* Determine for each subscript in the data dependence relation DDR
1258 the distance. */
1259
1260 static void
1261 compute_subscript_distance (struct data_dependence_relation *ddr)
1262 {
1263 conflict_function *cf_a, *cf_b;
1264 affine_fn fn_a, fn_b, diff;
1265
1266 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1267 {
1268 unsigned int i;
1269
1270 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1271 {
1272 struct subscript *subscript;
1273
1274 subscript = DDR_SUBSCRIPT (ddr, i);
1275 cf_a = SUB_CONFLICTS_IN_A (subscript);
1276 cf_b = SUB_CONFLICTS_IN_B (subscript);
1277
1278 fn_a = common_affine_function (cf_a);
1279 fn_b = common_affine_function (cf_b);
1280 if (!fn_a.exists () || !fn_b.exists ())
1281 {
1282 SUB_DISTANCE (subscript) = chrec_dont_know;
1283 return;
1284 }
1285 diff = affine_fn_minus (fn_a, fn_b);
1286
1287 if (affine_function_constant_p (diff))
1288 SUB_DISTANCE (subscript) = affine_function_base (diff);
1289 else
1290 SUB_DISTANCE (subscript) = chrec_dont_know;
1291
1292 affine_fn_free (diff);
1293 }
1294 }
1295 }
1296
1297 /* Returns the conflict function for "unknown". */
1298
1299 static conflict_function *
1300 conflict_fn_not_known (void)
1301 {
1302 conflict_function *fn = XCNEW (conflict_function);
1303 fn->n = NOT_KNOWN;
1304
1305 return fn;
1306 }
1307
1308 /* Returns the conflict function for "independent". */
1309
1310 static conflict_function *
1311 conflict_fn_no_dependence (void)
1312 {
1313 conflict_function *fn = XCNEW (conflict_function);
1314 fn->n = NO_DEPENDENCE;
1315
1316 return fn;
1317 }
1318
1319 /* Returns true if the address of OBJ is invariant in LOOP. */
1320
1321 static bool
1322 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1323 {
1324 while (handled_component_p (obj))
1325 {
1326 if (TREE_CODE (obj) == ARRAY_REF)
1327 {
1328 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1329 need to check the stride and the lower bound of the reference. */
1330 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1331 loop->num)
1332 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1333 loop->num))
1334 return false;
1335 }
1336 else if (TREE_CODE (obj) == COMPONENT_REF)
1337 {
1338 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1339 loop->num))
1340 return false;
1341 }
1342 obj = TREE_OPERAND (obj, 0);
1343 }
1344
1345 if (!INDIRECT_REF_P (obj)
1346 && TREE_CODE (obj) != MEM_REF)
1347 return true;
1348
1349 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1350 loop->num);
1351 }
1352
1353 /* Returns false if we can prove that data references A and B do not alias,
1354 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1355 considered. */
1356
1357 bool
1358 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1359 bool loop_nest)
1360 {
1361 tree addr_a = DR_BASE_OBJECT (a);
1362 tree addr_b = DR_BASE_OBJECT (b);
1363
1364 /* If we are not processing a loop nest but scalar code we
1365 do not need to care about possible cross-iteration dependences
1366 and thus can process the full original reference. Do so,
1367 similar to how loop invariant motion applies extra offset-based
1368 disambiguation. */
1369 if (!loop_nest)
1370 {
1371 aff_tree off1, off2;
1372 double_int size1, size2;
1373 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1374 get_inner_reference_aff (DR_REF (b), &off2, &size2);
1375 aff_combination_scale (&off1, double_int_minus_one);
1376 aff_combination_add (&off2, &off1);
1377 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1378 return false;
1379 }
1380
1381 /* If we had an evolution in a MEM_REF BASE_OBJECT we do not know
1382 the size of the base-object. So we cannot do any offset/overlap
1383 based analysis but have to rely on points-to information only. */
1384 if (TREE_CODE (addr_a) == MEM_REF
1385 && DR_UNCONSTRAINED_BASE (a))
1386 {
1387 if (TREE_CODE (addr_b) == MEM_REF
1388 && DR_UNCONSTRAINED_BASE (b))
1389 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1390 TREE_OPERAND (addr_b, 0));
1391 else
1392 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1393 build_fold_addr_expr (addr_b));
1394 }
1395 else if (TREE_CODE (addr_b) == MEM_REF
1396 && DR_UNCONSTRAINED_BASE (b))
1397 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1398 TREE_OPERAND (addr_b, 0));
1399
1400 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1401 that is being subsetted in the loop nest. */
1402 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1403 return refs_output_dependent_p (addr_a, addr_b);
1404 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1405 return refs_anti_dependent_p (addr_a, addr_b);
1406 return refs_may_alias_p (addr_a, addr_b);
1407 }
1408
1409 /* Initialize a data dependence relation between data accesses A and
1410 B. NB_LOOPS is the number of loops surrounding the references: the
1411 size of the classic distance/direction vectors. */
1412
1413 struct data_dependence_relation *
1414 initialize_data_dependence_relation (struct data_reference *a,
1415 struct data_reference *b,
1416 vec<loop_p> loop_nest)
1417 {
1418 struct data_dependence_relation *res;
1419 unsigned int i;
1420
1421 res = XNEW (struct data_dependence_relation);
1422 DDR_A (res) = a;
1423 DDR_B (res) = b;
1424 DDR_LOOP_NEST (res).create (0);
1425 DDR_REVERSED_P (res) = false;
1426 DDR_SUBSCRIPTS (res).create (0);
1427 DDR_DIR_VECTS (res).create (0);
1428 DDR_DIST_VECTS (res).create (0);
1429
1430 if (a == NULL || b == NULL)
1431 {
1432 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1433 return res;
1434 }
1435
1436 /* If the data references do not alias, then they are independent. */
1437 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
1438 {
1439 DDR_ARE_DEPENDENT (res) = chrec_known;
1440 return res;
1441 }
1442
1443 /* The case where the references are exactly the same. */
1444 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1445 {
1446 if (loop_nest.exists ()
1447 && !object_address_invariant_in_loop_p (loop_nest[0],
1448 DR_BASE_OBJECT (a)))
1449 {
1450 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1451 return res;
1452 }
1453 DDR_AFFINE_P (res) = true;
1454 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1455 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1456 DDR_LOOP_NEST (res) = loop_nest;
1457 DDR_INNER_LOOP (res) = 0;
1458 DDR_SELF_REFERENCE (res) = true;
1459 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1460 {
1461 struct subscript *subscript;
1462
1463 subscript = XNEW (struct subscript);
1464 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1465 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1466 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1467 SUB_DISTANCE (subscript) = chrec_dont_know;
1468 DDR_SUBSCRIPTS (res).safe_push (subscript);
1469 }
1470 return res;
1471 }
1472
1473 /* If the references do not access the same object, we do not know
1474 whether they alias or not. */
1475 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
1476 {
1477 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1478 return res;
1479 }
1480
1481 /* If the base of the object is not invariant in the loop nest, we cannot
1482 analyze it. TODO -- in fact, it would suffice to record that there may
1483 be arbitrary dependences in the loops where the base object varies. */
1484 if (loop_nest.exists ()
1485 && !object_address_invariant_in_loop_p (loop_nest[0],
1486 DR_BASE_OBJECT (a)))
1487 {
1488 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1489 return res;
1490 }
1491
1492 /* If the number of dimensions of the access to not agree we can have
1493 a pointer access to a component of the array element type and an
1494 array access while the base-objects are still the same. Punt. */
1495 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1496 {
1497 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1498 return res;
1499 }
1500
1501 DDR_AFFINE_P (res) = true;
1502 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1503 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1504 DDR_LOOP_NEST (res) = loop_nest;
1505 DDR_INNER_LOOP (res) = 0;
1506 DDR_SELF_REFERENCE (res) = false;
1507
1508 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1509 {
1510 struct subscript *subscript;
1511
1512 subscript = XNEW (struct subscript);
1513 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1514 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1515 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1516 SUB_DISTANCE (subscript) = chrec_dont_know;
1517 DDR_SUBSCRIPTS (res).safe_push (subscript);
1518 }
1519
1520 return res;
1521 }
1522
1523 /* Frees memory used by the conflict function F. */
1524
1525 static void
1526 free_conflict_function (conflict_function *f)
1527 {
1528 unsigned i;
1529
1530 if (CF_NONTRIVIAL_P (f))
1531 {
1532 for (i = 0; i < f->n; i++)
1533 affine_fn_free (f->fns[i]);
1534 }
1535 free (f);
1536 }
1537
1538 /* Frees memory used by SUBSCRIPTS. */
1539
1540 static void
1541 free_subscripts (vec<subscript_p> subscripts)
1542 {
1543 unsigned i;
1544 subscript_p s;
1545
1546 FOR_EACH_VEC_ELT (subscripts, i, s)
1547 {
1548 free_conflict_function (s->conflicting_iterations_in_a);
1549 free_conflict_function (s->conflicting_iterations_in_b);
1550 free (s);
1551 }
1552 subscripts.release ();
1553 }
1554
1555 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1556 description. */
1557
1558 static inline void
1559 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1560 tree chrec)
1561 {
1562 DDR_ARE_DEPENDENT (ddr) = chrec;
1563 free_subscripts (DDR_SUBSCRIPTS (ddr));
1564 DDR_SUBSCRIPTS (ddr).create (0);
1565 }
1566
1567 /* The dependence relation DDR cannot be represented by a distance
1568 vector. */
1569
1570 static inline void
1571 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1572 {
1573 if (dump_file && (dump_flags & TDF_DETAILS))
1574 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1575
1576 DDR_AFFINE_P (ddr) = false;
1577 }
1578
1579 \f
1580
1581 /* This section contains the classic Banerjee tests. */
1582
1583 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1584 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1585
1586 static inline bool
1587 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1588 {
1589 return (evolution_function_is_constant_p (chrec_a)
1590 && evolution_function_is_constant_p (chrec_b));
1591 }
1592
1593 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1594 variable, i.e., if the SIV (Single Index Variable) test is true. */
1595
1596 static bool
1597 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1598 {
1599 if ((evolution_function_is_constant_p (chrec_a)
1600 && evolution_function_is_univariate_p (chrec_b))
1601 || (evolution_function_is_constant_p (chrec_b)
1602 && evolution_function_is_univariate_p (chrec_a)))
1603 return true;
1604
1605 if (evolution_function_is_univariate_p (chrec_a)
1606 && evolution_function_is_univariate_p (chrec_b))
1607 {
1608 switch (TREE_CODE (chrec_a))
1609 {
1610 case POLYNOMIAL_CHREC:
1611 switch (TREE_CODE (chrec_b))
1612 {
1613 case POLYNOMIAL_CHREC:
1614 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1615 return false;
1616
1617 default:
1618 return true;
1619 }
1620
1621 default:
1622 return true;
1623 }
1624 }
1625
1626 return false;
1627 }
1628
1629 /* Creates a conflict function with N dimensions. The affine functions
1630 in each dimension follow. */
1631
1632 static conflict_function *
1633 conflict_fn (unsigned n, ...)
