]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-dfa.c
[Ada] Fold Enum_Rep attribute in evaluation and not in expansion
[thirdparty/gcc.git] / gcc / tree-dfa.c
1 /* Data flow functions for trees.
2 Copyright (C) 2001-2020 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "tree-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "langhooks.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "tree-dfa.h"
37
38 /* Build and maintain data flow information for trees. */
39
40 /* Counters used to display DFA and SSA statistics. */
41 struct dfa_stats_d
42 {
43 long num_defs;
44 long num_uses;
45 long num_phis;
46 long num_phi_args;
47 size_t max_num_phi_args;
48 long num_vdefs;
49 long num_vuses;
50 };
51
52
53 /* Local functions. */
54 static void collect_dfa_stats (struct dfa_stats_d *);
55
56
57 /*---------------------------------------------------------------------------
58 Dataflow analysis (DFA) routines
59 ---------------------------------------------------------------------------*/
60
61 /* Renumber all of the gimple stmt uids. */
62
63 void
64 renumber_gimple_stmt_uids (struct function *fun)
65 {
66 basic_block bb;
67
68 set_gimple_stmt_max_uid (fun, 0);
69 FOR_ALL_BB_FN (bb, fun)
70 {
71 gimple_stmt_iterator bsi;
72 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
73 {
74 gimple *stmt = gsi_stmt (bsi);
75 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (fun));
76 }
77 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
78 {
79 gimple *stmt = gsi_stmt (bsi);
80 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (fun));
81 }
82 }
83 }
84
85 /* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
86 in BLOCKS, of which there are N_BLOCKS. Also renumbers PHIs. */
87
88 void
89 renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
90 {
91 int i;
92
93 set_gimple_stmt_max_uid (cfun, 0);
94 for (i = 0; i < n_blocks; i++)
95 {
96 basic_block bb = blocks[i];
97 gimple_stmt_iterator bsi;
98 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
99 {
100 gimple *stmt = gsi_stmt (bsi);
101 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
102 }
103 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
104 {
105 gimple *stmt = gsi_stmt (bsi);
106 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
107 }
108 }
109 }
110
111
112
113 /*---------------------------------------------------------------------------
114 Debugging functions
115 ---------------------------------------------------------------------------*/
116
117 /* Dump variable VAR and its may-aliases to FILE. */
118
119 void
120 dump_variable (FILE *file, tree var)
121 {
122 if (TREE_CODE (var) == SSA_NAME)
123 {
124 if (POINTER_TYPE_P (TREE_TYPE (var)))
125 dump_points_to_info_for (file, var);
126 var = SSA_NAME_VAR (var);
127 }
128
129 if (var == NULL_TREE)
130 {
131 fprintf (file, "<nil>");
132 return;
133 }
134
135 print_generic_expr (file, var, dump_flags);
136
137 fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
138 if (DECL_PT_UID (var) != DECL_UID (var))
139 fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));
140
141 fprintf (file, ", ");
142 print_generic_expr (file, TREE_TYPE (var), dump_flags);
143
144 if (TREE_ADDRESSABLE (var))
145 fprintf (file, ", is addressable");
146
147 if (is_global_var (var))
148 fprintf (file, ", is global");
149
150 if (TREE_THIS_VOLATILE (var))
151 fprintf (file, ", is volatile");
152
153 if (cfun && ssa_default_def (cfun, var))
154 {
155 fprintf (file, ", default def: ");
156 print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
157 }
158
159 if (DECL_INITIAL (var))
160 {
161 fprintf (file, ", initial: ");
162 print_generic_expr (file, DECL_INITIAL (var), dump_flags);
163 }
164
165 fprintf (file, "\n");
166 }
167
168
