]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
[PATCH 7/9] ENABLE_CHECKING refactoring: middle-end, LTO FE
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "rtl.h"
28 #include "ssa.h"
29 #include "alias.h"
30 #include "fold-const.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "expmed.h"
34 #include "dojump.h"
35 #include "explow.h"
36 #include "calls.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "cfganal.h"
43 #include "cfgcleanup.h"
44 #include "internal-fn.h"
45 #include "tree-eh.h"
46 #include "gimple-iterator.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "tree-inline.h"
52 #include "tree-pass.h"
53 #include "langhooks.h"
54 #include "diagnostic-core.h"
55 #include "target.h"
56 #include "cfgloop.h"
57 #include "gimple-low.h"
58
59 /* In some instances a tree and a gimple need to be stored in a same table,
60 i.e. in hash tables. This is a structure to do this. */
61 typedef union {tree *tp; tree t; gimple *g;} treemple;
62
63 /* Misc functions used in this file. */
64
65 /* Remember and lookup EH landing pad data for arbitrary statements.
66 Really this means any statement that could_throw_p. We could
67 stuff this information into the stmt_ann data structure, but:
68
69 (1) We absolutely rely on this information being kept until
70 we get to rtl. Once we're done with lowering here, if we lose
71 the information there's no way to recover it!
72
73 (2) There are many more statements that *cannot* throw as
74 compared to those that can. We should be saving some amount
75 of space by only allocating memory for those that can throw. */
76
77 /* Add statement T in function IFUN to landing pad NUM. */
78
79 static void
80 add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
81 {
82 gcc_assert (num != 0);
83
84 if (!get_eh_throw_stmt_table (ifun))
85 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31));
86
87 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
88 }
89
90 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
91
92 void
93 add_stmt_to_eh_lp (gimple *t, int num)
94 {
95 add_stmt_to_eh_lp_fn (cfun, t, num);
96 }
97
98 /* Add statement T to the single EH landing pad in REGION. */
99
100 static void
101 record_stmt_eh_region (eh_region region, gimple *t)
102 {
103 if (region == NULL)
104 return;
105 if (region->type == ERT_MUST_NOT_THROW)
106 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
107 else
108 {
109 eh_landing_pad lp = region->landing_pads;
110 if (lp == NULL)
111 lp = gen_eh_landing_pad (region);
112 else
113 gcc_assert (lp->next_lp == NULL);
114 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
115 }
116 }
117
118
119 /* Remove statement T in function IFUN from its EH landing pad. */
120
121 bool
122 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
123 {
124 if (!get_eh_throw_stmt_table (ifun))
125 return false;
126
127 if (!get_eh_throw_stmt_table (ifun)->get (t))
128 return false;
129
130 get_eh_throw_stmt_table (ifun)->remove (t);
131 return true;
132 }
133
134
135 /* Remove statement T in the current function (cfun) from its
136 EH landing pad. */
137
138 bool
139 remove_stmt_from_eh_lp (gimple *t)
140 {
141 return remove_stmt_from_eh_lp_fn (cfun, t);
142 }
143
144 /* Determine if statement T is inside an EH region in function IFUN.
145 Positive numbers indicate a landing pad index; negative numbers
146 indicate a MUST_NOT_THROW region index; zero indicates that the
147 statement is not recorded in the region table. */
148
149 int
150 lookup_stmt_eh_lp_fn (struct function *ifun, gimple *t)
151 {
152 if (ifun->eh->throw_stmt_table == NULL)
153 return 0;
154
155 int *lp_nr = ifun->eh->throw_stmt_table->get (t);
156 return lp_nr ? *lp_nr : 0;
157 }
158
159 /* Likewise, but always use the current function. */
160
161 int
162 lookup_stmt_eh_lp (gimple *t)
163 {
164 /* We can get called from initialized data when -fnon-call-exceptions
165 is on; prevent crash. */
166 if (!cfun)
167 return 0;
168 return lookup_stmt_eh_lp_fn (cfun, t);
169 }
170
171 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
172 nodes and LABEL_DECL nodes. We will use this during the second phase to
173 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
174
175 struct finally_tree_node
176 {
177 /* When storing a GIMPLE_TRY, we have to record a gimple. However
178 when deciding whether a GOTO to a certain LABEL_DECL (which is a
179 tree) leaves the TRY block, its necessary to record a tree in
180 this field. Thus a treemple is used. */
181 treemple child;
182 gtry *parent;
183 };
184
185 /* Hashtable helpers. */
186
187 struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
188 {
189 static inline hashval_t hash (const finally_tree_node *);
190 static inline bool equal (const finally_tree_node *,
191 const finally_tree_node *);
192 };
193
194 inline hashval_t
195 finally_tree_hasher::hash (const finally_tree_node *v)
196 {
197 return (intptr_t)v->child.t >> 4;
198 }
199
200 inline bool
201 finally_tree_hasher::equal (const finally_tree_node *v,
202 const finally_tree_node *c)
203 {
204 return v->child.t == c->child.t;
205 }
206
207 /* Note that this table is *not* marked GTY. It is short-lived. */
208 static hash_table<finally_tree_hasher> *finally_tree;
209
210 static void
211 record_in_finally_tree (treemple child, gtry *parent)
212 {
213 struct finally_tree_node *n;
214 finally_tree_node **slot;
215
216 n = XNEW (struct finally_tree_node);
217 n->child = child;
218 n->parent = parent;
219
220 slot = finally_tree->find_slot (n, INSERT);
221 gcc_assert (!*slot);
222 *slot = n;
223 }
224
225 static void
226 collect_finally_tree (gimple *stmt, gtry *region);
227
228 /* Go through the gimple sequence. Works with collect_finally_tree to
229 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
230
231 static void
232 collect_finally_tree_1 (gimple_seq seq, gtry *region)
233 {
234 gimple_stmt_iterator gsi;
235
236 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
237 collect_finally_tree (gsi_stmt (gsi), region);
238 }
239
240 static void
241 collect_finally_tree (gimple *stmt, gtry *region)
242 {
243 treemple temp;
244
245 switch (gimple_code (stmt))
246 {
247 case GIMPLE_LABEL:
248 temp.t = gimple_label_label (as_a <glabel *> (stmt));
249 record_in_finally_tree (temp, region);
250 break;
251
252 case GIMPLE_TRY:
253 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
254 {
255 temp.g = stmt;
256 record_in_finally_tree (temp, region);
257 collect_finally_tree_1 (gimple_try_eval (stmt),
258 as_a <gtry *> (stmt));
259 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
260 }
261 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
262 {
263 collect_finally_tree_1 (gimple_try_eval (stmt), region);
264 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
265 }
266 break;
267
268 case GIMPLE_CATCH:
269 collect_finally_tree_1 (gimple_catch_handler (
270 as_a <gcatch *> (stmt)),
271 region);
272 break;
273
274 case GIMPLE_EH_FILTER:
275 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
276 break;
277
278 case GIMPLE_EH_ELSE:
279 {
280 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
281 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
282 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
283 }
284 break;
285
286 default:
287 /* A type, a decl, or some kind of statement that we're not
288 interested in. Don't walk them. */
289 break;
290 }
291 }
292
293
294 /* Use the finally tree to determine if a jump from START to TARGET
295 would leave the try_finally node that START lives in. */
296
297 static bool
298 outside_finally_tree (treemple start, gimple *target)
299 {
300 struct finally_tree_node n, *p;
301
302 do
303 {
304 n.child = start;
305 p = finally_tree->find (&n);
306 if (!p)
307 return true;
308 start.g = p->parent;
309 }
310 while (start.g != target);
311
312 return false;
313 }
314
315 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
316 nodes into a set of gotos, magic labels, and eh regions.
317 The eh region creation is straight-forward, but frobbing all the gotos
318 and such into shape isn't. */
319
320 /* The sequence into which we record all EH stuff. This will be
321 placed at the end of the function when we're all done. */
322 static gimple_seq eh_seq;
323
324 /* Record whether an EH region contains something that can throw,
325 indexed by EH region number. */
326 static bitmap eh_region_may_contain_throw_map;
327
328 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
329 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
330 The idea is to record a gimple statement for everything except for
331 the conditionals, which get their labels recorded. Since labels are
332 of type 'tree', we need this node to store both gimple and tree
333 objects. REPL_STMT is the sequence used to replace the goto/return
334 statement. CONT_STMT is used to store the statement that allows
335 the return/goto to jump to the original destination. */
336
337 struct goto_queue_node
338 {
339 treemple stmt;
340 location_t location;
341 gimple_seq repl_stmt;
342 gimple *cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gtry *try_finally_expr;
376 gtry *top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 hash_map<gimple *, goto_queue_node *> *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 vec<tree> dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429
430 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
431 {
432 for (i = 0; i < tf->goto_queue_active; i++)
433 if ( tf->goto_queue[i].stmt.g == stmt.g)
434 return tf->goto_queue[i].repl_stmt;
435 return NULL;
436 }
437
438 /* If we have a large number of entries in the goto_queue, create a
439 pointer map and use that for searching. */
440
441 if (!tf->goto_queue_map)
442 {
443 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
444 for (i = 0; i < tf->goto_queue_active; i++)
445 {
446 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
447 &tf->goto_queue[i]);
448 gcc_assert (!existed);
449 }
450 }
451
452 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
453 if (slot != NULL)
454 return ((*slot)->repl_stmt);
455
456 return NULL;
457 }
458
459 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
460 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
461 then we can just splat it in, otherwise we add the new stmts immediately
462 after the GIMPLE_COND and redirect. */
463
464 static void
465 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
466 gimple_stmt_iterator *gsi)
467 {
468 tree label;
469 gimple_seq new_seq;
470 treemple temp;
471 location_t loc = gimple_location (gsi_stmt (*gsi));
472
473 temp.tp = tp;
474 new_seq = find_goto_replacement (tf, temp);
475 if (!new_seq)
476 return;
477
478 if (gimple_seq_singleton_p (new_seq)
479 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
480 {
481 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
482 return;
483 }
484
485 label = create_artificial_label (loc);
486 /* Set the new label for the GIMPLE_COND */
487 *tp = label;
488
489 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
490 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
491 }
492
493 /* The real work of replace_goto_queue. Returns with TSI updated to
494 point to the next statement. */
495
496 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
497
498 static void
499 replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
500 gimple_stmt_iterator *gsi)
501 {
502 gimple_seq seq;
503 treemple temp;
504 temp.g = NULL;
505
506 switch (gimple_code (stmt))
507 {
508 case GIMPLE_GOTO:
509 case GIMPLE_RETURN:
510 temp.g = stmt;
511 seq = find_goto_replacement (tf, temp);
512 if (seq)
513 {
514 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
515 gsi_remove (gsi, false);
516 return;
517 }
518 break;
519
520 case GIMPLE_COND:
521 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
522 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
523 break;
524
525 case GIMPLE_TRY:
526 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
527 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
528 break;
529 case GIMPLE_CATCH:
530 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
531 as_a <gcatch *> (stmt)),
532 tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
536 break;
537 case GIMPLE_EH_ELSE:
538 {
539 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
540 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
541 tf);
542 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
543 tf);
544 }
545 break;
546
547 default:
548 /* These won't have gotos in them. */
549 break;
550 }
551
552 gsi_next (gsi);
553 }
554
555 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
556
557 static void
558 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
559 {
560 gimple_stmt_iterator gsi = gsi_start (*seq);
561
562 while (!gsi_end_p (gsi))
563 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
564 }
565
566 /* Replace all goto queue members. */
567
568 static void
569 replace_goto_queue (struct leh_tf_state *tf)
570 {
571 if (tf->goto_queue_active == 0)
572 return;
573 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
574 replace_goto_queue_stmt_list (&eh_seq, tf);
575 }
576
577 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
578 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
579 a gimple return. */
580
581 static void
582 record_in_goto_queue (struct leh_tf_state *tf,
583 treemple new_stmt,
584 int index,
585 bool is_label,
586 location_t location)
587 {
588 size_t active, size;
589 struct goto_queue_node *q;
590
591 gcc_assert (!tf->goto_queue_map);
592
593 active = tf->goto_queue_active;
594 size = tf->goto_queue_size;
595 if (active >= size)
596 {
597 size = (size ? size * 2 : 32);
598 tf->goto_queue_size = size;
599 tf->goto_queue
600 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
601 }
602
603 q = &tf->goto_queue[active];
604 tf->goto_queue_active = active + 1;
605
606 memset (q, 0, sizeof (*q));
607 q->stmt = new_stmt;
608 q->index = index;
609 q->location = location;
610 q->is_label = is_label;
611 }
612
613 /* Record the LABEL label in the goto queue contained in TF.
