]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
tree.h (tree_constructor): Remove IS_UNKNOWN_LOCATION.
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "langhooks.h"
34 #include "ggc.h"
35 #include "diagnostic-core.h"
36 #include "gimple.h"
37 #include "target.h"
38 #include "cfgloop.h"
39
40 /* In some instances a tree and a gimple need to be stored in a same table,
41 i.e. in hash tables. This is a structure to do this. */
42 typedef union {tree *tp; tree t; gimple g;} treemple;
43
44 /* Nonzero if we are using EH to handle cleanups. */
45 static int using_eh_for_cleanups_p = 0;
46
47 void
48 using_eh_for_cleanups (void)
49 {
50 using_eh_for_cleanups_p = 1;
51 }
52
53 /* Misc functions used in this file. */
54
55 /* Remember and lookup EH landing pad data for arbitrary statements.
56 Really this means any statement that could_throw_p. We could
57 stuff this information into the stmt_ann data structure, but:
58
59 (1) We absolutely rely on this information being kept until
60 we get to rtl. Once we're done with lowering here, if we lose
61 the information there's no way to recover it!
62
63 (2) There are many more statements that *cannot* throw as
64 compared to those that can. We should be saving some amount
65 of space by only allocating memory for those that can throw. */
66
67 /* Add statement T in function IFUN to landing pad NUM. */
68
69 void
70 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
71 {
72 struct throw_stmt_node *n;
73 void **slot;
74
75 gcc_assert (num != 0);
76
77 n = ggc_alloc_throw_stmt_node ();
78 n->stmt = t;
79 n->lp_nr = num;
80
81 if (!get_eh_throw_stmt_table (ifun))
82 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
83 struct_ptr_eq,
84 ggc_free));
85
86 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
87 gcc_assert (!*slot);
88 *slot = n;
89 }
90
91 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
92
93 void
94 add_stmt_to_eh_lp (gimple t, int num)
95 {
96 add_stmt_to_eh_lp_fn (cfun, t, num);
97 }
98
99 /* Add statement T to the single EH landing pad in REGION. */
100
101 static void
102 record_stmt_eh_region (eh_region region, gimple t)
103 {
104 if (region == NULL)
105 return;
106 if (region->type == ERT_MUST_NOT_THROW)
107 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
108 else
109 {
110 eh_landing_pad lp = region->landing_pads;
111 if (lp == NULL)
112 lp = gen_eh_landing_pad (region);
113 else
114 gcc_assert (lp->next_lp == NULL);
115 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
116 }
117 }
118
119
120 /* Remove statement T in function IFUN from its EH landing pad. */
121
122 bool
123 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
124 {
125 struct throw_stmt_node dummy;
126 void **slot;
127
128 if (!get_eh_throw_stmt_table (ifun))
129 return false;
130
131 dummy.stmt = t;
132 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
133 NO_INSERT);
134 if (slot)
135 {
136 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
137 return true;
138 }
139 else
140 return false;
141 }
142
143
144 /* Remove statement T in the current function (cfun) from its
145 EH landing pad. */
146
147 bool
148 remove_stmt_from_eh_lp (gimple t)
149 {
150 return remove_stmt_from_eh_lp_fn (cfun, t);
151 }
152
153 /* Determine if statement T is inside an EH region in function IFUN.
154 Positive numbers indicate a landing pad index; negative numbers
155 indicate a MUST_NOT_THROW region index; zero indicates that the
156 statement is not recorded in the region table. */
157
158 int
159 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
160 {
161 struct throw_stmt_node *p, n;
162
163 if (ifun->eh->throw_stmt_table == NULL)
164 return 0;
165
166 n.stmt = t;
167 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
168 return p ? p->lp_nr : 0;
169 }
170
171 /* Likewise, but always use the current function. */
172
173 int
174 lookup_stmt_eh_lp (gimple t)
175 {
176 /* We can get called from initialized data when -fnon-call-exceptions
177 is on; prevent crash. */
178 if (!cfun)
179 return 0;
180 return lookup_stmt_eh_lp_fn (cfun, t);
181 }
182
183 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
184 nodes and LABEL_DECL nodes. We will use this during the second phase to
185 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
186
187 struct finally_tree_node
188 {
189 /* When storing a GIMPLE_TRY, we have to record a gimple. However
190 when deciding whether a GOTO to a certain LABEL_DECL (which is a
191 tree) leaves the TRY block, its necessary to record a tree in
192 this field. Thus a treemple is used. */
193 treemple child;
194 gimple parent;
195 };
196
197 /* Note that this table is *not* marked GTY. It is short-lived. */
198 static htab_t finally_tree;
199
200 static void
201 record_in_finally_tree (treemple child, gimple parent)
202 {
203 struct finally_tree_node *n;
204 void **slot;
205
206 n = XNEW (struct finally_tree_node);
207 n->child = child;
208 n->parent = parent;
209
210 slot = htab_find_slot (finally_tree, n, INSERT);
211 gcc_assert (!*slot);
212 *slot = n;
213 }
214
215 static void
216 collect_finally_tree (gimple stmt, gimple region);
217
218 /* Go through the gimple sequence. Works with collect_finally_tree to
219 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
220
221 static void
222 collect_finally_tree_1 (gimple_seq seq, gimple region)
223 {
224 gimple_stmt_iterator gsi;
225
226 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
227 collect_finally_tree (gsi_stmt (gsi), region);
228 }
229
230 static void
231 collect_finally_tree (gimple stmt, gimple region)
232 {
233 treemple temp;
234
235 switch (gimple_code (stmt))
236 {
237 case GIMPLE_LABEL:
238 temp.t = gimple_label_label (stmt);
239 record_in_finally_tree (temp, region);
240 break;
241
242 case GIMPLE_TRY:
243 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
244 {
245 temp.g = stmt;
246 record_in_finally_tree (temp, region);
247 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
248 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
249 }
250 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
251 {
252 collect_finally_tree_1 (gimple_try_eval (stmt), region);
253 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
254 }
255 break;
256
257 case GIMPLE_CATCH:
258 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
259 break;
260
261 case GIMPLE_EH_FILTER:
262 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
263 break;
264
265 case GIMPLE_EH_ELSE:
266 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
267 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
268 break;
269
270 default:
271 /* A type, a decl, or some kind of statement that we're not
272 interested in. Don't walk them. */
273 break;
274 }
275 }
276
277
278 /* Use the finally tree to determine if a jump from START to TARGET
279 would leave the try_finally node that START lives in. */
280
281 static bool
282 outside_finally_tree (treemple start, gimple target)
283 {
284 struct finally_tree_node n, *p;
285
286 do
287 {
288 n.child = start;
289 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
290 if (!p)
291 return true;
292 start.g = p->parent;
293 }
294 while (start.g != target);
295
296 return false;
297 }
298
299 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
300 nodes into a set of gotos, magic labels, and eh regions.
301 The eh region creation is straight-forward, but frobbing all the gotos
302 and such into shape isn't. */
303
304 /* The sequence into which we record all EH stuff. This will be
305 placed at the end of the function when we're all done. */
306 static gimple_seq eh_seq;
307
308 /* Record whether an EH region contains something that can throw,
309 indexed by EH region number. */
310 static bitmap eh_region_may_contain_throw_map;
311
312 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
313 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
314 The idea is to record a gimple statement for everything except for
315 the conditionals, which get their labels recorded. Since labels are
316 of type 'tree', we need this node to store both gimple and tree
317 objects. REPL_STMT is the sequence used to replace the goto/return
318 statement. CONT_STMT is used to store the statement that allows
319 the return/goto to jump to the original destination. */
320
321 struct goto_queue_node
322 {
323 treemple stmt;
324 location_t location;
325 gimple_seq repl_stmt;
326 gimple cont_stmt;
327 int index;
328 /* This is used when index >= 0 to indicate that stmt is a label (as
329 opposed to a goto stmt). */
330 int is_label;
331 };
332
333 /* State of the world while lowering. */
334
335 struct leh_state
336 {
337 /* What's "current" while constructing the eh region tree. These
338 correspond to variables of the same name in cfun->eh, which we
339 don't have easy access to. */
340 eh_region cur_region;
341
342 /* What's "current" for the purposes of __builtin_eh_pointer. For
343 a CATCH, this is the associated TRY. For an EH_FILTER, this is
344 the associated ALLOWED_EXCEPTIONS, etc. */
345 eh_region ehp_region;
346
347 /* Processing of TRY_FINALLY requires a bit more state. This is
348 split out into a separate structure so that we don't have to
349 copy so much when processing other nodes. */
350 struct leh_tf_state *tf;
351 };
352
353 struct leh_tf_state
354 {
355 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
356 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
357 this so that outside_finally_tree can reliably reference the tree used
358 in the collect_finally_tree data structures. */
359 gimple try_finally_expr;
360 gimple top_p;
361
362 /* While lowering a top_p usually it is expanded into multiple statements,
363 thus we need the following field to store them. */
364 gimple_seq top_p_seq;
365
366 /* The state outside this try_finally node. */
367 struct leh_state *outer;
368
369 /* The exception region created for it. */
370 eh_region region;
371
372 /* The goto queue. */
373 struct goto_queue_node *goto_queue;
374 size_t goto_queue_size;
375 size_t goto_queue_active;
376
377 /* Pointer map to help in searching goto_queue when it is large. */
378 struct pointer_map_t *goto_queue_map;
379
380 /* The set of unique labels seen as entries in the goto queue. */
381 VEC(tree,heap) *dest_array;
382
383 /* A label to be added at the end of the completed transformed
384 sequence. It will be set if may_fallthru was true *at one time*,
385 though subsequent transformations may have cleared that flag. */
386 tree fallthru_label;
387
388 /* True if it is possible to fall out the bottom of the try block.
389 Cleared if the fallthru is converted to a goto. */
390 bool may_fallthru;
391
392 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
393 bool may_return;
394
395 /* True if the finally block can receive an exception edge.
396 Cleared if the exception case is handled by code duplication. */
397 bool may_throw;
398 };
399
400 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
401
402 /* Search for STMT in the goto queue. Return the replacement,
403 or null if the statement isn't in the queue. */
404
405 #define LARGE_GOTO_QUEUE 20
406
407 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
408
409 static gimple_seq
410 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
411 {
412 unsigned int i;
413 void **slot;
414
415 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
416 {
417 for (i = 0; i < tf->goto_queue_active; i++)
418 if ( tf->goto_queue[i].stmt.g == stmt.g)
419 return tf->goto_queue[i].repl_stmt;
420 return NULL;
421 }
422
423 /* If we have a large number of entries in the goto_queue, create a
424 pointer map and use that for searching. */
425
426 if (!tf->goto_queue_map)
427 {
428 tf->goto_queue_map = pointer_map_create ();
429 for (i = 0; i < tf->goto_queue_active; i++)
430 {
431 slot = pointer_map_insert (tf->goto_queue_map,
432 tf->goto_queue[i].stmt.g);
433 gcc_assert (*slot == NULL);
434 *slot = &tf->goto_queue[i];
435 }
436 }
437
438 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
439 if (slot != NULL)
440 return (((struct goto_queue_node *) *slot)->repl_stmt);
441
442 return NULL;
443 }
444
445 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
446 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
447 then we can just splat it in, otherwise we add the new stmts immediately
448 after the GIMPLE_COND and redirect. */
449
450 static void
451 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
452 gimple_stmt_iterator *gsi)
453 {
454 tree label;
455 gimple_seq new_seq;
456 treemple temp;
457 location_t loc = gimple_location (gsi_stmt (*gsi));
458
459 temp.tp = tp;
460 new_seq = find_goto_replacement (tf, temp);
461 if (!new_seq)
462 return;
463
464 if (gimple_seq_singleton_p (new_seq)
465 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
466 {
467 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
468 return;
469 }
470
471 label = create_artificial_label (loc);
472 /* Set the new label for the GIMPLE_COND */
473 *tp = label;
474
475 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
476 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
477 }
478
479 /* The real work of replace_goto_queue. Returns with TSI updated to
480 point to the next statement. */
481
482 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
483
484 static void
485 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
486 gimple_stmt_iterator *gsi)
487 {
488 gimple_seq seq;
489 treemple temp;
490 temp.g = NULL;
491
492 switch (gimple_code (stmt))
493 {
494 case GIMPLE_GOTO:
495 case GIMPLE_RETURN:
496 temp.g = stmt;
497 seq = find_goto_replacement (tf, temp);
498 if (seq)
499 {
500 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
501 gsi_remove (gsi, false);
502 return;
503 }
504 break;
505
506 case GIMPLE_COND:
507 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
508 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
509 break;
510
511 case GIMPLE_TRY:
512 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
513 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
514 break;
515 case GIMPLE_CATCH:
516 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
517 break;
518 case GIMPLE_EH_FILTER:
519 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
520 break;
521 case GIMPLE_EH_ELSE:
522 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
523 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
524 break;
525
526 default:
527 /* These won't have gotos in them. */
528 break;
529 }
530
531 gsi_next (gsi);
532 }
533
534 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
535
536 static void
537 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
538 {
539 gimple_stmt_iterator gsi = gsi_start (*seq);
540
541 while (!gsi_end_p (gsi))
542 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
543 }
544
545 /* Replace all goto queue members. */
546
547 static void
548 replace_goto_queue (struct leh_tf_state *tf)
549 {
550 if (tf->goto_queue_active == 0)
551 return;
552 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
553 replace_goto_queue_stmt_list (&eh_seq, tf);
554 }
555
556 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
557 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
558 a gimple return. */
559
560 static void
561 record_in_goto_queue (struct leh_tf_state *tf,
562 treemple new_stmt,
563 int index,
564 bool is_label,
565 location_t location)
566 {
567 size_t active, size;
568 struct goto_queue_node *q;
569
570 gcc_assert (!tf->goto_queue_map);
571
572 active = tf->goto_queue_active;
573 size = tf->goto_queue_size;
574 if (active >= size)
575 {
576 size = (size ? size * 2 : 32);
577 tf->goto_queue_size = size;
578 tf->goto_queue
579 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
580 }
581
582 q = &tf->goto_queue[active];
583 tf->goto_queue_active = active + 1;
584
585 memset (q, 0, sizeof (*q));
586 q->stmt = new_stmt;
587 q->index = index;
588 q->location = location;
589 q->is_label = is_label;
590 }
591
592 /* Record the LABEL label in the goto queue contained in TF.
