]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
re PR middle-end/51089 (internal compiler error: verify_flow_info failed)
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
60
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
64
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
68
69 /* Add statement T in function IFUN to landing pad NUM. */
70
71 void
72 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
73 {
74 struct throw_stmt_node *n;
75 void **slot;
76
77 gcc_assert (num != 0);
78
79 n = ggc_alloc_throw_stmt_node ();
80 n->stmt = t;
81 n->lp_nr = num;
82
83 if (!get_eh_throw_stmt_table (ifun))
84 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
85 struct_ptr_eq,
86 ggc_free));
87
88 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
89 gcc_assert (!*slot);
90 *slot = n;
91 }
92
93 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
94
95 void
96 add_stmt_to_eh_lp (gimple t, int num)
97 {
98 add_stmt_to_eh_lp_fn (cfun, t, num);
99 }
100
101 /* Add statement T to the single EH landing pad in REGION. */
102
103 static void
104 record_stmt_eh_region (eh_region region, gimple t)
105 {
106 if (region == NULL)
107 return;
108 if (region->type == ERT_MUST_NOT_THROW)
109 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
110 else
111 {
112 eh_landing_pad lp = region->landing_pads;
113 if (lp == NULL)
114 lp = gen_eh_landing_pad (region);
115 else
116 gcc_assert (lp->next_lp == NULL);
117 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
118 }
119 }
120
121
122 /* Remove statement T in function IFUN from its EH landing pad. */
123
124 bool
125 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
126 {
127 struct throw_stmt_node dummy;
128 void **slot;
129
130 if (!get_eh_throw_stmt_table (ifun))
131 return false;
132
133 dummy.stmt = t;
134 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
135 NO_INSERT);
136 if (slot)
137 {
138 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
139 return true;
140 }
141 else
142 return false;
143 }
144
145
146 /* Remove statement T in the current function (cfun) from its
147 EH landing pad. */
148
149 bool
150 remove_stmt_from_eh_lp (gimple t)
151 {
152 return remove_stmt_from_eh_lp_fn (cfun, t);
153 }
154
155 /* Determine if statement T is inside an EH region in function IFUN.
156 Positive numbers indicate a landing pad index; negative numbers
157 indicate a MUST_NOT_THROW region index; zero indicates that the
158 statement is not recorded in the region table. */
159
160 int
161 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
162 {
163 struct throw_stmt_node *p, n;
164
165 if (ifun->eh->throw_stmt_table == NULL)
166 return 0;
167
168 n.stmt = t;
169 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
170 return p ? p->lp_nr : 0;
171 }
172
173 /* Likewise, but always use the current function. */
174
175 int
176 lookup_stmt_eh_lp (gimple t)
177 {
178 /* We can get called from initialized data when -fnon-call-exceptions
179 is on; prevent crash. */
180 if (!cfun)
181 return 0;
182 return lookup_stmt_eh_lp_fn (cfun, t);
183 }
184
185 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
186 nodes and LABEL_DECL nodes. We will use this during the second phase to
187 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
188
189 struct finally_tree_node
190 {
191 /* When storing a GIMPLE_TRY, we have to record a gimple. However
192 when deciding whether a GOTO to a certain LABEL_DECL (which is a
193 tree) leaves the TRY block, its necessary to record a tree in
194 this field. Thus a treemple is used. */
195 treemple child;
196 gimple parent;
197 };
198
199 /* Note that this table is *not* marked GTY. It is short-lived. */
200 static htab_t finally_tree;
201
202 static void
203 record_in_finally_tree (treemple child, gimple parent)
204 {
205 struct finally_tree_node *n;
206 void **slot;
207
208 n = XNEW (struct finally_tree_node);
209 n->child = child;
210 n->parent = parent;
211
212 slot = htab_find_slot (finally_tree, n, INSERT);
213 gcc_assert (!*slot);
214 *slot = n;
215 }
216
217 static void
218 collect_finally_tree (gimple stmt, gimple region);
219
220 /* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
222
223 static void
224 collect_finally_tree_1 (gimple_seq seq, gimple region)
225 {
226 gimple_stmt_iterator gsi;
227
228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
229 collect_finally_tree (gsi_stmt (gsi), region);
230 }
231
232 static void
233 collect_finally_tree (gimple stmt, gimple region)
234 {
235 treemple temp;
236
237 switch (gimple_code (stmt))
238 {
239 case GIMPLE_LABEL:
240 temp.t = gimple_label_label (stmt);
241 record_in_finally_tree (temp, region);
242 break;
243
244 case GIMPLE_TRY:
245 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
246 {
247 temp.g = stmt;
248 record_in_finally_tree (temp, region);
249 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
250 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
251 }
252 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
253 {
254 collect_finally_tree_1 (gimple_try_eval (stmt), region);
255 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
256 }
257 break;
258
259 case GIMPLE_CATCH:
260 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
261 break;
262
263 case GIMPLE_EH_FILTER:
264 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
265 break;
266
267 case GIMPLE_EH_ELSE:
268 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
269 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
270 break;
271
272 default:
273 /* A type, a decl, or some kind of statement that we're not
274 interested in. Don't walk them. */
275 break;
276 }
277 }
278
279
280 /* Use the finally tree to determine if a jump from START to TARGET
281 would leave the try_finally node that START lives in. */
282
283 static bool
284 outside_finally_tree (treemple start, gimple target)
285 {
286 struct finally_tree_node n, *p;
287
288 do
289 {
290 n.child = start;
291 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
292 if (!p)
293 return true;
294 start.g = p->parent;
295 }
296 while (start.g != target);
297
298 return false;
299 }
300
301 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
302 nodes into a set of gotos, magic labels, and eh regions.
303 The eh region creation is straight-forward, but frobbing all the gotos
304 and such into shape isn't. */
305
306 /* The sequence into which we record all EH stuff. This will be
307 placed at the end of the function when we're all done. */
308 static gimple_seq eh_seq;
309
310 /* Record whether an EH region contains something that can throw,
311 indexed by EH region number. */
312 static bitmap eh_region_may_contain_throw_map;
313
314 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
315 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
316 The idea is to record a gimple statement for everything except for
317 the conditionals, which get their labels recorded. Since labels are
318 of type 'tree', we need this node to store both gimple and tree
319 objects. REPL_STMT is the sequence used to replace the goto/return
320 statement. CONT_STMT is used to store the statement that allows
321 the return/goto to jump to the original destination. */
322
323 struct goto_queue_node
324 {
325 treemple stmt;
326 gimple_seq repl_stmt;
327 gimple cont_stmt;
328 int index;
329 /* This is used when index >= 0 to indicate that stmt is a label (as
330 opposed to a goto stmt). */
331 int is_label;
332 };
333
334 /* State of the world while lowering. */
335
336 struct leh_state
337 {
338 /* What's "current" while constructing the eh region tree. These
339 correspond to variables of the same name in cfun->eh, which we
340 don't have easy access to. */
341 eh_region cur_region;
342
343 /* What's "current" for the purposes of __builtin_eh_pointer. For
344 a CATCH, this is the associated TRY. For an EH_FILTER, this is
345 the associated ALLOWED_EXCEPTIONS, etc. */
346 eh_region ehp_region;
347
348 /* Processing of TRY_FINALLY requires a bit more state. This is
349 split out into a separate structure so that we don't have to
350 copy so much when processing other nodes. */
351 struct leh_tf_state *tf;
352 };
353
354 struct leh_tf_state
355 {
356 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
357 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
358 this so that outside_finally_tree can reliably reference the tree used
359 in the collect_finally_tree data structures. */
360 gimple try_finally_expr;
361 gimple top_p;
362
363 /* While lowering a top_p usually it is expanded into multiple statements,
364 thus we need the following field to store them. */
365 gimple_seq top_p_seq;
366
367 /* The state outside this try_finally node. */
368 struct leh_state *outer;
369
370 /* The exception region created for it. */
371 eh_region region;
372
373 /* The goto queue. */
374 struct goto_queue_node *goto_queue;
375 size_t goto_queue_size;
376 size_t goto_queue_active;
377
378 /* Pointer map to help in searching goto_queue when it is large. */
379 struct pointer_map_t *goto_queue_map;
380
381 /* The set of unique labels seen as entries in the goto queue. */
382 VEC(tree,heap) *dest_array;
383
384 /* A label to be added at the end of the completed transformed
385 sequence. It will be set if may_fallthru was true *at one time*,
386 though subsequent transformations may have cleared that flag. */
387 tree fallthru_label;
388
389 /* True if it is possible to fall out the bottom of the try block.
390 Cleared if the fallthru is converted to a goto. */
391 bool may_fallthru;
392
393 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
394 bool may_return;
395
396 /* True if the finally block can receive an exception edge.
397 Cleared if the exception case is handled by code duplication. */
398 bool may_throw;
399 };
400
401 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
402
403 /* Search for STMT in the goto queue. Return the replacement,
404 or null if the statement isn't in the queue. */
405
406 #define LARGE_GOTO_QUEUE 20
407
408 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
409
410 static gimple_seq
411 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
412 {
413 unsigned int i;
414 void **slot;
415
416 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
417 {
418 for (i = 0; i < tf->goto_queue_active; i++)
419 if ( tf->goto_queue[i].stmt.g == stmt.g)
420 return tf->goto_queue[i].repl_stmt;
421 return NULL;
422 }
423
424 /* If we have a large number of entries in the goto_queue, create a
425 pointer map and use that for searching. */
426
427 if (!tf->goto_queue_map)
428 {
429 tf->goto_queue_map = pointer_map_create ();
430 for (i = 0; i < tf->goto_queue_active; i++)
431 {
432 slot = pointer_map_insert (tf->goto_queue_map,
433 tf->goto_queue[i].stmt.g);
434 gcc_assert (*slot == NULL);
435 *slot = &tf->goto_queue[i];
436 }
437 }
438
439 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
440 if (slot != NULL)
441 return (((struct goto_queue_node *) *slot)->repl_stmt);
442
443 return NULL;
444 }
445
446 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
447 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
448 then we can just splat it in, otherwise we add the new stmts immediately
449 after the GIMPLE_COND and redirect. */
450
451 static void
452 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
453 gimple_stmt_iterator *gsi)
454 {
455 tree label;
456 gimple_seq new_seq;
457 treemple temp;
458 location_t loc = gimple_location (gsi_stmt (*gsi));
459
460 temp.tp = tp;
461 new_seq = find_goto_replacement (tf, temp);
462 if (!new_seq)
463 return;
464
465 if (gimple_seq_singleton_p (new_seq)
466 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
467 {
468 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
469 return;
470 }
471
472 label = create_artificial_label (loc);
473 /* Set the new label for the GIMPLE_COND */
474 *tp = label;
475
476 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
477 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
478 }
479
480 /* The real work of replace_goto_queue. Returns with TSI updated to
481 point to the next statement. */
482
483 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
484
485 static void
486 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
487 gimple_stmt_iterator *gsi)
488 {
489 gimple_seq seq;
490 treemple temp;
491 temp.g = NULL;
492
493 switch (gimple_code (stmt))
494 {
495 case GIMPLE_GOTO:
496 case GIMPLE_RETURN:
497 temp.g = stmt;
498 seq = find_goto_replacement (tf, temp);
499 if (seq)
500 {
501 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
502 gsi_remove (gsi, false);
503 return;
504 }
505 break;
506
507 case GIMPLE_COND:
508 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
509 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
510 break;
511
512 case GIMPLE_TRY:
513 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
514 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
515 break;
516 case GIMPLE_CATCH:
517 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
518 break;
519 case GIMPLE_EH_FILTER:
520 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
521 break;
522 case GIMPLE_EH_ELSE:
523 replace_goto_queue_stmt_list (gimple_eh_else_n_body (stmt), tf);
524 replace_goto_queue_stmt_list (gimple_eh_else_e_body (stmt), tf);
525 break;
526
527 default:
528 /* These won't have gotos in them. */
529 break;
530 }
531
532 gsi_next (gsi);
533 }
534
535 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
536
537 static void
538 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
539 {
540 gimple_stmt_iterator gsi = gsi_start (seq);
541
542 while (!gsi_end_p (gsi))
543 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
544 }
545
546 /* Replace all goto queue members. */
547
548 static void
549 replace_goto_queue (struct leh_tf_state *tf)
550 {
551 if (tf->goto_queue_active == 0)
552 return;
553 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
554 replace_goto_queue_stmt_list (eh_seq, tf);
555 }
556
557 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
558 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
559 a gimple return. */
560
561 static void
562 record_in_goto_queue (struct leh_tf_state *tf,
563 treemple new_stmt,
564 int index,
565 bool is_label)
566 {
567 size_t active, size;
568 struct goto_queue_node *q;
569
570 gcc_assert (!tf->goto_queue_map);
571
572 active = tf->goto_queue_active;
573 size = tf->goto_queue_size;
574 if (active >= size)
575 {
576 size = (size ? size * 2 : 32);
577 tf->goto_queue_size = size;
578 tf->goto_queue
579 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
580 }
581
582 q = &tf->goto_queue[active];
583 tf->goto_queue_active = active + 1;
584
585 memset (q, 0, sizeof (*q));
586 q->stmt = new_stmt;
587 q->index = index;
588 q->is_label = is_label;
589 }
590
591 /* Record the LABEL label in the goto queue contained in TF.