614 TF is not null. */
615
616 static void
617 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
618 location_t location)
619 {
620 int index;
621 treemple temp, new_stmt;
622
623 if (!label)
624 return;
625
626 /* Computed and non-local gotos do not get processed. Given
627 their nature we can neither tell whether we've escaped the
628 finally block nor redirect them if we knew. */
629 if (TREE_CODE (label) != LABEL_DECL)
630 return;
631
632 /* No need to record gotos that don't leave the try block. */
633 temp.t = label;
634 if (!outside_finally_tree (temp, tf->try_finally_expr))
635 return;
636
637 if (! tf->dest_array.exists ())
638 {
639 tf->dest_array.create (10);
640 tf->dest_array.quick_push (label);
641 index = 0;
642 }
643 else
644 {
645 int n = tf->dest_array.length ();
646 for (index = 0; index < n; ++index)
647 if (tf->dest_array[index] == label)
648 break;
649 if (index == n)
650 tf->dest_array.safe_push (label);
651 }
652
653 /* In the case of a GOTO we want to record the destination label,
654 since with a GIMPLE_COND we have an easy access to the then/else
655 labels. */
656 new_stmt = stmt;
657 record_in_goto_queue (tf, new_stmt, index, true, location);
658 }
659
660 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
661 node, and if so record that fact in the goto queue associated with that
662 try_finally node. */
663
664 static void
665 maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
666 {
667 struct leh_tf_state *tf = state->tf;
668 treemple new_stmt;
669
670 if (!tf)
671 return;
672
673 switch (gimple_code (stmt))
674 {
675 case GIMPLE_COND:
676 {
677 gcond *cond_stmt = as_a <gcond *> (stmt);
678 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
679 record_in_goto_queue_label (tf, new_stmt,
680 gimple_cond_true_label (cond_stmt),
681 EXPR_LOCATION (*new_stmt.tp));
682 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
683 record_in_goto_queue_label (tf, new_stmt,
684 gimple_cond_false_label (cond_stmt),
685 EXPR_LOCATION (*new_stmt.tp));
686 }
687 break;
688 case GIMPLE_GOTO:
689 new_stmt.g = stmt;
690 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
691 gimple_location (stmt));
692 break;
693
694 case GIMPLE_RETURN:
695 tf->may_return = true;
696 new_stmt.g = stmt;
697 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
698 break;
699
700 default:
701 gcc_unreachable ();
702 }
703 }
704
705
706 #if CHECKING_P
707 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
708 was in fact structured, and we've not yet done jump threading, then none
709 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
710
711 static void
712 verify_norecord_switch_expr (struct leh_state *state,
713 gswitch *switch_expr)
714 {
715 struct leh_tf_state *tf = state->tf;
716 size_t i, n;
717
718 if (!tf)
719 return;
720
721 n = gimple_switch_num_labels (switch_expr);
722
723 for (i = 0; i < n; ++i)
724 {
725 treemple temp;
726 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
727 temp.t = lab;
728 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
729 }
730 }
731 #else
732 #define verify_norecord_switch_expr(state, switch_expr)
733 #endif
734
735 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
736 non-null, insert it before the new branch. */
737
738 static void
739 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
740 {
741 gimple *x;
742
743 /* In the case of a return, the queue node must be a gimple statement. */
744 gcc_assert (!q->is_label);
745
746 /* Note that the return value may have already been computed, e.g.,
747
748 int x;
749 int foo (void)
750 {
751 x = 0;
752 try {
753 return x;
754 } finally {
755 x++;
756 }
757 }
758
759 should return 0, not 1. We don't have to do anything to make
760 this happens because the return value has been placed in the
761 RESULT_DECL already. */
762
763 q->cont_stmt = q->stmt.g;
764
765 if (mod)
766 gimple_seq_add_seq (&q->repl_stmt, mod);
767
768 x = gimple_build_goto (finlab);
769 gimple_set_location (x, q->location);
770 gimple_seq_add_stmt (&q->repl_stmt, x);
771 }
772
773 /* Similar, but easier, for GIMPLE_GOTO. */
774
775 static void
776 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
777 struct leh_tf_state *tf)
778 {
779 ggoto *x;
780
781 gcc_assert (q->is_label);
782
783 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
784
785 if (mod)
786 gimple_seq_add_seq (&q->repl_stmt, mod);
787
788 x = gimple_build_goto (finlab);
789 gimple_set_location (x, q->location);
790 gimple_seq_add_stmt (&q->repl_stmt, x);
791 }
792
793 /* Emit a standard landing pad sequence into SEQ for REGION. */
794
795 static void
796 emit_post_landing_pad (gimple_seq *seq, eh_region region)
797 {
798 eh_landing_pad lp = region->landing_pads;
799 glabel *x;
800
801 if (lp == NULL)
802 lp = gen_eh_landing_pad (region);
803
804 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
805 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
806
807 x = gimple_build_label (lp->post_landing_pad);
808 gimple_seq_add_stmt (seq, x);
809 }
810
811 /* Emit a RESX statement into SEQ for REGION. */
812
813 static void
814 emit_resx (gimple_seq *seq, eh_region region)
815 {
816 gresx *x = gimple_build_resx (region->index);
817 gimple_seq_add_stmt (seq, x);
818 if (region->outer)
819 record_stmt_eh_region (region->outer, x);
820 }
821
822 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
823
824 static void
825 emit_eh_dispatch (gimple_seq *seq, eh_region region)
826 {
827 geh_dispatch *x = gimple_build_eh_dispatch (region->index);
828 gimple_seq_add_stmt (seq, x);
829 }
830
831 /* Note that the current EH region may contain a throw, or a
832 call to a function which itself may contain a throw. */
833
834 static void
835 note_eh_region_may_contain_throw (eh_region region)
836 {
837 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
838 {
839 if (region->type == ERT_MUST_NOT_THROW)
840 break;
841 region = region->outer;
842 if (region == NULL)
843 break;
844 }
845 }
846
847 /* Check if REGION has been marked as containing a throw. If REGION is
848 NULL, this predicate is false. */
849
850 static inline bool
851 eh_region_may_contain_throw (eh_region r)
852 {
853 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
854 }
855
856 /* We want to transform
857 try { body; } catch { stuff; }
858 to
859 normal_sequence:
860 body;
861 over:
862 eh_sequence:
863 landing_pad:
864 stuff;
865 goto over;
866
867 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
868 should be placed before the second operand, or NULL. OVER is
869 an existing label that should be put at the exit, or NULL. */
870
871 static gimple_seq
872 frob_into_branch_around (gtry *tp, eh_region region, tree over)
873 {
874 gimple *x;
875 gimple_seq cleanup, result;
876 location_t loc = gimple_location (tp);
877
878 cleanup = gimple_try_cleanup (tp);
879 result = gimple_try_eval (tp);
880
881 if (region)
882 emit_post_landing_pad (&eh_seq, region);
883
884 if (gimple_seq_may_fallthru (cleanup))
885 {
886 if (!over)
887 over = create_artificial_label (loc);
888 x = gimple_build_goto (over);
889 gimple_set_location (x, loc);
890 gimple_seq_add_stmt (&cleanup, x);
891 }
892 gimple_seq_add_seq (&eh_seq, cleanup);
893
894 if (over)
895 {
896 x = gimple_build_label (over);
897 gimple_seq_add_stmt (&result, x);
898 }
899 return result;
900 }
901
902 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
903 Make sure to record all new labels found. */
904
905 static gimple_seq
906 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
907 location_t loc)
908 {
909 gtry *region = NULL;
910 gimple_seq new_seq;
911 gimple_stmt_iterator gsi;
912
913 new_seq = copy_gimple_seq_and_replace_locals (seq);
914
915 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
916 {
917 gimple *stmt = gsi_stmt (gsi);
918 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
919 it on the EH paths. When it is not eliminated, make it transparent in
920 the debug info. */
921 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
922 gimple_set_location (stmt, UNKNOWN_LOCATION);
923 else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
924 {
925 tree block = gimple_block (stmt);
926 gimple_set_location (stmt, loc);
927 gimple_set_block (stmt, block);
928 }
929 }
930
931 if (outer_state->tf)
932 region = outer_state->tf->try_finally_expr;
933 collect_finally_tree_1 (new_seq, region);
934
935 return new_seq;
936 }
937
938 /* A subroutine of lower_try_finally. Create a fallthru label for
939 the given try_finally state. The only tricky bit here is that
940 we have to make sure to record the label in our outer context. */
941
942 static tree
943 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
944 {
945 tree label = tf->fallthru_label;
946 treemple temp;
947
948 if (!label)
949 {
950 label = create_artificial_label (gimple_location (tf->try_finally_expr));
951 tf->fallthru_label = label;
952 if (tf->outer->tf)
953 {
954 temp.t = label;
955 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
956 }
957 }
958 return label;
959 }
960
961 /* A subroutine of lower_try_finally. If FINALLY consits of a
962 GIMPLE_EH_ELSE node, return it. */
963
964 static inline geh_else *
965 get_eh_else (gimple_seq finally)
966 {
967 gimple *x = gimple_seq_first_stmt (finally);
968 if (gimple_code (x) == GIMPLE_EH_ELSE)
969 {
970 gcc_assert (gimple_seq_singleton_p (finally));
971 return as_a <geh_else *> (x);
972 }
973 return NULL;
974 }
975
976 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
977 langhook returns non-null, then the language requires that the exception
978 path out of a try_finally be treated specially. To wit: the code within
979 the finally block may not itself throw an exception. We have two choices
980 here. First we can duplicate the finally block and wrap it in a
981 must_not_throw region. Second, we can generate code like
982
983 try {
984 finally_block;
985 } catch {
986 if (fintmp == eh_edge)
987 protect_cleanup_actions;
988 }
989
990 where "fintmp" is the temporary used in the switch statement generation
991 alternative considered below. For the nonce, we always choose the first
992 option.
993
994 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
995
996 static void
997 honor_protect_cleanup_actions (struct leh_state *outer_state,
998 struct leh_state *this_state,
999 struct leh_tf_state *tf)
1000 {
1001 tree protect_cleanup_actions;
1002 gimple_stmt_iterator gsi;
1003 bool finally_may_fallthru;
1004 gimple_seq finally;
1005 gimple *x;
1006 geh_mnt *eh_mnt;
1007 gtry *try_stmt;
1008 geh_else *eh_else;
1009
1010 /* First check for nothing to do. */
1011 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1012 return;
1013 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1014 if (protect_cleanup_actions == NULL)
1015 return;
1016
1017 finally = gimple_try_cleanup (tf->top_p);
1018 eh_else = get_eh_else (finally);
1019
1020 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1021 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1022 if (eh_else)
1023 {
1024 finally = gimple_eh_else_e_body (eh_else);
1025 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1026 }
1027 else if (this_state)
1028 finally = lower_try_finally_dup_block (finally, outer_state,
1029 gimple_location (tf->try_finally_expr));
1030 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1031
1032 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1033 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1034 to be in an enclosing scope, but needs to be implemented at this level
1035 to avoid a nesting violation (see wrap_temporary_cleanups in
1036 cp/decl.c). Since it's logically at an outer level, we should call
1037 terminate before we get to it, so strip it away before adding the
1038 MUST_NOT_THROW filter. */
1039 gsi = gsi_start (finally);
1040 x = gsi_stmt (gsi);
1041 if (gimple_code (x) == GIMPLE_TRY
1042 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1043 && gimple_try_catch_is_cleanup (x))
1044 {
1045 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1046 gsi_remove (&gsi, false);
1047 }
1048
1049 /* Wrap the block with protect_cleanup_actions as the action. */
1050 eh_mnt = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1051 try_stmt = gimple_build_try (finally, gimple_seq_alloc_with_stmt (eh_mnt),
1052 GIMPLE_TRY_CATCH);
1053 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1054
1055 /* Drop all of this into the exception sequence. */
1056 emit_post_landing_pad (&eh_seq, tf->region);
1057 gimple_seq_add_seq (&eh_seq, finally);
1058 if (finally_may_fallthru)
1059 emit_resx (&eh_seq, tf->region);
1060
1061 /* Having now been handled, EH isn't to be considered with
1062 the rest of the outgoing edges. */
1063 tf->may_throw = false;
1064 }
1065
1066 /* A subroutine of lower_try_finally. We have determined that there is
1067 no fallthru edge out of the finally block. This means that there is
1068 no outgoing edge corresponding to any incoming edge. Restructure the
1069 try_finally node for this special case. */
1070
1071 static void
1072 lower_try_finally_nofallthru (struct leh_state *state,
1073 struct leh_tf_state *tf)
1074 {
1075 tree lab;
1076 gimple *x;
1077 geh_else *eh_else;
1078 gimple_seq finally;
1079 struct goto_queue_node *q, *qe;
1080
1081 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1082
1083 /* We expect that tf->top_p is a GIMPLE_TRY. */
1084 finally = gimple_try_cleanup (tf->top_p);
1085 tf->top_p_seq = gimple_try_eval (tf->top_p);
1086
1087 x = gimple_build_label (lab);
1088 gimple_seq_add_stmt (&tf->top_p_seq, x);
1089
1090 q = tf->goto_queue;
1091 qe = q + tf->goto_queue_active;
1092 for (; q < qe; ++q)
1093 if (q->index < 0)
1094 do_return_redirection (q, lab, NULL);
1095 else
1096 do_goto_redirection (q, lab, NULL, tf);
1097
1098 replace_goto_queue (tf);
1099
1100 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1101 eh_else = get_eh_else (finally);
1102 if (eh_else)
1103 {
1104 finally = gimple_eh_else_n_body (eh_else);
1105 lower_eh_constructs_1 (state, &finally);
1106 gimple_seq_add_seq (&tf->top_p_seq, finally);
1107
1108 if (tf->may_throw)
1109 {
1110 finally = gimple_eh_else_e_body (eh_else);
1111 lower_eh_constructs_1 (state, &finally);
1112
1113 emit_post_landing_pad (&eh_seq, tf->region);
1114 gimple_seq_add_seq (&eh_seq, finally);
1115 }
1116 }
1117 else
1118 {
1119 lower_eh_constructs_1 (state, &finally);
1120 gimple_seq_add_seq (&tf->top_p_seq, finally);
1121
1122 if (tf->may_throw)
1123 {
1124 emit_post_landing_pad (&eh_seq, tf->region);
1125
1126 x = gimple_build_goto (lab);
1127 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1128 gimple_seq_add_stmt (&eh_seq, x);
1129 }
1130 }
1131 }
1132
1133 /* A subroutine of lower_try_finally. We have determined that there is
1134 exactly one destination of the finally block. Restructure the
1135 try_finally node for this special case. */
1136
1137 static void
1138 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1139 {
1140 struct goto_queue_node *q, *qe;
1141 geh_else *eh_else;
1142 glabel *label_stmt;
1143 gimple *x;
1144 gimple_seq finally;
1145 gimple_stmt_iterator gsi;
1146 tree finally_label;
1147 location_t loc = gimple_location (tf->try_finally_expr);
1148
1149 finally = gimple_try_cleanup (tf->top_p);
1150 tf->top_p_seq = gimple_try_eval (tf->top_p);
1151
1152 /* Since there's only one destination, and the destination edge can only
1153 either be EH or non-EH, that implies that all of our incoming edges
1154 are of the same type. Therefore we can lower EH_ELSE immediately. */
1155 eh_else = get_eh_else (finally);
1156 if (eh_else)
1157 {
1158 if (tf->may_throw)
1159 finally = gimple_eh_else_e_body (eh_else);
1160 else
1161 finally = gimple_eh_else_n_body (eh_else);
1162 }
1163
1164 lower_eh_constructs_1 (state, &finally);
1165
1166 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1167 {
1168 gimple *stmt = gsi_stmt (gsi);
1169 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1170 {
1171 tree block = gimple_block (stmt);
1172 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1173 gimple_set_block (stmt, block);
1174 }
1175 }
1176
1177 if (tf->may_throw)
1178 {
1179 /* Only reachable via the exception edge. Add the given label to
1180 the head of the FINALLY block. Append a RESX at the end. */
1181 emit_post_landing_pad (&eh_seq, tf->region);
1182 gimple_seq_add_seq (&eh_seq, finally);
1183 emit_resx (&eh_seq, tf->region);
1184 return;
1185 }
1186
1187 if (tf->may_fallthru)
1188 {
1189 /* Only reachable via the fallthru edge. Do nothing but let
1190 the two blocks run together; we'll fall out the bottom. */
1191 gimple_seq_add_seq (&tf->top_p_seq, finally);
1192 return;
1193 }
1194
1195 finally_label = create_artificial_label (loc);
1196 label_stmt = gimple_build_label (finally_label);
1197 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1198
1199 gimple_seq_add_seq (&tf->top_p_seq, finally);
1200
1201 q = tf->goto_queue;
1202 qe = q + tf->goto_queue_active;
1203
1204 if (tf->may_return)
1205 {
1206 /* Reachable by return expressions only. Redirect them. */
1207 for (; q < qe; ++q)
1208 do_return_redirection (q, finally_label, NULL);
1209 replace_goto_queue (tf);
1210 }
1211 else
1212 {
1213 /* Reachable by goto expressions only. Redirect them. */
1214 for (; q < qe; ++q)
1215 do_goto_redirection (q, finally_label, NULL, tf);
1216 replace_goto_queue (tf);
1217
1218 if (tf->dest_array[0] == tf->fallthru_label)
1219 {
1220 /* Reachable by goto to fallthru label only. Redirect it
1221 to the new label (already created, sadly), and do not
1222 emit the final branch out, or the fallthru label. */
1223 tf->fallthru_label = NULL;
1224 return;
1225 }
1226 }
1227
1228 /* Place the original return/goto to the original destination