1634 {
1635 unsigned i;
1636 conflict_function *ret = XCNEW (conflict_function);
1637 va_list ap;
1638
1639 gcc_assert (0 < n && n <= MAX_DIM);
1640 va_start(ap, n);
1641
1642 ret->n = n;
1643 for (i = 0; i < n; i++)
1644 ret->fns[i] = va_arg (ap, affine_fn);
1645 va_end(ap);
1646
1647 return ret;
1648 }
1649
1650 /* Returns constant affine function with value CST. */
1651
1652 static affine_fn
1653 affine_fn_cst (tree cst)
1654 {
1655 affine_fn fn;
1656 fn.create (1);
1657 fn.quick_push (cst);
1658 return fn;
1659 }
1660
1661 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1662
1663 static affine_fn
1664 affine_fn_univar (tree cst, unsigned dim, tree coef)
1665 {
1666 affine_fn fn;
1667 fn.create (dim + 1);
1668 unsigned i;
1669
1670 gcc_assert (dim > 0);
1671 fn.quick_push (cst);
1672 for (i = 1; i < dim; i++)
1673 fn.quick_push (integer_zero_node);
1674 fn.quick_push (coef);
1675 return fn;
1676 }
1677
1678 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1679 *OVERLAPS_B are initialized to the functions that describe the
1680 relation between the elements accessed twice by CHREC_A and
1681 CHREC_B. For k >= 0, the following property is verified:
1682
1683 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1684
1685 static void
1686 analyze_ziv_subscript (tree chrec_a,
1687 tree chrec_b,
1688 conflict_function **overlaps_a,
1689 conflict_function **overlaps_b,
1690 tree *last_conflicts)
1691 {
1692 tree type, difference;
1693 dependence_stats.num_ziv++;
1694
1695 if (dump_file && (dump_flags & TDF_DETAILS))
1696 fprintf (dump_file, "(analyze_ziv_subscript \n");
1697
1698 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1699 chrec_a = chrec_convert (type, chrec_a, NULL);
1700 chrec_b = chrec_convert (type, chrec_b, NULL);
1701 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1702
1703 switch (TREE_CODE (difference))
1704 {
1705 case INTEGER_CST:
1706 if (integer_zerop (difference))
1707 {
1708 /* The difference is equal to zero: the accessed index
1709 overlaps for each iteration in the loop. */
1710 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1711 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1712 *last_conflicts = chrec_dont_know;
1713 dependence_stats.num_ziv_dependent++;
1714 }
1715 else
1716 {
1717 /* The accesses do not overlap. */
1718 *overlaps_a = conflict_fn_no_dependence ();
1719 *overlaps_b = conflict_fn_no_dependence ();
1720 *last_conflicts = integer_zero_node;
1721 dependence_stats.num_ziv_independent++;
1722 }
1723 break;
1724
1725 default:
1726 /* We're not sure whether the indexes overlap. For the moment,
1727 conservatively answer "don't know". */
1728 if (dump_file && (dump_flags & TDF_DETAILS))
1729 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1730
1731 *overlaps_a = conflict_fn_not_known ();
1732 *overlaps_b = conflict_fn_not_known ();
1733 *last_conflicts = chrec_dont_know;
1734 dependence_stats.num_ziv_unimplemented++;
1735 break;
1736 }
1737
1738 if (dump_file && (dump_flags & TDF_DETAILS))
1739 fprintf (dump_file, ")\n");
1740 }
1741
1742 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1743 and only if it fits to the int type. If this is not the case, or the
1744 bound on the number of iterations of LOOP could not be derived, returns
1745 chrec_dont_know. */
1746
1747 static tree
1748 max_stmt_executions_tree (struct loop *loop)
1749 {
1750 double_int nit;
1751
1752 if (!max_stmt_executions (loop, &nit))
1753 return chrec_dont_know;
1754
1755 if (!double_int_fits_to_tree_p (unsigned_type_node, nit))
1756 return chrec_dont_know;
1757
1758 return double_int_to_tree (unsigned_type_node, nit);
1759 }
1760
1761 /* Determine whether the CHREC is always positive/negative. If the expression
1762 cannot be statically analyzed, return false, otherwise set the answer into
1763 VALUE. */
1764
1765 static bool
1766 chrec_is_positive (tree chrec, bool *value)
1767 {
1768 bool value0, value1, value2;
1769 tree end_value, nb_iter;
1770
1771 switch (TREE_CODE (chrec))
1772 {
1773 case POLYNOMIAL_CHREC:
1774 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1775 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1776 return false;
1777
1778 /* FIXME -- overflows. */
1779 if (value0 == value1)
1780 {
1781 *value = value0;
1782 return true;
1783 }
1784
1785 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1786 and the proof consists in showing that the sign never
1787 changes during the execution of the loop, from 0 to
1788 loop->nb_iterations. */
1789 if (!evolution_function_is_affine_p (chrec))
1790 return false;
1791
1792 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1793 if (chrec_contains_undetermined (nb_iter))
1794 return false;
1795
1796 #if 0
1797 /* TODO -- If the test is after the exit, we may decrease the number of
1798 iterations by one. */
1799 if (after_exit)
1800 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1801 #endif
1802
1803 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1804
1805 if (!chrec_is_positive (end_value, &value2))
1806 return false;
1807
1808 *value = value0;
1809 return value0 == value1;
1810
1811 case INTEGER_CST:
1812 switch (tree_int_cst_sgn (chrec))
1813 {
1814 case -1:
1815 *value = false;
1816 break;
1817 case 1:
1818 *value = true;
1819 break;
1820 default:
1821 return false;
1822 }
1823 return true;
1824
1825 default:
1826 return false;
1827 }
1828 }
1829
1830
1831 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1832 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1833 *OVERLAPS_B are initialized to the functions that describe the
1834 relation between the elements accessed twice by CHREC_A and
1835 CHREC_B. For k >= 0, the following property is verified:
1836
1837 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1838
1839 static void
1840 analyze_siv_subscript_cst_affine (tree chrec_a,
1841 tree chrec_b,
1842 conflict_function **overlaps_a,
1843 conflict_function **overlaps_b,
1844 tree *last_conflicts)
1845 {
1846 bool value0, value1, value2;
1847 tree type, difference, tmp;
1848
1849 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1850 chrec_a = chrec_convert (type, chrec_a, NULL);
1851 chrec_b = chrec_convert (type, chrec_b, NULL);
1852 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1853
1854 /* Special case overlap in the first iteration. */
1855 if (integer_zerop (difference))
1856 {
1857 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1858 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1859 *last_conflicts = integer_one_node;
1860 return;
1861 }
1862
1863 if (!chrec_is_positive (initial_condition (difference), &value0))
1864 {
1865 if (dump_file && (dump_flags & TDF_DETAILS))
1866 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1867
1868 dependence_stats.num_siv_unimplemented++;
1869 *overlaps_a = conflict_fn_not_known ();
1870 *overlaps_b = conflict_fn_not_known ();
1871 *last_conflicts = chrec_dont_know;
1872 return;
1873 }
1874 else
1875 {
1876 if (value0 == false)
1877 {
1878 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1879 {
1880 if (dump_file && (dump_flags & TDF_DETAILS))
1881 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1882
1883 *overlaps_a = conflict_fn_not_known ();
1884 *overlaps_b = conflict_fn_not_known ();
1885 *last_conflicts = chrec_dont_know;
1886 dependence_stats.num_siv_unimplemented++;
1887 return;
1888 }
1889 else
1890 {
1891 if (value1 == true)
1892 {
1893 /* Example:
1894 chrec_a = 12
1895 chrec_b = {10, +, 1}
1896 */
1897
1898 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1899 {
1900 HOST_WIDE_INT numiter;
1901 struct loop *loop = get_chrec_loop (chrec_b);
1902
1903 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1904 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1905 fold_build1 (ABS_EXPR, type, difference),
1906 CHREC_RIGHT (chrec_b));
1907 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1908 *last_conflicts = integer_one_node;
1909
1910
1911 /* Perform weak-zero siv test to see if overlap is
1912 outside the loop bounds. */
1913 numiter = max_stmt_executions_int (loop);
1914
1915 if (numiter >= 0
1916 && compare_tree_int (tmp, numiter) > 0)
1917 {
1918 free_conflict_function (*overlaps_a);
1919 free_conflict_function (*overlaps_b);
1920 *overlaps_a = conflict_fn_no_dependence ();
1921 *overlaps_b = conflict_fn_no_dependence ();
1922 *last_conflicts = integer_zero_node;
1923 dependence_stats.num_siv_independent++;
1924 return;
1925 }
1926 dependence_stats.num_siv_dependent++;
1927 return;
1928 }
1929
1930 /* When the step does not divide the difference, there are
1931 no overlaps. */
1932 else
1933 {
1934 *overlaps_a = conflict_fn_no_dependence ();
1935 *overlaps_b = conflict_fn_no_dependence ();
1936 *last_conflicts = integer_zero_node;
1937 dependence_stats.num_siv_independent++;
1938 return;
1939 }
1940 }
1941
1942 else
1943 {
1944 /* Example:
1945 chrec_a = 12
1946 chrec_b = {10, +, -1}
1947
1948 In this case, chrec_a will not overlap with chrec_b. */
1949 *overlaps_a = conflict_fn_no_dependence ();
1950 *overlaps_b = conflict_fn_no_dependence ();
1951 *last_conflicts = integer_zero_node;
1952 dependence_stats.num_siv_independent++;
1953 return;
1954 }
1955 }
1956 }
1957 else
1958 {
1959 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
1960 {
1961 if (dump_file && (dump_flags & TDF_DETAILS))
1962 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1963
1964 *overlaps_a = conflict_fn_not_known ();
1965 *overlaps_b = conflict_fn_not_known ();
1966 *last_conflicts = chrec_dont_know;
1967 dependence_stats.num_siv_unimplemented++;
1968 return;
1969 }
1970 else
1971 {
1972 if (value2 == false)
1973 {
1974 /* Example:
1975 chrec_a = 3
1976 chrec_b = {10, +, -1}
1977 */
1978 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1979 {
1980 HOST_WIDE_INT numiter;
1981 struct loop *loop = get_chrec_loop (chrec_b);
1982
1983 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1984 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
1985 CHREC_RIGHT (chrec_b));
1986 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1987 *last_conflicts = integer_one_node;
1988
1989 /* Perform weak-zero siv test to see if overlap is
1990 outside the loop bounds. */
1991 numiter = max_stmt_executions_int (loop);
1992
1993 if (numiter >= 0
1994 && compare_tree_int (tmp, numiter) > 0)
1995 {
1996 free_conflict_function (*overlaps_a);
1997 free_conflict_function (*overlaps_b);
1998 *overlaps_a = conflict_fn_no_dependence ();
1999 *overlaps_b = conflict_fn_no_dependence ();
2000 *last_conflicts = integer_zero_node;
2001 dependence_stats.num_siv_independent++;
2002 return;
2003 }
2004 dependence_stats.num_siv_dependent++;
2005 return;
2006 }
2007
2008 /* When the step does not divide the difference, there
2009 are no overlaps. */
2010 else
2011 {
2012 *overlaps_a = conflict_fn_no_dependence ();
2013 *overlaps_b = conflict_fn_no_dependence ();
2014 *last_conflicts = integer_zero_node;
2015 dependence_stats.num_siv_independent++;
2016 return;
2017 }
2018 }
2019 else
2020 {
2021 /* Example:
2022 chrec_a = 3
2023 chrec_b = {4, +, 1}
2024
2025 In this case, chrec_a will not overlap with chrec_b. */
2026 *overlaps_a = conflict_fn_no_dependence ();
2027 *overlaps_b = conflict_fn_no_dependence ();
2028 *last_conflicts = integer_zero_node;
2029 dependence_stats.num_siv_independent++;
2030 return;
2031 }
2032 }
2033 }
2034 }
2035 }
2036
2037 /* Helper recursive function for initializing the matrix A. Returns
2038 the initial value of CHREC. */
2039
2040 static tree
2041 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2042 {
2043 gcc_assert (chrec);
2044
2045 switch (TREE_CODE (chrec))
2046 {
2047 case POLYNOMIAL_CHREC:
2048 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2049
2050 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2051 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2052
2053 case PLUS_EXPR:
2054 case MULT_EXPR:
2055 case MINUS_EXPR:
2056 {
2057 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2058 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2059
2060 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2061 }
2062
2063 case NOP_EXPR:
2064 {
2065 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2066 return chrec_convert (chrec_type (chrec), op, NULL);
2067 }
2068
2069 case BIT_NOT_EXPR:
2070 {
2071 /* Handle ~X as -1 - X. */
2072 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2073 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2074 build_int_cst (TREE_TYPE (chrec), -1), op);
2075 }
2076
2077 case INTEGER_CST:
2078 return chrec;
2079
2080 default:
2081 gcc_unreachable ();
2082 return NULL_TREE;
2083 }
2084 }
2085
2086 #define FLOOR_DIV(x,y) ((x) / (y))
2087
2088 /* Solves the special case of the Diophantine equation:
2089 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2090
2091 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2092 number of iterations that loops X and Y run. The overlaps will be
2093 constructed as evolutions in dimension DIM. */
2094
2095 static void
2096 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
2097 affine_fn *overlaps_a,
2098 affine_fn *overlaps_b,
2099 tree *last_conflicts, int dim)
2100 {
2101 if (((step_a > 0 && step_b > 0)
2102 || (step_a < 0 && step_b < 0)))
2103 {
2104 int step_overlaps_a, step_overlaps_b;
2105 int gcd_steps_a_b, last_conflict, tau2;
2106
2107 gcd_steps_a_b = gcd (step_a, step_b);
2108 step_overlaps_a = step_b / gcd_steps_a_b;
2109 step_overlaps_b = step_a / gcd_steps_a_b;
2110
2111 if (niter > 0)
2112 {
2113 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2114 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2115 last_conflict = tau2;
2116 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2117 }
2118 else
2119 *last_conflicts = chrec_dont_know;
2120
2121 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
2122 build_int_cst (NULL_TREE,
2123 step_overlaps_a));
2124 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2125 build_int_cst (NULL_TREE,
2126 step_overlaps_b));
2127 }
2128
2129 else
2130 {
2131 *overlaps_a = affine_fn_cst (integer_zero_node);
2132 *overlaps_b = affine_fn_cst (integer_zero_node);
2133 *last_conflicts = integer_zero_node;
2134 }
2135 }
2136
2137 /* Solves the special case of a Diophantine equation where CHREC_A is
2138 an affine bivariate function, and CHREC_B is an affine univariate
2139 function. For example,
2140
2141 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2142
2143 has the following overlapping functions:
2144
2145 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2146 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2147 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2148
2149 FORNOW: This is a specialized implementation for a case occurring in
2150 a common benchmark. Implement the general algorithm. */
2151
2152 static void
2153 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2154 conflict_function **overlaps_a,
2155 conflict_function **overlaps_b,
2156 tree *last_conflicts)
2157 {
2158 bool xz_p, yz_p, xyz_p;
2159 int step_x, step_y, step_z;
2160 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2161 affine_fn overlaps_a_xz, overlaps_b_xz;
2162 affine_fn overlaps_a_yz, overlaps_b_yz;
2163 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2164 affine_fn ova1, ova2, ovb;
2165 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2166
2167 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2168 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2169 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2170
2171 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2172 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2173 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
2174
2175 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2176 {
2177 if (dump_file && (dump_flags & TDF_DETAILS))
2178 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2179
2180 *overlaps_a = conflict_fn_not_known ();
2181 *overlaps_b = conflict_fn_not_known ();
2182 *last_conflicts = chrec_dont_know;
2183 return;
2184 }
2185
2186 niter = MIN (niter_x, niter_z);
2187 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2188 &overlaps_a_xz,
2189 &overlaps_b_xz,
2190 &last_conflicts_xz, 1);
2191 niter = MIN (niter_y, niter_z);
2192 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2193 &overlaps_a_yz,
2194 &overlaps_b_yz,
2195 &last_conflicts_yz, 2);
2196 niter = MIN (niter_x, niter_z);
2197 niter = MIN (niter_y, niter);
2198 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2199 &overlaps_a_xyz,
2200 &overlaps_b_xyz,
2201 &last_conflicts_xyz, 3);
2202
2203 xz_p = !integer_zerop (last_conflicts_xz);
2204 yz_p = !integer_zerop (last_conflicts_yz);
2205 xyz_p = !integer_zerop (last_conflicts_xyz);
2206
2207 if (xz_p || yz_p || xyz_p)
2208 {
2209 ova1 = affine_fn_cst (integer_zero_node);
2210 ova2 = affine_fn_cst (integer_zero_node);
2211 ovb = affine_fn_cst (integer_zero_node);
2212 if (xz_p)
2213 {
2214 affine_fn t0 = ova1;
2215 affine_fn t2 = ovb;
2216
2217 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2218 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2219 affine_fn_free (t0);
2220 affine_fn_free (t2);
2221 *last_conflicts = last_conflicts_xz;
2222 }
2223 if (yz_p)
2224 {
2225 affine_fn t0 = ova2;
2226 affine_fn t2 = ovb;
2227
2228 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2229 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2230 affine_fn_free (t0);
2231 affine_fn_free (t2);
2232 *last_conflicts = last_conflicts_yz;
2233 }
2234 if (xyz_p)
2235 {
2236 affine_fn t0 = ova1;
2237 affine_fn t2 = ova2;
2238 affine_fn t4 = ovb;
2239
2240 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2241 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2242 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2243 affine_fn_free (t0);
2244 affine_fn_free (t2);
2245 affine_fn_free (t4);
2246 *last_conflicts = last_conflicts_xyz;
2247 }
2248 *overlaps_a = conflict_fn (2, ova1, ova2);
2249 *overlaps_b = conflict_fn (1, ovb);
2250 }
2251 else
2252 {
2253 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2254 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2255 *last_conflicts = integer_zero_node;
2256 }
2257
2258 affine_fn_free (overlaps_a_xz);
2259 affine_fn_free (overlaps_b_xz);
2260 affine_fn_free (overlaps_a_yz);
2261 affine_fn_free (overlaps_b_yz);
2262 affine_fn_free (overlaps_a_xyz);
2263 affine_fn_free (overlaps_b_xyz);
2264 }
2265
2266 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2267
2268 static void
2269 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2270 int size)
2271 {
2272 memcpy (vec2, vec1, size * sizeof (*vec1));
2273 }
2274
2275 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2276
2277 static void
2278 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2279 int m, int n)
2280 {
2281 int i;
2282
2283 for (i = 0; i < m; i++)
2284 lambda_vector_copy (mat1[i], mat2[i], n);
2285 }
2286
2287 /* Store the N x N identity matrix in MAT. */
2288
2289 static void
2290 lambda_matrix_id (lambda_matrix mat, int size)
2291 {
2292 int i, j;
2293
2294 for (i = 0; i < size; i++)
2295 for (j = 0; j < size; j++)
2296 mat[i][j] = (i == j) ? 1 : 0;
2297 }
2298
2299 /* Return the first nonzero element of vector VEC1 between START and N.