592 TF is not null. */
593
594 static void
595 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
596 {
597 int index;
598 treemple temp, new_stmt;
599
600 if (!label)
601 return;
602
603 /* Computed and non-local gotos do not get processed. Given
604 their nature we can neither tell whether we've escaped the
605 finally block nor redirect them if we knew. */
606 if (TREE_CODE (label) != LABEL_DECL)
607 return;
608
609 /* No need to record gotos that don't leave the try block. */
610 temp.t = label;
611 if (!outside_finally_tree (temp, tf->try_finally_expr))
612 return;
613
614 if (! tf->dest_array)
615 {
616 tf->dest_array = VEC_alloc (tree, heap, 10);
617 VEC_quick_push (tree, tf->dest_array, label);
618 index = 0;
619 }
620 else
621 {
622 int n = VEC_length (tree, tf->dest_array);
623 for (index = 0; index < n; ++index)
624 if (VEC_index (tree, tf->dest_array, index) == label)
625 break;
626 if (index == n)
627 VEC_safe_push (tree, heap, tf->dest_array, label);
628 }
629
630 /* In the case of a GOTO we want to record the destination label,
631 since with a GIMPLE_COND we have an easy access to the then/else
632 labels. */
633 new_stmt = stmt;
634 record_in_goto_queue (tf, new_stmt, index, true);
635 }
636
637 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
638 node, and if so record that fact in the goto queue associated with that
639 try_finally node. */
640
641 static void
642 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
643 {
644 struct leh_tf_state *tf = state->tf;
645 treemple new_stmt;
646
647 if (!tf)
648 return;
649
650 switch (gimple_code (stmt))
651 {
652 case GIMPLE_COND:
653 new_stmt.tp = gimple_op_ptr (stmt, 2);
654 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
655 new_stmt.tp = gimple_op_ptr (stmt, 3);
656 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
657 break;
658 case GIMPLE_GOTO:
659 new_stmt.g = stmt;
660 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
661 break;
662
663 case GIMPLE_RETURN:
664 tf->may_return = true;
665 new_stmt.g = stmt;
666 record_in_goto_queue (tf, new_stmt, -1, false);
667 break;
668
669 default:
670 gcc_unreachable ();
671 }
672 }
673
674
675 #ifdef ENABLE_CHECKING
676 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
677 was in fact structured, and we've not yet done jump threading, then none
678 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
679
680 static void
681 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
682 {
683 struct leh_tf_state *tf = state->tf;
684 size_t i, n;
685
686 if (!tf)
687 return;
688
689 n = gimple_switch_num_labels (switch_expr);
690
691 for (i = 0; i < n; ++i)
692 {
693 treemple temp;
694 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
695 temp.t = lab;
696 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
697 }
698 }
699 #else
700 #define verify_norecord_switch_expr(state, switch_expr)
701 #endif
702
703 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
704 non-null, insert it before the new branch. */
705
706 static void
707 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
708 {
709 gimple x;
710
711 /* In the case of a return, the queue node must be a gimple statement. */
712 gcc_assert (!q->is_label);
713
714 /* Note that the return value may have already been computed, e.g.,
715
716 int x;
717 int foo (void)
718 {
719 x = 0;
720 try {
721 return x;
722 } finally {
723 x++;
724 }
725 }
726
727 should return 0, not 1. We don't have to do anything to make
728 this happens because the return value has been placed in the
729 RESULT_DECL already. */
730
731 q->cont_stmt = q->stmt.g;
732
733 if (!q->repl_stmt)
734 q->repl_stmt = gimple_seq_alloc ();
735
736 if (mod)
737 gimple_seq_add_seq (&q->repl_stmt, mod);
738
739 x = gimple_build_goto (finlab);
740 gimple_seq_add_stmt (&q->repl_stmt, x);
741 }
742
743 /* Similar, but easier, for GIMPLE_GOTO. */
744
745 static void
746 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
747 struct leh_tf_state *tf)
748 {
749 gimple x;
750
751 gcc_assert (q->is_label);
752 if (!q->repl_stmt)
753 q->repl_stmt = gimple_seq_alloc ();
754
755 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
756
757 if (mod)
758 gimple_seq_add_seq (&q->repl_stmt, mod);
759
760 x = gimple_build_goto (finlab);
761 gimple_seq_add_stmt (&q->repl_stmt, x);
762 }
763
764 /* Emit a standard landing pad sequence into SEQ for REGION. */
765
766 static void
767 emit_post_landing_pad (gimple_seq *seq, eh_region region)
768 {
769 eh_landing_pad lp = region->landing_pads;
770 gimple x;
771
772 if (lp == NULL)
773 lp = gen_eh_landing_pad (region);
774
775 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
776 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
777
778 x = gimple_build_label (lp->post_landing_pad);
779 gimple_seq_add_stmt (seq, x);
780 }
781
782 /* Emit a RESX statement into SEQ for REGION. */
783
784 static void
785 emit_resx (gimple_seq *seq, eh_region region)
786 {
787 gimple x = gimple_build_resx (region->index);
788 gimple_seq_add_stmt (seq, x);
789 if (region->outer)
790 record_stmt_eh_region (region->outer, x);
791 }
792
793 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
794
795 static void
796 emit_eh_dispatch (gimple_seq *seq, eh_region region)
797 {
798 gimple x = gimple_build_eh_dispatch (region->index);
799 gimple_seq_add_stmt (seq, x);
800 }
801
802 /* Note that the current EH region may contain a throw, or a
803 call to a function which itself may contain a throw. */
804
805 static void
806 note_eh_region_may_contain_throw (eh_region region)
807 {
808 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
809 {
810 if (region->type == ERT_MUST_NOT_THROW)
811 break;
812 region = region->outer;
813 if (region == NULL)
814 break;
815 }
816 }
817
818 /* Check if REGION has been marked as containing a throw. If REGION is
819 NULL, this predicate is false. */
820
821 static inline bool
822 eh_region_may_contain_throw (eh_region r)
823 {
824 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
825 }
826
827 /* We want to transform
828 try { body; } catch { stuff; }
829 to
830 normal_seqence:
831 body;
832 over:
833 eh_seqence:
834 landing_pad:
835 stuff;
836 goto over;
837
838 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
839 should be placed before the second operand, or NULL. OVER is
840 an existing label that should be put at the exit, or NULL. */
841
842 static gimple_seq
843 frob_into_branch_around (gimple tp, eh_region region, tree over)
844 {
845 gimple x;
846 gimple_seq cleanup, result;
847 location_t loc = gimple_location (tp);
848
849 cleanup = gimple_try_cleanup (tp);
850 result = gimple_try_eval (tp);
851
852 if (region)
853 emit_post_landing_pad (&eh_seq, region);
854
855 if (gimple_seq_may_fallthru (cleanup))
856 {
857 if (!over)
858 over = create_artificial_label (loc);
859 x = gimple_build_goto (over);
860 gimple_seq_add_stmt (&cleanup, x);
861 }
862 gimple_seq_add_seq (&eh_seq, cleanup);
863
864 if (over)
865 {
866 x = gimple_build_label (over);
867 gimple_seq_add_stmt (&result, x);
868 }
869 return result;
870 }
871
872 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
873 Make sure to record all new labels found. */
874
875 static gimple_seq
876 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
877 {
878 gimple region = NULL;
879 gimple_seq new_seq;
880
881 new_seq = copy_gimple_seq_and_replace_locals (seq);
882
883 if (outer_state->tf)
884 region = outer_state->tf->try_finally_expr;
885 collect_finally_tree_1 (new_seq, region);
886
887 return new_seq;
888 }
889
890 /* A subroutine of lower_try_finally. Create a fallthru label for
891 the given try_finally state. The only tricky bit here is that
892 we have to make sure to record the label in our outer context. */
893
894 static tree
895 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
896 {
897 tree label = tf->fallthru_label;
898 treemple temp;
899
900 if (!label)
901 {
902 label = create_artificial_label (gimple_location (tf->try_finally_expr));
903 tf->fallthru_label = label;
904 if (tf->outer->tf)
905 {
906 temp.t = label;
907 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
908 }
909 }
910 return label;
911 }
912
913 /* A subroutine of lower_try_finally. If FINALLY consits of a
914 GIMPLE_EH_ELSE node, return it. */
915
916 static inline gimple
917 get_eh_else (gimple_seq finally)
918 {
919 gimple x = gimple_seq_first_stmt (finally);
920 if (gimple_code (x) == GIMPLE_EH_ELSE)
921 {
922 gcc_assert (gimple_seq_singleton_p (finally));
923 return x;
924 }
925 return NULL;
926 }
927
928 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
929 langhook returns non-null, then the language requires that the exception
930 path out of a try_finally be treated specially. To wit: the code within
931 the finally block may not itself throw an exception. We have two choices
932 here. First we can duplicate the finally block and wrap it in a
933 must_not_throw region. Second, we can generate code like
934
935 try {
936 finally_block;
937 } catch {
938 if (fintmp == eh_edge)
939 protect_cleanup_actions;
940 }
941
942 where "fintmp" is the temporary used in the switch statement generation
943 alternative considered below. For the nonce, we always choose the first
944 option.
945
946 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
947
948 static void
949 honor_protect_cleanup_actions (struct leh_state *outer_state,
950 struct leh_state *this_state,
951 struct leh_tf_state *tf)
952 {
953 tree protect_cleanup_actions;
954 gimple_stmt_iterator gsi;
955 bool finally_may_fallthru;
956 gimple_seq finally;
957 gimple x, eh_else;
958
959 /* First check for nothing to do. */
960 if (lang_hooks.eh_protect_cleanup_actions == NULL)
961 return;
962 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
963 if (protect_cleanup_actions == NULL)
964 return;
965
966 finally = gimple_try_cleanup (tf->top_p);
967 eh_else = get_eh_else (finally);
968
969 /* Duplicate the FINALLY block. Only need to do this for try-finally,
970 and not for cleanups. If we've got an EH_ELSE, extract it now. */
971 if (eh_else)
972 {
973 finally = gimple_eh_else_e_body (eh_else);
974 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
975 }
976 else if (this_state)
977 finally = lower_try_finally_dup_block (finally, outer_state);
978 finally_may_fallthru = gimple_seq_may_fallthru (finally);
979
980 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
981 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
982 to be in an enclosing scope, but needs to be implemented at this level
983 to avoid a nesting violation (see wrap_temporary_cleanups in
984 cp/decl.c). Since it's logically at an outer level, we should call
985 terminate before we get to it, so strip it away before adding the
986 MUST_NOT_THROW filter. */
987 gsi = gsi_start (finally);
988 x = gsi_stmt (gsi);
989 if (gimple_code (x) == GIMPLE_TRY
990 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
991 && gimple_try_catch_is_cleanup (x))
992 {
993 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
994 gsi_remove (&gsi, false);
995 }
996
997 /* Wrap the block with protect_cleanup_actions as the action. */
998 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
999 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1000 GIMPLE_TRY_CATCH);
1001 finally = lower_eh_must_not_throw (outer_state, x);
1002
1003 /* Drop all of this into the exception sequence. */
1004 emit_post_landing_pad (&eh_seq, tf->region);
1005 gimple_seq_add_seq (&eh_seq, finally);
1006 if (finally_may_fallthru)
1007 emit_resx (&eh_seq, tf->region);
1008
1009 /* Having now been handled, EH isn't to be considered with
1010 the rest of the outgoing edges. */
1011 tf->may_throw = false;
1012 }
1013
1014 /* A subroutine of lower_try_finally. We have determined that there is
1015 no fallthru edge out of the finally block. This means that there is
1016 no outgoing edge corresponding to any incoming edge. Restructure the
1017 try_finally node for this special case. */
1018
1019 static void
1020 lower_try_finally_nofallthru (struct leh_state *state,
1021 struct leh_tf_state *tf)
1022 {
1023 tree lab;
1024 gimple x, eh_else;
1025 gimple_seq finally;
1026 struct goto_queue_node *q, *qe;
1027
1028 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1029
1030 /* We expect that tf->top_p is a GIMPLE_TRY. */
1031 finally = gimple_try_cleanup (tf->top_p);
1032 tf->top_p_seq = gimple_try_eval (tf->top_p);
1033
1034 x = gimple_build_label (lab);
1035 gimple_seq_add_stmt (&tf->top_p_seq, x);
1036
1037 q = tf->goto_queue;
1038 qe = q + tf->goto_queue_active;
1039 for (; q < qe; ++q)
1040 if (q->index < 0)
1041 do_return_redirection (q, lab, NULL);
1042 else
1043 do_goto_redirection (q, lab, NULL, tf);
1044
1045 replace_goto_queue (tf);
1046
1047 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1048 eh_else = get_eh_else (finally);
1049 if (eh_else)
1050 {
1051 finally = gimple_eh_else_n_body (eh_else);
1052 lower_eh_constructs_1 (state, finally);
1053 gimple_seq_add_seq (&tf->top_p_seq, finally);
1054
1055 if (tf->may_throw)
1056 {
1057 finally = gimple_eh_else_e_body (eh_else);
1058 lower_eh_constructs_1 (state, finally);
1059
1060 emit_post_landing_pad (&eh_seq, tf->region);
1061 gimple_seq_add_seq (&eh_seq, finally);
1062 }
1063 }
1064 else
1065 {
1066 lower_eh_constructs_1 (state, finally);
1067 gimple_seq_add_seq (&tf->top_p_seq, finally);
1068
1069 if (tf->may_throw)
1070 {
1071 emit_post_landing_pad (&eh_seq, tf->region);
1072
1073 x = gimple_build_goto (lab);
1074 gimple_seq_add_stmt (&eh_seq, x);
1075 }
1076 }
1077 }
1078
1079 /* A subroutine of lower_try_finally. We have determined that there is
1080 exactly one destination of the finally block. Restructure the
1081 try_finally node for this special case. */
1082
1083 static void
1084 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1085 {
1086 struct goto_queue_node *q, *qe;
1087 gimple x;
1088 gimple_seq finally;
1089 tree finally_label;
1090 location_t loc = gimple_location (tf->try_finally_expr);
1091
1092 finally = gimple_try_cleanup (tf->top_p);
1093 tf->top_p_seq = gimple_try_eval (tf->top_p);
1094
1095 /* Since there's only one destination, and the destination edge can only
1096 either be EH or non-EH, that implies that all of our incoming edges
1097 are of the same type. Therefore we can lower EH_ELSE immediately. */
1098 x = get_eh_else (finally);
1099 if (x)
1100 {
1101 if (tf->may_throw)
1102 finally = gimple_eh_else_e_body (x);
1103 else
1104 finally = gimple_eh_else_n_body (x);
1105 }
1106
1107 lower_eh_constructs_1 (state, finally);
1108
1109 if (tf->may_throw)