1229 immediately after the finally block. */
1230 x = tf->goto_queue[0].cont_stmt;
1231 gimple_seq_add_stmt (&tf->top_p_seq, x);
1232 maybe_record_in_goto_queue (state, x);
1233 }
1234
1235 /* A subroutine of lower_try_finally. There are multiple edges incoming
1236 and outgoing from the finally block. Implement this by duplicating the
1237 finally block for every destination. */
1238
1239 static void
1240 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1241 {
1242 gimple_seq finally;
1243 gimple_seq new_stmt;
1244 gimple_seq seq;
1245 gimple *x;
1246 geh_else *eh_else;
1247 tree tmp;
1248 location_t tf_loc = gimple_location (tf->try_finally_expr);
1249
1250 finally = gimple_try_cleanup (tf->top_p);
1251
1252 /* Notice EH_ELSE, and simplify some of the remaining code
1253 by considering FINALLY to be the normal return path only. */
1254 eh_else = get_eh_else (finally);
1255 if (eh_else)
1256 finally = gimple_eh_else_n_body (eh_else);
1257
1258 tf->top_p_seq = gimple_try_eval (tf->top_p);
1259 new_stmt = NULL;
1260
1261 if (tf->may_fallthru)
1262 {
1263 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1264 lower_eh_constructs_1 (state, &seq);
1265 gimple_seq_add_seq (&new_stmt, seq);
1266
1267 tmp = lower_try_finally_fallthru_label (tf);
1268 x = gimple_build_goto (tmp);
1269 gimple_set_location (x, tf_loc);
1270 gimple_seq_add_stmt (&new_stmt, x);
1271 }
1272
1273 if (tf->may_throw)
1274 {
1275 /* We don't need to copy the EH path of EH_ELSE,
1276 since it is only emitted once. */
1277 if (eh_else)
1278 seq = gimple_eh_else_e_body (eh_else);
1279 else
1280 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1281 lower_eh_constructs_1 (state, &seq);
1282
1283 emit_post_landing_pad (&eh_seq, tf->region);
1284 gimple_seq_add_seq (&eh_seq, seq);
1285 emit_resx (&eh_seq, tf->region);
1286 }
1287
1288 if (tf->goto_queue)
1289 {
1290 struct goto_queue_node *q, *qe;
1291 int return_index, index;
1292 struct labels_s
1293 {
1294 struct goto_queue_node *q;
1295 tree label;
1296 } *labels;
1297
1298 return_index = tf->dest_array.length ();
1299 labels = XCNEWVEC (struct labels_s, return_index + 1);
1300
1301 q = tf->goto_queue;
1302 qe = q + tf->goto_queue_active;
1303 for (; q < qe; q++)
1304 {
1305 index = q->index < 0 ? return_index : q->index;
1306
1307 if (!labels[index].q)
1308 labels[index].q = q;
1309 }
1310
1311 for (index = 0; index < return_index + 1; index++)
1312 {
1313 tree lab;
1314
1315 q = labels[index].q;
1316 if (! q)
1317 continue;
1318
1319 lab = labels[index].label
1320 = create_artificial_label (tf_loc);
1321
1322 if (index == return_index)
1323 do_return_redirection (q, lab, NULL);
1324 else
1325 do_goto_redirection (q, lab, NULL, tf);
1326
1327 x = gimple_build_label (lab);
1328 gimple_seq_add_stmt (&new_stmt, x);
1329
1330 seq = lower_try_finally_dup_block (finally, state, q->location);
1331 lower_eh_constructs_1 (state, &seq);
1332 gimple_seq_add_seq (&new_stmt, seq);
1333
1334 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1335 maybe_record_in_goto_queue (state, q->cont_stmt);
1336 }
1337
1338 for (q = tf->goto_queue; q < qe; q++)
1339 {
1340 tree lab;
1341
1342 index = q->index < 0 ? return_index : q->index;
1343
1344 if (labels[index].q == q)
1345 continue;
1346
1347 lab = labels[index].label;
1348
1349 if (index == return_index)
1350 do_return_redirection (q, lab, NULL);
1351 else
1352 do_goto_redirection (q, lab, NULL, tf);
1353 }
1354
1355 replace_goto_queue (tf);
1356 free (labels);
1357 }
1358
1359 /* Need to link new stmts after running replace_goto_queue due
1360 to not wanting to process the same goto stmts twice. */
1361 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1362 }
1363
1364 /* A subroutine of lower_try_finally. There are multiple edges incoming
1365 and outgoing from the finally block. Implement this by instrumenting
1366 each incoming edge and creating a switch statement at the end of the
1367 finally block that branches to the appropriate destination. */
1368
1369 static void
1370 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1371 {
1372 struct goto_queue_node *q, *qe;
1373 tree finally_tmp, finally_label;
1374 int return_index, eh_index, fallthru_index;
1375 int nlabels, ndests, j, last_case_index;
1376 tree last_case;
1377 vec<tree> case_label_vec;
1378 gimple_seq switch_body = NULL;
1379 gimple *x;
1380 geh_else *eh_else;
1381 tree tmp;
1382 gimple *switch_stmt;
1383 gimple_seq finally;
1384 hash_map<tree, gimple *> *cont_map = NULL;
1385 /* The location of the TRY_FINALLY stmt. */
1386 location_t tf_loc = gimple_location (tf->try_finally_expr);
1387 /* The location of the finally block. */
1388 location_t finally_loc;
1389
1390 finally = gimple_try_cleanup (tf->top_p);
1391 eh_else = get_eh_else (finally);
1392
1393 /* Mash the TRY block to the head of the chain. */
1394 tf->top_p_seq = gimple_try_eval (tf->top_p);
1395
1396 /* The location of the finally is either the last stmt in the finally
1397 block or the location of the TRY_FINALLY itself. */
1398 x = gimple_seq_last_stmt (finally);
1399 finally_loc = x ? gimple_location (x) : tf_loc;
1400
1401 /* Prepare for switch statement generation. */
1402 nlabels = tf->dest_array.length ();
1403 return_index = nlabels;
1404 eh_index = return_index + tf->may_return;
1405 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1406 ndests = fallthru_index + tf->may_fallthru;
1407
1408 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1409 finally_label = create_artificial_label (finally_loc);
1410
1411 /* We use vec::quick_push on case_label_vec throughout this function,
1412 since we know the size in advance and allocate precisely as muce
1413 space as needed. */
1414 case_label_vec.create (ndests);
1415 last_case = NULL;
1416 last_case_index = 0;
1417
1418 /* Begin inserting code for getting to the finally block. Things
1419 are done in this order to correspond to the sequence the code is
1420 laid out. */
1421
1422 if (tf->may_fallthru)
1423 {
1424 x = gimple_build_assign (finally_tmp,
1425 build_int_cst (integer_type_node,
1426 fallthru_index));
1427 gimple_seq_add_stmt (&tf->top_p_seq, x);
1428
1429 tmp = build_int_cst (integer_type_node, fallthru_index);
1430 last_case = build_case_label (tmp, NULL,
1431 create_artificial_label (tf_loc));
1432 case_label_vec.quick_push (last_case);
1433 last_case_index++;
1434
1435 x = gimple_build_label (CASE_LABEL (last_case));
1436 gimple_seq_add_stmt (&switch_body, x);
1437
1438 tmp = lower_try_finally_fallthru_label (tf);
1439 x = gimple_build_goto (tmp);
1440 gimple_set_location (x, tf_loc);
1441 gimple_seq_add_stmt (&switch_body, x);
1442 }
1443
1444 /* For EH_ELSE, emit the exception path (plus resx) now, then
1445 subsequently we only need consider the normal path. */
1446 if (eh_else)
1447 {
1448 if (tf->may_throw)
1449 {
1450 finally = gimple_eh_else_e_body (eh_else);
1451 lower_eh_constructs_1 (state, &finally);
1452
1453 emit_post_landing_pad (&eh_seq, tf->region);
1454 gimple_seq_add_seq (&eh_seq, finally);
1455 emit_resx (&eh_seq, tf->region);
1456 }
1457
1458 finally = gimple_eh_else_n_body (eh_else);
1459 }
1460 else if (tf->may_throw)
1461 {
1462 emit_post_landing_pad (&eh_seq, tf->region);
1463
1464 x = gimple_build_assign (finally_tmp,
1465 build_int_cst (integer_type_node, eh_index));
1466 gimple_seq_add_stmt (&eh_seq, x);
1467
1468 x = gimple_build_goto (finally_label);
1469 gimple_set_location (x, tf_loc);
1470 gimple_seq_add_stmt (&eh_seq, x);
1471
1472 tmp = build_int_cst (integer_type_node, eh_index);
1473 last_case = build_case_label (tmp, NULL,
1474 create_artificial_label (tf_loc));
1475 case_label_vec.quick_push (last_case);
1476 last_case_index++;
1477
1478 x = gimple_build_label (CASE_LABEL (last_case));
1479 gimple_seq_add_stmt (&eh_seq, x);
1480 emit_resx (&eh_seq, tf->region);
1481 }
1482
1483 x = gimple_build_label (finally_label);
1484 gimple_seq_add_stmt (&tf->top_p_seq, x);
1485
1486 lower_eh_constructs_1 (state, &finally);
1487 gimple_seq_add_seq (&tf->top_p_seq, finally);
1488
1489 /* Redirect each incoming goto edge. */
1490 q = tf->goto_queue;
1491 qe = q + tf->goto_queue_active;
1492 j = last_case_index + tf->may_return;
1493 /* Prepare the assignments to finally_tmp that are executed upon the
1494 entrance through a particular edge. */
1495 for (; q < qe; ++q)
1496 {
1497 gimple_seq mod = NULL;
1498 int switch_id;
1499 unsigned int case_index;
1500
1501 if (q->index < 0)
1502 {
1503 x = gimple_build_assign (finally_tmp,
1504 build_int_cst (integer_type_node,
1505 return_index));
1506 gimple_seq_add_stmt (&mod, x);
1507 do_return_redirection (q, finally_label, mod);
1508 switch_id = return_index;
1509 }
1510 else
1511 {
1512 x = gimple_build_assign (finally_tmp,
1513 build_int_cst (integer_type_node, q->index));
1514 gimple_seq_add_stmt (&mod, x);
1515 do_goto_redirection (q, finally_label, mod, tf);
1516 switch_id = q->index;
1517 }
1518
1519 case_index = j + q->index;
1520 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1521 {
1522 tree case_lab;
1523 tmp = build_int_cst (integer_type_node, switch_id);
1524 case_lab = build_case_label (tmp, NULL,
1525 create_artificial_label (tf_loc));
1526 /* We store the cont_stmt in the pointer map, so that we can recover
1527 it in the loop below. */
1528 if (!cont_map)
1529 cont_map = new hash_map<tree, gimple *>;
1530 cont_map->put (case_lab, q->cont_stmt);
1531 case_label_vec.quick_push (case_lab);
1532 }
1533 }
1534 for (j = last_case_index; j < last_case_index + nlabels; j++)
1535 {
1536 gimple *cont_stmt;
1537
1538 last_case = case_label_vec[j];
1539
1540 gcc_assert (last_case);
1541 gcc_assert (cont_map);
1542
1543 cont_stmt = *cont_map->get (last_case);
1544
1545 x = gimple_build_label (CASE_LABEL (last_case));
1546 gimple_seq_add_stmt (&switch_body, x);
1547 gimple_seq_add_stmt (&switch_body, cont_stmt);
1548 maybe_record_in_goto_queue (state, cont_stmt);
1549 }
1550 if (cont_map)
1551 delete cont_map;
1552
1553 replace_goto_queue (tf);
1554
1555 /* Make sure that the last case is the default label, as one is required.
1556 Then sort the labels, which is also required in GIMPLE. */
1557 CASE_LOW (last_case) = NULL;
1558 tree tem = case_label_vec.pop ();
1559 gcc_assert (tem == last_case);
1560 sort_case_labels (case_label_vec);
1561
1562 /* Build the switch statement, setting last_case to be the default
1563 label. */
1564 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1565 case_label_vec);
1566 gimple_set_location (switch_stmt, finally_loc);
1567
1568 /* Need to link SWITCH_STMT after running replace_goto_queue
1569 due to not wanting to process the same goto stmts twice. */
1570 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1571 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1572 }
1573
1574 /* Decide whether or not we are going to duplicate the finally block.
1575 There are several considerations.
1576
1577 First, if this is Java, then the finally block contains code
1578 written by the user. It has line numbers associated with it,
1579 so duplicating the block means it's difficult to set a breakpoint.
1580 Since controlling code generation via -g is verboten, we simply
1581 never duplicate code without optimization.
1582
1583 Second, we'd like to prevent egregious code growth. One way to
1584 do this is to estimate the size of the finally block, multiply
1585 that by the number of copies we'd need to make, and compare against
1586 the estimate of the size of the switch machinery we'd have to add. */
1587
1588 static bool
1589 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1590 {
1591 int f_estimate, sw_estimate;
1592 geh_else *eh_else;
1593
1594 /* If there's an EH_ELSE involved, the exception path is separate
1595 and really doesn't come into play for this computation. */
1596 eh_else = get_eh_else (finally);
1597 if (eh_else)
1598 {
1599 ndests -= may_throw;
1600 finally = gimple_eh_else_n_body (eh_else);
1601 }
1602
1603 if (!optimize)
1604 {
1605 gimple_stmt_iterator gsi;
1606
1607 if (ndests == 1)
1608 return true;
1609
1610 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1611 {
1612 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1613 on the EH paths and, consequently, useless cleanups. */
1614 gimple *stmt = gsi_stmt (gsi);
1615 if (!is_gimple_debug (stmt)
1616 && !gimple_clobber_p (stmt)
1617 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1618 return false;
1619 }
1620 return true;
1621 }
1622
1623 /* Finally estimate N times, plus N gotos. */
1624 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
1625 f_estimate = (f_estimate + 1) * ndests;
1626
1627 /* Switch statement (cost 10), N variable assignments, N gotos. */
1628 sw_estimate = 10 + 2 * ndests;
1629
1630 /* Optimize for size clearly wants our best guess. */
1631 if (optimize_function_for_size_p (cfun))
1632 return f_estimate < sw_estimate;
1633
1634 /* ??? These numbers are completely made up so far. */
1635 if (optimize > 1)
1636 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1637 else
1638 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1639 }
1640
1641 /* REG is the enclosing region for a possible cleanup region, or the region
1642 itself. Returns TRUE if such a region would be unreachable.
1643
1644 Cleanup regions within a must-not-throw region aren't actually reachable
1645 even if there are throwing stmts within them, because the personality
1646 routine will call terminate before unwinding. */
1647
1648 static bool
1649 cleanup_is_dead_in (eh_region reg)
1650 {
1651 while (reg && reg->type == ERT_CLEANUP)
1652 reg = reg->outer;
1653 return (reg && reg->type == ERT_MUST_NOT_THROW);
1654 }
1655
1656 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1657 to a sequence of labels and blocks, plus the exception region trees
1658 that record all the magic. This is complicated by the need to
1659 arrange for the FINALLY block to be executed on all exits. */
1660
1661 static gimple_seq
1662 lower_try_finally (struct leh_state *state, gtry *tp)
1663 {
1664 struct leh_tf_state this_tf;
1665 struct leh_state this_state;
1666 int ndests;
1667 gimple_seq old_eh_seq;
1668
1669 /* Process the try block. */
1670
1671 memset (&this_tf, 0, sizeof (this_tf));
1672 this_tf.try_finally_expr = tp;
1673 this_tf.top_p = tp;
1674 this_tf.outer = state;
1675 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1676 {
1677 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1678 this_state.cur_region = this_tf.region;
1679 }
1680 else
1681 {
1682 this_tf.region = NULL;
1683 this_state.cur_region = state->cur_region;
1684 }
1685
1686 this_state.ehp_region = state->ehp_region;
1687 this_state.tf = &this_tf;
1688
1689 old_eh_seq = eh_seq;
1690 eh_seq = NULL;
1691
1692 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1693
1694 /* Determine if the try block is escaped through the bottom. */
1695 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1696
1697 /* Determine if any exceptions are possible within the try block. */
1698 if (this_tf.region)
1699 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1700 if (this_tf.may_throw)
1701 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1702
1703 /* Determine how many edges (still) reach the finally block. Or rather,
1704 how many destinations are reached by the finally block. Use this to
1705 determine how we process the finally block itself. */
1706
1707 ndests = this_tf.dest_array.length ();
1708 ndests += this_tf.may_fallthru;
1709 ndests += this_tf.may_return;
1710 ndests += this_tf.may_throw;
1711
1712 /* If the FINALLY block is not reachable, dike it out. */
1713 if (ndests == 0)
1714 {
1715 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1716 gimple_try_set_cleanup (tp, NULL);
1717 }
1718 /* If the finally block doesn't fall through, then any destination
1719 we might try to impose there isn't reached either. There may be
1720 some minor amount of cleanup and redirection still needed. */
1721 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1722 lower_try_finally_nofallthru (state, &this_tf);
1723
1724 /* We can easily special-case redirection to a single destination. */
1725 else if (ndests == 1)
1726 lower_try_finally_onedest (state, &this_tf);
1727 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1728 gimple_try_cleanup (tp)))
1729 lower_try_finally_copy (state, &this_tf);
1730 else
1731 lower_try_finally_switch (state, &this_tf);
1732
1733 /* If someone requested we add a label at the end of the transformed
1734 block, do so. */
1735 if (this_tf.fallthru_label)
1736 {
1737 /* This must be reached only if ndests == 0. */
1738 gimple *x = gimple_build_label (this_tf.fallthru_label);
1739 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1740 }
1741
1742 this_tf.dest_array.release ();
1743 free (this_tf.goto_queue);
1744 if (this_tf.goto_queue_map)
1745 delete this_tf.goto_queue_map;
1746
1747 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1748 If there was no old eh_seq, then the append is trivially already done. */
1749 if (old_eh_seq)
1750 {
1751 if (eh_seq == NULL)
1752 eh_seq = old_eh_seq;
1753 else
1754 {
1755 gimple_seq new_eh_seq = eh_seq;
1756 eh_seq = old_eh_seq;
1757 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1758 }
1759 }
1760
1761 return this_tf.top_p_seq;
1762 }
1763
1764 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1765 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1766 exception region trees that records all the magic. */
1767
1768 static gimple_seq
1769 lower_catch (struct leh_state *state, gtry *tp)
1770 {
1771 eh_region try_region = NULL;
1772 struct leh_state this_state = *state;
1773 gimple_stmt_iterator gsi;
1774 tree out_label;
1775 gimple_seq new_seq, cleanup;