593 TF is not null. */
594
595 static void
596 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
597 location_t location)
598 {
599 int index;
600 treemple temp, new_stmt;
601
602 if (!label)
603 return;
604
605 /* Computed and non-local gotos do not get processed. Given
606 their nature we can neither tell whether we've escaped the
607 finally block nor redirect them if we knew. */
608 if (TREE_CODE (label) != LABEL_DECL)
609 return;
610
611 /* No need to record gotos that don't leave the try block. */
612 temp.t = label;
613 if (!outside_finally_tree (temp, tf->try_finally_expr))
614 return;
615
616 if (! tf->dest_array)
617 {
618 tf->dest_array = VEC_alloc (tree, heap, 10);
619 VEC_quick_push (tree, tf->dest_array, label);
620 index = 0;
621 }
622 else
623 {
624 int n = VEC_length (tree, tf->dest_array);
625 for (index = 0; index < n; ++index)
626 if (VEC_index (tree, tf->dest_array, index) == label)
627 break;
628 if (index == n)
629 VEC_safe_push (tree, heap, tf->dest_array, label);
630 }
631
632 /* In the case of a GOTO we want to record the destination label,
633 since with a GIMPLE_COND we have an easy access to the then/else
634 labels. */
635 new_stmt = stmt;
636 record_in_goto_queue (tf, new_stmt, index, true, location);
637 }
638
639 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
640 node, and if so record that fact in the goto queue associated with that
641 try_finally node. */
642
643 static void
644 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
645 {
646 struct leh_tf_state *tf = state->tf;
647 treemple new_stmt;
648
649 if (!tf)
650 return;
651
652 switch (gimple_code (stmt))
653 {
654 case GIMPLE_COND:
655 new_stmt.tp = gimple_op_ptr (stmt, 2);
656 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
657 EXPR_LOCATION (*new_stmt.tp));
658 new_stmt.tp = gimple_op_ptr (stmt, 3);
659 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
660 EXPR_LOCATION (*new_stmt.tp));
661 break;
662 case GIMPLE_GOTO:
663 new_stmt.g = stmt;
664 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
665 gimple_location (stmt));
666 break;
667
668 case GIMPLE_RETURN:
669 tf->may_return = true;
670 new_stmt.g = stmt;
671 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
672 break;
673
674 default:
675 gcc_unreachable ();
676 }
677 }
678
679
680 #ifdef ENABLE_CHECKING
681 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
682 was in fact structured, and we've not yet done jump threading, then none
683 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
684
685 static void
686 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
687 {
688 struct leh_tf_state *tf = state->tf;
689 size_t i, n;
690
691 if (!tf)
692 return;
693
694 n = gimple_switch_num_labels (switch_expr);
695
696 for (i = 0; i < n; ++i)
697 {
698 treemple temp;
699 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
700 temp.t = lab;
701 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
702 }
703 }
704 #else
705 #define verify_norecord_switch_expr(state, switch_expr)
706 #endif
707
708 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
709 non-null, insert it before the new branch. */
710
711 static void
712 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
713 {
714 gimple x;
715
716 /* In the case of a return, the queue node must be a gimple statement. */
717 gcc_assert (!q->is_label);
718
719 /* Note that the return value may have already been computed, e.g.,
720
721 int x;
722 int foo (void)
723 {
724 x = 0;
725 try {
726 return x;
727 } finally {
728 x++;
729 }
730 }
731
732 should return 0, not 1. We don't have to do anything to make
733 this happens because the return value has been placed in the
734 RESULT_DECL already. */
735
736 q->cont_stmt = q->stmt.g;
737
738 if (mod)
739 gimple_seq_add_seq (&q->repl_stmt, mod);
740
741 x = gimple_build_goto (finlab);
742 gimple_seq_add_stmt (&q->repl_stmt, x);
743 }
744
745 /* Similar, but easier, for GIMPLE_GOTO. */
746
747 static void
748 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
749 struct leh_tf_state *tf)
750 {
751 gimple x;
752
753 gcc_assert (q->is_label);
754
755 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
756
757 if (mod)
758 gimple_seq_add_seq (&q->repl_stmt, mod);
759
760 x = gimple_build_goto (finlab);
761 gimple_seq_add_stmt (&q->repl_stmt, x);
762 }
763
764 /* Emit a standard landing pad sequence into SEQ for REGION. */
765
766 static void
767 emit_post_landing_pad (gimple_seq *seq, eh_region region)
768 {
769 eh_landing_pad lp = region->landing_pads;
770 gimple x;
771
772 if (lp == NULL)
773 lp = gen_eh_landing_pad (region);
774
775 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
776 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
777
778 x = gimple_build_label (lp->post_landing_pad);
779 gimple_seq_add_stmt (seq, x);
780 }
781
782 /* Emit a RESX statement into SEQ for REGION. */
783
784 static void
785 emit_resx (gimple_seq *seq, eh_region region)
786 {
787 gimple x = gimple_build_resx (region->index);
788 gimple_seq_add_stmt (seq, x);
789 if (region->outer)
790 record_stmt_eh_region (region->outer, x);
791 }
792
793 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
794
795 static void
796 emit_eh_dispatch (gimple_seq *seq, eh_region region)
797 {
798 gimple x = gimple_build_eh_dispatch (region->index);
799 gimple_seq_add_stmt (seq, x);
800 }
801
802 /* Note that the current EH region may contain a throw, or a
803 call to a function which itself may contain a throw. */
804
805 static void
806 note_eh_region_may_contain_throw (eh_region region)
807 {
808 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
809 {
810 if (region->type == ERT_MUST_NOT_THROW)
811 break;
812 region = region->outer;
813 if (region == NULL)
814 break;
815 }
816 }
817
818 /* Check if REGION has been marked as containing a throw. If REGION is
819 NULL, this predicate is false. */
820
821 static inline bool
822 eh_region_may_contain_throw (eh_region r)
823 {
824 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
825 }
826
827 /* We want to transform
828 try { body; } catch { stuff; }
829 to
830 normal_seqence:
831 body;
832 over:
833 eh_seqence:
834 landing_pad:
835 stuff;
836 goto over;
837
838 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
839 should be placed before the second operand, or NULL. OVER is
840 an existing label that should be put at the exit, or NULL. */
841
842 static gimple_seq
843 frob_into_branch_around (gimple tp, eh_region region, tree over)
844 {
845 gimple x;
846 gimple_seq cleanup, result;
847 location_t loc = gimple_location (tp);
848
849 cleanup = gimple_try_cleanup (tp);
850 result = gimple_try_eval (tp);
851
852 if (region)
853 emit_post_landing_pad (&eh_seq, region);
854
855 if (gimple_seq_may_fallthru (cleanup))
856 {
857 if (!over)
858 over = create_artificial_label (loc);
859 x = gimple_build_goto (over);
860 gimple_seq_add_stmt (&cleanup, x);
861 }
862 gimple_seq_add_seq (&eh_seq, cleanup);
863
864 if (over)
865 {
866 x = gimple_build_label (over);
867 gimple_seq_add_stmt (&result, x);
868 }
869 return result;
870 }
871
872 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
873 Make sure to record all new labels found. */
874
875 static gimple_seq
876 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
877 location_t loc)
878 {
879 gimple region = NULL;
880 gimple_seq new_seq;
881 gimple_stmt_iterator gsi;
882
883 new_seq = copy_gimple_seq_and_replace_locals (seq);
884
885 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
886 {
887 gimple stmt = gsi_stmt (gsi);
888 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
889 {
890 tree block = gimple_block (stmt);
891 gimple_set_location (stmt, loc);
892 gimple_set_block (stmt, block);
893 }
894 }
895
896 if (outer_state->tf)
897 region = outer_state->tf->try_finally_expr;
898 collect_finally_tree_1 (new_seq, region);
899
900 return new_seq;
901 }
902
903 /* A subroutine of lower_try_finally. Create a fallthru label for
904 the given try_finally state. The only tricky bit here is that
905 we have to make sure to record the label in our outer context. */
906
907 static tree
908 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
909 {
910 tree label = tf->fallthru_label;
911 treemple temp;
912
913 if (!label)
914 {
915 label = create_artificial_label (gimple_location (tf->try_finally_expr));
916 tf->fallthru_label = label;
917 if (tf->outer->tf)
918 {
919 temp.t = label;
920 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
921 }
922 }
923 return label;
924 }
925
926 /* A subroutine of lower_try_finally. If FINALLY consits of a
927 GIMPLE_EH_ELSE node, return it. */
928
929 static inline gimple
930 get_eh_else (gimple_seq finally)
931 {
932 gimple x = gimple_seq_first_stmt (finally);
933 if (gimple_code (x) == GIMPLE_EH_ELSE)
934 {
935 gcc_assert (gimple_seq_singleton_p (finally));
936 return x;
937 }
938 return NULL;
939 }
940
941 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
942 langhook returns non-null, then the language requires that the exception
943 path out of a try_finally be treated specially. To wit: the code within
944 the finally block may not itself throw an exception. We have two choices
945 here. First we can duplicate the finally block and wrap it in a
946 must_not_throw region. Second, we can generate code like
947
948 try {
949 finally_block;
950 } catch {
951 if (fintmp == eh_edge)
952 protect_cleanup_actions;
953 }
954
955 where "fintmp" is the temporary used in the switch statement generation
956 alternative considered below. For the nonce, we always choose the first
957 option.
958
959 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
960
961 static void
962 honor_protect_cleanup_actions (struct leh_state *outer_state,
963 struct leh_state *this_state,
964 struct leh_tf_state *tf)
965 {
966 tree protect_cleanup_actions;
967 gimple_stmt_iterator gsi;
968 bool finally_may_fallthru;
969 gimple_seq finally;
970 gimple x, eh_else;
971
972 /* First check for nothing to do. */
973 if (lang_hooks.eh_protect_cleanup_actions == NULL)
974 return;
975 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
976 if (protect_cleanup_actions == NULL)
977 return;
978
979 finally = gimple_try_cleanup (tf->top_p);
980 eh_else = get_eh_else (finally);
981
982 /* Duplicate the FINALLY block. Only need to do this for try-finally,
983 and not for cleanups. If we've got an EH_ELSE, extract it now. */
984 if (eh_else)
985 {
986 finally = gimple_eh_else_e_body (eh_else);
987 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
988 }
989 else if (this_state)
990 finally = lower_try_finally_dup_block (finally, outer_state,
991 gimple_location (tf->try_finally_expr));
992 finally_may_fallthru = gimple_seq_may_fallthru (finally);
993
994 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
995 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
996 to be in an enclosing scope, but needs to be implemented at this level
997 to avoid a nesting violation (see wrap_temporary_cleanups in
998 cp/decl.c). Since it's logically at an outer level, we should call
999 terminate before we get to it, so strip it away before adding the
1000 MUST_NOT_THROW filter. */
1001 gsi = gsi_start (finally);
1002 x = gsi_stmt (gsi);
1003 if (gimple_code (x) == GIMPLE_TRY
1004 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1005 && gimple_try_catch_is_cleanup (x))
1006 {
1007 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1008 gsi_remove (&gsi, false);
1009 }
1010
1011 /* Wrap the block with protect_cleanup_actions as the action. */
1012 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1013 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1014 GIMPLE_TRY_CATCH);
1015 finally = lower_eh_must_not_throw (outer_state, x);
1016
1017 /* Drop all of this into the exception sequence. */
1018 emit_post_landing_pad (&eh_seq, tf->region);
1019 gimple_seq_add_seq (&eh_seq, finally);
1020 if (finally_may_fallthru)
1021 emit_resx (&eh_seq, tf->region);
1022
1023 /* Having now been handled, EH isn't to be considered with
1024 the rest of the outgoing edges. */
1025 tf->may_throw = false;
1026 }
1027
1028 /* A subroutine of lower_try_finally. We have determined that there is
1029 no fallthru edge out of the finally block. This means that there is
1030 no outgoing edge corresponding to any incoming edge. Restructure the
1031 try_finally node for this special case. */
1032
1033 static void
1034 lower_try_finally_nofallthru (struct leh_state *state,
1035 struct leh_tf_state *tf)
1036 {
1037 tree lab;
1038 gimple x, eh_else;
1039 gimple_seq finally;
1040 struct goto_queue_node *q, *qe;
1041
1042 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1043
1044 /* We expect that tf->top_p is a GIMPLE_TRY. */
1045 finally = gimple_try_cleanup (tf->top_p);
1046 tf->top_p_seq = gimple_try_eval (tf->top_p);
1047
1048 x = gimple_build_label (lab);
1049 gimple_seq_add_stmt (&tf->top_p_seq, x);
1050
1051 q = tf->goto_queue;
1052 qe = q + tf->goto_queue_active;
1053 for (; q < qe; ++q)
1054 if (q->index < 0)
1055 do_return_redirection (q, lab, NULL);
1056 else
1057 do_goto_redirection (q, lab, NULL, tf);
1058
1059 replace_goto_queue (tf);
1060
1061 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1062 eh_else = get_eh_else (finally);
1063 if (eh_else)
1064 {
1065 finally = gimple_eh_else_n_body (eh_else);
1066 lower_eh_constructs_1 (state, &finally);
1067 gimple_seq_add_seq (&tf->top_p_seq, finally);
1068
1069 if (tf->may_throw)
1070 {
1071 finally = gimple_eh_else_e_body (eh_else);
1072 lower_eh_constructs_1 (state, &finally);
1073
1074 emit_post_landing_pad (&eh_seq, tf->region);
1075 gimple_seq_add_seq (&eh_seq, finally);
1076 }
1077 }
1078 else
1079 {
1080 lower_eh_constructs_1 (state, &finally);
1081 gimple_seq_add_seq (&tf->top_p_seq, finally);
1082
1083 if (tf->may_throw)
1084 {
1085 emit_post_landing_pad (&eh_seq, tf->region);
1086
1087 x = gimple_build_goto (lab);
1088 gimple_seq_add_stmt (&eh_seq, x);
1089 }
1090 }
1091 }
1092
1093 /* A subroutine of lower_try_finally. We have determined that there is
1094 exactly one destination of the finally block. Restructure the
1095 try_finally node for this special case. */
1096
1097 static void
1098 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1099 {
1100 struct goto_queue_node *q, *qe;
1101 gimple x;
1102 gimple_seq finally;
1103 tree finally_label;
1104 location_t loc = gimple_location (tf->try_finally_expr);
1105
1106 finally = gimple_try_cleanup (tf->top_p);
1107 tf->top_p_seq = gimple_try_eval (tf->top_p);
1108
1109 /* Since there's only one destination, and the destination edge can only
1110 either be EH or non-EH, that implies that all of our incoming edges
1111 are of the same type. Therefore we can lower EH_ELSE immediately. */
1112 x = get_eh_else (finally);
1113 if (x)
1114 {
1115 if (tf->may_throw)
1116 finally = gimple_eh_else_e_body (x);
1117 else