1110 {
1111 /* Only reachable via the exception edge. Add the given label to
1112 the head of the FINALLY block. Append a RESX at the end. */
1113 emit_post_landing_pad (&eh_seq, tf->region);
1114 gimple_seq_add_seq (&eh_seq, finally);
1115 emit_resx (&eh_seq, tf->region);
1116 return;
1117 }
1118
1119 if (tf->may_fallthru)
1120 {
1121 /* Only reachable via the fallthru edge. Do nothing but let
1122 the two blocks run together; we'll fall out the bottom. */
1123 gimple_seq_add_seq (&tf->top_p_seq, finally);
1124 return;
1125 }
1126
1127 finally_label = create_artificial_label (loc);
1128 x = gimple_build_label (finally_label);
1129 gimple_seq_add_stmt (&tf->top_p_seq, x);
1130
1131 gimple_seq_add_seq (&tf->top_p_seq, finally);
1132
1133 q = tf->goto_queue;
1134 qe = q + tf->goto_queue_active;
1135
1136 if (tf->may_return)
1137 {
1138 /* Reachable by return expressions only. Redirect them. */
1139 for (; q < qe; ++q)
1140 do_return_redirection (q, finally_label, NULL);
1141 replace_goto_queue (tf);
1142 }
1143 else
1144 {
1145 /* Reachable by goto expressions only. Redirect them. */
1146 for (; q < qe; ++q)
1147 do_goto_redirection (q, finally_label, NULL, tf);
1148 replace_goto_queue (tf);
1149
1150 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1151 {
1152 /* Reachable by goto to fallthru label only. Redirect it
1153 to the new label (already created, sadly), and do not
1154 emit the final branch out, or the fallthru label. */
1155 tf->fallthru_label = NULL;
1156 return;
1157 }
1158 }
1159
1160 /* Place the original return/goto to the original destination
1161 immediately after the finally block. */
1162 x = tf->goto_queue[0].cont_stmt;
1163 gimple_seq_add_stmt (&tf->top_p_seq, x);
1164 maybe_record_in_goto_queue (state, x);
1165 }
1166
1167 /* A subroutine of lower_try_finally. There are multiple edges incoming
1168 and outgoing from the finally block. Implement this by duplicating the
1169 finally block for every destination. */
1170
1171 static void
1172 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1173 {
1174 gimple_seq finally;
1175 gimple_seq new_stmt;
1176 gimple_seq seq;
1177 gimple x, eh_else;
1178 tree tmp;
1179 location_t tf_loc = gimple_location (tf->try_finally_expr);
1180
1181 finally = gimple_try_cleanup (tf->top_p);
1182
1183 /* Notice EH_ELSE, and simplify some of the remaining code
1184 by considering FINALLY to be the normal return path only. */
1185 eh_else = get_eh_else (finally);
1186 if (eh_else)
1187 finally = gimple_eh_else_n_body (eh_else);
1188
1189 tf->top_p_seq = gimple_try_eval (tf->top_p);
1190 new_stmt = NULL;
1191
1192 if (tf->may_fallthru)
1193 {
1194 seq = lower_try_finally_dup_block (finally, state);
1195 lower_eh_constructs_1 (state, seq);
1196 gimple_seq_add_seq (&new_stmt, seq);
1197
1198 tmp = lower_try_finally_fallthru_label (tf);
1199 x = gimple_build_goto (tmp);
1200 gimple_seq_add_stmt (&new_stmt, x);
1201 }
1202
1203 if (tf->may_throw)
1204 {
1205 /* We don't need to copy the EH path of EH_ELSE,
1206 since it is only emitted once. */
1207 if (eh_else)
1208 seq = gimple_eh_else_e_body (eh_else);
1209 else
1210 seq = lower_try_finally_dup_block (finally, state);
1211 lower_eh_constructs_1 (state, seq);
1212
1213 emit_post_landing_pad (&eh_seq, tf->region);
1214 gimple_seq_add_seq (&eh_seq, seq);
1215 emit_resx (&eh_seq, tf->region);
1216 }
1217
1218 if (tf->goto_queue)
1219 {
1220 struct goto_queue_node *q, *qe;
1221 int return_index, index;
1222 struct labels_s
1223 {
1224 struct goto_queue_node *q;
1225 tree label;
1226 } *labels;
1227
1228 return_index = VEC_length (tree, tf->dest_array);
1229 labels = XCNEWVEC (struct labels_s, return_index + 1);
1230
1231 q = tf->goto_queue;
1232 qe = q + tf->goto_queue_active;
1233 for (; q < qe; q++)
1234 {
1235 index = q->index < 0 ? return_index : q->index;
1236
1237 if (!labels[index].q)
1238 labels[index].q = q;
1239 }
1240
1241 for (index = 0; index < return_index + 1; index++)
1242 {
1243 tree lab;
1244
1245 q = labels[index].q;
1246 if (! q)
1247 continue;
1248
1249 lab = labels[index].label
1250 = create_artificial_label (tf_loc);
1251
1252 if (index == return_index)
1253 do_return_redirection (q, lab, NULL);
1254 else
1255 do_goto_redirection (q, lab, NULL, tf);
1256
1257 x = gimple_build_label (lab);
1258 gimple_seq_add_stmt (&new_stmt, x);
1259
1260 seq = lower_try_finally_dup_block (finally, state);
1261 lower_eh_constructs_1 (state, seq);
1262 gimple_seq_add_seq (&new_stmt, seq);
1263
1264 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1265 maybe_record_in_goto_queue (state, q->cont_stmt);
1266 }
1267
1268 for (q = tf->goto_queue; q < qe; q++)
1269 {
1270 tree lab;
1271
1272 index = q->index < 0 ? return_index : q->index;
1273
1274 if (labels[index].q == q)
1275 continue;
1276
1277 lab = labels[index].label;
1278
1279 if (index == return_index)
1280 do_return_redirection (q, lab, NULL);
1281 else
1282 do_goto_redirection (q, lab, NULL, tf);
1283 }
1284
1285 replace_goto_queue (tf);
1286 free (labels);
1287 }
1288
1289 /* Need to link new stmts after running replace_goto_queue due
1290 to not wanting to process the same goto stmts twice. */
1291 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1292 }
1293
1294 /* A subroutine of lower_try_finally. There are multiple edges incoming
1295 and outgoing from the finally block. Implement this by instrumenting
1296 each incoming edge and creating a switch statement at the end of the
1297 finally block that branches to the appropriate destination. */
1298
1299 static void
1300 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1301 {
1302 struct goto_queue_node *q, *qe;
1303 tree finally_tmp, finally_label;
1304 int return_index, eh_index, fallthru_index;
1305 int nlabels, ndests, j, last_case_index;
1306 tree last_case;
1307 VEC (tree,heap) *case_label_vec;
1308 gimple_seq switch_body;
1309 gimple x, eh_else;
1310 tree tmp;
1311 gimple switch_stmt;
1312 gimple_seq finally;
1313 struct pointer_map_t *cont_map = NULL;
1314 /* The location of the TRY_FINALLY stmt. */
1315 location_t tf_loc = gimple_location (tf->try_finally_expr);
1316 /* The location of the finally block. */
1317 location_t finally_loc;
1318
1319 switch_body = gimple_seq_alloc ();
1320 finally = gimple_try_cleanup (tf->top_p);
1321 eh_else = get_eh_else (finally);
1322
1323 /* Mash the TRY block to the head of the chain. */
1324 tf->top_p_seq = gimple_try_eval (tf->top_p);
1325
1326 /* The location of the finally is either the last stmt in the finally
1327 block or the location of the TRY_FINALLY itself. */
1328 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1329 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1330 : tf_loc;
1331
1332 /* Lower the finally block itself. */
1333 lower_eh_constructs_1 (state, finally);
1334
1335 /* Prepare for switch statement generation. */
1336 nlabels = VEC_length (tree, tf->dest_array);
1337 return_index = nlabels;
1338 eh_index = return_index + tf->may_return;
1339 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1340 ndests = fallthru_index + tf->may_fallthru;
1341
1342 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1343 finally_label = create_artificial_label (finally_loc);
1344
1345 /* We use VEC_quick_push on case_label_vec throughout this function,
1346 since we know the size in advance and allocate precisely as muce
1347 space as needed. */
1348 case_label_vec = VEC_alloc (tree, heap, ndests);
1349 last_case = NULL;
1350 last_case_index = 0;
1351
1352 /* Begin inserting code for getting to the finally block. Things
1353 are done in this order to correspond to the sequence the code is
1354 layed out. */
1355
1356 if (tf->may_fallthru)
1357 {
1358 x = gimple_build_assign (finally_tmp,
1359 build_int_cst (integer_type_node,
1360 fallthru_index));
1361 gimple_seq_add_stmt (&tf->top_p_seq, x);
1362
1363 tmp = build_int_cst (integer_type_node, fallthru_index);
1364 last_case = build_case_label (tmp, NULL,
1365 create_artificial_label (tf_loc));
1366 VEC_quick_push (tree, case_label_vec, last_case);
1367 last_case_index++;
1368
1369 x = gimple_build_label (CASE_LABEL (last_case));
1370 gimple_seq_add_stmt (&switch_body, x);
1371
1372 tmp = lower_try_finally_fallthru_label (tf);
1373 x = gimple_build_goto (tmp);
1374 gimple_seq_add_stmt (&switch_body, x);
1375 }
1376
1377 /* For EH_ELSE, emit the exception path (plus resx) now, then
1378 subsequently we only need consider the normal path. */
1379 if (eh_else)
1380 {
1381 if (tf->may_throw)
1382 {
1383 finally = gimple_eh_else_e_body (eh_else);
1384 lower_eh_constructs_1 (state, finally);
1385
1386 emit_post_landing_pad (&eh_seq, tf->region);
1387 gimple_seq_add_seq (&eh_seq, finally);
1388 emit_resx (&eh_seq, tf->region);
1389 }
1390
1391 finally = gimple_eh_else_n_body (eh_else);
1392 }
1393 else if (tf->may_throw)
1394 {
1395 emit_post_landing_pad (&eh_seq, tf->region);
1396
1397 x = gimple_build_assign (finally_tmp,
1398 build_int_cst (integer_type_node, eh_index));
1399 gimple_seq_add_stmt (&eh_seq, x);
1400
1401 x = gimple_build_goto (finally_label);
1402 gimple_seq_add_stmt (&eh_seq, x);
1403
1404 tmp = build_int_cst (integer_type_node, eh_index);
1405 last_case = build_case_label (tmp, NULL,
1406 create_artificial_label (tf_loc));
1407 VEC_quick_push (tree, case_label_vec, last_case);
1408 last_case_index++;
1409
1410 x = gimple_build_label (CASE_LABEL (last_case));
1411 gimple_seq_add_stmt (&eh_seq, x);
1412 emit_resx (&eh_seq, tf->region);
1413 }
1414
1415 x = gimple_build_label (finally_label);
1416 gimple_seq_add_stmt (&tf->top_p_seq, x);
1417
1418 gimple_seq_add_seq (&tf->top_p_seq, finally);
1419
1420 /* Redirect each incoming goto edge. */
1421 q = tf->goto_queue;
1422 qe = q + tf->goto_queue_active;
1423 j = last_case_index + tf->may_return;
1424 /* Prepare the assignments to finally_tmp that are executed upon the
1425 entrance through a particular edge. */
1426 for (; q < qe; ++q)
1427 {
1428 gimple_seq mod;
1429 int switch_id;
1430 unsigned int case_index;
1431
1432 mod = gimple_seq_alloc ();
1433
1434 if (q->index < 0)
1435 {
1436 x = gimple_build_assign (finally_tmp,
1437 build_int_cst (integer_type_node,
1438 return_index));
1439 gimple_seq_add_stmt (&mod, x);
1440 do_return_redirection (q, finally_label, mod);
1441 switch_id = return_index;
1442 }
1443 else
1444 {
1445 x = gimple_build_assign (finally_tmp,
1446 build_int_cst (integer_type_node, q->index));
1447 gimple_seq_add_stmt (&mod, x);
1448 do_goto_redirection (q, finally_label, mod, tf);
1449 switch_id = q->index;
1450 }
1451
1452 case_index = j + q->index;
1453 if (VEC_length (tree, case_label_vec) <= case_index
1454 || !VEC_index (tree, case_label_vec, case_index))
1455 {
1456 tree case_lab;
1457 void **slot;
1458 tmp = build_int_cst (integer_type_node, switch_id);
1459 case_lab = build_case_label (tmp, NULL,
1460 create_artificial_label (tf_loc));
1461 /* We store the cont_stmt in the pointer map, so that we can recover
1462 it in the loop below. */
1463 if (!cont_map)
1464 cont_map = pointer_map_create ();
1465 slot = pointer_map_insert (cont_map, case_lab);
1466 *slot = q->cont_stmt;
1467 VEC_quick_push (tree, case_label_vec, case_lab);
1468 }
1469 }
1470 for (j = last_case_index; j < last_case_index + nlabels; j++)
1471 {
1472 gimple cont_stmt;
1473 void **slot;
1474
1475 last_case = VEC_index (tree, case_label_vec, j);
1476
1477 gcc_assert (last_case);
1478 gcc_assert (cont_map);
1479
1480 slot = pointer_map_contains (cont_map, last_case);
1481 gcc_assert (slot);
1482 cont_stmt = *(gimple *) slot;
1483
1484 x = gimple_build_label (CASE_LABEL (last_case));
1485 gimple_seq_add_stmt (&switch_body, x);
1486 gimple_seq_add_stmt (&switch_body, cont_stmt);
1487 maybe_record_in_goto_queue (state, cont_stmt);
1488 }
1489 if (cont_map)
1490 pointer_map_destroy (cont_map);
1491
1492 replace_goto_queue (tf);
1493
1494 /* Make sure that the last case is the default label, as one is required.
1495 Then sort the labels, which is also required in GIMPLE. */
1496 CASE_LOW (last_case) = NULL;
1497 sort_case_labels (case_label_vec);
1498
1499 /* Build the switch statement, setting last_case to be the default
1500 label. */
1501 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1502 case_label_vec);
1503 gimple_set_location (switch_stmt, finally_loc);
1504
1505 /* Need to link SWITCH_STMT after running replace_goto_queue
1506 due to not wanting to process the same goto stmts twice. */
1507 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1508 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1509 }
1510
1511 /* Decide whether or not we are going to duplicate the finally block.
1512 There are several considerations.
1513
1514 First, if this is Java, then the finally block contains code
1515 written by the user. It has line numbers associated with it,
1516 so duplicating the block means it's difficult to set a breakpoint.
1517 Since controlling code generation via -g is verboten, we simply
1518 never duplicate code without optimization.
1519
1520 Second, we'd like to prevent egregious code growth. One way to
1521 do this is to estimate the size of the finally block, multiply
1522 that by the number of copies we'd need to make, and compare against
1523 the estimate of the size of the switch machinery we'd have to add. */
1524
1525 static bool
1526 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1527 {
1528 int f_estimate, sw_estimate;
1529 gimple eh_else;
1530
1531 /* If there's an EH_ELSE involved, the exception path is separate
1532 and really doesn't come into play for this computation. */
1533 eh_else = get_eh_else (finally);
1534 if (eh_else)
1535 {
1536 ndests -= may_throw;
1537 finally = gimple_eh_else_n_body (eh_else);
1538 }
1539
1540 if (!optimize)
1541 return ndests == 1;
1542
1543 /* Finally estimate N times, plus N gotos. */
1544 f_estimate = count_insns_seq (finally, &eni_size_weights);
1545 f_estimate = (f_estimate + 1) * ndests;
1546
1547 /* Switch statement (cost 10), N variable assignments, N gotos. */
1548 sw_estimate = 10 + 2 * ndests;
1549
1550 /* Optimize for size clearly wants our best guess. */
1551 if (optimize_function_for_size_p (cfun))
1552 return f_estimate < sw_estimate;
1553
1554 /* ??? These numbers are completely made up so far. */
1555 if (optimize > 1)
1556 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1557 else
1558 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1559 }
1560
1561 /* REG is the enclosing region for a possible cleanup region, or the region
1562 itself. Returns TRUE if such a region would be unreachable.