1776 gimple *x;
1777 location_t try_catch_loc = gimple_location (tp);
1778
1779 if (flag_exceptions)
1780 {
1781 try_region = gen_eh_region_try (state->cur_region);
1782 this_state.cur_region = try_region;
1783 }
1784
1785 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1786
1787 if (!eh_region_may_contain_throw (try_region))
1788 return gimple_try_eval (tp);
1789
1790 new_seq = NULL;
1791 emit_eh_dispatch (&new_seq, try_region);
1792 emit_resx (&new_seq, try_region);
1793
1794 this_state.cur_region = state->cur_region;
1795 this_state.ehp_region = try_region;
1796
1797 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1798 itself, so that e.g. for coverage purposes the nested cleanups don't
1799 appear before the cleanup body. See PR64634 for details. */
1800 gimple_seq old_eh_seq = eh_seq;
1801 eh_seq = NULL;
1802
1803 out_label = NULL;
1804 cleanup = gimple_try_cleanup (tp);
1805 for (gsi = gsi_start (cleanup);
1806 !gsi_end_p (gsi);
1807 gsi_next (&gsi))
1808 {
1809 eh_catch c;
1810 gcatch *catch_stmt;
1811 gimple_seq handler;
1812
1813 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1814 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1815
1816 handler = gimple_catch_handler (catch_stmt);
1817 lower_eh_constructs_1 (&this_state, &handler);
1818
1819 c->label = create_artificial_label (UNKNOWN_LOCATION);
1820 x = gimple_build_label (c->label);
1821 gimple_seq_add_stmt (&new_seq, x);
1822
1823 gimple_seq_add_seq (&new_seq, handler);
1824
1825 if (gimple_seq_may_fallthru (new_seq))
1826 {
1827 if (!out_label)
1828 out_label = create_artificial_label (try_catch_loc);
1829
1830 x = gimple_build_goto (out_label);
1831 gimple_seq_add_stmt (&new_seq, x);
1832 }
1833 if (!c->type_list)
1834 break;
1835 }
1836
1837 gimple_try_set_cleanup (tp, new_seq);
1838
1839 gimple_seq new_eh_seq = eh_seq;
1840 eh_seq = old_eh_seq;
1841 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1842 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1843 return ret_seq;
1844 }
1845
1846 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1847 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1848 region trees that record all the magic. */
1849
1850 static gimple_seq
1851 lower_eh_filter (struct leh_state *state, gtry *tp)
1852 {
1853 struct leh_state this_state = *state;
1854 eh_region this_region = NULL;
1855 gimple *inner, *x;
1856 gimple_seq new_seq;
1857
1858 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1859
1860 if (flag_exceptions)
1861 {
1862 this_region = gen_eh_region_allowed (state->cur_region,
1863 gimple_eh_filter_types (inner));
1864 this_state.cur_region = this_region;
1865 }
1866
1867 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1868
1869 if (!eh_region_may_contain_throw (this_region))
1870 return gimple_try_eval (tp);
1871
1872 new_seq = NULL;
1873 this_state.cur_region = state->cur_region;
1874 this_state.ehp_region = this_region;
1875
1876 emit_eh_dispatch (&new_seq, this_region);
1877 emit_resx (&new_seq, this_region);
1878
1879 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1880 x = gimple_build_label (this_region->u.allowed.label);
1881 gimple_seq_add_stmt (&new_seq, x);
1882
1883 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1884 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1885
1886 gimple_try_set_cleanup (tp, new_seq);
1887
1888 return frob_into_branch_around (tp, this_region, NULL);
1889 }
1890
1891 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1892 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1893 plus the exception region trees that record all the magic. */
1894
1895 static gimple_seq
1896 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1897 {
1898 struct leh_state this_state = *state;
1899
1900 if (flag_exceptions)
1901 {
1902 gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1903 eh_region this_region;
1904
1905 this_region = gen_eh_region_must_not_throw (state->cur_region);
1906 this_region->u.must_not_throw.failure_decl
1907 = gimple_eh_must_not_throw_fndecl (
1908 as_a <geh_mnt *> (inner));
1909 this_region->u.must_not_throw.failure_loc
1910 = LOCATION_LOCUS (gimple_location (tp));
1911
1912 /* In order to get mangling applied to this decl, we must mark it
1913 used now. Otherwise, pass_ipa_free_lang_data won't think it
1914 needs to happen. */
1915 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1916
1917 this_state.cur_region = this_region;
1918 }
1919
1920 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1921
1922 return gimple_try_eval (tp);
1923 }
1924
1925 /* Implement a cleanup expression. This is similar to try-finally,
1926 except that we only execute the cleanup block for exception edges. */
1927
1928 static gimple_seq
1929 lower_cleanup (struct leh_state *state, gtry *tp)
1930 {
1931 struct leh_state this_state = *state;
1932 eh_region this_region = NULL;
1933 struct leh_tf_state fake_tf;
1934 gimple_seq result;
1935 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1936
1937 if (flag_exceptions && !cleanup_dead)
1938 {
1939 this_region = gen_eh_region_cleanup (state->cur_region);
1940 this_state.cur_region = this_region;
1941 }
1942
1943 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1944
1945 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1946 return gimple_try_eval (tp);
1947
1948 /* Build enough of a try-finally state so that we can reuse
1949 honor_protect_cleanup_actions. */
1950 memset (&fake_tf, 0, sizeof (fake_tf));
1951 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1952 fake_tf.outer = state;
1953 fake_tf.region = this_region;
1954 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1955 fake_tf.may_throw = true;
1956
1957 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1958
1959 if (fake_tf.may_throw)
1960 {
1961 /* In this case honor_protect_cleanup_actions had nothing to do,
1962 and we should process this normally. */
1963 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1964 result = frob_into_branch_around (tp, this_region,
1965 fake_tf.fallthru_label);
1966 }
1967 else
1968 {
1969 /* In this case honor_protect_cleanup_actions did nearly all of
1970 the work. All we have left is to append the fallthru_label. */
1971
1972 result = gimple_try_eval (tp);
1973 if (fake_tf.fallthru_label)
1974 {
1975 gimple *x = gimple_build_label (fake_tf.fallthru_label);
1976 gimple_seq_add_stmt (&result, x);
1977 }
1978 }
1979 return result;
1980 }
1981
1982 /* Main loop for lowering eh constructs. Also moves gsi to the next
1983 statement. */
1984
1985 static void
1986 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1987 {
1988 gimple_seq replace;
1989 gimple *x;
1990 gimple *stmt = gsi_stmt (*gsi);
1991
1992 switch (gimple_code (stmt))
1993 {
1994 case GIMPLE_CALL:
1995 {
1996 tree fndecl = gimple_call_fndecl (stmt);
1997 tree rhs, lhs;
1998
1999 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2000 switch (DECL_FUNCTION_CODE (fndecl))
2001 {
2002 case BUILT_IN_EH_POINTER:
2003 /* The front end may have generated a call to
2004 __builtin_eh_pointer (0) within a catch region. Replace
2005 this zero argument with the current catch region number. */
2006 if (state->ehp_region)
2007 {
2008 tree nr = build_int_cst (integer_type_node,
2009 state->ehp_region->index);
2010 gimple_call_set_arg (stmt, 0, nr);
2011 }
2012 else
2013 {
2014 /* The user has dome something silly. Remove it. */
2015 rhs = null_pointer_node;
2016 goto do_replace;
2017 }
2018 break;
2019
2020 case BUILT_IN_EH_FILTER:
2021 /* ??? This should never appear, but since it's a builtin it
2022 is accessible to abuse by users. Just remove it and
2023 replace the use with the arbitrary value zero. */
2024 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2025 do_replace:
2026 lhs = gimple_call_lhs (stmt);
2027 x = gimple_build_assign (lhs, rhs);
2028 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2029 /* FALLTHRU */
2030
2031 case BUILT_IN_EH_COPY_VALUES:
2032 /* Likewise this should not appear. Remove it. */
2033 gsi_remove (gsi, true);
2034 return;
2035
2036 default:
2037 break;
2038 }
2039 }
2040 /* FALLTHRU */
2041
2042 case GIMPLE_ASSIGN:
2043 /* If the stmt can throw use a new temporary for the assignment
2044 to a LHS. This makes sure the old value of the LHS is
2045 available on the EH edge. Only do so for statements that
2046 potentially fall through (no noreturn calls e.g.), otherwise
2047 this new assignment might create fake fallthru regions. */
2048 if (stmt_could_throw_p (stmt)
2049 && gimple_has_lhs (stmt)
2050 && gimple_stmt_may_fallthru (stmt)
2051 && !tree_could_throw_p (gimple_get_lhs (stmt))
2052 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2053 {
2054 tree lhs = gimple_get_lhs (stmt);
2055 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2056 gimple *s = gimple_build_assign (lhs, tmp);
2057 gimple_set_location (s, gimple_location (stmt));
2058 gimple_set_block (s, gimple_block (stmt));
2059 gimple_set_lhs (stmt, tmp);
2060 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2061 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2062 DECL_GIMPLE_REG_P (tmp) = 1;
2063 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2064 }
2065 /* Look for things that can throw exceptions, and record them. */
2066 if (state->cur_region && stmt_could_throw_p (stmt))
2067 {
2068 record_stmt_eh_region (state->cur_region, stmt);
2069 note_eh_region_may_contain_throw (state->cur_region);
2070 }
2071 break;
2072
2073 case GIMPLE_COND:
2074 case GIMPLE_GOTO:
2075 case GIMPLE_RETURN:
2076 maybe_record_in_goto_queue (state, stmt);
2077 break;
2078
2079 case GIMPLE_SWITCH:
2080 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2081 break;
2082
2083 case GIMPLE_TRY:
2084 {
2085 gtry *try_stmt = as_a <gtry *> (stmt);
2086 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2087 replace = lower_try_finally (state, try_stmt);
2088 else
2089 {
2090 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2091 if (!x)
2092 {
2093 replace = gimple_try_eval (try_stmt);
2094 lower_eh_constructs_1 (state, &replace);
2095 }
2096 else
2097 switch (gimple_code (x))
2098 {
2099 case GIMPLE_CATCH:
2100 replace = lower_catch (state, try_stmt);
2101 break;
2102 case GIMPLE_EH_FILTER:
2103 replace = lower_eh_filter (state, try_stmt);
2104 break;
2105 case GIMPLE_EH_MUST_NOT_THROW:
2106 replace = lower_eh_must_not_throw (state, try_stmt);
2107 break;
2108 case GIMPLE_EH_ELSE:
2109 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2110 gcc_unreachable ();
2111 default:
2112 replace = lower_cleanup (state, try_stmt);
2113 break;
2114 }
2115 }
2116 }
2117
2118 /* Remove the old stmt and insert the transformed sequence
2119 instead. */
2120 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2121 gsi_remove (gsi, true);
2122
2123 /* Return since we don't want gsi_next () */
2124 return;
2125
2126 case GIMPLE_EH_ELSE:
2127 /* We should be eliminating this in lower_try_finally et al. */
2128 gcc_unreachable ();
2129
2130 default:
2131 /* A type, a decl, or some kind of statement that we're not
2132 interested in. Don't walk them. */
2133 break;
2134 }
2135
2136 gsi_next (gsi);
2137 }
2138
2139 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2140
2141 static void
2142 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2143 {
2144 gimple_stmt_iterator gsi;
2145 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2146 lower_eh_constructs_2 (state, &gsi);
2147 }
2148
2149 namespace {
2150
2151 const pass_data pass_data_lower_eh =
2152 {
2153 GIMPLE_PASS, /* type */
2154 "eh", /* name */
2155 OPTGROUP_NONE, /* optinfo_flags */
2156 TV_TREE_EH, /* tv_id */
2157 PROP_gimple_lcf, /* properties_required */
2158 PROP_gimple_leh, /* properties_provided */
2159 0, /* properties_destroyed */
2160 0, /* todo_flags_start */
2161 0, /* todo_flags_finish */
2162 };
2163
2164 class pass_lower_eh : public gimple_opt_pass
2165 {
2166 public:
2167 pass_lower_eh (gcc::context *ctxt)
2168 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2169 {}
2170
2171 /* opt_pass methods: */
2172 virtual unsigned int execute (function *);
2173
2174 }; // class pass_lower_eh
2175
2176 unsigned int
2177 pass_lower_eh::execute (function *fun)
2178 {
2179 struct leh_state null_state;
2180 gimple_seq bodyp;
2181
2182 bodyp = gimple_body (current_function_decl);
2183 if (bodyp == NULL)
2184 return 0;
2185
2186 finally_tree = new hash_table<finally_tree_hasher> (31);
2187 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2188 memset (&null_state, 0, sizeof (null_state));
2189
2190 collect_finally_tree_1 (bodyp, NULL);
2191 lower_eh_constructs_1 (&null_state, &bodyp);
2192 gimple_set_body (current_function_decl, bodyp);
2193
2194 /* We assume there's a return statement, or something, at the end of
2195 the function, and thus ploping the EH sequence afterward won't
2196 change anything. */
2197 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2198 gimple_seq_add_seq (&bodyp, eh_seq);
2199
2200 /* We assume that since BODYP already existed, adding EH_SEQ to it
2201 didn't change its value, and we don't have to re-set the function. */
2202 gcc_assert (bodyp == gimple_body (current_function_decl));
2203
2204 delete finally_tree;
2205 finally_tree = NULL;
2206 BITMAP_FREE (eh_region_may_contain_throw_map);
2207 eh_seq = NULL;
2208
2209 /* If this function needs a language specific EH personality routine
2210 and the frontend didn't already set one do so now. */
2211 if (function_needs_eh_personality (fun) == eh_personality_lang
2212 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2213 DECL_FUNCTION_PERSONALITY (current_function_decl)
2214 = lang_hooks.eh_personality ();
2215
2216 return 0;
2217 }
2218
2219 } // anon namespace
2220
2221 gimple_opt_pass *
2222 make_pass_lower_eh (gcc::context *ctxt)
2223 {
2224 return new pass_lower_eh (ctxt);
2225 }
2226 \f
2227 /* Create the multiple edges from an EH_DISPATCH statement to all of
2228 the possible handlers for its EH region. Return true if there's
2229 no fallthru edge; false if there is. */
2230
2231 bool
2232 make_eh_dispatch_edges (geh_dispatch *stmt)
2233 {
2234 eh_region r;
2235 eh_catch c;
2236 basic_block src, dst;
2237
2238 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2239 src = gimple_bb (stmt);
2240
2241 switch (r->type)
2242 {
2243 case ERT_TRY:
2244 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2245 {
2246 dst = label_to_block (c->label);
2247 make_edge (src, dst, 0);
2248
2249 /* A catch-all handler doesn't have a fallthru. */
2250 if (c->type_list == NULL)
2251 return false;
2252 }
2253 break;
2254
2255 case ERT_ALLOWED_EXCEPTIONS:
2256 dst = label_to_block (r->u.allowed.label);
2257 make_edge (src, dst, 0);
2258 break;
2259
2260 default:
2261 gcc_unreachable ();
2262 }
2263
2264 return true;
2265 }
2266
2267 /* Create the single EH edge from STMT to its nearest landing pad,
2268 if there is such a landing pad within the current function. */
2269
2270 void
2271 make_eh_edges (gimple *stmt)
2272 {
2273 basic_block src, dst;
2274 eh_landing_pad lp;
2275 int lp_nr;
2276
2277 lp_nr = lookup_stmt_eh_lp (stmt);
2278 if (lp_nr <= 0)
2279 return;
2280
2281 lp = get_eh_landing_pad_from_number (lp_nr);
2282 gcc_assert (lp != NULL);
2283
2284 src = gimple_bb (stmt);
2285 dst = label_to_block (lp->post_landing_pad);
2286 make_edge (src, dst, EDGE_EH);
2287 }
2288
2289 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2290 do not actually perform the final edge redirection.
2291
2292 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2293 we intend to change the destination EH region as well; this means
2294 EH_LANDING_PAD_NR must already be set on the destination block label.
2295 If false, we're being called from generic cfg manipulation code and we
2296 should preserve our place within the region tree. */
2297
2298 static void
2299 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2300 {
2301 eh_landing_pad old_lp, new_lp;
2302 basic_block old_bb;
2303 gimple *throw_stmt;
2304 int old_lp_nr, new_lp_nr;
2305 tree old_label, new_label;
2306 edge_iterator ei;
2307 edge e;
2308
2309 old_bb = edge_in->dest;
2310 old_label = gimple_block_label (old_bb);
2311 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2312 gcc_assert (old_lp_nr > 0);
2313 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2314
2315 throw_stmt = last_stmt (edge_in->src);
2316 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2317
2318 new_label = gimple_block_label (new_bb);
2319
2320 /* Look for an existing region that might be using NEW_BB already. */
2321 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2322 if (new_lp_nr)
2323 {
2324 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2325 gcc_assert (new_lp);
2326
2327 /* Unless CHANGE_REGION is true, the new and old landing pad
2328 had better be associated with the same EH region. */
2329 gcc_assert (change_region || new_lp->region == old_lp->region);
2330 }
2331 else
2332 {
2333 new_lp = NULL;
2334 gcc_assert (!change_region);
2335 }
2336
2337 /* Notice when we redirect the last EH edge away from OLD_BB. */
2338 FOR_EACH_EDGE (e, ei, old_bb->preds)
2339 if (e != edge_in && (e->flags & EDGE_EH))
2340 break;
2341
2342 if (new_lp)
2343 {
2344 /* NEW_LP already exists. If there are still edges into OLD_LP,
2345 there's nothing to do with the EH tree. If there are no more
2346 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2347 If CHANGE_REGION is true, then our caller is expecting to remove
2348 the landing pad. */
2349 if (e == NULL && !change_region)
2350 remove_eh_landing_pad (old_lp);
2351 }
2352 else
2353 {
2354 /* No correct landing pad exists. If there are no more edges
2355 into OLD_LP, then we can simply re-use the existing landing pad.