169 /* Dump variable VAR and its may-aliases to stderr. */
170
171 DEBUG_FUNCTION void
172 debug_variable (tree var)
173 {
174 dump_variable (stderr, var);
175 }
176
177
178 /* Dump various DFA statistics to FILE. */
179
180 void
181 dump_dfa_stats (FILE *file)
182 {
183 struct dfa_stats_d dfa_stats;
184
185 unsigned long size, total = 0;
186 const char * const fmt_str = "%-30s%-13s%12s\n";
187 const char * const fmt_str_1 = "%-30s%13lu" PRsa (11) "\n";
188 const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
189 const char *funcname
190 = lang_hooks.decl_printable_name (current_function_decl, 2);
191
192 collect_dfa_stats (&dfa_stats);
193
194 fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
195
196 fprintf (file, "---------------------------------------------------------\n");
197 fprintf (file, fmt_str, "", " Number of ", "Memory");
198 fprintf (file, fmt_str, "", " instances ", "used ");
199 fprintf (file, "---------------------------------------------------------\n");
200
201 size = dfa_stats.num_uses * sizeof (tree *);
202 total += size;
203 fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
204 SIZE_AMOUNT (size));
205
206 size = dfa_stats.num_defs * sizeof (tree *);
207 total += size;
208 fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
209 SIZE_AMOUNT (size));
210
211 size = dfa_stats.num_vuses * sizeof (tree *);
212 total += size;
213 fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
214 SIZE_AMOUNT (size));
215
216 size = dfa_stats.num_vdefs * sizeof (tree *);
217 total += size;
218 fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
219 SIZE_AMOUNT (size));
220
221 size = dfa_stats.num_phis * sizeof (struct gphi);
222 total += size;
223 fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
224 SIZE_AMOUNT (size));
225
226 size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
227 total += size;
228 fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
229 SIZE_AMOUNT (size));
230
231 fprintf (file, "---------------------------------------------------------\n");
232 fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data",
233 SIZE_AMOUNT (total));
234 fprintf (file, "---------------------------------------------------------\n");
235 fprintf (file, "\n");
236
237 if (dfa_stats.num_phis)
238 fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
239 (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
240 (long) dfa_stats.max_num_phi_args);
241
242 fprintf (file, "\n");
243 }
244
245
246 /* Dump DFA statistics on stderr. */
247
248 DEBUG_FUNCTION void
249 debug_dfa_stats (void)
250 {
251 dump_dfa_stats (stderr);
252 }
253
254
255 /* Collect DFA statistics and store them in the structure pointed to by
256 DFA_STATS_P. */
257
258 static void
259 collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
260 {
261 basic_block bb;
262
263 gcc_assert (dfa_stats_p);
264
265 memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
266
267 /* Walk all the statements in the function counting references. */
268 FOR_EACH_BB_FN (bb, cfun)
269 {
270 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
271 gsi_next (&si))
272 {
273 gphi *phi = si.phi ();
274 dfa_stats_p->num_phis++;
275 dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
276 if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
277 dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
278 }
279
280 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
281 gsi_next (&si))
282 {
283 gimple *stmt = gsi_stmt (si);
284 dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
285 dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
286 dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
287 dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
288 }
289 }
290 }