2300 We must have START <= N. Returns N if VEC1 is the zero vector. */
2301
2302 static int
2303 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2304 {
2305 int j = start;
2306 while (j < n && vec1[j] == 0)
2307 j++;
2308 return j;
2309 }
2310
2311 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2312 R2 = R2 + CONST1 * R1. */
2313
2314 static void
2315 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2316 {
2317 int i;
2318
2319 if (const1 == 0)
2320 return;
2321
2322 for (i = 0; i < n; i++)
2323 mat[r2][i] += const1 * mat[r1][i];
2324 }
2325
2326 /* Swap rows R1 and R2 in matrix MAT. */
2327
2328 static void
2329 lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
2330 {
2331 lambda_vector row;
2332
2333 row = mat[r1];
2334 mat[r1] = mat[r2];
2335 mat[r2] = row;
2336 }
2337
2338 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2339 and store the result in VEC2. */
2340
2341 static void
2342 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2343 int size, int const1)
2344 {
2345 int i;
2346
2347 if (const1 == 0)
2348 lambda_vector_clear (vec2, size);
2349 else
2350 for (i = 0; i < size; i++)
2351 vec2[i] = const1 * vec1[i];
2352 }
2353
2354 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2355
2356 static void
2357 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2358 int size)
2359 {
2360 lambda_vector_mult_const (vec1, vec2, size, -1);
2361 }
2362
2363 /* Negate row R1 of matrix MAT which has N columns. */
2364
2365 static void
2366 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2367 {
2368 lambda_vector_negate (mat[r1], mat[r1], n);
2369 }
2370
2371 /* Return true if two vectors are equal. */
2372
2373 static bool
2374 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2375 {
2376 int i;
2377 for (i = 0; i < size; i++)
2378 if (vec1[i] != vec2[i])
2379 return false;
2380 return true;
2381 }
2382
2383 /* Given an M x N integer matrix A, this function determines an M x
2384 M unimodular matrix U, and an M x N echelon matrix S such that
2385 "U.A = S". This decomposition is also known as "right Hermite".
2386
2387 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2388 Restructuring Compilers" Utpal Banerjee. */
2389
2390 static void
2391 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2392 lambda_matrix S, lambda_matrix U)
2393 {
2394 int i, j, i0 = 0;
2395
2396 lambda_matrix_copy (A, S, m, n);
2397 lambda_matrix_id (U, m);
2398
2399 for (j = 0; j < n; j++)
2400 {
2401 if (lambda_vector_first_nz (S[j], m, i0) < m)
2402 {
2403 ++i0;
2404 for (i = m - 1; i >= i0; i--)
2405 {
2406 while (S[i][j] != 0)
2407 {
2408 int sigma, factor, a, b;
2409
2410 a = S[i-1][j];
2411 b = S[i][j];
2412 sigma = (a * b < 0) ? -1: 1;
2413 a = abs (a);
2414 b = abs (b);
2415 factor = sigma * (a / b);
2416
2417 lambda_matrix_row_add (S, n, i, i-1, -factor);
2418 lambda_matrix_row_exchange (S, i, i-1);
2419
2420 lambda_matrix_row_add (U, m, i, i-1, -factor);
2421 lambda_matrix_row_exchange (U, i, i-1);
2422 }
2423 }
2424 }
2425 }
2426 }
2427
2428 /* Determines the overlapping elements due to accesses CHREC_A and
2429 CHREC_B, that are affine functions. This function cannot handle
2430 symbolic evolution functions, ie. when initial conditions are
2431 parameters, because it uses lambda matrices of integers. */
2432
2433 static void
2434 analyze_subscript_affine_affine (tree chrec_a,
2435 tree chrec_b,
2436 conflict_function **overlaps_a,
2437 conflict_function **overlaps_b,
2438 tree *last_conflicts)
2439 {
2440 unsigned nb_vars_a, nb_vars_b, dim;
2441 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2442 lambda_matrix A, U, S;
2443 struct obstack scratch_obstack;
2444
2445 if (eq_evolutions_p (chrec_a, chrec_b))
2446 {
2447 /* The accessed index overlaps for each iteration in the
2448 loop. */
2449 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2450 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2451 *last_conflicts = chrec_dont_know;
2452 return;
2453 }
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2456
2457 /* For determining the initial intersection, we have to solve a
2458 Diophantine equation. This is the most time consuming part.
2459
2460 For answering to the question: "Is there a dependence?" we have
2461 to prove that there exists a solution to the Diophantine
2462 equation, and that the solution is in the iteration domain,
2463 i.e. the solution is positive or zero, and that the solution
2464 happens before the upper bound loop.nb_iterations. Otherwise
2465 there is no dependence. This function outputs a description of
2466 the iterations that hold the intersections. */
2467
2468 nb_vars_a = nb_vars_in_chrec (chrec_a);
2469 nb_vars_b = nb_vars_in_chrec (chrec_b);
2470
2471 gcc_obstack_init (&scratch_obstack);
2472
2473 dim = nb_vars_a + nb_vars_b;
2474 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2475 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2476 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2477
2478 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2479 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2480 gamma = init_b - init_a;
2481
2482 /* Don't do all the hard work of solving the Diophantine equation
2483 when we already know the solution: for example,
2484 | {3, +, 1}_1
2485 | {3, +, 4}_2
2486 | gamma = 3 - 3 = 0.
2487 Then the first overlap occurs during the first iterations:
2488 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2489 */
2490 if (gamma == 0)
2491 {
2492 if (nb_vars_a == 1 && nb_vars_b == 1)
2493 {
2494 HOST_WIDE_INT step_a, step_b;
2495 HOST_WIDE_INT niter, niter_a, niter_b;
2496 affine_fn ova, ovb;
2497
2498 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2499 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
2500 niter = MIN (niter_a, niter_b);
2501 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2502 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2503
2504 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2505 &ova, &ovb,
2506 last_conflicts, 1);
2507 *overlaps_a = conflict_fn (1, ova);
2508 *overlaps_b = conflict_fn (1, ovb);
2509 }
2510
2511 else if (nb_vars_a == 2 && nb_vars_b == 1)
2512 compute_overlap_steps_for_affine_1_2
2513 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2514
2515 else if (nb_vars_a == 1 && nb_vars_b == 2)
2516 compute_overlap_steps_for_affine_1_2
2517 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2518
2519 else
2520 {
2521 if (dump_file && (dump_flags & TDF_DETAILS))
2522 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2523 *overlaps_a = conflict_fn_not_known ();
2524 *overlaps_b = conflict_fn_not_known ();
2525 *last_conflicts = chrec_dont_know;
2526 }
2527 goto end_analyze_subs_aa;
2528 }
2529
2530 /* U.A = S */
2531 lambda_matrix_right_hermite (A, dim, 1, S, U);
2532
2533 if (S[0][0] < 0)
2534 {
2535 S[0][0] *= -1;
2536 lambda_matrix_row_negate (U, dim, 0);
2537 }
2538 gcd_alpha_beta = S[0][0];
2539
2540 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2541 but that is a quite strange case. Instead of ICEing, answer
2542 don't know. */
2543 if (gcd_alpha_beta == 0)
2544 {
2545 *overlaps_a = conflict_fn_not_known ();
2546 *overlaps_b = conflict_fn_not_known ();
2547 *last_conflicts = chrec_dont_know;
2548 goto end_analyze_subs_aa;
2549 }
2550
2551 /* The classic "gcd-test". */
2552 if (!int_divides_p (gcd_alpha_beta, gamma))
2553 {
2554 /* The "gcd-test" has determined that there is no integer
2555 solution, i.e. there is no dependence. */
2556 *overlaps_a = conflict_fn_no_dependence ();
2557 *overlaps_b = conflict_fn_no_dependence ();
2558 *last_conflicts = integer_zero_node;
2559 }
2560
2561 /* Both access functions are univariate. This includes SIV and MIV cases. */
2562 else if (nb_vars_a == 1 && nb_vars_b == 1)
2563 {
2564 /* Both functions should have the same evolution sign. */
2565 if (((A[0][0] > 0 && -A[1][0] > 0)
2566 || (A[0][0] < 0 && -A[1][0] < 0)))
2567 {
2568 /* The solutions are given by:
2569 |
2570 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2571 | [u21 u22] [y0]
2572
2573 For a given integer t. Using the following variables,
2574
2575 | i0 = u11 * gamma / gcd_alpha_beta
2576 | j0 = u12 * gamma / gcd_alpha_beta
2577 | i1 = u21
2578 | j1 = u22
2579
2580 the solutions are:
2581
2582 | x0 = i0 + i1 * t,
2583 | y0 = j0 + j1 * t. */
2584 HOST_WIDE_INT i0, j0, i1, j1;
2585
2586 i0 = U[0][0] * gamma / gcd_alpha_beta;
2587 j0 = U[0][1] * gamma / gcd_alpha_beta;
2588 i1 = U[1][0];
2589 j1 = U[1][1];
2590
2591 if ((i1 == 0 && i0 < 0)
2592 || (j1 == 0 && j0 < 0))
2593 {
2594 /* There is no solution.