2356 Otherwise, we have to create a new landing pad. */
2357 if (e == NULL)
2358 {
2359 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2360 new_lp = old_lp;
2361 }
2362 else
2363 new_lp = gen_eh_landing_pad (old_lp->region);
2364 new_lp->post_landing_pad = new_label;
2365 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2366 }
2367
2368 /* Maybe move the throwing statement to the new region. */
2369 if (old_lp != new_lp)
2370 {
2371 remove_stmt_from_eh_lp (throw_stmt);
2372 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2373 }
2374 }
2375
2376 /* Redirect EH edge E to NEW_BB. */
2377
2378 edge
2379 redirect_eh_edge (edge edge_in, basic_block new_bb)
2380 {
2381 redirect_eh_edge_1 (edge_in, new_bb, false);
2382 return ssa_redirect_edge (edge_in, new_bb);
2383 }
2384
2385 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2386 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2387 The actual edge update will happen in the caller. */
2388
2389 void
2390 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2391 {
2392 tree new_lab = gimple_block_label (new_bb);
2393 bool any_changed = false;
2394 basic_block old_bb;
2395 eh_region r;
2396 eh_catch c;
2397
2398 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2399 switch (r->type)
2400 {
2401 case ERT_TRY:
2402 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2403 {
2404 old_bb = label_to_block (c->label);
2405 if (old_bb == e->dest)
2406 {
2407 c->label = new_lab;
2408 any_changed = true;
2409 }
2410 }
2411 break;
2412
2413 case ERT_ALLOWED_EXCEPTIONS:
2414 old_bb = label_to_block (r->u.allowed.label);
2415 gcc_assert (old_bb == e->dest);
2416 r->u.allowed.label = new_lab;
2417 any_changed = true;
2418 break;
2419
2420 default:
2421 gcc_unreachable ();
2422 }
2423
2424 gcc_assert (any_changed);
2425 }
2426 \f
2427 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2428
2429 bool
2430 operation_could_trap_helper_p (enum tree_code op,
2431 bool fp_operation,
2432 bool honor_trapv,
2433 bool honor_nans,
2434 bool honor_snans,
2435 tree divisor,
2436 bool *handled)
2437 {
2438 *handled = true;
2439 switch (op)
2440 {
2441 case TRUNC_DIV_EXPR:
2442 case CEIL_DIV_EXPR:
2443 case FLOOR_DIV_EXPR:
2444 case ROUND_DIV_EXPR:
2445 case EXACT_DIV_EXPR:
2446 case CEIL_MOD_EXPR:
2447 case FLOOR_MOD_EXPR:
2448 case ROUND_MOD_EXPR:
2449 case TRUNC_MOD_EXPR:
2450 case RDIV_EXPR:
2451 if (honor_snans || honor_trapv)
2452 return true;
2453 if (fp_operation)
2454 return flag_trapping_math;
2455 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2456 return true;
2457 return false;
2458
2459 case LT_EXPR:
2460 case LE_EXPR:
2461 case GT_EXPR:
2462 case GE_EXPR:
2463 case LTGT_EXPR:
2464 /* Some floating point comparisons may trap. */
2465 return honor_nans;
2466
2467 case EQ_EXPR:
2468 case NE_EXPR:
2469 case UNORDERED_EXPR:
2470 case ORDERED_EXPR:
2471 case UNLT_EXPR:
2472 case UNLE_EXPR:
2473 case UNGT_EXPR:
2474 case UNGE_EXPR:
2475 case UNEQ_EXPR:
2476 return honor_snans;
2477
2478 case NEGATE_EXPR:
2479 case ABS_EXPR:
2480 case CONJ_EXPR:
2481 /* These operations don't trap with floating point. */
2482 if (honor_trapv)
2483 return true;
2484 return false;
2485
2486 case PLUS_EXPR:
2487 case MINUS_EXPR:
2488 case MULT_EXPR:
2489 /* Any floating arithmetic may trap. */
2490 if (fp_operation && flag_trapping_math)
2491 return true;
2492 if (honor_trapv)
2493 return true;
2494 return false;
2495
2496 case COMPLEX_EXPR:
2497 case CONSTRUCTOR:
2498 /* Constructing an object cannot trap. */
2499 return false;
2500
2501 default:
2502 /* Any floating arithmetic may trap. */
2503 if (fp_operation && flag_trapping_math)
2504 return true;
2505
2506 *handled = false;
2507 return false;
2508 }
2509 }
2510
2511 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2512 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2513 type operands that may trap. If OP is a division operator, DIVISOR contains
2514 the value of the divisor. */
2515
2516 bool
2517 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2518 tree divisor)
2519 {
2520 bool honor_nans = (fp_operation && flag_trapping_math
2521 && !flag_finite_math_only);
2522 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2523 bool handled;
2524
2525 if (TREE_CODE_CLASS (op) != tcc_comparison
2526 && TREE_CODE_CLASS (op) != tcc_unary
2527 && TREE_CODE_CLASS (op) != tcc_binary)
2528 return false;
2529
2530 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2531 honor_nans, honor_snans, divisor,
2532 &handled);
2533 }
2534
2535
2536 /* Returns true if it is possible to prove that the index of
2537 an array access REF (an ARRAY_REF expression) falls into the
2538 array bounds. */
2539
2540 static bool
2541 in_array_bounds_p (tree ref)
2542 {
2543 tree idx = TREE_OPERAND (ref, 1);
2544 tree min, max;
2545
2546 if (TREE_CODE (idx) != INTEGER_CST)
2547 return false;
2548
2549 min = array_ref_low_bound (ref);
2550 max = array_ref_up_bound (ref);
2551 if (!min
2552 || !max
2553 || TREE_CODE (min) != INTEGER_CST
2554 || TREE_CODE (max) != INTEGER_CST)
2555 return false;
2556
2557 if (tree_int_cst_lt (idx, min)
2558 || tree_int_cst_lt (max, idx))
2559 return false;
2560
2561 return true;
2562 }
2563
2564 /* Returns true if it is possible to prove that the range of
2565 an array access REF (an ARRAY_RANGE_REF expression) falls
2566 into the array bounds. */
2567
2568 static bool
2569 range_in_array_bounds_p (tree ref)
2570 {
2571 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2572 tree range_min, range_max, min, max;
2573
2574 range_min = TYPE_MIN_VALUE (domain_type);
2575 range_max = TYPE_MAX_VALUE (domain_type);
2576 if (!range_min
2577 || !range_max
2578 || TREE_CODE (range_min) != INTEGER_CST
2579 || TREE_CODE (range_max) != INTEGER_CST)
2580 return false;
2581
2582 min = array_ref_low_bound (ref);
2583 max = array_ref_up_bound (ref);
2584 if (!min
2585 || !max
2586 || TREE_CODE (min) != INTEGER_CST
2587 || TREE_CODE (max) != INTEGER_CST)
2588 return false;
2589
2590 if (tree_int_cst_lt (range_min, min)
2591 || tree_int_cst_lt (max, range_max))
2592 return false;
2593
2594 return true;
2595 }
2596
2597 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2598 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2599 This routine expects only GIMPLE lhs or rhs input. */
2600
2601 bool
2602 tree_could_trap_p (tree expr)
2603 {
2604 enum tree_code code;
2605 bool fp_operation = false;
2606 bool honor_trapv = false;
2607 tree t, base, div = NULL_TREE;
2608
2609 if (!expr)
2610 return false;
2611
2612 code = TREE_CODE (expr);
2613 t = TREE_TYPE (expr);
2614
2615 if (t)
2616 {
2617 if (COMPARISON_CLASS_P (expr))
2618 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2619 else
2620 fp_operation = FLOAT_TYPE_P (t);
2621 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2622 }
2623
2624 if (TREE_CODE_CLASS (code) == tcc_binary)
2625 div = TREE_OPERAND (expr, 1);
2626 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2627 return true;
2628
2629 restart:
2630 switch (code)
2631 {
2632 case COMPONENT_REF:
2633 case REALPART_EXPR:
2634 case IMAGPART_EXPR:
2635 case BIT_FIELD_REF:
2636 case VIEW_CONVERT_EXPR:
2637 case WITH_SIZE_EXPR:
2638 expr = TREE_OPERAND (expr, 0);
2639 code = TREE_CODE (expr);
2640 goto restart;
2641
2642 case ARRAY_RANGE_REF:
2643 base = TREE_OPERAND (expr, 0);
2644 if (tree_could_trap_p (base))
2645 return true;
2646 if (TREE_THIS_NOTRAP (expr))
2647 return false;
2648 return !range_in_array_bounds_p (expr);
2649
2650 case ARRAY_REF:
2651 base = TREE_OPERAND (expr, 0);
2652 if (tree_could_trap_p (base))
2653 return true;
2654 if (TREE_THIS_NOTRAP (expr))
2655 return false;
2656 return !in_array_bounds_p (expr);
2657
2658 case TARGET_MEM_REF:
2659 case MEM_REF:
2660 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2661 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2662 return true;
2663 if (TREE_THIS_NOTRAP (expr))
2664 return false;
2665 /* We cannot prove that the access is in-bounds when we have
2666 variable-index TARGET_MEM_REFs. */
2667 if (code == TARGET_MEM_REF
2668 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2669 return true;
2670 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2671 {
2672 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2673 offset_int off = mem_ref_offset (expr);
2674 if (wi::neg_p (off, SIGNED))
2675 return true;
2676 if (TREE_CODE (base) == STRING_CST)
2677 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2678 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2679 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2680 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2681 return true;
2682 /* Now we are sure the first byte of the access is inside
2683 the object. */
2684 return false;
2685 }
2686 return true;
2687
2688 case INDIRECT_REF:
2689 return !TREE_THIS_NOTRAP (expr);
2690
2691 case ASM_EXPR:
2692 return TREE_THIS_VOLATILE (expr);
2693
2694 case CALL_EXPR:
2695 t = get_callee_fndecl (expr);
2696 /* Assume that calls to weak functions may trap. */
2697 if (!t || !DECL_P (t))
2698 return true;
2699 if (DECL_WEAK (t))
2700 return tree_could_trap_p (t);
2701 return false;
2702
2703 case FUNCTION_DECL:
2704 /* Assume that accesses to weak functions may trap, unless we know
2705 they are certainly defined in current TU or in some other
2706 LTO partition. */
2707 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2708 {
2709 cgraph_node *node = cgraph_node::get (expr);
2710 if (node)
2711 node = node->function_symbol ();
2712 return !(node && node->in_other_partition);
2713 }
2714 return false;
2715
2716 case VAR_DECL:
2717 /* Assume that accesses to weak vars may trap, unless we know
2718 they are certainly defined in current TU or in some other
2719 LTO partition. */
2720 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2721 {
2722 varpool_node *node = varpool_node::get (expr);
2723 if (node)
2724 node = node->ultimate_alias_target ();
2725 return !(node && node->in_other_partition);
2726 }
2727 return false;
2728
2729 default:
2730 return false;
2731 }
2732 }
2733
2734
2735 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2736 an assignment or a conditional) may throw. */
2737
2738 static bool
2739 stmt_could_throw_1_p (gimple *stmt)
2740 {
2741 enum tree_code code = gimple_expr_code (stmt);
2742 bool honor_nans = false;
2743 bool honor_snans = false;
2744 bool fp_operation = false;
2745 bool honor_trapv = false;
2746 tree t;
2747 size_t i;
2748 bool handled, ret;
2749
2750 if (TREE_CODE_CLASS (code) == tcc_comparison
2751 || TREE_CODE_CLASS (code) == tcc_unary
2752 || TREE_CODE_CLASS (code) == tcc_binary)
2753 {
2754 if (is_gimple_assign (stmt)
2755 && TREE_CODE_CLASS (code) == tcc_comparison)
2756 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2757 else if (gimple_code (stmt) == GIMPLE_COND)
2758 t = TREE_TYPE (gimple_cond_lhs (stmt));
2759 else
2760 t = gimple_expr_type (stmt);
2761 fp_operation = FLOAT_TYPE_P (t);
2762 if (fp_operation)
2763 {
2764 honor_nans = flag_trapping_math && !flag_finite_math_only;
2765 honor_snans = flag_signaling_nans != 0;
2766 }
2767 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2768 honor_trapv = true;
2769 }
2770
2771 /* Check if the main expression may trap. */
2772 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2773 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2774 honor_nans, honor_snans, t,
2775 &handled);
2776 if (handled)
2777 return ret;
2778
2779 /* If the expression does not trap, see if any of the individual operands may
2780 trap. */
2781 for (i = 0; i < gimple_num_ops (stmt); i++)
2782 if (tree_could_trap_p (gimple_op (stmt, i)))
2783 return true;
2784
2785 return false;
2786 }
2787
2788
2789 /* Return true if statement STMT could throw an exception. */
2790
2791 bool
2792 stmt_could_throw_p (gimple *stmt)
2793 {
2794 if (!flag_exceptions)
2795 return false;
2796
2797 /* The only statements that can throw an exception are assignments,
2798 conditionals, calls, resx, and asms. */
2799 switch (gimple_code (stmt))
2800 {
2801 case GIMPLE_RESX:
2802 return true;
2803
2804 case GIMPLE_CALL:
2805 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2806
2807 case GIMPLE_ASSIGN:
2808 case GIMPLE_COND:
2809 if (!cfun->can_throw_non_call_exceptions)
2810 return false;
2811 return stmt_could_throw_1_p (stmt);
2812
2813 case GIMPLE_ASM:
2814 if (!cfun->can_throw_non_call_exceptions)
2815 return false;
2816 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2817
2818 default:
2819 return false;
2820 }
2821 }
2822
2823
2824 /* Return true if expression T could throw an exception. */
2825
2826 bool
2827 tree_could_throw_p (tree t)
2828 {
2829 if (!flag_exceptions)
2830 return false;
2831 if (TREE_CODE (t) == MODIFY_EXPR)
2832 {
2833 if (cfun->can_throw_non_call_exceptions
2834 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2835 return true;
2836 t = TREE_OPERAND (t, 1);
2837 }
2838
2839 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2840 t = TREE_OPERAND (t, 0);
2841 if (TREE_CODE (t) == CALL_EXPR)
2842 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2843 if (cfun->can_throw_non_call_exceptions)
2844 return tree_could_trap_p (t);
2845 return false;
2846 }
2847
2848 /* Return true if STMT can throw an exception that is not caught within
2849 the current function (CFUN). */
2850
2851 bool
2852 stmt_can_throw_external (gimple *stmt)
2853 {
2854 int lp_nr;
2855
2856 if (!stmt_could_throw_p (stmt))
2857 return false;
2858
2859 lp_nr = lookup_stmt_eh_lp (stmt);
2860 return lp_nr == 0;
2861 }
2862
2863 /* Return true if STMT can throw an exception that is caught within
2864 the current function (CFUN). */
2865
2866 bool
2867 stmt_can_throw_internal (gimple *stmt)
2868 {
2869 int lp_nr;
2870
2871 if (!stmt_could_throw_p (stmt))
2872 return false;
2873
2874 lp_nr = lookup_stmt_eh_lp (stmt);
2875 return lp_nr > 0;
2876 }
2877
2878 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2879 remove any entry it might have from the EH table. Return true if
2880 any change was made. */
2881
2882 bool
2883 maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
2884 {
2885 if (stmt_could_throw_p (stmt))
2886 return false;
2887 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2888 }
2889
2890 /* Likewise, but always use the current function. */
2891
2892 bool
2893 maybe_clean_eh_stmt (gimple *stmt)
2894 {
2895 return maybe_clean_eh_stmt_fn (cfun, stmt);
2896 }
2897
2898 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2899 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2900 in the table if it should be in there. Return TRUE if a replacement was
2901 done that my require an EH edge purge. */
2902
2903 bool
2904 maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
2905 {
2906 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2907
2908 if (lp_nr != 0)
2909 {
2910 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2911
2912 if (new_stmt == old_stmt && new_stmt_could_throw)
2913 return false;
2914
2915 remove_stmt_from_eh_lp (old_stmt);
2916 if (new_stmt_could_throw)
2917 {
2918 add_stmt_to_eh_lp (new_stmt, lp_nr);
2919 return false;
2920 }
2921 else
2922 return true;
2923 }
2924
2925 return false;
2926 }
2927
2928 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2929 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2930 operand is the return value of duplicate_eh_regions. */
2931
2932 bool
2933 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
2934 struct function *old_fun, gimple *old_stmt,
2935 hash_map<void *, void *> *map,
2936 int default_lp_nr)
2937 {
2938 int old_lp_nr, new_lp_nr;
2939
2940 if (!stmt_could_throw_p (new_stmt))
2941 return false;
2942
2943 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2944 if (old_lp_nr == 0)
2945 {
2946 if (default_lp_nr == 0)
2947 return false;
2948 new_lp_nr = default_lp_nr;
2949 }
2950 else if (old_lp_nr > 0)
2951 {
2952 eh_landing_pad old_lp, new_lp;
2953
2954 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2955 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
2956 new_lp_nr = new_lp->index;
2957 }
2958 else
2959 {
2960 eh_region old_r, new_r;
2961
2962 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2963 new_r = static_cast<eh_region> (*map->get (old_r));
2964 new_lp_nr = -new_r->index;
2965 }
2966
2967 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2968 return true;
2969 }
2970
2971 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2972 and thus no remapping is required. */
2973
2974 bool
2975 maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
2976 {
2977 int lp_nr;
2978
2979 if (!stmt_could_throw_p (new_stmt))
2980 return false;
2981
2982 lp_nr = lookup_stmt_eh_lp (old_stmt);
2983 if (lp_nr == 0)
2984 return false;
2985
2986 add_stmt_to_eh_lp (new_stmt, lp_nr);
2987 return true;
2988 }
2989 \f
2990 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2991 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2992 this only handles handlers consisting of a single call, as that's the
2993 important case for C++: a destructor call for a particular object showing
2994 up in multiple handlers. */
2995
2996 static bool
2997 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2998 {
2999 gimple_stmt_iterator gsi;
3000 gimple *ones, *twos;
3001 unsigned int ai;
3002
3003 gsi = gsi_start (oneh);
3004 if (!gsi_one_before_end_p (gsi))
3005 return false;
3006 ones = gsi_stmt (gsi);
3007
3008 gsi = gsi_start (twoh);
3009 if (!gsi_one_before_end_p (gsi))
3010 return false;
3011 twos = gsi_stmt (gsi);
3012
3013 if (!is_gimple_call (ones)
3014 || !is_gimple_call (twos)
3015 || gimple_call_lhs (ones)
3016 || gimple_call_lhs (twos)
3017 || gimple_call_chain (ones)
3018 || gimple_call_chain (twos)
3019 || !gimple_call_same_target_p (ones, twos)
3020 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3021 return false;
3022
3023 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3024 if (!operand_equal_p (gimple_call_arg (ones, ai),
3025 gimple_call_arg (twos, ai), 0))
3026 return false;
3027
3028 return true;
3029 }
3030
3031 /* Optimize
3032 try { A() } finally { try { ~B() } catch { ~A() } }
3033 try { ... } finally { ~A() }
3034 into
3035 try { A() } catch { ~B() }
3036 try { ~B() ... } finally { ~A() }
3037
3038 This occurs frequently in C++, where A is a local variable and B is a
3039 temporary used in the initializer for A. */
3040
3041 static void
3042 optimize_double_finally (gtry *one, gtry *two)
3043 {
3044 gimple *oneh;
3045 gimple_stmt_iterator gsi;
3046 gimple_seq cleanup;
3047
3048 cleanup = gimple_try_cleanup (one);
3049 gsi = gsi_start (cleanup);
3050 if (!gsi_one_before_end_p (gsi))
3051 return;
3052
3053 oneh = gsi_stmt (gsi);
3054 if (gimple_code (oneh) != GIMPLE_TRY
3055 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3056 return;
3057
3058 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3059 {
3060 gimple_seq seq = gimple_try_eval (oneh);
3061
3062 gimple_try_set_cleanup (one, seq);
3063 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3064 seq = copy_gimple_seq_and_replace_locals (seq);
3065 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3066 gimple_try_set_eval (two, seq);
3067 }
3068 }
3069
3070 /* Perform EH refactoring optimizations that are simpler to do when code
3071 flow has been lowered but EH structures haven't. */
3072
3073 static void
3074 refactor_eh_r (gimple_seq seq)
3075 {
3076 gimple_stmt_iterator gsi;
3077 gimple *one, *two;
3078
3079 one = NULL;
3080 two = NULL;
3081 gsi = gsi_start (seq);
3082 while (1)
3083 {
3084 one = two;
3085 if (gsi_end_p (gsi))
3086 two = NULL;
3087 else
3088 two = gsi_stmt (gsi);
3089 if (one && two)
3090 if (gtry *try_one = dyn_cast <gtry *> (one))
3091 if (gtry *try_two = dyn_cast <gtry *> (two))
3092 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3093 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3094 optimize_double_finally (try_one, try_two);
3095 if (one)
3096 switch (gimple_code (one))
3097 {
3098 case GIMPLE_TRY:
3099 refactor_eh_r (gimple_try_eval (one));
3100 refactor_eh_r (gimple_try_cleanup (one));
3101 break;
3102 case GIMPLE_CATCH:
3103 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3104 break;
3105 case GIMPLE_EH_FILTER:
3106 refactor_eh_r (gimple_eh_filter_failure (one));
3107 break;
3108 case GIMPLE_EH_ELSE:
3109 {
3110 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3111 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3112 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3113 }
3114 break;
3115 default:
3116 break;
3117 }
3118 if (two)
3119 gsi_next (&gsi);
3120 else
3121 break;
3122 }
3123 }
3124
3125 namespace {
3126
3127 const pass_data pass_data_refactor_eh =
3128 {
3129 GIMPLE_PASS, /* type */
3130 "ehopt", /* name */
3131 OPTGROUP_NONE, /* optinfo_flags */
3132 TV_TREE_EH, /* tv_id */
3133 PROP_gimple_lcf, /* properties_required */
3134 0, /* properties_provided */
3135 0, /* properties_destroyed */
3136 0, /* todo_flags_start */
3137 0, /* todo_flags_finish */
3138 };
3139
3140 class pass_refactor_eh : public gimple_opt_pass
3141 {
3142 public:
3143 pass_refactor_eh (gcc::context *ctxt)
3144 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3145 {}
3146
3147 /* opt_pass methods: */
3148 virtual bool gate (function *) { return flag_exceptions != 0; }
3149 virtual unsigned int execute (function *)
3150 {
3151 refactor_eh_r (gimple_body (current_function_decl));
3152 return 0;
3153 }
3154
3155 }; // class pass_refactor_eh
3156
3157 } // anon namespace
3158
3159 gimple_opt_pass *
3160 make_pass_refactor_eh (gcc::context *ctxt)
3161 {
3162 return new pass_refactor_eh (ctxt);
3163 }
3164 \f
3165 /* At the end of gimple optimization, we can lower RESX. */
3166
3167 static bool
3168 lower_resx (basic_block bb, gresx *stmt,
3169 hash_map<eh_region, tree> *mnt_map)
3170 {
3171 int lp_nr;
3172 eh_region src_r, dst_r;
3173 gimple_stmt_iterator gsi;
3174 gimple *x;
3175 tree fn, src_nr;
3176 bool ret = false;
3177
3178 lp_nr = lookup_stmt_eh_lp (stmt);
3179 if (lp_nr != 0)
3180 dst_r = get_eh_region_from_lp_number (lp_nr);
3181 else
3182 dst_r = NULL;
3183
3184 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3185 gsi = gsi_last_bb (bb);
3186
3187 if (src_r == NULL)
3188 {
3189 /* We can wind up with no source region when pass_cleanup_eh shows
3190 that there are no entries into an eh region and deletes it, but
3191 then the block that contains the resx isn't removed. This can
3192 happen without optimization when the switch statement created by
3193 lower_try_finally_switch isn't simplified to remove the eh case.