1563
1564 Cleanup regions within a must-not-throw region aren't actually reachable
1565 even if there are throwing stmts within them, because the personality
1566 routine will call terminate before unwinding. */
1567
1568 static bool
1569 cleanup_is_dead_in (eh_region reg)
1570 {
1571 while (reg && reg->type == ERT_CLEANUP)
1572 reg = reg->outer;
1573 return (reg && reg->type == ERT_MUST_NOT_THROW);
1574 }
1575
1576 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1577 to a sequence of labels and blocks, plus the exception region trees
1578 that record all the magic. This is complicated by the need to
1579 arrange for the FINALLY block to be executed on all exits. */
1580
1581 static gimple_seq
1582 lower_try_finally (struct leh_state *state, gimple tp)
1583 {
1584 struct leh_tf_state this_tf;
1585 struct leh_state this_state;
1586 int ndests;
1587 gimple_seq old_eh_seq;
1588
1589 /* Process the try block. */
1590
1591 memset (&this_tf, 0, sizeof (this_tf));
1592 this_tf.try_finally_expr = tp;
1593 this_tf.top_p = tp;
1594 this_tf.outer = state;
1595 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1596 {
1597 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1598 this_state.cur_region = this_tf.region;
1599 }
1600 else
1601 {
1602 this_tf.region = NULL;
1603 this_state.cur_region = state->cur_region;
1604 }
1605
1606 this_state.ehp_region = state->ehp_region;
1607 this_state.tf = &this_tf;
1608
1609 old_eh_seq = eh_seq;
1610 eh_seq = NULL;
1611
1612 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1613
1614 /* Determine if the try block is escaped through the bottom. */
1615 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1616
1617 /* Determine if any exceptions are possible within the try block. */
1618 if (this_tf.region)
1619 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1620 if (this_tf.may_throw)
1621 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1622
1623 /* Determine how many edges (still) reach the finally block. Or rather,
1624 how many destinations are reached by the finally block. Use this to
1625 determine how we process the finally block itself. */
1626
1627 ndests = VEC_length (tree, this_tf.dest_array);
1628 ndests += this_tf.may_fallthru;
1629 ndests += this_tf.may_return;
1630 ndests += this_tf.may_throw;
1631
1632 /* If the FINALLY block is not reachable, dike it out. */
1633 if (ndests == 0)
1634 {
1635 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1636 gimple_try_set_cleanup (tp, NULL);
1637 }
1638 /* If the finally block doesn't fall through, then any destination
1639 we might try to impose there isn't reached either. There may be
1640 some minor amount of cleanup and redirection still needed. */
1641 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1642 lower_try_finally_nofallthru (state, &this_tf);
1643
1644 /* We can easily special-case redirection to a single destination. */
1645 else if (ndests == 1)
1646 lower_try_finally_onedest (state, &this_tf);
1647 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1648 gimple_try_cleanup (tp)))
1649 lower_try_finally_copy (state, &this_tf);
1650 else
1651 lower_try_finally_switch (state, &this_tf);
1652
1653 /* If someone requested we add a label at the end of the transformed
1654 block, do so. */
1655 if (this_tf.fallthru_label)
1656 {
1657 /* This must be reached only if ndests == 0. */
1658 gimple x = gimple_build_label (this_tf.fallthru_label);
1659 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1660 }
1661
1662 VEC_free (tree, heap, this_tf.dest_array);
1663 free (this_tf.goto_queue);
1664 if (this_tf.goto_queue_map)
1665 pointer_map_destroy (this_tf.goto_queue_map);
1666
1667 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1668 If there was no old eh_seq, then the append is trivially already done. */
1669 if (old_eh_seq)
1670 {
1671 if (eh_seq == NULL)
1672 eh_seq = old_eh_seq;
1673 else
1674 {
1675 gimple_seq new_eh_seq = eh_seq;
1676 eh_seq = old_eh_seq;
1677 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1678 }
1679 }
1680
1681 return this_tf.top_p_seq;
1682 }
1683
1684 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1685 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1686 exception region trees that records all the magic. */
1687
1688 static gimple_seq
1689 lower_catch (struct leh_state *state, gimple tp)
1690 {
1691 eh_region try_region = NULL;
1692 struct leh_state this_state = *state;
1693 gimple_stmt_iterator gsi;
1694 tree out_label;
1695 gimple_seq new_seq;
1696 gimple x;
1697 location_t try_catch_loc = gimple_location (tp);
1698
1699 if (flag_exceptions)
1700 {
1701 try_region = gen_eh_region_try (state->cur_region);
1702 this_state.cur_region = try_region;
1703 }
1704
1705 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1706
1707 if (!eh_region_may_contain_throw (try_region))
1708 return gimple_try_eval (tp);
1709
1710 new_seq = NULL;
1711 emit_eh_dispatch (&new_seq, try_region);
1712 emit_resx (&new_seq, try_region);
1713
1714 this_state.cur_region = state->cur_region;
1715 this_state.ehp_region = try_region;
1716
1717 out_label = NULL;
1718 for (gsi = gsi_start (gimple_try_cleanup (tp));
1719 !gsi_end_p (gsi);
1720 gsi_next (&gsi))
1721 {
1722 eh_catch c;
1723 gimple gcatch;
1724 gimple_seq handler;
1725
1726 gcatch = gsi_stmt (gsi);
1727 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1728
1729 handler = gimple_catch_handler (gcatch);
1730 lower_eh_constructs_1 (&this_state, handler);
1731
1732 c->label = create_artificial_label (UNKNOWN_LOCATION);
1733 x = gimple_build_label (c->label);
1734 gimple_seq_add_stmt (&new_seq, x);
1735
1736 gimple_seq_add_seq (&new_seq, handler);
1737
1738 if (gimple_seq_may_fallthru (new_seq))
1739 {
1740 if (!out_label)
1741 out_label = create_artificial_label (try_catch_loc);
1742
1743 x = gimple_build_goto (out_label);
1744 gimple_seq_add_stmt (&new_seq, x);
1745 }
1746 if (!c->type_list)
1747 break;
1748 }
1749
1750 gimple_try_set_cleanup (tp, new_seq);
1751
1752 return frob_into_branch_around (tp, try_region, out_label);
1753 }
1754
1755 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1756 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1757 region trees that record all the magic. */
1758
1759 static gimple_seq
1760 lower_eh_filter (struct leh_state *state, gimple tp)
1761 {
1762 struct leh_state this_state = *state;
1763 eh_region this_region = NULL;
1764 gimple inner, x;
1765 gimple_seq new_seq;
1766
1767 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1768
1769 if (flag_exceptions)
1770 {
1771 this_region = gen_eh_region_allowed (state->cur_region,
1772 gimple_eh_filter_types (inner));
1773 this_state.cur_region = this_region;
1774 }
1775
1776 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1777
1778 if (!eh_region_may_contain_throw (this_region))
1779 return gimple_try_eval (tp);
1780
1781 new_seq = NULL;
1782 this_state.cur_region = state->cur_region;
1783 this_state.ehp_region = this_region;
1784
1785 emit_eh_dispatch (&new_seq, this_region);
1786 emit_resx (&new_seq, this_region);
1787
1788 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1789 x = gimple_build_label (this_region->u.allowed.label);
1790 gimple_seq_add_stmt (&new_seq, x);
1791
1792 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1793 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1794
1795 gimple_try_set_cleanup (tp, new_seq);
1796
1797 return frob_into_branch_around (tp, this_region, NULL);
1798 }
1799
1800 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1801 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1802 plus the exception region trees that record all the magic. */
1803
1804 static gimple_seq
1805 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1806 {
1807 struct leh_state this_state = *state;
1808
1809 if (flag_exceptions)
1810 {
1811 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1812 eh_region this_region;
1813
1814 this_region = gen_eh_region_must_not_throw (state->cur_region);
1815 this_region->u.must_not_throw.failure_decl
1816 = gimple_eh_must_not_throw_fndecl (inner);
1817 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1818
1819 /* In order to get mangling applied to this decl, we must mark it
1820 used now. Otherwise, pass_ipa_free_lang_data won't think it
1821 needs to happen. */
1822 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1823
1824 this_state.cur_region = this_region;
1825 }
1826
1827 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1828
1829 return gimple_try_eval (tp);
1830 }
1831
1832 /* Implement a cleanup expression. This is similar to try-finally,
1833 except that we only execute the cleanup block for exception edges. */
1834
1835 static gimple_seq
1836 lower_cleanup (struct leh_state *state, gimple tp)
1837 {
1838 struct leh_state this_state = *state;
1839 eh_region this_region = NULL;
1840 struct leh_tf_state fake_tf;
1841 gimple_seq result;
1842 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1843
1844 if (flag_exceptions && !cleanup_dead)
1845 {
1846 this_region = gen_eh_region_cleanup (state->cur_region);
1847 this_state.cur_region = this_region;
1848 }
1849
1850 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1851
1852 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1853 return gimple_try_eval (tp);
1854
1855 /* Build enough of a try-finally state so that we can reuse
1856 honor_protect_cleanup_actions. */
1857 memset (&fake_tf, 0, sizeof (fake_tf));
1858 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1859 fake_tf.outer = state;
1860 fake_tf.region = this_region;
1861 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1862 fake_tf.may_throw = true;
1863
1864 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1865
1866 if (fake_tf.may_throw)
1867 {
1868 /* In this case honor_protect_cleanup_actions had nothing to do,
1869 and we should process this normally. */
1870 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1871 result = frob_into_branch_around (tp, this_region,
1872 fake_tf.fallthru_label);
1873 }
1874 else
1875 {
1876 /* In this case honor_protect_cleanup_actions did nearly all of
1877 the work. All we have left is to append the fallthru_label. */
1878
1879 result = gimple_try_eval (tp);
1880 if (fake_tf.fallthru_label)
1881 {
1882 gimple x = gimple_build_label (fake_tf.fallthru_label);
1883 gimple_seq_add_stmt (&result, x);
1884 }
1885 }
1886 return result;
1887 }
1888
1889 /* Main loop for lowering eh constructs. Also moves gsi to the next
1890 statement. */
1891
1892 static void
1893 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1894 {
1895 gimple_seq replace;
1896 gimple x;
1897 gimple stmt = gsi_stmt (*gsi);
1898
1899 switch (gimple_code (stmt))
1900 {
1901 case GIMPLE_CALL:
1902 {
1903 tree fndecl = gimple_call_fndecl (stmt);
1904 tree rhs, lhs;
1905
1906 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1907 switch (DECL_FUNCTION_CODE (fndecl))
1908 {
1909 case BUILT_IN_EH_POINTER:
1910 /* The front end may have generated a call to
1911 __builtin_eh_pointer (0) within a catch region. Replace
1912 this zero argument with the current catch region number. */
1913 if (state->ehp_region)
1914 {
1915 tree nr = build_int_cst (integer_type_node,
1916 state->ehp_region->index);
1917 gimple_call_set_arg (stmt, 0, nr);
1918 }
1919 else
1920 {
1921 /* The user has dome something silly. Remove it. */
1922 rhs = null_pointer_node;
1923 goto do_replace;
1924 }
1925 break;
1926
1927 case BUILT_IN_EH_FILTER:
1928 /* ??? This should never appear, but since it's a builtin it
1929 is accessible to abuse by users. Just remove it and
1930 replace the use with the arbitrary value zero. */
1931 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1932 do_replace:
1933 lhs = gimple_call_lhs (stmt);
1934 x = gimple_build_assign (lhs, rhs);
1935 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1936 /* FALLTHRU */
1937
1938 case BUILT_IN_EH_COPY_VALUES:
1939 /* Likewise this should not appear. Remove it. */
1940 gsi_remove (gsi, true);
1941 return;
1942
1943 default:
1944 break;
1945 }
1946 }
1947 /* FALLTHRU */
1948
1949 case GIMPLE_ASSIGN:
1950 /* If the stmt can throw use a new temporary for the assignment
1951 to a LHS. This makes sure the old value of the LHS is
1952 available on the EH edge. Only do so for statements that
1953 potentially fall thru (no noreturn calls e.g.), otherwise
1954 this new assignment might create fake fallthru regions. */
1955 if (stmt_could_throw_p (stmt)
1956 && gimple_has_lhs (stmt)
1957 && gimple_stmt_may_fallthru (stmt)
1958 && !tree_could_throw_p (gimple_get_lhs (stmt))
1959 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1960 {
1961 tree lhs = gimple_get_lhs (stmt);
1962 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1963 gimple s = gimple_build_assign (lhs, tmp);
1964 gimple_set_location (s, gimple_location (stmt));
1965 gimple_set_block (s, gimple_block (stmt));
1966 gimple_set_lhs (stmt, tmp);
1967 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1968 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1969 DECL_GIMPLE_REG_P (tmp) = 1;
1970 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1971 }
1972 /* Look for things that can throw exceptions, and record them. */
1973 if (state->cur_region && stmt_could_throw_p (stmt))
1974 {
1975 record_stmt_eh_region (state->cur_region, stmt);
1976 note_eh_region_may_contain_throw (state->cur_region);
1977 }
1978 break;
1979
1980 case GIMPLE_COND:
1981 case GIMPLE_GOTO:
1982 case GIMPLE_RETURN:
1983 maybe_record_in_goto_queue (state, stmt);
1984 break;
1985
1986 case GIMPLE_SWITCH:
1987 verify_norecord_switch_expr (state, stmt);
1988 break;
1989
1990 case GIMPLE_TRY:
1991 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1992 replace = lower_try_finally (state, stmt);
1993 else
1994 {
1995 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1996 if (!x)
1997 {
1998 replace = gimple_try_eval (stmt);
1999 lower_eh_constructs_1 (state, replace);
2000 }
2001 else
2002 switch (gimple_code (x))
2003 {
2004 case GIMPLE_CATCH:
2005 replace = lower_catch (state, stmt);
2006 break;
2007 case GIMPLE_EH_FILTER:
2008 replace = lower_eh_filter (state, stmt);
2009 break;
2010 case GIMPLE_EH_MUST_NOT_THROW:
2011 replace = lower_eh_must_not_throw (state, stmt);
2012 break;
2013 case GIMPLE_EH_ELSE:
2014 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2015 gcc_unreachable ();
2016 default:
2017 replace = lower_cleanup (state, stmt);
2018 break;
2019 }
2020 }
2021
2022 /* Remove the old stmt and insert the transformed sequence
2023 instead. */
2024 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2025 gsi_remove (gsi, true);
2026
2027 /* Return since we don't want gsi_next () */
2028 return;
2029
2030 case GIMPLE_EH_ELSE:
2031 /* We should be eliminating this in lower_try_finally et al. */
2032 gcc_unreachable ();
2033
2034 default:
2035 /* A type, a decl, or some kind of statement that we're not
2036 interested in. Don't walk them. */
2037 break;
2038 }
2039
2040 gsi_next (gsi);
2041 }
2042
2043 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2044
2045 static void
2046 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
2047 {
2048 gimple_stmt_iterator gsi;
2049 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
2050 lower_eh_constructs_2 (state, &gsi);
2051 }
2052
2053 static unsigned int
2054 lower_eh_constructs (void)
2055 {
2056 struct leh_state null_state;
2057 gimple_seq bodyp;
2058
2059 bodyp = gimple_body (current_function_decl);
2060 if (bodyp == NULL)
2061 return 0;
2062
2063 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2064 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2065 memset (&null_state, 0, sizeof (null_state));
2066
2067 collect_finally_tree_1 (bodyp, NULL);
2068 lower_eh_constructs_1 (&null_state, bodyp);
2069
2070 /* We assume there's a return statement, or something, at the end of
2071 the function, and thus ploping the EH sequence afterward won't
2072 change anything. */
2073 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2074 gimple_seq_add_seq (&bodyp, eh_seq);
2075
2076 /* We assume that since BODYP already existed, adding EH_SEQ to it
2077 didn't change its value, and we don't have to re-set the function. */
2078 gcc_assert (bodyp == gimple_body (current_function_decl));
2079
2080 htab_delete (finally_tree);
2081 BITMAP_FREE (eh_region_may_contain_throw_map);
2082 eh_seq = NULL;
2083
2084 /* If this function needs a language specific EH personality routine
2085 and the frontend didn't already set one do so now. */
2086 if (function_needs_eh_personality (cfun) == eh_personality_lang
2087 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2088 DECL_FUNCTION_PERSONALITY (current_function_decl)
2089 = lang_hooks.eh_personality ();
2090
2091 return 0;
2092 }
2093
2094 struct gimple_opt_pass pass_lower_eh =
2095 {
2096 {
2097 GIMPLE_PASS,
2098 "eh", /* name */
2099 NULL, /* gate */
2100 lower_eh_constructs, /* execute */
2101 NULL, /* sub */
2102 NULL, /* next */
2103 0, /* static_pass_number */
2104 TV_TREE_EH, /* tv_id */
2105 PROP_gimple_lcf, /* properties_required */
2106 PROP_gimple_leh, /* properties_provided */
2107 0, /* properties_destroyed */
2108 0, /* todo_flags_start */
2109 0 /* todo_flags_finish */
2110 }
2111 };
2112 \f
2113 /* Create the multiple edges from an EH_DISPATCH statement to all of
2114 the possible handlers for its EH region. Return true if there's
2115 no fallthru edge; false if there is. */
2116
2117 bool
2118 make_eh_dispatch_edges (gimple stmt)
2119 {
2120 eh_region r;
2121 eh_catch c;
2122 basic_block src, dst;
2123
2124 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2125 src = gimple_bb (stmt);
2126
2127 switch (r->type)
2128 {
2129 case ERT_TRY:
2130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2131 {
2132 dst = label_to_block (c->label);
2133 make_edge (src, dst, 0);
2134
2135 /* A catch-all handler doesn't have a fallthru. */
2136 if (c->type_list == NULL)
2137 return false;
2138 }
2139 break;
2140
2141 case ERT_ALLOWED_EXCEPTIONS:
2142 dst = label_to_block (r->u.allowed.label);
2143 make_edge (src, dst, 0);
2144 break;
2145
2146 default:
2147 gcc_unreachable ();
2148 }
2149
2150 return true;
2151 }
2152
2153 /* Create the single EH edge from STMT to its nearest landing pad,
2154 if there is such a landing pad within the current function. */
2155
2156 void
2157 make_eh_edges (gimple stmt)
2158 {
2159 basic_block src, dst;
2160 eh_landing_pad lp;
2161 int lp_nr;
2162
2163 lp_nr = lookup_stmt_eh_lp (stmt);
2164 if (lp_nr <= 0)
2165 return;
2166
2167 lp = get_eh_landing_pad_from_number (lp_nr);
2168 gcc_assert (lp != NULL);
2169
2170 src = gimple_bb (stmt);
2171 dst = label_to_block (lp->post_landing_pad);
2172 make_edge (src, dst, EDGE_EH);
2173 }
2174
2175 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2176 do not actually perform the final edge redirection.