2595 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2596 falls in here, but for the moment we don't look at the
2597 upper bound of the iteration domain. */
2598 *overlaps_a = conflict_fn_no_dependence ();
2599 *overlaps_b = conflict_fn_no_dependence ();
2600 *last_conflicts = integer_zero_node;
2601 goto end_analyze_subs_aa;
2602 }
2603
2604 if (i1 > 0 && j1 > 0)
2605 {
2606 HOST_WIDE_INT niter_a
2607 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2608 HOST_WIDE_INT niter_b
2609 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2610 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2611
2612 /* (X0, Y0) is a solution of the Diophantine equation:
2613 "chrec_a (X0) = chrec_b (Y0)". */
2614 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2615 CEIL (-j0, j1));
2616 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2617 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2618
2619 /* (X1, Y1) is the smallest positive solution of the eq
2620 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2621 first conflict occurs. */
2622 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2623 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2624 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2625
2626 if (niter > 0)
2627 {
2628 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2629 FLOOR_DIV (niter - j0, j1));
2630 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2631
2632 /* If the overlap occurs outside of the bounds of the
2633 loop, there is no dependence. */
2634 if (x1 >= niter || y1 >= niter)
2635 {
2636 *overlaps_a = conflict_fn_no_dependence ();
2637 *overlaps_b = conflict_fn_no_dependence ();
2638 *last_conflicts = integer_zero_node;
2639 goto end_analyze_subs_aa;
2640 }
2641 else
2642 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2643 }
2644 else
2645 *last_conflicts = chrec_dont_know;
2646
2647 *overlaps_a
2648 = conflict_fn (1,
2649 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2650 1,
2651 build_int_cst (NULL_TREE, i1)));
2652 *overlaps_b
2653 = conflict_fn (1,
2654 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2655 1,
2656 build_int_cst (NULL_TREE, j1)));
2657 }
2658 else
2659 {
2660 /* FIXME: For the moment, the upper bound of the
2661 iteration domain for i and j is not checked. */
2662 if (dump_file && (dump_flags & TDF_DETAILS))
2663 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2664 *overlaps_a = conflict_fn_not_known ();
2665 *overlaps_b = conflict_fn_not_known ();
2666 *last_conflicts = chrec_dont_know;
2667 }
2668 }
2669 else
2670 {
2671 if (dump_file && (dump_flags & TDF_DETAILS))
2672 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2673 *overlaps_a = conflict_fn_not_known ();
2674 *overlaps_b = conflict_fn_not_known ();
2675 *last_conflicts = chrec_dont_know;
2676 }
2677 }
2678 else
2679 {
2680 if (dump_file && (dump_flags & TDF_DETAILS))
2681 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2682 *overlaps_a = conflict_fn_not_known ();
2683 *overlaps_b = conflict_fn_not_known ();
2684 *last_conflicts = chrec_dont_know;
2685 }
2686
2687 end_analyze_subs_aa:
2688 obstack_free (&scratch_obstack, NULL);
2689 if (dump_file && (dump_flags & TDF_DETAILS))
2690 {
2691 fprintf (dump_file, " (overlaps_a = ");
2692 dump_conflict_function (dump_file, *overlaps_a);
2693 fprintf (dump_file, ")\n (overlaps_b = ");
2694 dump_conflict_function (dump_file, *overlaps_b);
2695 fprintf (dump_file, "))\n");
2696 }
2697 }
2698
2699 /* Returns true when analyze_subscript_affine_affine can be used for
2700 determining the dependence relation between chrec_a and chrec_b,
2701 that contain symbols. This function modifies chrec_a and chrec_b
2702 such that the analysis result is the same, and such that they don't
2703 contain symbols, and then can safely be passed to the analyzer.
2704
2705 Example: The analysis of the following tuples of evolutions produce
2706 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2707 vs. {0, +, 1}_1
2708
2709 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2710 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2711 */
2712
2713 static bool
2714 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2715 {
2716 tree diff, type, left_a, left_b, right_b;
2717
2718 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2719 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2720 /* FIXME: For the moment not handled. Might be refined later. */
2721 return false;
2722
2723 type = chrec_type (*chrec_a);
2724 left_a = CHREC_LEFT (*chrec_a);
2725 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2726 diff = chrec_fold_minus (type, left_a, left_b);
2727
2728 if (!evolution_function_is_constant_p (diff))
2729 return false;
2730
2731 if (dump_file && (dump_flags & TDF_DETAILS))
2732 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2733
2734 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2735 diff, CHREC_RIGHT (*chrec_a));
2736 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2737 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2738 build_int_cst (type, 0),
2739 right_b);
2740 return true;
2741 }
2742
2743 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2744 *OVERLAPS_B are initialized to the functions that describe the
2745 relation between the elements accessed twice by CHREC_A and
2746 CHREC_B. For k >= 0, the following property is verified:
2747
2748 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2749
2750 static void
2751 analyze_siv_subscript (tree chrec_a,
2752 tree chrec_b,
2753 conflict_function **overlaps_a,
2754 conflict_function **overlaps_b,
2755 tree *last_conflicts,
2756 int loop_nest_num)
2757 {
2758 dependence_stats.num_siv++;
2759
2760 if (dump_file && (dump_flags & TDF_DETAILS))
2761 fprintf (dump_file, "(analyze_siv_subscript \n");
2762
2763 if (evolution_function_is_constant_p (chrec_a)
2764 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2765 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2766 overlaps_a, overlaps_b, last_conflicts);
2767
2768 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2769 && evolution_function_is_constant_p (chrec_b))
2770 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2771 overlaps_b, overlaps_a, last_conflicts);
2772
2773 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2774 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2775 {
2776 if (!chrec_contains_symbols (chrec_a)
2777 && !chrec_contains_symbols (chrec_b))
2778 {
2779 analyze_subscript_affine_affine (chrec_a, chrec_b,
2780 overlaps_a, overlaps_b,
2781 last_conflicts);
2782
2783 if (CF_NOT_KNOWN_P (*overlaps_a)
2784 || CF_NOT_KNOWN_P (*overlaps_b))
2785 dependence_stats.num_siv_unimplemented++;
2786 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2787 || CF_NO_DEPENDENCE_P (*overlaps_b))
2788 dependence_stats.num_siv_independent++;
2789 else
2790 dependence_stats.num_siv_dependent++;
2791 }
2792 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2793 &chrec_b))
2794 {
2795 analyze_subscript_affine_affine (chrec_a, chrec_b,
2796 overlaps_a, overlaps_b,
2797 last_conflicts);
2798
2799 if (CF_NOT_KNOWN_P (*overlaps_a)
2800 || CF_NOT_KNOWN_P (*overlaps_b))
2801 dependence_stats.num_siv_unimplemented++;
2802 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2803 || CF_NO_DEPENDENCE_P (*overlaps_b))
2804 dependence_stats.num_siv_independent++;
2805 else
2806 dependence_stats.num_siv_dependent++;
2807 }
2808 else
2809 goto siv_subscript_dontknow;
2810 }
2811
2812 else
2813 {
2814 siv_subscript_dontknow:;
2815 if (dump_file && (dump_flags & TDF_DETAILS))
2816 fprintf (dump_file, " siv test failed: unimplemented");
2817 *overlaps_a = conflict_fn_not_known ();
2818 *overlaps_b = conflict_fn_not_known ();
2819 *last_conflicts = chrec_dont_know;
2820 dependence_stats.num_siv_unimplemented++;
2821 }
2822
2823 if (dump_file && (dump_flags & TDF_DETAILS))
2824 fprintf (dump_file, ")\n");
2825 }
2826
2827 /* Returns false if we can prove that the greatest common divisor of the steps
2828 of CHREC does not divide CST, false otherwise. */
2829
2830 static bool
2831 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2832 {
2833 HOST_WIDE_INT cd = 0, val;
2834 tree step;
2835
2836 if (!host_integerp (cst, 0))
2837 return true;
2838 val = tree_low_cst (cst, 0);
2839
2840 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2841 {
2842 step = CHREC_RIGHT (chrec);
2843 if (!host_integerp (step, 0))
2844 return true;
2845 cd = gcd (cd, tree_low_cst (step, 0));
2846 chrec = CHREC_LEFT (chrec);
2847 }
2848
2849 return val % cd == 0;
2850 }
2851
2852 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2853 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2854 functions that describe the relation between the elements accessed
2855 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2856 is verified:
2857
2858 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2859
2860 static void
2861 analyze_miv_subscript (tree chrec_a,
2862 tree chrec_b,
2863 conflict_function **overlaps_a,
2864 conflict_function **overlaps_b,
2865 tree *last_conflicts,
2866 struct loop *loop_nest)
2867 {
2868 tree type, difference;
2869
2870 dependence_stats.num_miv++;
2871 if (dump_file && (dump_flags & TDF_DETAILS))
2872 fprintf (dump_file, "(analyze_miv_subscript \n");
2873
2874 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2875 chrec_a = chrec_convert (type, chrec_a, NULL);
2876 chrec_b = chrec_convert (type, chrec_b, NULL);
2877 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2878
2879 if (eq_evolutions_p (chrec_a, chrec_b))
2880 {
2881 /* Access functions are the same: all the elements are accessed
2882 in the same order. */
2883 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2884 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2885 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
2886 dependence_stats.num_miv_dependent++;
2887 }
2888
2889 else if (evolution_function_is_constant_p (difference)
2890 /* For the moment, the following is verified:
2891 evolution_function_is_affine_multivariate_p (chrec_a,
2892 loop_nest->num) */
2893 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2894 {
2895 /* testsuite/.../ssa-chrec-33.c
2896 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2897
2898 The difference is 1, and all the evolution steps are multiples
2899 of 2, consequently there are no overlapping elements. */
2900 *overlaps_a = conflict_fn_no_dependence ();
2901 *overlaps_b = conflict_fn_no_dependence ();
2902 *last_conflicts = integer_zero_node;
2903 dependence_stats.num_miv_independent++;
2904 }
2905
2906 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2907 && !chrec_contains_symbols (chrec_a)
2908 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2909 && !chrec_contains_symbols (chrec_b))
2910 {
2911 /* testsuite/.../ssa-chrec-35.c
2912 {0, +, 1}_2 vs. {0, +, 1}_3
2913 the overlapping elements are respectively located at iterations:
2914 {0, +, 1}_x and {0, +, 1}_x,
2915 in other words, we have the equality:
2916 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2917
2918 Other examples:
2919 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2920 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2921
2922 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2923 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2924 */
2925 analyze_subscript_affine_affine (chrec_a, chrec_b,
2926 overlaps_a, overlaps_b, last_conflicts);
2927
2928 if (CF_NOT_KNOWN_P (*overlaps_a)
2929 || CF_NOT_KNOWN_P (*overlaps_b))
2930 dependence_stats.num_miv_unimplemented++;
2931 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2932 || CF_NO_DEPENDENCE_P (*overlaps_b))
2933 dependence_stats.num_miv_independent++;
2934 else
2935 dependence_stats.num_miv_dependent++;
2936 }
2937
2938 else
2939 {
2940 /* When the analysis is too difficult, answer "don't know". */
2941 if (dump_file && (dump_flags & TDF_DETAILS))
2942 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
2943
2944 *overlaps_a = conflict_fn_not_known ();
2945 *overlaps_b = conflict_fn_not_known ();
2946 *last_conflicts = chrec_dont_know;
2947 dependence_stats.num_miv_unimplemented++;
2948 }
2949
2950 if (dump_file && (dump_flags & TDF_DETAILS))
2951 fprintf (dump_file, ")\n");
2952 }
2953
2954 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
2955 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
2956 OVERLAP_ITERATIONS_B are initialized with two functions that
2957 describe the iterations that contain conflicting elements.
2958
2959 Remark: For an integer k >= 0, the following equality is true:
2960
2961 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
2962 */
2963
2964 static void
2965 analyze_overlapping_iterations (tree chrec_a,
2966 tree chrec_b,
2967 conflict_function **overlap_iterations_a,
2968 conflict_function **overlap_iterations_b,
2969 tree *last_conflicts, struct loop *loop_nest)
2970 {
2971 unsigned int lnn = loop_nest->num;
2972
2973 dependence_stats.num_subscript_tests++;
2974
2975 if (dump_file && (dump_flags & TDF_DETAILS))
2976 {
2977 fprintf (dump_file, "(analyze_overlapping_iterations \n");
2978 fprintf (dump_file, " (chrec_a = ");
2979 print_generic_expr (dump_file, chrec_a, 0);
2980 fprintf (dump_file, ")\n (chrec_b = ");
2981 print_generic_expr (dump_file, chrec_b, 0);
2982 fprintf (dump_file, ")\n");
2983 }
2984
2985 if (chrec_a == NULL_TREE
2986 || chrec_b == NULL_TREE
2987 || chrec_contains_undetermined (chrec_a)
2988 || chrec_contains_undetermined (chrec_b))
2989 {
2990 dependence_stats.num_subscript_undetermined++;
2991
2992 *overlap_iterations_a = conflict_fn_not_known ();
2993 *overlap_iterations_b = conflict_fn_not_known ();
2994 }
2995
2996 /* If they are the same chrec, and are affine, they overlap
2997 on every iteration. */
2998 else if (eq_evolutions_p (chrec_a, chrec_b)
2999 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3000 || operand_equal_p (chrec_a, chrec_b, 0)))
3001 {
3002 dependence_stats.num_same_subscript_function++;
3003 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3004 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3005 *last_conflicts = chrec_dont_know;
3006 }
3007
3008 /* If they aren't the same, and aren't affine, we can't do anything
3009 yet. */
3010 else if ((chrec_contains_symbols (chrec_a)
3011 || chrec_contains_symbols (chrec_b))
3012 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3013 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
3014 {
3015 dependence_stats.num_subscript_undetermined++;
3016 *overlap_iterations_a = conflict_fn_not_known ();
3017 *overlap_iterations_b = conflict_fn_not_known ();
3018 }
3019
3020 else if (ziv_subscript_p (chrec_a, chrec_b))
3021 analyze_ziv_subscript (chrec_a, chrec_b,
3022 overlap_iterations_a, overlap_iterations_b,
3023 last_conflicts);
3024
3025 else if (siv_subscript_p (chrec_a, chrec_b))
3026 analyze_siv_subscript (chrec_a, chrec_b,
3027 overlap_iterations_a, overlap_iterations_b,
3028 last_conflicts, lnn);
3029
3030 else
3031 analyze_miv_subscript (chrec_a, chrec_b,
3032 overlap_iterations_a, overlap_iterations_b,
3033 last_conflicts, loop_nest);
3034
3035 if (dump_file && (dump_flags & TDF_DETAILS))
3036 {
3037 fprintf (dump_file, " (overlap_iterations_a = ");
3038 dump_conflict_function (dump_file, *overlap_iterations_a);
3039 fprintf (dump_file, ")\n (overlap_iterations_b = ");
3040 dump_conflict_function (dump_file, *overlap_iterations_b);
3041 fprintf (dump_file, "))\n");
3042 }
3043 }
3044
3045 /* Helper function for uniquely inserting distance vectors. */
3046
3047 static void
3048 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3049 {
3050 unsigned i;
3051 lambda_vector v;
3052
3053 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
3054 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3055 return;
3056
3057 DDR_DIST_VECTS (ddr).safe_push (dist_v);
3058 }
3059
3060 /* Helper function for uniquely inserting direction vectors. */
3061
3062 static void
3063 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
3064 {
3065 unsigned i;
3066 lambda_vector v;
3067
3068 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
3069 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3070 return;
3071
3072 DDR_DIR_VECTS (ddr).safe_push (dir_v);
3073 }
3074
3075 /* Add a distance of 1 on all the loops outer than INDEX. If we
3076 haven't yet determined a distance for this outer loop, push a new
3077 distance vector composed of the previous distance, and a distance
3078 of 1 for this outer loop. Example:
3079
3080 | loop_1
3081 | loop_2
3082 | A[10]
3083 | endloop_2
3084 | endloop_1
3085
3086 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3087 save (0, 1), then we have to save (1, 0). */
3088
3089 static void
3090 add_outer_distances (struct data_dependence_relation *ddr,
3091 lambda_vector dist_v, int index)
3092 {
3093 /* For each outer loop where init_v is not set, the accesses are
3094 in dependence of distance 1 in the loop. */
3095 while (--index >= 0)
3096 {
3097 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3098 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3099 save_v[index] = 1;
3100 save_dist_v (ddr, save_v);
3101 }
3102 }
3103
3104 /* Return false when fail to represent the data dependence as a
3105 distance vector. INIT_B is set to true when a component has been
3106 added to the distance vector DIST_V. INDEX_CARRY is then set to
3107 the index in DIST_V that carries the dependence. */
3108
3109 static bool
3110 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3111 struct data_reference *ddr_a,
3112 struct data_reference *ddr_b,
3113 lambda_vector dist_v, bool *init_b,
3114 int *index_carry)
3115 {
3116 unsigned i;
3117 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3118
3119 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3120 {
3121 tree access_fn_a, access_fn_b;
3122 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
3123
3124 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3125 {
3126 non_affine_dependence_relation (ddr);
3127 return false;
3128 }
3129
3130 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3131 access_fn_b = DR_ACCESS_FN (ddr_b, i);
3132
3133 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
3134 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
3135 {
3136 int dist, index;
3137 int var_a = CHREC_VARIABLE (access_fn_a);
3138 int var_b = CHREC_VARIABLE (access_fn_b);
3139
3140 if (var_a != var_b
3141 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3142 {
3143 non_affine_dependence_relation (ddr);
3144 return false;
3145 }
3146
3147 dist = int_cst_value (SUB_DISTANCE (subscript));
3148 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3149 *index_carry = MIN (index, *index_carry);
3150
3151 /* This is the subscript coupling test. If we have already
3152 recorded a distance for this loop (a distance coming from
3153 another subscript), it should be the same. For example,
3154 in the following code, there is no dependence:
3155
3156 | loop i = 0, N, 1
3157 | T[i+1][i] = ...
