]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
2013-03-25 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "function.h"
27 #include "except.h"
28 #include "pointer-set.h"
29 #include "tree-flow.h"
30 #include "tree-inline.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "ggc.h"
34 #include "diagnostic-core.h"
35 #include "gimple.h"
36 #include "target.h"
37 #include "cfgloop.h"
38
39 /* In some instances a tree and a gimple need to be stored in a same table,
40 i.e. in hash tables. This is a structure to do this. */
41 typedef union {tree *tp; tree t; gimple g;} treemple;
42
43 /* Nonzero if we are using EH to handle cleanups. */
44 static int using_eh_for_cleanups_p = 0;
45
46 void
47 using_eh_for_cleanups (void)
48 {
49 using_eh_for_cleanups_p = 1;
50 }
51
52 /* Misc functions used in this file. */
53
54 /* Remember and lookup EH landing pad data for arbitrary statements.
55 Really this means any statement that could_throw_p. We could
56 stuff this information into the stmt_ann data structure, but:
57
58 (1) We absolutely rely on this information being kept until
59 we get to rtl. Once we're done with lowering here, if we lose
60 the information there's no way to recover it!
61
62 (2) There are many more statements that *cannot* throw as
63 compared to those that can. We should be saving some amount
64 of space by only allocating memory for those that can throw. */
65
66 /* Add statement T in function IFUN to landing pad NUM. */
67
68 void
69 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
70 {
71 struct throw_stmt_node *n;
72 void **slot;
73
74 gcc_assert (num != 0);
75
76 n = ggc_alloc_throw_stmt_node ();
77 n->stmt = t;
78 n->lp_nr = num;
79
80 if (!get_eh_throw_stmt_table (ifun))
81 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
82 struct_ptr_eq,
83 ggc_free));
84
85 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
86 gcc_assert (!*slot);
87 *slot = n;
88 }
89
90 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
91
92 void
93 add_stmt_to_eh_lp (gimple t, int num)
94 {
95 add_stmt_to_eh_lp_fn (cfun, t, num);
96 }
97
98 /* Add statement T to the single EH landing pad in REGION. */
99
100 static void
101 record_stmt_eh_region (eh_region region, gimple t)
102 {
103 if (region == NULL)
104 return;
105 if (region->type == ERT_MUST_NOT_THROW)
106 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
107 else
108 {
109 eh_landing_pad lp = region->landing_pads;
110 if (lp == NULL)
111 lp = gen_eh_landing_pad (region);
112 else
113 gcc_assert (lp->next_lp == NULL);
114 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
115 }
116 }
117
118
119 /* Remove statement T in function IFUN from its EH landing pad. */
120
121 bool
122 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
123 {
124 struct throw_stmt_node dummy;
125 void **slot;
126
127 if (!get_eh_throw_stmt_table (ifun))
128 return false;
129
130 dummy.stmt = t;
131 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
132 NO_INSERT);
133 if (slot)
134 {
135 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
136 return true;
137 }
138 else
139 return false;
140 }
141
142
143 /* Remove statement T in the current function (cfun) from its
144 EH landing pad. */
145
146 bool
147 remove_stmt_from_eh_lp (gimple t)
148 {
149 return remove_stmt_from_eh_lp_fn (cfun, t);
150 }
151
152 /* Determine if statement T is inside an EH region in function IFUN.
153 Positive numbers indicate a landing pad index; negative numbers
154 indicate a MUST_NOT_THROW region index; zero indicates that the
155 statement is not recorded in the region table. */
156
157 int
158 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
159 {
160 struct throw_stmt_node *p, n;
161
162 if (ifun->eh->throw_stmt_table == NULL)
163 return 0;
164
165 n.stmt = t;
166 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
167 return p ? p->lp_nr : 0;
168 }
169
170 /* Likewise, but always use the current function. */
171
172 int
173 lookup_stmt_eh_lp (gimple t)
174 {
175 /* We can get called from initialized data when -fnon-call-exceptions
176 is on; prevent crash. */
177 if (!cfun)
178 return 0;
179 return lookup_stmt_eh_lp_fn (cfun, t);
180 }
181
182 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
183 nodes and LABEL_DECL nodes. We will use this during the second phase to
184 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
185
186 struct finally_tree_node
187 {
188 /* When storing a GIMPLE_TRY, we have to record a gimple. However
189 when deciding whether a GOTO to a certain LABEL_DECL (which is a
190 tree) leaves the TRY block, its necessary to record a tree in
191 this field. Thus a treemple is used. */
192 treemple child;
193 gimple parent;
194 };
195
196 /* Note that this table is *not* marked GTY. It is short-lived. */
197 static htab_t finally_tree;
198
199 static void
200 record_in_finally_tree (treemple child, gimple parent)
201 {
202 struct finally_tree_node *n;
203 void **slot;
204
205 n = XNEW (struct finally_tree_node);
206 n->child = child;
207 n->parent = parent;
208
209 slot = htab_find_slot (finally_tree, n, INSERT);
210 gcc_assert (!*slot);
211 *slot = n;
212 }
213
214 static void
215 collect_finally_tree (gimple stmt, gimple region);
216
217 /* Go through the gimple sequence. Works with collect_finally_tree to
218 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
219
220 static void
221 collect_finally_tree_1 (gimple_seq seq, gimple region)
222 {
223 gimple_stmt_iterator gsi;
224
225 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
226 collect_finally_tree (gsi_stmt (gsi), region);
227 }
228
229 static void
230 collect_finally_tree (gimple stmt, gimple region)
231 {
232 treemple temp;
233
234 switch (gimple_code (stmt))
235 {
236 case GIMPLE_LABEL:
237 temp.t = gimple_label_label (stmt);
238 record_in_finally_tree (temp, region);
239 break;
240
241 case GIMPLE_TRY:
242 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
243 {
244 temp.g = stmt;
245 record_in_finally_tree (temp, region);
246 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
247 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
248 }
249 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
250 {
251 collect_finally_tree_1 (gimple_try_eval (stmt), region);
252 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
253 }
254 break;
255
256 case GIMPLE_CATCH:
257 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
258 break;
259
260 case GIMPLE_EH_FILTER:
261 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
262 break;
263
264 case GIMPLE_EH_ELSE:
265 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
266 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
267 break;
268
269 default:
270 /* A type, a decl, or some kind of statement that we're not
271 interested in. Don't walk them. */
272 break;
273 }
274 }
275
276
277 /* Use the finally tree to determine if a jump from START to TARGET
278 would leave the try_finally node that START lives in. */
279
280 static bool
281 outside_finally_tree (treemple start, gimple target)
282 {
283 struct finally_tree_node n, *p;
284
285 do
286 {
287 n.child = start;
288 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
289 if (!p)
290 return true;
291 start.g = p->parent;
292 }
293 while (start.g != target);
294
295 return false;
296 }
297
298 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
299 nodes into a set of gotos, magic labels, and eh regions.
300 The eh region creation is straight-forward, but frobbing all the gotos
301 and such into shape isn't. */
302
303 /* The sequence into which we record all EH stuff. This will be
304 placed at the end of the function when we're all done. */
305 static gimple_seq eh_seq;
306
307 /* Record whether an EH region contains something that can throw,
308 indexed by EH region number. */
309 static bitmap eh_region_may_contain_throw_map;
310
311 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
312 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
313 The idea is to record a gimple statement for everything except for
314 the conditionals, which get their labels recorded. Since labels are
315 of type 'tree', we need this node to store both gimple and tree
316 objects. REPL_STMT is the sequence used to replace the goto/return
317 statement. CONT_STMT is used to store the statement that allows
318 the return/goto to jump to the original destination. */
319
320 struct goto_queue_node
321 {
322 treemple stmt;
323 location_t location;
324 gimple_seq repl_stmt;
325 gimple cont_stmt;
326 int index;
327 /* This is used when index >= 0 to indicate that stmt is a label (as
328 opposed to a goto stmt). */
329 int is_label;
330 };
331
332 /* State of the world while lowering. */
333
334 struct leh_state
335 {
336 /* What's "current" while constructing the eh region tree. These
337 correspond to variables of the same name in cfun->eh, which we
338 don't have easy access to. */
339 eh_region cur_region;
340
341 /* What's "current" for the purposes of __builtin_eh_pointer. For
342 a CATCH, this is the associated TRY. For an EH_FILTER, this is
343 the associated ALLOWED_EXCEPTIONS, etc. */
344 eh_region ehp_region;
345
346 /* Processing of TRY_FINALLY requires a bit more state. This is
347 split out into a separate structure so that we don't have to
348 copy so much when processing other nodes. */
349 struct leh_tf_state *tf;
350 };
351
352 struct leh_tf_state
353 {
354 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
355 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
356 this so that outside_finally_tree can reliably reference the tree used
357 in the collect_finally_tree data structures. */
358 gimple try_finally_expr;
359 gimple top_p;
360
361 /* While lowering a top_p usually it is expanded into multiple statements,
362 thus we need the following field to store them. */
363 gimple_seq top_p_seq;
364
365 /* The state outside this try_finally node. */
366 struct leh_state *outer;
367
368 /* The exception region created for it. */
369 eh_region region;
370
371 /* The goto queue. */
372 struct goto_queue_node *goto_queue;
373 size_t goto_queue_size;
374 size_t goto_queue_active;
375
376 /* Pointer map to help in searching goto_queue when it is large. */
377 struct pointer_map_t *goto_queue_map;
378
379 /* The set of unique labels seen as entries in the goto queue. */
380 vec<tree> dest_array;
381
382 /* A label to be added at the end of the completed transformed
383 sequence. It will be set if may_fallthru was true *at one time*,
384 though subsequent transformations may have cleared that flag. */
385 tree fallthru_label;
386
387 /* True if it is possible to fall out the bottom of the try block.
388 Cleared if the fallthru is converted to a goto. */
389 bool may_fallthru;
390
391 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
392 bool may_return;
393
394 /* True if the finally block can receive an exception edge.
395 Cleared if the exception case is handled by code duplication. */
396 bool may_throw;
397 };
398
399 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
400
401 /* Search for STMT in the goto queue. Return the replacement,
402 or null if the statement isn't in the queue. */
403
404 #define LARGE_GOTO_QUEUE 20
405
406 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
407
408 static gimple_seq
409 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
410 {
411 unsigned int i;
412 void **slot;
413
414 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
415 {
416 for (i = 0; i < tf->goto_queue_active; i++)
417 if ( tf->goto_queue[i].stmt.g == stmt.g)
418 return tf->goto_queue[i].repl_stmt;
419 return NULL;
420 }
421
422 /* If we have a large number of entries in the goto_queue, create a
423 pointer map and use that for searching. */
424
425 if (!tf->goto_queue_map)
426 {
427 tf->goto_queue_map = pointer_map_create ();
428 for (i = 0; i < tf->goto_queue_active; i++)
429 {
430 slot = pointer_map_insert (tf->goto_queue_map,
431 tf->goto_queue[i].stmt.g);
432 gcc_assert (*slot == NULL);
433 *slot = &tf->goto_queue[i];
434 }
435 }
436
437 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
438 if (slot != NULL)
439 return (((struct goto_queue_node *) *slot)->repl_stmt);
440
441 return NULL;
442 }
443
444 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
445 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
446 then we can just splat it in, otherwise we add the new stmts immediately
447 after the GIMPLE_COND and redirect. */
448
449 static void
450 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
451 gimple_stmt_iterator *gsi)
452 {
453 tree label;
454 gimple_seq new_seq;
455 treemple temp;
456 location_t loc = gimple_location (gsi_stmt (*gsi));
457
458 temp.tp = tp;
459 new_seq = find_goto_replacement (tf, temp);
460 if (!new_seq)
461 return;
462
463 if (gimple_seq_singleton_p (new_seq)
464 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
465 {
466 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
467 return;
468 }
469
470 label = create_artificial_label (loc);
471 /* Set the new label for the GIMPLE_COND */
472 *tp = label;
473
474 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
475 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
476 }
477
478 /* The real work of replace_goto_queue. Returns with TSI updated to
479 point to the next statement. */
480
481 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
482
483 static void
484 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
485 gimple_stmt_iterator *gsi)
486 {
487 gimple_seq seq;
488 treemple temp;
489 temp.g = NULL;
490
491 switch (gimple_code (stmt))
492 {
493 case GIMPLE_GOTO:
494 case GIMPLE_RETURN:
495 temp.g = stmt;
496 seq = find_goto_replacement (tf, temp);
497 if (seq)
498 {
499 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
500 gsi_remove (gsi, false);
501 return;
502 }
503 break;
504
505 case GIMPLE_COND:
506 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
507 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
508 break;
509
510 case GIMPLE_TRY:
511 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
512 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
513 break;
514 case GIMPLE_CATCH:
515 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
516 break;
517 case GIMPLE_EH_FILTER:
518 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
519 break;
520 case GIMPLE_EH_ELSE:
521 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
522 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
523 break;
524
525 default:
526 /* These won't have gotos in them. */
527 break;
528 }
529
530 gsi_next (gsi);
531 }
532
533 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
534
535 static void
536 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
537 {
538 gimple_stmt_iterator gsi = gsi_start (*seq);
539
540 while (!gsi_end_p (gsi))
541 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
542 }
543
544 /* Replace all goto queue members. */
545
546 static void
547 replace_goto_queue (struct leh_tf_state *tf)
548 {
549 if (tf->goto_queue_active == 0)
550 return;
551 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
552 replace_goto_queue_stmt_list (&eh_seq, tf);
553 }
554
555 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
556 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
557 a gimple return. */
558
559 static void
560 record_in_goto_queue (struct leh_tf_state *tf,
561 treemple new_stmt,
562 int index,
563 bool is_label,
564 location_t location)
565 {
566 size_t active, size;
567 struct goto_queue_node *q;
568
569 gcc_assert (!tf->goto_queue_map);
570
571 active = tf->goto_queue_active;
572 size = tf->goto_queue_size;
573 if (active >= size)
574 {
575 size = (size ? size * 2 : 32);
576 tf->goto_queue_size = size;
577 tf->goto_queue
578 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
579 }
580
581 q = &tf->goto_queue[active];
582 tf->goto_queue_active = active + 1;
583
584 memset (q, 0, sizeof (*q));
585 q->stmt = new_stmt;
586 q->index = index;
587 q->location = location;
588 q->is_label = is_label;
589 }
590
591 /* Record the LABEL label in the goto queue contained in TF.