291
292
293 /*---------------------------------------------------------------------------
294 Miscellaneous helpers
295 ---------------------------------------------------------------------------*/
296
297 /* Lookup VAR UID in the default_defs hashtable and return the associated
298 variable. */
299
300 tree
301 ssa_default_def (struct function *fn, tree var)
302 {
303 struct tree_decl_minimal ind;
304 struct tree_ssa_name in;
305 gcc_assert (VAR_P (var)
306 || TREE_CODE (var) == PARM_DECL
307 || TREE_CODE (var) == RESULT_DECL);
308
309 /* Always NULL_TREE for rtl function dumps. */
310 if (!fn->gimple_df)
311 return NULL_TREE;
312
313 in.var = (tree)&ind;
314 ind.uid = DECL_UID (var);
315 return DEFAULT_DEFS (fn)->find_with_hash ((tree)&in, DECL_UID (var));
316 }
317
318 /* Insert the pair VAR's UID, DEF into the default_defs hashtable
319 of function FN. */
320
321 void
322 set_ssa_default_def (struct function *fn, tree var, tree def)
323 {
324 struct tree_decl_minimal ind;
325 struct tree_ssa_name in;
326
327 gcc_assert (VAR_P (var)
328 || TREE_CODE (var) == PARM_DECL
329 || TREE_CODE (var) == RESULT_DECL);
330 in.var = (tree)&ind;
331 ind.uid = DECL_UID (var);
332 if (!def)
333 {
334 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
335 DECL_UID (var),
336 NO_INSERT);
337 if (loc)
338 {
339 SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
340 DEFAULT_DEFS (fn)->clear_slot (loc);
341 }
342 return;
343 }
344 gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
345 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
346 DECL_UID (var), INSERT);
347
348 /* Default definition might be changed by tail call optimization. */
349 if (*loc)
350 SSA_NAME_IS_DEFAULT_DEF (*loc) = false;
351
352 /* Mark DEF as the default definition for VAR. */
353 *loc = def;
354 SSA_NAME_IS_DEFAULT_DEF (def) = true;
355 }
356
357 /* Retrieve or create a default definition for VAR. */
358
359 tree
360 get_or_create_ssa_default_def (struct function *fn, tree var)
361 {
362 tree ddef = ssa_default_def (fn, var);
363 if (ddef == NULL_TREE)
364 {
365 ddef = make_ssa_name_fn (fn, var, gimple_build_nop ());
366 set_ssa_default_def (fn, var, ddef);
367 }
368 return ddef;
369 }
370
371
372 /* If EXP is a handled component reference for a structure, return the
373 base variable. The access range is delimited by bit positions *POFFSET and
374 *POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either
375 *PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE
376 and *PMAX_SIZE are equal, the access is non-variable. If *PREVERSE is
377 true, the storage order of the reference is reversed. */
378
379 tree
380 get_ref_base_and_extent (tree exp, poly_int64_pod *poffset,
381 poly_int64_pod *psize,
382 poly_int64_pod *pmax_size,
383 bool *preverse)
384 {
385 poly_offset_int bitsize = -1;
386 poly_offset_int maxsize;
387 tree size_tree = NULL_TREE;
388 poly_offset_int bit_offset = 0;
389 bool seen_variable_array_ref = false;
390
391 /* First get the final access size and the storage order from just the
392 outermost expression. */
393 if (TREE_CODE (exp) == COMPONENT_REF)
394 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
395 else if (TREE_CODE (exp) == BIT_FIELD_REF)
396 size_tree = TREE_OPERAND (exp, 1);
397 else if (!VOID_TYPE_P (TREE_TYPE (exp)))
398 {
399 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
400 if (mode == BLKmode)
401 size_tree = TYPE_SIZE (TREE_TYPE (exp));
402 else
403 bitsize = GET_MODE_BITSIZE (mode);
404 }
405 if (size_tree != NULL_TREE
406 && poly_int_tree_p (size_tree))
407 bitsize = wi::to_poly_offset (size_tree);
408
409 *preverse = reverse_storage_order_for_component_p (exp);
410
411 /* Initially, maxsize is the same as the accessed element size.