1118 finally = gimple_eh_else_n_body (x);
1119 }
1120
1121 lower_eh_constructs_1 (state, &finally);
1122
1123 if (tf->may_throw)
1124 {
1125 /* Only reachable via the exception edge. Add the given label to
1126 the head of the FINALLY block. Append a RESX at the end. */
1127 emit_post_landing_pad (&eh_seq, tf->region);
1128 gimple_seq_add_seq (&eh_seq, finally);
1129 emit_resx (&eh_seq, tf->region);
1130 return;
1131 }
1132
1133 if (tf->may_fallthru)
1134 {
1135 /* Only reachable via the fallthru edge. Do nothing but let
1136 the two blocks run together; we'll fall out the bottom. */
1137 gimple_seq_add_seq (&tf->top_p_seq, finally);
1138 return;
1139 }
1140
1141 finally_label = create_artificial_label (loc);
1142 x = gimple_build_label (finally_label);
1143 gimple_seq_add_stmt (&tf->top_p_seq, x);
1144
1145 gimple_seq_add_seq (&tf->top_p_seq, finally);
1146
1147 q = tf->goto_queue;
1148 qe = q + tf->goto_queue_active;
1149
1150 if (tf->may_return)
1151 {
1152 /* Reachable by return expressions only. Redirect them. */
1153 for (; q < qe; ++q)
1154 do_return_redirection (q, finally_label, NULL);
1155 replace_goto_queue (tf);
1156 }
1157 else
1158 {
1159 /* Reachable by goto expressions only. Redirect them. */
1160 for (; q < qe; ++q)
1161 do_goto_redirection (q, finally_label, NULL, tf);
1162 replace_goto_queue (tf);
1163
1164 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1165 {
1166 /* Reachable by goto to fallthru label only. Redirect it
1167 to the new label (already created, sadly), and do not
1168 emit the final branch out, or the fallthru label. */
1169 tf->fallthru_label = NULL;
1170 return;
1171 }
1172 }
1173
1174 /* Place the original return/goto to the original destination
1175 immediately after the finally block. */
1176 x = tf->goto_queue[0].cont_stmt;
1177 gimple_seq_add_stmt (&tf->top_p_seq, x);
1178 maybe_record_in_goto_queue (state, x);
1179 }
1180
1181 /* A subroutine of lower_try_finally. There are multiple edges incoming
1182 and outgoing from the finally block. Implement this by duplicating the
1183 finally block for every destination. */
1184
1185 static void
1186 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1187 {
1188 gimple_seq finally;
1189 gimple_seq new_stmt;
1190 gimple_seq seq;
1191 gimple x, eh_else;
1192 tree tmp;
1193 location_t tf_loc = gimple_location (tf->try_finally_expr);
1194
1195 finally = gimple_try_cleanup (tf->top_p);
1196
1197 /* Notice EH_ELSE, and simplify some of the remaining code
1198 by considering FINALLY to be the normal return path only. */
1199 eh_else = get_eh_else (finally);
1200 if (eh_else)
1201 finally = gimple_eh_else_n_body (eh_else);
1202
1203 tf->top_p_seq = gimple_try_eval (tf->top_p);
1204 new_stmt = NULL;
1205
1206 if (tf->may_fallthru)
1207 {
1208 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1209 lower_eh_constructs_1 (state, &seq);
1210 gimple_seq_add_seq (&new_stmt, seq);
1211
1212 tmp = lower_try_finally_fallthru_label (tf);
1213 x = gimple_build_goto (tmp);
1214 gimple_seq_add_stmt (&new_stmt, x);
1215 }
1216
1217 if (tf->may_throw)
1218 {
1219 /* We don't need to copy the EH path of EH_ELSE,
1220 since it is only emitted once. */
1221 if (eh_else)
1222 seq = gimple_eh_else_e_body (eh_else);
1223 else
1224 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1225 lower_eh_constructs_1 (state, &seq);
1226
1227 emit_post_landing_pad (&eh_seq, tf->region);
1228 gimple_seq_add_seq (&eh_seq, seq);
1229 emit_resx (&eh_seq, tf->region);
1230 }
1231
1232 if (tf->goto_queue)
1233 {
1234 struct goto_queue_node *q, *qe;
1235 int return_index, index;
1236 struct labels_s
1237 {
1238 struct goto_queue_node *q;
1239 tree label;
1240 } *labels;
1241
1242 return_index = VEC_length (tree, tf->dest_array);
1243 labels = XCNEWVEC (struct labels_s, return_index + 1);
1244
1245 q = tf->goto_queue;
1246 qe = q + tf->goto_queue_active;
1247 for (; q < qe; q++)
1248 {
1249 index = q->index < 0 ? return_index : q->index;
1250
1251 if (!labels[index].q)
1252 labels[index].q = q;
1253 }
1254
1255 for (index = 0; index < return_index + 1; index++)
1256 {
1257 tree lab;
1258
1259 q = labels[index].q;
1260 if (! q)
1261 continue;
1262
1263 lab = labels[index].label
1264 = create_artificial_label (tf_loc);
1265
1266 if (index == return_index)
1267 do_return_redirection (q, lab, NULL);
1268 else
1269 do_goto_redirection (q, lab, NULL, tf);
1270
1271 x = gimple_build_label (lab);
1272 gimple_seq_add_stmt (&new_stmt, x);
1273
1274 seq = lower_try_finally_dup_block (finally, state, q->location);
1275 lower_eh_constructs_1 (state, &seq);
1276 gimple_seq_add_seq (&new_stmt, seq);
1277
1278 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1279 maybe_record_in_goto_queue (state, q->cont_stmt);
1280 }
1281
1282 for (q = tf->goto_queue; q < qe; q++)
1283 {
1284 tree lab;
1285
1286 index = q->index < 0 ? return_index : q->index;
1287
1288 if (labels[index].q == q)
1289 continue;
1290
1291 lab = labels[index].label;
1292
1293 if (index == return_index)
1294 do_return_redirection (q, lab, NULL);
1295 else
1296 do_goto_redirection (q, lab, NULL, tf);
1297 }
1298
1299 replace_goto_queue (tf);
1300 free (labels);
1301 }
1302
1303 /* Need to link new stmts after running replace_goto_queue due
1304 to not wanting to process the same goto stmts twice. */
1305 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1306 }
1307
1308 /* A subroutine of lower_try_finally. There are multiple edges incoming
1309 and outgoing from the finally block. Implement this by instrumenting
1310 each incoming edge and creating a switch statement at the end of the
1311 finally block that branches to the appropriate destination. */
1312
1313 static void
1314 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1315 {
1316 struct goto_queue_node *q, *qe;
1317 tree finally_tmp, finally_label;
1318 int return_index, eh_index, fallthru_index;
1319 int nlabels, ndests, j, last_case_index;
1320 tree last_case;
1321 VEC (tree,heap) *case_label_vec;
1322 gimple_seq switch_body = NULL;
1323 gimple x, eh_else;
1324 tree tmp;
1325 gimple switch_stmt;
1326 gimple_seq finally;
1327 struct pointer_map_t *cont_map = NULL;
1328 /* The location of the TRY_FINALLY stmt. */
1329 location_t tf_loc = gimple_location (tf->try_finally_expr);
1330 /* The location of the finally block. */
1331 location_t finally_loc;
1332
1333 finally = gimple_try_cleanup (tf->top_p);
1334 eh_else = get_eh_else (finally);
1335
1336 /* Mash the TRY block to the head of the chain. */
1337 tf->top_p_seq = gimple_try_eval (tf->top_p);
1338
1339 /* The location of the finally is either the last stmt in the finally
1340 block or the location of the TRY_FINALLY itself. */
1341 x = gimple_seq_last_stmt (finally);
1342 finally_loc = x ? gimple_location (x) : tf_loc;
1343
1344 /* Lower the finally block itself. */
1345 lower_eh_constructs_1 (state, &finally);
1346
1347 /* Prepare for switch statement generation. */
1348 nlabels = VEC_length (tree, tf->dest_array);
1349 return_index = nlabels;
1350 eh_index = return_index + tf->may_return;
1351 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1352 ndests = fallthru_index + tf->may_fallthru;
1353
1354 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1355 finally_label = create_artificial_label (finally_loc);
1356
1357 /* We use VEC_quick_push on case_label_vec throughout this function,
1358 since we know the size in advance and allocate precisely as muce
1359 space as needed. */
1360 case_label_vec = VEC_alloc (tree, heap, ndests);
1361 last_case = NULL;
1362 last_case_index = 0;
1363
1364 /* Begin inserting code for getting to the finally block. Things
1365 are done in this order to correspond to the sequence the code is
1366 laid out. */
1367
1368 if (tf->may_fallthru)
1369 {
1370 x = gimple_build_assign (finally_tmp,
1371 build_int_cst (integer_type_node,
1372 fallthru_index));
1373 gimple_seq_add_stmt (&tf->top_p_seq, x);
1374
1375 tmp = build_int_cst (integer_type_node, fallthru_index);
1376 last_case = build_case_label (tmp, NULL,
1377 create_artificial_label (tf_loc));
1378 VEC_quick_push (tree, case_label_vec, last_case);
1379 last_case_index++;
1380
1381 x = gimple_build_label (CASE_LABEL (last_case));
1382 gimple_seq_add_stmt (&switch_body, x);
1383
1384 tmp = lower_try_finally_fallthru_label (tf);
1385 x = gimple_build_goto (tmp);
1386 gimple_seq_add_stmt (&switch_body, x);
1387 }
1388
1389 /* For EH_ELSE, emit the exception path (plus resx) now, then
1390 subsequently we only need consider the normal path. */
1391 if (eh_else)
1392 {
1393 if (tf->may_throw)
1394 {
1395 finally = gimple_eh_else_e_body (eh_else);
1396 lower_eh_constructs_1 (state, &finally);
1397
1398 emit_post_landing_pad (&eh_seq, tf->region);
1399 gimple_seq_add_seq (&eh_seq, finally);
1400 emit_resx (&eh_seq, tf->region);
1401 }
1402
1403 finally = gimple_eh_else_n_body (eh_else);
1404 }
1405 else if (tf->may_throw)
1406 {
1407 emit_post_landing_pad (&eh_seq, tf->region);
1408
1409 x = gimple_build_assign (finally_tmp,
1410 build_int_cst (integer_type_node, eh_index));
1411 gimple_seq_add_stmt (&eh_seq, x);
1412
1413 x = gimple_build_goto (finally_label);
1414 gimple_seq_add_stmt (&eh_seq, x);
1415
1416 tmp = build_int_cst (integer_type_node, eh_index);
1417 last_case = build_case_label (tmp, NULL,
1418 create_artificial_label (tf_loc));
1419 VEC_quick_push (tree, case_label_vec, last_case);
1420 last_case_index++;
1421
1422 x = gimple_build_label (CASE_LABEL (last_case));
1423 gimple_seq_add_stmt (&eh_seq, x);
1424 emit_resx (&eh_seq, tf->region);
1425 }
1426
1427 x = gimple_build_label (finally_label);
1428 gimple_seq_add_stmt (&tf->top_p_seq, x);
1429
1430 gimple_seq_add_seq (&tf->top_p_seq, finally);
1431
1432 /* Redirect each incoming goto edge. */
1433 q = tf->goto_queue;
1434 qe = q + tf->goto_queue_active;
1435 j = last_case_index + tf->may_return;
1436 /* Prepare the assignments to finally_tmp that are executed upon the
1437 entrance through a particular edge. */
1438 for (; q < qe; ++q)
1439 {
1440 gimple_seq mod = NULL;
1441 int switch_id;
1442 unsigned int case_index;
1443
1444 if (q->index < 0)
1445 {
1446 x = gimple_build_assign (finally_tmp,
1447 build_int_cst (integer_type_node,
1448 return_index));
1449 gimple_seq_add_stmt (&mod, x);
1450 do_return_redirection (q, finally_label, mod);
1451 switch_id = return_index;
1452 }
1453 else
1454 {
1455 x = gimple_build_assign (finally_tmp,
1456 build_int_cst (integer_type_node, q->index));
1457 gimple_seq_add_stmt (&mod, x);
1458 do_goto_redirection (q, finally_label, mod, tf);
1459 switch_id = q->index;
1460 }
1461
1462 case_index = j + q->index;
1463 if (VEC_length (tree, case_label_vec) <= case_index
1464 || !VEC_index (tree, case_label_vec, case_index))
1465 {
1466 tree case_lab;
1467 void **slot;
1468 tmp = build_int_cst (integer_type_node, switch_id);
1469 case_lab = build_case_label (tmp, NULL,
1470 create_artificial_label (tf_loc));
1471 /* We store the cont_stmt in the pointer map, so that we can recover
1472 it in the loop below. */
1473 if (!cont_map)
1474 cont_map = pointer_map_create ();
1475 slot = pointer_map_insert (cont_map, case_lab);
1476 *slot = q->cont_stmt;
1477 VEC_quick_push (tree, case_label_vec, case_lab);
1478 }
1479 }
1480 for (j = last_case_index; j < last_case_index + nlabels; j++)
1481 {
1482 gimple cont_stmt;
1483 void **slot;
1484
1485 last_case = VEC_index (tree, case_label_vec, j);
1486
1487 gcc_assert (last_case);
1488 gcc_assert (cont_map);
1489
1490 slot = pointer_map_contains (cont_map, last_case);
1491 gcc_assert (slot);
1492 cont_stmt = *(gimple *) slot;
1493
1494 x = gimple_build_label (CASE_LABEL (last_case));
1495 gimple_seq_add_stmt (&switch_body, x);
1496 gimple_seq_add_stmt (&switch_body, cont_stmt);
1497 maybe_record_in_goto_queue (state, cont_stmt);
1498 }
1499 if (cont_map)
1500 pointer_map_destroy (cont_map);
1501
1502 replace_goto_queue (tf);
1503
1504 /* Make sure that the last case is the default label, as one is required.
1505 Then sort the labels, which is also required in GIMPLE. */
1506 CASE_LOW (last_case) = NULL;
1507 sort_case_labels (case_label_vec);
1508
1509 /* Build the switch statement, setting last_case to be the default
1510 label. */
1511 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1512 case_label_vec);
1513 gimple_set_location (switch_stmt, finally_loc);
1514
1515 /* Need to link SWITCH_STMT after running replace_goto_queue
1516 due to not wanting to process the same goto stmts twice. */
1517 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1518 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1519 }
1520
1521 /* Decide whether or not we are going to duplicate the finally block.
1522 There are several considerations.
1523
1524 First, if this is Java, then the finally block contains code
1525 written by the user. It has line numbers associated with it,
1526 so duplicating the block means it's difficult to set a breakpoint.
1527 Since controlling code generation via -g is verboten, we simply
1528 never duplicate code without optimization.
1529
1530 Second, we'd like to prevent egregious code growth. One way to
1531 do this is to estimate the size of the finally block, multiply
1532 that by the number of copies we'd need to make, and compare against
1533 the estimate of the size of the switch machinery we'd have to add. */
1534
1535 static bool
1536 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1537 {
1538 int f_estimate, sw_estimate;
1539 gimple eh_else;
1540
1541 /* If there's an EH_ELSE involved, the exception path is separate
1542 and really doesn't come into play for this computation. */
1543 eh_else = get_eh_else (finally);
1544 if (eh_else)
1545 {
1546 ndests -= may_throw;
1547 finally = gimple_eh_else_n_body (eh_else);
1548 }
1549
1550 if (!optimize)
1551 {
1552 gimple_stmt_iterator gsi;
1553
1554 if (ndests == 1)
1555 return true;
1556
1557 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1558 {
1559 gimple stmt = gsi_stmt (gsi);
1560 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1561 return false;
1562 }
1563 return true;
1564 }
1565
1566 /* Finally estimate N times, plus N gotos. */
1567 f_estimate = count_insns_seq (finally, &eni_size_weights);
1568 f_estimate = (f_estimate + 1) * ndests;
1569
1570 /* Switch statement (cost 10), N variable assignments, N gotos. */
1571 sw_estimate = 10 + 2 * ndests;
1572
1573 /* Optimize for size clearly wants our best guess. */
1574 if (optimize_function_for_size_p (cfun))
1575 return f_estimate < sw_estimate;
1576
1577 /* ??? These numbers are completely made up so far. */
1578 if (optimize > 1)
1579 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1580 else
1581 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1582 }
1583
1584 /* REG is the enclosing region for a possible cleanup region, or the region
1585 itself. Returns TRUE if such a region would be unreachable.