592 TF is not null. */
593
594 static void
595 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
596 location_t location)
597 {
598 int index;
599 treemple temp, new_stmt;
600
601 if (!label)
602 return;
603
604 /* Computed and non-local gotos do not get processed. Given
605 their nature we can neither tell whether we've escaped the
606 finally block nor redirect them if we knew. */
607 if (TREE_CODE (label) != LABEL_DECL)
608 return;
609
610 /* No need to record gotos that don't leave the try block. */
611 temp.t = label;
612 if (!outside_finally_tree (temp, tf->try_finally_expr))
613 return;
614
615 if (! tf->dest_array.exists ())
616 {
617 tf->dest_array.create (10);
618 tf->dest_array.quick_push (label);
619 index = 0;
620 }
621 else
622 {
623 int n = tf->dest_array.length ();
624 for (index = 0; index < n; ++index)
625 if (tf->dest_array[index] == label)
626 break;
627 if (index == n)
628 tf->dest_array.safe_push (label);
629 }
630
631 /* In the case of a GOTO we want to record the destination label,
632 since with a GIMPLE_COND we have an easy access to the then/else
633 labels. */
634 new_stmt = stmt;
635 record_in_goto_queue (tf, new_stmt, index, true, location);
636 }
637
638 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
639 node, and if so record that fact in the goto queue associated with that
640 try_finally node. */
641
642 static void
643 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
644 {
645 struct leh_tf_state *tf = state->tf;
646 treemple new_stmt;
647
648 if (!tf)
649 return;
650
651 switch (gimple_code (stmt))
652 {
653 case GIMPLE_COND:
654 new_stmt.tp = gimple_op_ptr (stmt, 2);
655 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
656 EXPR_LOCATION (*new_stmt.tp));
657 new_stmt.tp = gimple_op_ptr (stmt, 3);
658 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
659 EXPR_LOCATION (*new_stmt.tp));
660 break;
661 case GIMPLE_GOTO:
662 new_stmt.g = stmt;
663 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
664 gimple_location (stmt));
665 break;
666
667 case GIMPLE_RETURN:
668 tf->may_return = true;
669 new_stmt.g = stmt;
670 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
671 break;
672
673 default:
674 gcc_unreachable ();
675 }
676 }
677
678
679 #ifdef ENABLE_CHECKING
680 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
681 was in fact structured, and we've not yet done jump threading, then none
682 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
683
684 static void
685 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
686 {
687 struct leh_tf_state *tf = state->tf;
688 size_t i, n;
689
690 if (!tf)
691 return;
692
693 n = gimple_switch_num_labels (switch_expr);
694
695 for (i = 0; i < n; ++i)
696 {
697 treemple temp;
698 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
699 temp.t = lab;
700 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
701 }
702 }
703 #else
704 #define verify_norecord_switch_expr(state, switch_expr)
705 #endif
706
707 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
708 non-null, insert it before the new branch. */
709
710 static void
711 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
712 {
713 gimple x;
714
715 /* In the case of a return, the queue node must be a gimple statement. */
716 gcc_assert (!q->is_label);
717
718 /* Note that the return value may have already been computed, e.g.,
719
720 int x;
721 int foo (void)
722 {
723 x = 0;
724 try {
725 return x;
726 } finally {
727 x++;
728 }
729 }
730
731 should return 0, not 1. We don't have to do anything to make
732 this happens because the return value has been placed in the
733 RESULT_DECL already. */
734
735 q->cont_stmt = q->stmt.g;
736
737 if (mod)
738 gimple_seq_add_seq (&q->repl_stmt, mod);
739
740 x = gimple_build_goto (finlab);
741 gimple_set_location (x, q->location);
742 gimple_seq_add_stmt (&q->repl_stmt, x);
743 }
744
745 /* Similar, but easier, for GIMPLE_GOTO. */
746
747 static void
748 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
749 struct leh_tf_state *tf)
750 {
751 gimple x;
752
753 gcc_assert (q->is_label);
754
755 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
756
757 if (mod)
758 gimple_seq_add_seq (&q->repl_stmt, mod);
759
760 x = gimple_build_goto (finlab);
761 gimple_set_location (x, q->location);
762 gimple_seq_add_stmt (&q->repl_stmt, x);
763 }
764
765 /* Emit a standard landing pad sequence into SEQ for REGION. */
766
767 static void
768 emit_post_landing_pad (gimple_seq *seq, eh_region region)
769 {
770 eh_landing_pad lp = region->landing_pads;
771 gimple x;
772
773 if (lp == NULL)
774 lp = gen_eh_landing_pad (region);
775
776 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
777 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
778
779 x = gimple_build_label (lp->post_landing_pad);
780 gimple_seq_add_stmt (seq, x);
781 }
782
783 /* Emit a RESX statement into SEQ for REGION. */
784
785 static void
786 emit_resx (gimple_seq *seq, eh_region region)
787 {
788 gimple x = gimple_build_resx (region->index);
789 gimple_seq_add_stmt (seq, x);
790 if (region->outer)
791 record_stmt_eh_region (region->outer, x);
792 }
793
794 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
795
796 static void
797 emit_eh_dispatch (gimple_seq *seq, eh_region region)
798 {
799 gimple x = gimple_build_eh_dispatch (region->index);
800 gimple_seq_add_stmt (seq, x);
801 }
802
803 /* Note that the current EH region may contain a throw, or a
804 call to a function which itself may contain a throw. */
805
806 static void
807 note_eh_region_may_contain_throw (eh_region region)
808 {
809 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
810 {
811 if (region->type == ERT_MUST_NOT_THROW)
812 break;
813 region = region->outer;
814 if (region == NULL)
815 break;
816 }
817 }
818
819 /* Check if REGION has been marked as containing a throw. If REGION is
820 NULL, this predicate is false. */
821
822 static inline bool
823 eh_region_may_contain_throw (eh_region r)
824 {
825 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
826 }
827
828 /* We want to transform
829 try { body; } catch { stuff; }
830 to
831 normal_seqence:
832 body;
833 over:
834 eh_seqence:
835 landing_pad:
836 stuff;
837 goto over;
838
839 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
840 should be placed before the second operand, or NULL. OVER is
841 an existing label that should be put at the exit, or NULL. */
842
843 static gimple_seq
844 frob_into_branch_around (gimple tp, eh_region region, tree over)
845 {
846 gimple x;
847 gimple_seq cleanup, result;
848 location_t loc = gimple_location (tp);
849
850 cleanup = gimple_try_cleanup (tp);
851 result = gimple_try_eval (tp);
852
853 if (region)
854 emit_post_landing_pad (&eh_seq, region);
855
856 if (gimple_seq_may_fallthru (cleanup))
857 {
858 if (!over)
859 over = create_artificial_label (loc);
860 x = gimple_build_goto (over);
861 gimple_set_location (x, loc);
862 gimple_seq_add_stmt (&cleanup, x);
863 }
864 gimple_seq_add_seq (&eh_seq, cleanup);
865
866 if (over)
867 {
868 x = gimple_build_label (over);
869 gimple_seq_add_stmt (&result, x);
870 }
871 return result;
872 }
873
874 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
875 Make sure to record all new labels found. */
876
877 static gimple_seq
878 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
879 location_t loc)
880 {
881 gimple region = NULL;
882 gimple_seq new_seq;
883 gimple_stmt_iterator gsi;
884
885 new_seq = copy_gimple_seq_and_replace_locals (seq);
886
887 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
888 {
889 gimple stmt = gsi_stmt (gsi);
890 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
891 {
892 tree block = gimple_block (stmt);
893 gimple_set_location (stmt, loc);
894 gimple_set_block (stmt, block);
895 }
896 }
897
898 if (outer_state->tf)
899 region = outer_state->tf->try_finally_expr;
900 collect_finally_tree_1 (new_seq, region);
901
902 return new_seq;
903 }
904
905 /* A subroutine of lower_try_finally. Create a fallthru label for
906 the given try_finally state. The only tricky bit here is that
907 we have to make sure to record the label in our outer context. */
908
909 static tree
910 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
911 {
912 tree label = tf->fallthru_label;
913 treemple temp;
914
915 if (!label)
916 {
917 label = create_artificial_label (gimple_location (tf->try_finally_expr));
918 tf->fallthru_label = label;
919 if (tf->outer->tf)
920 {
921 temp.t = label;
922 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
923 }
924 }
925 return label;
926 }
927
928 /* A subroutine of lower_try_finally. If FINALLY consits of a
929 GIMPLE_EH_ELSE node, return it. */
930
931 static inline gimple
932 get_eh_else (gimple_seq finally)
933 {
934 gimple x = gimple_seq_first_stmt (finally);
935 if (gimple_code (x) == GIMPLE_EH_ELSE)
936 {
937 gcc_assert (gimple_seq_singleton_p (finally));
938 return x;
939 }
940 return NULL;
941 }
942
943 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
944 langhook returns non-null, then the language requires that the exception
945 path out of a try_finally be treated specially. To wit: the code within
946 the finally block may not itself throw an exception. We have two choices
947 here. First we can duplicate the finally block and wrap it in a
948 must_not_throw region. Second, we can generate code like
949
950 try {
951 finally_block;
952 } catch {
953 if (fintmp == eh_edge)
954 protect_cleanup_actions;
955 }
956
957 where "fintmp" is the temporary used in the switch statement generation
958 alternative considered below. For the nonce, we always choose the first
959 option.
960
961 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
962
963 static void
964 honor_protect_cleanup_actions (struct leh_state *outer_state,
965 struct leh_state *this_state,
966 struct leh_tf_state *tf)
967 {
968 tree protect_cleanup_actions;
969 gimple_stmt_iterator gsi;
970 bool finally_may_fallthru;
971 gimple_seq finally;
972 gimple x, eh_else;
973
974 /* First check for nothing to do. */
975 if (lang_hooks.eh_protect_cleanup_actions == NULL)
976 return;
977 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
978 if (protect_cleanup_actions == NULL)
979 return;
980
981 finally = gimple_try_cleanup (tf->top_p);
982 eh_else = get_eh_else (finally);
983
984 /* Duplicate the FINALLY block. Only need to do this for try-finally,
985 and not for cleanups. If we've got an EH_ELSE, extract it now. */
986 if (eh_else)
987 {
988 finally = gimple_eh_else_e_body (eh_else);
989 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
990 }
991 else if (this_state)
992 finally = lower_try_finally_dup_block (finally, outer_state,
993 gimple_location (tf->try_finally_expr));
994 finally_may_fallthru = gimple_seq_may_fallthru (finally);
995
996 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
997 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
998 to be in an enclosing scope, but needs to be implemented at this level
999 to avoid a nesting violation (see wrap_temporary_cleanups in
1000 cp/decl.c). Since it's logically at an outer level, we should call
1001 terminate before we get to it, so strip it away before adding the
1002 MUST_NOT_THROW filter. */
1003 gsi = gsi_start (finally);
1004 x = gsi_stmt (gsi);
1005 if (gimple_code (x) == GIMPLE_TRY
1006 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1007 && gimple_try_catch_is_cleanup (x))
1008 {
1009 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1010 gsi_remove (&gsi, false);
1011 }
1012
1013 /* Wrap the block with protect_cleanup_actions as the action. */
1014 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1015 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1016 GIMPLE_TRY_CATCH);
1017 finally = lower_eh_must_not_throw (outer_state, x);
1018
1019 /* Drop all of this into the exception sequence. */
1020 emit_post_landing_pad (&eh_seq, tf->region);
1021 gimple_seq_add_seq (&eh_seq, finally);
1022 if (finally_may_fallthru)
1023 emit_resx (&eh_seq, tf->region);
1024
1025 /* Having now been handled, EH isn't to be considered with
1026 the rest of the outgoing edges. */
1027 tf->may_throw = false;
1028 }
1029
1030 /* A subroutine of lower_try_finally. We have determined that there is
1031 no fallthru edge out of the finally block. This means that there is
1032 no outgoing edge corresponding to any incoming edge. Restructure the
1033 try_finally node for this special case. */
1034
1035 static void
1036 lower_try_finally_nofallthru (struct leh_state *state,
1037 struct leh_tf_state *tf)
1038 {
1039 tree lab;
1040 gimple x, eh_else;
1041 gimple_seq finally;
1042 struct goto_queue_node *q, *qe;
1043
1044 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1045
1046 /* We expect that tf->top_p is a GIMPLE_TRY. */
1047 finally = gimple_try_cleanup (tf->top_p);
1048 tf->top_p_seq = gimple_try_eval (tf->top_p);
1049
1050 x = gimple_build_label (lab);
1051 gimple_seq_add_stmt (&tf->top_p_seq, x);
1052
1053 q = tf->goto_queue;
1054 qe = q + tf->goto_queue_active;
1055 for (; q < qe; ++q)
1056 if (q->index < 0)
1057 do_return_redirection (q, lab, NULL);
1058 else
1059 do_goto_redirection (q, lab, NULL, tf);
1060
1061 replace_goto_queue (tf);
1062
1063 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1064 eh_else = get_eh_else (finally);
1065 if (eh_else)
1066 {
1067 finally = gimple_eh_else_n_body (eh_else);
1068 lower_eh_constructs_1 (state, &finally);
1069 gimple_seq_add_seq (&tf->top_p_seq, finally);
1070
1071 if (tf->may_throw)
1072 {
1073 finally = gimple_eh_else_e_body (eh_else);
1074 lower_eh_constructs_1 (state, &finally);
1075
1076 emit_post_landing_pad (&eh_seq, tf->region);
1077 gimple_seq_add_seq (&eh_seq, finally);
1078 }
1079 }
1080 else
1081 {
1082 lower_eh_constructs_1 (state, &finally);
1083 gimple_seq_add_seq (&tf->top_p_seq, finally);
1084
1085 if (tf->may_throw)
1086 {
1087 emit_post_landing_pad (&eh_seq, tf->region);
1088
1089 x = gimple_build_goto (lab);
1090 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1091 gimple_seq_add_stmt (&eh_seq, x);
1092 }
1093 }
1094 }
1095
1096 /* A subroutine of lower_try_finally. We have determined that there is
1097 exactly one destination of the finally block. Restructure the
1098 try_finally node for this special case. */
1099
1100 static void
1101 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1102 {
1103 struct goto_queue_node *q, *qe;
1104 gimple x;
1105 gimple_seq finally;
1106 gimple_stmt_iterator gsi;
1107 tree finally_label;
1108 location_t loc = gimple_location (tf->try_finally_expr);
1109
1110 finally = gimple_try_cleanup (tf->top_p);
1111 tf->top_p_seq = gimple_try_eval (tf->top_p);
1112
1113 /* Since there's only one destination, and the destination edge can only
1114 either be EH or non-EH, that implies that all of our incoming edges
1115 are of the same type. Therefore we can lower EH_ELSE immediately. */
1116 x = get_eh_else (finally);
1117 if (x)
1118 {
1119 if (tf->may_throw)
1120 finally = gimple_eh_else_e_body (x);
1121 else
1122 finally = gimple_eh_else_n_body (x);
1123 }
1124