2177
2178 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2179 we intend to change the destination EH region as well; this means
2180 EH_LANDING_PAD_NR must already be set on the destination block label.
2181 If false, we're being called from generic cfg manipulation code and we
2182 should preserve our place within the region tree. */
2183
2184 static void
2185 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2186 {
2187 eh_landing_pad old_lp, new_lp;
2188 basic_block old_bb;
2189 gimple throw_stmt;
2190 int old_lp_nr, new_lp_nr;
2191 tree old_label, new_label;
2192 edge_iterator ei;
2193 edge e;
2194
2195 old_bb = edge_in->dest;
2196 old_label = gimple_block_label (old_bb);
2197 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2198 gcc_assert (old_lp_nr > 0);
2199 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2200
2201 throw_stmt = last_stmt (edge_in->src);
2202 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2203
2204 new_label = gimple_block_label (new_bb);
2205
2206 /* Look for an existing region that might be using NEW_BB already. */
2207 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2208 if (new_lp_nr)
2209 {
2210 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2211 gcc_assert (new_lp);
2212
2213 /* Unless CHANGE_REGION is true, the new and old landing pad
2214 had better be associated with the same EH region. */
2215 gcc_assert (change_region || new_lp->region == old_lp->region);
2216 }
2217 else
2218 {
2219 new_lp = NULL;
2220 gcc_assert (!change_region);
2221 }
2222
2223 /* Notice when we redirect the last EH edge away from OLD_BB. */
2224 FOR_EACH_EDGE (e, ei, old_bb->preds)
2225 if (e != edge_in && (e->flags & EDGE_EH))
2226 break;
2227
2228 if (new_lp)
2229 {
2230 /* NEW_LP already exists. If there are still edges into OLD_LP,
2231 there's nothing to do with the EH tree. If there are no more
2232 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2233 If CHANGE_REGION is true, then our caller is expecting to remove
2234 the landing pad. */
2235 if (e == NULL && !change_region)
2236 remove_eh_landing_pad (old_lp);
2237 }
2238 else
2239 {
2240 /* No correct landing pad exists. If there are no more edges
2241 into OLD_LP, then we can simply re-use the existing landing pad.
2242 Otherwise, we have to create a new landing pad. */
2243 if (e == NULL)
2244 {
2245 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2246 new_lp = old_lp;
2247 }
2248 else
2249 new_lp = gen_eh_landing_pad (old_lp->region);
2250 new_lp->post_landing_pad = new_label;
2251 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2252 }
2253
2254 /* Maybe move the throwing statement to the new region. */
2255 if (old_lp != new_lp)
2256 {
2257 remove_stmt_from_eh_lp (throw_stmt);
2258 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2259 }
2260 }
2261
2262 /* Redirect EH edge E to NEW_BB. */
2263
2264 edge
2265 redirect_eh_edge (edge edge_in, basic_block new_bb)
2266 {
2267 redirect_eh_edge_1 (edge_in, new_bb, false);
2268 return ssa_redirect_edge (edge_in, new_bb);
2269 }
2270
2271 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2272 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2273 The actual edge update will happen in the caller. */
2274
2275 void
2276 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2277 {
2278 tree new_lab = gimple_block_label (new_bb);
2279 bool any_changed = false;
2280 basic_block old_bb;
2281 eh_region r;
2282 eh_catch c;
2283
2284 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2285 switch (r->type)
2286 {
2287 case ERT_TRY:
2288 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2289 {
2290 old_bb = label_to_block (c->label);
2291 if (old_bb == e->dest)
2292 {
2293 c->label = new_lab;
2294 any_changed = true;
2295 }
2296 }
2297 break;
2298
2299 case ERT_ALLOWED_EXCEPTIONS:
2300 old_bb = label_to_block (r->u.allowed.label);
2301 gcc_assert (old_bb == e->dest);
2302 r->u.allowed.label = new_lab;
2303 any_changed = true;
2304 break;
2305
2306 default:
2307 gcc_unreachable ();
2308 }
2309
2310 gcc_assert (any_changed);
2311 }
2312 \f
2313 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2314
2315 bool
2316 operation_could_trap_helper_p (enum tree_code op,
2317 bool fp_operation,
2318 bool honor_trapv,
2319 bool honor_nans,
2320 bool honor_snans,
2321 tree divisor,
2322 bool *handled)
2323 {
2324 *handled = true;
2325 switch (op)
2326 {
2327 case TRUNC_DIV_EXPR:
2328 case CEIL_DIV_EXPR:
2329 case FLOOR_DIV_EXPR:
2330 case ROUND_DIV_EXPR:
2331 case EXACT_DIV_EXPR:
2332 case CEIL_MOD_EXPR:
2333 case FLOOR_MOD_EXPR:
2334 case ROUND_MOD_EXPR:
2335 case TRUNC_MOD_EXPR:
2336 case RDIV_EXPR:
2337 if (honor_snans || honor_trapv)
2338 return true;
2339 if (fp_operation)
2340 return flag_trapping_math;
2341 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2342 return true;
2343 return false;
2344
2345 case LT_EXPR:
2346 case LE_EXPR:
2347 case GT_EXPR:
2348 case GE_EXPR:
2349 case LTGT_EXPR:
2350 /* Some floating point comparisons may trap. */
2351 return honor_nans;
2352
2353 case EQ_EXPR:
2354 case NE_EXPR:
2355 case UNORDERED_EXPR:
2356 case ORDERED_EXPR:
2357 case UNLT_EXPR:
2358 case UNLE_EXPR:
2359 case UNGT_EXPR:
2360 case UNGE_EXPR:
2361 case UNEQ_EXPR:
2362 return honor_snans;
2363
2364 case CONVERT_EXPR:
2365 case FIX_TRUNC_EXPR:
2366 /* Conversion of floating point might trap. */
2367 return honor_nans;
2368
2369 case NEGATE_EXPR:
2370 case ABS_EXPR:
2371 case CONJ_EXPR:
2372 /* These operations don't trap with floating point. */
2373 if (honor_trapv)
2374 return true;
2375 return false;
2376
2377 case PLUS_EXPR:
2378 case MINUS_EXPR:
2379 case MULT_EXPR:
2380 /* Any floating arithmetic may trap. */
2381 if (fp_operation && flag_trapping_math)
2382 return true;
2383 if (honor_trapv)
2384 return true;
2385 return false;
2386
2387 case COMPLEX_EXPR:
2388 case CONSTRUCTOR:
2389 /* Constructing an object cannot trap. */
2390 return false;
2391
2392 default:
2393 /* Any floating arithmetic may trap. */
2394 if (fp_operation && flag_trapping_math)
2395 return true;
2396
2397 *handled = false;
2398 return false;
2399 }
2400 }
2401
2402 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2403 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2404 type operands that may trap. If OP is a division operator, DIVISOR contains
2405 the value of the divisor. */
2406
2407 bool
2408 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2409 tree divisor)
2410 {
2411 bool honor_nans = (fp_operation && flag_trapping_math
2412 && !flag_finite_math_only);
2413 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2414 bool handled;
2415
2416 if (TREE_CODE_CLASS (op) != tcc_comparison
2417 && TREE_CODE_CLASS (op) != tcc_unary
2418 && TREE_CODE_CLASS (op) != tcc_binary)
2419 return false;
2420
2421 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2422 honor_nans, honor_snans, divisor,
2423 &handled);
2424 }
2425
2426 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2427 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2428 This routine expects only GIMPLE lhs or rhs input. */
2429
2430 bool
2431 tree_could_trap_p (tree expr)
2432 {
2433 enum tree_code code;
2434 bool fp_operation = false;
2435 bool honor_trapv = false;
2436 tree t, base, div = NULL_TREE;
2437
2438 if (!expr)
2439 return false;
2440
2441 code = TREE_CODE (expr);
2442 t = TREE_TYPE (expr);
2443
2444 if (t)
2445 {
2446 if (COMPARISON_CLASS_P (expr))
2447 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2448 else
2449 fp_operation = FLOAT_TYPE_P (t);
2450 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2451 }
2452
2453 if (TREE_CODE_CLASS (code) == tcc_binary)
2454 div = TREE_OPERAND (expr, 1);
2455 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2456 return true;
2457
2458 restart:
2459 switch (code)
2460 {
2461 case TARGET_MEM_REF:
2462 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2463 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2464 return false;
2465 return !TREE_THIS_NOTRAP (expr);
2466
2467 case COMPONENT_REF:
2468 case REALPART_EXPR:
2469 case IMAGPART_EXPR:
2470 case BIT_FIELD_REF:
2471 case VIEW_CONVERT_EXPR:
2472 case WITH_SIZE_EXPR:
2473 expr = TREE_OPERAND (expr, 0);
2474 code = TREE_CODE (expr);
2475 goto restart;
2476
2477 case ARRAY_RANGE_REF:
2478 base = TREE_OPERAND (expr, 0);
2479 if (tree_could_trap_p (base))
2480 return true;
2481 if (TREE_THIS_NOTRAP (expr))
2482 return false;
2483 return !range_in_array_bounds_p (expr);
2484
2485 case ARRAY_REF:
2486 base = TREE_OPERAND (expr, 0);
2487 if (tree_could_trap_p (base))
2488 return true;
2489 if (TREE_THIS_NOTRAP (expr))
2490 return false;
2491 return !in_array_bounds_p (expr);
2492
2493 case MEM_REF:
2494 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2495 return false;
2496 /* Fallthru. */
2497 case INDIRECT_REF:
2498 return !TREE_THIS_NOTRAP (expr);
2499
2500 case ASM_EXPR:
2501 return TREE_THIS_VOLATILE (expr);
2502
2503 case CALL_EXPR:
2504 t = get_callee_fndecl (expr);
2505 /* Assume that calls to weak functions may trap. */
2506 if (!t || !DECL_P (t))
2507 return true;
2508 if (DECL_WEAK (t))
2509 return tree_could_trap_p (t);
2510 return false;
2511
2512 case FUNCTION_DECL:
2513 /* Assume that accesses to weak functions may trap, unless we know
2514 they are certainly defined in current TU or in some other
2515 LTO partition. */
2516 if (DECL_WEAK (expr))
2517 {
2518 struct cgraph_node *node;
2519 if (!DECL_EXTERNAL (expr))
2520 return false;
2521 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2522 if (node && node->in_other_partition)
2523 return false;
2524 return true;
2525 }
2526 return false;
2527
2528 case VAR_DECL:
2529 /* Assume that accesses to weak vars may trap, unless we know
2530 they are certainly defined in current TU or in some other
2531 LTO partition. */
2532 if (DECL_WEAK (expr))
2533 {
2534 struct varpool_node *node;
2535 if (!DECL_EXTERNAL (expr))
2536 return false;
2537 node = varpool_variable_node (varpool_get_node (expr), NULL);
2538 if (node && node->in_other_partition)
2539 return false;
2540 return true;
2541 }
2542 return false;
2543
2544 default:
2545 return false;
2546 }
2547 }
2548
2549
2550 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2551 an assignment or a conditional) may throw. */
2552
2553 static bool
2554 stmt_could_throw_1_p (gimple stmt)
2555 {
2556 enum tree_code code = gimple_expr_code (stmt);
2557 bool honor_nans = false;
2558 bool honor_snans = false;
2559 bool fp_operation = false;
2560 bool honor_trapv = false;
2561 tree t;
2562 size_t i;
2563 bool handled, ret;
2564
2565 if (TREE_CODE_CLASS (code) == tcc_comparison
2566 || TREE_CODE_CLASS (code) == tcc_unary
2567 || TREE_CODE_CLASS (code) == tcc_binary)
2568 {
2569 if (is_gimple_assign (stmt)
2570 && TREE_CODE_CLASS (code) == tcc_comparison)
2571 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2572 else if (gimple_code (stmt) == GIMPLE_COND)
2573 t = TREE_TYPE (gimple_cond_lhs (stmt));
2574 else
2575 t = gimple_expr_type (stmt);
2576 fp_operation = FLOAT_TYPE_P (t);
2577 if (fp_operation)
2578 {
