]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
Fix double word typos.
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "rtl.h"
28 #include "ssa.h"
29 #include "alias.h"
30 #include "fold-const.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "expmed.h"
34 #include "dojump.h"
35 #include "explow.h"
36 #include "calls.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "cfganal.h"
43 #include "cfgcleanup.h"
44 #include "internal-fn.h"
45 #include "tree-eh.h"
46 #include "gimple-iterator.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "tree-inline.h"
52 #include "tree-pass.h"
53 #include "langhooks.h"
54 #include "diagnostic-core.h"
55 #include "target.h"
56 #include "cfgloop.h"
57 #include "gimple-low.h"
58
59 /* In some instances a tree and a gimple need to be stored in a same table,
60 i.e. in hash tables. This is a structure to do this. */
61 typedef union {tree *tp; tree t; gimple g;} treemple;
62
63 /* Misc functions used in this file. */
64
65 /* Remember and lookup EH landing pad data for arbitrary statements.
66 Really this means any statement that could_throw_p. We could
67 stuff this information into the stmt_ann data structure, but:
68
69 (1) We absolutely rely on this information being kept until
70 we get to rtl. Once we're done with lowering here, if we lose
71 the information there's no way to recover it!
72
73 (2) There are many more statements that *cannot* throw as
74 compared to those that can. We should be saving some amount
75 of space by only allocating memory for those that can throw. */
76
77 /* Add statement T in function IFUN to landing pad NUM. */
78
79 static void
80 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
81 {
82 gcc_assert (num != 0);
83
84 if (!get_eh_throw_stmt_table (ifun))
85 set_eh_throw_stmt_table (ifun, hash_map<gimple, int>::create_ggc (31));
86
87 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
88 }
89
90 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
91
92 void
93 add_stmt_to_eh_lp (gimple t, int num)
94 {
95 add_stmt_to_eh_lp_fn (cfun, t, num);
96 }
97
98 /* Add statement T to the single EH landing pad in REGION. */
99
100 static void
101 record_stmt_eh_region (eh_region region, gimple t)
102 {
103 if (region == NULL)
104 return;
105 if (region->type == ERT_MUST_NOT_THROW)
106 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
107 else
108 {
109 eh_landing_pad lp = region->landing_pads;
110 if (lp == NULL)
111 lp = gen_eh_landing_pad (region);
112 else
113 gcc_assert (lp->next_lp == NULL);
114 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
115 }
116 }
117
118
119 /* Remove statement T in function IFUN from its EH landing pad. */
120
121 bool
122 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
123 {
124 if (!get_eh_throw_stmt_table (ifun))
125 return false;
126
127 if (!get_eh_throw_stmt_table (ifun)->get (t))
128 return false;
129
130 get_eh_throw_stmt_table (ifun)->remove (t);
131 return true;
132 }
133
134
135 /* Remove statement T in the current function (cfun) from its
136 EH landing pad. */
137
138 bool
139 remove_stmt_from_eh_lp (gimple t)
140 {
141 return remove_stmt_from_eh_lp_fn (cfun, t);
142 }
143
144 /* Determine if statement T is inside an EH region in function IFUN.
145 Positive numbers indicate a landing pad index; negative numbers
146 indicate a MUST_NOT_THROW region index; zero indicates that the
147 statement is not recorded in the region table. */
148
149 int
150 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
151 {
152 if (ifun->eh->throw_stmt_table == NULL)
153 return 0;
154
155 int *lp_nr = ifun->eh->throw_stmt_table->get (t);
156 return lp_nr ? *lp_nr : 0;
157 }
158
159 /* Likewise, but always use the current function. */
160
161 int
162 lookup_stmt_eh_lp (gimple t)
163 {
164 /* We can get called from initialized data when -fnon-call-exceptions
165 is on; prevent crash. */
166 if (!cfun)
167 return 0;
168 return lookup_stmt_eh_lp_fn (cfun, t);
169 }
170
171 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
172 nodes and LABEL_DECL nodes. We will use this during the second phase to
173 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
174
175 struct finally_tree_node
176 {
177 /* When storing a GIMPLE_TRY, we have to record a gimple. However
178 when deciding whether a GOTO to a certain LABEL_DECL (which is a
179 tree) leaves the TRY block, its necessary to record a tree in
180 this field. Thus a treemple is used. */
181 treemple child;
182 gtry *parent;
183 };
184
185 /* Hashtable helpers. */
186
187 struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
188 {
189 static inline hashval_t hash (const finally_tree_node *);
190 static inline bool equal (const finally_tree_node *,
191 const finally_tree_node *);
192 };
193
194 inline hashval_t
195 finally_tree_hasher::hash (const finally_tree_node *v)
196 {
197 return (intptr_t)v->child.t >> 4;
198 }
199
200 inline bool
201 finally_tree_hasher::equal (const finally_tree_node *v,
202 const finally_tree_node *c)
203 {
204 return v->child.t == c->child.t;
205 }
206
207 /* Note that this table is *not* marked GTY. It is short-lived. */
208 static hash_table<finally_tree_hasher> *finally_tree;
209
210 static void
211 record_in_finally_tree (treemple child, gtry *parent)
212 {
213 struct finally_tree_node *n;
214 finally_tree_node **slot;
215
216 n = XNEW (struct finally_tree_node);
217 n->child = child;
218 n->parent = parent;
219
220 slot = finally_tree->find_slot (n, INSERT);
221 gcc_assert (!*slot);
222 *slot = n;
223 }
224
225 static void
226 collect_finally_tree (gimple stmt, gtry *region);
227
228 /* Go through the gimple sequence. Works with collect_finally_tree to
229 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
230
231 static void
232 collect_finally_tree_1 (gimple_seq seq, gtry *region)
233 {
234 gimple_stmt_iterator gsi;
235
236 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
237 collect_finally_tree (gsi_stmt (gsi), region);
238 }
239
240 static void
241 collect_finally_tree (gimple stmt, gtry *region)
242 {
243 treemple temp;
244
245 switch (gimple_code (stmt))
246 {
247 case GIMPLE_LABEL:
248 temp.t = gimple_label_label (as_a <glabel *> (stmt));
249 record_in_finally_tree (temp, region);
250 break;
251
252 case GIMPLE_TRY:
253 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
254 {
255 temp.g = stmt;
256 record_in_finally_tree (temp, region);
257 collect_finally_tree_1 (gimple_try_eval (stmt),
258 as_a <gtry *> (stmt));
259 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
260 }
261 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
262 {
263 collect_finally_tree_1 (gimple_try_eval (stmt), region);
264 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
265 }
266 break;
267
268 case GIMPLE_CATCH:
269 collect_finally_tree_1 (gimple_catch_handler (
270 as_a <gcatch *> (stmt)),
271 region);
272 break;
273
274 case GIMPLE_EH_FILTER:
275 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
276 break;
277
278 case GIMPLE_EH_ELSE:
279 {
280 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
281 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
282 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
283 }
284 break;
285
286 default:
287 /* A type, a decl, or some kind of statement that we're not
288 interested in. Don't walk them. */
289 break;
290 }
291 }
292
293
294 /* Use the finally tree to determine if a jump from START to TARGET
295 would leave the try_finally node that START lives in. */
296
297 static bool
298 outside_finally_tree (treemple start, gimple target)
299 {
300 struct finally_tree_node n, *p;
301
302 do
303 {
304 n.child = start;
305 p = finally_tree->find (&n);
306 if (!p)
307 return true;
308 start.g = p->parent;
309 }
310 while (start.g != target);
311
312 return false;
313 }
314
315 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
316 nodes into a set of gotos, magic labels, and eh regions.
317 The eh region creation is straight-forward, but frobbing all the gotos
318 and such into shape isn't. */
319
320 /* The sequence into which we record all EH stuff. This will be
321 placed at the end of the function when we're all done. */
322 static gimple_seq eh_seq;
323
324 /* Record whether an EH region contains something that can throw,
325 indexed by EH region number. */
326 static bitmap eh_region_may_contain_throw_map;
327
328 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
329 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
330 The idea is to record a gimple statement for everything except for
331 the conditionals, which get their labels recorded. Since labels are
332 of type 'tree', we need this node to store both gimple and tree
333 objects. REPL_STMT is the sequence used to replace the goto/return
334 statement. CONT_STMT is used to store the statement that allows
335 the return/goto to jump to the original destination. */
336
337 struct goto_queue_node
338 {
339 treemple stmt;
340 location_t location;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gtry *try_finally_expr;
376 gtry *top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 hash_map<gimple, goto_queue_node *> *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 vec<tree> dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429
430 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
431 {
432 for (i = 0; i < tf->goto_queue_active; i++)
433 if ( tf->goto_queue[i].stmt.g == stmt.g)
434 return tf->goto_queue[i].repl_stmt;
435 return NULL;
436 }
437
438 /* If we have a large number of entries in the goto_queue, create a
439 pointer map and use that for searching. */
440
441 if (!tf->goto_queue_map)
442 {
443 tf->goto_queue_map = new hash_map<gimple, goto_queue_node *>;
444 for (i = 0; i < tf->goto_queue_active; i++)
445 {
446 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
447 &tf->goto_queue[i]);
448 gcc_assert (!existed);
449 }
450 }
451
452 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
453 if (slot != NULL)
454 return ((*slot)->repl_stmt);
455
456 return NULL;
457 }
458
459 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
460 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
461 then we can just splat it in, otherwise we add the new stmts immediately
462 after the GIMPLE_COND and redirect. */
463
464 static void
465 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
466 gimple_stmt_iterator *gsi)
467 {
468 tree label;
469 gimple_seq new_seq;
470 treemple temp;
471 location_t loc = gimple_location (gsi_stmt (*gsi));
472
473 temp.tp = tp;
474 new_seq = find_goto_replacement (tf, temp);
475 if (!new_seq)
476 return;
477
478 if (gimple_seq_singleton_p (new_seq)
479 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
480 {
481 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
482 return;
483 }
484
485 label = create_artificial_label (loc);
486 /* Set the new label for the GIMPLE_COND */
487 *tp = label;
488
489 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
490 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
491 }
492
493 /* The real work of replace_goto_queue. Returns with TSI updated to
494 point to the next statement. */
495
496 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
497
498 static void
499 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
500 gimple_stmt_iterator *gsi)
501 {
502 gimple_seq seq;
503 treemple temp;
504 temp.g = NULL;
505
506 switch (gimple_code (stmt))
507 {
508 case GIMPLE_GOTO:
509 case GIMPLE_RETURN:
510 temp.g = stmt;
511 seq = find_goto_replacement (tf, temp);
512 if (seq)
513 {
514 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
515 gsi_remove (gsi, false);
516 return;
517 }
518 break;
519
520 case GIMPLE_COND:
521 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
522 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
523 break;
524
525 case GIMPLE_TRY:
526 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
527 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
528 break;
529 case GIMPLE_CATCH:
530 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
531 as_a <gcatch *> (stmt)),
532 tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
536 break;
537 case GIMPLE_EH_ELSE:
538 {
539 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
540 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
541 tf);
542 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
543 tf);
544 }
545 break;
546
547 default:
548 /* These won't have gotos in them. */
549 break;
550 }
551
552 gsi_next (gsi);
553 }
554
555 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
556
557 static void
558 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
559 {
560 gimple_stmt_iterator gsi = gsi_start (*seq);
561
562 while (!gsi_end_p (gsi))
563 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
564 }
565
566 /* Replace all goto queue members. */
567
568 static void
569 replace_goto_queue (struct leh_tf_state *tf)
570 {
571 if (tf->goto_queue_active == 0)
572 return;
573 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
574 replace_goto_queue_stmt_list (&eh_seq, tf);
575 }
576
577 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
578 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
579 a gimple return. */
580
581 static void
582 record_in_goto_queue (struct leh_tf_state *tf,
583 treemple new_stmt,
584 int index,
585 bool is_label,
586 location_t location)
587 {
588 size_t active, size;
589 struct goto_queue_node *q;
590
591 gcc_assert (!tf->goto_queue_map);
592
593 active = tf->goto_queue_active;
594 size = tf->goto_queue_size;
595 if (active >= size)
596 {
597 size = (size ? size * 2 : 32);
598 tf->goto_queue_size = size;
599 tf->goto_queue
600 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
601 }
602
603 q = &tf->goto_queue[active];
604 tf->goto_queue_active = active + 1;
605
606 memset (q, 0, sizeof (*q));
607 q->stmt = new_stmt;
608 q->index = index;
609 q->location = location;
610 q->is_label = is_label;
611 }
612
613 /* Record the LABEL label in the goto queue contained in TF.