1125 lower_eh_constructs_1 (state, &finally);
1126
1127 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1128 {
1129 gimple stmt = gsi_stmt (gsi);
1130 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1131 {
1132 tree block = gimple_block (stmt);
1133 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1134 gimple_set_block (stmt, block);
1135 }
1136 }
1137
1138 if (tf->may_throw)
1139 {
1140 /* Only reachable via the exception edge. Add the given label to
1141 the head of the FINALLY block. Append a RESX at the end. */
1142 emit_post_landing_pad (&eh_seq, tf->region);
1143 gimple_seq_add_seq (&eh_seq, finally);
1144 emit_resx (&eh_seq, tf->region);
1145 return;
1146 }
1147
1148 if (tf->may_fallthru)
1149 {
1150 /* Only reachable via the fallthru edge. Do nothing but let
1151 the two blocks run together; we'll fall out the bottom. */
1152 gimple_seq_add_seq (&tf->top_p_seq, finally);
1153 return;
1154 }
1155
1156 finally_label = create_artificial_label (loc);
1157 x = gimple_build_label (finally_label);
1158 gimple_seq_add_stmt (&tf->top_p_seq, x);
1159
1160 gimple_seq_add_seq (&tf->top_p_seq, finally);
1161
1162 q = tf->goto_queue;
1163 qe = q + tf->goto_queue_active;
1164
1165 if (tf->may_return)
1166 {
1167 /* Reachable by return expressions only. Redirect them. */
1168 for (; q < qe; ++q)
1169 do_return_redirection (q, finally_label, NULL);
1170 replace_goto_queue (tf);
1171 }
1172 else
1173 {
1174 /* Reachable by goto expressions only. Redirect them. */
1175 for (; q < qe; ++q)
1176 do_goto_redirection (q, finally_label, NULL, tf);
1177 replace_goto_queue (tf);
1178
1179 if (tf->dest_array[0] == tf->fallthru_label)
1180 {
1181 /* Reachable by goto to fallthru label only. Redirect it
1182 to the new label (already created, sadly), and do not
1183 emit the final branch out, or the fallthru label. */
1184 tf->fallthru_label = NULL;
1185 return;
1186 }
1187 }
1188
1189 /* Place the original return/goto to the original destination
1190 immediately after the finally block. */
1191 x = tf->goto_queue[0].cont_stmt;
1192 gimple_seq_add_stmt (&tf->top_p_seq, x);
1193 maybe_record_in_goto_queue (state, x);
1194 }
1195
1196 /* A subroutine of lower_try_finally. There are multiple edges incoming
1197 and outgoing from the finally block. Implement this by duplicating the
1198 finally block for every destination. */
1199
1200 static void
1201 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1202 {
1203 gimple_seq finally;
1204 gimple_seq new_stmt;
1205 gimple_seq seq;
1206 gimple x, eh_else;
1207 tree tmp;
1208 location_t tf_loc = gimple_location (tf->try_finally_expr);
1209
1210 finally = gimple_try_cleanup (tf->top_p);
1211
1212 /* Notice EH_ELSE, and simplify some of the remaining code
1213 by considering FINALLY to be the normal return path only. */
1214 eh_else = get_eh_else (finally);
1215 if (eh_else)
1216 finally = gimple_eh_else_n_body (eh_else);
1217
1218 tf->top_p_seq = gimple_try_eval (tf->top_p);
1219 new_stmt = NULL;
1220
1221 if (tf->may_fallthru)
1222 {
1223 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1224 lower_eh_constructs_1 (state, &seq);
1225 gimple_seq_add_seq (&new_stmt, seq);
1226
1227 tmp = lower_try_finally_fallthru_label (tf);
1228 x = gimple_build_goto (tmp);
1229 gimple_set_location (x, tf_loc);
1230 gimple_seq_add_stmt (&new_stmt, x);
1231 }
1232
1233 if (tf->may_throw)
1234 {
1235 /* We don't need to copy the EH path of EH_ELSE,
1236 since it is only emitted once. */
1237 if (eh_else)
1238 seq = gimple_eh_else_e_body (eh_else);
1239 else
1240 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1241 lower_eh_constructs_1 (state, &seq);
1242
1243 emit_post_landing_pad (&eh_seq, tf->region);
1244 gimple_seq_add_seq (&eh_seq, seq);
1245 emit_resx (&eh_seq, tf->region);
1246 }
1247
1248 if (tf->goto_queue)
1249 {
1250 struct goto_queue_node *q, *qe;
1251 int return_index, index;
1252 struct labels_s
1253 {
1254 struct goto_queue_node *q;
1255 tree label;
1256 } *labels;
1257
1258 return_index = tf->dest_array.length ();
1259 labels = XCNEWVEC (struct labels_s, return_index + 1);
1260
1261 q = tf->goto_queue;
1262 qe = q + tf->goto_queue_active;
1263 for (; q < qe; q++)
1264 {
1265 index = q->index < 0 ? return_index : q->index;
1266
1267 if (!labels[index].q)
1268 labels[index].q = q;
1269 }
1270
1271 for (index = 0; index < return_index + 1; index++)
1272 {
1273 tree lab;
1274
1275 q = labels[index].q;
1276 if (! q)
1277 continue;
1278
1279 lab = labels[index].label
1280 = create_artificial_label (tf_loc);
1281
1282 if (index == return_index)
1283 do_return_redirection (q, lab, NULL);
1284 else
1285 do_goto_redirection (q, lab, NULL, tf);
1286
1287 x = gimple_build_label (lab);
1288 gimple_seq_add_stmt (&new_stmt, x);
1289
1290 seq = lower_try_finally_dup_block (finally, state, q->location);
1291 lower_eh_constructs_1 (state, &seq);
1292 gimple_seq_add_seq (&new_stmt, seq);
1293
1294 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1295 maybe_record_in_goto_queue (state, q->cont_stmt);
1296 }
1297
1298 for (q = tf->goto_queue; q < qe; q++)
1299 {
1300 tree lab;
1301
1302 index = q->index < 0 ? return_index : q->index;
1303
1304 if (labels[index].q == q)
1305 continue;
1306
1307 lab = labels[index].label;
1308
1309 if (index == return_index)
1310 do_return_redirection (q, lab, NULL);
1311 else
1312 do_goto_redirection (q, lab, NULL, tf);
1313 }
1314
1315 replace_goto_queue (tf);
1316 free (labels);
1317 }
1318
1319 /* Need to link new stmts after running replace_goto_queue due
1320 to not wanting to process the same goto stmts twice. */
1321 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1322 }
1323
1324 /* A subroutine of lower_try_finally. There are multiple edges incoming
1325 and outgoing from the finally block. Implement this by instrumenting
1326 each incoming edge and creating a switch statement at the end of the
1327 finally block that branches to the appropriate destination. */
1328
1329 static void
1330 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1331 {
1332 struct goto_queue_node *q, *qe;
1333 tree finally_tmp, finally_label;
1334 int return_index, eh_index, fallthru_index;
1335 int nlabels, ndests, j, last_case_index;
1336 tree last_case;
1337 vec<tree> case_label_vec;
1338 gimple_seq switch_body = NULL;
1339 gimple x, eh_else;
1340 tree tmp;
1341 gimple switch_stmt;
1342 gimple_seq finally;
1343 struct pointer_map_t *cont_map = NULL;
1344 /* The location of the TRY_FINALLY stmt. */
1345 location_t tf_loc = gimple_location (tf->try_finally_expr);
1346 /* The location of the finally block. */
1347 location_t finally_loc;
1348
1349 finally = gimple_try_cleanup (tf->top_p);
1350 eh_else = get_eh_else (finally);
1351
1352 /* Mash the TRY block to the head of the chain. */
1353 tf->top_p_seq = gimple_try_eval (tf->top_p);
1354
1355 /* The location of the finally is either the last stmt in the finally
1356 block or the location of the TRY_FINALLY itself. */
1357 x = gimple_seq_last_stmt (finally);
1358 finally_loc = x ? gimple_location (x) : tf_loc;
1359
1360 /* Lower the finally block itself. */
1361 lower_eh_constructs_1 (state, &finally);
1362
1363 /* Prepare for switch statement generation. */
1364 nlabels = tf->dest_array.length ();
1365 return_index = nlabels;
1366 eh_index = return_index + tf->may_return;
1367 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1368 ndests = fallthru_index + tf->may_fallthru;
1369
1370 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1371 finally_label = create_artificial_label (finally_loc);
1372
1373 /* We use vec::quick_push on case_label_vec throughout this function,
1374 since we know the size in advance and allocate precisely as muce
1375 space as needed. */
1376 case_label_vec.create (ndests);
1377 last_case = NULL;
1378 last_case_index = 0;
1379
1380 /* Begin inserting code for getting to the finally block. Things
1381 are done in this order to correspond to the sequence the code is
1382 laid out. */
1383
1384 if (tf->may_fallthru)
1385 {
1386 x = gimple_build_assign (finally_tmp,
1387 build_int_cst (integer_type_node,
1388 fallthru_index));
1389 gimple_seq_add_stmt (&tf->top_p_seq, x);
1390
1391 tmp = build_int_cst (integer_type_node, fallthru_index);
1392 last_case = build_case_label (tmp, NULL,
1393 create_artificial_label (tf_loc));
1394 case_label_vec.quick_push (last_case);
1395 last_case_index++;
1396
1397 x = gimple_build_label (CASE_LABEL (last_case));
1398 gimple_seq_add_stmt (&switch_body, x);
1399
1400 tmp = lower_try_finally_fallthru_label (tf);
1401 x = gimple_build_goto (tmp);
1402 gimple_set_location (x, tf_loc);
1403 gimple_seq_add_stmt (&switch_body, x);
1404 }
1405
1406 /* For EH_ELSE, emit the exception path (plus resx) now, then
1407 subsequently we only need consider the normal path. */
1408 if (eh_else)
1409 {
1410 if (tf->may_throw)
1411 {
1412 finally = gimple_eh_else_e_body (eh_else);
1413 lower_eh_constructs_1 (state, &finally);
1414
1415 emit_post_landing_pad (&eh_seq, tf->region);
1416 gimple_seq_add_seq (&eh_seq, finally);
1417 emit_resx (&eh_seq, tf->region);
1418 }
1419
1420 finally = gimple_eh_else_n_body (eh_else);
1421 }
1422 else if (tf->may_throw)
1423 {
1424 emit_post_landing_pad (&eh_seq, tf->region);
1425
1426 x = gimple_build_assign (finally_tmp,
1427 build_int_cst (integer_type_node, eh_index));
1428 gimple_seq_add_stmt (&eh_seq, x);
1429
1430 x = gimple_build_goto (finally_label);
1431 gimple_set_location (x, tf_loc);
1432 gimple_seq_add_stmt (&eh_seq, x);
1433
1434 tmp = build_int_cst (integer_type_node, eh_index);
1435 last_case = build_case_label (tmp, NULL,
1436 create_artificial_label (tf_loc));
1437 case_label_vec.quick_push (last_case);
1438 last_case_index++;
1439
1440 x = gimple_build_label (CASE_LABEL (last_case));
1441 gimple_seq_add_stmt (&eh_seq, x);
1442 emit_resx (&eh_seq, tf->region);
1443 }
1444
1445 x = gimple_build_label (finally_label);
1446 gimple_seq_add_stmt (&tf->top_p_seq, x);
1447
1448 gimple_seq_add_seq (&tf->top_p_seq, finally);
1449
1450 /* Redirect each incoming goto edge. */
1451 q = tf->goto_queue;
1452 qe = q + tf->goto_queue_active;
1453 j = last_case_index + tf->may_return;
1454 /* Prepare the assignments to finally_tmp that are executed upon the
1455 entrance through a particular edge. */
1456 for (; q < qe; ++q)
1457 {
1458 gimple_seq mod = NULL;
1459 int switch_id;
1460 unsigned int case_index;
1461
1462 if (q->index < 0)
1463 {
1464 x = gimple_build_assign (finally_tmp,
1465 build_int_cst (integer_type_node,
1466 return_index));
1467 gimple_seq_add_stmt (&mod, x);
1468 do_return_redirection (q, finally_label, mod);
1469 switch_id = return_index;
1470 }
1471 else
1472 {
1473 x = gimple_build_assign (finally_tmp,
1474 build_int_cst (integer_type_node, q->index));
1475 gimple_seq_add_stmt (&mod, x);
1476 do_goto_redirection (q, finally_label, mod, tf);
1477 switch_id = q->index;
1478 }
1479
1480 case_index = j + q->index;
1481 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1482 {
1483 tree case_lab;
1484 void **slot;
1485 tmp = build_int_cst (integer_type_node, switch_id);
1486 case_lab = build_case_label (tmp, NULL,
1487 create_artificial_label (tf_loc));
1488 /* We store the cont_stmt in the pointer map, so that we can recover
1489 it in the loop below. */
1490 if (!cont_map)
1491 cont_map = pointer_map_create ();
1492 slot = pointer_map_insert (cont_map, case_lab);
1493 *slot = q->cont_stmt;
1494 case_label_vec.quick_push (case_lab);
1495 }
1496 }
1497 for (j = last_case_index; j < last_case_index + nlabels; j++)
1498 {
1499 gimple cont_stmt;
1500 void **slot;
1501
1502 last_case = case_label_vec[j];
1503
1504 gcc_assert (last_case);
1505 gcc_assert (cont_map);
1506
1507 slot = pointer_map_contains (cont_map, last_case);
1508 gcc_assert (slot);
1509 cont_stmt = *(gimple *) slot;
1510
1511 x = gimple_build_label (CASE_LABEL (last_case));
1512 gimple_seq_add_stmt (&switch_body, x);
1513 gimple_seq_add_stmt (&switch_body, cont_stmt);
1514 maybe_record_in_goto_queue (state, cont_stmt);
1515 }
1516 if (cont_map)
1517 pointer_map_destroy (cont_map);
1518
1519 replace_goto_queue (tf);
1520
1521 /* Make sure that the last case is the default label, as one is required.
1522 Then sort the labels, which is also required in GIMPLE. */
1523 CASE_LOW (last_case) = NULL;
1524 sort_case_labels (case_label_vec);
1525
1526 /* Build the switch statement, setting last_case to be the default
1527 label. */
1528 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1529 case_label_vec);
1530 gimple_set_location (switch_stmt, finally_loc);
1531
1532 /* Need to link SWITCH_STMT after running replace_goto_queue
1533 due to not wanting to process the same goto stmts twice. */
1534 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1535 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1536 }
1537
1538 /* Decide whether or not we are going to duplicate the finally block.
1539 There are several considerations.
1540
1541 First, if this is Java, then the finally block contains code
1542 written by the user. It has line numbers associated with it,
1543 so duplicating the block means it's difficult to set a breakpoint.
1544 Since controlling code generation via -g is verboten, we simply
1545 never duplicate code without optimization.
1546
1547 Second, we'd like to prevent egregious code growth. One way to
1548 do this is to estimate the size of the finally block, multiply
1549 that by the number of copies we'd need to make, and compare against
1550 the estimate of the size of the switch machinery we'd have to add. */
1551
1552 static bool
1553 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1554 {
1555 int f_estimate, sw_estimate;
1556 gimple eh_else;
1557
1558 /* If there's an EH_ELSE involved, the exception path is separate
1559 and really doesn't come into play for this computation. */
1560 eh_else = get_eh_else (finally);
1561 if (eh_else)
1562 {
1563 ndests -= may_throw;
1564 finally = gimple_eh_else_n_body (eh_else);
1565 }
1566
1567 if (!optimize)
1568 {
1569 gimple_stmt_iterator gsi;
1570
1571 if (ndests == 1)
1572 return true;
1573
1574 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1575 {
1576 gimple stmt = gsi_stmt (gsi);
1577 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1578 return false;
1579 }
1580 return true;
1581 }
1582
1583 /* Finally estimate N times, plus N gotos. */
1584 f_estimate = count_insns_seq (finally, &eni_size_weights);
1585 f_estimate = (f_estimate + 1) * ndests;
1586
1587 /* Switch statement (cost 10), N variable assignments, N gotos. */
1588 sw_estimate = 10 + 2 * ndests;
1589
1590 /* Optimize for size clearly wants our best guess. */
1591 if (optimize_function_for_size_p (cfun))
1592 return f_estimate < sw_estimate;
1593
1594 /* ??? These numbers are completely made up so far. */
1595 if (optimize > 1)
1596 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1597 else
1598 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1599 }
1600
1601 /* REG is the enclosing region for a possible cleanup region, or the region
1602 itself. Returns TRUE if such a region would be unreachable.