412 In the following it will only grow (or become -1). */
413 maxsize = bitsize;
414
415 /* Compute cumulative bit-offset for nested component-refs and array-refs,
416 and find the ultimate containing object. */
417 while (1)
418 {
419 switch (TREE_CODE (exp))
420 {
421 case BIT_FIELD_REF:
422 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
423 break;
424
425 case COMPONENT_REF:
426 {
427 tree field = TREE_OPERAND (exp, 1);
428 tree this_offset = component_ref_field_offset (exp);
429
430 if (this_offset && poly_int_tree_p (this_offset))
431 {
432 poly_offset_int woffset = (wi::to_poly_offset (this_offset)
433 << LOG2_BITS_PER_UNIT);
434 woffset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
435 bit_offset += woffset;
436
437 /* If we had seen a variable array ref already and we just
438 referenced the last field of a struct or a union member
439 then we have to adjust maxsize by the padding at the end
440 of our field. */
441 if (seen_variable_array_ref)
442 {
443 tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
444 tree next = DECL_CHAIN (field);
445 while (next && TREE_CODE (next) != FIELD_DECL)
446 next = DECL_CHAIN (next);
447 if (!next
448 || TREE_CODE (stype) != RECORD_TYPE)
449 {
450 tree fsize = DECL_SIZE_UNIT (field);
451 tree ssize = TYPE_SIZE_UNIT (stype);
452 if (fsize == NULL
453 || !poly_int_tree_p (fsize)
454 || ssize == NULL
455 || !poly_int_tree_p (ssize))
456 maxsize = -1;
457 else if (known_size_p (maxsize))
458 {
459 poly_offset_int tem
460 = (wi::to_poly_offset (ssize)
461 - wi::to_poly_offset (fsize));
462 tem <<= LOG2_BITS_PER_UNIT;
463 tem -= woffset;
464 maxsize += tem;
465 }
466 }
467 /* An component ref with an adjacent field up in the
468 structure hierarchy constrains the size of any variable
469 array ref lower in the access hierarchy. */
470 else
471 seen_variable_array_ref = false;
472 }
473 }
474 else
475 {
476 tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
477 /* We need to adjust maxsize to the whole structure bitsize.
478 But we can subtract any constant offset seen so far,
479 because that would get us out of the structure otherwise. */
480 if (known_size_p (maxsize)
481 && csize
482 && poly_int_tree_p (csize))
483 maxsize = wi::to_poly_offset (csize) - bit_offset;
484 else
485 maxsize = -1;
486 }
487 }
488 break;
489
490 case ARRAY_REF:
491 case ARRAY_RANGE_REF:
492 {
493 tree index = TREE_OPERAND (exp, 1);
494 tree low_bound, unit_size;
495
496 /* If the resulting bit-offset is constant, track it. */
497 if (poly_int_tree_p (index)
498 && (low_bound = array_ref_low_bound (exp),
499 poly_int_tree_p (low_bound))
500 && (unit_size = array_ref_element_size (exp),
501 TREE_CODE (unit_size) == INTEGER_CST))
502 {
503 poly_offset_int woffset
504 = wi::sext (wi::to_poly_offset (index)
505 - wi::to_poly_offset (low_bound),
506 TYPE_PRECISION (TREE_TYPE (index)));
507 woffset *= wi::to_offset (unit_size);
508 woffset <<= LOG2_BITS_PER_UNIT;
509 bit_offset += woffset;
510
511 /* An array ref with a constant index up in the structure
512 hierarchy will constrain the size of any variable array ref
513 lower in the access hierarchy. */
514 seen_variable_array_ref = false;
515 }
516 else
517 {
518 tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
519 /* We need to adjust maxsize to the whole array bitsize.