614 TF is not null. */
615
616 static void
617 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
618 location_t location)
619 {
620 int index;
621 treemple temp, new_stmt;
622
623 if (!label)
624 return;
625
626 /* Computed and non-local gotos do not get processed. Given
627 their nature we can neither tell whether we've escaped the
628 finally block nor redirect them if we knew. */
629 if (TREE_CODE (label) != LABEL_DECL)
630 return;
631
632 /* No need to record gotos that don't leave the try block. */
633 temp.t = label;
634 if (!outside_finally_tree (temp, tf->try_finally_expr))
635 return;
636
637 if (! tf->dest_array.exists ())
638 {
639 tf->dest_array.create (10);
640 tf->dest_array.quick_push (label);
641 index = 0;
642 }
643 else
644 {
645 int n = tf->dest_array.length ();
646 for (index = 0; index < n; ++index)
647 if (tf->dest_array[index] == label)
648 break;
649 if (index == n)
650 tf->dest_array.safe_push (label);
651 }
652
653 /* In the case of a GOTO we want to record the destination label,
654 since with a GIMPLE_COND we have an easy access to the then/else
655 labels. */
656 new_stmt = stmt;
657 record_in_goto_queue (tf, new_stmt, index, true, location);
658 }
659
660 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
661 node, and if so record that fact in the goto queue associated with that
662 try_finally node. */
663
664 static void
665 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
666 {
667 struct leh_tf_state *tf = state->tf;
668 treemple new_stmt;
669
670 if (!tf)
671 return;
672
673 switch (gimple_code (stmt))
674 {
675 case GIMPLE_COND:
676 {
677 gcond *cond_stmt = as_a <gcond *> (stmt);
678 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
679 record_in_goto_queue_label (tf, new_stmt,
680 gimple_cond_true_label (cond_stmt),
681 EXPR_LOCATION (*new_stmt.tp));
682 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
683 record_in_goto_queue_label (tf, new_stmt,
684 gimple_cond_false_label (cond_stmt),
685 EXPR_LOCATION (*new_stmt.tp));
686 }
687 break;
688 case GIMPLE_GOTO:
689 new_stmt.g = stmt;
690 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
691 gimple_location (stmt));
692 break;
693
694 case GIMPLE_RETURN:
695 tf->may_return = true;
696 new_stmt.g = stmt;
697 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
698 break;
699
700 default:
701 gcc_unreachable ();
702 }
703 }
704
705
706 #ifdef ENABLE_CHECKING
707 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
708 was in fact structured, and we've not yet done jump threading, then none
709 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
710
711 static void
712 verify_norecord_switch_expr (struct leh_state *state,
713 gswitch *switch_expr)
714 {
715 struct leh_tf_state *tf = state->tf;
716 size_t i, n;
717
718 if (!tf)
719 return;
720
721 n = gimple_switch_num_labels (switch_expr);
722
723 for (i = 0; i < n; ++i)
724 {
725 treemple temp;
726 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
727 temp.t = lab;
728 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
729 }
730 }
731 #else
732 #define verify_norecord_switch_expr(state, switch_expr)
733 #endif
734
735 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
736 non-null, insert it before the new branch. */
737
738 static void
739 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
740 {
741 gimple x;
742
743 /* In the case of a return, the queue node must be a gimple statement. */
744 gcc_assert (!q->is_label);
745
746 /* Note that the return value may have already been computed, e.g.,
747
748 int x;
749 int foo (void)
750 {
751 x = 0;
752 try {
753 return x;
754 } finally {
755 x++;
756 }
757 }
758
759 should return 0, not 1. We don't have to do anything to make
760 this happens because the return value has been placed in the
761 RESULT_DECL already. */
762
763 q->cont_stmt = q->stmt.g;
764
765 if (mod)
766 gimple_seq_add_seq (&q->repl_stmt, mod);
767
768 x = gimple_build_goto (finlab);
769 gimple_set_location (x, q->location);
770 gimple_seq_add_stmt (&q->repl_stmt, x);
771 }
772
773 /* Similar, but easier, for GIMPLE_GOTO. */
774
775 static void
776 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
777 struct leh_tf_state *tf)
778 {
779 ggoto *x;
780
781 gcc_assert (q->is_label);
782
783 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
784
785 if (mod)
786 gimple_seq_add_seq (&q->repl_stmt, mod);
787
788 x = gimple_build_goto (finlab);
789 gimple_set_location (x, q->location);
790 gimple_seq_add_stmt (&q->repl_stmt, x);
791 }
792
793 /* Emit a standard landing pad sequence into SEQ for REGION. */
794
795 static void
796 emit_post_landing_pad (gimple_seq *seq, eh_region region)
797 {
798 eh_landing_pad lp = region->landing_pads;
799 glabel *x;
800
801 if (lp == NULL)
802 lp = gen_eh_landing_pad (region);
803
804 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
805 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
806
807 x = gimple_build_label (lp->post_landing_pad);
808 gimple_seq_add_stmt (seq, x);
809 }
810
811 /* Emit a RESX statement into SEQ for REGION. */
812
813 static void
814 emit_resx (gimple_seq *seq, eh_region region)
815 {
816 gresx *x = gimple_build_resx (region->index);
817 gimple_seq_add_stmt (seq, x);
818 if (region->outer)
819 record_stmt_eh_region (region->outer, x);
820 }
821
822 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
823
824 static void
825 emit_eh_dispatch (gimple_seq *seq, eh_region region)
826 {
827 geh_dispatch *x = gimple_build_eh_dispatch (region->index);
828 gimple_seq_add_stmt (seq, x);
829 }
830
831 /* Note that the current EH region may contain a throw, or a
832 call to a function which itself may contain a throw. */
833
834 static void
835 note_eh_region_may_contain_throw (eh_region region)
836 {
837 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
838 {
839 if (region->type == ERT_MUST_NOT_THROW)
840 break;
841 region = region->outer;
842 if (region == NULL)
843 break;
844 }
845 }
846
847 /* Check if REGION has been marked as containing a throw. If REGION is
848 NULL, this predicate is false. */
849
850 static inline bool
851 eh_region_may_contain_throw (eh_region r)
852 {
853 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
854 }
855
856 /* We want to transform
857 try { body; } catch { stuff; }
858 to
859 normal_sequence:
860 body;
861 over:
862 eh_sequence:
863 landing_pad:
864 stuff;
865 goto over;
866
867 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
868 should be placed before the second operand, or NULL. OVER is
869 an existing label that should be put at the exit, or NULL. */
870
871 static gimple_seq
872 frob_into_branch_around (gtry *tp, eh_region region, tree over)
873 {
874 gimple x;
875 gimple_seq cleanup, result;
876 location_t loc = gimple_location (tp);
877
878 cleanup = gimple_try_cleanup (tp);
879 result = gimple_try_eval (tp);
880
881 if (region)
882 emit_post_landing_pad (&eh_seq, region);
883
884 if (gimple_seq_may_fallthru (cleanup))
885 {
886 if (!over)
887 over = create_artificial_label (loc);
888 x = gimple_build_goto (over);
889 gimple_set_location (x, loc);
890 gimple_seq_add_stmt (&cleanup, x);
891 }
892 gimple_seq_add_seq (&eh_seq, cleanup);
893
894 if (over)
895 {
896 x = gimple_build_label (over);
897 gimple_seq_add_stmt (&result, x);
898 }
899 return result;
900 }
901
902 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
903 Make sure to record all new labels found. */
904
905 static gimple_seq
906 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
907 location_t loc)
908 {
909 gtry *region = NULL;
910 gimple_seq new_seq;
911 gimple_stmt_iterator gsi;
912
913 new_seq = copy_gimple_seq_and_replace_locals (seq);
914
915 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
916 {
917 gimple stmt = gsi_stmt (gsi);
918 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
919 {
920 tree block = gimple_block (stmt);
921 gimple_set_location (stmt, loc);
922 gimple_set_block (stmt, block);
923 }
924 }
925
926 if (outer_state->tf)
927 region = outer_state->tf->try_finally_expr;
928 collect_finally_tree_1 (new_seq, region);
929
930 return new_seq;
931 }
932
933 /* A subroutine of lower_try_finally. Create a fallthru label for
934 the given try_finally state. The only tricky bit here is that
935 we have to make sure to record the label in our outer context. */
936
937 static tree
938 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
939 {
940 tree label = tf->fallthru_label;
941 treemple temp;
942
943 if (!label)
944 {
945 label = create_artificial_label (gimple_location (tf->try_finally_expr));
946 tf->fallthru_label = label;
947 if (tf->outer->tf)
948 {
949 temp.t = label;
950 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
951 }
952 }
953 return label;
954 }
955
956 /* A subroutine of lower_try_finally. If FINALLY consits of a
957 GIMPLE_EH_ELSE node, return it. */
958
959 static inline geh_else *
960 get_eh_else (gimple_seq finally)
961 {
962 gimple x = gimple_seq_first_stmt (finally);
963 if (gimple_code (x) == GIMPLE_EH_ELSE)
964 {
965 gcc_assert (gimple_seq_singleton_p (finally));
966 return as_a <geh_else *> (x);
967 }
968 return NULL;
969 }
970
971 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
972 langhook returns non-null, then the language requires that the exception
973 path out of a try_finally be treated specially. To wit: the code within
974 the finally block may not itself throw an exception. We have two choices
975 here. First we can duplicate the finally block and wrap it in a
976 must_not_throw region. Second, we can generate code like
977
978 try {
979 finally_block;
980 } catch {
981 if (fintmp == eh_edge)
982 protect_cleanup_actions;
983 }
984
985 where "fintmp" is the temporary used in the switch statement generation
986 alternative considered below. For the nonce, we always choose the first
987 option.
988
989 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
990
991 static void
992 honor_protect_cleanup_actions (struct leh_state *outer_state,
993 struct leh_state *this_state,
994 struct leh_tf_state *tf)
995 {
996 tree protect_cleanup_actions;
997 gimple_stmt_iterator gsi;
998 bool finally_may_fallthru;
999 gimple_seq finally;
1000 gimple x;
1001 geh_mnt *eh_mnt;
1002 gtry *try_stmt;
1003 geh_else *eh_else;
1004
1005 /* First check for nothing to do. */
1006 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1007 return;
1008 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1009 if (protect_cleanup_actions == NULL)
1010 return;
1011
1012 finally = gimple_try_cleanup (tf->top_p);
1013 eh_else = get_eh_else (finally);
1014
1015 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1016 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1017 if (eh_else)
1018 {
1019 finally = gimple_eh_else_e_body (eh_else);
1020 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1021 }
1022 else if (this_state)
1023 finally = lower_try_finally_dup_block (finally, outer_state,
1024 gimple_location (tf->try_finally_expr));
1025 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1026
1027 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1028 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1029 to be in an enclosing scope, but needs to be implemented at this level
1030 to avoid a nesting violation (see wrap_temporary_cleanups in
1031 cp/decl.c). Since it's logically at an outer level, we should call
1032 terminate before we get to it, so strip it away before adding the
1033 MUST_NOT_THROW filter. */
1034 gsi = gsi_start (finally);
1035 x = gsi_stmt (gsi);
1036 if (gimple_code (x) == GIMPLE_TRY
1037 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1038 && gimple_try_catch_is_cleanup (x))
1039 {
1040 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1041 gsi_remove (&gsi, false);
1042 }
1043
1044 /* Wrap the block with protect_cleanup_actions as the action. */
1045 eh_mnt = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1046 try_stmt = gimple_build_try (finally, gimple_seq_alloc_with_stmt (eh_mnt),
1047 GIMPLE_TRY_CATCH);
1048 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1049
1050 /* Drop all of this into the exception sequence. */
1051 emit_post_landing_pad (&eh_seq, tf->region);
1052 gimple_seq_add_seq (&eh_seq, finally);
1053 if (finally_may_fallthru)
1054 emit_resx (&eh_seq, tf->region);
1055
1056 /* Having now been handled, EH isn't to be considered with
1057 the rest of the outgoing edges. */
1058 tf->may_throw = false;
1059 }
1060
1061 /* A subroutine of lower_try_finally. We have determined that there is
1062 no fallthru edge out of the finally block. This means that there is
1063 no outgoing edge corresponding to any incoming edge. Restructure the
1064 try_finally node for this special case. */
1065
1066 static void
1067 lower_try_finally_nofallthru (struct leh_state *state,
1068 struct leh_tf_state *tf)
1069 {
1070 tree lab;
1071 gimple x;
1072 geh_else *eh_else;
1073 gimple_seq finally;
1074 struct goto_queue_node *q, *qe;
1075
1076 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1077
1078 /* We expect that tf->top_p is a GIMPLE_TRY. */
1079 finally = gimple_try_cleanup (tf->top_p);
1080 tf->top_p_seq = gimple_try_eval (tf->top_p);
1081
1082 x = gimple_build_label (lab);
1083 gimple_seq_add_stmt (&tf->top_p_seq, x);
1084
1085 q = tf->goto_queue;
1086 qe = q + tf->goto_queue_active;
1087 for (; q < qe; ++q)
1088 if (q->index < 0)
1089 do_return_redirection (q, lab, NULL);
1090 else
1091 do_goto_redirection (q, lab, NULL, tf);
1092
1093 replace_goto_queue (tf);
1094
1095 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1096 eh_else = get_eh_else (finally);
1097 if (eh_else)
1098 {
1099 finally = gimple_eh_else_n_body (eh_else);
1100 lower_eh_constructs_1 (state, &finally);
1101 gimple_seq_add_seq (&tf->top_p_seq, finally);
1102
1103 if (tf->may_throw)
1104 {
1105 finally = gimple_eh_else_e_body (eh_else);
1106 lower_eh_constructs_1 (state, &finally);
1107
1108 emit_post_landing_pad (&eh_seq, tf->region);
1109 gimple_seq_add_seq (&eh_seq, finally);
1110 }
1111 }
1112 else
1113 {
1114 lower_eh_constructs_1 (state, &finally);
1115 gimple_seq_add_seq (&tf->top_p_seq, finally);
1116
1117 if (tf->may_throw)
1118 {
1119 emit_post_landing_pad (&eh_seq, tf->region);
1120
1121 x = gimple_build_goto (lab);
1122 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1123 gimple_seq_add_stmt (&eh_seq, x);
1124 }
1125 }
1126 }
1127
1128 /* A subroutine of lower_try_finally. We have determined that there is
1129 exactly one destination of the finally block. Restructure the
1130 try_finally node for this special case. */
1131
1132 static void
1133 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1134 {
1135 struct goto_queue_node *q, *qe;
1136 geh_else *eh_else;
1137 glabel *label_stmt;
1138 gimple x;
1139 gimple_seq finally;
1140 gimple_stmt_iterator gsi;
1141 tree finally_label;
1142 location_t loc = gimple_location (tf->try_finally_expr);
1143
1144 finally = gimple_try_cleanup (tf->top_p);
1145 tf->top_p_seq = gimple_try_eval (tf->top_p);
1146
1147 /* Since there's only one destination, and the destination edge can only
1148 either be EH or non-EH, that implies that all of our incoming edges
1149 are of the same type. Therefore we can lower EH_ELSE immediately. */
1150 eh_else = get_eh_else (finally);
1151 if (eh_else)
1152 {
1153 if (tf->may_throw)
1154 finally = gimple_eh_else_e_body (eh_else);
1155 else
1156 finally = gimple_eh_else_n_body (eh_else);
1157 }
1158
1159 lower_eh_constructs_1 (state, &finally);
1160
1161 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1162 {
1163 gimple stmt = gsi_stmt (gsi);
1164 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1165 {
1166 tree block = gimple_block (stmt);
1167 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1168 gimple_set_block (stmt, block);
1169 }
1170 }
1171
1172 if (tf->may_throw)
1173 {
1174 /* Only reachable via the exception edge. Add the given label to
1175 the head of the FINALLY block. Append a RESX at the end. */
1176 emit_post_landing_pad (&eh_seq, tf->region);
1177 gimple_seq_add_seq (&eh_seq, finally);
1178 emit_resx (&eh_seq, tf->region);
1179 return;
1180 }
1181
1182 if (tf->may_fallthru)
1183 {
1184 /* Only reachable via the fallthru edge. Do nothing but let
1185 the two blocks run together; we'll fall out the bottom. */
1186 gimple_seq_add_seq (&tf->top_p_seq, finally);
1187 return;
1188 }
1189
1190 finally_label = create_artificial_label (loc);
1191 label_stmt = gimple_build_label (finally_label);
1192 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1193
1194 gimple_seq_add_seq (&tf->top_p_seq, finally);
1195
1196 q = tf->goto_queue;
1197 qe = q + tf->goto_queue_active;
1198
1199 if (tf->may_return)
1200 {
1201 /* Reachable by return expressions only. Redirect them. */
1202 for (; q < qe; ++q)
1203 do_return_redirection (q, finally_label, NULL);
1204 replace_goto_queue (tf);
1205 }
1206 else
1207 {
1208 /* Reachable by goto expressions only. Redirect them. */
1209 for (; q < qe; ++q)
1210 do_goto_redirection (q, finally_label, NULL, tf);
1211 replace_goto_queue (tf);
1212
1213 if (tf->dest_array[0] == tf->fallthru_label)
1214 {
1215 /* Reachable by goto to fallthru label only. Redirect it
1216 to the new label (already created, sadly), and do not
1217 emit the final branch out, or the fallthru label. */
1218 tf->fallthru_label = NULL;
1219 return;
1220 }
1221 }
1222
1223 /* Place the original return/goto to the original destination
1224 immediately after the finally block. */
1225 x = tf->goto_queue[0].cont_stmt;
1226 gimple_seq_add_stmt (&tf->top_p_seq, x);