1603
1604 Cleanup regions within a must-not-throw region aren't actually reachable
1605 even if there are throwing stmts within them, because the personality
1606 routine will call terminate before unwinding. */
1607
1608 static bool
1609 cleanup_is_dead_in (eh_region reg)
1610 {
1611 while (reg && reg->type == ERT_CLEANUP)
1612 reg = reg->outer;
1613 return (reg && reg->type == ERT_MUST_NOT_THROW);
1614 }
1615
1616 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1617 to a sequence of labels and blocks, plus the exception region trees
1618 that record all the magic. This is complicated by the need to
1619 arrange for the FINALLY block to be executed on all exits. */
1620
1621 static gimple_seq
1622 lower_try_finally (struct leh_state *state, gimple tp)
1623 {
1624 struct leh_tf_state this_tf;
1625 struct leh_state this_state;
1626 int ndests;
1627 gimple_seq old_eh_seq;
1628
1629 /* Process the try block. */
1630
1631 memset (&this_tf, 0, sizeof (this_tf));
1632 this_tf.try_finally_expr = tp;
1633 this_tf.top_p = tp;
1634 this_tf.outer = state;
1635 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1636 {
1637 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1638 this_state.cur_region = this_tf.region;
1639 }
1640 else
1641 {
1642 this_tf.region = NULL;
1643 this_state.cur_region = state->cur_region;
1644 }
1645
1646 this_state.ehp_region = state->ehp_region;
1647 this_state.tf = &this_tf;
1648
1649 old_eh_seq = eh_seq;
1650 eh_seq = NULL;
1651
1652 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1653
1654 /* Determine if the try block is escaped through the bottom. */
1655 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1656
1657 /* Determine if any exceptions are possible within the try block. */
1658 if (this_tf.region)
1659 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1660 if (this_tf.may_throw)
1661 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1662
1663 /* Determine how many edges (still) reach the finally block. Or rather,
1664 how many destinations are reached by the finally block. Use this to
1665 determine how we process the finally block itself. */
1666
1667 ndests = this_tf.dest_array.length ();
1668 ndests += this_tf.may_fallthru;
1669 ndests += this_tf.may_return;
1670 ndests += this_tf.may_throw;
1671
1672 /* If the FINALLY block is not reachable, dike it out. */
1673 if (ndests == 0)
1674 {
1675 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1676 gimple_try_set_cleanup (tp, NULL);
1677 }
1678 /* If the finally block doesn't fall through, then any destination
1679 we might try to impose there isn't reached either. There may be
1680 some minor amount of cleanup and redirection still needed. */
1681 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1682 lower_try_finally_nofallthru (state, &this_tf);
1683
1684 /* We can easily special-case redirection to a single destination. */
1685 else if (ndests == 1)
1686 lower_try_finally_onedest (state, &this_tf);
1687 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1688 gimple_try_cleanup (tp)))
1689 lower_try_finally_copy (state, &this_tf);
1690 else
1691 lower_try_finally_switch (state, &this_tf);
1692
1693 /* If someone requested we add a label at the end of the transformed
1694 block, do so. */
1695 if (this_tf.fallthru_label)
1696 {
1697 /* This must be reached only if ndests == 0. */
1698 gimple x = gimple_build_label (this_tf.fallthru_label);
1699 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1700 }
1701
1702 this_tf.dest_array.release ();
1703 free (this_tf.goto_queue);
1704 if (this_tf.goto_queue_map)
1705 pointer_map_destroy (this_tf.goto_queue_map);
1706
1707 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1708 If there was no old eh_seq, then the append is trivially already done. */
1709 if (old_eh_seq)
1710 {
1711 if (eh_seq == NULL)
1712 eh_seq = old_eh_seq;
1713 else
1714 {
1715 gimple_seq new_eh_seq = eh_seq;
1716 eh_seq = old_eh_seq;
1717 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1718 }
1719 }
1720
1721 return this_tf.top_p_seq;
1722 }
1723
1724 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1725 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1726 exception region trees that records all the magic. */
1727
1728 static gimple_seq
1729 lower_catch (struct leh_state *state, gimple tp)
1730 {
1731 eh_region try_region = NULL;
1732 struct leh_state this_state = *state;
1733 gimple_stmt_iterator gsi;
1734 tree out_label;
1735 gimple_seq new_seq, cleanup;
1736 gimple x;
1737 location_t try_catch_loc = gimple_location (tp);
1738
1739 if (flag_exceptions)
1740 {
1741 try_region = gen_eh_region_try (state->cur_region);
1742 this_state.cur_region = try_region;
1743 }
1744
1745 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1746
1747 if (!eh_region_may_contain_throw (try_region))
1748 return gimple_try_eval (tp);
1749
1750 new_seq = NULL;
1751 emit_eh_dispatch (&new_seq, try_region);
1752 emit_resx (&new_seq, try_region);
1753
1754 this_state.cur_region = state->cur_region;
1755 this_state.ehp_region = try_region;
1756
1757 out_label = NULL;
1758 cleanup = gimple_try_cleanup (tp);
1759 for (gsi = gsi_start (cleanup);
1760 !gsi_end_p (gsi);
1761 gsi_next (&gsi))
1762 {
1763 eh_catch c;
1764 gimple gcatch;
1765 gimple_seq handler;
1766
1767 gcatch = gsi_stmt (gsi);
1768 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1769
1770 handler = gimple_catch_handler (gcatch);
1771 lower_eh_constructs_1 (&this_state, &handler);
1772
1773 c->label = create_artificial_label (UNKNOWN_LOCATION);
1774 x = gimple_build_label (c->label);
1775 gimple_seq_add_stmt (&new_seq, x);
1776
1777 gimple_seq_add_seq (&new_seq, handler);
1778
1779 if (gimple_seq_may_fallthru (new_seq))
1780 {
1781 if (!out_label)
1782 out_label = create_artificial_label (try_catch_loc);
1783
1784 x = gimple_build_goto (out_label);
1785 gimple_seq_add_stmt (&new_seq, x);
1786 }
1787 if (!c->type_list)
1788 break;
1789 }
1790
1791 gimple_try_set_cleanup (tp, new_seq);
1792
1793 return frob_into_branch_around (tp, try_region, out_label);
1794 }
1795
1796 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1797 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1798 region trees that record all the magic. */
1799
1800 static gimple_seq
1801 lower_eh_filter (struct leh_state *state, gimple tp)
1802 {
1803 struct leh_state this_state = *state;
1804 eh_region this_region = NULL;
1805 gimple inner, x;
1806 gimple_seq new_seq;
1807
1808 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1809
1810 if (flag_exceptions)
1811 {
1812 this_region = gen_eh_region_allowed (state->cur_region,
1813 gimple_eh_filter_types (inner));
1814 this_state.cur_region = this_region;
1815 }
1816
1817 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1818
1819 if (!eh_region_may_contain_throw (this_region))
1820 return gimple_try_eval (tp);
1821
1822 new_seq = NULL;
1823 this_state.cur_region = state->cur_region;
1824 this_state.ehp_region = this_region;
1825
1826 emit_eh_dispatch (&new_seq, this_region);
1827 emit_resx (&new_seq, this_region);
1828
1829 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1830 x = gimple_build_label (this_region->u.allowed.label);
1831 gimple_seq_add_stmt (&new_seq, x);
1832
1833 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1834 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1835
1836 gimple_try_set_cleanup (tp, new_seq);
1837
1838 return frob_into_branch_around (tp, this_region, NULL);
1839 }
1840
1841 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1842 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1843 plus the exception region trees that record all the magic. */
1844
1845 static gimple_seq
1846 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1847 {
1848 struct leh_state this_state = *state;
1849
1850 if (flag_exceptions)
1851 {
1852 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1853 eh_region this_region;
1854
1855 this_region = gen_eh_region_must_not_throw (state->cur_region);
1856 this_region->u.must_not_throw.failure_decl
1857 = gimple_eh_must_not_throw_fndecl (inner);
1858 this_region->u.must_not_throw.failure_loc
1859 = LOCATION_LOCUS (gimple_location (tp));
1860
1861 /* In order to get mangling applied to this decl, we must mark it
1862 used now. Otherwise, pass_ipa_free_lang_data won't think it
1863 needs to happen. */
1864 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1865
1866 this_state.cur_region = this_region;
1867 }
1868
1869 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1870
1871 return gimple_try_eval (tp);
1872 }
1873
1874 /* Implement a cleanup expression. This is similar to try-finally,
1875 except that we only execute the cleanup block for exception edges. */
1876
1877 static gimple_seq
1878 lower_cleanup (struct leh_state *state, gimple tp)
1879 {
1880 struct leh_state this_state = *state;
1881 eh_region this_region = NULL;
1882 struct leh_tf_state fake_tf;
1883 gimple_seq result;
1884 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1885
1886 if (flag_exceptions && !cleanup_dead)
1887 {
1888 this_region = gen_eh_region_cleanup (state->cur_region);
1889 this_state.cur_region = this_region;
1890 }
1891
1892 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1893
1894 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1895 return gimple_try_eval (tp);
1896
1897 /* Build enough of a try-finally state so that we can reuse
1898 honor_protect_cleanup_actions. */
1899 memset (&fake_tf, 0, sizeof (fake_tf));
1900 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1901 fake_tf.outer = state;
1902 fake_tf.region = this_region;
1903 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1904 fake_tf.may_throw = true;
1905
1906 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1907
1908 if (fake_tf.may_throw)
1909 {
1910 /* In this case honor_protect_cleanup_actions had nothing to do,
1911 and we should process this normally. */
1912 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1913 result = frob_into_branch_around (tp, this_region,
1914 fake_tf.fallthru_label);
1915 }
1916 else
1917 {
1918 /* In this case honor_protect_cleanup_actions did nearly all of
1919 the work. All we have left is to append the fallthru_label. */
1920
1921 result = gimple_try_eval (tp);
1922 if (fake_tf.fallthru_label)
1923 {
1924 gimple x = gimple_build_label (fake_tf.fallthru_label);
1925 gimple_seq_add_stmt (&result, x);
1926 }
1927 }
1928 return result;
1929 }
1930
1931 /* Main loop for lowering eh constructs. Also moves gsi to the next
1932 statement. */
1933
1934 static void
1935 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1936 {
1937 gimple_seq replace;
1938 gimple x;
1939 gimple stmt = gsi_stmt (*gsi);
1940
1941 switch (gimple_code (stmt))
1942 {
1943 case GIMPLE_CALL:
1944 {
1945 tree fndecl = gimple_call_fndecl (stmt);
1946 tree rhs, lhs;
1947
1948 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1949 switch (DECL_FUNCTION_CODE (fndecl))
1950 {
1951 case BUILT_IN_EH_POINTER:
1952 /* The front end may have generated a call to
1953 __builtin_eh_pointer (0) within a catch region. Replace
1954 this zero argument with the current catch region number. */
1955 if (state->ehp_region)
1956 {
1957 tree nr = build_int_cst (integer_type_node,
1958 state->ehp_region->index);
1959 gimple_call_set_arg (stmt, 0, nr);
1960 }
1961 else
1962 {
1963 /* The user has dome something silly. Remove it. */
1964 rhs = null_pointer_node;
1965 goto do_replace;
1966 }
1967 break;
1968
1969 case BUILT_IN_EH_FILTER:
1970 /* ??? This should never appear, but since it's a builtin it
1971 is accessible to abuse by users. Just remove it and
1972 replace the use with the arbitrary value zero. */
1973 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1974 do_replace:
1975 lhs = gimple_call_lhs (stmt);
1976 x = gimple_build_assign (lhs, rhs);
1977 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1978 /* FALLTHRU */
1979
1980 case BUILT_IN_EH_COPY_VALUES:
1981 /* Likewise this should not appear. Remove it. */
1982 gsi_remove (gsi, true);
1983 return;
1984
1985 default:
1986 break;
1987 }
1988 }
1989 /* FALLTHRU */
1990
1991 case GIMPLE_ASSIGN:
1992 /* If the stmt can throw use a new temporary for the assignment
1993 to a LHS. This makes sure the old value of the LHS is
1994 available on the EH edge. Only do so for statements that
1995 potentially fall through (no noreturn calls e.g.), otherwise
1996 this new assignment might create fake fallthru regions. */
1997 if (stmt_could_throw_p (stmt)
1998 && gimple_has_lhs (stmt)
1999 && gimple_stmt_may_fallthru (stmt)
2000 && !tree_could_throw_p (gimple_get_lhs (stmt))
2001 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2002 {
2003 tree lhs = gimple_get_lhs (stmt);
2004 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2005 gimple s = gimple_build_assign (lhs, tmp);
2006 gimple_set_location (s, gimple_location (stmt));
2007 gimple_set_block (s, gimple_block (stmt));
2008 gimple_set_lhs (stmt, tmp);
2009 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2010 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2011 DECL_GIMPLE_REG_P (tmp) = 1;
2012 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2013 }
2014 /* Look for things that can throw exceptions, and record them. */
2015 if (state->cur_region && stmt_could_throw_p (stmt))
2016 {
2017 record_stmt_eh_region (state->cur_region, stmt);
2018 note_eh_region_may_contain_throw (state->cur_region);
2019 }
2020 break;
2021
2022 case GIMPLE_COND:
2023 case GIMPLE_GOTO:
2024 case GIMPLE_RETURN:
2025 maybe_record_in_goto_queue (state, stmt);
2026 break;
2027
2028 case GIMPLE_SWITCH:
2029 verify_norecord_switch_expr (state, stmt);
2030 break;
2031
2032 case GIMPLE_TRY:
2033 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2034 replace = lower_try_finally (state, stmt);
2035 else
2036 {
2037 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2038 if (!x)
2039 {
2040 replace = gimple_try_eval (stmt);
2041 lower_eh_constructs_1 (state, &replace);
2042 }
2043 else
2044 switch (gimple_code (x))
2045 {
2046 case GIMPLE_CATCH:
2047 replace = lower_catch (state, stmt);
2048 break;
2049 case GIMPLE_EH_FILTER:
2050 replace = lower_eh_filter (state, stmt);
2051 break;
2052 case GIMPLE_EH_MUST_NOT_THROW:
2053 replace = lower_eh_must_not_throw (state, stmt);
2054 break;
2055 case GIMPLE_EH_ELSE:
2056 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2057 gcc_unreachable ();
2058 default:
2059 replace = lower_cleanup (state, stmt);
2060 break;
2061 }
2062 }
2063
2064 /* Remove the old stmt and insert the transformed sequence
2065 instead. */
2066 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2067 gsi_remove (gsi, true);
2068
2069 /* Return since we don't want gsi_next () */
2070 return;
2071
2072 case GIMPLE_EH_ELSE:
2073 /* We should be eliminating this in lower_try_finally et al. */
2074 gcc_unreachable ();
2075
2076 default:
2077 /* A type, a decl, or some kind of statement that we're not
2078 interested in. Don't walk them. */
2079 break;
2080 }
2081
2082 gsi_next (gsi);
2083 }
2084
2085 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2086
2087 static void
2088 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2089 {
2090 gimple_stmt_iterator gsi;
2091 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2092 lower_eh_constructs_2 (state, &gsi);
2093 }
2094
2095 static unsigned int
2096 lower_eh_constructs (void)
2097 {
2098 struct leh_state null_state;
2099 gimple_seq bodyp;
2100
2101 bodyp = gimple_body (current_function_decl);
2102 if (bodyp == NULL)
2103 return 0;
2104
2105 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2106 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2107 memset (&null_state, 0, sizeof (null_state));
2108
2109 collect_finally_tree_1 (bodyp, NULL);
2110 lower_eh_constructs_1 (&null_state, &bodyp);
2111 gimple_set_body (current_function_decl, bodyp);
2112
2113 /* We assume there's a return statement, or something, at the end of
2114 the function, and thus ploping the EH sequence afterward won't
2115 change anything. */
2116 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2117 gimple_seq_add_seq (&bodyp, eh_seq);
2118
2119 /* We assume that since BODYP already existed, adding EH_SEQ to it
2120 didn't change its value, and we don't have to re-set the function. */
2121 gcc_assert (bodyp == gimple_body (current_function_decl));
2122
2123 htab_delete (finally_tree);
2124 BITMAP_FREE (eh_region_may_contain_throw_map);
2125 eh_seq = NULL;
2126
2127 /* If this function needs a language specific EH personality routine
2128 and the frontend didn't already set one do so now. */
2129 if (function_needs_eh_personality (cfun) == eh_personality_lang
2130 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2131 DECL_FUNCTION_PERSONALITY (current_function_decl)
2132 = lang_hooks.eh_personality ();
2133
2134 return 0;
2135 }
2136
2137 struct gimple_opt_pass pass_lower_eh =
2138 {
2139 {
2140 GIMPLE_PASS,
2141 "eh", /* name */
2142 OPTGROUP_NONE, /* optinfo_flags */
2143 NULL, /* gate */
2144 lower_eh_constructs, /* execute */
2145 NULL, /* sub */
2146 NULL, /* next */
2147 0, /* static_pass_number */
2148 TV_TREE_EH, /* tv_id */
2149 PROP_gimple_lcf, /* properties_required */
2150 PROP_gimple_leh, /* properties_provided */
2151 0, /* properties_destroyed */
2152 0, /* todo_flags_start */
2153 0 /* todo_flags_finish */
2154 }
2155 };
2156 \f
2157 /* Create the multiple edges from an EH_DISPATCH statement to all of
2158 the possible handlers for its EH region. Return true if there's
2159 no fallthru edge; false if there is. */
2160
2161 bool
2162 make_eh_dispatch_edges (gimple stmt)
2163 {
2164 eh_region r;
2165 eh_catch c;
2166 basic_block src, dst;
2167
2168 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2169 src = gimple_bb (stmt);
2170
2171 switch (r->type)
2172 {
2173 case ERT_TRY:
2174 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2175 {
2176 dst = label_to_block (c->label);
2177 make_edge (src, dst, 0);
2178
2179 /* A catch-all handler doesn't have a fallthru. */
2180 if (c->type_list == NULL)
2181 return false;
2182 }
2183 break;
2184
2185 case ERT_ALLOWED_EXCEPTIONS:
2186 dst = label_to_block (r->u.allowed.label);
2187 make_edge (src, dst, 0);
2188 break;
2189
2190 default:
2191 gcc_unreachable ();
2192 }
2193
2194 return true;
2195 }
2196
2197 /* Create the single EH edge from STMT to its nearest landing pad,
2198 if there is such a landing pad within the current function. */
2199
2200 void
2201 make_eh_edges (gimple stmt)
2202 {
2203 basic_block src, dst;
2204 eh_landing_pad lp;
2205 int lp_nr;
2206
2207 lp_nr = lookup_stmt_eh_lp (stmt);
2208 if (lp_nr <= 0)
2209 return;
2210
2211 lp = get_eh_landing_pad_from_number (lp_nr);
2212 gcc_assert (lp != NULL);
2213
2214 src = gimple_bb (stmt);
2215 dst = label_to_block (lp->post_landing_pad);
2216 make_edge (src, dst, EDGE_EH);
2217 }
2218
2219 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2220 do not actually perform the final edge redirection.
2221
2222 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2223 we intend to change the destination EH region as well; this means
2224 EH_LANDING_PAD_NR must already be set on the destination block label.
2225 If false, we're being called from generic cfg manipulation code and we
2226 should preserve our place within the region tree. */
2227
2228 static void
2229 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2230 {
2231 eh_landing_pad old_lp, new_lp;
2232 basic_block old_bb;
2233 gimple throw_stmt;
2234 int old_lp_nr, new_lp_nr;
2235 tree old_label, new_label;
2236 edge_iterator ei;
2237 edge e;
2238
2239 old_bb = edge_in->dest;
2240 old_label = gimple_block_label (old_bb);
2241 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2242 gcc_assert (old_lp_nr > 0);
2243 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2244
2245 throw_stmt = last_stmt (edge_in->src);
2246 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2247
2248 new_label = gimple_block_label (new_bb);
2249
2250 /* Look for an existing region that might be using NEW_BB already. */
2251 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2252 if (new_lp_nr)
2253 {
2254 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2255 gcc_assert (new_lp);
2256
2257 /* Unless CHANGE_REGION is true, the new and old landing pad
2258 had better be associated with the same EH region. */
2259 gcc_assert (change_region || new_lp->region == old_lp->region);
2260 }
2261 else
2262 {
2263 new_lp = NULL;
2264 gcc_assert (!change_region);
2265 }
2266
2267 /* Notice when we redirect the last EH edge away from OLD_BB. */
2268 FOR_EACH_EDGE (e, ei, old_bb->preds)
2269 if (e != edge_in && (e->flags & EDGE_EH))
2270 break;
2271
2272 if (new_lp)
2273 {
2274 /* NEW_LP already exists. If there are still edges into OLD_LP,
2275 there's nothing to do with the EH tree. If there are no more
2276 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2277 If CHANGE_REGION is true, then our caller is expecting to remove
2278 the landing pad. */
2279 if (e == NULL && !change_region)
2280 remove_eh_landing_pad (old_lp);
2281 }
2282 else
2283 {
2284 /* No correct landing pad exists. If there are no more edges
2285 into OLD_LP, then we can simply re-use the existing landing pad.