2579 honor_nans = flag_trapping_math && !flag_finite_math_only;
2580 honor_snans = flag_signaling_nans != 0;
2581 }
2582 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2583 honor_trapv = true;
2584 }
2585
2586 /* Check if the main expression may trap. */
2587 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2588 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2589 honor_nans, honor_snans, t,
2590 &handled);
2591 if (handled)
2592 return ret;
2593
2594 /* If the expression does not trap, see if any of the individual operands may
2595 trap. */
2596 for (i = 0; i < gimple_num_ops (stmt); i++)
2597 if (tree_could_trap_p (gimple_op (stmt, i)))
2598 return true;
2599
2600 return false;
2601 }
2602
2603
2604 /* Return true if statement STMT could throw an exception. */
2605
2606 bool
2607 stmt_could_throw_p (gimple stmt)
2608 {
2609 if (!flag_exceptions)
2610 return false;
2611
2612 /* The only statements that can throw an exception are assignments,
2613 conditionals, calls, resx, and asms. */
2614 switch (gimple_code (stmt))
2615 {
2616 case GIMPLE_RESX:
2617 return true;
2618
2619 case GIMPLE_CALL:
2620 return !gimple_call_nothrow_p (stmt);
2621
2622 case GIMPLE_ASSIGN:
2623 case GIMPLE_COND:
2624 if (!cfun->can_throw_non_call_exceptions)
2625 return false;
2626 return stmt_could_throw_1_p (stmt);
2627
2628 case GIMPLE_ASM:
2629 if (!cfun->can_throw_non_call_exceptions)
2630 return false;
2631 return gimple_asm_volatile_p (stmt);
2632
2633 default:
2634 return false;
2635 }
2636 }
2637
2638
2639 /* Return true if expression T could throw an exception. */
2640
2641 bool
2642 tree_could_throw_p (tree t)
2643 {
2644 if (!flag_exceptions)
2645 return false;
2646 if (TREE_CODE (t) == MODIFY_EXPR)
2647 {
2648 if (cfun->can_throw_non_call_exceptions
2649 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2650 return true;
2651 t = TREE_OPERAND (t, 1);
2652 }
2653
2654 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2655 t = TREE_OPERAND (t, 0);
2656 if (TREE_CODE (t) == CALL_EXPR)
2657 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2658 if (cfun->can_throw_non_call_exceptions)
2659 return tree_could_trap_p (t);
2660 return false;
2661 }
2662
2663 /* Return true if STMT can throw an exception that is not caught within
2664 the current function (CFUN). */
2665
2666 bool
2667 stmt_can_throw_external (gimple stmt)
2668 {
2669 int lp_nr;
2670
2671 if (!stmt_could_throw_p (stmt))
2672 return false;
2673
2674 lp_nr = lookup_stmt_eh_lp (stmt);
2675 return lp_nr == 0;
2676 }
2677
2678 /* Return true if STMT can throw an exception that is caught within
2679 the current function (CFUN). */
2680
2681 bool
2682 stmt_can_throw_internal (gimple stmt)
2683 {
2684 int lp_nr;
2685
2686 if (!stmt_could_throw_p (stmt))
2687 return false;
2688
2689 lp_nr = lookup_stmt_eh_lp (stmt);
2690 return lp_nr > 0;
2691 }
2692
2693 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2694 remove any entry it might have from the EH table. Return true if
2695 any change was made. */
2696
2697 bool
2698 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2699 {
2700 if (stmt_could_throw_p (stmt))
2701 return false;
2702 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2703 }
2704
2705 /* Likewise, but always use the current function. */
2706
2707 bool
2708 maybe_clean_eh_stmt (gimple stmt)
2709 {
2710 return maybe_clean_eh_stmt_fn (cfun, stmt);
2711 }
2712
2713 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2714 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2715 in the table if it should be in there. Return TRUE if a replacement was
2716 done that my require an EH edge purge. */
2717
2718 bool
2719 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2720 {
2721 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2722
2723 if (lp_nr != 0)
2724 {
2725 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2726
2727 if (new_stmt == old_stmt && new_stmt_could_throw)
2728 return false;
2729
2730 remove_stmt_from_eh_lp (old_stmt);
2731 if (new_stmt_could_throw)
2732 {
2733 add_stmt_to_eh_lp (new_stmt, lp_nr);
2734 return false;
2735 }
2736 else
2737 return true;
2738 }
2739
2740 return false;
2741 }
2742
2743 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2744 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2745 operand is the return value of duplicate_eh_regions. */
2746
2747 bool
2748 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2749 struct function *old_fun, gimple old_stmt,
2750 struct pointer_map_t *map, int default_lp_nr)
2751 {
2752 int old_lp_nr, new_lp_nr;
2753 void **slot;
2754
2755 if (!stmt_could_throw_p (new_stmt))
2756 return false;
2757
2758 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2759 if (old_lp_nr == 0)
2760 {
2761 if (default_lp_nr == 0)
2762 return false;
2763 new_lp_nr = default_lp_nr;
2764 }
2765 else if (old_lp_nr > 0)
2766 {
2767 eh_landing_pad old_lp, new_lp;
2768
2769 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2770 slot = pointer_map_contains (map, old_lp);
2771 new_lp = (eh_landing_pad) *slot;
2772 new_lp_nr = new_lp->index;
2773 }
2774 else
2775 {
2776 eh_region old_r, new_r;
2777
2778 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2779 slot = pointer_map_contains (map, old_r);
2780 new_r = (eh_region) *slot;
2781 new_lp_nr = -new_r->index;
2782 }
2783
2784 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2785 return true;
2786 }
2787
2788 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2789 and thus no remapping is required. */
2790
2791 bool
2792 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2793 {
2794 int lp_nr;
2795
2796 if (!stmt_could_throw_p (new_stmt))
2797 return false;
2798
2799 lp_nr = lookup_stmt_eh_lp (old_stmt);
2800 if (lp_nr == 0)
2801 return false;
2802
2803 add_stmt_to_eh_lp (new_stmt, lp_nr);
2804 return true;
2805 }
2806 \f
2807 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2808 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2809 this only handles handlers consisting of a single call, as that's the
2810 important case for C++: a destructor call for a particular object showing
2811 up in multiple handlers. */
2812
2813 static bool
2814 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2815 {
2816 gimple_stmt_iterator gsi;
2817 gimple ones, twos;
2818 unsigned int ai;
2819
2820 gsi = gsi_start (oneh);
2821 if (!gsi_one_before_end_p (gsi))
2822 return false;
2823 ones = gsi_stmt (gsi);
2824
2825 gsi = gsi_start (twoh);
2826 if (!gsi_one_before_end_p (gsi))
2827 return false;
2828 twos = gsi_stmt (gsi);
2829
2830 if (!is_gimple_call (ones)
2831 || !is_gimple_call (twos)
2832 || gimple_call_lhs (ones)
2833 || gimple_call_lhs (twos)
2834 || gimple_call_chain (ones)
2835 || gimple_call_chain (twos)
2836 || !gimple_call_same_target_p (ones, twos)
2837 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2838 return false;
2839
2840 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2841 if (!operand_equal_p (gimple_call_arg (ones, ai),
2842 gimple_call_arg (twos, ai), 0))
2843 return false;
2844
2845 return true;
2846 }
2847
2848 /* Optimize
2849 try { A() } finally { try { ~B() } catch { ~A() } }
2850 try { ... } finally { ~A() }
2851 into
2852 try { A() } catch { ~B() }
2853 try { ~B() ... } finally { ~A() }
2854
2855 This occurs frequently in C++, where A is a local variable and B is a
2856 temporary used in the initializer for A. */
2857
2858 static void
2859 optimize_double_finally (gimple one, gimple two)
2860 {
2861 gimple oneh;
2862 gimple_stmt_iterator gsi;
2863
2864 gsi = gsi_start (gimple_try_cleanup (one));
2865 if (!gsi_one_before_end_p (gsi))
2866 return;
2867
2868 oneh = gsi_stmt (gsi);
2869 if (gimple_code (oneh) != GIMPLE_TRY
2870 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2871 return;
2872
2873 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2874 {
2875 gimple_seq seq = gimple_try_eval (oneh);
2876
2877 gimple_try_set_cleanup (one, seq);
2878 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2879 seq = copy_gimple_seq_and_replace_locals (seq);
2880 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2881 gimple_try_set_eval (two, seq);
2882 }
2883 }
2884
2885 /* Perform EH refactoring optimizations that are simpler to do when code
2886 flow has been lowered but EH structures haven't. */
2887
2888 static void
2889 refactor_eh_r (gimple_seq seq)
2890 {
2891 gimple_stmt_iterator gsi;
2892 gimple one, two;
2893
2894 one = NULL;
2895 two = NULL;
2896 gsi = gsi_start (seq);
2897 while (1)
2898 {
2899 one = two;
2900 if (gsi_end_p (gsi))
2901 two = NULL;
2902 else
2903 two = gsi_stmt (gsi);
2904 if (one
2905 && two
2906 && gimple_code (one) == GIMPLE_TRY
2907 && gimple_code (two) == GIMPLE_TRY
2908 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2909 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2910 optimize_double_finally (one, two);
2911 if (one)
2912 switch (gimple_code (one))
2913 {
2914 case GIMPLE_TRY:
2915 refactor_eh_r (gimple_try_eval (one));
2916 refactor_eh_r (gimple_try_cleanup (one));
2917 break;
2918 case GIMPLE_CATCH:
2919 refactor_eh_r (gimple_catch_handler (one));
2920 break;
2921 case GIMPLE_EH_FILTER:
2922 refactor_eh_r (gimple_eh_filter_failure (one));
2923 break;
2924 case GIMPLE_EH_ELSE:
2925 refactor_eh_r (gimple_eh_else_n_body (one));
2926 refactor_eh_r (gimple_eh_else_e_body (one));
2927 break;
2928 default:
2929 break;
2930 }
2931 if (two)
2932 gsi_next (&gsi);
2933 else
2934 break;
2935 }
2936 }
2937
2938 static unsigned
2939 refactor_eh (void)
2940 {
2941 refactor_eh_r (gimple_body (current_function_decl));
2942 return 0;
2943 }
2944
2945 static bool
2946 gate_refactor_eh (void)
2947 {
2948 return flag_exceptions != 0;
2949 }
2950
2951 struct gimple_opt_pass pass_refactor_eh =
2952 {
2953 {
2954 GIMPLE_PASS,
2955 "ehopt", /* name */
2956 gate_refactor_eh, /* gate */
2957 refactor_eh, /* execute */
2958 NULL, /* sub */
2959 NULL, /* next */
2960 0, /* static_pass_number */
2961 TV_TREE_EH, /* tv_id */
2962 PROP_gimple_lcf, /* properties_required */
2963 0, /* properties_provided */
2964 0, /* properties_destroyed */
2965 0, /* todo_flags_start */
2966 0 /* todo_flags_finish */
2967 }
2968 };
2969 \f
2970 /* At the end of gimple optimization, we can lower RESX. */
2971
2972 static bool
2973 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2974 {
2975 int lp_nr;
2976 eh_region src_r, dst_r;
2977 gimple_stmt_iterator gsi;
2978 gimple x;
2979 tree fn, src_nr;
2980 bool ret = false;
2981
2982 lp_nr = lookup_stmt_eh_lp (stmt);
2983 if (lp_nr != 0)
2984 dst_r = get_eh_region_from_lp_number (lp_nr);
2985 else
2986 dst_r = NULL;
2987
2988 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2989 gsi = gsi_last_bb (bb);
2990
2991 if (src_r == NULL)
2992 {
2993 /* We can wind up with no source region when pass_cleanup_eh shows
2994 that there are no entries into an eh region and deletes it, but
2995 then the block that contains the resx isn't removed. This can
2996 happen without optimization when the switch statement created by
2997 lower_try_finally_switch isn't simplified to remove the eh case.