1227 maybe_record_in_goto_queue (state, x);
1228 }
1229
1230 /* A subroutine of lower_try_finally. There are multiple edges incoming
1231 and outgoing from the finally block. Implement this by duplicating the
1232 finally block for every destination. */
1233
1234 static void
1235 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1236 {
1237 gimple_seq finally;
1238 gimple_seq new_stmt;
1239 gimple_seq seq;
1240 gimple x;
1241 geh_else *eh_else;
1242 tree tmp;
1243 location_t tf_loc = gimple_location (tf->try_finally_expr);
1244
1245 finally = gimple_try_cleanup (tf->top_p);
1246
1247 /* Notice EH_ELSE, and simplify some of the remaining code
1248 by considering FINALLY to be the normal return path only. */
1249 eh_else = get_eh_else (finally);
1250 if (eh_else)
1251 finally = gimple_eh_else_n_body (eh_else);
1252
1253 tf->top_p_seq = gimple_try_eval (tf->top_p);
1254 new_stmt = NULL;
1255
1256 if (tf->may_fallthru)
1257 {
1258 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1259 lower_eh_constructs_1 (state, &seq);
1260 gimple_seq_add_seq (&new_stmt, seq);
1261
1262 tmp = lower_try_finally_fallthru_label (tf);
1263 x = gimple_build_goto (tmp);
1264 gimple_set_location (x, tf_loc);
1265 gimple_seq_add_stmt (&new_stmt, x);
1266 }
1267
1268 if (tf->may_throw)
1269 {
1270 /* We don't need to copy the EH path of EH_ELSE,
1271 since it is only emitted once. */
1272 if (eh_else)
1273 seq = gimple_eh_else_e_body (eh_else);
1274 else
1275 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1276 lower_eh_constructs_1 (state, &seq);
1277
1278 emit_post_landing_pad (&eh_seq, tf->region);
1279 gimple_seq_add_seq (&eh_seq, seq);
1280 emit_resx (&eh_seq, tf->region);
1281 }
1282
1283 if (tf->goto_queue)
1284 {
1285 struct goto_queue_node *q, *qe;
1286 int return_index, index;
1287 struct labels_s
1288 {
1289 struct goto_queue_node *q;
1290 tree label;
1291 } *labels;
1292
1293 return_index = tf->dest_array.length ();
1294 labels = XCNEWVEC (struct labels_s, return_index + 1);
1295
1296 q = tf->goto_queue;
1297 qe = q + tf->goto_queue_active;
1298 for (; q < qe; q++)
1299 {
1300 index = q->index < 0 ? return_index : q->index;
1301
1302 if (!labels[index].q)
1303 labels[index].q = q;
1304 }
1305
1306 for (index = 0; index < return_index + 1; index++)
1307 {
1308 tree lab;
1309
1310 q = labels[index].q;
1311 if (! q)
1312 continue;
1313
1314 lab = labels[index].label
1315 = create_artificial_label (tf_loc);
1316
1317 if (index == return_index)
1318 do_return_redirection (q, lab, NULL);
1319 else
1320 do_goto_redirection (q, lab, NULL, tf);
1321
1322 x = gimple_build_label (lab);
1323 gimple_seq_add_stmt (&new_stmt, x);
1324
1325 seq = lower_try_finally_dup_block (finally, state, q->location);
1326 lower_eh_constructs_1 (state, &seq);
1327 gimple_seq_add_seq (&new_stmt, seq);
1328
1329 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1330 maybe_record_in_goto_queue (state, q->cont_stmt);
1331 }
1332
1333 for (q = tf->goto_queue; q < qe; q++)
1334 {
1335 tree lab;
1336
1337 index = q->index < 0 ? return_index : q->index;
1338
1339 if (labels[index].q == q)
1340 continue;
1341
1342 lab = labels[index].label;
1343
1344 if (index == return_index)
1345 do_return_redirection (q, lab, NULL);
1346 else
1347 do_goto_redirection (q, lab, NULL, tf);
1348 }
1349
1350 replace_goto_queue (tf);
1351 free (labels);
1352 }
1353
1354 /* Need to link new stmts after running replace_goto_queue due
1355 to not wanting to process the same goto stmts twice. */
1356 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1357 }
1358
1359 /* A subroutine of lower_try_finally. There are multiple edges incoming
1360 and outgoing from the finally block. Implement this by instrumenting
1361 each incoming edge and creating a switch statement at the end of the
1362 finally block that branches to the appropriate destination. */
1363
1364 static void
1365 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1366 {
1367 struct goto_queue_node *q, *qe;
1368 tree finally_tmp, finally_label;
1369 int return_index, eh_index, fallthru_index;
1370 int nlabels, ndests, j, last_case_index;
1371 tree last_case;
1372 vec<tree> case_label_vec;
1373 gimple_seq switch_body = NULL;
1374 gimple x;
1375 geh_else *eh_else;
1376 tree tmp;
1377 gimple switch_stmt;
1378 gimple_seq finally;
1379 hash_map<tree, gimple> *cont_map = NULL;
1380 /* The location of the TRY_FINALLY stmt. */
1381 location_t tf_loc = gimple_location (tf->try_finally_expr);
1382 /* The location of the finally block. */
1383 location_t finally_loc;
1384
1385 finally = gimple_try_cleanup (tf->top_p);
1386 eh_else = get_eh_else (finally);
1387
1388 /* Mash the TRY block to the head of the chain. */
1389 tf->top_p_seq = gimple_try_eval (tf->top_p);
1390
1391 /* The location of the finally is either the last stmt in the finally
1392 block or the location of the TRY_FINALLY itself. */
1393 x = gimple_seq_last_stmt (finally);
1394 finally_loc = x ? gimple_location (x) : tf_loc;
1395
1396 /* Prepare for switch statement generation. */
1397 nlabels = tf->dest_array.length ();
1398 return_index = nlabels;
1399 eh_index = return_index + tf->may_return;
1400 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1401 ndests = fallthru_index + tf->may_fallthru;
1402
1403 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1404 finally_label = create_artificial_label (finally_loc);
1405
1406 /* We use vec::quick_push on case_label_vec throughout this function,
1407 since we know the size in advance and allocate precisely as muce
1408 space as needed. */
1409 case_label_vec.create (ndests);
1410 last_case = NULL;
1411 last_case_index = 0;
1412
1413 /* Begin inserting code for getting to the finally block. Things
1414 are done in this order to correspond to the sequence the code is
1415 laid out. */
1416
1417 if (tf->may_fallthru)
1418 {
1419 x = gimple_build_assign (finally_tmp,
1420 build_int_cst (integer_type_node,
1421 fallthru_index));
1422 gimple_seq_add_stmt (&tf->top_p_seq, x);
1423
1424 tmp = build_int_cst (integer_type_node, fallthru_index);
1425 last_case = build_case_label (tmp, NULL,
1426 create_artificial_label (tf_loc));
1427 case_label_vec.quick_push (last_case);
1428 last_case_index++;
1429
1430 x = gimple_build_label (CASE_LABEL (last_case));
1431 gimple_seq_add_stmt (&switch_body, x);
1432
1433 tmp = lower_try_finally_fallthru_label (tf);
1434 x = gimple_build_goto (tmp);
1435 gimple_set_location (x, tf_loc);
1436 gimple_seq_add_stmt (&switch_body, x);
1437 }
1438
1439 /* For EH_ELSE, emit the exception path (plus resx) now, then
1440 subsequently we only need consider the normal path. */
1441 if (eh_else)
1442 {
1443 if (tf->may_throw)
1444 {
1445 finally = gimple_eh_else_e_body (eh_else);
1446 lower_eh_constructs_1 (state, &finally);
1447
1448 emit_post_landing_pad (&eh_seq, tf->region);
1449 gimple_seq_add_seq (&eh_seq, finally);
1450 emit_resx (&eh_seq, tf->region);
1451 }
1452
1453 finally = gimple_eh_else_n_body (eh_else);
1454 }
1455 else if (tf->may_throw)
1456 {
1457 emit_post_landing_pad (&eh_seq, tf->region);
1458
1459 x = gimple_build_assign (finally_tmp,
1460 build_int_cst (integer_type_node, eh_index));
1461 gimple_seq_add_stmt (&eh_seq, x);
1462
1463 x = gimple_build_goto (finally_label);
1464 gimple_set_location (x, tf_loc);
1465 gimple_seq_add_stmt (&eh_seq, x);
1466
1467 tmp = build_int_cst (integer_type_node, eh_index);
1468 last_case = build_case_label (tmp, NULL,
1469 create_artificial_label (tf_loc));
1470 case_label_vec.quick_push (last_case);
1471 last_case_index++;
1472
1473 x = gimple_build_label (CASE_LABEL (last_case));
1474 gimple_seq_add_stmt (&eh_seq, x);
1475 emit_resx (&eh_seq, tf->region);
1476 }
1477
1478 x = gimple_build_label (finally_label);
1479 gimple_seq_add_stmt (&tf->top_p_seq, x);
1480
1481 lower_eh_constructs_1 (state, &finally);
1482 gimple_seq_add_seq (&tf->top_p_seq, finally);
1483
1484 /* Redirect each incoming goto edge. */
1485 q = tf->goto_queue;
1486 qe = q + tf->goto_queue_active;
1487 j = last_case_index + tf->may_return;
1488 /* Prepare the assignments to finally_tmp that are executed upon the
1489 entrance through a particular edge. */
1490 for (; q < qe; ++q)
1491 {
1492 gimple_seq mod = NULL;
1493 int switch_id;
1494 unsigned int case_index;
1495
1496 if (q->index < 0)
1497 {
1498 x = gimple_build_assign (finally_tmp,
1499 build_int_cst (integer_type_node,
1500 return_index));
1501 gimple_seq_add_stmt (&mod, x);
1502 do_return_redirection (q, finally_label, mod);
1503 switch_id = return_index;
1504 }
1505 else
1506 {
1507 x = gimple_build_assign (finally_tmp,
1508 build_int_cst (integer_type_node, q->index));
1509 gimple_seq_add_stmt (&mod, x);
1510 do_goto_redirection (q, finally_label, mod, tf);
1511 switch_id = q->index;
1512 }
1513
1514 case_index = j + q->index;
1515 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1516 {
1517 tree case_lab;
1518 tmp = build_int_cst (integer_type_node, switch_id);
1519 case_lab = build_case_label (tmp, NULL,
1520 create_artificial_label (tf_loc));
1521 /* We store the cont_stmt in the pointer map, so that we can recover
1522 it in the loop below. */
1523 if (!cont_map)
1524 cont_map = new hash_map<tree, gimple>;
1525 cont_map->put (case_lab, q->cont_stmt);
1526 case_label_vec.quick_push (case_lab);
1527 }
1528 }
1529 for (j = last_case_index; j < last_case_index + nlabels; j++)
1530 {
1531 gimple cont_stmt;
1532
1533 last_case = case_label_vec[j];
1534
1535 gcc_assert (last_case);
1536 gcc_assert (cont_map);
1537
1538 cont_stmt = *cont_map->get (last_case);
1539
1540 x = gimple_build_label (CASE_LABEL (last_case));
1541 gimple_seq_add_stmt (&switch_body, x);
1542 gimple_seq_add_stmt (&switch_body, cont_stmt);
1543 maybe_record_in_goto_queue (state, cont_stmt);
1544 }
1545 if (cont_map)
1546 delete cont_map;
1547
1548 replace_goto_queue (tf);
1549
1550 /* Make sure that the last case is the default label, as one is required.
1551 Then sort the labels, which is also required in GIMPLE. */
1552 CASE_LOW (last_case) = NULL;
1553 tree tem = case_label_vec.pop ();
1554 gcc_assert (tem == last_case);
1555 sort_case_labels (case_label_vec);
1556
1557 /* Build the switch statement, setting last_case to be the default
1558 label. */
1559 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1560 case_label_vec);
1561 gimple_set_location (switch_stmt, finally_loc);
1562
1563 /* Need to link SWITCH_STMT after running replace_goto_queue
1564 due to not wanting to process the same goto stmts twice. */
1565 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1566 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1567 }
1568
1569 /* Decide whether or not we are going to duplicate the finally block.
1570 There are several considerations.
1571
1572 First, if this is Java, then the finally block contains code
1573 written by the user. It has line numbers associated with it,
1574 so duplicating the block means it's difficult to set a breakpoint.
1575 Since controlling code generation via -g is verboten, we simply
1576 never duplicate code without optimization.
1577
1578 Second, we'd like to prevent egregious code growth. One way to
1579 do this is to estimate the size of the finally block, multiply
1580 that by the number of copies we'd need to make, and compare against
1581 the estimate of the size of the switch machinery we'd have to add. */
1582
1583 static bool
1584 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1585 {
1586 int f_estimate, sw_estimate;
1587 geh_else *eh_else;
1588
1589 /* If there's an EH_ELSE involved, the exception path is separate
1590 and really doesn't come into play for this computation. */
1591 eh_else = get_eh_else (finally);
1592 if (eh_else)
1593 {
1594 ndests -= may_throw;
1595 finally = gimple_eh_else_n_body (eh_else);
1596 }
1597
1598 if (!optimize)
1599 {
1600 gimple_stmt_iterator gsi;
1601
1602 if (ndests == 1)
1603 return true;
1604
1605 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1606 {
1607 gimple stmt = gsi_stmt (gsi);
1608 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1609 return false;
1610 }
1611 return true;
1612 }
1613
1614 /* Finally estimate N times, plus N gotos. */
1615 f_estimate = count_insns_seq (finally, &eni_size_weights);
1616 f_estimate = (f_estimate + 1) * ndests;
1617
1618 /* Switch statement (cost 10), N variable assignments, N gotos. */
1619 sw_estimate = 10 + 2 * ndests;
1620
1621 /* Optimize for size clearly wants our best guess. */
1622 if (optimize_function_for_size_p (cfun))
1623 return f_estimate < sw_estimate;
1624
1625 /* ??? These numbers are completely made up so far. */
1626 if (optimize > 1)
1627 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1628 else
1629 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1630 }
1631
1632 /* REG is the enclosing region for a possible cleanup region, or the region
1633 itself. Returns TRUE if such a region would be unreachable.
1634
1635 Cleanup regions within a must-not-throw region aren't actually reachable
1636 even if there are throwing stmts within them, because the personality
1637 routine will call terminate before unwinding. */
1638
1639 static bool
1640 cleanup_is_dead_in (eh_region reg)
1641 {
1642 while (reg && reg->type == ERT_CLEANUP)
1643 reg = reg->outer;
1644 return (reg && reg->type == ERT_MUST_NOT_THROW);
1645 }
1646
1647 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1648 to a sequence of labels and blocks, plus the exception region trees
1649 that record all the magic. This is complicated by the need to
1650 arrange for the FINALLY block to be executed on all exits. */
1651
1652 static gimple_seq
1653 lower_try_finally (struct leh_state *state, gtry *tp)
1654 {
1655 struct leh_tf_state this_tf;
1656 struct leh_state this_state;
1657 int ndests;
1658 gimple_seq old_eh_seq;
1659
1660 /* Process the try block. */
1661
1662 memset (&this_tf, 0, sizeof (this_tf));
1663 this_tf.try_finally_expr = tp;
1664 this_tf.top_p = tp;
1665 this_tf.outer = state;
1666 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1667 {
1668 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1669 this_state.cur_region = this_tf.region;
1670 }
1671 else
1672 {
1673 this_tf.region = NULL;
1674 this_state.cur_region = state->cur_region;
1675 }
1676
1677 this_state.ehp_region = state->ehp_region;
1678 this_state.tf = &this_tf;
1679
1680 old_eh_seq = eh_seq;
1681 eh_seq = NULL;
1682
1683 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1684
1685 /* Determine if the try block is escaped through the bottom. */
1686 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1687
1688 /* Determine if any exceptions are possible within the try block. */
1689 if (this_tf.region)
1690 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1691 if (this_tf.may_throw)
1692 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1693
1694 /* Determine how many edges (still) reach the finally block. Or rather,
1695 how many destinations are reached by the finally block. Use this to
1696 determine how we process the finally block itself. */
1697
1698 ndests = this_tf.dest_array.length ();
1699 ndests += this_tf.may_fallthru;
1700 ndests += this_tf.may_return;
1701 ndests += this_tf.may_throw;
1702
1703 /* If the FINALLY block is not reachable, dike it out. */
1704 if (ndests == 0)
1705 {
1706 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1707 gimple_try_set_cleanup (tp, NULL);
1708 }
1709 /* If the finally block doesn't fall through, then any destination
1710 we might try to impose there isn't reached either. There may be
1711 some minor amount of cleanup and redirection still needed. */
1712 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1713 lower_try_finally_nofallthru (state, &this_tf);
1714
1715 /* We can easily special-case redirection to a single destination. */
1716 else if (ndests == 1)
1717 lower_try_finally_onedest (state, &this_tf);
1718 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1719 gimple_try_cleanup (tp)))
1720 lower_try_finally_copy (state, &this_tf);
1721 else
1722 lower_try_finally_switch (state, &this_tf);
1723
1724 /* If someone requested we add a label at the end of the transformed
1725 block, do so. */
1726 if (this_tf.fallthru_label)
1727 {
1728 /* This must be reached only if ndests == 0. */
1729 gimple x = gimple_build_label (this_tf.fallthru_label);
1730 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1731 }
1732
1733 this_tf.dest_array.release ();
1734 free (this_tf.goto_queue);
1735 if (this_tf.goto_queue_map)
1736 delete this_tf.goto_queue_map;
1737
1738 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1739 If there was no old eh_seq, then the append is trivially already done. */
1740 if (old_eh_seq)
1741 {
1742 if (eh_seq == NULL)
1743 eh_seq = old_eh_seq;
1744 else
1745 {
1746 gimple_seq new_eh_seq = eh_seq;
1747 eh_seq = old_eh_seq;
1748 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1749 }
1750 }
1751
1752 return this_tf.top_p_seq;
1753 }
1754
1755 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1756 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1757 exception region trees that records all the magic. */
1758
1759 static gimple_seq
1760 lower_catch (struct leh_state *state, gtry *tp)
1761 {
1762 eh_region try_region = NULL;
1763 struct leh_state this_state = *state;
1764 gimple_stmt_iterator gsi;
1765 tree out_label;
1766 gimple_seq new_seq, cleanup;
1767 gimple x;
1768 location_t try_catch_loc = gimple_location (tp);
1769
1770 if (flag_exceptions)
1771 {
1772 try_region = gen_eh_region_try (state->cur_region);