2286 Otherwise, we have to create a new landing pad. */
2287 if (e == NULL)
2288 {
2289 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2290 new_lp = old_lp;
2291 }
2292 else
2293 new_lp = gen_eh_landing_pad (old_lp->region);
2294 new_lp->post_landing_pad = new_label;
2295 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2296 }
2297
2298 /* Maybe move the throwing statement to the new region. */
2299 if (old_lp != new_lp)
2300 {
2301 remove_stmt_from_eh_lp (throw_stmt);
2302 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2303 }
2304 }
2305
2306 /* Redirect EH edge E to NEW_BB. */
2307
2308 edge
2309 redirect_eh_edge (edge edge_in, basic_block new_bb)
2310 {
2311 redirect_eh_edge_1 (edge_in, new_bb, false);
2312 return ssa_redirect_edge (edge_in, new_bb);
2313 }
2314
2315 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2316 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2317 The actual edge update will happen in the caller. */
2318
2319 void
2320 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2321 {
2322 tree new_lab = gimple_block_label (new_bb);
2323 bool any_changed = false;
2324 basic_block old_bb;
2325 eh_region r;
2326 eh_catch c;
2327
2328 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2329 switch (r->type)
2330 {
2331 case ERT_TRY:
2332 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2333 {
2334 old_bb = label_to_block (c->label);
2335 if (old_bb == e->dest)
2336 {
2337 c->label = new_lab;
2338 any_changed = true;
2339 }
2340 }
2341 break;
2342
2343 case ERT_ALLOWED_EXCEPTIONS:
2344 old_bb = label_to_block (r->u.allowed.label);
2345 gcc_assert (old_bb == e->dest);
2346 r->u.allowed.label = new_lab;
2347 any_changed = true;
2348 break;
2349
2350 default:
2351 gcc_unreachable ();
2352 }
2353
2354 gcc_assert (any_changed);
2355 }
2356 \f
2357 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2358
2359 bool
2360 operation_could_trap_helper_p (enum tree_code op,
2361 bool fp_operation,
2362 bool honor_trapv,
2363 bool honor_nans,
2364 bool honor_snans,
2365 tree divisor,
2366 bool *handled)
2367 {
2368 *handled = true;
2369 switch (op)
2370 {
2371 case TRUNC_DIV_EXPR:
2372 case CEIL_DIV_EXPR:
2373 case FLOOR_DIV_EXPR:
2374 case ROUND_DIV_EXPR:
2375 case EXACT_DIV_EXPR:
2376 case CEIL_MOD_EXPR:
2377 case FLOOR_MOD_EXPR:
2378 case ROUND_MOD_EXPR:
2379 case TRUNC_MOD_EXPR:
2380 case RDIV_EXPR:
2381 if (honor_snans || honor_trapv)
2382 return true;
2383 if (fp_operation)
2384 return flag_trapping_math;
2385 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2386 return true;
2387 return false;
2388
2389 case LT_EXPR:
2390 case LE_EXPR:
2391 case GT_EXPR:
2392 case GE_EXPR:
2393 case LTGT_EXPR:
2394 /* Some floating point comparisons may trap. */
2395 return honor_nans;
2396
2397 case EQ_EXPR:
2398 case NE_EXPR:
2399 case UNORDERED_EXPR:
2400 case ORDERED_EXPR:
2401 case UNLT_EXPR:
2402 case UNLE_EXPR:
2403 case UNGT_EXPR:
2404 case UNGE_EXPR:
2405 case UNEQ_EXPR:
2406 return honor_snans;
2407
2408 case CONVERT_EXPR:
2409 case FIX_TRUNC_EXPR:
2410 /* Conversion of floating point might trap. */
2411 return honor_nans;
2412
2413 case NEGATE_EXPR:
2414 case ABS_EXPR:
2415 case CONJ_EXPR:
2416 /* These operations don't trap with floating point. */
2417 if (honor_trapv)
2418 return true;
2419 return false;
2420
2421 case PLUS_EXPR:
2422 case MINUS_EXPR:
2423 case MULT_EXPR:
2424 /* Any floating arithmetic may trap. */
2425 if (fp_operation && flag_trapping_math)
2426 return true;
2427 if (honor_trapv)
2428 return true;
2429 return false;
2430
2431 case COMPLEX_EXPR:
2432 case CONSTRUCTOR:
2433 /* Constructing an object cannot trap. */
2434 return false;
2435
2436 default:
2437 /* Any floating arithmetic may trap. */
2438 if (fp_operation && flag_trapping_math)
2439 return true;
2440
2441 *handled = false;
2442 return false;
2443 }
2444 }
2445
2446 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2447 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2448 type operands that may trap. If OP is a division operator, DIVISOR contains
2449 the value of the divisor. */
2450
2451 bool
2452 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2453 tree divisor)
2454 {
2455 bool honor_nans = (fp_operation && flag_trapping_math
2456 && !flag_finite_math_only);
2457 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2458 bool handled;
2459
2460 if (TREE_CODE_CLASS (op) != tcc_comparison
2461 && TREE_CODE_CLASS (op) != tcc_unary
2462 && TREE_CODE_CLASS (op) != tcc_binary)
2463 return false;
2464
2465 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2466 honor_nans, honor_snans, divisor,
2467 &handled);
2468 }
2469
2470 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2471 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2472 This routine expects only GIMPLE lhs or rhs input. */
2473
2474 bool
2475 tree_could_trap_p (tree expr)
2476 {
2477 enum tree_code code;
2478 bool fp_operation = false;
2479 bool honor_trapv = false;
2480 tree t, base, div = NULL_TREE;
2481
2482 if (!expr)
2483 return false;
2484
2485 code = TREE_CODE (expr);
2486 t = TREE_TYPE (expr);
2487
2488 if (t)
2489 {
2490 if (COMPARISON_CLASS_P (expr))
2491 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2492 else
2493 fp_operation = FLOAT_TYPE_P (t);
2494 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2495 }
2496
2497 if (TREE_CODE_CLASS (code) == tcc_binary)
2498 div = TREE_OPERAND (expr, 1);
2499 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2500 return true;
2501
2502 restart:
2503 switch (code)
2504 {
2505 case TARGET_MEM_REF:
2506 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2507 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2508 return false;
2509 return !TREE_THIS_NOTRAP (expr);
2510
2511 case COMPONENT_REF:
2512 case REALPART_EXPR:
2513 case IMAGPART_EXPR:
2514 case BIT_FIELD_REF:
2515 case VIEW_CONVERT_EXPR:
2516 case WITH_SIZE_EXPR:
2517 expr = TREE_OPERAND (expr, 0);
2518 code = TREE_CODE (expr);
2519 goto restart;
2520
2521 case ARRAY_RANGE_REF:
2522 base = TREE_OPERAND (expr, 0);
2523 if (tree_could_trap_p (base))
2524 return true;
2525 if (TREE_THIS_NOTRAP (expr))
2526 return false;
2527 return !range_in_array_bounds_p (expr);
2528
2529 case ARRAY_REF:
2530 base = TREE_OPERAND (expr, 0);
2531 if (tree_could_trap_p (base))
2532 return true;
2533 if (TREE_THIS_NOTRAP (expr))
2534 return false;
2535 return !in_array_bounds_p (expr);
2536
2537 case MEM_REF:
2538 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2539 return false;
2540 /* Fallthru. */
2541 case INDIRECT_REF:
2542 return !TREE_THIS_NOTRAP (expr);
2543
2544 case ASM_EXPR:
2545 return TREE_THIS_VOLATILE (expr);
2546
2547 case CALL_EXPR:
2548 t = get_callee_fndecl (expr);
2549 /* Assume that calls to weak functions may trap. */
2550 if (!t || !DECL_P (t))
2551 return true;
2552 if (DECL_WEAK (t))
2553 return tree_could_trap_p (t);
2554 return false;
2555
2556 case FUNCTION_DECL:
2557 /* Assume that accesses to weak functions may trap, unless we know
2558 they are certainly defined in current TU or in some other
2559 LTO partition. */
2560 if (DECL_WEAK (expr))
2561 {
2562 struct cgraph_node *node;
2563 if (!DECL_EXTERNAL (expr))
2564 return false;
2565 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2566 if (node && node->symbol.in_other_partition)
2567 return false;
2568 return true;
2569 }
2570 return false;
2571
2572 case VAR_DECL:
2573 /* Assume that accesses to weak vars may trap, unless we know
2574 they are certainly defined in current TU or in some other
2575 LTO partition. */
2576 if (DECL_WEAK (expr))
2577 {
2578 struct varpool_node *node;
2579 if (!DECL_EXTERNAL (expr))
2580 return false;
2581 node = varpool_variable_node (varpool_get_node (expr), NULL);
2582 if (node && node->symbol.in_other_partition)
2583 return false;
2584 return true;
2585 }
2586 return false;
2587
2588 default:
2589 return false;
2590 }
2591 }
2592
2593
2594 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2595 an assignment or a conditional) may throw. */
2596
2597 static bool
2598 stmt_could_throw_1_p (gimple stmt)
2599 {
2600 enum tree_code code = gimple_expr_code (stmt);
2601 bool honor_nans = false;
2602 bool honor_snans = false;
2603 bool fp_operation = false;
2604 bool honor_trapv = false;
2605 tree t;
2606 size_t i;
2607 bool handled, ret;
2608
2609 if (TREE_CODE_CLASS (code) == tcc_comparison
2610 || TREE_CODE_CLASS (code) == tcc_unary
2611 || TREE_CODE_CLASS (code) == tcc_binary)
2612 {
2613 if (is_gimple_assign (stmt)
2614 && TREE_CODE_CLASS (code) == tcc_comparison)
2615 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2616 else if (gimple_code (stmt) == GIMPLE_COND)
2617 t = TREE_TYPE (gimple_cond_lhs (stmt));
2618 else
2619 t = gimple_expr_type (stmt);
2620 fp_operation = FLOAT_TYPE_P (t);
2621 if (fp_operation)
2622 {
2623 honor_nans = flag_trapping_math && !flag_finite_math_only;
2624 honor_snans = flag_signaling_nans != 0;
2625 }
2626 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2627 honor_trapv = true;
2628 }
2629
2630 /* Check if the main expression may trap. */
2631 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2632 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2633 honor_nans, honor_snans, t,
2634 &handled);
2635 if (handled)
2636 return ret;
2637
2638 /* If the expression does not trap, see if any of the individual operands may
2639 trap. */
2640 for (i = 0; i < gimple_num_ops (stmt); i++)
2641 if (tree_could_trap_p (gimple_op (stmt, i)))
2642 return true;
2643
2644 return false;
2645 }
2646
2647
2648 /* Return true if statement STMT could throw an exception. */
2649
2650 bool
2651 stmt_could_throw_p (gimple stmt)
2652 {
2653 if (!flag_exceptions)
2654 return false;
2655
2656 /* The only statements that can throw an exception are assignments,
2657 conditionals, calls, resx, and asms. */
2658 switch (gimple_code (stmt))
2659 {
2660 case GIMPLE_RESX:
2661 return true;
2662
2663 case GIMPLE_CALL:
2664 return !gimple_call_nothrow_p (stmt);
2665
2666 case GIMPLE_ASSIGN:
2667 case GIMPLE_COND:
2668 if (!cfun->can_throw_non_call_exceptions)
2669 return false;
2670 return stmt_could_throw_1_p (stmt);
2671
2672 case GIMPLE_ASM:
2673 if (!cfun->can_throw_non_call_exceptions)
2674 return false;
2675 return gimple_asm_volatile_p (stmt);
2676
2677 default:
2678 return false;
2679 }
2680 }
2681
2682
2683 /* Return true if expression T could throw an exception. */
2684
2685 bool
2686 tree_could_throw_p (tree t)
2687 {
2688 if (!flag_exceptions)
2689 return false;
2690 if (TREE_CODE (t) == MODIFY_EXPR)
2691 {
2692 if (cfun->can_throw_non_call_exceptions
2693 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2694 return true;
2695 t = TREE_OPERAND (t, 1);
2696 }
2697
2698 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2699 t = TREE_OPERAND (t, 0);
2700 if (TREE_CODE (t) == CALL_EXPR)
2701 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2702 if (cfun->can_throw_non_call_exceptions)
2703 return tree_could_trap_p (t);
2704 return false;
2705 }
2706
2707 /* Return true if STMT can throw an exception that is not caught within
2708 the current function (CFUN). */
2709
2710 bool
2711 stmt_can_throw_external (gimple stmt)
2712 {
2713 int lp_nr;
2714
2715 if (!stmt_could_throw_p (stmt))
2716 return false;
2717
2718 lp_nr = lookup_stmt_eh_lp (stmt);
2719 return lp_nr == 0;
2720 }
2721
2722 /* Return true if STMT can throw an exception that is caught within
2723 the current function (CFUN). */
2724
2725 bool
2726 stmt_can_throw_internal (gimple stmt)
2727 {
2728 int lp_nr;
2729
2730 if (!stmt_could_throw_p (stmt))
2731 return false;
2732
2733 lp_nr = lookup_stmt_eh_lp (stmt);
2734 return lp_nr > 0;
2735 }
2736
2737 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2738 remove any entry it might have from the EH table. Return true if
2739 any change was made. */
2740
2741 bool
2742 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2743 {
2744 if (stmt_could_throw_p (stmt))
2745 return false;
2746 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2747 }
2748
2749 /* Likewise, but always use the current function. */
2750
2751 bool
2752 maybe_clean_eh_stmt (gimple stmt)
2753 {
2754 return maybe_clean_eh_stmt_fn (cfun, stmt);
2755 }
2756
2757 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2758 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2759 in the table if it should be in there. Return TRUE if a replacement was
2760 done that my require an EH edge purge. */
2761
2762 bool
2763 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2764 {
2765 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2766
2767 if (lp_nr != 0)
2768 {
2769 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2770
2771 if (new_stmt == old_stmt && new_stmt_could_throw)
2772 return false;
2773
2774 remove_stmt_from_eh_lp (old_stmt);
2775 if (new_stmt_could_throw)
2776 {
2777 add_stmt_to_eh_lp (new_stmt, lp_nr);
2778 return false;
2779 }
2780 else
2781 return true;
2782 }
2783
2784 return false;
2785 }
2786
2787 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2788 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2789 operand is the return value of duplicate_eh_regions. */
2790
2791 bool
2792 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2793 struct function *old_fun, gimple old_stmt,
2794 struct pointer_map_t *map, int default_lp_nr)
2795 {
2796 int old_lp_nr, new_lp_nr;
2797 void **slot;
2798
2799 if (!stmt_could_throw_p (new_stmt))
2800 return false;
2801
2802 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2803 if (old_lp_nr == 0)
2804 {
2805 if (default_lp_nr == 0)
2806 return false;
2807 new_lp_nr = default_lp_nr;
2808 }
2809 else if (old_lp_nr > 0)
2810 {
2811 eh_landing_pad old_lp, new_lp;
2812
2813 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2814 slot = pointer_map_contains (map, old_lp);
2815 new_lp = (eh_landing_pad) *slot;
2816 new_lp_nr = new_lp->index;
2817 }
2818 else
2819 {
2820 eh_region old_r, new_r;
2821
2822 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2823 slot = pointer_map_contains (map, old_r);
2824 new_r = (eh_region) *slot;
2825 new_lp_nr = -new_r->index;
2826 }
2827
2828 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2829 return true;
2830 }
2831
2832 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2833 and thus no remapping is required. */
2834
2835 bool
2836 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2837 {
2838 int lp_nr;
2839
2840 if (!stmt_could_throw_p (new_stmt))
2841 return false;
2842
2843 lp_nr = lookup_stmt_eh_lp (old_stmt);
2844 if (lp_nr == 0)
2845 return false;
2846
2847 add_stmt_to_eh_lp (new_stmt, lp_nr);
2848 return true;
2849 }
2850 \f
2851 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2852 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2853 this only handles handlers consisting of a single call, as that's the
2854 important case for C++: a destructor call for a particular object showing
2855 up in multiple handlers. */
2856
2857 static bool