520 But we can subtract any constant offset seen so far,
521 because that would get us outside of the array otherwise. */
522 if (known_size_p (maxsize)
523 && asize
524 && poly_int_tree_p (asize))
525 maxsize = wi::to_poly_offset (asize) - bit_offset;
526 else
527 maxsize = -1;
528
529 /* Remember that we have seen an array ref with a variable
530 index. */
531 seen_variable_array_ref = true;
532
533 wide_int min, max;
534 if (TREE_CODE (index) == SSA_NAME
535 && (low_bound = array_ref_low_bound (exp),
536 poly_int_tree_p (low_bound))
537 && (unit_size = array_ref_element_size (exp),
538 TREE_CODE (unit_size) == INTEGER_CST)
539 && get_range_info (index, &min, &max) == VR_RANGE)
540 {
541 poly_offset_int lbound = wi::to_poly_offset (low_bound);
542 /* Try to constrain maxsize with range information. */
543 offset_int omax
544 = offset_int::from (max, TYPE_SIGN (TREE_TYPE (index)));
545 if (known_lt (lbound, omax))
546 {
547 poly_offset_int rmaxsize;
548 rmaxsize = (omax - lbound + 1)
549 * wi::to_offset (unit_size) << LOG2_BITS_PER_UNIT;
550 if (!known_size_p (maxsize)
551 || known_lt (rmaxsize, maxsize))
552 {
553 /* If we know an upper bound below the declared
554 one this is no longer variable. */
555 if (known_size_p (maxsize))
556 seen_variable_array_ref = false;
557 maxsize = rmaxsize;
558 }
559 }
560 /* Try to adjust bit_offset with range information. */
561 offset_int omin
562 = offset_int::from (min, TYPE_SIGN (TREE_TYPE (index)));
563 if (known_le (lbound, omin))
564 {
565 poly_offset_int woffset
566 = wi::sext (omin - lbound,
567 TYPE_PRECISION (TREE_TYPE (index)));
568 woffset *= wi::to_offset (unit_size);
569 woffset <<= LOG2_BITS_PER_UNIT;
570 bit_offset += woffset;
571 if (known_size_p (maxsize))
572 maxsize -= woffset;
573 }
574 }
575 }
576 }
577 break;
578
579 case REALPART_EXPR:
580 break;
581
582 case IMAGPART_EXPR:
583 bit_offset += bitsize;
584 break;
585
586 case VIEW_CONVERT_EXPR:
587 break;
588
589 case TARGET_MEM_REF:
590 /* Via the variable index or index2 we can reach the
591 whole object. Still hand back the decl here. */
592 if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
593 && (TMR_INDEX (exp) || TMR_INDEX2 (exp)))
594 {
595 exp = TREE_OPERAND (TMR_BASE (exp), 0);
596 bit_offset = 0;
597 maxsize = -1;
598 goto done;
599 }
600 /* Fallthru. */
601 case MEM_REF:
602 /* We need to deal with variable arrays ending structures such as
603 struct { int length; int a[1]; } x; x.a[d]
604 struct { struct { int a; int b; } a[1]; } x; x.a[d].a
605 struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0]
606 struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
607 where we do not know maxsize for variable index accesses to
608 the array. The simplest way to conservatively deal with this
609 is to punt in the case that offset + maxsize reaches the
610 base type boundary. This needs to include possible trailing
611 padding that is there for alignment purposes. */
612 if (seen_variable_array_ref
613 && known_size_p (maxsize)
614 && (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
615 || !poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
616 || (maybe_eq
617 (bit_offset + maxsize,
618 wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))))))
619 maxsize = -1;
620
621 /* Hand back the decl for MEM[&decl, off]. */
622 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
623 {
624 if (integer_zerop (TREE_OPERAND (exp, 1)))
625 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
626 else
627 {
628 poly_offset_int off = mem_ref_offset (exp);