1773 this_state.cur_region = try_region;
1774 }
1775
1776 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1777
1778 if (!eh_region_may_contain_throw (try_region))
1779 return gimple_try_eval (tp);
1780
1781 new_seq = NULL;
1782 emit_eh_dispatch (&new_seq, try_region);
1783 emit_resx (&new_seq, try_region);
1784
1785 this_state.cur_region = state->cur_region;
1786 this_state.ehp_region = try_region;
1787
1788 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1789 itself, so that e.g. for coverage purposes the nested cleanups don't
1790 appear before the cleanup body. See PR64634 for details. */
1791 gimple_seq old_eh_seq = eh_seq;
1792 eh_seq = NULL;
1793
1794 out_label = NULL;
1795 cleanup = gimple_try_cleanup (tp);
1796 for (gsi = gsi_start (cleanup);
1797 !gsi_end_p (gsi);
1798 gsi_next (&gsi))
1799 {
1800 eh_catch c;
1801 gcatch *catch_stmt;
1802 gimple_seq handler;
1803
1804 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1805 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1806
1807 handler = gimple_catch_handler (catch_stmt);
1808 lower_eh_constructs_1 (&this_state, &handler);
1809
1810 c->label = create_artificial_label (UNKNOWN_LOCATION);
1811 x = gimple_build_label (c->label);
1812 gimple_seq_add_stmt (&new_seq, x);
1813
1814 gimple_seq_add_seq (&new_seq, handler);
1815
1816 if (gimple_seq_may_fallthru (new_seq))
1817 {
1818 if (!out_label)
1819 out_label = create_artificial_label (try_catch_loc);
1820
1821 x = gimple_build_goto (out_label);
1822 gimple_seq_add_stmt (&new_seq, x);
1823 }
1824 if (!c->type_list)
1825 break;
1826 }
1827
1828 gimple_try_set_cleanup (tp, new_seq);
1829
1830 gimple_seq new_eh_seq = eh_seq;
1831 eh_seq = old_eh_seq;
1832 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1833 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1834 return ret_seq;
1835 }
1836
1837 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1838 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1839 region trees that record all the magic. */
1840
1841 static gimple_seq
1842 lower_eh_filter (struct leh_state *state, gtry *tp)
1843 {
1844 struct leh_state this_state = *state;
1845 eh_region this_region = NULL;
1846 gimple inner, x;
1847 gimple_seq new_seq;
1848
1849 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1850
1851 if (flag_exceptions)
1852 {
1853 this_region = gen_eh_region_allowed (state->cur_region,
1854 gimple_eh_filter_types (inner));
1855 this_state.cur_region = this_region;
1856 }
1857
1858 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1859
1860 if (!eh_region_may_contain_throw (this_region))
1861 return gimple_try_eval (tp);
1862
1863 new_seq = NULL;
1864 this_state.cur_region = state->cur_region;
1865 this_state.ehp_region = this_region;
1866
1867 emit_eh_dispatch (&new_seq, this_region);
1868 emit_resx (&new_seq, this_region);
1869
1870 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1871 x = gimple_build_label (this_region->u.allowed.label);
1872 gimple_seq_add_stmt (&new_seq, x);
1873
1874 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1875 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1876
1877 gimple_try_set_cleanup (tp, new_seq);
1878
1879 return frob_into_branch_around (tp, this_region, NULL);
1880 }
1881
1882 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1883 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1884 plus the exception region trees that record all the magic. */
1885
1886 static gimple_seq
1887 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1888 {
1889 struct leh_state this_state = *state;
1890
1891 if (flag_exceptions)
1892 {
1893 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1894 eh_region this_region;
1895
1896 this_region = gen_eh_region_must_not_throw (state->cur_region);
1897 this_region->u.must_not_throw.failure_decl
1898 = gimple_eh_must_not_throw_fndecl (
1899 as_a <geh_mnt *> (inner));
1900 this_region->u.must_not_throw.failure_loc
1901 = LOCATION_LOCUS (gimple_location (tp));
1902
1903 /* In order to get mangling applied to this decl, we must mark it
1904 used now. Otherwise, pass_ipa_free_lang_data won't think it
1905 needs to happen. */
1906 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1907
1908 this_state.cur_region = this_region;
1909 }
1910
1911 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1912
1913 return gimple_try_eval (tp);
1914 }
1915
1916 /* Implement a cleanup expression. This is similar to try-finally,
1917 except that we only execute the cleanup block for exception edges. */
1918
1919 static gimple_seq
1920 lower_cleanup (struct leh_state *state, gtry *tp)
1921 {
1922 struct leh_state this_state = *state;
1923 eh_region this_region = NULL;
1924 struct leh_tf_state fake_tf;
1925 gimple_seq result;
1926 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1927
1928 if (flag_exceptions && !cleanup_dead)
1929 {
1930 this_region = gen_eh_region_cleanup (state->cur_region);
1931 this_state.cur_region = this_region;
1932 }
1933
1934 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1935
1936 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1937 return gimple_try_eval (tp);
1938
1939 /* Build enough of a try-finally state so that we can reuse
1940 honor_protect_cleanup_actions. */
1941 memset (&fake_tf, 0, sizeof (fake_tf));
1942 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1943 fake_tf.outer = state;
1944 fake_tf.region = this_region;
1945 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1946 fake_tf.may_throw = true;
1947
1948 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1949
1950 if (fake_tf.may_throw)
1951 {
1952 /* In this case honor_protect_cleanup_actions had nothing to do,
1953 and we should process this normally. */
1954 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1955 result = frob_into_branch_around (tp, this_region,
1956 fake_tf.fallthru_label);
1957 }
1958 else
1959 {
1960 /* In this case honor_protect_cleanup_actions did nearly all of
1961 the work. All we have left is to append the fallthru_label. */
1962
1963 result = gimple_try_eval (tp);
1964 if (fake_tf.fallthru_label)
1965 {
1966 gimple x = gimple_build_label (fake_tf.fallthru_label);
1967 gimple_seq_add_stmt (&result, x);
1968 }
1969 }
1970 return result;
1971 }
1972
1973 /* Main loop for lowering eh constructs. Also moves gsi to the next
1974 statement. */
1975
1976 static void
1977 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1978 {
1979 gimple_seq replace;
1980 gimple x;
1981 gimple stmt = gsi_stmt (*gsi);
1982
1983 switch (gimple_code (stmt))
1984 {
1985 case GIMPLE_CALL:
1986 {
1987 tree fndecl = gimple_call_fndecl (stmt);
1988 tree rhs, lhs;
1989
1990 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1991 switch (DECL_FUNCTION_CODE (fndecl))
1992 {
1993 case BUILT_IN_EH_POINTER:
1994 /* The front end may have generated a call to
1995 __builtin_eh_pointer (0) within a catch region. Replace
1996 this zero argument with the current catch region number. */
1997 if (state->ehp_region)
1998 {
1999 tree nr = build_int_cst (integer_type_node,
2000 state->ehp_region->index);
2001 gimple_call_set_arg (stmt, 0, nr);
2002 }
2003 else
2004 {
2005 /* The user has dome something silly. Remove it. */
2006 rhs = null_pointer_node;
2007 goto do_replace;
2008 }
2009 break;
2010
2011 case BUILT_IN_EH_FILTER:
2012 /* ??? This should never appear, but since it's a builtin it
2013 is accessible to abuse by users. Just remove it and
2014 replace the use with the arbitrary value zero. */
2015 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2016 do_replace:
2017 lhs = gimple_call_lhs (stmt);
2018 x = gimple_build_assign (lhs, rhs);
2019 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2020 /* FALLTHRU */
2021
2022 case BUILT_IN_EH_COPY_VALUES:
2023 /* Likewise this should not appear. Remove it. */
2024 gsi_remove (gsi, true);
2025 return;
2026
2027 default:
2028 break;
2029 }
2030 }
2031 /* FALLTHRU */
2032
2033 case GIMPLE_ASSIGN:
2034 /* If the stmt can throw use a new temporary for the assignment
2035 to a LHS. This makes sure the old value of the LHS is
2036 available on the EH edge. Only do so for statements that
2037 potentially fall through (no noreturn calls e.g.), otherwise
2038 this new assignment might create fake fallthru regions. */
2039 if (stmt_could_throw_p (stmt)
2040 && gimple_has_lhs (stmt)
2041 && gimple_stmt_may_fallthru (stmt)
2042 && !tree_could_throw_p (gimple_get_lhs (stmt))
2043 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2044 {
2045 tree lhs = gimple_get_lhs (stmt);
2046 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2047 gimple s = gimple_build_assign (lhs, tmp);
2048 gimple_set_location (s, gimple_location (stmt));
2049 gimple_set_block (s, gimple_block (stmt));
2050 gimple_set_lhs (stmt, tmp);
2051 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2052 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2053 DECL_GIMPLE_REG_P (tmp) = 1;
2054 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2055 }
2056 /* Look for things that can throw exceptions, and record them. */
2057 if (state->cur_region && stmt_could_throw_p (stmt))
2058 {
2059 record_stmt_eh_region (state->cur_region, stmt);
2060 note_eh_region_may_contain_throw (state->cur_region);
2061 }
2062 break;
2063
2064 case GIMPLE_COND:
2065 case GIMPLE_GOTO:
2066 case GIMPLE_RETURN:
2067 maybe_record_in_goto_queue (state, stmt);
2068 break;
2069
2070 case GIMPLE_SWITCH:
2071 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2072 break;
2073
2074 case GIMPLE_TRY:
2075 {
2076 gtry *try_stmt = as_a <gtry *> (stmt);
2077 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2078 replace = lower_try_finally (state, try_stmt);
2079 else
2080 {
2081 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2082 if (!x)
2083 {
2084 replace = gimple_try_eval (try_stmt);
2085 lower_eh_constructs_1 (state, &replace);
2086 }
2087 else
2088 switch (gimple_code (x))
2089 {
2090 case GIMPLE_CATCH:
2091 replace = lower_catch (state, try_stmt);
2092 break;
2093 case GIMPLE_EH_FILTER:
2094 replace = lower_eh_filter (state, try_stmt);
2095 break;
2096 case GIMPLE_EH_MUST_NOT_THROW:
2097 replace = lower_eh_must_not_throw (state, try_stmt);
2098 break;
2099 case GIMPLE_EH_ELSE:
2100 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2101 gcc_unreachable ();
2102 default:
2103 replace = lower_cleanup (state, try_stmt);
2104 break;
2105 }
2106 }
2107 }
2108
2109 /* Remove the old stmt and insert the transformed sequence
2110 instead. */
2111 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2112 gsi_remove (gsi, true);
2113
2114 /* Return since we don't want gsi_next () */
2115 return;
2116
2117 case GIMPLE_EH_ELSE:
2118 /* We should be eliminating this in lower_try_finally et al. */
2119 gcc_unreachable ();
2120
2121 default:
2122 /* A type, a decl, or some kind of statement that we're not
2123 interested in. Don't walk them. */
2124 break;
2125 }
2126
2127 gsi_next (gsi);
2128 }
2129
2130 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2131
2132 static void
2133 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2134 {
2135 gimple_stmt_iterator gsi;
2136 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2137 lower_eh_constructs_2 (state, &gsi);
2138 }
2139
2140 namespace {
2141
2142 const pass_data pass_data_lower_eh =
2143 {
2144 GIMPLE_PASS, /* type */
2145 "eh", /* name */
2146 OPTGROUP_NONE, /* optinfo_flags */
2147 TV_TREE_EH, /* tv_id */
2148 PROP_gimple_lcf, /* properties_required */
2149 PROP_gimple_leh, /* properties_provided */
2150 0, /* properties_destroyed */
2151 0, /* todo_flags_start */
2152 0, /* todo_flags_finish */
2153 };
2154
2155 class pass_lower_eh : public gimple_opt_pass
2156 {
2157 public:
2158 pass_lower_eh (gcc::context *ctxt)
2159 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2160 {}
2161
2162 /* opt_pass methods: */
2163 virtual unsigned int execute (function *);
2164
2165 }; // class pass_lower_eh
2166
2167 unsigned int
2168 pass_lower_eh::execute (function *fun)
2169 {
2170 struct leh_state null_state;
2171 gimple_seq bodyp;
2172
2173 bodyp = gimple_body (current_function_decl);
2174 if (bodyp == NULL)
2175 return 0;
2176
2177 finally_tree = new hash_table<finally_tree_hasher> (31);
2178 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2179 memset (&null_state, 0, sizeof (null_state));
2180
2181 collect_finally_tree_1 (bodyp, NULL);
2182 lower_eh_constructs_1 (&null_state, &bodyp);
2183 gimple_set_body (current_function_decl, bodyp);
2184
2185 /* We assume there's a return statement, or something, at the end of
2186 the function, and thus ploping the EH sequence afterward won't
2187 change anything. */
2188 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2189 gimple_seq_add_seq (&bodyp, eh_seq);
2190
2191 /* We assume that since BODYP already existed, adding EH_SEQ to it
2192 didn't change its value, and we don't have to re-set the function. */
2193 gcc_assert (bodyp == gimple_body (current_function_decl));
2194
2195 delete finally_tree;
2196 finally_tree = NULL;
2197 BITMAP_FREE (eh_region_may_contain_throw_map);
2198 eh_seq = NULL;
2199
2200 /* If this function needs a language specific EH personality routine
2201 and the frontend didn't already set one do so now. */
2202 if (function_needs_eh_personality (fun) == eh_personality_lang
2203 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2204 DECL_FUNCTION_PERSONALITY (current_function_decl)
2205 = lang_hooks.eh_personality ();
2206
2207 return 0;
2208 }
2209
2210 } // anon namespace
2211
2212 gimple_opt_pass *
2213 make_pass_lower_eh (gcc::context *ctxt)
2214 {
2215 return new pass_lower_eh (ctxt);
2216 }
2217 \f
2218 /* Create the multiple edges from an EH_DISPATCH statement to all of
2219 the possible handlers for its EH region. Return true if there's
2220 no fallthru edge; false if there is. */
2221
2222 bool
2223 make_eh_dispatch_edges (geh_dispatch *stmt)
2224 {
2225 eh_region r;
2226 eh_catch c;
2227 basic_block src, dst;
2228
2229 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2230 src = gimple_bb (stmt);
2231
2232 switch (r->type)
2233 {
2234 case ERT_TRY:
2235 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2236 {
2237 dst = label_to_block (c->label);
2238 make_edge (src, dst, 0);
2239
2240 /* A catch-all handler doesn't have a fallthru. */
2241 if (c->type_list == NULL)
2242 return false;
2243 }
2244 break;
2245
2246 case ERT_ALLOWED_EXCEPTIONS:
2247 dst = label_to_block (r->u.allowed.label);
2248 make_edge (src, dst, 0);
2249 break;
2250
2251 default:
2252 gcc_unreachable ();
2253 }
2254
2255 return true;
2256 }
2257
2258 /* Create the single EH edge from STMT to its nearest landing pad,
2259 if there is such a landing pad within the current function. */
2260
2261 void
2262 make_eh_edges (gimple stmt)
2263 {
2264 basic_block src, dst;
2265 eh_landing_pad lp;
2266 int lp_nr;
2267
2268 lp_nr = lookup_stmt_eh_lp (stmt);
2269 if (lp_nr <= 0)
2270 return;
2271
2272 lp = get_eh_landing_pad_from_number (lp_nr);
2273 gcc_assert (lp != NULL);
2274
2275 src = gimple_bb (stmt);
2276 dst = label_to_block (lp->post_landing_pad);
2277 make_edge (src, dst, EDGE_EH);
2278 }
2279
2280 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2281 do not actually perform the final edge redirection.
2282
2283 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2284 we intend to change the destination EH region as well; this means
2285 EH_LANDING_PAD_NR must already be set on the destination block label.
2286 If false, we're being called from generic cfg manipulation code and we
2287 should preserve our place within the region tree. */
2288
2289 static void
2290 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2291 {
2292 eh_landing_pad old_lp, new_lp;
2293 basic_block old_bb;
2294 gimple throw_stmt;
2295 int old_lp_nr, new_lp_nr;
2296 tree old_label, new_label;
2297 edge_iterator ei;
2298 edge e;
2299
2300 old_bb = edge_in->dest;
2301 old_label = gimple_block_label (old_bb);
2302 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2303 gcc_assert (old_lp_nr > 0);
2304 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2305
2306 throw_stmt = last_stmt (edge_in->src);
2307 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2308
2309 new_label = gimple_block_label (new_bb);
2310
2311 /* Look for an existing region that might be using NEW_BB already. */
2312 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2313 if (new_lp_nr)
2314 {
2315 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2316 gcc_assert (new_lp);
2317
2318 /* Unless CHANGE_REGION is true, the new and old landing pad
2319 had better be associated with the same EH region. */
2320 gcc_assert (change_region || new_lp->region == old_lp->region);
2321 }
2322 else
2323 {
2324 new_lp = NULL;
2325 gcc_assert (!change_region);
2326 }
2327
2328 /* Notice when we redirect the last EH edge away from OLD_BB. */
2329 FOR_EACH_EDGE (e, ei, old_bb->preds)
2330 if (e != edge_in && (e->flags & EDGE_EH))
2331 break;
2332
2333 if (new_lp)
2334 {
2335 /* NEW_LP already exists. If there are still edges into OLD_LP,
2336 there's nothing to do with the EH tree. If there are no more
2337 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2338 If CHANGE_REGION is true, then our caller is expecting to remove
2339 the landing pad. */
2340 if (e == NULL && !change_region)
2341 remove_eh_landing_pad (old_lp);
2342 }
2343 else
2344 {
2345 /* No correct landing pad exists. If there are no more edges
2346 into OLD_LP, then we can simply re-use the existing landing pad.