2858 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2859 {
2860 gimple_stmt_iterator gsi;
2861 gimple ones, twos;
2862 unsigned int ai;
2863
2864 gsi = gsi_start (oneh);
2865 if (!gsi_one_before_end_p (gsi))
2866 return false;
2867 ones = gsi_stmt (gsi);
2868
2869 gsi = gsi_start (twoh);
2870 if (!gsi_one_before_end_p (gsi))
2871 return false;
2872 twos = gsi_stmt (gsi);
2873
2874 if (!is_gimple_call (ones)
2875 || !is_gimple_call (twos)
2876 || gimple_call_lhs (ones)
2877 || gimple_call_lhs (twos)
2878 || gimple_call_chain (ones)
2879 || gimple_call_chain (twos)
2880 || !gimple_call_same_target_p (ones, twos)
2881 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2882 return false;
2883
2884 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2885 if (!operand_equal_p (gimple_call_arg (ones, ai),
2886 gimple_call_arg (twos, ai), 0))
2887 return false;
2888
2889 return true;
2890 }
2891
2892 /* Optimize
2893 try { A() } finally { try { ~B() } catch { ~A() } }
2894 try { ... } finally { ~A() }
2895 into
2896 try { A() } catch { ~B() }
2897 try { ~B() ... } finally { ~A() }
2898
2899 This occurs frequently in C++, where A is a local variable and B is a
2900 temporary used in the initializer for A. */
2901
2902 static void
2903 optimize_double_finally (gimple one, gimple two)
2904 {
2905 gimple oneh;
2906 gimple_stmt_iterator gsi;
2907 gimple_seq cleanup;
2908
2909 cleanup = gimple_try_cleanup (one);
2910 gsi = gsi_start (cleanup);
2911 if (!gsi_one_before_end_p (gsi))
2912 return;
2913
2914 oneh = gsi_stmt (gsi);
2915 if (gimple_code (oneh) != GIMPLE_TRY
2916 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2917 return;
2918
2919 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2920 {
2921 gimple_seq seq = gimple_try_eval (oneh);
2922
2923 gimple_try_set_cleanup (one, seq);
2924 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2925 seq = copy_gimple_seq_and_replace_locals (seq);
2926 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2927 gimple_try_set_eval (two, seq);
2928 }
2929 }
2930
2931 /* Perform EH refactoring optimizations that are simpler to do when code
2932 flow has been lowered but EH structures haven't. */
2933
2934 static void
2935 refactor_eh_r (gimple_seq seq)
2936 {
2937 gimple_stmt_iterator gsi;
2938 gimple one, two;
2939
2940 one = NULL;
2941 two = NULL;
2942 gsi = gsi_start (seq);
2943 while (1)
2944 {
2945 one = two;
2946 if (gsi_end_p (gsi))
2947 two = NULL;
2948 else
2949 two = gsi_stmt (gsi);
2950 if (one
2951 && two
2952 && gimple_code (one) == GIMPLE_TRY
2953 && gimple_code (two) == GIMPLE_TRY
2954 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2955 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2956 optimize_double_finally (one, two);
2957 if (one)
2958 switch (gimple_code (one))
2959 {
2960 case GIMPLE_TRY:
2961 refactor_eh_r (gimple_try_eval (one));
2962 refactor_eh_r (gimple_try_cleanup (one));
2963 break;
2964 case GIMPLE_CATCH:
2965 refactor_eh_r (gimple_catch_handler (one));
2966 break;
2967 case GIMPLE_EH_FILTER:
2968 refactor_eh_r (gimple_eh_filter_failure (one));
2969 break;
2970 case GIMPLE_EH_ELSE:
2971 refactor_eh_r (gimple_eh_else_n_body (one));
2972 refactor_eh_r (gimple_eh_else_e_body (one));
2973 break;
2974 default:
2975 break;
2976 }
2977 if (two)
2978 gsi_next (&gsi);
2979 else
2980 break;
2981 }
2982 }
2983
2984 static unsigned
2985 refactor_eh (void)
2986 {
2987 refactor_eh_r (gimple_body (current_function_decl));
2988 return 0;
2989 }
2990
2991 static bool
2992 gate_refactor_eh (void)
2993 {
2994 return flag_exceptions != 0;
2995 }
2996
2997 struct gimple_opt_pass pass_refactor_eh =
2998 {
2999 {
3000 GIMPLE_PASS,
3001 "ehopt", /* name */
3002 OPTGROUP_NONE, /* optinfo_flags */
3003 gate_refactor_eh, /* gate */
3004 refactor_eh, /* execute */
3005 NULL, /* sub */
3006 NULL, /* next */
3007 0, /* static_pass_number */
3008 TV_TREE_EH, /* tv_id */
3009 PROP_gimple_lcf, /* properties_required */
3010 0, /* properties_provided */
3011 0, /* properties_destroyed */
3012 0, /* todo_flags_start */
3013 0 /* todo_flags_finish */
3014 }
3015 };
3016 \f
3017 /* At the end of gimple optimization, we can lower RESX. */
3018
3019 static bool
3020 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3021 {
3022 int lp_nr;
3023 eh_region src_r, dst_r;
3024 gimple_stmt_iterator gsi;
3025 gimple x;
3026 tree fn, src_nr;
3027 bool ret = false;
3028
3029 lp_nr = lookup_stmt_eh_lp (stmt);
3030 if (lp_nr != 0)
3031 dst_r = get_eh_region_from_lp_number (lp_nr);
3032 else
3033 dst_r = NULL;
3034
3035 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3036 gsi = gsi_last_bb (bb);
3037
3038 if (src_r == NULL)
3039 {
3040 /* We can wind up with no source region when pass_cleanup_eh shows
3041 that there are no entries into an eh region and deletes it, but
3042 then the block that contains the resx isn't removed. This can
3043 happen without optimization when the switch statement created by
3044 lower_try_finally_switch isn't simplified to remove the eh case.
3045
3046 Resolve this by expanding the resx node to an abort. */
3047
3048 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3049 x = gimple_build_call (fn, 0);
3050 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3051
3052 while (EDGE_COUNT (bb->succs) > 0)
3053 remove_edge (EDGE_SUCC (bb, 0));
3054 }
3055 else if (dst_r)
3056 {
3057 /* When we have a destination region, we resolve this by copying
3058 the excptr and filter values into place, and changing the edge
3059 to immediately after the landing pad. */
3060 edge e;
3061
3062 if (lp_nr < 0)
3063 {
3064 basic_block new_bb;
3065 void **slot;
3066 tree lab;
3067
3068 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3069 the failure decl into a new block, if needed. */
3070 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3071
3072 slot = pointer_map_contains (mnt_map, dst_r);
3073 if (slot == NULL)
3074 {
3075 gimple_stmt_iterator gsi2;
3076
3077 new_bb = create_empty_bb (bb);
3078 if (current_loops)
3079 add_bb_to_loop (new_bb, bb->loop_father);
3080 lab = gimple_block_label (new_bb);
3081 gsi2 = gsi_start_bb (new_bb);
3082
3083 fn = dst_r->u.must_not_throw.failure_decl;
3084 x = gimple_build_call (fn, 0);
3085 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3086 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3087
3088 slot = pointer_map_insert (mnt_map, dst_r);
3089 *slot = lab;
3090 }
3091 else
3092 {
3093 lab = (tree) *slot;
3094 new_bb = label_to_block (lab);
3095 }
3096
3097 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3098 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3099 e->count = bb->count;
3100 e->probability = REG_BR_PROB_BASE;
3101 }
3102 else
3103 {
3104 edge_iterator ei;
3105 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3106
3107 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3108 src_nr = build_int_cst (integer_type_node, src_r->index);
3109 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3110 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3111
3112 /* Update the flags for the outgoing edge. */
3113 e = single_succ_edge (bb);
3114 gcc_assert (e->flags & EDGE_EH);
3115 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3116
3117 /* If there are no more EH users of the landing pad, delete it. */
3118 FOR_EACH_EDGE (e, ei, e->dest->preds)
3119 if (e->flags & EDGE_EH)
3120 break;
3121 if (e == NULL)
3122 {
3123 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3124 remove_eh_landing_pad (lp);
3125 }
3126 }
3127
3128 ret = true;
3129 }
3130 else
3131 {
3132 tree var;
3133
3134 /* When we don't have a destination region, this exception escapes
3135 up the call chain. We resolve this by generating a call to the
3136 _Unwind_Resume library function. */
3137
3138 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3139 with no arguments for C++ and Java. Check for that. */
3140 if (src_r->use_cxa_end_cleanup)
3141 {
3142 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3143 x = gimple_build_call (fn, 0);
3144 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3145 }
3146 else
3147 {
3148 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3149 src_nr = build_int_cst (integer_type_node, src_r->index);
3150 x = gimple_build_call (fn, 1, src_nr);
3151 var = create_tmp_var (ptr_type_node, NULL);
3152 var = make_ssa_name (var, x);
3153 gimple_call_set_lhs (x, var);
3154 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3155
3156 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3157 x = gimple_build_call (fn, 1, var);
3158 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3159 }
3160
3161 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3162 }
3163
3164 gsi_remove (&gsi, true);
3165
3166 return ret;
3167 }
3168
3169 static unsigned
3170 execute_lower_resx (void)
3171 {
3172 basic_block bb;
3173 struct pointer_map_t *mnt_map;
3174 bool dominance_invalidated = false;
3175 bool any_rewritten = false;
3176
3177 mnt_map = pointer_map_create ();
3178
3179 FOR_EACH_BB (bb)
3180 {
3181 gimple last = last_stmt (bb);
3182 if (last && is_gimple_resx (last))
3183 {
3184 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3185 any_rewritten = true;
3186 }
3187 }
3188
3189 pointer_map_destroy (mnt_map);
3190
3191 if (dominance_invalidated)
3192 {
3193 free_dominance_info (CDI_DOMINATORS);
3194 free_dominance_info (CDI_POST_DOMINATORS);
3195 }
3196
3197 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3198 }
3199
3200 static bool
3201 gate_lower_resx (void)
3202 {
3203 return flag_exceptions != 0;
3204 }
3205
3206 struct gimple_opt_pass pass_lower_resx =
3207 {
3208 {
3209 GIMPLE_PASS,
3210 "resx", /* name */
3211 OPTGROUP_NONE, /* optinfo_flags */
3212 gate_lower_resx, /* gate */
3213 execute_lower_resx, /* execute */
3214 NULL, /* sub */
3215 NULL, /* next */
3216 0, /* static_pass_number */
3217 TV_TREE_EH, /* tv_id */
3218 PROP_gimple_lcf, /* properties_required */
3219 0, /* properties_provided */
3220 0, /* properties_destroyed */
3221 0, /* todo_flags_start */
3222 TODO_verify_flow /* todo_flags_finish */
3223 }
3224 };
3225
3226 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3227 external throw. */
3228
3229 static void
3230 optimize_clobbers (basic_block bb)
3231 {
3232 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3233 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3234 {
3235 gimple stmt = gsi_stmt (gsi);
3236 if (is_gimple_debug (stmt))
3237 continue;
3238 if (!gimple_clobber_p (stmt)
3239 || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3240 return;
3241 unlink_stmt_vdef (stmt);
3242 gsi_remove (&gsi, true);
3243 release_defs (stmt);
3244 }
3245 }
3246
3247 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3248 internal throw to successor BB. */
3249
3250 static int
3251 sink_clobbers (basic_block bb)
3252 {
3253 edge e;
3254 edge_iterator ei;
3255 gimple_stmt_iterator gsi, dgsi;
3256 basic_block succbb;
3257 bool any_clobbers = false;
3258
3259 /* Only optimize if BB has a single EH successor and
3260 all predecessor edges are EH too. */
3261 if (!single_succ_p (bb)
3262 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3263 return 0;
3264
3265 FOR_EACH_EDGE (e, ei, bb->preds)
3266 {
3267 if ((e->flags & EDGE_EH) == 0)
3268 return 0;
3269 }
3270
3271 /* And BB contains only CLOBBER stmts before the final
3272 RESX. */
3273 gsi = gsi_last_bb (bb);
3274 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3275 {
3276 gimple stmt = gsi_stmt (gsi);
3277 if (is_gimple_debug (stmt))
3278 continue;
3279 if (gimple_code (stmt) == GIMPLE_LABEL)
3280 break;
3281 if (!gimple_clobber_p (stmt)
3282 || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3283 return 0;
3284 any_clobbers = true;
3285 }
3286 if (!any_clobbers)
3287 return 0;
3288
3289 succbb = single_succ (bb);
3290 dgsi = gsi_after_labels (succbb);
3291 gsi = gsi_last_bb (bb);
3292 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3293 {
3294 gimple stmt = gsi_stmt (gsi);
3295 if (is_gimple_debug (stmt))
3296 continue;
3297 if (gimple_code (stmt) == GIMPLE_LABEL)
3298 break;
3299 unlink_stmt_vdef (stmt);
3300 gsi_remove (&gsi, false);
3301 /* Trigger the operand scanner to cause renaming for virtual
3302 operands for this statement.
3303 ??? Given the simple structure of this code manually
3304 figuring out the reaching definition should not be too hard. */
3305 if (gimple_vuse (stmt))
3306 gimple_set_vuse (stmt, NULL_TREE);
3307 gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3308 }
3309
3310 return TODO_update_ssa_only_virtuals;
3311 }
3312
3313 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3314 we have found some duplicate labels and removed some edges. */
3315
3316 static bool
3317 lower_eh_dispatch (basic_block src, gimple stmt)
3318 {
3319 gimple_stmt_iterator gsi;
3320 int region_nr;
3321 eh_region r;
3322 tree filter, fn;
3323 gimple x;
3324 bool redirected = false;
3325
3326 region_nr = gimple_eh_dispatch_region (stmt);
3327 r = get_eh_region_from_number (region_nr);
3328
3329 gsi = gsi_last_bb (src);
3330
3331 switch (r->type)
3332 {
3333 case ERT_TRY:
3334 {
3335 vec<tree> labels = vNULL;
3336 tree default_label = NULL;
3337 eh_catch c;
3338 edge_iterator ei;
3339 edge e;
3340 struct pointer_set_t *seen_values = pointer_set_create ();
3341
3342 /* Collect the labels for a switch. Zero the post_landing_pad
3343 field becase we'll no longer have anything keeping these labels
3344 in existence and the optimizer will be free to merge these
3345 blocks at will. */
3346 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3347 {
3348 tree tp_node, flt_node, lab = c->label;
3349 bool have_label = false;
3350
3351 c->label = NULL;
3352 tp_node = c->type_list;
3353 flt_node = c->filter_list;
3354
3355 if (tp_node == NULL)
3356 {
3357 default_label = lab;
3358 break;
3359 }
3360 do
3361 {
3362 /* Filter out duplicate labels that arise when this handler
3363 is shadowed by an earlier one. When no labels are
3364 attached to the handler anymore, we remove
3365 the corresponding edge and then we delete unreachable
3366 blocks at the end of this pass. */
3367 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3368 {
3369 tree t = build_case_label (TREE_VALUE (flt_node),
3370 NULL, lab);
3371 labels.safe_push (t);
3372 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3373 have_label = true;
3374 }
3375
3376 tp_node = TREE_CHAIN (tp_node);
3377 flt_node = TREE_CHAIN (flt_node);
3378 }
3379 while (tp_node);
3380 if (! have_label)
3381 {
3382 remove_edge (find_edge (src, label_to_block (lab)));
3383 redirected = true;
3384 }
3385 }
3386
3387 /* Clean up the edge flags. */
3388 FOR_EACH_EDGE (e, ei, src->succs)
3389 {
3390 if (e->flags & EDGE_FALLTHRU)
3391 {
3392 /* If there was no catch-all, use the fallthru edge. */
3393 if (default_label == NULL)
3394 default_label = gimple_block_label (e->dest);
3395 e->flags &= ~EDGE_FALLTHRU;
3396 }
3397 }
3398 gcc_assert (default_label != NULL);
3399
3400 /* Don't generate a switch if there's only a default case.