629 off <<= LOG2_BITS_PER_UNIT;
630 off += bit_offset;
631 poly_int64 off_hwi;
632 if (off.to_shwi (&off_hwi))
633 {
634 bit_offset = off_hwi;
635 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
636 }
637 }
638 }
639 goto done;
640
641 default:
642 goto done;
643 }
644
645 exp = TREE_OPERAND (exp, 0);
646 }
647
648 done:
649 if (!bitsize.to_shwi (psize) || maybe_lt (*psize, 0))
650 {
651 *poffset = 0;
652 *psize = -1;
653 *pmax_size = -1;
654
655 return exp;
656 }
657
658 /* ??? Due to negative offsets in ARRAY_REF we can end up with
659 negative bit_offset here. We might want to store a zero offset
660 in this case. */
661 if (!bit_offset.to_shwi (poffset))
662 {
663 *poffset = 0;
664 *pmax_size = -1;
665
666 return exp;
667 }
668
669 /* In case of a decl or constant base object we can do better. */
670
671 if (DECL_P (exp))
672 {
673 if (VAR_P (exp)
674 && ((flag_unconstrained_commons && DECL_COMMON (exp))
675 || (DECL_EXTERNAL (exp) && seen_variable_array_ref)))
676 {
677 tree sz_tree = TYPE_SIZE (TREE_TYPE (exp));
678 /* If size is unknown, or we have read to the end, assume there
679 may be more to the structure than we are told. */
680 if (TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE
681 || (seen_variable_array_ref
682 && (sz_tree == NULL_TREE
683 || !poly_int_tree_p (sz_tree)
684 || maybe_eq (bit_offset + maxsize,
685 wi::to_poly_offset (sz_tree)))))
686 maxsize = -1;
687 }
688 /* If maxsize is unknown adjust it according to the size of the
689 base decl. */
690 else if (!known_size_p (maxsize)
691 && DECL_SIZE (exp)
692 && poly_int_tree_p (DECL_SIZE (exp)))
693 maxsize = wi::to_poly_offset (DECL_SIZE (exp)) - bit_offset;
694 }
695 else if (CONSTANT_CLASS_P (exp))
696 {
697 /* If maxsize is unknown adjust it according to the size of the
698 base type constant. */
699 if (!known_size_p (maxsize)
700 && TYPE_SIZE (TREE_TYPE (exp))
701 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp))))
702 maxsize = (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))
703 - bit_offset);
704 }
705
706 if (!maxsize.to_shwi (pmax_size)
707 || maybe_lt (*pmax_size, 0)
708 || !endpoint_representable_p (*poffset, *pmax_size))
709 *pmax_size = -1;
710
711 /* Punt if *POFFSET + *PSIZE overflows in HOST_WIDE_INT, the callers don't
712 check for such overflows individually and assume it works. */
713 if (!endpoint_representable_p (*poffset, *psize))
714 {
715 *poffset = 0;
716 *psize = -1;
717 *pmax_size = -1;
718
719 return exp;
720 }
721
722 return exp;
723 }
724
725 /* Like get_ref_base_and_extent, but for cases in which we only care
726 about constant-width accesses at constant offsets. Return null
727 if the access is anything else. */
728
729 tree
730 get_ref_base_and_extent_hwi (tree exp, HOST_WIDE_INT *poffset,
731 HOST_WIDE_INT *psize, bool *preverse)
732 {
733 poly_int64 offset, size, max_size;
734 HOST_WIDE_INT const_offset, const_size;
735 bool reverse;
736 tree decl = get_ref_base_and_extent (exp, &offset, &size, &max_size,
737 &reverse);
738 if (!offset.is_constant (&const_offset)
739 || !size.is_constant (&const_size)
740 || const_offset < 0
741 || !known_size_p (max_size)
742 || maybe_ne (max_size, const_size))
743 return NULL_TREE;
744
745 *poffset = const_offset;
746 *psize = const_size;
747 *preverse = reverse;
748 return decl;
749 }
750
751 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
752 denotes the starting address of the memory access EXP.
753 Returns NULL_TREE if the offset is not constant or any component
754 is not BITS_PER_UNIT-aligned.