2347 Otherwise, we have to create a new landing pad. */
2348 if (e == NULL)
2349 {
2350 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2351 new_lp = old_lp;
2352 }
2353 else
2354 new_lp = gen_eh_landing_pad (old_lp->region);
2355 new_lp->post_landing_pad = new_label;
2356 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2357 }
2358
2359 /* Maybe move the throwing statement to the new region. */
2360 if (old_lp != new_lp)
2361 {
2362 remove_stmt_from_eh_lp (throw_stmt);
2363 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2364 }
2365 }
2366
2367 /* Redirect EH edge E to NEW_BB. */
2368
2369 edge
2370 redirect_eh_edge (edge edge_in, basic_block new_bb)
2371 {
2372 redirect_eh_edge_1 (edge_in, new_bb, false);
2373 return ssa_redirect_edge (edge_in, new_bb);
2374 }
2375
2376 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2377 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2378 The actual edge update will happen in the caller. */
2379
2380 void
2381 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2382 {
2383 tree new_lab = gimple_block_label (new_bb);
2384 bool any_changed = false;
2385 basic_block old_bb;
2386 eh_region r;
2387 eh_catch c;
2388
2389 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2390 switch (r->type)
2391 {
2392 case ERT_TRY:
2393 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2394 {
2395 old_bb = label_to_block (c->label);
2396 if (old_bb == e->dest)
2397 {
2398 c->label = new_lab;
2399 any_changed = true;
2400 }
2401 }
2402 break;
2403
2404 case ERT_ALLOWED_EXCEPTIONS:
2405 old_bb = label_to_block (r->u.allowed.label);
2406 gcc_assert (old_bb == e->dest);
2407 r->u.allowed.label = new_lab;
2408 any_changed = true;
2409 break;
2410
2411 default:
2412 gcc_unreachable ();
2413 }
2414
2415 gcc_assert (any_changed);
2416 }
2417 \f
2418 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2419
2420 bool
2421 operation_could_trap_helper_p (enum tree_code op,
2422 bool fp_operation,
2423 bool honor_trapv,
2424 bool honor_nans,
2425 bool honor_snans,
2426 tree divisor,
2427 bool *handled)
2428 {
2429 *handled = true;
2430 switch (op)
2431 {
2432 case TRUNC_DIV_EXPR:
2433 case CEIL_DIV_EXPR:
2434 case FLOOR_DIV_EXPR:
2435 case ROUND_DIV_EXPR:
2436 case EXACT_DIV_EXPR:
2437 case CEIL_MOD_EXPR:
2438 case FLOOR_MOD_EXPR:
2439 case ROUND_MOD_EXPR:
2440 case TRUNC_MOD_EXPR:
2441 case RDIV_EXPR:
2442 if (honor_snans || honor_trapv)
2443 return true;
2444 if (fp_operation)
2445 return flag_trapping_math;
2446 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2447 return true;
2448 return false;
2449
2450 case LT_EXPR:
2451 case LE_EXPR:
2452 case GT_EXPR:
2453 case GE_EXPR:
2454 case LTGT_EXPR:
2455 /* Some floating point comparisons may trap. */
2456 return honor_nans;
2457
2458 case EQ_EXPR:
2459 case NE_EXPR:
2460 case UNORDERED_EXPR:
2461 case ORDERED_EXPR:
2462 case UNLT_EXPR:
2463 case UNLE_EXPR:
2464 case UNGT_EXPR:
2465 case UNGE_EXPR:
2466 case UNEQ_EXPR:
2467 return honor_snans;
2468
2469 case NEGATE_EXPR:
2470 case ABS_EXPR:
2471 case CONJ_EXPR:
2472 /* These operations don't trap with floating point. */
2473 if (honor_trapv)
2474 return true;
2475 return false;
2476
2477 case PLUS_EXPR:
2478 case MINUS_EXPR:
2479 case MULT_EXPR:
2480 /* Any floating arithmetic may trap. */
2481 if (fp_operation && flag_trapping_math)
2482 return true;
2483 if (honor_trapv)
2484 return true;
2485 return false;
2486
2487 case COMPLEX_EXPR:
2488 case CONSTRUCTOR:
2489 /* Constructing an object cannot trap. */
2490 return false;
2491
2492 default:
2493 /* Any floating arithmetic may trap. */
2494 if (fp_operation && flag_trapping_math)
2495 return true;
2496
2497 *handled = false;
2498 return false;
2499 }
2500 }
2501
2502 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2503 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2504 type operands that may trap. If OP is a division operator, DIVISOR contains
2505 the value of the divisor. */
2506
2507 bool
2508 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2509 tree divisor)
2510 {
2511 bool honor_nans = (fp_operation && flag_trapping_math
2512 && !flag_finite_math_only);
2513 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2514 bool handled;
2515
2516 if (TREE_CODE_CLASS (op) != tcc_comparison
2517 && TREE_CODE_CLASS (op) != tcc_unary
2518 && TREE_CODE_CLASS (op) != tcc_binary)
2519 return false;
2520
2521 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2522 honor_nans, honor_snans, divisor,
2523 &handled);
2524 }
2525
2526
2527 /* Returns true if it is possible to prove that the index of
2528 an array access REF (an ARRAY_REF expression) falls into the
2529 array bounds. */
2530
2531 static bool
2532 in_array_bounds_p (tree ref)
2533 {
2534 tree idx = TREE_OPERAND (ref, 1);
2535 tree min, max;
2536
2537 if (TREE_CODE (idx) != INTEGER_CST)
2538 return false;
2539
2540 min = array_ref_low_bound (ref);
2541 max = array_ref_up_bound (ref);
2542 if (!min
2543 || !max
2544 || TREE_CODE (min) != INTEGER_CST
2545 || TREE_CODE (max) != INTEGER_CST)
2546 return false;
2547
2548 if (tree_int_cst_lt (idx, min)
2549 || tree_int_cst_lt (max, idx))
2550 return false;
2551
2552 return true;
2553 }
2554
2555 /* Returns true if it is possible to prove that the range of
2556 an array access REF (an ARRAY_RANGE_REF expression) falls
2557 into the array bounds. */
2558
2559 static bool
2560 range_in_array_bounds_p (tree ref)
2561 {
2562 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2563 tree range_min, range_max, min, max;
2564
2565 range_min = TYPE_MIN_VALUE (domain_type);
2566 range_max = TYPE_MAX_VALUE (domain_type);
2567 if (!range_min
2568 || !range_max
2569 || TREE_CODE (range_min) != INTEGER_CST
2570 || TREE_CODE (range_max) != INTEGER_CST)
2571 return false;
2572
2573 min = array_ref_low_bound (ref);
2574 max = array_ref_up_bound (ref);
2575 if (!min
2576 || !max
2577 || TREE_CODE (min) != INTEGER_CST
2578 || TREE_CODE (max) != INTEGER_CST)
2579 return false;
2580
2581 if (tree_int_cst_lt (range_min, min)
2582 || tree_int_cst_lt (max, range_max))
2583 return false;
2584
2585 return true;
2586 }
2587
2588 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2589 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2590 This routine expects only GIMPLE lhs or rhs input. */
2591
2592 bool
2593 tree_could_trap_p (tree expr)
2594 {
2595 enum tree_code code;
2596 bool fp_operation = false;
2597 bool honor_trapv = false;
2598 tree t, base, div = NULL_TREE;
2599
2600 if (!expr)
2601 return false;
2602
2603 code = TREE_CODE (expr);
2604 t = TREE_TYPE (expr);
2605
2606 if (t)
2607 {
2608 if (COMPARISON_CLASS_P (expr))
2609 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2610 else
2611 fp_operation = FLOAT_TYPE_P (t);
2612 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2613 }
2614
2615 if (TREE_CODE_CLASS (code) == tcc_binary)
2616 div = TREE_OPERAND (expr, 1);
2617 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2618 return true;
2619
2620 restart:
2621 switch (code)
2622 {
2623 case COMPONENT_REF:
2624 case REALPART_EXPR:
2625 case IMAGPART_EXPR:
2626 case BIT_FIELD_REF:
2627 case VIEW_CONVERT_EXPR:
2628 case WITH_SIZE_EXPR:
2629 expr = TREE_OPERAND (expr, 0);
2630 code = TREE_CODE (expr);
2631 goto restart;
2632
2633 case ARRAY_RANGE_REF:
2634 base = TREE_OPERAND (expr, 0);
2635 if (tree_could_trap_p (base))
2636 return true;
2637 if (TREE_THIS_NOTRAP (expr))
2638 return false;
2639 return !range_in_array_bounds_p (expr);
2640
2641 case ARRAY_REF:
2642 base = TREE_OPERAND (expr, 0);
2643 if (tree_could_trap_p (base))
2644 return true;
2645 if (TREE_THIS_NOTRAP (expr))
2646 return false;
2647 return !in_array_bounds_p (expr);
2648
2649 case TARGET_MEM_REF:
2650 case MEM_REF:
2651 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2652 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2653 return true;
2654 if (TREE_THIS_NOTRAP (expr))
2655 return false;
2656 /* We cannot prove that the access is in-bounds when we have
2657 variable-index TARGET_MEM_REFs. */
2658 if (code == TARGET_MEM_REF
2659 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2660 return true;
2661 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2662 {
2663 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2664 offset_int off = mem_ref_offset (expr);
2665 if (wi::neg_p (off, SIGNED))
2666 return true;
2667 if (TREE_CODE (base) == STRING_CST)
2668 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2669 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2670 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2671 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2672 return true;
2673 /* Now we are sure the first byte of the access is inside
2674 the object. */
2675 return false;
2676 }
2677 return true;
2678
2679 case INDIRECT_REF:
2680 return !TREE_THIS_NOTRAP (expr);
2681
2682 case ASM_EXPR:
2683 return TREE_THIS_VOLATILE (expr);
2684
2685 case CALL_EXPR:
2686 t = get_callee_fndecl (expr);
2687 /* Assume that calls to weak functions may trap. */
2688 if (!t || !DECL_P (t))
2689 return true;
2690 if (DECL_WEAK (t))
2691 return tree_could_trap_p (t);
2692 return false;
2693
2694 case FUNCTION_DECL:
2695 /* Assume that accesses to weak functions may trap, unless we know
2696 they are certainly defined in current TU or in some other
2697 LTO partition. */
2698 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2699 {
2700 cgraph_node *node = cgraph_node::get (expr);
2701 if (node)
2702 node = node->function_symbol ();
2703 return !(node && node->in_other_partition);
2704 }
2705 return false;
2706
2707 case VAR_DECL:
2708 /* Assume that accesses to weak vars may trap, unless we know
2709 they are certainly defined in current TU or in some other
2710 LTO partition. */
2711 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2712 {
2713 varpool_node *node = varpool_node::get (expr);
2714 if (node)
2715 node = node->ultimate_alias_target ();
2716 return !(node && node->in_other_partition);
2717 }
2718 return false;
2719
2720 default:
2721 return false;
2722 }
2723 }
2724
2725
2726 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2727 an assignment or a conditional) may throw. */
2728
2729 static bool
2730 stmt_could_throw_1_p (gimple stmt)
2731 {
2732 enum tree_code code = gimple_expr_code (stmt);
2733 bool honor_nans = false;
2734 bool honor_snans = false;
2735 bool fp_operation = false;
2736 bool honor_trapv = false;
2737 tree t;
2738 size_t i;
2739 bool handled, ret;
2740
2741 if (TREE_CODE_CLASS (code) == tcc_comparison
2742 || TREE_CODE_CLASS (code) == tcc_unary
2743 || TREE_CODE_CLASS (code) == tcc_binary)
2744 {
2745 if (is_gimple_assign (stmt)
2746 && TREE_CODE_CLASS (code) == tcc_comparison)
2747 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2748 else if (gimple_code (stmt) == GIMPLE_COND)
2749 t = TREE_TYPE (gimple_cond_lhs (stmt));
2750 else
2751 t = gimple_expr_type (stmt);
2752 fp_operation = FLOAT_TYPE_P (t);
2753 if (fp_operation)
2754 {
2755 honor_nans = flag_trapping_math && !flag_finite_math_only;
2756 honor_snans = flag_signaling_nans != 0;
2757 }
2758 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2759 honor_trapv = true;
2760 }
2761
2762 /* Check if the main expression may trap. */
2763 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2764 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2765 honor_nans, honor_snans, t,
2766 &handled);
2767 if (handled)
2768 return ret;
2769
2770 /* If the expression does not trap, see if any of the individual operands may
2771 trap. */
2772 for (i = 0; i < gimple_num_ops (stmt); i++)
2773 if (tree_could_trap_p (gimple_op (stmt, i)))
2774 return true;
2775
2776 return false;
2777 }
2778
2779
2780 /* Return true if statement STMT could throw an exception. */
2781
2782 bool
2783 stmt_could_throw_p (gimple stmt)
2784 {
2785 if (!flag_exceptions)
2786 return false;
2787
2788 /* The only statements that can throw an exception are assignments,
2789 conditionals, calls, resx, and asms. */
2790 switch (gimple_code (stmt))
2791 {
2792 case GIMPLE_RESX:
2793 return true;
2794
2795 case GIMPLE_CALL:
2796 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2797
2798 case GIMPLE_ASSIGN:
2799 case GIMPLE_COND:
2800 if (!cfun->can_throw_non_call_exceptions)
2801 return false;
2802 return stmt_could_throw_1_p (stmt);
2803
2804 case GIMPLE_ASM:
2805 if (!cfun->can_throw_non_call_exceptions)
2806 return false;
2807 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2808
2809 default:
2810 return false;
2811 }
2812 }
2813
2814
2815 /* Return true if expression T could throw an exception. */
2816
2817 bool
2818 tree_could_throw_p (tree t)
2819 {
2820 if (!flag_exceptions)
2821 return false;
2822 if (TREE_CODE (t) == MODIFY_EXPR)
2823 {
2824 if (cfun->can_throw_non_call_exceptions
2825 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2826 return true;
2827 t = TREE_OPERAND (t, 1);
2828 }
2829
2830 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2831 t = TREE_OPERAND (t, 0);
2832 if (TREE_CODE (t) == CALL_EXPR)
2833 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2834 if (cfun->can_throw_non_call_exceptions)
2835 return tree_could_trap_p (t);
2836 return false;
2837 }
2838
2839 /* Return true if STMT can throw an exception that is not caught within
2840 the current function (CFUN). */
2841
2842 bool
2843 stmt_can_throw_external (gimple stmt)
2844 {
2845 int lp_nr;
2846
2847 if (!stmt_could_throw_p (stmt))
2848 return false;
2849
2850 lp_nr = lookup_stmt_eh_lp (stmt);
2851 return lp_nr == 0;
2852 }
2853
2854 /* Return true if STMT can throw an exception that is caught within
2855 the current function (CFUN). */
2856
2857 bool
2858 stmt_can_throw_internal (gimple stmt)
2859 {
2860 int lp_nr;
2861
2862 if (!stmt_could_throw_p (stmt))
2863 return false;
2864
2865 lp_nr = lookup_stmt_eh_lp (stmt);
2866 return lp_nr > 0;
2867 }
2868
2869 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2870 remove any entry it might have from the EH table. Return true if
2871 any change was made. */
2872
2873 bool
2874 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2875 {
2876 if (stmt_could_throw_p (stmt))
2877 return false;
2878 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2879 }
2880
2881 /* Likewise, but always use the current function. */
2882
2883 bool
2884 maybe_clean_eh_stmt (gimple stmt)
2885 {
2886 return maybe_clean_eh_stmt_fn (cfun, stmt);
2887 }
2888
2889 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2890 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2891 in the table if it should be in there. Return TRUE if a replacement was
2892 done that my require an EH edge purge. */
2893
2894 bool
2895 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2896 {
2897 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2898
2899 if (lp_nr != 0)
2900 {
2901 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2902
2903 if (new_stmt == old_stmt && new_stmt_could_throw)
2904 return false;
2905
2906 remove_stmt_from_eh_lp (old_stmt);
2907 if (new_stmt_could_throw)
2908 {
2909 add_stmt_to_eh_lp (new_stmt, lp_nr);
2910 return false;
2911 }
2912 else
2913 return true;
2914 }
2915
2916 return false;
2917 }
2918
2919 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2920 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2921 operand is the return value of duplicate_eh_regions. */
2922
2923 bool
2924 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2925 struct function *old_fun, gimple old_stmt,
2926 hash_map<void *, void *> *map,
2927 int default_lp_nr)
2928 {
2929 int old_lp_nr, new_lp_nr;
2930
2931 if (!stmt_could_throw_p (new_stmt))
2932 return false;
2933
2934 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2935 if (old_lp_nr == 0)
2936 {
2937 if (default_lp_nr == 0)
2938 return false;
2939 new_lp_nr = default_lp_nr;
2940 }
2941 else if (old_lp_nr > 0)
2942 {
2943 eh_landing_pad old_lp, new_lp;
2944
2945 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2946 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
2947 new_lp_nr = new_lp->index;
2948 }
2949 else
2950 {
2951 eh_region old_r, new_r;
2952
2953 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2954 new_r = static_cast<eh_region> (*map->get (old_r));
2955 new_lp_nr = -new_r->index;
2956 }
2957
2958 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2959 return true;
2960 }
2961
2962 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2963 and thus no remapping is required. */
2964
2965 bool
2966 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2967 {
2968 int lp_nr;
2969
2970 if (!stmt_could_throw_p (new_stmt))
2971 return false;
2972
2973 lp_nr = lookup_stmt_eh_lp (old_stmt);
2974 if (lp_nr == 0)
2975 return false;
2976
2977 add_stmt_to_eh_lp (new_stmt, lp_nr);
2978 return true;
2979 }
2980 \f
2981 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2982 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2983 this only handles handlers consisting of a single call, as that's the
2984 important case for C++: a destructor call for a particular object showing
2985 up in multiple handlers. */
2986
2987 static bool
2988 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2989 {
2990 gimple_stmt_iterator gsi;
2991 gimple ones, twos;
2992 unsigned int ai;
2993
2994 gsi = gsi_start (oneh);
2995 if (!gsi_one_before_end_p (gsi))
2996 return false;
2997 ones = gsi_stmt (gsi);
2998
2999 gsi = gsi_start (twoh);
3000 if (!gsi_one_before_end_p (gsi))
3001 return false;
3002 twos = gsi_stmt (gsi);
3003
3004 if (!is_gimple_call (ones)
3005 || !is_gimple_call (twos)
3006 || gimple_call_lhs (ones)
3007 || gimple_call_lhs (twos)
3008 || gimple_call_chain (ones)
3009 || gimple_call_chain (twos)
3010 || !gimple_call_same_target_p (ones, twos)
3011 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3012 return false;
3013
3014 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3015 if (!operand_equal_p (gimple_call_arg (ones, ai),
3016 gimple_call_arg (twos, ai), 0))
3017 return false;
3018
3019 return true;
3020 }
3021
3022 /* Optimize
3023 try { A() } finally { try { ~B() } catch { ~A() } }
3024 try { ... } finally { ~A() }
3025 into
3026 try { A() } catch { ~B() }
3027 try { ~B() ... } finally { ~A() }
3028
3029 This occurs frequently in C++, where A is a local variable and B is a
3030 temporary used in the initializer for A. */
3031
3032 static void
3033 optimize_double_finally (gtry *one, gtry *two)
3034 {
3035 gimple oneh;
3036 gimple_stmt_iterator gsi;
3037 gimple_seq cleanup;
3038
3039 cleanup = gimple_try_cleanup (one);
3040 gsi = gsi_start (cleanup);
3041 if (!gsi_one_before_end_p (gsi))
3042 return;
3043
3044 oneh = gsi_stmt (gsi);
3045 if (gimple_code (oneh) != GIMPLE_TRY
3046 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3047 return;
3048
3049 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3050 {
3051 gimple_seq seq = gimple_try_eval (oneh);
3052
3053 gimple_try_set_cleanup (one, seq);
3054 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3055 seq = copy_gimple_seq_and_replace_locals (seq);
3056 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3057 gimple_try_set_eval (two, seq);
3058 }
3059 }
3060
3061 /* Perform EH refactoring optimizations that are simpler to do when code
3062 flow has been lowered but EH structures haven't. */
3063
3064 static void
3065 refactor_eh_r (gimple_seq seq)
3066 {
3067 gimple_stmt_iterator gsi;
3068 gimple one, two;
3069
3070 one = NULL;
3071 two = NULL;
3072 gsi = gsi_start (seq);
3073 while (1)
3074 {
3075 one = two;
3076 if (gsi_end_p (gsi))
3077 two = NULL;
3078 else
3079 two = gsi_stmt (gsi);
3080 if (one && two)
3081 if (gtry *try_one = dyn_cast <gtry *> (one))
3082 if (gtry *try_two = dyn_cast <gtry *> (two))
3083 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3084 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3085 optimize_double_finally (try_one, try_two);
3086 if (one)
3087 switch (gimple_code (one))
3088 {
3089 case GIMPLE_TRY:
3090 refactor_eh_r (gimple_try_eval (one));
3091 refactor_eh_r (gimple_try_cleanup (one));
3092 break;
3093 case GIMPLE_CATCH:
3094 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3095 break;
3096 case GIMPLE_EH_FILTER:
3097 refactor_eh_r (gimple_eh_filter_failure (one));
3098 break;
3099 case GIMPLE_EH_ELSE:
3100 {
3101 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3102 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3103 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3104 }
3105 break;
3106 default:
3107 break;
3108 }
3109 if (two)
3110 gsi_next (&gsi);
3111 else
3112 break;
3113 }
3114 }
3115
3116 namespace {
3117
3118 const pass_data pass_data_refactor_eh =
3119 {
3120 GIMPLE_PASS, /* type */
3121 "ehopt", /* name */
3122 OPTGROUP_NONE, /* optinfo_flags */
3123 TV_TREE_EH, /* tv_id */
3124 PROP_gimple_lcf, /* properties_required */
3125 0, /* properties_provided */
3126 0, /* properties_destroyed */
3127 0, /* todo_flags_start */
3128 0, /* todo_flags_finish */
3129 };
3130
3131 class pass_refactor_eh : public gimple_opt_pass
3132 {
3133 public:
3134 pass_refactor_eh (gcc::context *ctxt)
3135 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3136 {}
3137
3138 /* opt_pass methods: */
3139 virtual bool gate (function *) { return flag_exceptions != 0; }
3140 virtual unsigned int execute (function *)
3141 {
3142 refactor_eh_r (gimple_body (current_function_decl));
3143 return 0;
3144 }
3145
3146 }; // class pass_refactor_eh
3147
3148 } // anon namespace
3149
3150 gimple_opt_pass *
3151 make_pass_refactor_eh (gcc::context *ctxt)
3152 {
3153 return new pass_refactor_eh (ctxt);
3154 }
3155 \f
3156 /* At the end of gimple optimization, we can lower RESX. */
3157
3158 static bool
3159 lower_resx (basic_block bb, gresx *stmt,
3160 hash_map<eh_region, tree> *mnt_map)
3161 {
3162 int lp_nr;
3163 eh_region src_r, dst_r;
3164 gimple_stmt_iterator gsi;
3165 gimple x;
3166 tree fn, src_nr;
3167 bool ret = false;
3168
3169 lp_nr = lookup_stmt_eh_lp (stmt);
3170 if (lp_nr != 0)
3171 dst_r = get_eh_region_from_lp_number (lp_nr);
3172 else
3173 dst_r = NULL;
3174
3175 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3176 gsi = gsi_last_bb (bb);
3177
3178 if (src_r == NULL)
3179 {
3180 /* We can wind up with no source region when pass_cleanup_eh shows
3181 that there are no entries into an eh region and deletes it, but
3182 then the block that contains the resx isn't removed. This can
3183 happen without optimization when the switch statement created by
3184 lower_try_finally_switch isn't simplified to remove the eh case.