1586
1587 Cleanup regions within a must-not-throw region aren't actually reachable
1588 even if there are throwing stmts within them, because the personality
1589 routine will call terminate before unwinding. */
1590
1591 static bool
1592 cleanup_is_dead_in (eh_region reg)
1593 {
1594 while (reg && reg->type == ERT_CLEANUP)
1595 reg = reg->outer;
1596 return (reg && reg->type == ERT_MUST_NOT_THROW);
1597 }
1598
1599 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1600 to a sequence of labels and blocks, plus the exception region trees
1601 that record all the magic. This is complicated by the need to
1602 arrange for the FINALLY block to be executed on all exits. */
1603
1604 static gimple_seq
1605 lower_try_finally (struct leh_state *state, gimple tp)
1606 {
1607 struct leh_tf_state this_tf;
1608 struct leh_state this_state;
1609 int ndests;
1610 gimple_seq old_eh_seq;
1611
1612 /* Process the try block. */
1613
1614 memset (&this_tf, 0, sizeof (this_tf));
1615 this_tf.try_finally_expr = tp;
1616 this_tf.top_p = tp;
1617 this_tf.outer = state;
1618 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1619 {
1620 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1621 this_state.cur_region = this_tf.region;
1622 }
1623 else
1624 {
1625 this_tf.region = NULL;
1626 this_state.cur_region = state->cur_region;
1627 }
1628
1629 this_state.ehp_region = state->ehp_region;
1630 this_state.tf = &this_tf;
1631
1632 old_eh_seq = eh_seq;
1633 eh_seq = NULL;
1634
1635 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1636
1637 /* Determine if the try block is escaped through the bottom. */
1638 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1639
1640 /* Determine if any exceptions are possible within the try block. */
1641 if (this_tf.region)
1642 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1643 if (this_tf.may_throw)
1644 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1645
1646 /* Determine how many edges (still) reach the finally block. Or rather,
1647 how many destinations are reached by the finally block. Use this to
1648 determine how we process the finally block itself. */
1649
1650 ndests = VEC_length (tree, this_tf.dest_array);
1651 ndests += this_tf.may_fallthru;
1652 ndests += this_tf.may_return;
1653 ndests += this_tf.may_throw;
1654
1655 /* If the FINALLY block is not reachable, dike it out. */
1656 if (ndests == 0)
1657 {
1658 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1659 gimple_try_set_cleanup (tp, NULL);
1660 }
1661 /* If the finally block doesn't fall through, then any destination
1662 we might try to impose there isn't reached either. There may be
1663 some minor amount of cleanup and redirection still needed. */
1664 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1665 lower_try_finally_nofallthru (state, &this_tf);
1666
1667 /* We can easily special-case redirection to a single destination. */
1668 else if (ndests == 1)
1669 lower_try_finally_onedest (state, &this_tf);
1670 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1671 gimple_try_cleanup (tp)))
1672 lower_try_finally_copy (state, &this_tf);
1673 else
1674 lower_try_finally_switch (state, &this_tf);
1675
1676 /* If someone requested we add a label at the end of the transformed
1677 block, do so. */
1678 if (this_tf.fallthru_label)
1679 {
1680 /* This must be reached only if ndests == 0. */
1681 gimple x = gimple_build_label (this_tf.fallthru_label);
1682 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1683 }
1684
1685 VEC_free (tree, heap, this_tf.dest_array);
1686 free (this_tf.goto_queue);
1687 if (this_tf.goto_queue_map)
1688 pointer_map_destroy (this_tf.goto_queue_map);
1689
1690 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1691 If there was no old eh_seq, then the append is trivially already done. */
1692 if (old_eh_seq)
1693 {
1694 if (eh_seq == NULL)
1695 eh_seq = old_eh_seq;
1696 else
1697 {
1698 gimple_seq new_eh_seq = eh_seq;
1699 eh_seq = old_eh_seq;
1700 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1701 }
1702 }
1703
1704 return this_tf.top_p_seq;
1705 }
1706
1707 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1708 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1709 exception region trees that records all the magic. */
1710
1711 static gimple_seq
1712 lower_catch (struct leh_state *state, gimple tp)
1713 {
1714 eh_region try_region = NULL;
1715 struct leh_state this_state = *state;
1716 gimple_stmt_iterator gsi;
1717 tree out_label;
1718 gimple_seq new_seq, cleanup;
1719 gimple x;
1720 location_t try_catch_loc = gimple_location (tp);
1721
1722 if (flag_exceptions)
1723 {
1724 try_region = gen_eh_region_try (state->cur_region);
1725 this_state.cur_region = try_region;
1726 }
1727
1728 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1729
1730 if (!eh_region_may_contain_throw (try_region))
1731 return gimple_try_eval (tp);
1732
1733 new_seq = NULL;
1734 emit_eh_dispatch (&new_seq, try_region);
1735 emit_resx (&new_seq, try_region);
1736
1737 this_state.cur_region = state->cur_region;
1738 this_state.ehp_region = try_region;
1739
1740 out_label = NULL;
1741 cleanup = gimple_try_cleanup (tp);
1742 for (gsi = gsi_start (cleanup);
1743 !gsi_end_p (gsi);
1744 gsi_next (&gsi))
1745 {
1746 eh_catch c;
1747 gimple gcatch;
1748 gimple_seq handler;
1749
1750 gcatch = gsi_stmt (gsi);
1751 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1752
1753 handler = gimple_catch_handler (gcatch);
1754 lower_eh_constructs_1 (&this_state, &handler);
1755
1756 c->label = create_artificial_label (UNKNOWN_LOCATION);
1757 x = gimple_build_label (c->label);
1758 gimple_seq_add_stmt (&new_seq, x);
1759
1760 gimple_seq_add_seq (&new_seq, handler);
1761
1762 if (gimple_seq_may_fallthru (new_seq))
1763 {
1764 if (!out_label)
1765 out_label = create_artificial_label (try_catch_loc);
1766
1767 x = gimple_build_goto (out_label);
1768 gimple_seq_add_stmt (&new_seq, x);
1769 }
1770 if (!c->type_list)
1771 break;
1772 }
1773
1774 gimple_try_set_cleanup (tp, new_seq);
1775
1776 return frob_into_branch_around (tp, try_region, out_label);
1777 }
1778
1779 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1780 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1781 region trees that record all the magic. */
1782
1783 static gimple_seq
1784 lower_eh_filter (struct leh_state *state, gimple tp)
1785 {
1786 struct leh_state this_state = *state;
1787 eh_region this_region = NULL;
1788 gimple inner, x;
1789 gimple_seq new_seq;
1790
1791 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1792
1793 if (flag_exceptions)
1794 {
1795 this_region = gen_eh_region_allowed (state->cur_region,
1796 gimple_eh_filter_types (inner));
1797 this_state.cur_region = this_region;
1798 }
1799
1800 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1801
1802 if (!eh_region_may_contain_throw (this_region))
1803 return gimple_try_eval (tp);
1804
1805 new_seq = NULL;
1806 this_state.cur_region = state->cur_region;
1807 this_state.ehp_region = this_region;
1808
1809 emit_eh_dispatch (&new_seq, this_region);
1810 emit_resx (&new_seq, this_region);
1811
1812 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1813 x = gimple_build_label (this_region->u.allowed.label);
1814 gimple_seq_add_stmt (&new_seq, x);
1815
1816 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1817 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1818
1819 gimple_try_set_cleanup (tp, new_seq);
1820
1821 return frob_into_branch_around (tp, this_region, NULL);
1822 }
1823
1824 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1825 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1826 plus the exception region trees that record all the magic. */
1827
1828 static gimple_seq
1829 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1830 {
1831 struct leh_state this_state = *state;
1832
1833 if (flag_exceptions)
1834 {
1835 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1836 eh_region this_region;
1837
1838 this_region = gen_eh_region_must_not_throw (state->cur_region);
1839 this_region->u.must_not_throw.failure_decl
1840 = gimple_eh_must_not_throw_fndecl (inner);
1841 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1842
1843 /* In order to get mangling applied to this decl, we must mark it
1844 used now. Otherwise, pass_ipa_free_lang_data won't think it
1845 needs to happen. */
1846 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1847
1848 this_state.cur_region = this_region;
1849 }
1850
1851 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1852
1853 return gimple_try_eval (tp);
1854 }
1855
1856 /* Implement a cleanup expression. This is similar to try-finally,
1857 except that we only execute the cleanup block for exception edges. */
1858
1859 static gimple_seq
1860 lower_cleanup (struct leh_state *state, gimple tp)
1861 {
1862 struct leh_state this_state = *state;
1863 eh_region this_region = NULL;
1864 struct leh_tf_state fake_tf;
1865 gimple_seq result;
1866 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1867
1868 if (flag_exceptions && !cleanup_dead)
1869 {
1870 this_region = gen_eh_region_cleanup (state->cur_region);
1871 this_state.cur_region = this_region;
1872 }
1873
1874 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1875
1876 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1877 return gimple_try_eval (tp);
1878
1879 /* Build enough of a try-finally state so that we can reuse
1880 honor_protect_cleanup_actions. */
1881 memset (&fake_tf, 0, sizeof (fake_tf));
1882 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1883 fake_tf.outer = state;
1884 fake_tf.region = this_region;
1885 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1886 fake_tf.may_throw = true;
1887
1888 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1889
1890 if (fake_tf.may_throw)
1891 {
1892 /* In this case honor_protect_cleanup_actions had nothing to do,
1893 and we should process this normally. */
1894 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1895 result = frob_into_branch_around (tp, this_region,
1896 fake_tf.fallthru_label);
1897 }
1898 else
1899 {
1900 /* In this case honor_protect_cleanup_actions did nearly all of
1901 the work. All we have left is to append the fallthru_label. */
1902
1903 result = gimple_try_eval (tp);
1904 if (fake_tf.fallthru_label)
1905 {
1906 gimple x = gimple_build_label (fake_tf.fallthru_label);
1907 gimple_seq_add_stmt (&result, x);
1908 }
1909 }
1910 return result;
1911 }
1912
1913 /* Main loop for lowering eh constructs. Also moves gsi to the next
1914 statement. */
1915
1916 static void
1917 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1918 {
1919 gimple_seq replace;
1920 gimple x;
1921 gimple stmt = gsi_stmt (*gsi);
1922
1923 switch (gimple_code (stmt))
1924 {
1925 case GIMPLE_CALL:
1926 {
1927 tree fndecl = gimple_call_fndecl (stmt);
1928 tree rhs, lhs;
1929
1930 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1931 switch (DECL_FUNCTION_CODE (fndecl))
1932 {
1933 case BUILT_IN_EH_POINTER:
1934 /* The front end may have generated a call to
1935 __builtin_eh_pointer (0) within a catch region. Replace
1936 this zero argument with the current catch region number. */
1937 if (state->ehp_region)
1938 {
1939 tree nr = build_int_cst (integer_type_node,
1940 state->ehp_region->index);
1941 gimple_call_set_arg (stmt, 0, nr);
1942 }
1943 else
1944 {
1945 /* The user has dome something silly. Remove it. */
1946 rhs = null_pointer_node;
1947 goto do_replace;
1948 }
1949 break;
1950
1951 case BUILT_IN_EH_FILTER:
1952 /* ??? This should never appear, but since it's a builtin it
1953 is accessible to abuse by users. Just remove it and
1954 replace the use with the arbitrary value zero. */
1955 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1956 do_replace:
1957 lhs = gimple_call_lhs (stmt);
1958 x = gimple_build_assign (lhs, rhs);
1959 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1960 /* FALLTHRU */
1961
1962 case BUILT_IN_EH_COPY_VALUES:
1963 /* Likewise this should not appear. Remove it. */
1964 gsi_remove (gsi, true);
1965 return;
1966
1967 default:
1968 break;
1969 }
1970 }
1971 /* FALLTHRU */
1972
1973 case GIMPLE_ASSIGN:
1974 /* If the stmt can throw use a new temporary for the assignment
1975 to a LHS. This makes sure the old value of the LHS is
1976 available on the EH edge. Only do so for statements that
1977 potentially fall through (no noreturn calls e.g.), otherwise
1978 this new assignment might create fake fallthru regions. */
1979 if (stmt_could_throw_p (stmt)
1980 && gimple_has_lhs (stmt)
1981 && gimple_stmt_may_fallthru (stmt)
1982 && !tree_could_throw_p (gimple_get_lhs (stmt))
1983 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1984 {
1985 tree lhs = gimple_get_lhs (stmt);
1986 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1987 gimple s = gimple_build_assign (lhs, tmp);
1988 gimple_set_location (s, gimple_location (stmt));
1989 gimple_set_block (s, gimple_block (stmt));
1990 gimple_set_lhs (stmt, tmp);
1991 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1992 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1993 DECL_GIMPLE_REG_P (tmp) = 1;
1994 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1995 }
1996 /* Look for things that can throw exceptions, and record them. */
1997 if (state->cur_region && stmt_could_throw_p (stmt))
1998 {
1999 record_stmt_eh_region (state->cur_region, stmt);
2000 note_eh_region_may_contain_throw (state->cur_region);
2001 }
2002 break;
2003
2004 case GIMPLE_COND:
2005 case GIMPLE_GOTO:
2006 case GIMPLE_RETURN:
2007 maybe_record_in_goto_queue (state, stmt);
2008 break;
2009
2010 case GIMPLE_SWITCH:
2011 verify_norecord_switch_expr (state, stmt);
2012 break;
2013
2014 case GIMPLE_TRY:
2015 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2016 replace = lower_try_finally (state, stmt);
2017 else
2018 {
2019 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2020 if (!x)
2021 {
2022 replace = gimple_try_eval (stmt);
2023 lower_eh_constructs_1 (state, &replace);
2024 }
2025 else
2026 switch (gimple_code (x))
2027 {
2028 case GIMPLE_CATCH:
2029 replace = lower_catch (state, stmt);
2030 break;
2031 case GIMPLE_EH_FILTER:
2032 replace = lower_eh_filter (state, stmt);
2033 break;
2034 case GIMPLE_EH_MUST_NOT_THROW:
2035 replace = lower_eh_must_not_throw (state, stmt);
2036 break;
2037 case GIMPLE_EH_ELSE:
2038 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2039 gcc_unreachable ();
2040 default:
2041 replace = lower_cleanup (state, stmt);
2042 break;
2043 }
2044 }
2045
2046 /* Remove the old stmt and insert the transformed sequence
2047 instead. */
2048 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2049 gsi_remove (gsi, true);
2050
2051 /* Return since we don't want gsi_next () */
2052 return;
2053
2054 case GIMPLE_EH_ELSE:
2055 /* We should be eliminating this in lower_try_finally et al. */
2056 gcc_unreachable ();
2057
2058 default:
2059 /* A type, a decl, or some kind of statement that we're not
2060 interested in. Don't walk them. */
2061 break;
2062 }
2063
2064 gsi_next (gsi);
2065 }
2066
2067 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2068
2069 static void
2070 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2071 {
2072 gimple_stmt_iterator gsi;
2073 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2074 lower_eh_constructs_2 (state, &gsi);
2075 }
2076
2077 static unsigned int
2078 lower_eh_constructs (void)
2079 {
2080 struct leh_state null_state;
2081 gimple_seq bodyp;
2082
2083 bodyp = gimple_body (current_function_decl);
2084 if (bodyp == NULL)
2085 return 0;
2086
2087 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2088 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2089 memset (&null_state, 0, sizeof (null_state));
2090
2091 collect_finally_tree_1 (bodyp, NULL);
2092 lower_eh_constructs_1 (&null_state, &bodyp);
2093 gimple_set_body (current_function_decl, bodyp);
2094
2095 /* We assume there's a return statement, or something, at the end of
2096 the function, and thus ploping the EH sequence afterward won't
2097 change anything. */
2098 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2099 gimple_seq_add_seq (&bodyp, eh_seq);
2100
2101 /* We assume that since BODYP already existed, adding EH_SEQ to it
2102 didn't change its value, and we don't have to re-set the function. */
2103 gcc_assert (bodyp == gimple_body (current_function_decl));
2104
2105 htab_delete (finally_tree);
2106 BITMAP_FREE (eh_region_may_contain_throw_map);
2107 eh_seq = NULL;
2108
2109 /* If this function needs a language specific EH personality routine
2110 and the frontend didn't already set one do so now. */
2111 if (function_needs_eh_personality (cfun) == eh_personality_lang
2112 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2113 DECL_FUNCTION_PERSONALITY (current_function_decl)
2114 = lang_hooks.eh_personality ();
2115
2116 return 0;
2117 }
2118
2119 struct gimple_opt_pass pass_lower_eh =
2120 {
2121 {
2122 GIMPLE_PASS,
2123 "eh", /* name */
2124 NULL, /* gate */
2125 lower_eh_constructs, /* execute */
2126 NULL, /* sub */
2127 NULL, /* next */
2128 0, /* static_pass_number */
2129 TV_TREE_EH, /* tv_id */
2130 PROP_gimple_lcf, /* properties_required */
2131 PROP_gimple_leh, /* properties_provided */
2132 0, /* properties_destroyed */
2133 0, /* todo_flags_start */
2134 0 /* todo_flags_finish */
2135 }
2136 };
2137 \f
2138 /* Create the multiple edges from an EH_DISPATCH statement to all of
2139 the possible handlers for its EH region. Return true if there's
2140 no fallthru edge; false if there is. */
2141
2142 bool
2143 make_eh_dispatch_edges (gimple stmt)
2144 {
2145 eh_region r;
2146 eh_catch c;
2147 basic_block src, dst;
2148
2149 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2150 src = gimple_bb (stmt);
2151
2152 switch (r->type)
2153 {
2154 case ERT_TRY:
2155 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2156 {
2157 dst = label_to_block (c->label);
2158 make_edge (src, dst, 0);
2159
2160 /* A catch-all handler doesn't have a fallthru. */
2161 if (c->type_list == NULL)
2162 return false;
2163 }
2164 break;
2165
2166 case ERT_ALLOWED_EXCEPTIONS:
2167 dst = label_to_block (r->u.allowed.label);
2168 make_edge (src, dst, 0);
2169 break;
2170
2171 default:
2172 gcc_unreachable ();
2173 }
2174
2175 return true;
2176 }
2177
2178 /* Create the single EH edge from STMT to its nearest landing pad,
2179 if there is such a landing pad within the current function. */
2180
2181 void
2182 make_eh_edges (gimple stmt)
2183 {
2184 basic_block src, dst;
2185 eh_landing_pad lp;
2186 int lp_nr;
2187
2188 lp_nr = lookup_stmt_eh_lp (stmt);
2189 if (lp_nr <= 0)
2190 return;
2191
2192 lp = get_eh_landing_pad_from_number (lp_nr);
2193 gcc_assert (lp != NULL);
2194
2195 src = gimple_bb (stmt);
2196 dst = label_to_block (lp->post_landing_pad);
2197 make_edge (src, dst, EDGE_EH);
2198 }
2199
2200 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2201 do not actually perform the final edge redirection.