3158 | ... = T[i][i]
3159 | endloop
3160 */
3161 if (init_v[index] != 0 && dist_v[index] != dist)
3162 {
3163 finalize_ddr_dependent (ddr, chrec_known);
3164 return false;
3165 }
3166
3167 dist_v[index] = dist;
3168 init_v[index] = 1;
3169 *init_b = true;
3170 }
3171 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3172 {
3173 /* This can be for example an affine vs. constant dependence
3174 (T[i] vs. T[3]) that is not an affine dependence and is
3175 not representable as a distance vector. */
3176 non_affine_dependence_relation (ddr);
3177 return false;
3178 }
3179 }
3180
3181 return true;
3182 }
3183
3184 /* Return true when the DDR contains only constant access functions. */
3185
3186 static bool
3187 constant_access_functions (const struct data_dependence_relation *ddr)
3188 {
3189 unsigned i;
3190
3191 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3192 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3193 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3194 return false;
3195
3196 return true;
3197 }
3198
3199 /* Helper function for the case where DDR_A and DDR_B are the same
3200 multivariate access function with a constant step. For an example
3201 see pr34635-1.c. */
3202
3203 static void
3204 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3205 {
3206 int x_1, x_2;
3207 tree c_1 = CHREC_LEFT (c_2);
3208 tree c_0 = CHREC_LEFT (c_1);
3209 lambda_vector dist_v;
3210 int v1, v2, cd;
3211
3212 /* Polynomials with more than 2 variables are not handled yet. When
3213 the evolution steps are parameters, it is not possible to
3214 represent the dependence using classical distance vectors. */
3215 if (TREE_CODE (c_0) != INTEGER_CST
3216 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3217 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3218 {
3219 DDR_AFFINE_P (ddr) = false;
3220 return;
3221 }
3222
3223 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3224 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3225
3226 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3227 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3228 v1 = int_cst_value (CHREC_RIGHT (c_1));
3229 v2 = int_cst_value (CHREC_RIGHT (c_2));
3230 cd = gcd (v1, v2);
3231 v1 /= cd;
3232 v2 /= cd;
3233
3234 if (v2 < 0)
3235 {
3236 v2 = -v2;
3237 v1 = -v1;
3238 }
3239
3240 dist_v[x_1] = v2;
3241 dist_v[x_2] = -v1;
3242 save_dist_v (ddr, dist_v);
3243
3244 add_outer_distances (ddr, dist_v, x_1);
3245 }
3246
3247 /* Helper function for the case where DDR_A and DDR_B are the same
3248 access functions. */
3249
3250 static void
3251 add_other_self_distances (struct data_dependence_relation *ddr)
3252 {
3253 lambda_vector dist_v;
3254 unsigned i;
3255 int index_carry = DDR_NB_LOOPS (ddr);
3256
3257 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3258 {
3259 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3260
3261 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3262 {
3263 if (!evolution_function_is_univariate_p (access_fun))
3264 {
3265 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3266 {
3267 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3268 return;
3269 }
3270
3271 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3272
3273 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3274 add_multivariate_self_dist (ddr, access_fun);
3275 else
3276 /* The evolution step is not constant: it varies in
3277 the outer loop, so this cannot be represented by a
3278 distance vector. For example in pr34635.c the
3279 evolution is {0, +, {0, +, 4}_1}_2. */
3280 DDR_AFFINE_P (ddr) = false;
3281
3282 return;
3283 }
3284
3285 index_carry = MIN (index_carry,
3286 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3287 DDR_LOOP_NEST (ddr)));
3288 }
3289 }
3290
3291 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3292 add_outer_distances (ddr, dist_v, index_carry);
3293 }
3294
3295 static void
3296 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3297 {
3298 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3299
3300 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3301 save_dist_v (ddr, dist_v);
3302 }
3303
3304 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3305 is the case for example when access functions are the same and
3306 equal to a constant, as in:
3307
3308 | loop_1
3309 | A[3] = ...
3310 | ... = A[3]
3311 | endloop_1
3312
3313 in which case the distance vectors are (0) and (1). */
3314
3315 static void
3316 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3317 {
3318 unsigned i, j;
3319
3320 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3321 {
3322 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3323 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3324 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3325
3326 for (j = 0; j < ca->n; j++)
3327 if (affine_function_zero_p (ca->fns[j]))
3328 {
3329 insert_innermost_unit_dist_vector (ddr);
3330 return;
3331 }
3332
3333 for (j = 0; j < cb->n; j++)
3334 if (affine_function_zero_p (cb->fns[j]))
3335 {
3336 insert_innermost_unit_dist_vector (ddr);
3337 return;
3338 }
3339 }
3340 }
3341
3342 /* Compute the classic per loop distance vector. DDR is the data
3343 dependence relation to build a vector from. Return false when fail
3344 to represent the data dependence as a distance vector. */
3345
3346 static bool
3347 build_classic_dist_vector (struct data_dependence_relation *ddr,
3348 struct loop *loop_nest)
3349 {
3350 bool init_b = false;
3351 int index_carry = DDR_NB_LOOPS (ddr);
3352 lambda_vector dist_v;
3353
3354 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3355 return false;
3356
3357 if (same_access_functions (ddr))
3358 {
3359 /* Save the 0 vector. */
3360 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3361 save_dist_v (ddr, dist_v);
3362
3363 if (constant_access_functions (ddr))
3364 add_distance_for_zero_overlaps (ddr);
3365
3366 if (DDR_NB_LOOPS (ddr) > 1)
3367 add_other_self_distances (ddr);
3368
3369 return true;
3370 }
3371
3372 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3373 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3374 dist_v, &init_b, &index_carry))
3375 return false;
3376
3377 /* Save the distance vector if we initialized one. */
3378 if (init_b)
3379 {
3380 /* Verify a basic constraint: classic distance vectors should
3381 always be lexicographically positive.
3382
3383 Data references are collected in the order of execution of
3384 the program, thus for the following loop
3385
3386 | for (i = 1; i < 100; i++)
3387 | for (j = 1; j < 100; j++)
3388 | {
3389 | t = T[j+1][i-1]; // A
3390 | T[j][i] = t + 2; // B
3391 | }
3392
3393 references are collected following the direction of the wind:
3394 A then B. The data dependence tests are performed also
3395 following this order, such that we're looking at the distance
3396 separating the elements accessed by A from the elements later
3397 accessed by B. But in this example, the distance returned by
3398 test_dep (A, B) is lexicographically negative (-1, 1), that
3399 means that the access A occurs later than B with respect to
3400 the outer loop, ie. we're actually looking upwind. In this
3401 case we solve test_dep (B, A) looking downwind to the
3402 lexicographically positive solution, that returns the
3403 distance vector (1, -1). */
3404 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3405 {
3406 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3407 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3408 loop_nest))
3409 return false;
3410 compute_subscript_distance (ddr);
3411 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3412 save_v, &init_b, &index_carry))
3413 return false;
3414 save_dist_v (ddr, save_v);
3415 DDR_REVERSED_P (ddr) = true;
3416
3417 /* In this case there is a dependence forward for all the
3418 outer loops:
3419
3420 | for (k = 1; k < 100; k++)
3421 | for (i = 1; i < 100; i++)
3422 | for (j = 1; j < 100; j++)
3423 | {
3424 | t = T[j+1][i-1]; // A
3425 | T[j][i] = t + 2; // B
3426 | }
3427
3428 the vectors are:
3429 (0, 1, -1)
3430 (1, 1, -1)
3431 (1, -1, 1)
3432 */
3433 if (DDR_NB_LOOPS (ddr) > 1)
3434 {
3435 add_outer_distances (ddr, save_v, index_carry);
3436 add_outer_distances (ddr, dist_v, index_carry);
3437 }
3438 }
3439 else
3440 {
3441 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3442 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3443
3444 if (DDR_NB_LOOPS (ddr) > 1)
3445 {
3446 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3447
3448 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3449 DDR_A (ddr), loop_nest))
3450 return false;
3451 compute_subscript_distance (ddr);
3452 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3453 opposite_v, &init_b,
3454 &index_carry))
3455 return false;
3456
3457 save_dist_v (ddr, save_v);
3458 add_outer_distances (ddr, dist_v, index_carry);
3459 add_outer_distances (ddr, opposite_v, index_carry);
3460 }
3461 else
3462 save_dist_v (ddr, save_v);
3463 }
3464 }
3465 else
3466 {
3467 /* There is a distance of 1 on all the outer loops: Example:
3468 there is a dependence of distance 1 on loop_1 for the array A.
3469
3470 | loop_1
3471 | A[5] = ...
3472 | endloop
3473 */
3474 add_outer_distances (ddr, dist_v,
3475 lambda_vector_first_nz (dist_v,
3476 DDR_NB_LOOPS (ddr), 0));
3477 }
3478
3479 if (dump_file && (dump_flags & TDF_DETAILS))
3480 {
3481 unsigned i;
3482
3483 fprintf (dump_file, "(build_classic_dist_vector\n");
3484 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3485 {
3486 fprintf (dump_file, " dist_vector = (");
3487 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3488 DDR_NB_LOOPS (ddr));
3489 fprintf (dump_file, " )\n");
3490 }
3491 fprintf (dump_file, ")\n");
3492 }
3493
3494 return true;
3495 }
3496
3497 /* Return the direction for a given distance.