3185
3186 Resolve this by expanding the resx node to an abort. */
3187
3188 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3189 x = gimple_build_call (fn, 0);
3190 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3191
3192 while (EDGE_COUNT (bb->succs) > 0)
3193 remove_edge (EDGE_SUCC (bb, 0));
3194 }
3195 else if (dst_r)
3196 {
3197 /* When we have a destination region, we resolve this by copying
3198 the excptr and filter values into place, and changing the edge
3199 to immediately after the landing pad. */
3200 edge e;
3201
3202 if (lp_nr < 0)
3203 {
3204 basic_block new_bb;
3205 tree lab;
3206
3207 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3208 the failure decl into a new block, if needed. */
3209 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3210
3211 tree *slot = mnt_map->get (dst_r);
3212 if (slot == NULL)
3213 {
3214 gimple_stmt_iterator gsi2;
3215
3216 new_bb = create_empty_bb (bb);
3217 add_bb_to_loop (new_bb, bb->loop_father);
3218 lab = gimple_block_label (new_bb);
3219 gsi2 = gsi_start_bb (new_bb);
3220
3221 fn = dst_r->u.must_not_throw.failure_decl;
3222 x = gimple_build_call (fn, 0);
3223 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3224 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3225
3226 mnt_map->put (dst_r, lab);
3227 }
3228 else
3229 {
3230 lab = *slot;
3231 new_bb = label_to_block (lab);
3232 }
3233
3234 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3235 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3236 e->count = bb->count;
3237 e->probability = REG_BR_PROB_BASE;
3238 }
3239 else
3240 {
3241 edge_iterator ei;
3242 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3243
3244 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3245 src_nr = build_int_cst (integer_type_node, src_r->index);
3246 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3247 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3248
3249 /* Update the flags for the outgoing edge. */
3250 e = single_succ_edge (bb);
3251 gcc_assert (e->flags & EDGE_EH);
3252 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3253
3254 /* If there are no more EH users of the landing pad, delete it. */
3255 FOR_EACH_EDGE (e, ei, e->dest->preds)
3256 if (e->flags & EDGE_EH)
3257 break;
3258 if (e == NULL)
3259 {
3260 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3261 remove_eh_landing_pad (lp);
3262 }
3263 }
3264
3265 ret = true;
3266 }
3267 else
3268 {
3269 tree var;
3270
3271 /* When we don't have a destination region, this exception escapes
3272 up the call chain. We resolve this by generating a call to the
3273 _Unwind_Resume library function. */
3274
3275 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3276 with no arguments for C++ and Java. Check for that. */
3277 if (src_r->use_cxa_end_cleanup)
3278 {
3279 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3280 x = gimple_build_call (fn, 0);
3281 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3282 }
3283 else
3284 {
3285 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3286 src_nr = build_int_cst (integer_type_node, src_r->index);
3287 x = gimple_build_call (fn, 1, src_nr);
3288 var = create_tmp_var (ptr_type_node);
3289 var = make_ssa_name (var, x);
3290 gimple_call_set_lhs (x, var);
3291 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3292
3293 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3294 x = gimple_build_call (fn, 1, var);
3295 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3296 }
3297
3298 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3299 }
3300
3301 gsi_remove (&gsi, true);
3302
3303 return ret;
3304 }
3305
3306 namespace {
3307
3308 const pass_data pass_data_lower_resx =
3309 {
3310 GIMPLE_PASS, /* type */
3311 "resx", /* name */
3312 OPTGROUP_NONE, /* optinfo_flags */
3313 TV_TREE_EH, /* tv_id */
3314 PROP_gimple_lcf, /* properties_required */
3315 0, /* properties_provided */
3316 0, /* properties_destroyed */
3317 0, /* todo_flags_start */
3318 0, /* todo_flags_finish */
3319 };
3320
3321 class pass_lower_resx : public gimple_opt_pass
3322 {
3323 public:
3324 pass_lower_resx (gcc::context *ctxt)
3325 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3326 {}
3327
3328 /* opt_pass methods: */
3329 virtual bool gate (function *) { return flag_exceptions != 0; }
3330 virtual unsigned int execute (function *);
3331
3332 }; // class pass_lower_resx
3333
3334 unsigned
3335 pass_lower_resx::execute (function *fun)
3336 {
3337 basic_block bb;
3338 bool dominance_invalidated = false;
3339 bool any_rewritten = false;
3340
3341 hash_map<eh_region, tree> mnt_map;
3342
3343 FOR_EACH_BB_FN (bb, fun)
3344 {
3345 gimple last = last_stmt (bb);
3346 if (last && is_gimple_resx (last))
3347 {
3348 dominance_invalidated |=
3349 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3350 any_rewritten = true;
3351 }
3352 }
3353
3354 if (dominance_invalidated)
3355 {
3356 free_dominance_info (CDI_DOMINATORS);
3357 free_dominance_info (CDI_POST_DOMINATORS);
3358 }
3359
3360 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3361 }
3362
3363 } // anon namespace
3364
3365 gimple_opt_pass *
3366 make_pass_lower_resx (gcc::context *ctxt)
3367 {
3368 return new pass_lower_resx (ctxt);
3369 }
3370
3371 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3372 external throw. */
3373
3374 static void
3375 optimize_clobbers (basic_block bb)
3376 {
3377 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3378 bool any_clobbers = false;
3379 bool seen_stack_restore = false;
3380 edge_iterator ei;
3381 edge e;
3382
3383 /* Only optimize anything if the bb contains at least one clobber,
3384 ends with resx (checked by caller), optionally contains some
3385 debug stmts or labels, or at most one __builtin_stack_restore
3386 call, and has an incoming EH edge. */
3387 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3388 {
3389 gimple stmt = gsi_stmt (gsi);
3390 if (is_gimple_debug (stmt))
3391 continue;
3392 if (gimple_clobber_p (stmt))
3393 {
3394 any_clobbers = true;
3395 continue;
3396 }
3397 if (!seen_stack_restore
3398 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3399 {
3400 seen_stack_restore = true;
3401 continue;
3402 }
3403 if (gimple_code (stmt) == GIMPLE_LABEL)
3404 break;
3405 return;
3406 }
3407 if (!any_clobbers)
3408 return;
3409 FOR_EACH_EDGE (e, ei, bb->preds)
3410 if (e->flags & EDGE_EH)
3411 break;
3412 if (e == NULL)
3413 return;
3414 gsi = gsi_last_bb (bb);
3415 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3416 {
3417 gimple stmt = gsi_stmt (gsi);
3418 if (!gimple_clobber_p (stmt))
3419 continue;
3420 unlink_stmt_vdef (stmt);
3421 gsi_remove (&gsi, true);
3422 release_defs (stmt);
3423 }
3424 }
3425
3426 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3427 internal throw to successor BB. */
3428
3429 static int
3430 sink_clobbers (basic_block bb)
3431 {
3432 edge e;
3433 edge_iterator ei;
3434 gimple_stmt_iterator gsi, dgsi;
3435 basic_block succbb;
3436 bool any_clobbers = false;
3437 unsigned todo = 0;
3438
3439 /* Only optimize if BB has a single EH successor and
3440 all predecessor edges are EH too. */
3441 if (!single_succ_p (bb)
3442 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3443 return 0;
3444
3445 FOR_EACH_EDGE (e, ei, bb->preds)
3446 {
3447 if ((e->flags & EDGE_EH) == 0)
3448 return 0;
3449 }
3450
3451 /* And BB contains only CLOBBER stmts before the final
3452 RESX. */
3453 gsi = gsi_last_bb (bb);
3454 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3455 {
3456 gimple stmt = gsi_stmt (gsi);
3457 if (is_gimple_debug (stmt))
3458 continue;
3459 if (gimple_code (stmt) == GIMPLE_LABEL)
3460 break;
3461 if (!gimple_clobber_p (stmt))
3462 return 0;
3463 any_clobbers = true;
3464 }
3465 if (!any_clobbers)
3466 return 0;
3467
3468 edge succe = single_succ_edge (bb);
3469 succbb = succe->dest;
3470
3471 /* See if there is a virtual PHI node to take an updated virtual
3472 operand from. */
3473 gphi *vphi = NULL;
3474 tree vuse = NULL_TREE;
3475 for (gphi_iterator gpi = gsi_start_phis (succbb);
3476 !gsi_end_p (gpi); gsi_next (&gpi))
3477 {
3478 tree res = gimple_phi_result (gpi.phi ());
3479 if (virtual_operand_p (res))
3480 {
3481 vphi = gpi.phi ();
3482 vuse = res;
3483 break;
3484 }
3485 }
3486
3487 dgsi = gsi_after_labels (succbb);
3488 gsi = gsi_last_bb (bb);
3489 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3490 {
3491 gimple stmt = gsi_stmt (gsi);
3492 tree lhs;
3493 if (is_gimple_debug (stmt))
3494 continue;
3495 if (gimple_code (stmt) == GIMPLE_LABEL)
3496 break;
3497 lhs = gimple_assign_lhs (stmt);
3498 /* Unfortunately we don't have dominance info updated at this
3499 point, so checking if
3500 dominated_by_p (CDI_DOMINATORS, succbb,
3501 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3502 would be too costly. Thus, avoid sinking any clobbers that
3503 refer to non-(D) SSA_NAMEs. */
3504 if (TREE_CODE (lhs) == MEM_REF
3505 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3506 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3507 {
3508 unlink_stmt_vdef (stmt);
3509 gsi_remove (&gsi, true);
3510 release_defs (stmt);
3511 continue;
3512 }
3513
3514 /* As we do not change stmt order when sinking across a
3515 forwarder edge we can keep virtual operands in place. */
3516 gsi_remove (&gsi, false);
3517 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3518
3519 /* But adjust virtual operands if we sunk across a PHI node. */
3520 if (vuse)
3521 {
3522 gimple use_stmt;
3523 imm_use_iterator iter;
3524 use_operand_p use_p;
3525 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3526 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3527 SET_USE (use_p, gimple_vdef (stmt));
3528 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3529 {
3530 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3531 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3532 }
3533 /* Adjust the incoming virtual operand. */
3534 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3535 SET_USE (gimple_vuse_op (stmt), vuse);
3536 }
3537 /* If there isn't a single predecessor but no virtual PHI node
3538 arrange for virtual operands to be renamed. */
3539 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3540 && !single_pred_p (succbb))
3541 {
3542 /* In this case there will be no use of the VDEF of this stmt.
3543 ??? Unless this is a secondary opportunity and we have not
3544 removed unreachable blocks yet, so we cannot assert this.
3545 Which also means we will end up renaming too many times. */
3546 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3547 mark_virtual_operands_for_renaming (cfun);
3548 todo |= TODO_update_ssa_only_virtuals;
3549 }
3550 }
3551
3552 return todo;
3553 }
3554
3555 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3556 we have found some duplicate labels and removed some edges. */
3557
3558 static bool
3559 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3560 {
3561 gimple_stmt_iterator gsi;
3562 int region_nr;
3563 eh_region r;
3564 tree filter, fn;
3565 gimple x;
3566 bool redirected = false;
3567
3568 region_nr = gimple_eh_dispatch_region (stmt);
3569 r = get_eh_region_from_number (region_nr);
3570
3571 gsi = gsi_last_bb (src);
3572
3573 switch (r->type)
3574 {
3575 case ERT_TRY:
3576 {
3577 auto_vec<tree> labels;
3578 tree default_label = NULL;
3579 eh_catch c;
3580 edge_iterator ei;
3581 edge e;
3582 hash_set<tree> seen_values;
3583
3584 /* Collect the labels for a switch. Zero the post_landing_pad
3585 field becase we'll no longer have anything keeping these labels
3586 in existence and the optimizer will be free to merge these
3587 blocks at will. */
3588 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3589 {
3590 tree tp_node, flt_node, lab = c->label;
3591 bool have_label = false;
3592
3593 c->label = NULL;
3594 tp_node = c->type_list;
3595 flt_node = c->filter_list;
3596
3597 if (tp_node == NULL)
3598 {
3599 default_label = lab;
3600 break;
3601 }
3602 do
3603 {
3604 /* Filter out duplicate labels that arise when this handler
3605 is shadowed by an earlier one. When no labels are
3606 attached to the handler anymore, we remove
3607 the corresponding edge and then we delete unreachable
3608 blocks at the end of this pass. */
3609 if (! seen_values.contains (TREE_VALUE (flt_node)))
3610 {
3611 tree t = build_case_label (TREE_VALUE (flt_node),
3612 NULL, lab);
3613 labels.safe_push (t);
3614 seen_values.add (TREE_VALUE (flt_node));
3615 have_label = true;
3616 }
3617
3618 tp_node = TREE_CHAIN (tp_node);
3619 flt_node = TREE_CHAIN (flt_node);
3620 }
3621 while (tp_node);
3622 if (! have_label)
3623 {
3624 remove_edge (find_edge (src, label_to_block (lab)));
3625 redirected = true;
3626 }
3627 }
3628
3629 /* Clean up the edge flags. */
3630 FOR_EACH_EDGE (e, ei, src->succs)
3631 {
3632 if (e->flags & EDGE_FALLTHRU)
3633 {
3634 /* If there was no catch-all, use the fallthru edge. */
3635 if (default_label == NULL)
3636 default_label = gimple_block_label (e->dest);
3637 e->flags &= ~EDGE_FALLTHRU;
3638 }
3639 }
3640 gcc_assert (default_label != NULL);
3641
3642 /* Don't generate a switch if there's only a default case.