2998
2999 Resolve this by expanding the resx node to an abort. */
3000
3001 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3002 x = gimple_build_call (fn, 0);
3003 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3004
3005 while (EDGE_COUNT (bb->succs) > 0)
3006 remove_edge (EDGE_SUCC (bb, 0));
3007 }
3008 else if (dst_r)
3009 {
3010 /* When we have a destination region, we resolve this by copying
3011 the excptr and filter values into place, and changing the edge
3012 to immediately after the landing pad. */
3013 edge e;
3014
3015 if (lp_nr < 0)
3016 {
3017 basic_block new_bb;
3018 void **slot;
3019 tree lab;
3020
3021 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3022 the failure decl into a new block, if needed. */
3023 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3024
3025 slot = pointer_map_contains (mnt_map, dst_r);
3026 if (slot == NULL)
3027 {
3028 gimple_stmt_iterator gsi2;
3029
3030 new_bb = create_empty_bb (bb);
3031 lab = gimple_block_label (new_bb);
3032 gsi2 = gsi_start_bb (new_bb);
3033
3034 fn = dst_r->u.must_not_throw.failure_decl;
3035 x = gimple_build_call (fn, 0);
3036 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3037 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3038
3039 slot = pointer_map_insert (mnt_map, dst_r);
3040 *slot = lab;
3041 }
3042 else
3043 {
3044 lab = (tree) *slot;
3045 new_bb = label_to_block (lab);
3046 }
3047
3048 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3049 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3050 e->count = bb->count;
3051 e->probability = REG_BR_PROB_BASE;
3052 }
3053 else
3054 {
3055 edge_iterator ei;
3056 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3057
3058 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3059 src_nr = build_int_cst (integer_type_node, src_r->index);
3060 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3061 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3062
3063 /* Update the flags for the outgoing edge. */
3064 e = single_succ_edge (bb);
3065 gcc_assert (e->flags & EDGE_EH);
3066 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3067
3068 /* If there are no more EH users of the landing pad, delete it. */
3069 FOR_EACH_EDGE (e, ei, e->dest->preds)
3070 if (e->flags & EDGE_EH)
3071 break;
3072 if (e == NULL)
3073 {
3074 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3075 remove_eh_landing_pad (lp);
3076 }
3077 }
3078
3079 ret = true;
3080 }
3081 else
3082 {
3083 tree var;
3084
3085 /* When we don't have a destination region, this exception escapes
3086 up the call chain. We resolve this by generating a call to the
3087 _Unwind_Resume library function. */
3088
3089 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3090 with no arguments for C++ and Java. Check for that. */
3091 if (src_r->use_cxa_end_cleanup)
3092 {
3093 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3094 x = gimple_build_call (fn, 0);
3095 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3096 }
3097 else
3098 {
3099 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3100 src_nr = build_int_cst (integer_type_node, src_r->index);
3101 x = gimple_build_call (fn, 1, src_nr);
3102 var = create_tmp_var (ptr_type_node, NULL);
3103 var = make_ssa_name (var, x);
3104 gimple_call_set_lhs (x, var);
3105 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3106
3107 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3108 x = gimple_build_call (fn, 1, var);
3109 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3110 }
3111
3112 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3113 }
3114
3115 gsi_remove (&gsi, true);
3116
3117 return ret;
3118 }
3119
3120 static unsigned
3121 execute_lower_resx (void)
3122 {
3123 basic_block bb;
3124 struct pointer_map_t *mnt_map;
3125 bool dominance_invalidated = false;
3126 bool any_rewritten = false;
3127
3128 mnt_map = pointer_map_create ();
3129
3130 FOR_EACH_BB (bb)
3131 {
3132 gimple last = last_stmt (bb);
3133 if (last && is_gimple_resx (last))
3134 {
3135 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3136 any_rewritten = true;
3137 }
3138 }
3139
3140 pointer_map_destroy (mnt_map);
3141
3142 if (dominance_invalidated)
3143 {
3144 free_dominance_info (CDI_DOMINATORS);
3145 free_dominance_info (CDI_POST_DOMINATORS);
3146 }
3147
3148 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3149 }
3150
3151 static bool
3152 gate_lower_resx (void)
3153 {
3154 return flag_exceptions != 0;
3155 }
3156
3157 struct gimple_opt_pass pass_lower_resx =
3158 {
3159 {
3160 GIMPLE_PASS,
3161 "resx", /* name */
3162 gate_lower_resx, /* gate */
3163 execute_lower_resx, /* execute */
3164 NULL, /* sub */
3165 NULL, /* next */
3166 0, /* static_pass_number */
3167 TV_TREE_EH, /* tv_id */
3168 PROP_gimple_lcf, /* properties_required */
3169 0, /* properties_provided */
3170 0, /* properties_destroyed */
3171 0, /* todo_flags_start */
3172 TODO_verify_flow /* todo_flags_finish */
3173 }
3174 };
3175
3176
3177 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3178 we have found some duplicate labels and removed some edges. */
3179
3180 static bool
3181 lower_eh_dispatch (basic_block src, gimple stmt)
3182 {
3183 gimple_stmt_iterator gsi;
3184 int region_nr;
3185 eh_region r;
3186 tree filter, fn;
3187 gimple x;
3188 bool redirected = false;
3189
3190 region_nr = gimple_eh_dispatch_region (stmt);
3191 r = get_eh_region_from_number (region_nr);
3192
3193 gsi = gsi_last_bb (src);
3194
3195 switch (r->type)
3196 {
3197 case ERT_TRY:
3198 {
3199 VEC (tree, heap) *labels = NULL;
3200 tree default_label = NULL;
3201 eh_catch c;
3202 edge_iterator ei;
3203 edge e;
3204 struct pointer_set_t *seen_values = pointer_set_create ();
3205
3206 /* Collect the labels for a switch. Zero the post_landing_pad
3207 field becase we'll no longer have anything keeping these labels
3208 in existance and the optimizer will be free to merge these
3209 blocks at will. */
3210 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3211 {
3212 tree tp_node, flt_node, lab = c->label;
3213 bool have_label = false;
3214
3215 c->label = NULL;
3216 tp_node = c->type_list;
3217 flt_node = c->filter_list;
3218
3219 if (tp_node == NULL)
3220 {
3221 default_label = lab;
3222 break;
3223 }
3224 do
3225 {
3226 /* Filter out duplicate labels that arise when this handler
3227 is shadowed by an earlier one. When no labels are
3228 attached to the handler anymore, we remove
3229 the corresponding edge and then we delete unreachable
3230 blocks at the end of this pass. */
3231 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3232 {
3233 tree t = build_case_label (TREE_VALUE (flt_node),
3234 NULL, lab);
3235 VEC_safe_push (tree, heap, labels, t);
3236 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3237 have_label = true;
3238 }
3239
3240 tp_node = TREE_CHAIN (tp_node);
3241 flt_node = TREE_CHAIN (flt_node);
3242 }
3243 while (tp_node);
3244 if (! have_label)
3245 {
3246 remove_edge (find_edge (src, label_to_block (lab)));
3247 redirected = true;
3248 }
3249 }
3250
3251 /* Clean up the edge flags. */
3252 FOR_EACH_EDGE (e, ei, src->succs)
3253 {
3254 if (e->flags & EDGE_FALLTHRU)
3255 {
3256 /* If there was no catch-all, use the fallthru edge. */
3257 if (default_label == NULL)
3258 default_label = gimple_block_label (e->dest);
3259 e->flags &= ~EDGE_FALLTHRU;
3260 }
3261 }
3262 gcc_assert (default_label != NULL);
3263
3264 /* Don't generate a switch if there's only a default case.
3265 This is common in the form of try { A; } catch (...) { B; }. */
3266 if (labels == NULL)
3267 {
3268 e = single_succ_edge (src);
3269 e->flags |= EDGE_FALLTHRU;
3270 }
3271 else
3272 {
3273 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3274 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3275 region_nr));
3276 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3277 filter = make_ssa_name (filter, x);
3278 gimple_call_set_lhs (x, filter);
3279 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3280
3281 /* Turn the default label into a default case. */
3282 default_label = build_case_label (NULL, NULL, default_label);
3283 sort_case_labels (labels);
3284
3285 x = gimple_build_switch_vec (filter, default_label, labels);
3286 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3287
3288 VEC_free (tree, heap, labels);
3289 }
3290 pointer_set_destroy (seen_values);
3291 }
3292 break;
3293
3294 case ERT_ALLOWED_EXCEPTIONS:
3295 {
3296 edge b_e = BRANCH_EDGE (src);
3297 edge f_e = FALLTHRU_EDGE (src);
3298
3299 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3300 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3301 region_nr));
3302 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3303 filter = make_ssa_name (filter, x);
3304 gimple_call_set_lhs (x, filter);
3305 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3306
3307 r->u.allowed.label = NULL;
3308 x = gimple_build_cond (EQ_EXPR, filter,
3309 build_int_cst (TREE_TYPE (filter),
3310 r->u.allowed.filter),
3311 NULL_TREE, NULL_TREE);
3312 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3313
3314 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3315 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3316 }
3317 break;
3318
3319 default:
3320 gcc_unreachable ();
3321 }
3322
3323 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3324 gsi_remove (&gsi, true);
3325 return redirected;
3326 }
3327
3328 static unsigned
3329 execute_lower_eh_dispatch (void)
3330 {
3331 basic_block bb;
3332 bool any_rewritten = false;
3333 bool redirected = false;
3334
3335 assign_filter_values ();
3336
3337 FOR_EACH_BB (bb)
3338 {
3339 gimple last = last_stmt (bb);
3340 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3341 {
3342 redirected |= lower_eh_dispatch (bb, last);
3343 any_rewritten = true;
3344 }
3345 }
3346
3347 if (redirected)
3348 delete_unreachable_blocks ();
3349 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3350 }
3351
3352 static bool
3353 gate_lower_eh_dispatch (void)
3354 {
3355 return cfun->eh->region_tree != NULL;
3356 }
3357
3358 struct gimple_opt_pass pass_lower_eh_dispatch =
3359 {
3360 {
3361 GIMPLE_PASS,
3362 "ehdisp", /* name */
3363 gate_lower_eh_dispatch, /* gate */
3364 execute_lower_eh_dispatch, /* execute */
3365 NULL, /* sub */
3366 NULL, /* next */
3367 0, /* static_pass_number */
3368 TV_TREE_EH, /* tv_id */
3369 PROP_gimple_lcf, /* properties_required */
3370 0, /* properties_provided */
3371 0, /* properties_destroyed */
3372 0, /* todo_flags_start */
3373 TODO_verify_flow /* todo_flags_finish */
3374 }
3375 };
3376 \f
3377 /* Walk statements, see what regions are really referenced and remove
3378 those that are unused. */
3379
3380 static void
3381 remove_unreachable_handlers (void)
3382 {
3383 sbitmap r_reachable, lp_reachable;
3384 eh_region region;
3385 eh_landing_pad lp;
3386 basic_block bb;
3387 int lp_nr, r_nr;
3388
3389 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3390 lp_reachable
3391 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3392 sbitmap_zero (r_reachable);
3393 sbitmap_zero (lp_reachable);
3394
3395 FOR_EACH_BB (bb)
3396 {
3397 gimple_stmt_iterator gsi;
3398
3399 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3400 {
3401 gimple stmt = gsi_stmt (gsi);
3402 lp_nr = lookup_stmt_eh_lp (stmt);
3403
3404 /* Negative LP numbers are MUST_NOT_THROW regions which
3405 are not considered BB enders. */
3406 if (lp_nr < 0)
3407 SET_BIT (r_reachable, -lp_nr);
3408
3409 /* Positive LP numbers are real landing pads, are are BB enders. */
3410 else if (lp_nr > 0)
3411 {
3412 gcc_assert (gsi_one_before_end_p (gsi));
3413 region = get_eh_region_from_lp_number (lp_nr);
3414 SET_BIT (r_reachable, region->index);
3415 SET_BIT (lp_reachable, lp_nr);
3416 }
3417
3418 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3419 switch (gimple_code (stmt))
3420 {
3421 case GIMPLE_RESX:
3422 SET_BIT (r_reachable, gimple_resx_region (stmt));
3423 break;
3424 case GIMPLE_EH_DISPATCH:
3425 SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3426 break;
3427 default:
3428 break;
3429 }
3430 }
3431 }
3432
3433 if (dump_file)
3434 {
3435 fprintf (dump_file, "Before removal of unreachable regions:\n");
3436 dump_eh_tree (dump_file, cfun);
3437 fprintf (dump_file, "Reachable regions: ");
3438 dump_sbitmap_file (dump_file, r_reachable);
3439 fprintf (dump_file, "Reachable landing pads: ");
3440 dump_sbitmap_file (dump_file, lp_reachable);
3441 }
3442
3443 for (r_nr = 1;
3444 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3445 if (region && !TEST_BIT (r_reachable, r_nr))
3446 {
3447 if (dump_file)
3448 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3449 remove_eh_handler (region);
3450 }
3451
3452 for (lp_nr = 1;
3453 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3454 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3455 {
3456 if (dump_file)
3457 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3458 remove_eh_landing_pad (lp);
3459 }
3460
3461 if (dump_file)
3462 {
3463 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3464 dump_eh_tree (dump_file, cfun);
3465 fprintf (dump_file, "\n\n");
3466 }
3467
3468 sbitmap_free (r_reachable);
3469 sbitmap_free (lp_reachable);
3470
3471 #ifdef ENABLE_CHECKING
3472 verify_eh_tree (cfun);
3473 #endif
3474 }
3475
3476 /* Remove unreachable handlers if any landing pads have been removed after
3477 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3478
3479 void
3480 maybe_remove_unreachable_handlers (void)
3481 {
3482 eh_landing_pad lp;
3483 int i;
3484
3485 if (cfun->eh == NULL)
3486 return;
3487
3488 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3489 if (lp && lp->post_landing_pad)
3490 {
3491 if (label_to_block (lp->post_landing_pad) == NULL)
3492 {
3493 remove_unreachable_handlers ();
3494 return;
3495 }
3496 }
3497 }
3498
3499 /* Remove regions that do not have landing pads. This assumes
3500 that remove_unreachable_handlers has already been run, and
3501 that we've just manipulated the landing pads since then. */
3502
3503 static void
3504 remove_unreachable_handlers_no_lp (void)
3505 {
3506 eh_region r;
3507 int i;
3508
3509 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3510 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3511 {
3512 if (dump_file)
3513 fprintf (dump_file, "Removing unreachable region %d\n", i);
3514 remove_eh_handler (r);
3515 }
3516 }
3517
3518 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3519 optimisticaly split all sorts of edges, including EH edges. The
3520 optimization passes in between may not have needed them; if not,
3521 we should undo the split.
3522
3523 Recognize this case by having one EH edge incoming to the BB and
3524 one normal edge outgoing; BB should be empty apart from the
3525 post_landing_pad label.
3526
3527 Note that this is slightly different from the empty handler case
3528 handled by cleanup_empty_eh, in that the actual handler may yet
3529 have actual code but the landing pad has been separated from the
3530 handler. As such, cleanup_empty_eh relies on this transformation
3531 having been done first. */
3532
3533 static bool
3534 unsplit_eh (eh_landing_pad lp)
3535 {
3536 basic_block bb = label_to_block (lp->post_landing_pad);
3537 gimple_stmt_iterator gsi;
3538 edge e_in, e_out;
3539
3540 /* Quickly check the edge counts on BB for singularity. */
3541 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3542 return false;
3543 e_in = EDGE_PRED (bb, 0);
3544 e_out = EDGE_SUCC (bb, 0);
3545
3546 /* Input edge must be EH and output edge must be normal. */
3547 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3548 return false;
3549
3550 /* The block must be empty except for the labels and debug insns. */
3551 gsi = gsi_after_labels (bb);
3552 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3553 gsi_next_nondebug (&gsi);
3554 if (!gsi_end_p (gsi))
3555 return false;
3556
3557 /* The destination block must not already have a landing pad
3558 for a different region. */
3559 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3560 {
3561 gimple stmt = gsi_stmt (gsi);
3562 tree lab;
3563 int lp_nr;
3564
3565 if (gimple_code (stmt) != GIMPLE_LABEL)
3566 break;
3567 lab = gimple_label_label (stmt);
3568 lp_nr = EH_LANDING_PAD_NR (lab);
3569 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3570 return false;
3571 }
3572
3573 /* The new destination block must not already be a destination of
3574 the source block, lest we merge fallthru and eh edges and get
3575 all sorts of confused. */
3576 if (find_edge (e_in->src, e_out->dest))
3577 return false;
3578
3579 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3580 thought this should have been cleaned up by a phicprop pass, but
3581 that doesn't appear to handle virtuals. Propagate by hand. */
3582 if (!gimple_seq_empty_p (phi_nodes (bb)))
3583 {
3584 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3585 {
3586 gimple use_stmt, phi = gsi_stmt (gsi);
3587 tree lhs = gimple_phi_result (phi);
3588 tree rhs = gimple_phi_arg_def (phi, 0);
3589 use_operand_p use_p;
3590 imm_use_iterator iter;
3591
3592 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3593 {
3594 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3595 SET_USE (use_p, rhs);
3596 }
3597
3598 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3599 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3600
3601 remove_phi_node (&gsi, true);
3602 }
3603 }
3604
3605 if (dump_file && (dump_flags & TDF_DETAILS))
3606 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3607 lp->index, e_out->dest->index);
3608
3609 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3610 a successor edge, humor it. But do the real CFG change with the
3611 predecessor of E_OUT in order to preserve the ordering of arguments
3612 to the PHI nodes in E_OUT->DEST. */
3613 redirect_eh_edge_1 (e_in, e_out->dest, false);
3614 redirect_edge_pred (e_out, e_in->src);
3615 e_out->flags = e_in->flags;
3616 e_out->probability = e_in->probability;
3617 e_out->count = e_in->count;
3618 remove_edge (e_in);
3619
3620 return true;
3621 }
3622
3623 /* Examine each landing pad block and see if it matches unsplit_eh. */
3624
3625 static bool
3626 unsplit_all_eh (void)
3627 {
3628 bool changed = false;
3629 eh_landing_pad lp;
3630 int i;
3631
3632 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3633 if (lp)
3634 changed |= unsplit_eh (lp);
3635
3636 return changed;
3637 }
3638
3639 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3640 to OLD_BB to NEW_BB; return true on success, false on failure.