3498 FIXME: Computing dir this way is suboptimal, since dir can catch
3499 cases that dist is unable to represent. */
3500
3501 static inline enum data_dependence_direction
3502 dir_from_dist (int dist)
3503 {
3504 if (dist > 0)
3505 return dir_positive;
3506 else if (dist < 0)
3507 return dir_negative;
3508 else
3509 return dir_equal;
3510 }
3511
3512 /* Compute the classic per loop direction vector. DDR is the data
3513 dependence relation to build a vector from. */
3514
3515 static void
3516 build_classic_dir_vector (struct data_dependence_relation *ddr)
3517 {
3518 unsigned i, j;
3519 lambda_vector dist_v;
3520
3521 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3522 {
3523 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3524
3525 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3526 dir_v[j] = dir_from_dist (dist_v[j]);
3527
3528 save_dir_v (ddr, dir_v);
3529 }
3530 }
3531
3532 /* Helper function. Returns true when there is a dependence between
3533 data references DRA and DRB. */
3534
3535 static bool
3536 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3537 struct data_reference *dra,
3538 struct data_reference *drb,
3539 struct loop *loop_nest)
3540 {
3541 unsigned int i;
3542 tree last_conflicts;
3543 struct subscript *subscript;
3544 tree res = NULL_TREE;
3545
3546 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
3547 {
3548 conflict_function *overlaps_a, *overlaps_b;
3549
3550 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3551 DR_ACCESS_FN (drb, i),
3552 &overlaps_a, &overlaps_b,
3553 &last_conflicts, loop_nest);
3554
3555 if (SUB_CONFLICTS_IN_A (subscript))
3556 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3557 if (SUB_CONFLICTS_IN_B (subscript))
3558 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3559
3560 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3561 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3562 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3563
3564 /* If there is any undetermined conflict function we have to
3565 give a conservative answer in case we cannot prove that
3566 no dependence exists when analyzing another subscript. */
3567 if (CF_NOT_KNOWN_P (overlaps_a)
3568 || CF_NOT_KNOWN_P (overlaps_b))
3569 {
3570 res = chrec_dont_know;
3571 continue;
3572 }
3573
3574 /* When there is a subscript with no dependence we can stop. */
3575 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3576 || CF_NO_DEPENDENCE_P (overlaps_b))
3577 {
3578 res = chrec_known;
3579 break;
3580 }
3581 }
3582
3583 if (res == NULL_TREE)
3584 return true;
3585
3586 if (res == chrec_known)
3587 dependence_stats.num_dependence_independent++;
3588 else
3589 dependence_stats.num_dependence_undetermined++;
3590 finalize_ddr_dependent (ddr, res);
3591 return false;
3592 }
3593
3594 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3595
3596 static void
3597 subscript_dependence_tester (struct data_dependence_relation *ddr,
3598 struct loop *loop_nest)
3599 {
3600 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3601 dependence_stats.num_dependence_dependent++;
3602
3603 compute_subscript_distance (ddr);
3604 if (build_classic_dist_vector (ddr, loop_nest))
3605 build_classic_dir_vector (ddr);
3606 }
3607
3608 /* Returns true when all the access functions of A are affine or
3609 constant with respect to LOOP_NEST. */
3610
3611 static bool
3612 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3613 const struct loop *loop_nest)
3614 {
3615 unsigned int i;
3616 vec<tree> fns = DR_ACCESS_FNS (a);
3617 tree t;
3618
3619 FOR_EACH_VEC_ELT (fns, i, t)
3620 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3621 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3622 return false;
3623
3624 return true;
3625 }
3626
3627 /* Initializes an equation for an OMEGA problem using the information
3628 contained in the ACCESS_FUN. Returns true when the operation
3629 succeeded.
3630
3631 PB is the omega constraint system.
3632 EQ is the number of the equation to be initialized.
3633 OFFSET is used for shifting the variables names in the constraints:
3634 a constrain is composed of 2 * the number of variables surrounding
3635 dependence accesses. OFFSET is set either to 0 for the first n variables,
3636 then it is set to n.
3637 ACCESS_FUN is expected to be an affine chrec. */
3638
3639 static bool
3640 init_omega_eq_with_af (omega_pb pb, unsigned eq,
3641 unsigned int offset, tree access_fun,
3642 struct data_dependence_relation *ddr)
3643 {
3644 switch (TREE_CODE (access_fun))
3645 {
3646 case POLYNOMIAL_CHREC:
3647 {
3648 tree left = CHREC_LEFT (access_fun);
3649 tree right = CHREC_RIGHT (access_fun);
3650 int var = CHREC_VARIABLE (access_fun);
3651 unsigned var_idx;
3652
3653 if (TREE_CODE (right) != INTEGER_CST)
3654 return false;
3655
3656 var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr));
3657 pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right);
3658
3659 /* Compute the innermost loop index. */
3660 DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
3661
3662 if (offset == 0)
3663 pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
3664 += int_cst_value (right);
3665
3666 switch (TREE_CODE (left))
3667 {
3668 case POLYNOMIAL_CHREC:
3669 return init_omega_eq_with_af (pb, eq, offset, left, ddr);
3670
3671 case INTEGER_CST:
3672 pb->eqs[eq].coef[0] += int_cst_value (left);
3673 return true;
3674
3675 default:
3676 return false;
3677 }
3678 }
3679
3680 case INTEGER_CST:
3681 pb->eqs[eq].coef[0] += int_cst_value (access_fun);
3682 return true;
3683
3684 default:
3685 return false;
3686 }
3687 }
3688
3689 /* As explained in the comments preceding init_omega_for_ddr, we have
3690 to set up a system for each loop level, setting outer loops
3691 variation to zero, and current loop variation to positive or zero.
3692 Save each lexico positive distance vector. */
3693
3694 static void
3695 omega_extract_distance_vectors (omega_pb pb,
3696 struct data_dependence_relation *ddr)
3697 {
3698 int eq, geq;
3699 unsigned i, j;
3700 struct loop *loopi, *loopj;
3701 enum omega_result res;
3702
3703 /* Set a new problem for each loop in the nest. The basis is the
3704 problem that we have initialized until now. On top of this we
3705 add new constraints. */
3706 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3707 && DDR_LOOP_NEST (ddr).iterate (i, &loopi); i++)
3708 {
3709 int dist = 0;
3710 omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr),
3711 DDR_NB_LOOPS (ddr));
3712
3713 omega_copy_problem (copy, pb);
3714
3715 /* For all the outer loops "loop_j", add "dj = 0". */
3716 for (j = 0; j < i && DDR_LOOP_NEST (ddr).iterate (j, &loopj); j++)
3717 {
3718 eq = omega_add_zero_eq (copy, omega_black);
3719 copy->eqs[eq].coef[j + 1] = 1;
3720 }
3721
3722 /* For "loop_i", add "0 <= di". */
3723 geq = omega_add_zero_geq (copy, omega_black);
3724 copy->geqs[geq].coef[i + 1] = 1;
3725
3726 /* Reduce the constraint system, and test that the current
3727 problem is feasible. */
3728 res = omega_simplify_problem (copy);
3729 if (res == omega_false
3730 || res == omega_unknown
3731 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3732 goto next_problem;
3733
3734 for (eq = 0; eq < copy->num_subs; eq++)
3735 if (copy->subs[eq].key == (int) i + 1)
3736 {
3737 dist = copy->subs[eq].coef[0];
3738 goto found_dist;
3739 }
3740
3741 if (dist == 0)
3742 {
3743 /* Reinitialize problem... */
3744 omega_copy_problem (copy, pb);
3745 for (j = 0; j < i && DDR_LOOP_NEST (ddr).iterate (j, &loopj); j++)
3746 {
3747 eq = omega_add_zero_eq (copy, omega_black);
3748 copy->eqs[eq].coef[j + 1] = 1;
3749 }
3750
3751 /* ..., but this time "di = 1". */
3752 eq = omega_add_zero_eq (copy, omega_black);
3753 copy->eqs[eq].coef[i + 1] = 1;
3754 copy->eqs[eq].coef[0] = -1;
3755
3756 res = omega_simplify_problem (copy);
3757 if (res == omega_false
3758 || res == omega_unknown
3759 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3760 goto next_problem;
3761
3762 for (eq = 0; eq < copy->num_subs; eq++)
3763 if (copy->subs[eq].key == (int) i + 1)
3764 {
3765 dist = copy->subs[eq].coef[0];
3766 goto found_dist;
3767 }
3768 }
3769
3770 found_dist:;
3771 /* Save the lexicographically positive distance vector. */
3772 if (dist >= 0)
3773 {
3774 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3775 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3776
3777 dist_v[i] = dist;
3778
3779 for (eq = 0; eq < copy->num_subs; eq++)
3780 if (copy->subs[eq].key > 0)
3781 {
3782 dist = copy->subs[eq].coef[0];
3783 dist_v[copy->subs[eq].key - 1] = dist;
3784 }
3785
3786 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3787 dir_v[j] = dir_from_dist (dist_v[j]);
3788
3789 save_dist_v (ddr, dist_v);
3790 save_dir_v (ddr, dir_v);
3791 }
3792
3793 next_problem:;
3794 omega_free_problem (copy);
3795 }
3796 }
3797
3798 /* This is called for each subscript of a tuple of data references:
3799 insert an equality for representing the conflicts. */
3800
3801 static bool
3802 omega_setup_subscript (tree access_fun_a, tree access_fun_b,
3803 struct data_dependence_relation *ddr,
3804 omega_pb pb, bool *maybe_dependent)
3805 {
3806 int eq;
3807 tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
3808 TREE_TYPE (access_fun_b));
3809 tree fun_a = chrec_convert (type, access_fun_a, NULL);
3810 tree fun_b = chrec_convert (type, access_fun_b, NULL);
3811 tree difference = chrec_fold_minus (type, fun_a, fun_b);
3812 tree minus_one;
3813
3814 /* When the fun_a - fun_b is not constant, the dependence is not
3815 captured by the classic distance vector representation. */
3816 if (TREE_CODE (difference) != INTEGER_CST)
3817 return false;
3818
3819 /* ZIV test. */
3820 if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference))
3821 {
3822 /* There is no dependence. */
3823 *maybe_dependent = false;
3824 return true;
3825 }
3826
3827 minus_one = build_int_cst (type, -1);
3828 fun_b = chrec_fold_multiply (type, fun_b, minus_one);
3829
3830 eq = omega_add_zero_eq (pb, omega_black);
3831 if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
3832 || !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr))
3833 /* There is probably a dependence, but the system of
3834 constraints cannot be built: answer "don't know". */
3835 return false;
3836
3837 /* GCD test. */
3838 if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
3839 && !int_divides_p (lambda_vector_gcd
3840 ((lambda_vector) &(pb->eqs[eq].coef[1]),
3841 2 * DDR_NB_LOOPS (ddr)),
3842 pb->eqs[eq].coef[0]))
3843 {
3844 /* There is no dependence. */
3845 *maybe_dependent = false;
3846 return true;
3847 }
3848
3849 return true;
3850 }
3851
3852 /* Helper function, same as init_omega_for_ddr but specialized for
3853 data references A and B. */
3854
3855 static bool
3856 init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
3857 struct data_dependence_relation *ddr,
3858 omega_pb pb, bool *maybe_dependent)
3859 {
3860 unsigned i;
3861 int ineq;
3862 struct loop *loopi;
3863 unsigned nb_loops = DDR_NB_LOOPS (ddr);
3864
3865 /* Insert an equality per subscript. */
3866 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3867 {
3868 if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i),
3869 ddr, pb, maybe_dependent))
3870 return false;
3871 else if (*maybe_dependent == false)
3872 {
3873 /* There is no dependence. */
3874 DDR_ARE_DEPENDENT (ddr) = chrec_known;
3875 return true;
3876 }
3877 }
3878
3879 /* Insert inequalities: constraints corresponding to the iteration
3880 domain, i.e. the loops surrounding the references "loop_x" and
3881 the distance variables "dx". The layout of the OMEGA
3882 representation is as follows:
3883 - coef[0] is the constant
3884 - coef[1..nb_loops] are the protected variables that will not be
3885 removed by the solver: the "dx"
3886 - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
3887 */
3888 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3889 && DDR_LOOP_NEST (ddr).iterate (i, &loopi); i++)
3890 {
3891 HOST_WIDE_INT nbi = max_stmt_executions_int (loopi);
3892
3893 /* 0 <= loop_x */
3894 ineq = omega_add_zero_geq (pb, omega_black);
3895 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3896
3897 /* 0 <= loop_x + dx */
3898 ineq = omega_add_zero_geq (pb, omega_black);
3899 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3900 pb->geqs[ineq].coef[i + 1] = 1;
3901
3902 if (nbi != -1)
3903 {
3904 /* loop_x <= nb_iters */
3905 ineq = omega_add_zero_geq (pb, omega_black);
3906 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3907 pb->geqs[ineq].coef[0] = nbi;
3908
3909 /* loop_x + dx <= nb_iters */
3910 ineq = omega_add_zero_geq (pb, omega_black);
3911 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3912 pb->geqs[ineq].coef[i + 1] = -1;
3913 pb->geqs[ineq].coef[0] = nbi;
3914
3915 /* A step "dx" bigger than nb_iters is not feasible, so
3916 add "0 <= nb_iters + dx", */
3917 ineq = omega_add_zero_geq (pb, omega_black);
3918 pb->geqs[ineq].coef[i + 1] = 1;
3919 pb->geqs[ineq].coef[0] = nbi;
3920 /* and "dx <= nb_iters". */
3921 ineq = omega_add_zero_geq (pb, omega_black);
3922 pb->geqs[ineq].coef[i + 1] = -1;
3923 pb->geqs[ineq].coef[0] = nbi;
3924 }
3925 }
3926
3927 omega_extract_distance_vectors (pb, ddr);
3928
3929 return true;
3930 }
3931
3932 /* Sets up the Omega dependence problem for the data dependence
3933 relation DDR. Returns false when the constraint system cannot be
3934 built, ie. when the test answers "don't know". Returns true
3935 otherwise, and when independence has been proved (using one of the
3936 trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
3937 set MAYBE_DEPENDENT to true.
3938
3939 Example: for setting up the dependence system corresponding to the
3940 conflicting accesses
3941
3942 | loop_i
3943 | loop_j
3944 | A[i, i+1] = ...