2202
2203 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2204 we intend to change the destination EH region as well; this means
2205 EH_LANDING_PAD_NR must already be set on the destination block label.
2206 If false, we're being called from generic cfg manipulation code and we
2207 should preserve our place within the region tree. */
2208
2209 static void
2210 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2211 {
2212 eh_landing_pad old_lp, new_lp;
2213 basic_block old_bb;
2214 gimple throw_stmt;
2215 int old_lp_nr, new_lp_nr;
2216 tree old_label, new_label;
2217 edge_iterator ei;
2218 edge e;
2219
2220 old_bb = edge_in->dest;
2221 old_label = gimple_block_label (old_bb);
2222 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2223 gcc_assert (old_lp_nr > 0);
2224 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2225
2226 throw_stmt = last_stmt (edge_in->src);
2227 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2228
2229 new_label = gimple_block_label (new_bb);
2230
2231 /* Look for an existing region that might be using NEW_BB already. */
2232 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2233 if (new_lp_nr)
2234 {
2235 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2236 gcc_assert (new_lp);
2237
2238 /* Unless CHANGE_REGION is true, the new and old landing pad
2239 had better be associated with the same EH region. */
2240 gcc_assert (change_region || new_lp->region == old_lp->region);
2241 }
2242 else
2243 {
2244 new_lp = NULL;
2245 gcc_assert (!change_region);
2246 }
2247
2248 /* Notice when we redirect the last EH edge away from OLD_BB. */
2249 FOR_EACH_EDGE (e, ei, old_bb->preds)
2250 if (e != edge_in && (e->flags & EDGE_EH))
2251 break;
2252
2253 if (new_lp)
2254 {
2255 /* NEW_LP already exists. If there are still edges into OLD_LP,
2256 there's nothing to do with the EH tree. If there are no more
2257 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2258 If CHANGE_REGION is true, then our caller is expecting to remove
2259 the landing pad. */
2260 if (e == NULL && !change_region)
2261 remove_eh_landing_pad (old_lp);
2262 }
2263 else
2264 {
2265 /* No correct landing pad exists. If there are no more edges
2266 into OLD_LP, then we can simply re-use the existing landing pad.
2267 Otherwise, we have to create a new landing pad. */
2268 if (e == NULL)
2269 {
2270 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2271 new_lp = old_lp;
2272 }
2273 else
2274 new_lp = gen_eh_landing_pad (old_lp->region);
2275 new_lp->post_landing_pad = new_label;
2276 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2277 }
2278
2279 /* Maybe move the throwing statement to the new region. */
2280 if (old_lp != new_lp)
2281 {
2282 remove_stmt_from_eh_lp (throw_stmt);
2283 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2284 }
2285 }
2286
2287 /* Redirect EH edge E to NEW_BB. */
2288
2289 edge
2290 redirect_eh_edge (edge edge_in, basic_block new_bb)
2291 {
2292 redirect_eh_edge_1 (edge_in, new_bb, false);
2293 return ssa_redirect_edge (edge_in, new_bb);
2294 }
2295
2296 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2297 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2298 The actual edge update will happen in the caller. */
2299
2300 void
2301 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2302 {
2303 tree new_lab = gimple_block_label (new_bb);
2304 bool any_changed = false;
2305 basic_block old_bb;
2306 eh_region r;
2307 eh_catch c;
2308
2309 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2310 switch (r->type)
2311 {
2312 case ERT_TRY:
2313 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2314 {
2315 old_bb = label_to_block (c->label);
2316 if (old_bb == e->dest)
2317 {
2318 c->label = new_lab;
2319 any_changed = true;
2320 }
2321 }
2322 break;
2323
2324 case ERT_ALLOWED_EXCEPTIONS:
2325 old_bb = label_to_block (r->u.allowed.label);
2326 gcc_assert (old_bb == e->dest);
2327 r->u.allowed.label = new_lab;
2328 any_changed = true;
2329 break;
2330
2331 default:
2332 gcc_unreachable ();
2333 }
2334
2335 gcc_assert (any_changed);
2336 }
2337 \f
2338 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2339
2340 bool
2341 operation_could_trap_helper_p (enum tree_code op,
2342 bool fp_operation,
2343 bool honor_trapv,
2344 bool honor_nans,
2345 bool honor_snans,
2346 tree divisor,
2347 bool *handled)
2348 {
2349 *handled = true;
2350 switch (op)
2351 {
2352 case TRUNC_DIV_EXPR:
2353 case CEIL_DIV_EXPR:
2354 case FLOOR_DIV_EXPR:
2355 case ROUND_DIV_EXPR:
2356 case EXACT_DIV_EXPR:
2357 case CEIL_MOD_EXPR:
2358 case FLOOR_MOD_EXPR:
2359 case ROUND_MOD_EXPR:
2360 case TRUNC_MOD_EXPR:
2361 case RDIV_EXPR:
2362 if (honor_snans || honor_trapv)
2363 return true;
2364 if (fp_operation)
2365 return flag_trapping_math;
2366 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2367 return true;
2368 return false;
2369
2370 case LT_EXPR:
2371 case LE_EXPR:
2372 case GT_EXPR:
2373 case GE_EXPR:
2374 case LTGT_EXPR:
2375 /* Some floating point comparisons may trap. */
2376 return honor_nans;
2377
2378 case EQ_EXPR:
2379 case NE_EXPR:
2380 case UNORDERED_EXPR:
2381 case ORDERED_EXPR:
2382 case UNLT_EXPR:
2383 case UNLE_EXPR:
2384 case UNGT_EXPR:
2385 case UNGE_EXPR:
2386 case UNEQ_EXPR:
2387 return honor_snans;
2388
2389 case CONVERT_EXPR:
2390 case FIX_TRUNC_EXPR:
2391 /* Conversion of floating point might trap. */
2392 return honor_nans;
2393
2394 case NEGATE_EXPR:
2395 case ABS_EXPR:
2396 case CONJ_EXPR:
2397 /* These operations don't trap with floating point. */
2398 if (honor_trapv)
2399 return true;
2400 return false;
2401
2402 case PLUS_EXPR:
2403 case MINUS_EXPR:
2404 case MULT_EXPR:
2405 /* Any floating arithmetic may trap. */
2406 if (fp_operation && flag_trapping_math)
2407 return true;
2408 if (honor_trapv)
2409 return true;
2410 return false;
2411
2412 case COMPLEX_EXPR:
2413 case CONSTRUCTOR:
2414 /* Constructing an object cannot trap. */
2415 return false;
2416
2417 default:
2418 /* Any floating arithmetic may trap. */
2419 if (fp_operation && flag_trapping_math)
2420 return true;
2421
2422 *handled = false;
2423 return false;
2424 }
2425 }
2426
2427 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2428 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2429 type operands that may trap. If OP is a division operator, DIVISOR contains
2430 the value of the divisor. */
2431
2432 bool
2433 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2434 tree divisor)
2435 {
2436 bool honor_nans = (fp_operation && flag_trapping_math
2437 && !flag_finite_math_only);
2438 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2439 bool handled;
2440
2441 if (TREE_CODE_CLASS (op) != tcc_comparison
2442 && TREE_CODE_CLASS (op) != tcc_unary
2443 && TREE_CODE_CLASS (op) != tcc_binary)
2444 return false;
2445
2446 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2447 honor_nans, honor_snans, divisor,
2448 &handled);
2449 }
2450
2451 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2452 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2453 This routine expects only GIMPLE lhs or rhs input. */
2454
2455 bool
2456 tree_could_trap_p (tree expr)
2457 {
2458 enum tree_code code;
2459 bool fp_operation = false;
2460 bool honor_trapv = false;
2461 tree t, base, div = NULL_TREE;
2462
2463 if (!expr)
2464 return false;
2465
2466 code = TREE_CODE (expr);
2467 t = TREE_TYPE (expr);
2468
2469 if (t)
2470 {
2471 if (COMPARISON_CLASS_P (expr))
2472 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2473 else
2474 fp_operation = FLOAT_TYPE_P (t);
2475 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2476 }
2477
2478 if (TREE_CODE_CLASS (code) == tcc_binary)
2479 div = TREE_OPERAND (expr, 1);
2480 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2481 return true;
2482
2483 restart:
2484 switch (code)
2485 {
2486 case TARGET_MEM_REF:
2487 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2488 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2489 return false;
2490 return !TREE_THIS_NOTRAP (expr);
2491
2492 case COMPONENT_REF:
2493 case REALPART_EXPR:
2494 case IMAGPART_EXPR:
2495 case BIT_FIELD_REF:
2496 case VIEW_CONVERT_EXPR:
2497 case WITH_SIZE_EXPR:
2498 expr = TREE_OPERAND (expr, 0);
2499 code = TREE_CODE (expr);
2500 goto restart;
2501
2502 case ARRAY_RANGE_REF:
2503 base = TREE_OPERAND (expr, 0);
2504 if (tree_could_trap_p (base))
2505 return true;
2506 if (TREE_THIS_NOTRAP (expr))
2507 return false;
2508 return !range_in_array_bounds_p (expr);
2509
2510 case ARRAY_REF:
2511 base = TREE_OPERAND (expr, 0);
2512 if (tree_could_trap_p (base))
2513 return true;
2514 if (TREE_THIS_NOTRAP (expr))
2515 return false;
2516 return !in_array_bounds_p (expr);
2517
2518 case MEM_REF:
2519 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2520 return false;
2521 /* Fallthru. */
2522 case INDIRECT_REF:
2523 return !TREE_THIS_NOTRAP (expr);
2524
2525 case ASM_EXPR:
2526 return TREE_THIS_VOLATILE (expr);
2527
2528 case CALL_EXPR:
2529 t = get_callee_fndecl (expr);
2530 /* Assume that calls to weak functions may trap. */
2531 if (!t || !DECL_P (t))
2532 return true;
2533 if (DECL_WEAK (t))
2534 return tree_could_trap_p (t);
2535 return false;
2536
2537 case FUNCTION_DECL:
2538 /* Assume that accesses to weak functions may trap, unless we know
2539 they are certainly defined in current TU or in some other
2540 LTO partition. */
2541 if (DECL_WEAK (expr))
2542 {
2543 struct cgraph_node *node;
2544 if (!DECL_EXTERNAL (expr))
2545 return false;
2546 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2547 if (node && node->symbol.in_other_partition)
2548 return false;
2549 return true;
2550 }
2551 return false;
2552
2553 case VAR_DECL:
2554 /* Assume that accesses to weak vars may trap, unless we know
2555 they are certainly defined in current TU or in some other
2556 LTO partition. */
2557 if (DECL_WEAK (expr))
2558 {
2559 struct varpool_node *node;
2560 if (!DECL_EXTERNAL (expr))
2561 return false;
2562 node = varpool_variable_node (varpool_get_node (expr), NULL);
2563 if (node && node->symbol.in_other_partition)
2564 return false;
2565 return true;
2566 }
2567 return false;
2568
2569 default:
2570 return false;
2571 }
2572 }
2573
2574
2575 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2576 an assignment or a conditional) may throw. */
2577
2578 static bool
2579 stmt_could_throw_1_p (gimple stmt)
2580 {
2581 enum tree_code code = gimple_expr_code (stmt);
2582 bool honor_nans = false;
2583 bool honor_snans = false;
2584 bool fp_operation = false;
2585 bool honor_trapv = false;
2586 tree t;
2587 size_t i;
2588 bool handled, ret;
2589
2590 if (TREE_CODE_CLASS (code) == tcc_comparison
2591 || TREE_CODE_CLASS (code) == tcc_unary
2592 || TREE_CODE_CLASS (code) == tcc_binary)
2593 {
2594 if (is_gimple_assign (stmt)
2595 && TREE_CODE_CLASS (code) == tcc_comparison)
2596 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2597 else if (gimple_code (stmt) == GIMPLE_COND)
2598 t = TREE_TYPE (gimple_cond_lhs (stmt));
2599 else
2600 t = gimple_expr_type (stmt);
2601 fp_operation = FLOAT_TYPE_P (t);
2602 if (fp_operation)
2603 {
2604 honor_nans = flag_trapping_math && !flag_finite_math_only;
2605 honor_snans = flag_signaling_nans != 0;
2606 }
2607 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2608 honor_trapv = true;
2609 }
2610
2611 /* Check if the main expression may trap. */
2612 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2613 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2614 honor_nans, honor_snans, t,
2615 &handled);
2616 if (handled)
2617 return ret;
2618
2619 /* If the expression does not trap, see if any of the individual operands may
2620 trap. */
2621 for (i = 0; i < gimple_num_ops (stmt); i++)
2622 if (tree_could_trap_p (gimple_op (stmt, i)))
2623 return true;
2624
2625 return false;
2626 }
2627
2628
2629 /* Return true if statement STMT could throw an exception. */
2630
2631 bool
2632 stmt_could_throw_p (gimple stmt)
2633 {
2634 if (!flag_exceptions)
2635 return false;
2636
2637 /* The only statements that can throw an exception are assignments,
2638 conditionals, calls, resx, and asms. */
2639 switch (gimple_code (stmt))
2640 {
2641 case GIMPLE_RESX:
2642 return true;
2643
2644 case GIMPLE_CALL:
2645 return !gimple_call_nothrow_p (stmt);
2646
2647 case GIMPLE_ASSIGN:
2648 case GIMPLE_COND:
2649 if (!cfun->can_throw_non_call_exceptions)
2650 return false;
2651 return stmt_could_throw_1_p (stmt);
2652
2653 case GIMPLE_ASM:
2654 if (!cfun->can_throw_non_call_exceptions)
2655 return false;
2656 return gimple_asm_volatile_p (stmt);
2657
2658 default:
2659 return false;
2660 }
2661 }
2662
2663
2664 /* Return true if expression T could throw an exception. */
2665
2666 bool
2667 tree_could_throw_p (tree t)
2668 {
2669 if (!flag_exceptions)
2670 return false;
2671 if (TREE_CODE (t) == MODIFY_EXPR)
2672 {
2673 if (cfun->can_throw_non_call_exceptions
2674 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2675 return true;
2676 t = TREE_OPERAND (t, 1);
2677 }
2678
2679 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2680 t = TREE_OPERAND (t, 0);
2681 if (TREE_CODE (t) == CALL_EXPR)
2682 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2683 if (cfun->can_throw_non_call_exceptions)
2684 return tree_could_trap_p (t);
2685 return false;
2686 }
2687
2688 /* Return true if STMT can throw an exception that is not caught within
2689 the current function (CFUN). */
2690
2691 bool
2692 stmt_can_throw_external (gimple stmt)
2693 {
2694 int lp_nr;
2695
2696 if (!stmt_could_throw_p (stmt))
2697 return false;
2698
2699 lp_nr = lookup_stmt_eh_lp (stmt);
2700 return lp_nr == 0;
2701 }
2702
2703 /* Return true if STMT can throw an exception that is caught within
2704 the current function (CFUN). */
2705
2706 bool
2707 stmt_can_throw_internal (gimple stmt)
2708 {
2709 int lp_nr;
2710
2711 if (!stmt_could_throw_p (stmt))
2712 return false;
2713
2714 lp_nr = lookup_stmt_eh_lp (stmt);
2715 return lp_nr > 0;
2716 }
2717
2718 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2719 remove any entry it might have from the EH table. Return true if
2720 any change was made. */
2721
2722 bool
2723 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2724 {
2725 if (stmt_could_throw_p (stmt))
2726 return false;
2727 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2728 }
2729
2730 /* Likewise, but always use the current function. */
2731
2732 bool
2733 maybe_clean_eh_stmt (gimple stmt)
2734 {
2735 return maybe_clean_eh_stmt_fn (cfun, stmt);
2736 }
2737
2738 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2739 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2740 in the table if it should be in there. Return TRUE if a replacement was
2741 done that my require an EH edge purge. */
2742
2743 bool
2744 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2745 {
2746 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2747
2748 if (lp_nr != 0)
2749 {
2750 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2751
2752 if (new_stmt == old_stmt && new_stmt_could_throw)
2753 return false;
2754
2755 remove_stmt_from_eh_lp (old_stmt);
2756 if (new_stmt_could_throw)
2757 {
2758 add_stmt_to_eh_lp (new_stmt, lp_nr);
2759 return false;
2760 }
2761 else
2762 return true;
2763 }
2764
2765 return false;
2766 }
2767
2768 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2769 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2770 operand is the return value of duplicate_eh_regions. */
2771
2772 bool
2773 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2774 struct function *old_fun, gimple old_stmt,
2775 struct pointer_map_t *map, int default_lp_nr)
2776 {
2777 int old_lp_nr, new_lp_nr;
2778 void **slot;
2779
2780 if (!stmt_could_throw_p (new_stmt))
2781 return false;
2782
2783 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2784 if (old_lp_nr == 0)
2785 {
2786 if (default_lp_nr == 0)
2787 return false;
2788 new_lp_nr = default_lp_nr;
2789 }
2790 else if (old_lp_nr > 0)
2791 {
2792 eh_landing_pad old_lp, new_lp;
2793
2794 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2795 slot = pointer_map_contains (map, old_lp);