3643 This is common in the form of try { A; } catch (...) { B; }. */
3644 if (!labels.exists ())
3645 {
3646 e = single_succ_edge (src);
3647 e->flags |= EDGE_FALLTHRU;
3648 }
3649 else
3650 {
3651 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3652 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3653 region_nr));
3654 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3655 filter = make_ssa_name (filter, x);
3656 gimple_call_set_lhs (x, filter);
3657 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3658
3659 /* Turn the default label into a default case. */
3660 default_label = build_case_label (NULL, NULL, default_label);
3661 sort_case_labels (labels);
3662
3663 x = gimple_build_switch (filter, default_label, labels);
3664 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3665 }
3666 }
3667 break;
3668
3669 case ERT_ALLOWED_EXCEPTIONS:
3670 {
3671 edge b_e = BRANCH_EDGE (src);
3672 edge f_e = FALLTHRU_EDGE (src);
3673
3674 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3675 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3676 region_nr));
3677 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3678 filter = make_ssa_name (filter, x);
3679 gimple_call_set_lhs (x, filter);
3680 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3681
3682 r->u.allowed.label = NULL;
3683 x = gimple_build_cond (EQ_EXPR, filter,
3684 build_int_cst (TREE_TYPE (filter),
3685 r->u.allowed.filter),
3686 NULL_TREE, NULL_TREE);
3687 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3688
3689 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3690 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3691 }
3692 break;
3693
3694 default:
3695 gcc_unreachable ();
3696 }
3697
3698 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3699 gsi_remove (&gsi, true);
3700 return redirected;
3701 }
3702
3703 namespace {
3704
3705 const pass_data pass_data_lower_eh_dispatch =
3706 {
3707 GIMPLE_PASS, /* type */
3708 "ehdisp", /* name */
3709 OPTGROUP_NONE, /* optinfo_flags */
3710 TV_TREE_EH, /* tv_id */
3711 PROP_gimple_lcf, /* properties_required */
3712 0, /* properties_provided */
3713 0, /* properties_destroyed */
3714 0, /* todo_flags_start */
3715 0, /* todo_flags_finish */
3716 };
3717
3718 class pass_lower_eh_dispatch : public gimple_opt_pass
3719 {
3720 public:
3721 pass_lower_eh_dispatch (gcc::context *ctxt)
3722 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3723 {}
3724
3725 /* opt_pass methods: */
3726 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3727 virtual unsigned int execute (function *);
3728
3729 }; // class pass_lower_eh_dispatch
3730
3731 unsigned
3732 pass_lower_eh_dispatch::execute (function *fun)
3733 {
3734 basic_block bb;
3735 int flags = 0;
3736 bool redirected = false;
3737
3738 assign_filter_values ();
3739
3740 FOR_EACH_BB_FN (bb, fun)
3741 {
3742 gimple last = last_stmt (bb);
3743 if (last == NULL)
3744 continue;
3745 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3746 {
3747 redirected |= lower_eh_dispatch (bb,
3748 as_a <geh_dispatch *> (last));
3749 flags |= TODO_update_ssa_only_virtuals;
3750 }
3751 else if (gimple_code (last) == GIMPLE_RESX)
3752 {
3753 if (stmt_can_throw_external (last))
3754 optimize_clobbers (bb);
3755 else
3756 flags |= sink_clobbers (bb);
3757 }
3758 }
3759
3760 if (redirected)
3761 delete_unreachable_blocks ();
3762 return flags;
3763 }
3764
3765 } // anon namespace
3766
3767 gimple_opt_pass *
3768 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3769 {
3770 return new pass_lower_eh_dispatch (ctxt);
3771 }
3772 \f
3773 /* Walk statements, see what regions and, optionally, landing pads
3774 are really referenced.
3775
3776 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3777 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3778
3779 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3780 regions are marked.
3781
3782 The caller is responsible for freeing the returned sbitmaps. */
3783
3784 static void
3785 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3786 {
3787 sbitmap r_reachable, lp_reachable;
3788 basic_block bb;
3789 bool mark_landing_pads = (lp_reachablep != NULL);
3790 gcc_checking_assert (r_reachablep != NULL);
3791
3792 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3793 bitmap_clear (r_reachable);
3794 *r_reachablep = r_reachable;
3795
3796 if (mark_landing_pads)
3797 {
3798 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3799 bitmap_clear (lp_reachable);
3800 *lp_reachablep = lp_reachable;
3801 }
3802 else
3803 lp_reachable = NULL;
3804
3805 FOR_EACH_BB_FN (bb, cfun)
3806 {
3807 gimple_stmt_iterator gsi;
3808
3809 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3810 {
3811 gimple stmt = gsi_stmt (gsi);
3812
3813 if (mark_landing_pads)
3814 {
3815 int lp_nr = lookup_stmt_eh_lp (stmt);
3816
3817 /* Negative LP numbers are MUST_NOT_THROW regions which
3818 are not considered BB enders. */
3819 if (lp_nr < 0)
3820 bitmap_set_bit (r_reachable, -lp_nr);
3821
3822 /* Positive LP numbers are real landing pads, and BB enders. */
3823 else if (lp_nr > 0)
3824 {
3825 gcc_assert (gsi_one_before_end_p (gsi));
3826 eh_region region = get_eh_region_from_lp_number (lp_nr);
3827 bitmap_set_bit (r_reachable, region->index);
3828 bitmap_set_bit (lp_reachable, lp_nr);
3829 }
3830 }
3831
3832 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3833 switch (gimple_code (stmt))
3834 {
3835 case GIMPLE_RESX:
3836 bitmap_set_bit (r_reachable,
3837 gimple_resx_region (as_a <gresx *> (stmt)));
3838 break;
3839 case GIMPLE_EH_DISPATCH:
3840 bitmap_set_bit (r_reachable,
3841 gimple_eh_dispatch_region (
3842 as_a <geh_dispatch *> (stmt)));
3843 break;
3844 case GIMPLE_CALL:
3845 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
3846 for (int i = 0; i < 2; ++i)
3847 {
3848 tree rt = gimple_call_arg (stmt, i);
3849 HOST_WIDE_INT ri = tree_to_shwi (rt);
3850
3851 gcc_assert (ri = (int)ri);
3852 bitmap_set_bit (r_reachable, ri);
3853 }
3854 break;
3855 default:
3856 break;
3857 }
3858 }
3859 }
3860 }
3861
3862 /* Remove unreachable handlers and unreachable landing pads. */
3863
3864 static void
3865 remove_unreachable_handlers (void)
3866 {
3867 sbitmap r_reachable, lp_reachable;
3868 eh_region region;
3869 eh_landing_pad lp;
3870 unsigned i;
3871
3872 mark_reachable_handlers (&r_reachable, &lp_reachable);
3873
3874 if (dump_file)
3875 {
3876 fprintf (dump_file, "Before removal of unreachable regions:\n");
3877 dump_eh_tree (dump_file, cfun);
3878 fprintf (dump_file, "Reachable regions: ");
3879 dump_bitmap_file (dump_file, r_reachable);
3880 fprintf (dump_file, "Reachable landing pads: ");
3881 dump_bitmap_file (dump_file, lp_reachable);
3882 }
3883
3884 if (dump_file)
3885 {
3886 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3887 if (region && !bitmap_bit_p (r_reachable, region->index))
3888 fprintf (dump_file,
3889 "Removing unreachable region %d\n",
3890 region->index);
3891 }
3892
3893 remove_unreachable_eh_regions (r_reachable);
3894
3895 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3896 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3897 {
3898 if (dump_file)
3899 fprintf (dump_file,
3900 "Removing unreachable landing pad %d\n",
3901 lp->index);
3902 remove_eh_landing_pad (lp);
3903 }
3904
3905 if (dump_file)
3906 {
3907 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3908 dump_eh_tree (dump_file, cfun);
3909 fprintf (dump_file, "\n\n");
3910 }
3911
3912 sbitmap_free (r_reachable);
3913 sbitmap_free (lp_reachable);
3914
3915 #ifdef ENABLE_CHECKING
3916 verify_eh_tree (cfun);
3917 #endif
3918 }
3919
3920 /* Remove unreachable handlers if any landing pads have been removed after
3921 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3922
3923 void
3924 maybe_remove_unreachable_handlers (void)
3925 {
3926 eh_landing_pad lp;
3927 unsigned i;
3928
3929 if (cfun->eh == NULL)
3930 return;
3931
3932 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3933 if (lp && lp->post_landing_pad)
3934 {
3935 if (label_to_block (lp->post_landing_pad) == NULL)
3936 {
3937 remove_unreachable_handlers ();
3938 return;
3939 }
3940 }
3941 }
3942
3943 /* Remove regions that do not have landing pads. This assumes
3944 that remove_unreachable_handlers has already been run, and
3945 that we've just manipulated the landing pads since then.
3946
3947 Preserve regions with landing pads and regions that prevent
3948 exceptions from propagating further, even if these regions
3949 are not reachable. */
3950
3951 static void
3952 remove_unreachable_handlers_no_lp (void)
3953 {
3954 eh_region region;
3955 sbitmap r_reachable;
3956 unsigned i;
3957
3958 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3959
3960 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3961 {
3962 if (! region)
3963 continue;
3964
3965 if (region->landing_pads != NULL
3966 || region->type == ERT_MUST_NOT_THROW)
3967 bitmap_set_bit (r_reachable, region->index);
3968
3969 if (dump_file
3970 && !bitmap_bit_p (r_reachable, region->index))
3971 fprintf (dump_file,
3972 "Removing unreachable region %d\n",
3973 region->index);
3974 }
3975
3976 remove_unreachable_eh_regions (r_reachable);
3977
3978 sbitmap_free (r_reachable);
3979 }
3980
3981 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3982 optimisticaly split all sorts of edges, including EH edges. The
3983 optimization passes in between may not have needed them; if not,
3984 we should undo the split.
3985
3986 Recognize this case by having one EH edge incoming to the BB and
3987 one normal edge outgoing; BB should be empty apart from the
3988 post_landing_pad label.
3989
3990 Note that this is slightly different from the empty handler case
3991 handled by cleanup_empty_eh, in that the actual handler may yet
3992 have actual code but the landing pad has been separated from the
3993 handler. As such, cleanup_empty_eh relies on this transformation
3994 having been done first. */
3995
3996 static bool
3997 unsplit_eh (eh_landing_pad lp)
3998 {
3999 basic_block bb = label_to_block (lp->post_landing_pad);
4000 gimple_stmt_iterator gsi;
4001 edge e_in, e_out;
4002
4003 /* Quickly check the edge counts on BB for singularity. */
4004 if (!single_pred_p (bb) || !single_succ_p (bb))
4005 return false;
4006 e_in = single_pred_edge (bb);
4007 e_out = single_succ_edge (bb);
4008
4009 /* Input edge must be EH and output edge must be normal. */
4010 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4011 return false;
4012
4013 /* The block must be empty except for the labels and debug insns. */
4014 gsi = gsi_after_labels (bb);
4015 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4016 gsi_next_nondebug (&gsi);
4017 if (!gsi_end_p (gsi))
4018 return false;
4019
4020 /* The destination block must not already have a landing pad
4021 for a different region. */
4022 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4023 {
4024 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4025 tree lab;
4026 int lp_nr;
4027
4028 if (!label_stmt)
4029 break;
4030 lab = gimple_label_label (label_stmt);
4031 lp_nr = EH_LANDING_PAD_NR (lab);
4032 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4033 return false;
4034 }
4035
4036 /* The new destination block must not already be a destination of
4037 the source block, lest we merge fallthru and eh edges and get
4038 all sorts of confused. */
4039 if (find_edge (e_in->src, e_out->dest))
4040 return false;
4041
4042 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4043 thought this should have been cleaned up by a phicprop pass, but
4044 that doesn't appear to handle virtuals. Propagate by hand. */
4045 if (!gimple_seq_empty_p (phi_nodes (bb)))
4046 {
4047 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4048 {
4049 gimple use_stmt;
4050 gphi *phi = gpi.phi ();
4051 tree lhs = gimple_phi_result (phi);
4052 tree rhs = gimple_phi_arg_def (phi, 0);
4053 use_operand_p use_p;
4054 imm_use_iterator iter;
4055
4056 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4057 {
4058 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4059 SET_USE (use_p, rhs);
4060 }
4061
4062 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4063 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4064
4065 remove_phi_node (&gpi, true);
4066 }
4067 }
4068
4069 if (dump_file && (dump_flags & TDF_DETAILS))
4070 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4071 lp->index, e_out->dest->index);
4072
4073 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4074 a successor edge, humor it. But do the real CFG change with the
4075 predecessor of E_OUT in order to preserve the ordering of arguments
4076 to the PHI nodes in E_OUT->DEST. */
4077 redirect_eh_edge_1 (e_in, e_out->dest, false);
4078 redirect_edge_pred (e_out, e_in->src);
4079 e_out->flags = e_in->flags;
4080 e_out->probability = e_in->probability;
4081 e_out->count = e_in->count;
4082 remove_edge (e_in);
4083
4084 return true;
4085 }
4086
4087 /* Examine each landing pad block and see if it matches unsplit_eh. */
4088
4089 static bool
4090 unsplit_all_eh (void)
4091 {
4092 bool changed = false;
4093 eh_landing_pad lp;
4094 int i;
4095
4096 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4097 if (lp)
4098 changed |= unsplit_eh (lp);
4099
4100 return changed;
4101 }
4102
4103 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4104 to OLD_BB to NEW_BB; return true on success, false on failure.
4105
4106 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4107 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4108 Virtual PHIs may be deleted and marked for renaming. */
4109
4110 static bool
4111 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4112 edge old_bb_out, bool change_region)
4113 {
4114 gphi_iterator ngsi, ogsi;
4115 edge_iterator ei;
4116 edge e;
4117 bitmap ophi_handled;
4118
4119 /* The destination block must not be a regular successor for any
4120 of the preds of the landing pad. Thus, avoid turning
4121 <..>
4122 | \ EH
4123 | <..>
4124 | /
4125 <..>
4126 into
4127 <..>
4128 | | EH
4129 <..>
4130 which CFG verification would choke on. See PR45172 and PR51089. */
4131 FOR_EACH_EDGE (e, ei, old_bb->preds)
4132 if (find_edge (e->src, new_bb))
4133 return false;
4134
4135 FOR_EACH_EDGE (e, ei, old_bb->preds)
4136 redirect_edge_var_map_clear (e);
4137
4138 ophi_handled = BITMAP_ALLOC (NULL);
4139
4140 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4141 for the edges we're going to move. */
4142 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4143 {
4144 gphi *ophi, *nphi = ngsi.phi ();
4145 tree nresult, nop;
4146
4147 nresult = gimple_phi_result (nphi);
4148 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4149
4150 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4151 the source ssa_name. */
4152 ophi = NULL;
4153 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4154 {
4155 ophi = ogsi.phi ();
4156 if (gimple_phi_result (ophi) == nop)
4157 break;
4158 ophi = NULL;
4159 }
4160
4161 /* If we did find the corresponding PHI, copy those inputs. */
4162 if (ophi)
4163 {
4164 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4165 if (!has_single_use (nop))
4166 {
4167 imm_use_iterator imm_iter;
4168 use_operand_p use_p;
4169
4170 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4171 {
4172 if (!gimple_debug_bind_p (USE_STMT (use_p))
4173 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4174 || gimple_bb (USE_STMT (use_p)) != new_bb))
4175 goto fail;
4176 }
4177 }
4178 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4179 FOR_EACH_EDGE (e, ei, old_bb->preds)
4180 {
4181 location_t oloc;
4182 tree oop;
4183
4184 if ((e->flags & EDGE_EH) == 0)
4185 continue;
4186 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4187 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4188 redirect_edge_var_map_add (e, nresult, oop, oloc);
4189 }
4190 }
4191 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4192 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4193 variable is unchanged from input to the block and we can simply
4194 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4195 else
4196 {
4197 location_t nloc
4198 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4199 FOR_EACH_EDGE (e, ei, old_bb->preds)
4200 redirect_edge_var_map_add (e, nresult, nop, nloc);
4201 }
4202 }
4203
4204 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4205 we don't know what values from the other edges into NEW_BB to use. */
4206 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4207 {
4208 gphi *ophi = ogsi.phi ();
4209 tree oresult = gimple_phi_result (ophi);
4210 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4211 goto fail;
4212 }
4213
4214 /* Finally, move the edges and update the PHIs. */
4215 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4216 if (e->flags & EDGE_EH)
4217 {
4218 /* ??? CFG manipluation routines do not try to update loop
4219 form on edge redirection. Do so manually here for now. */
4220 /* If we redirect a loop entry or latch edge that will either create
4221 a multiple entry loop or rotate the loop. If the loops merge
4222 we may have created a loop with multiple latches.