3945 | ... A[2*j, 2*(i + j)]
3946 | endloop_j
3947 | endloop_i
3948
3949 the following constraints come from the iteration domain:
3950
3951 0 <= i <= Ni
3952 0 <= i + di <= Ni
3953 0 <= j <= Nj
3954 0 <= j + dj <= Nj
3955
3956 where di, dj are the distance variables. The constraints
3957 representing the conflicting elements are:
3958
3959 i = 2 * (j + dj)
3960 i + 1 = 2 * (i + di + j + dj)
3961
3962 For asking that the resulting distance vector (di, dj) be
3963 lexicographically positive, we insert the constraint "di >= 0". If
3964 "di = 0" in the solution, we fix that component to zero, and we
3965 look at the inner loops: we set a new problem where all the outer
3966 loop distances are zero, and fix this inner component to be
3967 positive. When one of the components is positive, we save that
3968 distance, and set a new problem where the distance on this loop is
3969 zero, searching for other distances in the inner loops. Here is
3970 the classic example that illustrates that we have to set for each
3971 inner loop a new problem:
3972
3973 | loop_1
3974 | loop_2
3975 | A[10]
3976 | endloop_2
3977 | endloop_1
3978
3979 we have to save two distances (1, 0) and (0, 1).
3980
3981 Given two array references, refA and refB, we have to set the
3982 dependence problem twice, refA vs. refB and refB vs. refA, and we
3983 cannot do a single test, as refB might occur before refA in the
3984 inner loops, and the contrary when considering outer loops: ex.
3985
3986 | loop_0
3987 | loop_1
3988 | loop_2
3989 | T[{1,+,1}_2][{1,+,1}_1] // refA
3990 | T[{2,+,1}_2][{0,+,1}_1] // refB
3991 | endloop_2
3992 | endloop_1
3993 | endloop_0
3994
3995 refB touches the elements in T before refA, and thus for the same
3996 loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
3997 but for successive loop_0 iterations, we have (1, -1, 1)
3998
3999 The Omega solver expects the distance variables ("di" in the
4000 previous example) to come first in the constraint system (as
4001 variables to be protected, or "safe" variables), the constraint
4002 system is built using the following layout:
4003
4004 "cst | distance vars | index vars".
4005 */
4006
4007 static bool
4008 init_omega_for_ddr (struct data_dependence_relation *ddr,
4009 bool *maybe_dependent)
4010 {
4011 omega_pb pb;
4012 bool res = false;
4013
4014 *maybe_dependent = true;
4015
4016 if (same_access_functions (ddr))
4017 {
4018 unsigned j;
4019 lambda_vector dir_v;
4020
4021 /* Save the 0 vector. */
4022 save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
4023 dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4024 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
4025 dir_v[j] = dir_equal;
4026 save_dir_v (ddr, dir_v);
4027
4028 /* Save the dependences carried by outer loops. */
4029 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4030 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
4031 maybe_dependent);
4032 omega_free_problem (pb);
4033 return res;
4034 }
4035
4036 /* Omega expects the protected variables (those that have to be kept
4037 after elimination) to appear first in the constraint system.
4038 These variables are the distance variables. In the following
4039 initialization we declare NB_LOOPS safe variables, and the total
4040 number of variables for the constraint system is 2*NB_LOOPS. */
4041 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4042 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
4043 maybe_dependent);
4044 omega_free_problem (pb);
4045
4046 /* Stop computation if not decidable, or no dependence. */
4047 if (res == false || *maybe_dependent == false)
4048 return res;
4049
4050 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4051 res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb,
4052 maybe_dependent);
4053 omega_free_problem (pb);
4054
4055 return res;
4056 }
4057
4058 /* Return true when DDR contains the same information as that stored
4059 in DIR_VECTS and in DIST_VECTS, return false otherwise. */
4060
4061 static bool
4062 ddr_consistent_p (FILE *file,
4063 struct data_dependence_relation *ddr,
4064 vec<lambda_vector> dist_vects,
4065 vec<lambda_vector> dir_vects)
4066 {
4067 unsigned int i, j;
4068
4069 /* If dump_file is set, output there. */
4070 if (dump_file && (dump_flags & TDF_DETAILS))
4071 file = dump_file;
4072
4073 if (dist_vects.length () != DDR_NUM_DIST_VECTS (ddr))
4074 {
4075 lambda_vector b_dist_v;
4076 fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
4077 dist_vects.length (),
4078 DDR_NUM_DIST_VECTS (ddr));
4079
4080 fprintf (file, "Banerjee dist vectors:\n");
4081 FOR_EACH_VEC_ELT (dist_vects, i, b_dist_v)
4082 print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
4083
4084 fprintf (file, "Omega dist vectors:\n");
4085 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
4086 print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr));
4087
4088 fprintf (file, "data dependence relation:\n");
4089 dump_data_dependence_relation (file, ddr);
4090
4091 fprintf (file, ")\n");
4092 return false;
4093 }
4094
4095 if (dir_vects.length () != DDR_NUM_DIR_VECTS (ddr))
4096 {
4097 fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
4098 dir_vects.length (),
4099 DDR_NUM_DIR_VECTS (ddr));
4100 return false;
4101 }
4102
4103 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
4104 {
4105 lambda_vector a_dist_v;
4106 lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i);
4107
4108 /* Distance vectors are not ordered in the same way in the DDR
4109 and in the DIST_VECTS: search for a matching vector. */
4110 FOR_EACH_VEC_ELT (dist_vects, j, a_dist_v)
4111 if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
4112 break;
4113
4114 if (j == dist_vects.length ())
4115 {
4116 fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n");
4117 print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr));
4118 fprintf (file, "not found in Omega dist vectors:\n");
4119 print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr));
4120 fprintf (file, "data dependence relation:\n");
4121 dump_data_dependence_relation (file, ddr);
4122 fprintf (file, ")\n");
4123 }
4124 }
4125
4126 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
4127 {
4128 lambda_vector a_dir_v;
4129 lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i);
4130
4131 /* Direction vectors are not ordered in the same way in the DDR
4132 and in the DIR_VECTS: search for a matching vector. */
4133 FOR_EACH_VEC_ELT (dir_vects, j, a_dir_v)
4134 if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
4135 break;
4136
4137 if (j == dist_vects.length ())
4138 {
4139 fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n");
4140 print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr));
4141 fprintf (file, "not found in Omega dir vectors:\n");
4142 print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr));
4143 fprintf (file, "data dependence relation:\n");
4144 dump_data_dependence_relation (file, ddr);
4145 fprintf (file, ")\n");
4146 }
4147 }
4148
4149 return true;
4150 }
4151
4152 /* This computes the affine dependence relation between A and B with
4153 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
4154 independence between two accesses, while CHREC_DONT_KNOW is used
4155 for representing the unknown relation.
4156
4157 Note that it is possible to stop the computation of the dependence
4158 relation the first time we detect a CHREC_KNOWN element for a given
4159 subscript. */
4160
4161 void
4162 compute_affine_dependence (struct data_dependence_relation *ddr,
4163 struct loop *loop_nest)
4164 {
4165 struct data_reference *dra = DDR_A (ddr);
4166 struct data_reference *drb = DDR_B (ddr);
4167
4168 if (dump_file && (dump_flags & TDF_DETAILS))
4169 {
4170 fprintf (dump_file, "(compute_affine_dependence\n");
4171 fprintf (dump_file, " stmt_a: ");
4172 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
4173 fprintf (dump_file, " stmt_b: ");
4174 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
4175 }
4176
4177 /* Analyze only when the dependence relation is not yet known. */
4178 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4179 {
4180 dependence_stats.num_dependence_tests++;
4181
4182 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
4183 && access_functions_are_affine_or_constant_p (drb, loop_nest))
4184 {
4185 subscript_dependence_tester (ddr, loop_nest);
4186
4187 if (flag_check_data_deps)
4188 {
4189 /* Dump the dependences from the first algorithm. */
4190 if (dump_file && (dump_flags & TDF_DETAILS))
4191 {
4192 fprintf (dump_file, "\n\nBanerjee Analyzer\n");
4193 dump_data_dependence_relation (dump_file, ddr);
4194 }
4195
4196 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4197 {
4198 bool maybe_dependent;
4199 vec<lambda_vector> dir_vects, dist_vects;
4200
4201 /* Save the result of the first DD analyzer. */
4202 dist_vects = DDR_DIST_VECTS (ddr);
4203 dir_vects = DDR_DIR_VECTS (ddr);
4204
4205 /* Reset the information. */
4206 DDR_DIST_VECTS (ddr).create (0);
4207 DDR_DIR_VECTS (ddr).create (0);
4208
4209 /* Compute the same information using Omega. */
4210 if (!init_omega_for_ddr (ddr, &maybe_dependent))
4211 goto csys_dont_know;
4212
4213 if (dump_file && (dump_flags & TDF_DETAILS))
4214 {
4215 fprintf (dump_file, "Omega Analyzer\n");
4216 dump_data_dependence_relation (dump_file, ddr);
4217 }
4218
4219 /* Check that we get the same information. */
4220 if (maybe_dependent)
4221 gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects,
4222 dir_vects));
4223 }
4224 }
4225 }
4226
4227 /* As a last case, if the dependence cannot be determined, or if
4228 the dependence is considered too difficult to determine, answer
4229 "don't know". */
4230 else
4231 {
4232 csys_dont_know:;
4233 dependence_stats.num_dependence_undetermined++;
4234
4235 if (dump_file && (dump_flags & TDF_DETAILS))
4236 {
4237 fprintf (dump_file, "Data ref a:\n");
4238 dump_data_reference (dump_file, dra);
4239 fprintf (dump_file, "Data ref b:\n");
4240 dump_data_reference (dump_file, drb);
4241 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
4242 }
4243 finalize_ddr_dependent (ddr, chrec_dont_know);
4244 }
4245 }
4246
4247 if (dump_file && (dump_flags & TDF_DETAILS))
4248 {
4249 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4250 fprintf (dump_file, ") -> no dependence\n");
4251 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
4252 fprintf (dump_file, ") -> dependence analysis failed\n");
4253 else
4254 fprintf (dump_file, ")\n");
4255 }
4256 }
4257
4258 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
4259 the data references in DATAREFS, in the LOOP_NEST. When
4260 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4261 relations. Return true when successful, i.e. data references number
4262 is small enough to be handled. */
4263
4264 bool
4265 compute_all_dependences (vec<data_reference_p> datarefs,
4266 vec<ddr_p> *dependence_relations,
4267 vec<loop_p> loop_nest,
4268 bool compute_self_and_rr)
4269 {
4270 struct data_dependence_relation *ddr;
4271 struct data_reference *a, *b;
4272 unsigned int i, j;
4273
4274 if ((int) datarefs.length ()
4275 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
4276 {
4277 struct data_dependence_relation *ddr;
4278
4279 /* Insert a single relation into dependence_relations:
4280 chrec_dont_know. */
4281 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
4282 dependence_relations->safe_push (ddr);
4283 return false;
4284 }
4285
4286 FOR_EACH_VEC_ELT (datarefs, i, a)
4287 for (j = i + 1; datarefs.iterate (j, &b); j++)
4288 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
4289 {
4290 ddr = initialize_data_dependence_relation (a, b, loop_nest);
4291 dependence_relations->safe_push (ddr);
4292 if (loop_nest.exists ())
4293 compute_affine_dependence (ddr, loop_nest[0]);
4294 }
4295
4296 if (compute_self_and_rr)
4297 FOR_EACH_VEC_ELT (datarefs, i, a)
4298 {
4299 ddr = initialize_data_dependence_relation (a, a, loop_nest);
4300 dependence_relations->safe_push (ddr);
4301 if (loop_nest.exists ())
4302 compute_affine_dependence (ddr, loop_nest[0]);
4303 }
4304
4305 return true;
4306 }
4307
4308 /* Describes a location of a memory reference. */
4309
4310 typedef struct data_ref_loc_d
4311 {
4312 /* Position of the memory reference. */
4313 tree *pos;
4314
4315 /* True if the memory reference is read. */
4316 bool is_read;
4317 } data_ref_loc;
4318
4319
4320 /* Stores the locations of memory references in STMT to REFERENCES. Returns
4321 true if STMT clobbers memory, false otherwise. */
4322
4323 static bool
4324 get_references_in_stmt (gimple stmt, vec<data_ref_loc, va_stack> *references)
4325 {
4326 bool clobbers_memory = false;
4327 data_ref_loc ref;
4328 tree *op0, *op1;
4329 enum gimple_code stmt_code = gimple_code (stmt);
4330
4331 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4332 As we cannot model data-references to not spelled out
4333 accesses give up if they may occur. */
4334 if (stmt_code == GIMPLE_CALL
4335 && !(gimple_call_flags (stmt) & ECF_CONST))
4336 {
4337 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
4338 if (gimple_call_internal_p (stmt)
4339 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
4340 {
4341 struct loop *loop = gimple_bb (stmt)->loop_father;
4342 tree uid = gimple_call_arg (stmt, 0);
4343 gcc_assert (TREE_CODE (uid) == SSA_NAME);
4344 if (loop == NULL
4345 || loop->simduid != SSA_NAME_VAR (uid))
4346 clobbers_memory = true;
4347 }
4348 else
4349 clobbers_memory = true;
4350 }
4351 else if (stmt_code == GIMPLE_ASM
4352 && (gimple_asm_volatile_p (stmt) || gimple_vuse (stmt)))
4353 clobbers_memory = true;
4354
4355 if (!gimple_vuse (stmt))
4356 return clobbers_memory;
4357
4358 if (stmt_code == GIMPLE_ASSIGN)
4359 {
4360 tree base;
4361 op0 = gimple_assign_lhs_ptr (stmt);
4362 op1 = gimple_assign_rhs1_ptr (stmt);
4363
4364 if (DECL_P (*op1)
4365 || (REFERENCE_CLASS_P (*op1)
4366 && (base = get_base_address (*op1))
4367 && TREE_CODE (base) != SSA_NAME))
4368 {
4369 ref.pos = op1;
4370 ref.is_read = true;
4371 references->safe_push (ref);
4372 }
4373 }
4374 else if (stmt_code == GIMPLE_CALL)
4375 {
4376 unsigned i, n;
4377
4378 op0 = gimple_call_lhs_ptr (stmt);
4379 n = gimple_call_num_args (stmt);
4380 for (i = 0; i < n; i++)
4381 {
4382 op1 = gimple_call_arg_ptr (stmt, i);
4383
4384 if (DECL_P (*op1)
4385 || (REFERENCE_CLASS_P (*op1) && get_base_address (*op1)))
4386 {
4387 ref.pos = op1;
4388 ref.is_read = true;
4389 references->safe_push (ref);
4390 }
4391 }
4392 }
4393 else
4394 return clobbers_memory;
4395
4396 if (*op0
4397 && (DECL_P (*op0)
4398 || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0))))
4399 {
4400 ref.pos = op0;
4401 ref.is_read = false;
4402 references->safe_push (ref);
4403 }
4404 return clobbers_memory;
4405 }
4406
4407 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
4408 reference, returns false, otherwise returns true. NEST is the outermost
4409 loop of the loop nest in which the references should be analyzed. */
4410
4411 bool
4412 find_data_references_in_stmt (struct loop *nest, gimple stmt,
4413 vec<data_reference_p> *datarefs)
4414 {
4415 unsigned i;
4416 vec<data_ref_loc, va_stack> references;
4417 data_ref_loc *ref;
4418 bool ret = true;
4419 data_reference_p dr;
4420
4421 vec_stack_alloc (data_ref_loc, references, 2);
4422 if (get_references_in_stmt (stmt, &references))
4423 {
4424 references.release ();
4425 return false;
4426 }
4427
4428 FOR_EACH_VEC_ELT (references, i, ref)
4429 {
4430 dr = create_data_ref (nest, loop_containing_stmt (stmt),
4431 *ref->pos, stmt, ref->is_read);
4432 gcc_assert (dr != NULL);
4433 datarefs->safe_push (dr);
4434 }
4435 references.release ();
4436 return ret;
4437 }
4438
4439 /* Stores the data references in STMT to DATAREFS. If there is an
4440 unanalyzable reference, returns false, otherwise returns true.