2796 new_lp = (eh_landing_pad) *slot;
2797 new_lp_nr = new_lp->index;
2798 }
2799 else
2800 {
2801 eh_region old_r, new_r;
2802
2803 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2804 slot = pointer_map_contains (map, old_r);
2805 new_r = (eh_region) *slot;
2806 new_lp_nr = -new_r->index;
2807 }
2808
2809 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2810 return true;
2811 }
2812
2813 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2814 and thus no remapping is required. */
2815
2816 bool
2817 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2818 {
2819 int lp_nr;
2820
2821 if (!stmt_could_throw_p (new_stmt))
2822 return false;
2823
2824 lp_nr = lookup_stmt_eh_lp (old_stmt);
2825 if (lp_nr == 0)
2826 return false;
2827
2828 add_stmt_to_eh_lp (new_stmt, lp_nr);
2829 return true;
2830 }
2831 \f
2832 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2833 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2834 this only handles handlers consisting of a single call, as that's the
2835 important case for C++: a destructor call for a particular object showing
2836 up in multiple handlers. */
2837
2838 static bool
2839 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2840 {
2841 gimple_stmt_iterator gsi;
2842 gimple ones, twos;
2843 unsigned int ai;
2844
2845 gsi = gsi_start (oneh);
2846 if (!gsi_one_before_end_p (gsi))
2847 return false;
2848 ones = gsi_stmt (gsi);
2849
2850 gsi = gsi_start (twoh);
2851 if (!gsi_one_before_end_p (gsi))
2852 return false;
2853 twos = gsi_stmt (gsi);
2854
2855 if (!is_gimple_call (ones)
2856 || !is_gimple_call (twos)
2857 || gimple_call_lhs (ones)
2858 || gimple_call_lhs (twos)
2859 || gimple_call_chain (ones)
2860 || gimple_call_chain (twos)
2861 || !gimple_call_same_target_p (ones, twos)
2862 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2863 return false;
2864
2865 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2866 if (!operand_equal_p (gimple_call_arg (ones, ai),
2867 gimple_call_arg (twos, ai), 0))
2868 return false;
2869
2870 return true;
2871 }
2872
2873 /* Optimize
2874 try { A() } finally { try { ~B() } catch { ~A() } }
2875 try { ... } finally { ~A() }
2876 into
2877 try { A() } catch { ~B() }
2878 try { ~B() ... } finally { ~A() }
2879
2880 This occurs frequently in C++, where A is a local variable and B is a
2881 temporary used in the initializer for A. */
2882
2883 static void
2884 optimize_double_finally (gimple one, gimple two)
2885 {
2886 gimple oneh;
2887 gimple_stmt_iterator gsi;
2888 gimple_seq cleanup;
2889
2890 cleanup = gimple_try_cleanup (one);
2891 gsi = gsi_start (cleanup);
2892 if (!gsi_one_before_end_p (gsi))
2893 return;
2894
2895 oneh = gsi_stmt (gsi);
2896 if (gimple_code (oneh) != GIMPLE_TRY
2897 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2898 return;
2899
2900 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2901 {
2902 gimple_seq seq = gimple_try_eval (oneh);
2903
2904 gimple_try_set_cleanup (one, seq);
2905 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2906 seq = copy_gimple_seq_and_replace_locals (seq);
2907 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2908 gimple_try_set_eval (two, seq);
2909 }
2910 }
2911
2912 /* Perform EH refactoring optimizations that are simpler to do when code
2913 flow has been lowered but EH structures haven't. */
2914
2915 static void
2916 refactor_eh_r (gimple_seq seq)
2917 {
2918 gimple_stmt_iterator gsi;
2919 gimple one, two;
2920
2921 one = NULL;
2922 two = NULL;
2923 gsi = gsi_start (seq);
2924 while (1)
2925 {
2926 one = two;
2927 if (gsi_end_p (gsi))
2928 two = NULL;
2929 else
2930 two = gsi_stmt (gsi);
2931 if (one
2932 && two
2933 && gimple_code (one) == GIMPLE_TRY
2934 && gimple_code (two) == GIMPLE_TRY
2935 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2936 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2937 optimize_double_finally (one, two);
2938 if (one)
2939 switch (gimple_code (one))
2940 {
2941 case GIMPLE_TRY:
2942 refactor_eh_r (gimple_try_eval (one));
2943 refactor_eh_r (gimple_try_cleanup (one));
2944 break;
2945 case GIMPLE_CATCH:
2946 refactor_eh_r (gimple_catch_handler (one));
2947 break;
2948 case GIMPLE_EH_FILTER:
2949 refactor_eh_r (gimple_eh_filter_failure (one));
2950 break;
2951 case GIMPLE_EH_ELSE:
2952 refactor_eh_r (gimple_eh_else_n_body (one));
2953 refactor_eh_r (gimple_eh_else_e_body (one));
2954 break;
2955 default:
2956 break;
2957 }
2958 if (two)
2959 gsi_next (&gsi);
2960 else
2961 break;
2962 }
2963 }
2964
2965 static unsigned
2966 refactor_eh (void)
2967 {
2968 refactor_eh_r (gimple_body (current_function_decl));
2969 return 0;
2970 }
2971
2972 static bool
2973 gate_refactor_eh (void)
2974 {
2975 return flag_exceptions != 0;
2976 }
2977
2978 struct gimple_opt_pass pass_refactor_eh =
2979 {
2980 {
2981 GIMPLE_PASS,
2982 "ehopt", /* name */
2983 gate_refactor_eh, /* gate */
2984 refactor_eh, /* execute */
2985 NULL, /* sub */
2986 NULL, /* next */
2987 0, /* static_pass_number */
2988 TV_TREE_EH, /* tv_id */
2989 PROP_gimple_lcf, /* properties_required */
2990 0, /* properties_provided */
2991 0, /* properties_destroyed */
2992 0, /* todo_flags_start */
2993 0 /* todo_flags_finish */
2994 }
2995 };
2996 \f
2997 /* At the end of gimple optimization, we can lower RESX. */
2998
2999 static bool
3000 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3001 {
3002 int lp_nr;
3003 eh_region src_r, dst_r;
3004 gimple_stmt_iterator gsi;
3005 gimple x;
3006 tree fn, src_nr;
3007 bool ret = false;
3008
3009 lp_nr = lookup_stmt_eh_lp (stmt);
3010 if (lp_nr != 0)
3011 dst_r = get_eh_region_from_lp_number (lp_nr);
3012 else
3013 dst_r = NULL;
3014
3015 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3016 gsi = gsi_last_bb (bb);
3017
3018 if (src_r == NULL)
3019 {
3020 /* We can wind up with no source region when pass_cleanup_eh shows
3021 that there are no entries into an eh region and deletes it, but
3022 then the block that contains the resx isn't removed. This can
3023 happen without optimization when the switch statement created by
3024 lower_try_finally_switch isn't simplified to remove the eh case.
3025
3026 Resolve this by expanding the resx node to an abort. */
3027
3028 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3029 x = gimple_build_call (fn, 0);
3030 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3031
3032 while (EDGE_COUNT (bb->succs) > 0)
3033 remove_edge (EDGE_SUCC (bb, 0));
3034 }
3035 else if (dst_r)
3036 {
3037 /* When we have a destination region, we resolve this by copying
3038 the excptr and filter values into place, and changing the edge
3039 to immediately after the landing pad. */
3040 edge e;
3041
3042 if (lp_nr < 0)
3043 {
3044 basic_block new_bb;
3045 void **slot;
3046 tree lab;
3047
3048 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3049 the failure decl into a new block, if needed. */
3050 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3051
3052 slot = pointer_map_contains (mnt_map, dst_r);
3053 if (slot == NULL)
3054 {
3055 gimple_stmt_iterator gsi2;
3056
3057 new_bb = create_empty_bb (bb);
3058 if (current_loops)
3059 add_bb_to_loop (new_bb, bb->loop_father);
3060 lab = gimple_block_label (new_bb);
3061 gsi2 = gsi_start_bb (new_bb);
3062
3063 fn = dst_r->u.must_not_throw.failure_decl;
3064 x = gimple_build_call (fn, 0);
3065 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3066 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3067
3068 slot = pointer_map_insert (mnt_map, dst_r);
3069 *slot = lab;
3070 }
3071 else
3072 {
3073 lab = (tree) *slot;
3074 new_bb = label_to_block (lab);
3075 }
3076
3077 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3078 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3079 e->count = bb->count;
3080 e->probability = REG_BR_PROB_BASE;
3081 }
3082 else
3083 {
3084 edge_iterator ei;
3085 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3086
3087 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3088 src_nr = build_int_cst (integer_type_node, src_r->index);
3089 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3090 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3091
3092 /* Update the flags for the outgoing edge. */
3093 e = single_succ_edge (bb);
3094 gcc_assert (e->flags & EDGE_EH);
3095 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3096
3097 /* If there are no more EH users of the landing pad, delete it. */
3098 FOR_EACH_EDGE (e, ei, e->dest->preds)
3099 if (e->flags & EDGE_EH)
3100 break;
3101 if (e == NULL)
3102 {
3103 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3104 remove_eh_landing_pad (lp);
3105 }
3106 }
3107
3108 ret = true;
3109 }
3110 else
3111 {
3112 tree var;
3113
3114 /* When we don't have a destination region, this exception escapes
3115 up the call chain. We resolve this by generating a call to the
3116 _Unwind_Resume library function. */
3117
3118 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3119 with no arguments for C++ and Java. Check for that. */
3120 if (src_r->use_cxa_end_cleanup)
3121 {
3122 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3123 x = gimple_build_call (fn, 0);
3124 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3125 }
3126 else
3127 {
3128 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3129 src_nr = build_int_cst (integer_type_node, src_r->index);
3130 x = gimple_build_call (fn, 1, src_nr);
3131 var = create_tmp_var (ptr_type_node, NULL);
3132 var = make_ssa_name (var, x);
3133 gimple_call_set_lhs (x, var);
3134 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3135
3136 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3137 x = gimple_build_call (fn, 1, var);
3138 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3139 }
3140
3141 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3142 }
3143
3144 gsi_remove (&gsi, true);
3145
3146 return ret;
3147 }
3148
3149 static unsigned
3150 execute_lower_resx (void)
3151 {
3152 basic_block bb;
3153 struct pointer_map_t *mnt_map;
3154 bool dominance_invalidated = false;
3155 bool any_rewritten = false;
3156
3157 mnt_map = pointer_map_create ();
3158
3159 FOR_EACH_BB (bb)
3160 {
3161 gimple last = last_stmt (bb);
3162 if (last && is_gimple_resx (last))
3163 {
3164 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3165 any_rewritten = true;
3166 }
3167 }
3168
3169 pointer_map_destroy (mnt_map);
3170
3171 if (dominance_invalidated)
3172 {
3173 free_dominance_info (CDI_DOMINATORS);
3174 free_dominance_info (CDI_POST_DOMINATORS);
3175 }
3176
3177 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3178 }
3179
3180 static bool
3181 gate_lower_resx (void)
3182 {
3183 return flag_exceptions != 0;
3184 }
3185
3186 struct gimple_opt_pass pass_lower_resx =
3187 {
3188 {
3189 GIMPLE_PASS,
3190 "resx", /* name */
3191 gate_lower_resx, /* gate */
3192 execute_lower_resx, /* execute */
3193 NULL, /* sub */
3194 NULL, /* next */
3195 0, /* static_pass_number */
3196 TV_TREE_EH, /* tv_id */
3197 PROP_gimple_lcf, /* properties_required */
3198 0, /* properties_provided */
3199 0, /* properties_destroyed */
3200 0, /* todo_flags_start */
3201 TODO_verify_flow /* todo_flags_finish */
3202 }
3203 };
3204
3205 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3206 external throw. */
3207
3208 static void
3209 optimize_clobbers (basic_block bb)
3210 {
3211 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3212 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3213 {
3214 gimple stmt = gsi_stmt (gsi);
3215 if (is_gimple_debug (stmt))
3216 continue;
3217 if (!gimple_clobber_p (stmt)
3218 || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3219 return;
3220 unlink_stmt_vdef (stmt);
3221 gsi_remove (&gsi, true);
3222 release_defs (stmt);
3223 }
3224 }
3225
3226 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3227 internal throw to successor BB. */
3228
3229 static int
3230 sink_clobbers (basic_block bb)
3231 {
3232 edge e;
3233 edge_iterator ei;
3234 gimple_stmt_iterator gsi, dgsi;
3235 basic_block succbb;
3236 bool any_clobbers = false;
3237
3238 /* Only optimize if BB has a single EH successor and
3239 all predecessor edges are EH too. */
3240 if (!single_succ_p (bb)
3241 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3242 return 0;
3243
3244 FOR_EACH_EDGE (e, ei, bb->preds)
3245 {
3246 if ((e->flags & EDGE_EH) == 0)
3247 return 0;
3248 }
3249
3250 /* And BB contains only CLOBBER stmts before the final
3251 RESX. */
3252 gsi = gsi_last_bb (bb);
3253 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3254 {
3255 gimple stmt = gsi_stmt (gsi);
3256 if (is_gimple_debug (stmt))
3257 continue;
3258 if (gimple_code (stmt) == GIMPLE_LABEL)
3259 break;
3260 if (!gimple_clobber_p (stmt)
3261 || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3262 return 0;
3263 any_clobbers = true;
3264 }
3265 if (!any_clobbers)
3266 return 0;
3267
3268 succbb = single_succ (bb);
3269 dgsi = gsi_after_labels (succbb);
3270 gsi = gsi_last_bb (bb);
3271 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3272 {
3273 gimple stmt = gsi_stmt (gsi);
3274 if (is_gimple_debug (stmt))
3275 continue;
3276 if (gimple_code (stmt) == GIMPLE_LABEL)
3277 break;
3278 unlink_stmt_vdef (stmt);
3279 gsi_remove (&gsi, false);
3280 /* Trigger the operand scanner to cause renaming for virtual
3281 operands for this statement.
3282 ??? Given the simple structure of this code manually
3283 figuring out the reaching definition should not be too hard. */
3284 if (gimple_vuse (stmt))
3285 gimple_set_vuse (stmt, NULL_TREE);
3286 gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3287 }
3288
3289 return TODO_update_ssa_only_virtuals;
3290 }
3291
3292 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3293 we have found some duplicate labels and removed some edges. */
3294
3295 static bool
3296 lower_eh_dispatch (basic_block src, gimple stmt)
3297 {
3298 gimple_stmt_iterator gsi;
3299 int region_nr;
3300 eh_region r;
3301 tree filter, fn;
3302 gimple x;
3303 bool redirected = false;
3304
3305 region_nr = gimple_eh_dispatch_region (stmt);
3306 r = get_eh_region_from_number (region_nr);
3307
3308 gsi = gsi_last_bb (src);
3309
3310 switch (r->type)
3311 {
3312 case ERT_TRY:
3313 {
3314 VEC (tree, heap) *labels = NULL;
3315 tree default_label = NULL;
3316 eh_catch c;
3317 edge_iterator ei;
3318 edge e;
3319 struct pointer_set_t *seen_values = pointer_set_create ();
3320
3321 /* Collect the labels for a switch. Zero the post_landing_pad
3322 field becase we'll no longer have anything keeping these labels
3323 in existence and the optimizer will be free to merge these
3324 blocks at will. */
3325 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3326 {
3327 tree tp_node, flt_node, lab = c->label;
3328 bool have_label = false;
3329
3330 c->label = NULL;
3331 tp_node = c->type_list;
3332 flt_node = c->filter_list;
3333
3334 if (tp_node == NULL)
3335 {
3336 default_label = lab;
3337 break;
3338 }
3339 do
3340 {
3341 /* Filter out duplicate labels that arise when this handler
3342 is shadowed by an earlier one. When no labels are
3343 attached to the handler anymore, we remove
3344 the corresponding edge and then we delete unreachable
3345 blocks at the end of this pass. */
3346 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3347 {
3348 tree t = build_case_label (TREE_VALUE (flt_node),
3349 NULL, lab);
3350 VEC_safe_push (tree, heap, labels, t);
3351 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3352 have_label = true;
3353 }
3354
3355 tp_node = TREE_CHAIN (tp_node);
3356 flt_node = TREE_CHAIN (flt_node);
3357 }
3358 while (tp_node);
3359 if (! have_label)
3360 {
3361 remove_edge (find_edge (src, label_to_block (lab)));
3362 redirected = true;
3363 }
3364 }
3365
3366 /* Clean up the edge flags. */
3367 FOR_EACH_EDGE (e, ei, src->succs)
3368 {
3369 if (e->flags & EDGE_FALLTHRU)
3370 {
3371 /* If there was no catch-all, use the fallthru edge. */
3372 if (default_label == NULL)
3373 default_label = gimple_block_label (e->dest);
3374 e->flags &= ~EDGE_FALLTHRU;
3375 }
3376 }
3377 gcc_assert (default_label != NULL);
3378
3379 /* Don't generate a switch if there's only a default case.