3194
3195 Resolve this by expanding the resx node to an abort. */
3196
3197 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3198 x = gimple_build_call (fn, 0);
3199 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3200
3201 while (EDGE_COUNT (bb->succs) > 0)
3202 remove_edge (EDGE_SUCC (bb, 0));
3203 }
3204 else if (dst_r)
3205 {
3206 /* When we have a destination region, we resolve this by copying
3207 the excptr and filter values into place, and changing the edge
3208 to immediately after the landing pad. */
3209 edge e;
3210
3211 if (lp_nr < 0)
3212 {
3213 basic_block new_bb;
3214 tree lab;
3215
3216 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3217 the failure decl into a new block, if needed. */
3218 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3219
3220 tree *slot = mnt_map->get (dst_r);
3221 if (slot == NULL)
3222 {
3223 gimple_stmt_iterator gsi2;
3224
3225 new_bb = create_empty_bb (bb);
3226 add_bb_to_loop (new_bb, bb->loop_father);
3227 lab = gimple_block_label (new_bb);
3228 gsi2 = gsi_start_bb (new_bb);
3229
3230 fn = dst_r->u.must_not_throw.failure_decl;
3231 x = gimple_build_call (fn, 0);
3232 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3233 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3234
3235 mnt_map->put (dst_r, lab);
3236 }
3237 else
3238 {
3239 lab = *slot;
3240 new_bb = label_to_block (lab);
3241 }
3242
3243 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3244 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3245 e->count = bb->count;
3246 e->probability = REG_BR_PROB_BASE;
3247 }
3248 else
3249 {
3250 edge_iterator ei;
3251 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3252
3253 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3254 src_nr = build_int_cst (integer_type_node, src_r->index);
3255 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3256 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3257
3258 /* Update the flags for the outgoing edge. */
3259 e = single_succ_edge (bb);
3260 gcc_assert (e->flags & EDGE_EH);
3261 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3262
3263 /* If there are no more EH users of the landing pad, delete it. */
3264 FOR_EACH_EDGE (e, ei, e->dest->preds)
3265 if (e->flags & EDGE_EH)
3266 break;
3267 if (e == NULL)
3268 {
3269 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3270 remove_eh_landing_pad (lp);
3271 }
3272 }
3273
3274 ret = true;
3275 }
3276 else
3277 {
3278 tree var;
3279
3280 /* When we don't have a destination region, this exception escapes
3281 up the call chain. We resolve this by generating a call to the
3282 _Unwind_Resume library function. */
3283
3284 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3285 with no arguments for C++ and Java. Check for that. */
3286 if (src_r->use_cxa_end_cleanup)
3287 {
3288 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3289 x = gimple_build_call (fn, 0);
3290 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3291 }
3292 else
3293 {
3294 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3295 src_nr = build_int_cst (integer_type_node, src_r->index);
3296 x = gimple_build_call (fn, 1, src_nr);
3297 var = create_tmp_var (ptr_type_node);
3298 var = make_ssa_name (var, x);
3299 gimple_call_set_lhs (x, var);
3300 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3301
3302 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3303 x = gimple_build_call (fn, 1, var);
3304 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3305 }
3306
3307 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3308 }
3309
3310 gsi_remove (&gsi, true);
3311
3312 return ret;
3313 }
3314
3315 namespace {
3316
3317 const pass_data pass_data_lower_resx =
3318 {
3319 GIMPLE_PASS, /* type */
3320 "resx", /* name */
3321 OPTGROUP_NONE, /* optinfo_flags */
3322 TV_TREE_EH, /* tv_id */
3323 PROP_gimple_lcf, /* properties_required */
3324 0, /* properties_provided */
3325 0, /* properties_destroyed */
3326 0, /* todo_flags_start */
3327 0, /* todo_flags_finish */
3328 };
3329
3330 class pass_lower_resx : public gimple_opt_pass
3331 {
3332 public:
3333 pass_lower_resx (gcc::context *ctxt)
3334 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3335 {}
3336
3337 /* opt_pass methods: */
3338 virtual bool gate (function *) { return flag_exceptions != 0; }
3339 virtual unsigned int execute (function *);
3340
3341 }; // class pass_lower_resx
3342
3343 unsigned
3344 pass_lower_resx::execute (function *fun)
3345 {
3346 basic_block bb;
3347 bool dominance_invalidated = false;
3348 bool any_rewritten = false;
3349
3350 hash_map<eh_region, tree> mnt_map;
3351
3352 FOR_EACH_BB_FN (bb, fun)
3353 {
3354 gimple *last = last_stmt (bb);
3355 if (last && is_gimple_resx (last))
3356 {
3357 dominance_invalidated |=
3358 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3359 any_rewritten = true;
3360 }
3361 }
3362
3363 if (dominance_invalidated)
3364 {
3365 free_dominance_info (CDI_DOMINATORS);
3366 free_dominance_info (CDI_POST_DOMINATORS);
3367 }
3368
3369 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3370 }
3371
3372 } // anon namespace
3373
3374 gimple_opt_pass *
3375 make_pass_lower_resx (gcc::context *ctxt)
3376 {
3377 return new pass_lower_resx (ctxt);
3378 }
3379
3380 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3381 external throw. */
3382
3383 static void
3384 optimize_clobbers (basic_block bb)
3385 {
3386 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3387 bool any_clobbers = false;
3388 bool seen_stack_restore = false;
3389 edge_iterator ei;
3390 edge e;
3391
3392 /* Only optimize anything if the bb contains at least one clobber,
3393 ends with resx (checked by caller), optionally contains some
3394 debug stmts or labels, or at most one __builtin_stack_restore
3395 call, and has an incoming EH edge. */
3396 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3397 {
3398 gimple *stmt = gsi_stmt (gsi);
3399 if (is_gimple_debug (stmt))
3400 continue;
3401 if (gimple_clobber_p (stmt))
3402 {
3403 any_clobbers = true;
3404 continue;
3405 }
3406 if (!seen_stack_restore
3407 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3408 {
3409 seen_stack_restore = true;
3410 continue;
3411 }
3412 if (gimple_code (stmt) == GIMPLE_LABEL)
3413 break;
3414 return;
3415 }
3416 if (!any_clobbers)
3417 return;
3418 FOR_EACH_EDGE (e, ei, bb->preds)
3419 if (e->flags & EDGE_EH)
3420 break;
3421 if (e == NULL)
3422 return;
3423 gsi = gsi_last_bb (bb);
3424 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3425 {
3426 gimple *stmt = gsi_stmt (gsi);
3427 if (!gimple_clobber_p (stmt))
3428 continue;
3429 unlink_stmt_vdef (stmt);
3430 gsi_remove (&gsi, true);
3431 release_defs (stmt);
3432 }
3433 }
3434
3435 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3436 internal throw to successor BB. */
3437
3438 static int
3439 sink_clobbers (basic_block bb)
3440 {
3441 edge e;
3442 edge_iterator ei;
3443 gimple_stmt_iterator gsi, dgsi;
3444 basic_block succbb;
3445 bool any_clobbers = false;
3446 unsigned todo = 0;
3447
3448 /* Only optimize if BB has a single EH successor and
3449 all predecessor edges are EH too. */
3450 if (!single_succ_p (bb)
3451 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3452 return 0;
3453
3454 FOR_EACH_EDGE (e, ei, bb->preds)
3455 {
3456 if ((e->flags & EDGE_EH) == 0)
3457 return 0;
3458 }
3459
3460 /* And BB contains only CLOBBER stmts before the final
3461 RESX. */
3462 gsi = gsi_last_bb (bb);
3463 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3464 {
3465 gimple *stmt = gsi_stmt (gsi);
3466 if (is_gimple_debug (stmt))
3467 continue;
3468 if (gimple_code (stmt) == GIMPLE_LABEL)
3469 break;
3470 if (!gimple_clobber_p (stmt))
3471 return 0;
3472 any_clobbers = true;
3473 }
3474 if (!any_clobbers)
3475 return 0;
3476
3477 edge succe = single_succ_edge (bb);
3478 succbb = succe->dest;
3479
3480 /* See if there is a virtual PHI node to take an updated virtual
3481 operand from. */
3482 gphi *vphi = NULL;
3483 tree vuse = NULL_TREE;
3484 for (gphi_iterator gpi = gsi_start_phis (succbb);
3485 !gsi_end_p (gpi); gsi_next (&gpi))
3486 {
3487 tree res = gimple_phi_result (gpi.phi ());
3488 if (virtual_operand_p (res))
3489 {
3490 vphi = gpi.phi ();
3491 vuse = res;
3492 break;
3493 }
3494 }
3495
3496 dgsi = gsi_after_labels (succbb);
3497 gsi = gsi_last_bb (bb);
3498 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3499 {
3500 gimple *stmt = gsi_stmt (gsi);
3501 tree lhs;
3502 if (is_gimple_debug (stmt))
3503 continue;
3504 if (gimple_code (stmt) == GIMPLE_LABEL)
3505 break;
3506 lhs = gimple_assign_lhs (stmt);
3507 /* Unfortunately we don't have dominance info updated at this
3508 point, so checking if
3509 dominated_by_p (CDI_DOMINATORS, succbb,
3510 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3511 would be too costly. Thus, avoid sinking any clobbers that
3512 refer to non-(D) SSA_NAMEs. */
3513 if (TREE_CODE (lhs) == MEM_REF
3514 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3515 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3516 {
3517 unlink_stmt_vdef (stmt);
3518 gsi_remove (&gsi, true);
3519 release_defs (stmt);
3520 continue;
3521 }
3522
3523 /* As we do not change stmt order when sinking across a
3524 forwarder edge we can keep virtual operands in place. */
3525 gsi_remove (&gsi, false);
3526 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3527
3528 /* But adjust virtual operands if we sunk across a PHI node. */
3529 if (vuse)
3530 {
3531 gimple *use_stmt;
3532 imm_use_iterator iter;
3533 use_operand_p use_p;
3534 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3535 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3536 SET_USE (use_p, gimple_vdef (stmt));
3537 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3538 {
3539 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3540 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3541 }
3542 /* Adjust the incoming virtual operand. */
3543 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3544 SET_USE (gimple_vuse_op (stmt), vuse);
3545 }
3546 /* If there isn't a single predecessor but no virtual PHI node
3547 arrange for virtual operands to be renamed. */
3548 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3549 && !single_pred_p (succbb))
3550 {
3551 /* In this case there will be no use of the VDEF of this stmt.
3552 ??? Unless this is a secondary opportunity and we have not
3553 removed unreachable blocks yet, so we cannot assert this.
3554 Which also means we will end up renaming too many times. */
3555 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3556 mark_virtual_operands_for_renaming (cfun);
3557 todo |= TODO_update_ssa_only_virtuals;
3558 }
3559 }
3560
3561 return todo;
3562 }
3563
3564 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3565 we have found some duplicate labels and removed some edges. */
3566
3567 static bool
3568 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3569 {
3570 gimple_stmt_iterator gsi;
3571 int region_nr;
3572 eh_region r;
3573 tree filter, fn;
3574 gimple *x;
3575 bool redirected = false;
3576
3577 region_nr = gimple_eh_dispatch_region (stmt);
3578 r = get_eh_region_from_number (region_nr);
3579
3580 gsi = gsi_last_bb (src);
3581
3582 switch (r->type)
3583 {
3584 case ERT_TRY:
3585 {
3586 auto_vec<tree> labels;
3587 tree default_label = NULL;
3588 eh_catch c;
3589 edge_iterator ei;
3590 edge e;
3591 hash_set<tree> seen_values;
3592
3593 /* Collect the labels for a switch. Zero the post_landing_pad
3594 field becase we'll no longer have anything keeping these labels
3595 in existence and the optimizer will be free to merge these
3596 blocks at will. */
3597 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3598 {
3599 tree tp_node, flt_node, lab = c->label;
3600 bool have_label = false;
3601
3602 c->label = NULL;
3603 tp_node = c->type_list;
3604 flt_node = c->filter_list;
3605
3606 if (tp_node == NULL)
3607 {
3608 default_label = lab;
3609 break;
3610 }
3611 do
3612 {
3613 /* Filter out duplicate labels that arise when this handler
3614 is shadowed by an earlier one. When no labels are
3615 attached to the handler anymore, we remove
3616 the corresponding edge and then we delete unreachable
3617 blocks at the end of this pass. */
3618 if (! seen_values.contains (TREE_VALUE (flt_node)))
3619 {
3620 tree t = build_case_label (TREE_VALUE (flt_node),
3621 NULL, lab);
3622 labels.safe_push (t);
3623 seen_values.add (TREE_VALUE (flt_node));
3624 have_label = true;
3625 }
3626
3627 tp_node = TREE_CHAIN (tp_node);
3628 flt_node = TREE_CHAIN (flt_node);
3629 }
3630 while (tp_node);
3631 if (! have_label)
3632 {
3633 remove_edge (find_edge (src, label_to_block (lab)));
3634 redirected = true;
3635 }
3636 }
3637
3638 /* Clean up the edge flags. */
3639 FOR_EACH_EDGE (e, ei, src->succs)
3640 {
3641 if (e->flags & EDGE_FALLTHRU)
3642 {
3643 /* If there was no catch-all, use the fallthru edge. */
3644 if (default_label == NULL)
3645 default_label = gimple_block_label (e->dest);
3646 e->flags &= ~EDGE_FALLTHRU;
3647 }
3648 }
3649 gcc_assert (default_label != NULL);
3650
3651 /* Don't generate a switch if there's only a default case.