3401 This is common in the form of try { A; } catch (...) { B; }. */
3402 if (!labels.exists ())
3403 {
3404 e = single_succ_edge (src);
3405 e->flags |= EDGE_FALLTHRU;
3406 }
3407 else
3408 {
3409 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3410 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3411 region_nr));
3412 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3413 filter = make_ssa_name (filter, x);
3414 gimple_call_set_lhs (x, filter);
3415 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3416
3417 /* Turn the default label into a default case. */
3418 default_label = build_case_label (NULL, NULL, default_label);
3419 sort_case_labels (labels);
3420
3421 x = gimple_build_switch (filter, default_label, labels);
3422 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3423
3424 labels.release ();
3425 }
3426 pointer_set_destroy (seen_values);
3427 }
3428 break;
3429
3430 case ERT_ALLOWED_EXCEPTIONS:
3431 {
3432 edge b_e = BRANCH_EDGE (src);
3433 edge f_e = FALLTHRU_EDGE (src);
3434
3435 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3436 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3437 region_nr));
3438 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3439 filter = make_ssa_name (filter, x);
3440 gimple_call_set_lhs (x, filter);
3441 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3442
3443 r->u.allowed.label = NULL;
3444 x = gimple_build_cond (EQ_EXPR, filter,
3445 build_int_cst (TREE_TYPE (filter),
3446 r->u.allowed.filter),
3447 NULL_TREE, NULL_TREE);
3448 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3449
3450 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3451 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3452 }
3453 break;
3454
3455 default:
3456 gcc_unreachable ();
3457 }
3458
3459 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3460 gsi_remove (&gsi, true);
3461 return redirected;
3462 }
3463
3464 static unsigned
3465 execute_lower_eh_dispatch (void)
3466 {
3467 basic_block bb;
3468 int flags = 0;
3469 bool redirected = false;
3470
3471 assign_filter_values ();
3472
3473 FOR_EACH_BB (bb)
3474 {
3475 gimple last = last_stmt (bb);
3476 if (last == NULL)
3477 continue;
3478 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3479 {
3480 redirected |= lower_eh_dispatch (bb, last);
3481 flags |= TODO_update_ssa_only_virtuals;
3482 }
3483 else if (gimple_code (last) == GIMPLE_RESX)
3484 {
3485 if (stmt_can_throw_external (last))
3486 optimize_clobbers (bb);
3487 else
3488 flags |= sink_clobbers (bb);
3489 }
3490 }
3491
3492 if (redirected)
3493 delete_unreachable_blocks ();
3494 return flags;
3495 }
3496
3497 static bool
3498 gate_lower_eh_dispatch (void)
3499 {
3500 return cfun->eh->region_tree != NULL;
3501 }
3502
3503 struct gimple_opt_pass pass_lower_eh_dispatch =
3504 {
3505 {
3506 GIMPLE_PASS,
3507 "ehdisp", /* name */
3508 OPTGROUP_NONE, /* optinfo_flags */
3509 gate_lower_eh_dispatch, /* gate */
3510 execute_lower_eh_dispatch, /* execute */
3511 NULL, /* sub */
3512 NULL, /* next */
3513 0, /* static_pass_number */
3514 TV_TREE_EH, /* tv_id */
3515 PROP_gimple_lcf, /* properties_required */
3516 0, /* properties_provided */
3517 0, /* properties_destroyed */
3518 0, /* todo_flags_start */
3519 TODO_verify_flow /* todo_flags_finish */
3520 }
3521 };
3522 \f
3523 /* Walk statements, see what regions and, optionally, landing pads
3524 are really referenced.
3525
3526 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3527 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3528
3529 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3530 regions are marked.
3531
3532 The caller is responsible for freeing the returned sbitmaps. */
3533
3534 static void
3535 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3536 {
3537 sbitmap r_reachable, lp_reachable;
3538 basic_block bb;
3539 bool mark_landing_pads = (lp_reachablep != NULL);
3540 gcc_checking_assert (r_reachablep != NULL);
3541
3542 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3543 bitmap_clear (r_reachable);
3544 *r_reachablep = r_reachable;
3545
3546 if (mark_landing_pads)
3547 {
3548 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3549 bitmap_clear (lp_reachable);
3550 *lp_reachablep = lp_reachable;
3551 }
3552 else
3553 lp_reachable = NULL;
3554
3555 FOR_EACH_BB (bb)
3556 {
3557 gimple_stmt_iterator gsi;
3558
3559 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3560 {
3561 gimple stmt = gsi_stmt (gsi);
3562
3563 if (mark_landing_pads)
3564 {
3565 int lp_nr = lookup_stmt_eh_lp (stmt);
3566
3567 /* Negative LP numbers are MUST_NOT_THROW regions which
3568 are not considered BB enders. */
3569 if (lp_nr < 0)
3570 bitmap_set_bit (r_reachable, -lp_nr);
3571
3572 /* Positive LP numbers are real landing pads, and BB enders. */
3573 else if (lp_nr > 0)
3574 {
3575 gcc_assert (gsi_one_before_end_p (gsi));
3576 eh_region region = get_eh_region_from_lp_number (lp_nr);
3577 bitmap_set_bit (r_reachable, region->index);
3578 bitmap_set_bit (lp_reachable, lp_nr);
3579 }
3580 }
3581
3582 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3583 switch (gimple_code (stmt))
3584 {
3585 case GIMPLE_RESX:
3586 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3587 break;
3588 case GIMPLE_EH_DISPATCH:
3589 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3590 break;
3591 default:
3592 break;
3593 }
3594 }
3595 }
3596 }
3597
3598 /* Remove unreachable handlers and unreachable landing pads. */
3599
3600 static void
3601 remove_unreachable_handlers (void)
3602 {
3603 sbitmap r_reachable, lp_reachable;
3604 eh_region region;
3605 eh_landing_pad lp;
3606 unsigned i;
3607
3608 mark_reachable_handlers (&r_reachable, &lp_reachable);
3609
3610 if (dump_file)
3611 {
3612 fprintf (dump_file, "Before removal of unreachable regions:\n");
3613 dump_eh_tree (dump_file, cfun);
3614 fprintf (dump_file, "Reachable regions: ");
3615 dump_bitmap_file (dump_file, r_reachable);
3616 fprintf (dump_file, "Reachable landing pads: ");
3617 dump_bitmap_file (dump_file, lp_reachable);
3618 }
3619
3620 if (dump_file)
3621 {
3622 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3623 if (region && !bitmap_bit_p (r_reachable, region->index))
3624 fprintf (dump_file,
3625 "Removing unreachable region %d\n",
3626 region->index);
3627 }
3628
3629 remove_unreachable_eh_regions (r_reachable);
3630
3631 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3632 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3633 {
3634 if (dump_file)
3635 fprintf (dump_file,
3636 "Removing unreachable landing pad %d\n",
3637 lp->index);
3638 remove_eh_landing_pad (lp);
3639 }
3640
3641 if (dump_file)
3642 {
3643 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3644 dump_eh_tree (dump_file, cfun);
3645 fprintf (dump_file, "\n\n");
3646 }
3647
3648 sbitmap_free (r_reachable);
3649 sbitmap_free (lp_reachable);
3650
3651 #ifdef ENABLE_CHECKING
3652 verify_eh_tree (cfun);
3653 #endif
3654 }
3655
3656 /* Remove unreachable handlers if any landing pads have been removed after
3657 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3658
3659 void
3660 maybe_remove_unreachable_handlers (void)
3661 {
3662 eh_landing_pad lp;
3663 unsigned i;
3664
3665 if (cfun->eh == NULL)
3666 return;
3667
3668 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3669 if (lp && lp->post_landing_pad)
3670 {
3671 if (label_to_block (lp->post_landing_pad) == NULL)
3672 {
3673 remove_unreachable_handlers ();
3674 return;
3675 }
3676 }
3677 }
3678
3679 /* Remove regions that do not have landing pads. This assumes
3680 that remove_unreachable_handlers has already been run, and
3681 that we've just manipulated the landing pads since then.
3682
3683 Preserve regions with landing pads and regions that prevent
3684 exceptions from propagating further, even if these regions
3685 are not reachable. */
3686
3687 static void
3688 remove_unreachable_handlers_no_lp (void)
3689 {
3690 eh_region region;
3691 sbitmap r_reachable;
3692 unsigned i;
3693
3694 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3695
3696 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3697 {
3698 if (! region)
3699 continue;
3700
3701 if (region->landing_pads != NULL
3702 || region->type == ERT_MUST_NOT_THROW)
3703 bitmap_set_bit (r_reachable, region->index);
3704
3705 if (dump_file
3706 && !bitmap_bit_p (r_reachable, region->index))
3707 fprintf (dump_file,
3708 "Removing unreachable region %d\n",
3709 region->index);
3710 }
3711
3712 remove_unreachable_eh_regions (r_reachable);
3713
3714 sbitmap_free (r_reachable);
3715 }
3716
3717 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3718 optimisticaly split all sorts of edges, including EH edges. The
3719 optimization passes in between may not have needed them; if not,
3720 we should undo the split.
3721
3722 Recognize this case by having one EH edge incoming to the BB and
3723 one normal edge outgoing; BB should be empty apart from the
3724 post_landing_pad label.
3725
3726 Note that this is slightly different from the empty handler case
3727 handled by cleanup_empty_eh, in that the actual handler may yet
3728 have actual code but the landing pad has been separated from the
3729 handler. As such, cleanup_empty_eh relies on this transformation
3730 having been done first. */
3731
3732 static bool
3733 unsplit_eh (eh_landing_pad lp)
3734 {
3735 basic_block bb = label_to_block (lp->post_landing_pad);
3736 gimple_stmt_iterator gsi;
3737 edge e_in, e_out;
3738
3739 /* Quickly check the edge counts on BB for singularity. */
3740 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3741 return false;
3742 e_in = EDGE_PRED (bb, 0);
3743 e_out = EDGE_SUCC (bb, 0);
3744
3745 /* Input edge must be EH and output edge must be normal. */
3746 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3747 return false;
3748
3749 /* The block must be empty except for the labels and debug insns. */
3750 gsi = gsi_after_labels (bb);
3751 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3752 gsi_next_nondebug (&gsi);
3753 if (!gsi_end_p (gsi))
3754 return false;
3755
3756 /* The destination block must not already have a landing pad
3757 for a different region. */
3758 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3759 {
3760 gimple stmt = gsi_stmt (gsi);
3761 tree lab;
3762 int lp_nr;
3763
3764 if (gimple_code (stmt) != GIMPLE_LABEL)
3765 break;
3766 lab = gimple_label_label (stmt);
3767 lp_nr = EH_LANDING_PAD_NR (lab);
3768 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3769 return false;
3770 }
3771
3772 /* The new destination block must not already be a destination of
3773 the source block, lest we merge fallthru and eh edges and get
3774 all sorts of confused. */
3775 if (find_edge (e_in->src, e_out->dest))
3776 return false;
3777
3778 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3779 thought this should have been cleaned up by a phicprop pass, but
3780 that doesn't appear to handle virtuals. Propagate by hand. */
3781 if (!gimple_seq_empty_p (phi_nodes (bb)))
3782 {
3783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3784 {
3785 gimple use_stmt, phi = gsi_stmt (gsi);
3786 tree lhs = gimple_phi_result (phi);
3787 tree rhs = gimple_phi_arg_def (phi, 0);
3788 use_operand_p use_p;
3789 imm_use_iterator iter;
3790
3791 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3792 {
3793 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3794 SET_USE (use_p, rhs);
3795 }
3796
3797 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3798 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3799
3800 remove_phi_node (&gsi, true);
3801 }
3802 }
3803
3804 if (dump_file && (dump_flags & TDF_DETAILS))
3805 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3806 lp->index, e_out->dest->index);
3807
3808 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3809 a successor edge, humor it. But do the real CFG change with the
3810 predecessor of E_OUT in order to preserve the ordering of arguments
3811 to the PHI nodes in E_OUT->DEST. */
3812 redirect_eh_edge_1 (e_in, e_out->dest, false);
3813 redirect_edge_pred (e_out, e_in->src);
3814 e_out->flags = e_in->flags;
3815 e_out->probability = e_in->probability;
3816 e_out->count = e_in->count;
3817 remove_edge (e_in);
3818
3819 return true;
3820 }
3821
3822 /* Examine each landing pad block and see if it matches unsplit_eh. */
3823
3824 static bool
3825 unsplit_all_eh (void)
3826 {
3827 bool changed = false;
3828 eh_landing_pad lp;
3829 int i;
3830
3831 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
3832 if (lp)
3833 changed |= unsplit_eh (lp);
3834
3835 return changed;
3836 }
3837
3838 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3839 to OLD_BB to NEW_BB; return true on success, false on failure.
3840
3841 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3842 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3843 Virtual PHIs may be deleted and marked for renaming. */
3844
3845 static bool
3846 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3847 edge old_bb_out, bool change_region)
3848 {
3849 gimple_stmt_iterator ngsi, ogsi;
3850 edge_iterator ei;
3851 edge e;
3852 bitmap rename_virts;
3853 bitmap ophi_handled;
3854
3855 /* The destination block must not be a regular successor for any
3856 of the preds of the landing pad. Thus, avoid turning
3857 <..>
3858 | \ EH
3859 | <..>
3860 | /
3861 <..>
3862 into
3863 <..>
3864 | | EH
3865 <..>
3866 which CFG verification would choke on. See PR45172 and PR51089. */
3867 FOR_EACH_EDGE (e, ei, old_bb->preds)
3868 if (find_edge (e->src, new_bb))
3869 return false;
3870
3871 FOR_EACH_EDGE (e, ei, old_bb->preds)
3872 redirect_edge_var_map_clear (e);
3873
3874 ophi_handled = BITMAP_ALLOC (NULL);
3875 rename_virts = BITMAP_ALLOC (NULL);
3876
3877 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3878 for the edges we're going to move. */
3879 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3880 {
3881 gimple ophi, nphi = gsi_stmt (ngsi);
3882 tree nresult, nop;
3883
3884 nresult = gimple_phi_result (nphi);
3885 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3886
3887 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3888 the source ssa_name. */
3889 ophi = NULL;
3890 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3891 {
3892 ophi = gsi_stmt (ogsi);
3893 if (gimple_phi_result (ophi) == nop)
3894 break;
3895 ophi = NULL;
3896 }
3897
3898 /* If we did find the corresponding PHI, copy those inputs. */
3899 if (ophi)
3900 {
3901 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3902 if (!has_single_use (nop))
3903 {
3904 imm_use_iterator imm_iter;
3905 use_operand_p use_p;
3906
3907 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3908 {
3909 if (!gimple_debug_bind_p (USE_STMT (use_p))
3910 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3911 || gimple_bb (USE_STMT (use_p)) != new_bb))
3912 goto fail;
3913 }
3914 }
3915 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3916 FOR_EACH_EDGE (e, ei, old_bb->preds)
3917 {
3918 location_t oloc;
3919 tree oop;
3920
3921 if ((e->flags & EDGE_EH) == 0)
3922 continue;
3923 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3924 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3925 redirect_edge_var_map_add (e, nresult, oop, oloc);
3926 }
3927 }
3928 /* If we didn't find the PHI, but it's a VOP, remember to rename
3929 it later, assuming all other tests succeed. */
3930 else if (virtual_operand_p (nresult))
3931 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3932 /* If we didn't find the PHI, and it's a real variable, we know
3933 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3934 variable is unchanged from input to the block and we can simply
3935 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3936 else
3937 {
3938 location_t nloc
3939 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3940 FOR_EACH_EDGE (e, ei, old_bb->preds)
3941 redirect_edge_var_map_add (e, nresult, nop, nloc);
3942 }
3943 }
3944
3945 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3946 we don't know what values from the other edges into NEW_BB to use. */
3947 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3948 {
3949 gimple ophi = gsi_stmt (ogsi);
3950 tree oresult = gimple_phi_result (ophi);
3951 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3952 goto fail;
3953 }
3954
3955 /* At this point we know that the merge will succeed. Remove the PHI
3956 nodes for the virtuals that we want to rename. */
3957 if (!bitmap_empty_p (rename_virts))
3958 {
3959 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3960 {
3961 gimple nphi = gsi_stmt (ngsi);
3962 tree nresult = gimple_phi_result (nphi);
3963 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3964 {
3965 mark_virtual_phi_result_for_renaming (nphi);
3966 remove_phi_node (&ngsi, true);
3967 }
3968 else
3969 gsi_next (&ngsi);
3970 }
3971 }
3972
3973 /* Finally, move the edges and update the PHIs. */
3974 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3975 if (e->flags & EDGE_EH)
3976 {
3977 /* ??? CFG manipluation routines do not try to update loop
3978 form on edge redirection. Do so manually here for now. */
3979 /* If we redirect a loop entry or latch edge that will either create
3980 a multiple entry loop or rotate the loop. If the loops merge
3981 we may have created a loop with multiple latches.