4441 NEST is the outermost loop of the loop nest in which the references
4442 should be instantiated, LOOP is the loop in which the references
4443 should be analyzed. */
4444
4445 bool
4446 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt,
4447 vec<data_reference_p> *datarefs)
4448 {
4449 unsigned i;
4450 vec<data_ref_loc, va_stack> references;
4451 data_ref_loc *ref;
4452 bool ret = true;
4453 data_reference_p dr;
4454
4455 vec_stack_alloc (data_ref_loc, references, 2);
4456 if (get_references_in_stmt (stmt, &references))
4457 {
4458 references.release ();
4459 return false;
4460 }
4461
4462 FOR_EACH_VEC_ELT (references, i, ref)
4463 {
4464 dr = create_data_ref (nest, loop, *ref->pos, stmt, ref->is_read);
4465 gcc_assert (dr != NULL);
4466 datarefs->safe_push (dr);
4467 }
4468
4469 references.release ();
4470 return ret;
4471 }
4472
4473 /* Search the data references in LOOP, and record the information into
4474 DATAREFS. Returns chrec_dont_know when failing to analyze a
4475 difficult case, returns NULL_TREE otherwise. */
4476
4477 tree
4478 find_data_references_in_bb (struct loop *loop, basic_block bb,
4479 vec<data_reference_p> *datarefs)
4480 {
4481 gimple_stmt_iterator bsi;
4482
4483 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4484 {
4485 gimple stmt = gsi_stmt (bsi);
4486
4487 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4488 {
4489 struct data_reference *res;
4490 res = XCNEW (struct data_reference);
4491 datarefs->safe_push (res);
4492
4493 return chrec_dont_know;
4494 }
4495 }
4496
4497 return NULL_TREE;
4498 }
4499
4500 /* Search the data references in LOOP, and record the information into
4501 DATAREFS. Returns chrec_dont_know when failing to analyze a
4502 difficult case, returns NULL_TREE otherwise.
4503
4504 TODO: This function should be made smarter so that it can handle address
4505 arithmetic as if they were array accesses, etc. */
4506
4507 tree
4508 find_data_references_in_loop (struct loop *loop,
4509 vec<data_reference_p> *datarefs)
4510 {
4511 basic_block bb, *bbs;
4512 unsigned int i;
4513
4514 bbs = get_loop_body_in_dom_order (loop);
4515
4516 for (i = 0; i < loop->num_nodes; i++)
4517 {
4518 bb = bbs[i];
4519
4520 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4521 {
4522 free (bbs);
4523 return chrec_dont_know;
4524 }
4525 }
4526 free (bbs);
4527
4528 return NULL_TREE;
4529 }
4530
4531 /* Recursive helper function. */
4532
4533 static bool
4534 find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
4535 {
4536 /* Inner loops of the nest should not contain siblings. Example:
4537 when there are two consecutive loops,
4538
4539 | loop_0
4540 | loop_1
4541 | A[{0, +, 1}_1]
4542 | endloop_1
4543 | loop_2
4544 | A[{0, +, 1}_2]
4545 | endloop_2
4546 | endloop_0
4547
4548 the dependence relation cannot be captured by the distance
4549 abstraction. */
4550 if (loop->next)
4551 return false;
4552
4553 loop_nest->safe_push (loop);
4554 if (loop->inner)
4555 return find_loop_nest_1 (loop->inner, loop_nest);
4556 return true;
4557 }
4558
4559 /* Return false when the LOOP is not well nested. Otherwise return
4560 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4561 contain the loops from the outermost to the innermost, as they will
4562 appear in the classic distance vector. */
4563
4564 bool
4565 find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
4566 {
4567 loop_nest->safe_push (loop);
4568 if (loop->inner)
4569 return find_loop_nest_1 (loop->inner, loop_nest);
4570 return true;
4571 }
4572
4573 /* Returns true when the data dependences have been computed, false otherwise.
4574 Given a loop nest LOOP, the following vectors are returned:
4575 DATAREFS is initialized to all the array elements contained in this loop,
4576 DEPENDENCE_RELATIONS contains the relations between the data references.
4577 Compute read-read and self relations if
4578 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4579
4580 bool
4581 compute_data_dependences_for_loop (struct loop *loop,
4582 bool compute_self_and_read_read_dependences,
4583 vec<loop_p> *loop_nest,
4584 vec<data_reference_p> *datarefs,
4585 vec<ddr_p> *dependence_relations)
4586 {
4587 bool res = true;
4588
4589 memset (&dependence_stats, 0, sizeof (dependence_stats));
4590
4591 /* If the loop nest is not well formed, or one of the data references
4592 is not computable, give up without spending time to compute other
4593 dependences. */
4594 if (!loop
4595 || !find_loop_nest (loop, loop_nest)
4596 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4597 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4598 compute_self_and_read_read_dependences))
4599 res = false;
4600
4601 if (dump_file && (dump_flags & TDF_STATS))
4602 {
4603 fprintf (dump_file, "Dependence tester statistics:\n");
4604
4605 fprintf (dump_file, "Number of dependence tests: %d\n",
4606 dependence_stats.num_dependence_tests);
4607 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4608 dependence_stats.num_dependence_dependent);
4609 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4610 dependence_stats.num_dependence_independent);
4611 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4612 dependence_stats.num_dependence_undetermined);
4613
4614 fprintf (dump_file, "Number of subscript tests: %d\n",
4615 dependence_stats.num_subscript_tests);
4616 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4617 dependence_stats.num_subscript_undetermined);
4618 fprintf (dump_file, "Number of same subscript function: %d\n",
4619 dependence_stats.num_same_subscript_function);
4620
4621 fprintf (dump_file, "Number of ziv tests: %d\n",
4622 dependence_stats.num_ziv);
4623 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4624 dependence_stats.num_ziv_dependent);
4625 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4626 dependence_stats.num_ziv_independent);
4627 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4628 dependence_stats.num_ziv_unimplemented);
4629
4630 fprintf (dump_file, "Number of siv tests: %d\n",
4631 dependence_stats.num_siv);
4632 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4633 dependence_stats.num_siv_dependent);
4634 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4635 dependence_stats.num_siv_independent);
4636 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4637 dependence_stats.num_siv_unimplemented);
4638
4639 fprintf (dump_file, "Number of miv tests: %d\n",
4640 dependence_stats.num_miv);
4641 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4642 dependence_stats.num_miv_dependent);
4643 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4644 dependence_stats.num_miv_independent);
4645 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4646 dependence_stats.num_miv_unimplemented);
4647 }
4648
4649 return res;
4650 }
4651
4652 /* Returns true when the data dependences for the basic block BB have been
4653 computed, false otherwise.
4654 DATAREFS is initialized to all the array elements contained in this basic
4655 block, DEPENDENCE_RELATIONS contains the relations between the data
4656 references. Compute read-read and self relations if
4657 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4658 bool
4659 compute_data_dependences_for_bb (basic_block bb,
4660 bool compute_self_and_read_read_dependences,
4661 vec<data_reference_p> *datarefs,
4662 vec<ddr_p> *dependence_relations)
4663 {
4664 if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
4665 return false;
4666
4667 return compute_all_dependences (*datarefs, dependence_relations, vNULL,
4668 compute_self_and_read_read_dependences);
4669 }
4670
4671 /* Entry point (for testing only). Analyze all the data references
4672 and the dependence relations in LOOP.
4673
4674 The data references are computed first.
4675
4676 A relation on these nodes is represented by a complete graph. Some
4677 of the relations could be of no interest, thus the relations can be
4678 computed on demand.
4679
4680 In the following function we compute all the relations. This is
4681 just a first implementation that is here for:
4682 - for showing how to ask for the dependence relations,
4683 - for the debugging the whole dependence graph,
4684 - for the dejagnu testcases and maintenance.
4685
4686 It is possible to ask only for a part of the graph, avoiding to
4687 compute the whole dependence graph. The computed dependences are
4688 stored in a knowledge base (KB) such that later queries don't
4689 recompute the same information. The implementation of this KB is
4690 transparent to the optimizer, and thus the KB can be changed with a
4691 more efficient implementation, or the KB could be disabled. */
4692 static void
4693 analyze_all_data_dependences (struct loop *loop)
4694 {
4695 unsigned int i;
4696 int nb_data_refs = 10;
4697 vec<data_reference_p> datarefs;
4698 datarefs.create (nb_data_refs);
4699 vec<ddr_p> dependence_relations;
4700 dependence_relations.create (nb_data_refs * nb_data_refs);
4701 vec<loop_p> loop_nest;
4702 loop_nest.create (3);
4703
4704 /* Compute DDs on the whole function. */
4705 compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs,
4706 &dependence_relations);
4707
4708 if (dump_file)
4709 {
4710 dump_data_dependence_relations (dump_file, dependence_relations);
4711 fprintf (dump_file, "\n\n");
4712
4713 if (dump_flags & TDF_DETAILS)
4714 dump_dist_dir_vectors (dump_file, dependence_relations);
4715
4716 if (dump_flags & TDF_STATS)
4717 {
4718 unsigned nb_top_relations = 0;
4719 unsigned nb_bot_relations = 0;
4720 unsigned nb_chrec_relations = 0;
4721 struct data_dependence_relation *ddr;
4722
4723 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4724 {
4725 if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
4726 nb_top_relations++;
4727
4728 else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4729 nb_bot_relations++;
4730
4731 else
4732 nb_chrec_relations++;
4733 }
4734
4735 gather_stats_on_scev_database ();
4736 }
4737 }
4738
4739 loop_nest.release ();
4740 free_dependence_relations (dependence_relations);
4741 free_data_refs (datarefs);
4742 }
4743
4744 /* Computes all the data dependences and check that the results of
4745 several analyzers are the same. */
4746
4747 void
4748 tree_check_data_deps (void)
4749 {
4750 loop_iterator li;
4751 struct loop *loop_nest;
4752
4753 FOR_EACH_LOOP (li, loop_nest, 0)
4754 analyze_all_data_dependences (loop_nest);
4755 }
4756
4757 /* Free the memory used by a data dependence relation DDR. */
4758
4759 void
4760 free_dependence_relation (struct data_dependence_relation *ddr)
4761 {
4762 if (ddr == NULL)
4763 return;
4764
4765 if (DDR_SUBSCRIPTS (ddr).exists ())
4766 free_subscripts (DDR_SUBSCRIPTS (ddr));
4767 DDR_DIST_VECTS (ddr).release ();
4768 DDR_DIR_VECTS (ddr).release ();
4769
4770 free (ddr);
4771 }
4772
4773 /* Free the memory used by the data dependence relations from
4774 DEPENDENCE_RELATIONS. */
4775
4776 void
4777 free_dependence_relations (vec<ddr_p> dependence_relations)
4778 {
4779 unsigned int i;
4780 struct data_dependence_relation *ddr;
4781
4782 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4783 if (ddr)
4784 free_dependence_relation (ddr);
4785
4786 dependence_relations.release ();
4787 }
4788
4789 /* Free the memory used by the data references from DATAREFS. */
4790
4791 void
4792 free_data_refs (vec<data_reference_p> datarefs)
4793 {
4794 unsigned int i;
4795 struct data_reference *dr;
4796
4797 FOR_EACH_VEC_ELT (datarefs, i, dr)
4798 free_data_ref (dr);
4799 datarefs.release ();
4800 }