3652 This is common in the form of try { A; } catch (...) { B; }. */
3653 if (!labels.exists ())
3654 {
3655 e = single_succ_edge (src);
3656 e->flags |= EDGE_FALLTHRU;
3657 }
3658 else
3659 {
3660 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3661 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3662 region_nr));
3663 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3664 filter = make_ssa_name (filter, x);
3665 gimple_call_set_lhs (x, filter);
3666 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3667
3668 /* Turn the default label into a default case. */
3669 default_label = build_case_label (NULL, NULL, default_label);
3670 sort_case_labels (labels);
3671
3672 x = gimple_build_switch (filter, default_label, labels);
3673 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3674 }
3675 }
3676 break;
3677
3678 case ERT_ALLOWED_EXCEPTIONS:
3679 {
3680 edge b_e = BRANCH_EDGE (src);
3681 edge f_e = FALLTHRU_EDGE (src);
3682
3683 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3684 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3685 region_nr));
3686 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3687 filter = make_ssa_name (filter, x);
3688 gimple_call_set_lhs (x, filter);
3689 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3690
3691 r->u.allowed.label = NULL;
3692 x = gimple_build_cond (EQ_EXPR, filter,
3693 build_int_cst (TREE_TYPE (filter),
3694 r->u.allowed.filter),
3695 NULL_TREE, NULL_TREE);
3696 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3697
3698 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3699 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3700 }
3701 break;
3702
3703 default:
3704 gcc_unreachable ();
3705 }
3706
3707 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3708 gsi_remove (&gsi, true);
3709 return redirected;
3710 }
3711
3712 namespace {
3713
3714 const pass_data pass_data_lower_eh_dispatch =
3715 {
3716 GIMPLE_PASS, /* type */
3717 "ehdisp", /* name */
3718 OPTGROUP_NONE, /* optinfo_flags */
3719 TV_TREE_EH, /* tv_id */
3720 PROP_gimple_lcf, /* properties_required */
3721 0, /* properties_provided */
3722 0, /* properties_destroyed */
3723 0, /* todo_flags_start */
3724 0, /* todo_flags_finish */
3725 };
3726
3727 class pass_lower_eh_dispatch : public gimple_opt_pass
3728 {
3729 public:
3730 pass_lower_eh_dispatch (gcc::context *ctxt)
3731 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3732 {}
3733
3734 /* opt_pass methods: */
3735 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3736 virtual unsigned int execute (function *);
3737
3738 }; // class pass_lower_eh_dispatch
3739
3740 unsigned
3741 pass_lower_eh_dispatch::execute (function *fun)
3742 {
3743 basic_block bb;
3744 int flags = 0;
3745 bool redirected = false;
3746
3747 assign_filter_values ();
3748
3749 FOR_EACH_BB_FN (bb, fun)
3750 {
3751 gimple *last = last_stmt (bb);
3752 if (last == NULL)
3753 continue;
3754 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3755 {
3756 redirected |= lower_eh_dispatch (bb,
3757 as_a <geh_dispatch *> (last));
3758 flags |= TODO_update_ssa_only_virtuals;
3759 }
3760 else if (gimple_code (last) == GIMPLE_RESX)
3761 {
3762 if (stmt_can_throw_external (last))
3763 optimize_clobbers (bb);
3764 else
3765 flags |= sink_clobbers (bb);
3766 }
3767 }
3768
3769 if (redirected)
3770 delete_unreachable_blocks ();
3771 return flags;
3772 }
3773
3774 } // anon namespace
3775
3776 gimple_opt_pass *
3777 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3778 {
3779 return new pass_lower_eh_dispatch (ctxt);
3780 }
3781 \f
3782 /* Walk statements, see what regions and, optionally, landing pads
3783 are really referenced.
3784
3785 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3786 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3787
3788 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3789 regions are marked.
3790
3791 The caller is responsible for freeing the returned sbitmaps. */
3792
3793 static void
3794 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3795 {
3796 sbitmap r_reachable, lp_reachable;
3797 basic_block bb;
3798 bool mark_landing_pads = (lp_reachablep != NULL);
3799 gcc_checking_assert (r_reachablep != NULL);
3800
3801 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3802 bitmap_clear (r_reachable);
3803 *r_reachablep = r_reachable;
3804
3805 if (mark_landing_pads)
3806 {
3807 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3808 bitmap_clear (lp_reachable);
3809 *lp_reachablep = lp_reachable;
3810 }
3811 else
3812 lp_reachable = NULL;
3813
3814 FOR_EACH_BB_FN (bb, cfun)
3815 {
3816 gimple_stmt_iterator gsi;
3817
3818 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3819 {
3820 gimple *stmt = gsi_stmt (gsi);
3821
3822 if (mark_landing_pads)
3823 {
3824 int lp_nr = lookup_stmt_eh_lp (stmt);
3825
3826 /* Negative LP numbers are MUST_NOT_THROW regions which
3827 are not considered BB enders. */
3828 if (lp_nr < 0)
3829 bitmap_set_bit (r_reachable, -lp_nr);
3830
3831 /* Positive LP numbers are real landing pads, and BB enders. */
3832 else if (lp_nr > 0)
3833 {
3834 gcc_assert (gsi_one_before_end_p (gsi));
3835 eh_region region = get_eh_region_from_lp_number (lp_nr);
3836 bitmap_set_bit (r_reachable, region->index);
3837 bitmap_set_bit (lp_reachable, lp_nr);
3838 }
3839 }
3840
3841 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3842 switch (gimple_code (stmt))
3843 {
3844 case GIMPLE_RESX:
3845 bitmap_set_bit (r_reachable,
3846 gimple_resx_region (as_a <gresx *> (stmt)));
3847 break;
3848 case GIMPLE_EH_DISPATCH:
3849 bitmap_set_bit (r_reachable,
3850 gimple_eh_dispatch_region (
3851 as_a <geh_dispatch *> (stmt)));
3852 break;
3853 case GIMPLE_CALL:
3854 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
3855 for (int i = 0; i < 2; ++i)
3856 {
3857 tree rt = gimple_call_arg (stmt, i);
3858 HOST_WIDE_INT ri = tree_to_shwi (rt);
3859
3860 gcc_assert (ri = (int)ri);
3861 bitmap_set_bit (r_reachable, ri);
3862 }
3863 break;
3864 default:
3865 break;
3866 }
3867 }
3868 }
3869 }
3870
3871 /* Remove unreachable handlers and unreachable landing pads. */
3872
3873 static void
3874 remove_unreachable_handlers (void)
3875 {
3876 sbitmap r_reachable, lp_reachable;
3877 eh_region region;
3878 eh_landing_pad lp;
3879 unsigned i;
3880
3881 mark_reachable_handlers (&r_reachable, &lp_reachable);
3882
3883 if (dump_file)
3884 {
3885 fprintf (dump_file, "Before removal of unreachable regions:\n");
3886 dump_eh_tree (dump_file, cfun);
3887 fprintf (dump_file, "Reachable regions: ");
3888 dump_bitmap_file (dump_file, r_reachable);
3889 fprintf (dump_file, "Reachable landing pads: ");
3890 dump_bitmap_file (dump_file, lp_reachable);
3891 }
3892
3893 if (dump_file)
3894 {
3895 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3896 if (region && !bitmap_bit_p (r_reachable, region->index))
3897 fprintf (dump_file,
3898 "Removing unreachable region %d\n",
3899 region->index);
3900 }
3901
3902 remove_unreachable_eh_regions (r_reachable);
3903
3904 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3905 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3906 {
3907 if (dump_file)
3908 fprintf (dump_file,
3909 "Removing unreachable landing pad %d\n",
3910 lp->index);
3911 remove_eh_landing_pad (lp);
3912 }
3913
3914 if (dump_file)
3915 {
3916 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3917 dump_eh_tree (dump_file, cfun);
3918 fprintf (dump_file, "\n\n");
3919 }
3920
3921 sbitmap_free (r_reachable);
3922 sbitmap_free (lp_reachable);
3923
3924 if (flag_checking)
3925 verify_eh_tree (cfun);
3926 }
3927
3928 /* Remove unreachable handlers if any landing pads have been removed after
3929 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3930
3931 void
3932 maybe_remove_unreachable_handlers (void)
3933 {
3934 eh_landing_pad lp;
3935 unsigned i;
3936
3937 if (cfun->eh == NULL)
3938 return;
3939
3940 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3941 if (lp && lp->post_landing_pad)
3942 {
3943 if (label_to_block (lp->post_landing_pad) == NULL)
3944 {
3945 remove_unreachable_handlers ();
3946 return;
3947 }
3948 }
3949 }
3950
3951 /* Remove regions that do not have landing pads. This assumes
3952 that remove_unreachable_handlers has already been run, and
3953 that we've just manipulated the landing pads since then.
3954
3955 Preserve regions with landing pads and regions that prevent
3956 exceptions from propagating further, even if these regions
3957 are not reachable. */
3958
3959 static void
3960 remove_unreachable_handlers_no_lp (void)
3961 {
3962 eh_region region;
3963 sbitmap r_reachable;
3964 unsigned i;
3965
3966 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3967
3968 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3969 {
3970 if (! region)
3971 continue;
3972
3973 if (region->landing_pads != NULL
3974 || region->type == ERT_MUST_NOT_THROW)
3975 bitmap_set_bit (r_reachable, region->index);
3976
3977 if (dump_file
3978 && !bitmap_bit_p (r_reachable, region->index))
3979 fprintf (dump_file,
3980 "Removing unreachable region %d\n",
3981 region->index);
3982 }
3983
3984 remove_unreachable_eh_regions (r_reachable);
3985
3986 sbitmap_free (r_reachable);
3987 }
3988
3989 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3990 optimisticaly split all sorts of edges, including EH edges. The
3991 optimization passes in between may not have needed them; if not,
3992 we should undo the split.
3993
3994 Recognize this case by having one EH edge incoming to the BB and
3995 one normal edge outgoing; BB should be empty apart from the
3996 post_landing_pad label.
3997
3998 Note that this is slightly different from the empty handler case
3999 handled by cleanup_empty_eh, in that the actual handler may yet
4000 have actual code but the landing pad has been separated from the
4001 handler. As such, cleanup_empty_eh relies on this transformation
4002 having been done first. */
4003
4004 static bool
4005 unsplit_eh (eh_landing_pad lp)
4006 {
4007 basic_block bb = label_to_block (lp->post_landing_pad);
4008 gimple_stmt_iterator gsi;
4009 edge e_in, e_out;
4010
4011 /* Quickly check the edge counts on BB for singularity. */
4012 if (!single_pred_p (bb) || !single_succ_p (bb))
4013 return false;
4014 e_in = single_pred_edge (bb);
4015 e_out = single_succ_edge (bb);
4016
4017 /* Input edge must be EH and output edge must be normal. */
4018 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4019 return false;
4020
4021 /* The block must be empty except for the labels and debug insns. */
4022 gsi = gsi_after_labels (bb);
4023 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4024 gsi_next_nondebug (&gsi);
4025 if (!gsi_end_p (gsi))
4026 return false;
4027
4028 /* The destination block must not already have a landing pad
4029 for a different region. */
4030 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4031 {
4032 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4033 tree lab;
4034 int lp_nr;
4035
4036 if (!label_stmt)
4037 break;
4038 lab = gimple_label_label (label_stmt);
4039 lp_nr = EH_LANDING_PAD_NR (lab);
4040 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4041 return false;
4042 }
4043
4044 /* The new destination block must not already be a destination of
4045 the source block, lest we merge fallthru and eh edges and get
4046 all sorts of confused. */
4047 if (find_edge (e_in->src, e_out->dest))
4048 return false;
4049
4050 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4051 thought this should have been cleaned up by a phicprop pass, but
4052 that doesn't appear to handle virtuals. Propagate by hand. */
4053 if (!gimple_seq_empty_p (phi_nodes (bb)))
4054 {
4055 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4056 {
4057 gimple *use_stmt;
4058 gphi *phi = gpi.phi ();
4059 tree lhs = gimple_phi_result (phi);
4060 tree rhs = gimple_phi_arg_def (phi, 0);
4061 use_operand_p use_p;
4062 imm_use_iterator iter;
4063
4064 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4065 {
4066 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4067 SET_USE (use_p, rhs);
4068 }
4069
4070 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4071 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4072
4073 remove_phi_node (&gpi, true);
4074 }
4075 }
4076
4077 if (dump_file && (dump_flags & TDF_DETAILS))
4078 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4079 lp->index, e_out->dest->index);
4080
4081 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4082 a successor edge, humor it. But do the real CFG change with the
4083 predecessor of E_OUT in order to preserve the ordering of arguments
4084 to the PHI nodes in E_OUT->DEST. */
4085 redirect_eh_edge_1 (e_in, e_out->dest, false);
4086 redirect_edge_pred (e_out, e_in->src);
4087 e_out->flags = e_in->flags;
4088 e_out->probability = e_in->probability;
4089 e_out->count = e_in->count;
4090 remove_edge (e_in);
4091
4092 return true;
4093 }
4094
4095 /* Examine each landing pad block and see if it matches unsplit_eh. */
4096
4097 static bool
4098 unsplit_all_eh (void)
4099 {
4100 bool changed = false;
4101 eh_landing_pad lp;
4102 int i;
4103
4104 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4105 if (lp)
4106 changed |= unsplit_eh (lp);
4107
4108 return changed;
4109 }
4110
4111 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4112 to OLD_BB to NEW_BB; return true on success, false on failure.
4113
4114 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4115 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4116 Virtual PHIs may be deleted and marked for renaming. */
4117
4118 static bool
4119 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4120 edge old_bb_out, bool change_region)
4121 {
4122 gphi_iterator ngsi, ogsi;
4123 edge_iterator ei;
4124 edge e;
4125 bitmap ophi_handled;
4126
4127 /* The destination block must not be a regular successor for any
4128 of the preds of the landing pad. Thus, avoid turning
4129 <..>
4130 | \ EH
4131 | <..>
4132 | /
4133 <..>
4134 into
4135 <..>
4136 | | EH
4137 <..>
4138 which CFG verification would choke on. See PR45172 and PR51089. */
4139 FOR_EACH_EDGE (e, ei, old_bb->preds)
4140 if (find_edge (e->src, new_bb))
4141 return false;
4142
4143 FOR_EACH_EDGE (e, ei, old_bb->preds)
4144 redirect_edge_var_map_clear (e);
4145
4146 ophi_handled = BITMAP_ALLOC (NULL);
4147
4148 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4149 for the edges we're going to move. */
4150 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4151 {
4152 gphi *ophi, *nphi = ngsi.phi ();
4153 tree nresult, nop;
4154
4155 nresult = gimple_phi_result (nphi);
4156 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4157
4158 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4159 the source ssa_name. */
4160 ophi = NULL;
4161 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4162 {
4163 ophi = ogsi.phi ();
4164 if (gimple_phi_result (ophi) == nop)
4165 break;
4166 ophi = NULL;
4167 }
4168
4169 /* If we did find the corresponding PHI, copy those inputs. */
4170 if (ophi)
4171 {
4172 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4173 if (!has_single_use (nop))
4174 {
4175 imm_use_iterator imm_iter;
4176 use_operand_p use_p;
4177
4178 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4179 {
4180 if (!gimple_debug_bind_p (USE_STMT (use_p))
4181 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4182 || gimple_bb (USE_STMT (use_p)) != new_bb))
4183 goto fail;
4184 }
4185 }
4186 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4187 FOR_EACH_EDGE (e, ei, old_bb->preds)
4188 {
4189 location_t oloc;
4190 tree oop;
4191
4192 if ((e->flags & EDGE_EH) == 0)
4193 continue;
4194 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4195 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4196 redirect_edge_var_map_add (e, nresult, oop, oloc);
4197 }
4198 }
4199 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4200 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4201 variable is unchanged from input to the block and we can simply
4202 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4203 else
4204 {
4205 location_t nloc
4206 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4207 FOR_EACH_EDGE (e, ei, old_bb->preds)
4208 redirect_edge_var_map_add (e, nresult, nop, nloc);
4209 }
4210 }
4211
4212 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4213 we don't know what values from the other edges into NEW_BB to use. */
4214 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4215 {
4216 gphi *ophi = ogsi.phi ();
4217 tree oresult = gimple_phi_result (ophi);
4218 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4219 goto fail;
4220 }
4221
4222 /* Finally, move the edges and update the PHIs. */
4223 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4224 if (e->flags & EDGE_EH)
4225 {
4226 /* ??? CFG manipluation routines do not try to update loop
4227 form on edge redirection. Do so manually here for now. */
4228 /* If we redirect a loop entry or latch edge that will either create
4229 a multiple entry loop or rotate the loop. If the loops merge
4230 we may have created a loop with multiple latches.