3380 This is common in the form of try { A; } catch (...) { B; }. */
3381 if (labels == NULL)
3382 {
3383 e = single_succ_edge (src);
3384 e->flags |= EDGE_FALLTHRU;
3385 }
3386 else
3387 {
3388 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3389 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3390 region_nr));
3391 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3392 filter = make_ssa_name (filter, x);
3393 gimple_call_set_lhs (x, filter);
3394 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3395
3396 /* Turn the default label into a default case. */
3397 default_label = build_case_label (NULL, NULL, default_label);
3398 sort_case_labels (labels);
3399
3400 x = gimple_build_switch (filter, default_label, labels);
3401 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3402
3403 VEC_free (tree, heap, labels);
3404 }
3405 pointer_set_destroy (seen_values);
3406 }
3407 break;
3408
3409 case ERT_ALLOWED_EXCEPTIONS:
3410 {
3411 edge b_e = BRANCH_EDGE (src);
3412 edge f_e = FALLTHRU_EDGE (src);
3413
3414 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3415 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3416 region_nr));
3417 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3418 filter = make_ssa_name (filter, x);
3419 gimple_call_set_lhs (x, filter);
3420 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3421
3422 r->u.allowed.label = NULL;
3423 x = gimple_build_cond (EQ_EXPR, filter,
3424 build_int_cst (TREE_TYPE (filter),
3425 r->u.allowed.filter),
3426 NULL_TREE, NULL_TREE);
3427 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3428
3429 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3430 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3431 }
3432 break;
3433
3434 default:
3435 gcc_unreachable ();
3436 }
3437
3438 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3439 gsi_remove (&gsi, true);
3440 return redirected;
3441 }
3442
3443 static unsigned
3444 execute_lower_eh_dispatch (void)
3445 {
3446 basic_block bb;
3447 int flags = 0;
3448 bool redirected = false;
3449
3450 assign_filter_values ();
3451
3452 FOR_EACH_BB (bb)
3453 {
3454 gimple last = last_stmt (bb);
3455 if (last == NULL)
3456 continue;
3457 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3458 {
3459 redirected |= lower_eh_dispatch (bb, last);
3460 flags |= TODO_update_ssa_only_virtuals;
3461 }
3462 else if (gimple_code (last) == GIMPLE_RESX)
3463 {
3464 if (stmt_can_throw_external (last))
3465 optimize_clobbers (bb);
3466 else
3467 flags |= sink_clobbers (bb);
3468 }
3469 }
3470
3471 if (redirected)
3472 delete_unreachable_blocks ();
3473 return flags;
3474 }
3475
3476 static bool
3477 gate_lower_eh_dispatch (void)
3478 {
3479 return cfun->eh->region_tree != NULL;
3480 }
3481
3482 struct gimple_opt_pass pass_lower_eh_dispatch =
3483 {
3484 {
3485 GIMPLE_PASS,
3486 "ehdisp", /* name */
3487 gate_lower_eh_dispatch, /* gate */
3488 execute_lower_eh_dispatch, /* execute */
3489 NULL, /* sub */
3490 NULL, /* next */
3491 0, /* static_pass_number */
3492 TV_TREE_EH, /* tv_id */
3493 PROP_gimple_lcf, /* properties_required */
3494 0, /* properties_provided */
3495 0, /* properties_destroyed */
3496 0, /* todo_flags_start */
3497 TODO_verify_flow /* todo_flags_finish */
3498 }
3499 };
3500 \f
3501 /* Walk statements, see what regions are really referenced and remove
3502 those that are unused. */
3503
3504 static void
3505 remove_unreachable_handlers (void)
3506 {
3507 sbitmap r_reachable, lp_reachable;
3508 eh_region region;
3509 eh_landing_pad lp;
3510 basic_block bb;
3511 int lp_nr, r_nr;
3512
3513 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3514 lp_reachable
3515 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3516 sbitmap_zero (r_reachable);
3517 sbitmap_zero (lp_reachable);
3518
3519 FOR_EACH_BB (bb)
3520 {
3521 gimple_stmt_iterator gsi;
3522
3523 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3524 {
3525 gimple stmt = gsi_stmt (gsi);
3526 lp_nr = lookup_stmt_eh_lp (stmt);
3527
3528 /* Negative LP numbers are MUST_NOT_THROW regions which
3529 are not considered BB enders. */
3530 if (lp_nr < 0)
3531 SET_BIT (r_reachable, -lp_nr);
3532
3533 /* Positive LP numbers are real landing pads, are are BB enders. */
3534 else if (lp_nr > 0)
3535 {
3536 gcc_assert (gsi_one_before_end_p (gsi));
3537 region = get_eh_region_from_lp_number (lp_nr);
3538 SET_BIT (r_reachable, region->index);
3539 SET_BIT (lp_reachable, lp_nr);
3540 }
3541
3542 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3543 switch (gimple_code (stmt))
3544 {
3545 case GIMPLE_RESX:
3546 SET_BIT (r_reachable, gimple_resx_region (stmt));
3547 break;
3548 case GIMPLE_EH_DISPATCH:
3549 SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3550 break;
3551 default:
3552 break;
3553 }
3554 }
3555 }
3556
3557 if (dump_file)
3558 {
3559 fprintf (dump_file, "Before removal of unreachable regions:\n");
3560 dump_eh_tree (dump_file, cfun);
3561 fprintf (dump_file, "Reachable regions: ");
3562 dump_sbitmap_file (dump_file, r_reachable);
3563 fprintf (dump_file, "Reachable landing pads: ");
3564 dump_sbitmap_file (dump_file, lp_reachable);
3565 }
3566
3567 for (r_nr = 1;
3568 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3569 if (region && !TEST_BIT (r_reachable, r_nr))
3570 {
3571 if (dump_file)
3572 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3573 remove_eh_handler (region);
3574 }
3575
3576 for (lp_nr = 1;
3577 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3578 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3579 {
3580 if (dump_file)
3581 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3582 remove_eh_landing_pad (lp);
3583 }
3584
3585 if (dump_file)
3586 {
3587 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3588 dump_eh_tree (dump_file, cfun);
3589 fprintf (dump_file, "\n\n");
3590 }
3591
3592 sbitmap_free (r_reachable);
3593 sbitmap_free (lp_reachable);
3594
3595 #ifdef ENABLE_CHECKING
3596 verify_eh_tree (cfun);
3597 #endif
3598 }
3599
3600 /* Remove unreachable handlers if any landing pads have been removed after
3601 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3602
3603 void
3604 maybe_remove_unreachable_handlers (void)
3605 {
3606 eh_landing_pad lp;
3607 int i;
3608
3609 if (cfun->eh == NULL)
3610 return;
3611
3612 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3613 if (lp && lp->post_landing_pad)
3614 {
3615 if (label_to_block (lp->post_landing_pad) == NULL)
3616 {
3617 remove_unreachable_handlers ();
3618 return;
3619 }
3620 }
3621 }
3622
3623 /* Remove regions that do not have landing pads. This assumes
3624 that remove_unreachable_handlers has already been run, and
3625 that we've just manipulated the landing pads since then. */
3626
3627 static void
3628 remove_unreachable_handlers_no_lp (void)
3629 {
3630 eh_region r;
3631 int i;
3632 sbitmap r_reachable;
3633 basic_block bb;
3634
3635 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3636 sbitmap_zero (r_reachable);
3637
3638 FOR_EACH_BB (bb)
3639 {
3640 gimple stmt = last_stmt (bb);
3641 if (stmt)
3642 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3643 switch (gimple_code (stmt))
3644 {
3645 case GIMPLE_RESX:
3646 SET_BIT (r_reachable, gimple_resx_region (stmt));
3647 break;
3648 case GIMPLE_EH_DISPATCH:
3649 SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3650 break;
3651 default:
3652 break;
3653 }
3654 }
3655
3656 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3657 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW
3658 && !TEST_BIT (r_reachable, i))
3659 {
3660 if (dump_file)
3661 fprintf (dump_file, "Removing unreachable region %d\n", i);
3662 remove_eh_handler (r);
3663 }
3664
3665 sbitmap_free (r_reachable);
3666 }
3667
3668 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3669 optimisticaly split all sorts of edges, including EH edges. The
3670 optimization passes in between may not have needed them; if not,
3671 we should undo the split.
3672
3673 Recognize this case by having one EH edge incoming to the BB and
3674 one normal edge outgoing; BB should be empty apart from the
3675 post_landing_pad label.
3676
3677 Note that this is slightly different from the empty handler case
3678 handled by cleanup_empty_eh, in that the actual handler may yet
3679 have actual code but the landing pad has been separated from the
3680 handler. As such, cleanup_empty_eh relies on this transformation
3681 having been done first. */
3682
3683 static bool
3684 unsplit_eh (eh_landing_pad lp)
3685 {
3686 basic_block bb = label_to_block (lp->post_landing_pad);
3687 gimple_stmt_iterator gsi;
3688 edge e_in, e_out;
3689
3690 /* Quickly check the edge counts on BB for singularity. */
3691 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3692 return false;
3693 e_in = EDGE_PRED (bb, 0);
3694 e_out = EDGE_SUCC (bb, 0);
3695
3696 /* Input edge must be EH and output edge must be normal. */
3697 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3698 return false;
3699
3700 /* The block must be empty except for the labels and debug insns. */
3701 gsi = gsi_after_labels (bb);
3702 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3703 gsi_next_nondebug (&gsi);
3704 if (!gsi_end_p (gsi))
3705 return false;
3706
3707 /* The destination block must not already have a landing pad
3708 for a different region. */
3709 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3710 {
3711 gimple stmt = gsi_stmt (gsi);
3712 tree lab;
3713 int lp_nr;
3714
3715 if (gimple_code (stmt) != GIMPLE_LABEL)
3716 break;
3717 lab = gimple_label_label (stmt);
3718 lp_nr = EH_LANDING_PAD_NR (lab);
3719 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3720 return false;
3721 }
3722
3723 /* The new destination block must not already be a destination of
3724 the source block, lest we merge fallthru and eh edges and get
3725 all sorts of confused. */
3726 if (find_edge (e_in->src, e_out->dest))
3727 return false;
3728
3729 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3730 thought this should have been cleaned up by a phicprop pass, but
3731 that doesn't appear to handle virtuals. Propagate by hand. */
3732 if (!gimple_seq_empty_p (phi_nodes (bb)))
3733 {
3734 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3735 {
3736 gimple use_stmt, phi = gsi_stmt (gsi);
3737 tree lhs = gimple_phi_result (phi);
3738 tree rhs = gimple_phi_arg_def (phi, 0);
3739 use_operand_p use_p;
3740 imm_use_iterator iter;
3741
3742 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3743 {
3744 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3745 SET_USE (use_p, rhs);
3746 }
3747
3748 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3749 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3750
3751 remove_phi_node (&gsi, true);
3752 }
3753 }
3754
3755 if (dump_file && (dump_flags & TDF_DETAILS))
3756 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3757 lp->index, e_out->dest->index);
3758
3759 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3760 a successor edge, humor it. But do the real CFG change with the
3761 predecessor of E_OUT in order to preserve the ordering of arguments
3762 to the PHI nodes in E_OUT->DEST. */
3763 redirect_eh_edge_1 (e_in, e_out->dest, false);
3764 redirect_edge_pred (e_out, e_in->src);
3765 e_out->flags = e_in->flags;
3766 e_out->probability = e_in->probability;
3767 e_out->count = e_in->count;
3768 remove_edge (e_in);
3769
3770 return true;
3771 }
3772
3773 /* Examine each landing pad block and see if it matches unsplit_eh. */
3774
3775 static bool
3776 unsplit_all_eh (void)
3777 {
3778 bool changed = false;
3779 eh_landing_pad lp;
3780 int i;
3781
3782 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3783 if (lp)
3784 changed |= unsplit_eh (lp);
3785
3786 return changed;
3787 }
3788
3789 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3790 to OLD_BB to NEW_BB; return true on success, false on failure.
3791
3792 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3793 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3794 Virtual PHIs may be deleted and marked for renaming. */
3795
3796 static bool
3797 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3798 edge old_bb_out, bool change_region)
3799 {
3800 gimple_stmt_iterator ngsi, ogsi;
3801 edge_iterator ei;
3802 edge e;
3803 bitmap rename_virts;
3804 bitmap ophi_handled;
3805
3806 /* The destination block must not be a regular successor for any
3807 of the preds of the landing pad. Thus, avoid turning
3808 <..>
3809 | \ EH
3810 | <..>
3811 | /
3812 <..>
3813 into
3814 <..>
3815 | | EH
3816 <..>
3817 which CFG verification would choke on. See PR45172 and PR51089. */
3818 FOR_EACH_EDGE (e, ei, old_bb->preds)
3819 if (find_edge (e->src, new_bb))
3820 return false;
3821
3822 FOR_EACH_EDGE (e, ei, old_bb->preds)
3823 redirect_edge_var_map_clear (e);
3824
3825 ophi_handled = BITMAP_ALLOC (NULL);
3826 rename_virts = BITMAP_ALLOC (NULL);
3827
3828 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3829 for the edges we're going to move. */
3830 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3831 {
3832 gimple ophi, nphi = gsi_stmt (ngsi);
3833 tree nresult, nop;
3834
3835 nresult = gimple_phi_result (nphi);
3836 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3837
3838 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3839 the source ssa_name. */
3840 ophi = NULL;
3841 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3842 {
3843 ophi = gsi_stmt (ogsi);
3844 if (gimple_phi_result (ophi) == nop)
3845 break;
3846 ophi = NULL;
3847 }
3848
3849 /* If we did find the corresponding PHI, copy those inputs. */
3850 if (ophi)
3851 {
3852 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3853 if (!has_single_use (nop))
3854 {
3855 imm_use_iterator imm_iter;
3856 use_operand_p use_p;
3857
3858 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3859 {
3860 if (!gimple_debug_bind_p (USE_STMT (use_p))
3861 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3862 || gimple_bb (USE_STMT (use_p)) != new_bb))
3863 goto fail;
3864 }
3865 }
3866 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3867 FOR_EACH_EDGE (e, ei, old_bb->preds)
3868 {
3869 location_t oloc;
3870 tree oop;
3871
3872 if ((e->flags & EDGE_EH) == 0)
3873 continue;
3874 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3875 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3876 redirect_edge_var_map_add (e, nresult, oop, oloc);
3877 }
3878 }
3879 /* If we didn't find the PHI, but it's a VOP, remember to rename
3880 it later, assuming all other tests succeed. */
3881 else if (virtual_operand_p (nresult))
3882 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3883 /* If we didn't find the PHI, and it's a real variable, we know
3884 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3885 variable is unchanged from input to the block and we can simply
3886 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3887 else
3888 {
3889 location_t nloc
3890 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3891 FOR_EACH_EDGE (e, ei, old_bb->preds)
3892 redirect_edge_var_map_add (e, nresult, nop, nloc);
3893 }
3894 }
3895
3896 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3897 we don't know what values from the other edges into NEW_BB to use. */
3898 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3899 {
3900 gimple ophi = gsi_stmt (ogsi);
3901 tree oresult = gimple_phi_result (ophi);
3902 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3903 goto fail;
3904 }
3905
3906 /* At this point we know that the merge will succeed. Remove the PHI
3907 nodes for the virtuals that we want to rename. */
3908 if (!bitmap_empty_p (rename_virts))
3909 {
3910 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3911 {
3912 gimple nphi = gsi_stmt (ngsi);
3913 tree nresult = gimple_phi_result (nphi);
3914 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3915 {
3916 mark_virtual_phi_result_for_renaming (nphi);
3917 remove_phi_node (&ngsi, true);
3918 }
3919 else
3920 gsi_next (&ngsi);
3921 }
3922 }
3923
3924 /* Finally, move the edges and update the PHIs. */
3925 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3926 if (e->flags & EDGE_EH)
3927 {
3928 /* ??? CFG manipluation routines do not try to update loop
3929 form on edge redirection. Do so manually here for now. */
3930 /* If we redirect a loop entry or latch edge that will either create
3931 a multiple entry loop or rotate the loop. If the loops merge
3932 we may have created a loop with multiple latches.