755 VALUEIZE if non-NULL is used to valueize SSA names. It should return
756 its argument or a constant if the argument is known to be constant. */
757
758 tree
759 get_addr_base_and_unit_offset_1 (tree exp, poly_int64_pod *poffset,
760 tree (*valueize) (tree))
761 {
762 poly_int64 byte_offset = 0;
763
764 /* Compute cumulative byte-offset for nested component-refs and array-refs,
765 and find the ultimate containing object. */
766 while (1)
767 {
768 switch (TREE_CODE (exp))
769 {
770 case BIT_FIELD_REF:
771 {
772 poly_int64 this_byte_offset;
773 poly_uint64 this_bit_offset;
774 if (!poly_int_tree_p (TREE_OPERAND (exp, 2), &this_bit_offset)
775 || !multiple_p (this_bit_offset, BITS_PER_UNIT,
776 &this_byte_offset))
777 return NULL_TREE;
778 byte_offset += this_byte_offset;
779 }
780 break;
781
782 case COMPONENT_REF:
783 {
784 tree field = TREE_OPERAND (exp, 1);
785 tree this_offset = component_ref_field_offset (exp);
786 poly_int64 hthis_offset;
787
788 if (!this_offset
789 || !poly_int_tree_p (this_offset, &hthis_offset)
790 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
791 % BITS_PER_UNIT))
792 return NULL_TREE;
793
794 hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
795 / BITS_PER_UNIT);
796 byte_offset += hthis_offset;
797 }
798 break;
799
800 case ARRAY_REF:
801 case ARRAY_RANGE_REF:
802 {
803 tree index = TREE_OPERAND (exp, 1);
804 tree low_bound, unit_size;
805
806 if (valueize
807 && TREE_CODE (index) == SSA_NAME)
808 index = (*valueize) (index);
809 if (!poly_int_tree_p (index))
810 return NULL_TREE;
811 low_bound = array_ref_low_bound (exp);
812 if (valueize
813 && TREE_CODE (low_bound) == SSA_NAME)
814 low_bound = (*valueize) (low_bound);
815 if (!poly_int_tree_p (low_bound))
816 return NULL_TREE;
817 unit_size = array_ref_element_size (exp);
818 if (TREE_CODE (unit_size) != INTEGER_CST)
819 return NULL_TREE;
820
821 /* If the resulting bit-offset is constant, track it. */
822 poly_offset_int woffset
823 = wi::sext (wi::to_poly_offset (index)
824 - wi::to_poly_offset (low_bound),
825 TYPE_PRECISION (TREE_TYPE (index)));
826 woffset *= wi::to_offset (unit_size);
827 byte_offset += woffset.force_shwi ();
828 }
829 break;
830
831 case REALPART_EXPR:
832 break;
833
834 case IMAGPART_EXPR:
835 byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
836 break;
837
838 case VIEW_CONVERT_EXPR:
839 break;
840
841 case MEM_REF:
842 {
843 tree base = TREE_OPERAND (exp, 0);
844 if (valueize
845 && TREE_CODE (base) == SSA_NAME)
846 base = (*valueize) (base);
847
848 /* Hand back the decl for MEM[&decl, off]. */
849 if (TREE_CODE (base) == ADDR_EXPR)
850 {
851 if (!integer_zerop (TREE_OPERAND (exp, 1)))
852 {
853 poly_offset_int off = mem_ref_offset (exp);
854 byte_offset += off.force_shwi ();
855 }
856 exp = TREE_OPERAND (base, 0);
857 }
858 goto done;
859 }
860
861 case TARGET_MEM_REF:
862 {
863 tree base = TREE_OPERAND (exp, 0);
864 if (valueize
865 && TREE_CODE (base) == SSA_NAME)
866 base = (*valueize) (base);
867
868 /* Hand back the decl for MEM[&decl, off]. */
869 if (TREE_CODE (base) == ADDR_EXPR)
870 {
871 if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
872 return NULL_TREE;
873 if (!integer_zerop (TMR_OFFSET (exp)))
874 {
875 poly_offset_int off = mem_ref_offset (exp);
876 byte_offset += off.force_shwi ();
877 }
878 exp = TREE_OPERAND (base, 0);
879 }
880 goto done;
881 }
882
883 default:
884 goto done;
885 }
886
887 exp = TREE_OPERAND (exp, 0);
888 }
889 done:
890
891 *poffset = byte_offset;
892 return exp;
893 }
894
895 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
896 denotes the starting address of the memory access EXP.