4231 All of this isn't easily fixed thus cancel the affected loop
4232 and mark the other loop as possibly having multiple latches. */
4233 if (e->dest == e->dest->loop_father->header)
4234 {
4235 mark_loop_for_removal (e->dest->loop_father);
4236 new_bb->loop_father->latch = NULL;
4237 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4238 }
4239 redirect_eh_edge_1 (e, new_bb, change_region);
4240 redirect_edge_succ (e, new_bb);
4241 flush_pending_stmts (e);
4242 }
4243 else
4244 ei_next (&ei);
4245
4246 BITMAP_FREE (ophi_handled);
4247 return true;
4248
4249 fail:
4250 FOR_EACH_EDGE (e, ei, old_bb->preds)
4251 redirect_edge_var_map_clear (e);
4252 BITMAP_FREE (ophi_handled);
4253 return false;
4254 }
4255
4256 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4257 old region to NEW_REGION at BB. */
4258
4259 static void
4260 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4261 eh_landing_pad lp, eh_region new_region)
4262 {
4263 gimple_stmt_iterator gsi;
4264 eh_landing_pad *pp;
4265
4266 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4267 continue;
4268 *pp = lp->next_lp;
4269
4270 lp->region = new_region;
4271 lp->next_lp = new_region->landing_pads;
4272 new_region->landing_pads = lp;
4273
4274 /* Delete the RESX that was matched within the empty handler block. */
4275 gsi = gsi_last_bb (bb);
4276 unlink_stmt_vdef (gsi_stmt (gsi));
4277 gsi_remove (&gsi, true);
4278
4279 /* Clean up E_OUT for the fallthru. */
4280 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4281 e_out->probability = REG_BR_PROB_BASE;
4282 }
4283
4284 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4285 unsplitting than unsplit_eh was prepared to handle, e.g. when
4286 multiple incoming edges and phis are involved. */
4287
4288 static bool
4289 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4290 {
4291 gimple_stmt_iterator gsi;
4292 tree lab;
4293
4294 /* We really ought not have totally lost everything following
4295 a landing pad label. Given that BB is empty, there had better
4296 be a successor. */
4297 gcc_assert (e_out != NULL);
4298
4299 /* The destination block must not already have a landing pad
4300 for a different region. */
4301 lab = NULL;
4302 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4303 {
4304 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4305 int lp_nr;
4306
4307 if (!stmt)
4308 break;
4309 lab = gimple_label_label (stmt);
4310 lp_nr = EH_LANDING_PAD_NR (lab);
4311 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4312 return false;
4313 }
4314
4315 /* Attempt to move the PHIs into the successor block. */
4316 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4317 {
4318 if (dump_file && (dump_flags & TDF_DETAILS))
4319 fprintf (dump_file,
4320 "Unsplit EH landing pad %d to block %i "
4321 "(via cleanup_empty_eh).\n",
4322 lp->index, e_out->dest->index);
4323 return true;
4324 }
4325
4326 return false;
4327 }
4328
4329 /* Return true if edge E_FIRST is part of an empty infinite loop
4330 or leads to such a loop through a series of single successor
4331 empty bbs. */
4332
4333 static bool
4334 infinite_empty_loop_p (edge e_first)
4335 {
4336 bool inf_loop = false;
4337 edge e;
4338
4339 if (e_first->dest == e_first->src)
4340 return true;
4341
4342 e_first->src->aux = (void *) 1;
4343 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4344 {
4345 gimple_stmt_iterator gsi;
4346 if (e->dest->aux)
4347 {
4348 inf_loop = true;
4349 break;
4350 }
4351 e->dest->aux = (void *) 1;
4352 gsi = gsi_after_labels (e->dest);
4353 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4354 gsi_next_nondebug (&gsi);
4355 if (!gsi_end_p (gsi))
4356 break;
4357 }
4358 e_first->src->aux = NULL;
4359 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4360 e->dest->aux = NULL;
4361
4362 return inf_loop;
4363 }
4364
4365 /* Examine the block associated with LP to determine if it's an empty
4366 handler for its EH region. If so, attempt to redirect EH edges to
4367 an outer region. Return true the CFG was updated in any way. This
4368 is similar to jump forwarding, just across EH edges. */
4369
4370 static bool
4371 cleanup_empty_eh (eh_landing_pad lp)
4372 {
4373 basic_block bb = label_to_block (lp->post_landing_pad);
4374 gimple_stmt_iterator gsi;
4375 gimple *resx;
4376 eh_region new_region;
4377 edge_iterator ei;
4378 edge e, e_out;
4379 bool has_non_eh_pred;
4380 bool ret = false;
4381 int new_lp_nr;
4382
4383 /* There can be zero or one edges out of BB. This is the quickest test. */
4384 switch (EDGE_COUNT (bb->succs))
4385 {
4386 case 0:
4387 e_out = NULL;
4388 break;
4389 case 1:
4390 e_out = single_succ_edge (bb);
4391 break;
4392 default:
4393 return false;
4394 }
4395
4396 resx = last_stmt (bb);
4397 if (resx && is_gimple_resx (resx))
4398 {
4399 if (stmt_can_throw_external (resx))
4400 optimize_clobbers (bb);
4401 else if (sink_clobbers (bb))
4402 ret = true;
4403 }
4404
4405 gsi = gsi_after_labels (bb);
4406
4407 /* Make sure to skip debug statements. */
4408 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4409 gsi_next_nondebug (&gsi);
4410
4411 /* If the block is totally empty, look for more unsplitting cases. */
4412 if (gsi_end_p (gsi))
4413 {
4414 /* For the degenerate case of an infinite loop bail out.
4415 If bb has no successors and is totally empty, which can happen e.g.
4416 because of incorrect noreturn attribute, bail out too. */
4417 if (e_out == NULL
4418 || infinite_empty_loop_p (e_out))
4419 return ret;
4420
4421 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4422 }
4423
4424 /* The block should consist only of a single RESX statement, modulo a
4425 preceding call to __builtin_stack_restore if there is no outgoing
4426 edge, since the call can be eliminated in this case. */
4427 resx = gsi_stmt (gsi);
4428 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4429 {
4430 gsi_next (&gsi);
4431 resx = gsi_stmt (gsi);
4432 }
4433 if (!is_gimple_resx (resx))
4434 return ret;
4435 gcc_assert (gsi_one_before_end_p (gsi));
4436
4437 /* Determine if there are non-EH edges, or resx edges into the handler. */
4438 has_non_eh_pred = false;
4439 FOR_EACH_EDGE (e, ei, bb->preds)
4440 if (!(e->flags & EDGE_EH))
4441 has_non_eh_pred = true;
4442
4443 /* Find the handler that's outer of the empty handler by looking at
4444 where the RESX instruction was vectored. */
4445 new_lp_nr = lookup_stmt_eh_lp (resx);
4446 new_region = get_eh_region_from_lp_number (new_lp_nr);
4447
4448 /* If there's no destination region within the current function,
4449 redirection is trivial via removing the throwing statements from
4450 the EH region, removing the EH edges, and allowing the block
4451 to go unreachable. */
4452 if (new_region == NULL)
4453 {
4454 gcc_assert (e_out == NULL);
4455 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4456 if (e->flags & EDGE_EH)
4457 {
4458 gimple *stmt = last_stmt (e->src);
4459 remove_stmt_from_eh_lp (stmt);
4460 remove_edge (e);
4461 }
4462 else
4463 ei_next (&ei);
4464 goto succeed;
4465 }
4466
4467 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4468 to handle the abort and allow the blocks to go unreachable. */
4469 if (new_region->type == ERT_MUST_NOT_THROW)
4470 {
4471 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4472 if (e->flags & EDGE_EH)
4473 {
4474 gimple *stmt = last_stmt (e->src);
4475 remove_stmt_from_eh_lp (stmt);
4476 add_stmt_to_eh_lp (stmt, new_lp_nr);
4477 remove_edge (e);
4478 }
4479 else
4480 ei_next (&ei);
4481 goto succeed;
4482 }
4483
4484 /* Try to redirect the EH edges and merge the PHIs into the destination
4485 landing pad block. If the merge succeeds, we'll already have redirected
4486 all the EH edges. The handler itself will go unreachable if there were
4487 no normal edges. */
4488 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4489 goto succeed;
4490
4491 /* Finally, if all input edges are EH edges, then we can (potentially)
4492 reduce the number of transfers from the runtime by moving the landing
4493 pad from the original region to the new region. This is a win when
4494 we remove the last CLEANUP region along a particular exception
4495 propagation path. Since nothing changes except for the region with
4496 which the landing pad is associated, the PHI nodes do not need to be
4497 adjusted at all. */
4498 if (!has_non_eh_pred)
4499 {
4500 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4501 if (dump_file && (dump_flags & TDF_DETAILS))
4502 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4503 lp->index, new_region->index);
4504
4505 /* ??? The CFG didn't change, but we may have rendered the
4506 old EH region unreachable. Trigger a cleanup there. */
4507 return true;
4508 }
4509
4510 return ret;
4511
4512 succeed:
4513 if (dump_file && (dump_flags & TDF_DETAILS))
4514 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4515 remove_eh_landing_pad (lp);
4516 return true;
4517 }
4518
4519 /* Do a post-order traversal of the EH region tree. Examine each
4520 post_landing_pad block and see if we can eliminate it as empty. */
4521
4522 static bool
4523 cleanup_all_empty_eh (void)
4524 {
4525 bool changed = false;
4526 eh_landing_pad lp;
4527 int i;
4528
4529 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4530 if (lp)
4531 changed |= cleanup_empty_eh (lp);
4532
4533 return changed;
4534 }
4535
4536 /* Perform cleanups and lowering of exception handling
4537 1) cleanups regions with handlers doing nothing are optimized out
4538 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4539 3) Info about regions that are containing instructions, and regions
4540 reachable via local EH edges is collected
4541 4) Eh tree is pruned for regions no longer necessary.
4542
4543 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4544 Unify those that have the same failure decl and locus.
4545 */
4546
4547 static unsigned int
4548 execute_cleanup_eh_1 (void)
4549 {
4550 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4551 looking up unreachable landing pads. */
4552 remove_unreachable_handlers ();
4553
4554 /* Watch out for the region tree vanishing due to all unreachable. */
4555 if (cfun->eh->region_tree)
4556 {
4557 bool changed = false;
4558
4559 if (optimize)
4560 changed |= unsplit_all_eh ();
4561 changed |= cleanup_all_empty_eh ();
4562
4563 if (changed)
4564 {
4565 free_dominance_info (CDI_DOMINATORS);
4566 free_dominance_info (CDI_POST_DOMINATORS);
4567
4568 /* We delayed all basic block deletion, as we may have performed
4569 cleanups on EH edges while non-EH edges were still present. */
4570 delete_unreachable_blocks ();
4571
4572 /* We manipulated the landing pads. Remove any region that no
4573 longer has a landing pad. */
4574 remove_unreachable_handlers_no_lp ();
4575
4576 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4577 }
4578 }
4579
4580 return 0;
4581 }
4582
4583 namespace {
4584
4585 const pass_data pass_data_cleanup_eh =
4586 {
4587 GIMPLE_PASS, /* type */
4588 "ehcleanup", /* name */
4589 OPTGROUP_NONE, /* optinfo_flags */
4590 TV_TREE_EH, /* tv_id */
4591 PROP_gimple_lcf, /* properties_required */
4592 0, /* properties_provided */
4593 0, /* properties_destroyed */
4594 0, /* todo_flags_start */
4595 0, /* todo_flags_finish */
4596 };
4597
4598 class pass_cleanup_eh : public gimple_opt_pass
4599 {
4600 public:
4601 pass_cleanup_eh (gcc::context *ctxt)
4602 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4603 {}
4604
4605 /* opt_pass methods: */
4606 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4607 virtual bool gate (function *fun)
4608 {
4609 return fun->eh != NULL && fun->eh->region_tree != NULL;
4610 }
4611
4612 virtual unsigned int execute (function *);
4613
4614 }; // class pass_cleanup_eh
4615
4616 unsigned int
4617 pass_cleanup_eh::execute (function *fun)
4618 {
4619 int ret = execute_cleanup_eh_1 ();
4620
4621 /* If the function no longer needs an EH personality routine
4622 clear it. This exposes cross-language inlining opportunities
4623 and avoids references to a never defined personality routine. */
4624 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4625 && function_needs_eh_personality (fun) != eh_personality_lang)
4626 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4627
4628 return ret;
4629 }
4630
4631 } // anon namespace
4632
4633 gimple_opt_pass *
4634 make_pass_cleanup_eh (gcc::context *ctxt)
4635 {
4636 return new pass_cleanup_eh (ctxt);
4637 }
4638 \f
4639 /* Verify that BB containing STMT as the last statement, has precisely the
4640 edge that make_eh_edges would create. */
4641
4642 DEBUG_FUNCTION bool
4643 verify_eh_edges (gimple *stmt)
4644 {
4645 basic_block bb = gimple_bb (stmt);
4646 eh_landing_pad lp = NULL;
4647 int lp_nr;
4648 edge_iterator ei;
4649 edge e, eh_edge;
4650
4651 lp_nr = lookup_stmt_eh_lp (stmt);
4652 if (lp_nr > 0)
4653 lp = get_eh_landing_pad_from_number (lp_nr);
4654
4655 eh_edge = NULL;
4656 FOR_EACH_EDGE (e, ei, bb->succs)
4657 {
4658 if (e->flags & EDGE_EH)
4659 {
4660 if (eh_edge)
4661 {
4662 error ("BB %i has multiple EH edges", bb->index);
4663 return true;
4664 }
4665 else
4666 eh_edge = e;
4667 }
4668 }
4669
4670 if (lp == NULL)
4671 {
4672 if (eh_edge)
4673 {
4674 error ("BB %i can not throw but has an EH edge", bb->index);
4675 return true;
4676 }
4677 return false;
4678 }
4679
4680 if (!stmt_could_throw_p (stmt))
4681 {
4682 error ("BB %i last statement has incorrectly set lp", bb->index);
4683 return true;
4684 }
4685
4686 if (eh_edge == NULL)
4687 {
4688 error ("BB %i is missing an EH edge", bb->index);
4689 return true;
4690 }
4691
4692 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4693 {
4694 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4695 return true;
4696 }
4697
4698 return false;
4699 }
4700
4701 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4702
4703 DEBUG_FUNCTION bool
4704 verify_eh_dispatch_edge (geh_dispatch *stmt)
4705 {
4706 eh_region r;
4707 eh_catch c;
4708 basic_block src, dst;
4709 bool want_fallthru = true;
4710 edge_iterator ei;
4711 edge e, fall_edge;
4712
4713 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4714 src = gimple_bb (stmt);
4715
4716 FOR_EACH_EDGE (e, ei, src->succs)
4717 gcc_assert (e->aux == NULL);
4718
4719 switch (r->type)
4720 {
4721 case ERT_TRY:
4722 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4723 {
4724 dst = label_to_block (c->label);
4725 e = find_edge (src, dst);
4726 if (e == NULL)
4727 {
4728 error ("BB %i is missing an edge", src->index);
4729 return true;
4730 }
4731 e->aux = (void *)e;
4732
4733 /* A catch-all handler doesn't have a fallthru. */
4734 if (c->type_list == NULL)
4735 {
4736 want_fallthru = false;
4737 break;
4738 }
4739 }
4740 break;
4741
4742 case ERT_ALLOWED_EXCEPTIONS:
4743 dst = label_to_block (r->u.allowed.label);
4744 e = find_edge (src, dst);
4745 if (e == NULL)
4746 {
4747 error ("BB %i is missing an edge", src->index);
4748 return true;
4749 }
4750 e->aux = (void *)e;
4751 break;
4752
4753 default:
4754 gcc_unreachable ();
4755 }
4756
4757 fall_edge = NULL;
4758 FOR_EACH_EDGE (e, ei, src->succs)
4759 {
4760 if (e->flags & EDGE_FALLTHRU)
4761 {
4762 if (fall_edge != NULL)
4763 {
4764 error ("BB %i too many fallthru edges", src->index);
4765 return true;
4766 }
4767 fall_edge = e;
4768 }
4769 else if (e->aux)
4770 e->aux = NULL;
4771 else
4772 {
4773 error ("BB %i has incorrect edge", src->index);
4774 return true;
4775 }
4776 }
4777 if ((fall_edge != NULL) ^ want_fallthru)
4778 {
4779 error ("BB %i has incorrect fallthru edge", src->index);
4780 return true;
4781 }
4782
4783 return false;
4784 }