3933 All of this isn't easily fixed thus cancel the affected loop
3934 and mark the other loop as possibly having multiple latches. */
3935 if (current_loops
3936 && e->dest == e->dest->loop_father->header)
3937 {
3938 e->dest->loop_father->header = NULL;
3939 e->dest->loop_father->latch = NULL;
3940 new_bb->loop_father->latch = NULL;
3941 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
3942 }
3943 redirect_eh_edge_1 (e, new_bb, change_region);
3944 redirect_edge_succ (e, new_bb);
3945 flush_pending_stmts (e);
3946 }
3947 else
3948 ei_next (&ei);
3949
3950 BITMAP_FREE (ophi_handled);
3951 BITMAP_FREE (rename_virts);
3952 return true;
3953
3954 fail:
3955 FOR_EACH_EDGE (e, ei, old_bb->preds)
3956 redirect_edge_var_map_clear (e);
3957 BITMAP_FREE (ophi_handled);
3958 BITMAP_FREE (rename_virts);
3959 return false;
3960 }
3961
3962 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3963 old region to NEW_REGION at BB. */
3964
3965 static void
3966 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3967 eh_landing_pad lp, eh_region new_region)
3968 {
3969 gimple_stmt_iterator gsi;
3970 eh_landing_pad *pp;
3971
3972 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3973 continue;
3974 *pp = lp->next_lp;
3975
3976 lp->region = new_region;
3977 lp->next_lp = new_region->landing_pads;
3978 new_region->landing_pads = lp;
3979
3980 /* Delete the RESX that was matched within the empty handler block. */
3981 gsi = gsi_last_bb (bb);
3982 unlink_stmt_vdef (gsi_stmt (gsi));
3983 gsi_remove (&gsi, true);
3984
3985 /* Clean up E_OUT for the fallthru. */
3986 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3987 e_out->probability = REG_BR_PROB_BASE;
3988 }
3989
3990 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3991 unsplitting than unsplit_eh was prepared to handle, e.g. when
3992 multiple incoming edges and phis are involved. */
3993
3994 static bool
3995 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3996 {
3997 gimple_stmt_iterator gsi;
3998 tree lab;
3999
4000 /* We really ought not have totally lost everything following
4001 a landing pad label. Given that BB is empty, there had better
4002 be a successor. */
4003 gcc_assert (e_out != NULL);
4004
4005 /* The destination block must not already have a landing pad
4006 for a different region. */
4007 lab = NULL;
4008 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4009 {
4010 gimple stmt = gsi_stmt (gsi);
4011 int lp_nr;
4012
4013 if (gimple_code (stmt) != GIMPLE_LABEL)
4014 break;
4015 lab = gimple_label_label (stmt);
4016 lp_nr = EH_LANDING_PAD_NR (lab);
4017 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4018 return false;
4019 }
4020
4021 /* Attempt to move the PHIs into the successor block. */
4022 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4023 {
4024 if (dump_file && (dump_flags & TDF_DETAILS))
4025 fprintf (dump_file,
4026 "Unsplit EH landing pad %d to block %i "
4027 "(via cleanup_empty_eh).\n",
4028 lp->index, e_out->dest->index);
4029 return true;
4030 }
4031
4032 return false;
4033 }
4034
4035 /* Return true if edge E_FIRST is part of an empty infinite loop
4036 or leads to such a loop through a series of single successor
4037 empty bbs. */
4038
4039 static bool
4040 infinite_empty_loop_p (edge e_first)
4041 {
4042 bool inf_loop = false;
4043 edge e;
4044
4045 if (e_first->dest == e_first->src)
4046 return true;
4047
4048 e_first->src->aux = (void *) 1;
4049 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4050 {
4051 gimple_stmt_iterator gsi;
4052 if (e->dest->aux)
4053 {
4054 inf_loop = true;
4055 break;
4056 }
4057 e->dest->aux = (void *) 1;
4058 gsi = gsi_after_labels (e->dest);
4059 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4060 gsi_next_nondebug (&gsi);
4061 if (!gsi_end_p (gsi))
4062 break;
4063 }
4064 e_first->src->aux = NULL;
4065 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4066 e->dest->aux = NULL;
4067
4068 return inf_loop;
4069 }
4070
4071 /* Examine the block associated with LP to determine if it's an empty
4072 handler for its EH region. If so, attempt to redirect EH edges to
4073 an outer region. Return true the CFG was updated in any way. This
4074 is similar to jump forwarding, just across EH edges. */
4075
4076 static bool
4077 cleanup_empty_eh (eh_landing_pad lp)
4078 {
4079 basic_block bb = label_to_block (lp->post_landing_pad);
4080 gimple_stmt_iterator gsi;
4081 gimple resx;
4082 eh_region new_region;
4083 edge_iterator ei;
4084 edge e, e_out;
4085 bool has_non_eh_pred;
4086 bool ret = false;
4087 int new_lp_nr;
4088
4089 /* There can be zero or one edges out of BB. This is the quickest test. */
4090 switch (EDGE_COUNT (bb->succs))
4091 {
4092 case 0:
4093 e_out = NULL;
4094 break;
4095 case 1:
4096 e_out = EDGE_SUCC (bb, 0);
4097 break;
4098 default:
4099 return false;
4100 }
4101
4102 resx = last_stmt (bb);
4103 if (resx && is_gimple_resx (resx))
4104 {
4105 if (stmt_can_throw_external (resx))
4106 optimize_clobbers (bb);
4107 else if (sink_clobbers (bb))
4108 ret = true;
4109 }
4110
4111 gsi = gsi_after_labels (bb);
4112
4113 /* Make sure to skip debug statements. */
4114 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4115 gsi_next_nondebug (&gsi);
4116
4117 /* If the block is totally empty, look for more unsplitting cases. */
4118 if (gsi_end_p (gsi))
4119 {
4120 /* For the degenerate case of an infinite loop bail out. */
4121 if (infinite_empty_loop_p (e_out))
4122 return ret;
4123
4124 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4125 }
4126
4127 /* The block should consist only of a single RESX statement, modulo a
4128 preceding call to __builtin_stack_restore if there is no outgoing
4129 edge, since the call can be eliminated in this case. */
4130 resx = gsi_stmt (gsi);
4131 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4132 {
4133 gsi_next (&gsi);
4134 resx = gsi_stmt (gsi);
4135 }
4136 if (!is_gimple_resx (resx))
4137 return ret;
4138 gcc_assert (gsi_one_before_end_p (gsi));
4139
4140 /* Determine if there are non-EH edges, or resx edges into the handler. */
4141 has_non_eh_pred = false;
4142 FOR_EACH_EDGE (e, ei, bb->preds)
4143 if (!(e->flags & EDGE_EH))
4144 has_non_eh_pred = true;
4145
4146 /* Find the handler that's outer of the empty handler by looking at
4147 where the RESX instruction was vectored. */
4148 new_lp_nr = lookup_stmt_eh_lp (resx);
4149 new_region = get_eh_region_from_lp_number (new_lp_nr);
4150
4151 /* If there's no destination region within the current function,
4152 redirection is trivial via removing the throwing statements from
4153 the EH region, removing the EH edges, and allowing the block
4154 to go unreachable. */
4155 if (new_region == NULL)
4156 {
4157 gcc_assert (e_out == NULL);
4158 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4159 if (e->flags & EDGE_EH)
4160 {
4161 gimple stmt = last_stmt (e->src);
4162 remove_stmt_from_eh_lp (stmt);
4163 remove_edge (e);
4164 }
4165 else
4166 ei_next (&ei);
4167 goto succeed;
4168 }
4169
4170 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4171 to handle the abort and allow the blocks to go unreachable. */
4172 if (new_region->type == ERT_MUST_NOT_THROW)
4173 {
4174 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4175 if (e->flags & EDGE_EH)
4176 {
4177 gimple stmt = last_stmt (e->src);
4178 remove_stmt_from_eh_lp (stmt);
4179 add_stmt_to_eh_lp (stmt, new_lp_nr);
4180 remove_edge (e);
4181 }
4182 else
4183 ei_next (&ei);
4184 goto succeed;
4185 }
4186
4187 /* Try to redirect the EH edges and merge the PHIs into the destination
4188 landing pad block. If the merge succeeds, we'll already have redirected
4189 all the EH edges. The handler itself will go unreachable if there were
4190 no normal edges. */
4191 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4192 goto succeed;
4193
4194 /* Finally, if all input edges are EH edges, then we can (potentially)
4195 reduce the number of transfers from the runtime by moving the landing
4196 pad from the original region to the new region. This is a win when
4197 we remove the last CLEANUP region along a particular exception
4198 propagation path. Since nothing changes except for the region with
4199 which the landing pad is associated, the PHI nodes do not need to be
4200 adjusted at all. */
4201 if (!has_non_eh_pred)
4202 {
4203 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4204 if (dump_file && (dump_flags & TDF_DETAILS))
4205 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4206 lp->index, new_region->index);
4207
4208 /* ??? The CFG didn't change, but we may have rendered the
4209 old EH region unreachable. Trigger a cleanup there. */
4210 return true;
4211 }
4212
4213 return ret;
4214
4215 succeed:
4216 if (dump_file && (dump_flags & TDF_DETAILS))
4217 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4218 remove_eh_landing_pad (lp);
4219 return true;
4220 }
4221
4222 /* Do a post-order traversal of the EH region tree. Examine each
4223 post_landing_pad block and see if we can eliminate it as empty. */
4224
4225 static bool
4226 cleanup_all_empty_eh (void)
4227 {
4228 bool changed = false;
4229 eh_landing_pad lp;
4230 int i;
4231
4232 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
4233 if (lp)
4234 changed |= cleanup_empty_eh (lp);
4235
4236 return changed;
4237 }
4238
4239 /* Perform cleanups and lowering of exception handling
4240 1) cleanups regions with handlers doing nothing are optimized out
4241 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4242 3) Info about regions that are containing instructions, and regions
4243 reachable via local EH edges is collected
4244 4) Eh tree is pruned for regions no longer neccesary.
4245
4246 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4247 Unify those that have the same failure decl and locus.
4248 */
4249
4250 static unsigned int
4251 execute_cleanup_eh_1 (void)
4252 {
4253 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4254 looking up unreachable landing pads. */
4255 remove_unreachable_handlers ();
4256
4257 /* Watch out for the region tree vanishing due to all unreachable. */
4258 if (cfun->eh->region_tree && optimize)
4259 {
4260 bool changed = false;
4261
4262 changed |= unsplit_all_eh ();
4263 changed |= cleanup_all_empty_eh ();
4264
4265 if (changed)
4266 {
4267 free_dominance_info (CDI_DOMINATORS);
4268 free_dominance_info (CDI_POST_DOMINATORS);
4269
4270 /* We delayed all basic block deletion, as we may have performed
4271 cleanups on EH edges while non-EH edges were still present. */
4272 delete_unreachable_blocks ();
4273
4274 /* We manipulated the landing pads. Remove any region that no
4275 longer has a landing pad. */
4276 remove_unreachable_handlers_no_lp ();
4277
4278 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4279 }
4280 }
4281
4282 return 0;
4283 }
4284
4285 static unsigned int
4286 execute_cleanup_eh (void)
4287 {
4288 int ret = execute_cleanup_eh_1 ();
4289
4290 /* If the function no longer needs an EH personality routine
4291 clear it. This exposes cross-language inlining opportunities
4292 and avoids references to a never defined personality routine. */
4293 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4294 && function_needs_eh_personality (cfun) != eh_personality_lang)
4295 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4296
4297 return ret;
4298 }
4299
4300 static bool
4301 gate_cleanup_eh (void)
4302 {
4303 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4304 }
4305
4306 struct gimple_opt_pass pass_cleanup_eh = {
4307 {
4308 GIMPLE_PASS,
4309 "ehcleanup", /* name */
4310 gate_cleanup_eh, /* gate */
4311 execute_cleanup_eh, /* execute */
4312 NULL, /* sub */
4313 NULL, /* next */
4314 0, /* static_pass_number */
4315 TV_TREE_EH, /* tv_id */
4316 PROP_gimple_lcf, /* properties_required */
4317 0, /* properties_provided */
4318 0, /* properties_destroyed */
4319 0, /* todo_flags_start */
4320 0 /* todo_flags_finish */
4321 }
4322 };
4323 \f
4324 /* Verify that BB containing STMT as the last statement, has precisely the
4325 edge that make_eh_edges would create. */
4326
4327 DEBUG_FUNCTION bool
4328 verify_eh_edges (gimple stmt)
4329 {
4330 basic_block bb = gimple_bb (stmt);
4331 eh_landing_pad lp = NULL;
4332 int lp_nr;
4333 edge_iterator ei;
4334 edge e, eh_edge;
4335
4336 lp_nr = lookup_stmt_eh_lp (stmt);
4337 if (lp_nr > 0)
4338 lp = get_eh_landing_pad_from_number (lp_nr);
4339
4340 eh_edge = NULL;
4341 FOR_EACH_EDGE (e, ei, bb->succs)
4342 {
4343 if (e->flags & EDGE_EH)
4344 {
4345 if (eh_edge)
4346 {
4347 error ("BB %i has multiple EH edges", bb->index);
4348 return true;
4349 }
4350 else
4351 eh_edge = e;
4352 }
4353 }
4354
4355 if (lp == NULL)
4356 {
4357 if (eh_edge)
4358 {
4359 error ("BB %i can not throw but has an EH edge", bb->index);
4360 return true;
4361 }
4362 return false;
4363 }
4364
4365 if (!stmt_could_throw_p (stmt))
4366 {
4367 error ("BB %i last statement has incorrectly set lp", bb->index);
4368 return true;
4369 }
4370
4371 if (eh_edge == NULL)
4372 {
4373 error ("BB %i is missing an EH edge", bb->index);
4374 return true;
4375 }
4376
4377 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4378 {
4379 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4380 return true;
4381 }
4382
4383 return false;
4384 }
4385
4386 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4387
4388 DEBUG_FUNCTION bool
4389 verify_eh_dispatch_edge (gimple stmt)
4390 {
4391 eh_region r;
4392 eh_catch c;
4393 basic_block src, dst;
4394 bool want_fallthru = true;
4395 edge_iterator ei;
4396 edge e, fall_edge;
4397
4398 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4399 src = gimple_bb (stmt);
4400
4401 FOR_EACH_EDGE (e, ei, src->succs)
4402 gcc_assert (e->aux == NULL);
4403
4404 switch (r->type)
4405 {
4406 case ERT_TRY:
4407 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4408 {
4409 dst = label_to_block (c->label);
4410 e = find_edge (src, dst);
4411 if (e == NULL)
4412 {
4413 error ("BB %i is missing an edge", src->index);
4414 return true;
4415 }
4416 e->aux = (void *)e;
4417
4418 /* A catch-all handler doesn't have a fallthru. */
4419 if (c->type_list == NULL)
4420 {
4421 want_fallthru = false;
4422 break;
4423 }
4424 }
4425 break;
4426
4427 case ERT_ALLOWED_EXCEPTIONS:
4428 dst = label_to_block (r->u.allowed.label);
4429 e = find_edge (src, dst);
4430 if (e == NULL)
4431 {
4432 error ("BB %i is missing an edge", src->index);
4433 return true;
4434 }
4435 e->aux = (void *)e;
4436 break;
4437
4438 default:
4439 gcc_unreachable ();
4440 }
4441
4442 fall_edge = NULL;
4443 FOR_EACH_EDGE (e, ei, src->succs)
4444 {
4445 if (e->flags & EDGE_FALLTHRU)
4446 {
4447 if (fall_edge != NULL)
4448 {
4449 error ("BB %i too many fallthru edges", src->index);
4450 return true;
4451 }
4452 fall_edge = e;
4453 }
4454 else if (e->aux)
4455 e->aux = NULL;
4456 else
4457 {
4458 error ("BB %i has incorrect edge", src->index);
4459 return true;
4460 }
4461 }
4462 if ((fall_edge != NULL) ^ want_fallthru)
4463 {
4464 error ("BB %i has incorrect fallthru edge", src->index);
4465 return true;
4466 }
4467
4468 return false;
4469 }