3982 All of this isn't easily fixed thus cancel the affected loop
3983 and mark the other loop as possibly having multiple latches. */
3984 if (current_loops
3985 && e->dest == e->dest->loop_father->header)
3986 {
3987 e->dest->loop_father->header = NULL;
3988 e->dest->loop_father->latch = NULL;
3989 new_bb->loop_father->latch = NULL;
3990 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
3991 }
3992 redirect_eh_edge_1 (e, new_bb, change_region);
3993 redirect_edge_succ (e, new_bb);
3994 flush_pending_stmts (e);
3995 }
3996 else
3997 ei_next (&ei);
3998
3999 BITMAP_FREE (ophi_handled);
4000 BITMAP_FREE (rename_virts);
4001 return true;
4002
4003 fail:
4004 FOR_EACH_EDGE (e, ei, old_bb->preds)
4005 redirect_edge_var_map_clear (e);
4006 BITMAP_FREE (ophi_handled);
4007 BITMAP_FREE (rename_virts);
4008 return false;
4009 }
4010
4011 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4012 old region to NEW_REGION at BB. */
4013
4014 static void
4015 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4016 eh_landing_pad lp, eh_region new_region)
4017 {
4018 gimple_stmt_iterator gsi;
4019 eh_landing_pad *pp;
4020
4021 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4022 continue;
4023 *pp = lp->next_lp;
4024
4025 lp->region = new_region;
4026 lp->next_lp = new_region->landing_pads;
4027 new_region->landing_pads = lp;
4028
4029 /* Delete the RESX that was matched within the empty handler block. */
4030 gsi = gsi_last_bb (bb);
4031 unlink_stmt_vdef (gsi_stmt (gsi));
4032 gsi_remove (&gsi, true);
4033
4034 /* Clean up E_OUT for the fallthru. */
4035 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4036 e_out->probability = REG_BR_PROB_BASE;
4037 }
4038
4039 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4040 unsplitting than unsplit_eh was prepared to handle, e.g. when
4041 multiple incoming edges and phis are involved. */
4042
4043 static bool
4044 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4045 {
4046 gimple_stmt_iterator gsi;
4047 tree lab;
4048
4049 /* We really ought not have totally lost everything following
4050 a landing pad label. Given that BB is empty, there had better
4051 be a successor. */
4052 gcc_assert (e_out != NULL);
4053
4054 /* The destination block must not already have a landing pad
4055 for a different region. */
4056 lab = NULL;
4057 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4058 {
4059 gimple stmt = gsi_stmt (gsi);
4060 int lp_nr;
4061
4062 if (gimple_code (stmt) != GIMPLE_LABEL)
4063 break;
4064 lab = gimple_label_label (stmt);
4065 lp_nr = EH_LANDING_PAD_NR (lab);
4066 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4067 return false;
4068 }
4069
4070 /* Attempt to move the PHIs into the successor block. */
4071 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4072 {
4073 if (dump_file && (dump_flags & TDF_DETAILS))
4074 fprintf (dump_file,
4075 "Unsplit EH landing pad %d to block %i "
4076 "(via cleanup_empty_eh).\n",
4077 lp->index, e_out->dest->index);
4078 return true;
4079 }
4080
4081 return false;
4082 }
4083
4084 /* Return true if edge E_FIRST is part of an empty infinite loop
4085 or leads to such a loop through a series of single successor
4086 empty bbs. */
4087
4088 static bool
4089 infinite_empty_loop_p (edge e_first)
4090 {
4091 bool inf_loop = false;
4092 edge e;
4093
4094 if (e_first->dest == e_first->src)
4095 return true;
4096
4097 e_first->src->aux = (void *) 1;
4098 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4099 {
4100 gimple_stmt_iterator gsi;
4101 if (e->dest->aux)
4102 {
4103 inf_loop = true;
4104 break;
4105 }
4106 e->dest->aux = (void *) 1;
4107 gsi = gsi_after_labels (e->dest);
4108 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4109 gsi_next_nondebug (&gsi);
4110 if (!gsi_end_p (gsi))
4111 break;
4112 }
4113 e_first->src->aux = NULL;
4114 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4115 e->dest->aux = NULL;
4116
4117 return inf_loop;
4118 }
4119
4120 /* Examine the block associated with LP to determine if it's an empty
4121 handler for its EH region. If so, attempt to redirect EH edges to
4122 an outer region. Return true the CFG was updated in any way. This
4123 is similar to jump forwarding, just across EH edges. */
4124
4125 static bool
4126 cleanup_empty_eh (eh_landing_pad lp)
4127 {
4128 basic_block bb = label_to_block (lp->post_landing_pad);
4129 gimple_stmt_iterator gsi;
4130 gimple resx;
4131 eh_region new_region;
4132 edge_iterator ei;
4133 edge e, e_out;
4134 bool has_non_eh_pred;
4135 bool ret = false;
4136 int new_lp_nr;
4137
4138 /* There can be zero or one edges out of BB. This is the quickest test. */
4139 switch (EDGE_COUNT (bb->succs))
4140 {
4141 case 0:
4142 e_out = NULL;
4143 break;
4144 case 1:
4145 e_out = EDGE_SUCC (bb, 0);
4146 break;
4147 default:
4148 return false;
4149 }
4150
4151 resx = last_stmt (bb);
4152 if (resx && is_gimple_resx (resx))
4153 {
4154 if (stmt_can_throw_external (resx))
4155 optimize_clobbers (bb);
4156 else if (sink_clobbers (bb))
4157 ret = true;
4158 }
4159
4160 gsi = gsi_after_labels (bb);
4161
4162 /* Make sure to skip debug statements. */
4163 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4164 gsi_next_nondebug (&gsi);
4165
4166 /* If the block is totally empty, look for more unsplitting cases. */
4167 if (gsi_end_p (gsi))
4168 {
4169 /* For the degenerate case of an infinite loop bail out. */
4170 if (infinite_empty_loop_p (e_out))
4171 return ret;
4172
4173 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4174 }
4175
4176 /* The block should consist only of a single RESX statement, modulo a
4177 preceding call to __builtin_stack_restore if there is no outgoing
4178 edge, since the call can be eliminated in this case. */
4179 resx = gsi_stmt (gsi);
4180 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4181 {
4182 gsi_next (&gsi);
4183 resx = gsi_stmt (gsi);
4184 }
4185 if (!is_gimple_resx (resx))
4186 return ret;
4187 gcc_assert (gsi_one_before_end_p (gsi));
4188
4189 /* Determine if there are non-EH edges, or resx edges into the handler. */
4190 has_non_eh_pred = false;
4191 FOR_EACH_EDGE (e, ei, bb->preds)
4192 if (!(e->flags & EDGE_EH))
4193 has_non_eh_pred = true;
4194
4195 /* Find the handler that's outer of the empty handler by looking at
4196 where the RESX instruction was vectored. */
4197 new_lp_nr = lookup_stmt_eh_lp (resx);
4198 new_region = get_eh_region_from_lp_number (new_lp_nr);
4199
4200 /* If there's no destination region within the current function,
4201 redirection is trivial via removing the throwing statements from
4202 the EH region, removing the EH edges, and allowing the block
4203 to go unreachable. */
4204 if (new_region == NULL)
4205 {
4206 gcc_assert (e_out == NULL);
4207 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4208 if (e->flags & EDGE_EH)
4209 {
4210 gimple stmt = last_stmt (e->src);
4211 remove_stmt_from_eh_lp (stmt);
4212 remove_edge (e);
4213 }
4214 else
4215 ei_next (&ei);
4216 goto succeed;
4217 }
4218
4219 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4220 to handle the abort and allow the blocks to go unreachable. */
4221 if (new_region->type == ERT_MUST_NOT_THROW)
4222 {
4223 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4224 if (e->flags & EDGE_EH)
4225 {
4226 gimple stmt = last_stmt (e->src);
4227 remove_stmt_from_eh_lp (stmt);
4228 add_stmt_to_eh_lp (stmt, new_lp_nr);
4229 remove_edge (e);
4230 }
4231 else
4232 ei_next (&ei);
4233 goto succeed;
4234 }
4235
4236 /* Try to redirect the EH edges and merge the PHIs into the destination
4237 landing pad block. If the merge succeeds, we'll already have redirected
4238 all the EH edges. The handler itself will go unreachable if there were
4239 no normal edges. */
4240 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4241 goto succeed;
4242
4243 /* Finally, if all input edges are EH edges, then we can (potentially)
4244 reduce the number of transfers from the runtime by moving the landing
4245 pad from the original region to the new region. This is a win when
4246 we remove the last CLEANUP region along a particular exception
4247 propagation path. Since nothing changes except for the region with
4248 which the landing pad is associated, the PHI nodes do not need to be
4249 adjusted at all. */
4250 if (!has_non_eh_pred)
4251 {
4252 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4253 if (dump_file && (dump_flags & TDF_DETAILS))
4254 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4255 lp->index, new_region->index);
4256
4257 /* ??? The CFG didn't change, but we may have rendered the
4258 old EH region unreachable. Trigger a cleanup there. */
4259 return true;
4260 }
4261
4262 return ret;
4263
4264 succeed:
4265 if (dump_file && (dump_flags & TDF_DETAILS))
4266 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4267 remove_eh_landing_pad (lp);
4268 return true;
4269 }
4270
4271 /* Do a post-order traversal of the EH region tree. Examine each
4272 post_landing_pad block and see if we can eliminate it as empty. */
4273
4274 static bool
4275 cleanup_all_empty_eh (void)
4276 {
4277 bool changed = false;
4278 eh_landing_pad lp;
4279 int i;
4280
4281 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4282 if (lp)
4283 changed |= cleanup_empty_eh (lp);
4284
4285 return changed;
4286 }
4287
4288 /* Perform cleanups and lowering of exception handling
4289 1) cleanups regions with handlers doing nothing are optimized out
4290 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4291 3) Info about regions that are containing instructions, and regions
4292 reachable via local EH edges is collected
4293 4) Eh tree is pruned for regions no longer neccesary.
4294
4295 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4296 Unify those that have the same failure decl and locus.
4297 */
4298
4299 static unsigned int
4300 execute_cleanup_eh_1 (void)
4301 {
4302 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4303 looking up unreachable landing pads. */
4304 remove_unreachable_handlers ();
4305
4306 /* Watch out for the region tree vanishing due to all unreachable. */
4307 if (cfun->eh->region_tree && optimize)
4308 {
4309 bool changed = false;
4310
4311 changed |= unsplit_all_eh ();
4312 changed |= cleanup_all_empty_eh ();
4313
4314 if (changed)
4315 {
4316 free_dominance_info (CDI_DOMINATORS);
4317 free_dominance_info (CDI_POST_DOMINATORS);
4318
4319 /* We delayed all basic block deletion, as we may have performed
4320 cleanups on EH edges while non-EH edges were still present. */
4321 delete_unreachable_blocks ();
4322
4323 /* We manipulated the landing pads. Remove any region that no
4324 longer has a landing pad. */
4325 remove_unreachable_handlers_no_lp ();
4326
4327 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4328 }
4329 }
4330
4331 return 0;
4332 }
4333
4334 static unsigned int
4335 execute_cleanup_eh (void)
4336 {
4337 int ret = execute_cleanup_eh_1 ();
4338
4339 /* If the function no longer needs an EH personality routine
4340 clear it. This exposes cross-language inlining opportunities
4341 and avoids references to a never defined personality routine. */
4342 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4343 && function_needs_eh_personality (cfun) != eh_personality_lang)
4344 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4345
4346 return ret;
4347 }
4348
4349 static bool
4350 gate_cleanup_eh (void)
4351 {
4352 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4353 }
4354
4355 struct gimple_opt_pass pass_cleanup_eh = {
4356 {
4357 GIMPLE_PASS,
4358 "ehcleanup", /* name */
4359 OPTGROUP_NONE, /* optinfo_flags */
4360 gate_cleanup_eh, /* gate */
4361 execute_cleanup_eh, /* execute */
4362 NULL, /* sub */
4363 NULL, /* next */
4364 0, /* static_pass_number */
4365 TV_TREE_EH, /* tv_id */
4366 PROP_gimple_lcf, /* properties_required */
4367 0, /* properties_provided */
4368 0, /* properties_destroyed */
4369 0, /* todo_flags_start */
4370 0 /* todo_flags_finish */
4371 }
4372 };
4373 \f
4374 /* Verify that BB containing STMT as the last statement, has precisely the
4375 edge that make_eh_edges would create. */
4376
4377 DEBUG_FUNCTION bool
4378 verify_eh_edges (gimple stmt)
4379 {
4380 basic_block bb = gimple_bb (stmt);
4381 eh_landing_pad lp = NULL;
4382 int lp_nr;
4383 edge_iterator ei;
4384 edge e, eh_edge;
4385
4386 lp_nr = lookup_stmt_eh_lp (stmt);
4387 if (lp_nr > 0)
4388 lp = get_eh_landing_pad_from_number (lp_nr);
4389
4390 eh_edge = NULL;
4391 FOR_EACH_EDGE (e, ei, bb->succs)
4392 {
4393 if (e->flags & EDGE_EH)
4394 {
4395 if (eh_edge)
4396 {
4397 error ("BB %i has multiple EH edges", bb->index);
4398 return true;
4399 }
4400 else
4401 eh_edge = e;
4402 }
4403 }
4404
4405 if (lp == NULL)
4406 {
4407 if (eh_edge)
4408 {
4409 error ("BB %i can not throw but has an EH edge", bb->index);
4410 return true;
4411 }
4412 return false;
4413 }
4414
4415 if (!stmt_could_throw_p (stmt))
4416 {
4417 error ("BB %i last statement has incorrectly set lp", bb->index);
4418 return true;
4419 }
4420
4421 if (eh_edge == NULL)
4422 {
4423 error ("BB %i is missing an EH edge", bb->index);
4424 return true;
4425 }
4426
4427 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4428 {
4429 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4430 return true;
4431 }
4432
4433 return false;
4434 }
4435
4436 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4437
4438 DEBUG_FUNCTION bool
4439 verify_eh_dispatch_edge (gimple stmt)
4440 {
4441 eh_region r;
4442 eh_catch c;
4443 basic_block src, dst;
4444 bool want_fallthru = true;
4445 edge_iterator ei;
4446 edge e, fall_edge;
4447
4448 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4449 src = gimple_bb (stmt);
4450
4451 FOR_EACH_EDGE (e, ei, src->succs)
4452 gcc_assert (e->aux == NULL);
4453
4454 switch (r->type)
4455 {
4456 case ERT_TRY:
4457 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4458 {
4459 dst = label_to_block (c->label);
4460 e = find_edge (src, dst);
4461 if (e == NULL)
4462 {
4463 error ("BB %i is missing an edge", src->index);
4464 return true;
4465 }
4466 e->aux = (void *)e;
4467
4468 /* A catch-all handler doesn't have a fallthru. */
4469 if (c->type_list == NULL)
4470 {
4471 want_fallthru = false;
4472 break;
4473 }
4474 }
4475 break;
4476
4477 case ERT_ALLOWED_EXCEPTIONS:
4478 dst = label_to_block (r->u.allowed.label);
4479 e = find_edge (src, dst);
4480 if (e == NULL)
4481 {
4482 error ("BB %i is missing an edge", src->index);
4483 return true;
4484 }
4485 e->aux = (void *)e;
4486 break;
4487
4488 default:
4489 gcc_unreachable ();
4490 }
4491
4492 fall_edge = NULL;
4493 FOR_EACH_EDGE (e, ei, src->succs)
4494 {
4495 if (e->flags & EDGE_FALLTHRU)
4496 {
4497 if (fall_edge != NULL)
4498 {
4499 error ("BB %i too many fallthru edges", src->index);
4500 return true;
4501 }
4502 fall_edge = e;
4503 }
4504 else if (e->aux)
4505 e->aux = NULL;
4506 else
4507 {
4508 error ("BB %i has incorrect edge", src->index);
4509 return true;
4510 }
4511 }
4512 if ((fall_edge != NULL) ^ want_fallthru)
4513 {
4514 error ("BB %i has incorrect fallthru edge", src->index);
4515 return true;
4516 }
4517
4518 return false;
4519 }