897 Returns NULL_TREE if the offset is not constant or any component
898 is not BITS_PER_UNIT-aligned. */
899
900 tree
901 get_addr_base_and_unit_offset (tree exp, poly_int64_pod *poffset)
902 {
903 return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
904 }
905
906 /* Returns true if STMT references an SSA_NAME that has
907 SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false. */
908
909 bool
910 stmt_references_abnormal_ssa_name (gimple *stmt)
911 {
912 ssa_op_iter oi;
913 use_operand_p use_p;
914
915 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
916 {
917 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
918 return true;
919 }
920
921 return false;
922 }
923
924 /* If STMT takes any abnormal PHI values as input, replace them with
925 local copies. */
926
927 void
928 replace_abnormal_ssa_names (gimple *stmt)
929 {
930 ssa_op_iter oi;
931 use_operand_p use_p;
932
933 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
934 {
935 tree op = USE_FROM_PTR (use_p);
936 if (TREE_CODE (op) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
937 {
938 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
939 tree new_name = make_ssa_name (TREE_TYPE (op));
940 gassign *assign = gimple_build_assign (new_name, op);
941 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
942 SET_USE (use_p, new_name);
943 }
944 }
945 }
946
947 /* Pair of tree and a sorting index, for dump_enumerated_decls. */
948 struct GTY(()) numbered_tree
949 {
950 tree t;
951 int num;
952 };
953
954
955 /* Compare two declarations references by their DECL_UID / sequence number.
956 Called via qsort. */
957
958 static int
959 compare_decls_by_uid (const void *pa, const void *pb)
960 {
961 const numbered_tree *nt_a = ((const numbered_tree *)pa);
962 const numbered_tree *nt_b = ((const numbered_tree *)pb);
963
964 if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
965 return DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
966 return nt_a->num - nt_b->num;
967 }
968
969 /* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls. */
970 static tree
971 dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
972 {
973 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
974 vec<numbered_tree> *list = (vec<numbered_tree> *) wi->info;
975 numbered_tree nt;
976
977 if (!DECL_P (*tp))
978 return NULL_TREE;
979 nt.t = *tp;
980 nt.num = list->length ();
981 list->safe_push (nt);
982 *walk_subtrees = 0;
983 return NULL_TREE;
984 }
985
986 /* Find all the declarations used by the current function, sort them by uid,
987 and emit the sorted list. Each declaration is tagged with a sequence
988 number indicating when it was found during statement / tree walking,
989 so that TDF_NOUID comparisons of anonymous declarations are still
990 meaningful. Where a declaration was encountered more than once, we
991 emit only the sequence number of the first encounter.
992 FILE is the dump file where to output the list and FLAGS is as in
993 print_generic_expr. */
994 void
995 dump_enumerated_decls (FILE *file, dump_flags_t flags)
996 {
997 if (!cfun->cfg)
998 return;
999
1000 basic_block bb;
1001 struct walk_stmt_info wi;
1002 auto_vec<numbered_tree, 40> decl_list;
1003
1004 memset (&wi, '\0', sizeof (wi));
1005 wi.info = (void *) &decl_list;
1006 FOR_EACH_BB_FN (bb, cfun)
1007 {
1008 gimple_stmt_iterator gsi;
1009
1010 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1011 if (!is_gimple_debug (gsi_stmt (gsi)))
1012 walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
1013 }
1014 decl_list.qsort (compare_decls_by_uid);
1015 if (decl_list.length ())
1016 {
1017 unsigned ix;
1018 numbered_tree *ntp;
1019 tree last = NULL_TREE;
1020
1021 fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
1022 current_function_name ());
1023 FOR_EACH_VEC_ELT (decl_list, ix, ntp)
1024 {
1025 if (ntp->t == last)
1026 continue;
1027 fprintf (file, "%d: ", ntp->num);
1028 print_generic_decl (file, ntp->t, flags);
1029 fprintf (file, "\n");
1030 last = ntp->t;
1031 }
1032 }
1033 }