4223 All of this isn't easily fixed thus cancel the affected loop
4224 and mark the other loop as possibly having multiple latches. */
4225 if (e->dest == e->dest->loop_father->header)
4226 {
4227 mark_loop_for_removal (e->dest->loop_father);
4228 new_bb->loop_father->latch = NULL;
4229 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4230 }
4231 redirect_eh_edge_1 (e, new_bb, change_region);
4232 redirect_edge_succ (e, new_bb);
4233 flush_pending_stmts (e);
4234 }
4235 else
4236 ei_next (&ei);
4237
4238 BITMAP_FREE (ophi_handled);
4239 return true;
4240
4241 fail:
4242 FOR_EACH_EDGE (e, ei, old_bb->preds)
4243 redirect_edge_var_map_clear (e);
4244 BITMAP_FREE (ophi_handled);
4245 return false;
4246 }
4247
4248 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4249 old region to NEW_REGION at BB. */
4250
4251 static void
4252 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4253 eh_landing_pad lp, eh_region new_region)
4254 {
4255 gimple_stmt_iterator gsi;
4256 eh_landing_pad *pp;
4257
4258 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4259 continue;
4260 *pp = lp->next_lp;
4261
4262 lp->region = new_region;
4263 lp->next_lp = new_region->landing_pads;
4264 new_region->landing_pads = lp;
4265
4266 /* Delete the RESX that was matched within the empty handler block. */
4267 gsi = gsi_last_bb (bb);
4268 unlink_stmt_vdef (gsi_stmt (gsi));
4269 gsi_remove (&gsi, true);
4270
4271 /* Clean up E_OUT for the fallthru. */
4272 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4273 e_out->probability = REG_BR_PROB_BASE;
4274 }
4275
4276 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4277 unsplitting than unsplit_eh was prepared to handle, e.g. when
4278 multiple incoming edges and phis are involved. */
4279
4280 static bool
4281 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4282 {
4283 gimple_stmt_iterator gsi;
4284 tree lab;
4285
4286 /* We really ought not have totally lost everything following
4287 a landing pad label. Given that BB is empty, there had better
4288 be a successor. */
4289 gcc_assert (e_out != NULL);
4290
4291 /* The destination block must not already have a landing pad
4292 for a different region. */
4293 lab = NULL;
4294 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4295 {
4296 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4297 int lp_nr;
4298
4299 if (!stmt)
4300 break;
4301 lab = gimple_label_label (stmt);
4302 lp_nr = EH_LANDING_PAD_NR (lab);
4303 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4304 return false;
4305 }
4306
4307 /* Attempt to move the PHIs into the successor block. */
4308 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4309 {
4310 if (dump_file && (dump_flags & TDF_DETAILS))
4311 fprintf (dump_file,
4312 "Unsplit EH landing pad %d to block %i "
4313 "(via cleanup_empty_eh).\n",
4314 lp->index, e_out->dest->index);
4315 return true;
4316 }
4317
4318 return false;
4319 }
4320
4321 /* Return true if edge E_FIRST is part of an empty infinite loop
4322 or leads to such a loop through a series of single successor
4323 empty bbs. */
4324
4325 static bool
4326 infinite_empty_loop_p (edge e_first)
4327 {
4328 bool inf_loop = false;
4329 edge e;
4330
4331 if (e_first->dest == e_first->src)
4332 return true;
4333
4334 e_first->src->aux = (void *) 1;
4335 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4336 {
4337 gimple_stmt_iterator gsi;
4338 if (e->dest->aux)
4339 {
4340 inf_loop = true;
4341 break;
4342 }
4343 e->dest->aux = (void *) 1;
4344 gsi = gsi_after_labels (e->dest);
4345 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4346 gsi_next_nondebug (&gsi);
4347 if (!gsi_end_p (gsi))
4348 break;
4349 }
4350 e_first->src->aux = NULL;
4351 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4352 e->dest->aux = NULL;
4353
4354 return inf_loop;
4355 }
4356
4357 /* Examine the block associated with LP to determine if it's an empty
4358 handler for its EH region. If so, attempt to redirect EH edges to
4359 an outer region. Return true the CFG was updated in any way. This
4360 is similar to jump forwarding, just across EH edges. */
4361
4362 static bool
4363 cleanup_empty_eh (eh_landing_pad lp)
4364 {
4365 basic_block bb = label_to_block (lp->post_landing_pad);
4366 gimple_stmt_iterator gsi;
4367 gimple resx;
4368 eh_region new_region;
4369 edge_iterator ei;
4370 edge e, e_out;
4371 bool has_non_eh_pred;
4372 bool ret = false;
4373 int new_lp_nr;
4374
4375 /* There can be zero or one edges out of BB. This is the quickest test. */
4376 switch (EDGE_COUNT (bb->succs))
4377 {
4378 case 0:
4379 e_out = NULL;
4380 break;
4381 case 1:
4382 e_out = single_succ_edge (bb);
4383 break;
4384 default:
4385 return false;
4386 }
4387
4388 resx = last_stmt (bb);
4389 if (resx && is_gimple_resx (resx))
4390 {
4391 if (stmt_can_throw_external (resx))
4392 optimize_clobbers (bb);
4393 else if (sink_clobbers (bb))
4394 ret = true;
4395 }
4396
4397 gsi = gsi_after_labels (bb);
4398
4399 /* Make sure to skip debug statements. */
4400 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4401 gsi_next_nondebug (&gsi);
4402
4403 /* If the block is totally empty, look for more unsplitting cases. */
4404 if (gsi_end_p (gsi))
4405 {
4406 /* For the degenerate case of an infinite loop bail out.
4407 If bb has no successors and is totally empty, which can happen e.g.
4408 because of incorrect noreturn attribute, bail out too. */
4409 if (e_out == NULL
4410 || infinite_empty_loop_p (e_out))
4411 return ret;
4412
4413 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4414 }
4415
4416 /* The block should consist only of a single RESX statement, modulo a
4417 preceding call to __builtin_stack_restore if there is no outgoing
4418 edge, since the call can be eliminated in this case. */
4419 resx = gsi_stmt (gsi);
4420 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4421 {
4422 gsi_next (&gsi);
4423 resx = gsi_stmt (gsi);
4424 }
4425 if (!is_gimple_resx (resx))
4426 return ret;
4427 gcc_assert (gsi_one_before_end_p (gsi));
4428
4429 /* Determine if there are non-EH edges, or resx edges into the handler. */
4430 has_non_eh_pred = false;
4431 FOR_EACH_EDGE (e, ei, bb->preds)
4432 if (!(e->flags & EDGE_EH))
4433 has_non_eh_pred = true;
4434
4435 /* Find the handler that's outer of the empty handler by looking at
4436 where the RESX instruction was vectored. */
4437 new_lp_nr = lookup_stmt_eh_lp (resx);
4438 new_region = get_eh_region_from_lp_number (new_lp_nr);
4439
4440 /* If there's no destination region within the current function,
4441 redirection is trivial via removing the throwing statements from
4442 the EH region, removing the EH edges, and allowing the block
4443 to go unreachable. */
4444 if (new_region == NULL)
4445 {
4446 gcc_assert (e_out == NULL);
4447 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4448 if (e->flags & EDGE_EH)
4449 {
4450 gimple stmt = last_stmt (e->src);
4451 remove_stmt_from_eh_lp (stmt);
4452 remove_edge (e);
4453 }
4454 else
4455 ei_next (&ei);
4456 goto succeed;
4457 }
4458
4459 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4460 to handle the abort and allow the blocks to go unreachable. */
4461 if (new_region->type == ERT_MUST_NOT_THROW)
4462 {
4463 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4464 if (e->flags & EDGE_EH)
4465 {
4466 gimple stmt = last_stmt (e->src);
4467 remove_stmt_from_eh_lp (stmt);
4468 add_stmt_to_eh_lp (stmt, new_lp_nr);
4469 remove_edge (e);
4470 }
4471 else
4472 ei_next (&ei);
4473 goto succeed;
4474 }
4475
4476 /* Try to redirect the EH edges and merge the PHIs into the destination
4477 landing pad block. If the merge succeeds, we'll already have redirected
4478 all the EH edges. The handler itself will go unreachable if there were
4479 no normal edges. */
4480 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4481 goto succeed;
4482
4483 /* Finally, if all input edges are EH edges, then we can (potentially)
4484 reduce the number of transfers from the runtime by moving the landing
4485 pad from the original region to the new region. This is a win when
4486 we remove the last CLEANUP region along a particular exception
4487 propagation path. Since nothing changes except for the region with
4488 which the landing pad is associated, the PHI nodes do not need to be
4489 adjusted at all. */
4490 if (!has_non_eh_pred)
4491 {
4492 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4493 if (dump_file && (dump_flags & TDF_DETAILS))
4494 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4495 lp->index, new_region->index);
4496
4497 /* ??? The CFG didn't change, but we may have rendered the
4498 old EH region unreachable. Trigger a cleanup there. */
4499 return true;
4500 }
4501
4502 return ret;
4503
4504 succeed:
4505 if (dump_file && (dump_flags & TDF_DETAILS))
4506 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4507 remove_eh_landing_pad (lp);
4508 return true;
4509 }
4510
4511 /* Do a post-order traversal of the EH region tree. Examine each
4512 post_landing_pad block and see if we can eliminate it as empty. */
4513
4514 static bool
4515 cleanup_all_empty_eh (void)
4516 {
4517 bool changed = false;
4518 eh_landing_pad lp;
4519 int i;
4520
4521 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4522 if (lp)
4523 changed |= cleanup_empty_eh (lp);
4524
4525 return changed;
4526 }
4527
4528 /* Perform cleanups and lowering of exception handling
4529 1) cleanups regions with handlers doing nothing are optimized out
4530 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4531 3) Info about regions that are containing instructions, and regions
4532 reachable via local EH edges is collected
4533 4) Eh tree is pruned for regions no longer necessary.
4534
4535 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4536 Unify those that have the same failure decl and locus.
4537 */
4538
4539 static unsigned int
4540 execute_cleanup_eh_1 (void)
4541 {
4542 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4543 looking up unreachable landing pads. */
4544 remove_unreachable_handlers ();
4545
4546 /* Watch out for the region tree vanishing due to all unreachable. */
4547 if (cfun->eh->region_tree)
4548 {
4549 bool changed = false;
4550
4551 if (optimize)
4552 changed |= unsplit_all_eh ();
4553 changed |= cleanup_all_empty_eh ();
4554
4555 if (changed)
4556 {
4557 free_dominance_info (CDI_DOMINATORS);
4558 free_dominance_info (CDI_POST_DOMINATORS);
4559
4560 /* We delayed all basic block deletion, as we may have performed
4561 cleanups on EH edges while non-EH edges were still present. */
4562 delete_unreachable_blocks ();
4563
4564 /* We manipulated the landing pads. Remove any region that no
4565 longer has a landing pad. */
4566 remove_unreachable_handlers_no_lp ();
4567
4568 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4569 }
4570 }
4571
4572 return 0;
4573 }
4574
4575 namespace {
4576
4577 const pass_data pass_data_cleanup_eh =
4578 {
4579 GIMPLE_PASS, /* type */
4580 "ehcleanup", /* name */
4581 OPTGROUP_NONE, /* optinfo_flags */
4582 TV_TREE_EH, /* tv_id */
4583 PROP_gimple_lcf, /* properties_required */
4584 0, /* properties_provided */
4585 0, /* properties_destroyed */
4586 0, /* todo_flags_start */
4587 0, /* todo_flags_finish */
4588 };
4589
4590 class pass_cleanup_eh : public gimple_opt_pass
4591 {
4592 public:
4593 pass_cleanup_eh (gcc::context *ctxt)
4594 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4595 {}
4596
4597 /* opt_pass methods: */
4598 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4599 virtual bool gate (function *fun)
4600 {
4601 return fun->eh != NULL && fun->eh->region_tree != NULL;
4602 }
4603
4604 virtual unsigned int execute (function *);
4605
4606 }; // class pass_cleanup_eh
4607
4608 unsigned int
4609 pass_cleanup_eh::execute (function *fun)
4610 {
4611 int ret = execute_cleanup_eh_1 ();
4612
4613 /* If the function no longer needs an EH personality routine
4614 clear it. This exposes cross-language inlining opportunities
4615 and avoids references to a never defined personality routine. */
4616 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4617 && function_needs_eh_personality (fun) != eh_personality_lang)
4618 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4619
4620 return ret;
4621 }
4622
4623 } // anon namespace
4624
4625 gimple_opt_pass *
4626 make_pass_cleanup_eh (gcc::context *ctxt)
4627 {
4628 return new pass_cleanup_eh (ctxt);
4629 }
4630 \f
4631 /* Verify that BB containing STMT as the last statement, has precisely the
4632 edge that make_eh_edges would create. */
4633
4634 DEBUG_FUNCTION bool
4635 verify_eh_edges (gimple stmt)
4636 {
4637 basic_block bb = gimple_bb (stmt);
4638 eh_landing_pad lp = NULL;
4639 int lp_nr;
4640 edge_iterator ei;
4641 edge e, eh_edge;
4642
4643 lp_nr = lookup_stmt_eh_lp (stmt);
4644 if (lp_nr > 0)
4645 lp = get_eh_landing_pad_from_number (lp_nr);
4646
4647 eh_edge = NULL;
4648 FOR_EACH_EDGE (e, ei, bb->succs)
4649 {
4650 if (e->flags & EDGE_EH)
4651 {
4652 if (eh_edge)
4653 {
4654 error ("BB %i has multiple EH edges", bb->index);
4655 return true;
4656 }
4657 else
4658 eh_edge = e;
4659 }
4660 }
4661
4662 if (lp == NULL)
4663 {
4664 if (eh_edge)
4665 {
4666 error ("BB %i can not throw but has an EH edge", bb->index);
4667 return true;
4668 }
4669 return false;
4670 }
4671
4672 if (!stmt_could_throw_p (stmt))
4673 {
4674 error ("BB %i last statement has incorrectly set lp", bb->index);
4675 return true;
4676 }
4677
4678 if (eh_edge == NULL)
4679 {
4680 error ("BB %i is missing an EH edge", bb->index);
4681 return true;
4682 }
4683
4684 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4685 {
4686 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4687 return true;
4688 }
4689
4690 return false;
4691 }
4692
4693 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4694
4695 DEBUG_FUNCTION bool
4696 verify_eh_dispatch_edge (geh_dispatch *stmt)
4697 {
4698 eh_region r;
4699 eh_catch c;
4700 basic_block src, dst;
4701 bool want_fallthru = true;
4702 edge_iterator ei;
4703 edge e, fall_edge;
4704
4705 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4706 src = gimple_bb (stmt);
4707
4708 FOR_EACH_EDGE (e, ei, src->succs)
4709 gcc_assert (e->aux == NULL);
4710
4711 switch (r->type)
4712 {
4713 case ERT_TRY:
4714 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4715 {
4716 dst = label_to_block (c->label);
4717 e = find_edge (src, dst);
4718 if (e == NULL)
4719 {
4720 error ("BB %i is missing an edge", src->index);
4721 return true;
4722 }
4723 e->aux = (void *)e;
4724
4725 /* A catch-all handler doesn't have a fallthru. */
4726 if (c->type_list == NULL)
4727 {
4728 want_fallthru = false;
4729 break;
4730 }
4731 }
4732 break;
4733
4734 case ERT_ALLOWED_EXCEPTIONS:
4735 dst = label_to_block (r->u.allowed.label);
4736 e = find_edge (src, dst);
4737 if (e == NULL)
4738 {
4739 error ("BB %i is missing an edge", src->index);
4740 return true;
4741 }
4742 e->aux = (void *)e;
4743 break;
4744
4745 default:
4746 gcc_unreachable ();
4747 }
4748
4749 fall_edge = NULL;
4750 FOR_EACH_EDGE (e, ei, src->succs)
4751 {
4752 if (e->flags & EDGE_FALLTHRU)
4753 {
4754 if (fall_edge != NULL)
4755 {
4756 error ("BB %i too many fallthru edges", src->index);
4757 return true;
4758 }
4759 fall_edge = e;
4760 }
4761 else if (e->aux)
4762 e->aux = NULL;
4763 else
4764 {
4765 error ("BB %i has incorrect edge", src->index);
4766 return true;
4767 }
4768 }
4769 if ((fall_edge != NULL) ^ want_fallthru)
4770 {
4771 error ("BB %i has incorrect fallthru edge", src->index);
4772 return true;
4773 }
4774
4775 return false;
4776 }