3641
3642 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3643 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3644 Virtual PHIs may be deleted and marked for renaming. */
3645
3646 static bool
3647 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3648 edge old_bb_out, bool change_region)
3649 {
3650 gimple_stmt_iterator ngsi, ogsi;
3651 edge_iterator ei;
3652 edge e;
3653 bitmap rename_virts;
3654 bitmap ophi_handled;
3655
3656 /* The destination block must not be a regular successor for any
3657 of the preds of the landing pad. Thus, avoid turning
3658 <..>
3659 | \ EH
3660 | <..>
3661 | /
3662 <..>
3663 into
3664 <..>
3665 | | EH
3666 <..>
3667 which CFG verification would choke on. See PR45172 and PR51089. */
3668 FOR_EACH_EDGE (e, ei, old_bb->preds)
3669 if (find_edge (e->src, new_bb))
3670 return false;
3671
3672 FOR_EACH_EDGE (e, ei, old_bb->preds)
3673 redirect_edge_var_map_clear (e);
3674
3675 ophi_handled = BITMAP_ALLOC (NULL);
3676 rename_virts = BITMAP_ALLOC (NULL);
3677
3678 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3679 for the edges we're going to move. */
3680 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3681 {
3682 gimple ophi, nphi = gsi_stmt (ngsi);
3683 tree nresult, nop;
3684
3685 nresult = gimple_phi_result (nphi);
3686 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3687
3688 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3689 the source ssa_name. */
3690 ophi = NULL;
3691 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3692 {
3693 ophi = gsi_stmt (ogsi);
3694 if (gimple_phi_result (ophi) == nop)
3695 break;
3696 ophi = NULL;
3697 }
3698
3699 /* If we did find the corresponding PHI, copy those inputs. */
3700 if (ophi)
3701 {
3702 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3703 if (!has_single_use (nop))
3704 {
3705 imm_use_iterator imm_iter;
3706 use_operand_p use_p;
3707
3708 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3709 {
3710 if (!gimple_debug_bind_p (USE_STMT (use_p))
3711 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3712 || gimple_bb (USE_STMT (use_p)) != new_bb))
3713 goto fail;
3714 }
3715 }
3716 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3717 FOR_EACH_EDGE (e, ei, old_bb->preds)
3718 {
3719 location_t oloc;
3720 tree oop;
3721
3722 if ((e->flags & EDGE_EH) == 0)
3723 continue;
3724 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3725 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3726 redirect_edge_var_map_add (e, nresult, oop, oloc);
3727 }
3728 }
3729 /* If we didn't find the PHI, but it's a VOP, remember to rename
3730 it later, assuming all other tests succeed. */
3731 else if (!is_gimple_reg (nresult))
3732 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3733 /* If we didn't find the PHI, and it's a real variable, we know
3734 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3735 variable is unchanged from input to the block and we can simply
3736 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3737 else
3738 {
3739 location_t nloc
3740 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3741 FOR_EACH_EDGE (e, ei, old_bb->preds)
3742 redirect_edge_var_map_add (e, nresult, nop, nloc);
3743 }
3744 }
3745
3746 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3747 we don't know what values from the other edges into NEW_BB to use. */
3748 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3749 {
3750 gimple ophi = gsi_stmt (ogsi);
3751 tree oresult = gimple_phi_result (ophi);
3752 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3753 goto fail;
3754 }
3755
3756 /* At this point we know that the merge will succeed. Remove the PHI
3757 nodes for the virtuals that we want to rename. */
3758 if (!bitmap_empty_p (rename_virts))
3759 {
3760 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3761 {
3762 gimple nphi = gsi_stmt (ngsi);
3763 tree nresult = gimple_phi_result (nphi);
3764 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3765 {
3766 mark_virtual_phi_result_for_renaming (nphi);
3767 remove_phi_node (&ngsi, true);
3768 }
3769 else
3770 gsi_next (&ngsi);
3771 }
3772 }
3773
3774 /* Finally, move the edges and update the PHIs. */
3775 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3776 if (e->flags & EDGE_EH)
3777 {
3778 redirect_eh_edge_1 (e, new_bb, change_region);
3779 redirect_edge_succ (e, new_bb);
3780 flush_pending_stmts (e);
3781 }
3782 else
3783 ei_next (&ei);
3784
3785 BITMAP_FREE (ophi_handled);
3786 BITMAP_FREE (rename_virts);
3787 return true;
3788
3789 fail:
3790 FOR_EACH_EDGE (e, ei, old_bb->preds)
3791 redirect_edge_var_map_clear (e);
3792 BITMAP_FREE (ophi_handled);
3793 BITMAP_FREE (rename_virts);
3794 return false;
3795 }
3796
3797 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3798 old region to NEW_REGION at BB. */
3799
3800 static void
3801 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3802 eh_landing_pad lp, eh_region new_region)
3803 {
3804 gimple_stmt_iterator gsi;
3805 eh_landing_pad *pp;
3806
3807 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3808 continue;
3809 *pp = lp->next_lp;
3810
3811 lp->region = new_region;
3812 lp->next_lp = new_region->landing_pads;
3813 new_region->landing_pads = lp;
3814
3815 /* Delete the RESX that was matched within the empty handler block. */
3816 gsi = gsi_last_bb (bb);
3817 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3818 gsi_remove (&gsi, true);
3819
3820 /* Clean up E_OUT for the fallthru. */
3821 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3822 e_out->probability = REG_BR_PROB_BASE;
3823 }
3824
3825 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3826 unsplitting than unsplit_eh was prepared to handle, e.g. when
3827 multiple incoming edges and phis are involved. */
3828
3829 static bool
3830 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3831 {
3832 gimple_stmt_iterator gsi;
3833 tree lab;
3834
3835 /* We really ought not have totally lost everything following
3836 a landing pad label. Given that BB is empty, there had better
3837 be a successor. */
3838 gcc_assert (e_out != NULL);
3839
3840 /* The destination block must not already have a landing pad
3841 for a different region. */
3842 lab = NULL;
3843 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3844 {
3845 gimple stmt = gsi_stmt (gsi);
3846 int lp_nr;
3847
3848 if (gimple_code (stmt) != GIMPLE_LABEL)
3849 break;
3850 lab = gimple_label_label (stmt);
3851 lp_nr = EH_LANDING_PAD_NR (lab);
3852 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3853 return false;
3854 }
3855
3856 /* Attempt to move the PHIs into the successor block. */
3857 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3858 {
3859 if (dump_file && (dump_flags & TDF_DETAILS))
3860 fprintf (dump_file,
3861 "Unsplit EH landing pad %d to block %i "
3862 "(via cleanup_empty_eh).\n",
3863 lp->index, e_out->dest->index);
3864 return true;
3865 }
3866
3867 return false;
3868 }
3869
3870 /* Return true if edge E_FIRST is part of an empty infinite loop
3871 or leads to such a loop through a series of single successor
3872 empty bbs. */
3873
3874 static bool
3875 infinite_empty_loop_p (edge e_first)
3876 {
3877 bool inf_loop = false;
3878 edge e;
3879
3880 if (e_first->dest == e_first->src)
3881 return true;
3882
3883 e_first->src->aux = (void *) 1;
3884 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
3885 {
3886 gimple_stmt_iterator gsi;
3887 if (e->dest->aux)
3888 {
3889 inf_loop = true;
3890 break;
3891 }
3892 e->dest->aux = (void *) 1;
3893 gsi = gsi_after_labels (e->dest);
3894 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3895 gsi_next_nondebug (&gsi);
3896 if (!gsi_end_p (gsi))
3897 break;
3898 }
3899 e_first->src->aux = NULL;
3900 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
3901 e->dest->aux = NULL;
3902
3903 return inf_loop;
3904 }
3905
3906 /* Examine the block associated with LP to determine if it's an empty
3907 handler for its EH region. If so, attempt to redirect EH edges to
3908 an outer region. Return true the CFG was updated in any way. This
3909 is similar to jump forwarding, just across EH edges. */
3910
3911 static bool
3912 cleanup_empty_eh (eh_landing_pad lp)
3913 {
3914 basic_block bb = label_to_block (lp->post_landing_pad);
3915 gimple_stmt_iterator gsi;
3916 gimple resx;
3917 eh_region new_region;
3918 edge_iterator ei;
3919 edge e, e_out;
3920 bool has_non_eh_pred;
3921 int new_lp_nr;
3922
3923 /* There can be zero or one edges out of BB. This is the quickest test. */
3924 switch (EDGE_COUNT (bb->succs))
3925 {
3926 case 0:
3927 e_out = NULL;
3928 break;
3929 case 1:
3930 e_out = EDGE_SUCC (bb, 0);
3931 break;
3932 default:
3933 return false;
3934 }
3935 gsi = gsi_after_labels (bb);
3936
3937 /* Make sure to skip debug statements. */
3938 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3939 gsi_next_nondebug (&gsi);
3940
3941 /* If the block is totally empty, look for more unsplitting cases. */
3942 if (gsi_end_p (gsi))
3943 {
3944 /* For the degenerate case of an infinite loop bail out. */
3945 if (infinite_empty_loop_p (e_out))
3946 return false;
3947
3948 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3949 }
3950
3951 /* The block should consist only of a single RESX statement, modulo a
3952 preceding call to __builtin_stack_restore if there is no outgoing
3953 edge, since the call can be eliminated in this case. */
3954 resx = gsi_stmt (gsi);
3955 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
3956 {
3957 gsi_next (&gsi);
3958 resx = gsi_stmt (gsi);
3959 }
3960 if (!is_gimple_resx (resx))
3961 return false;
3962 gcc_assert (gsi_one_before_end_p (gsi));
3963
3964 /* Determine if there are non-EH edges, or resx edges into the handler. */
3965 has_non_eh_pred = false;
3966 FOR_EACH_EDGE (e, ei, bb->preds)
3967 if (!(e->flags & EDGE_EH))
3968 has_non_eh_pred = true;
3969
3970 /* Find the handler that's outer of the empty handler by looking at
3971 where the RESX instruction was vectored. */
3972 new_lp_nr = lookup_stmt_eh_lp (resx);
3973 new_region = get_eh_region_from_lp_number (new_lp_nr);
3974
3975 /* If there's no destination region within the current function,
3976 redirection is trivial via removing the throwing statements from
3977 the EH region, removing the EH edges, and allowing the block
3978 to go unreachable. */
3979 if (new_region == NULL)
3980 {
3981 gcc_assert (e_out == NULL);
3982 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3983 if (e->flags & EDGE_EH)
3984 {
3985 gimple stmt = last_stmt (e->src);
3986 remove_stmt_from_eh_lp (stmt);
3987 remove_edge (e);
3988 }
3989 else
3990 ei_next (&ei);
3991 goto succeed;
3992 }
3993
3994 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3995 to handle the abort and allow the blocks to go unreachable. */
3996 if (new_region->type == ERT_MUST_NOT_THROW)
3997 {
3998 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3999 if (e->flags & EDGE_EH)
4000 {
4001 gimple stmt = last_stmt (e->src);
4002 remove_stmt_from_eh_lp (stmt);
4003 add_stmt_to_eh_lp (stmt, new_lp_nr);
4004 remove_edge (e);
4005 }
4006 else
4007 ei_next (&ei);
4008 goto succeed;
4009 }
4010
4011 /* Try to redirect the EH edges and merge the PHIs into the destination
4012 landing pad block. If the merge succeeds, we'll already have redirected
4013 all the EH edges. The handler itself will go unreachable if there were
4014 no normal edges. */
4015 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4016 goto succeed;
4017
4018 /* Finally, if all input edges are EH edges, then we can (potentially)
4019 reduce the number of transfers from the runtime by moving the landing
4020 pad from the original region to the new region. This is a win when
4021 we remove the last CLEANUP region along a particular exception
4022 propagation path. Since nothing changes except for the region with
4023 which the landing pad is associated, the PHI nodes do not need to be
4024 adjusted at all. */
4025 if (!has_non_eh_pred)
4026 {
4027 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4028 if (dump_file && (dump_flags & TDF_DETAILS))
4029 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4030 lp->index, new_region->index);
4031
4032 /* ??? The CFG didn't change, but we may have rendered the
4033 old EH region unreachable. Trigger a cleanup there. */
4034 return true;
4035 }
4036
4037 return false;
4038
4039 succeed:
4040 if (dump_file && (dump_flags & TDF_DETAILS))
4041 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4042 remove_eh_landing_pad (lp);
4043 return true;
4044 }
4045
4046 /* Do a post-order traversal of the EH region tree. Examine each
4047 post_landing_pad block and see if we can eliminate it as empty. */
4048
4049 static bool
4050 cleanup_all_empty_eh (void)
4051 {
4052 bool changed = false;
4053 eh_landing_pad lp;
4054 int i;
4055
4056 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
4057 if (lp)
4058 changed |= cleanup_empty_eh (lp);
4059
4060 return changed;
4061 }
4062
4063 /* Perform cleanups and lowering of exception handling
4064 1) cleanups regions with handlers doing nothing are optimized out
4065 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4066 3) Info about regions that are containing instructions, and regions
4067 reachable via local EH edges is collected
4068 4) Eh tree is pruned for regions no longer neccesary.
4069
4070 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4071 Unify those that have the same failure decl and locus.
4072 */
4073
4074 static unsigned int
4075 execute_cleanup_eh_1 (void)
4076 {
4077 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4078 looking up unreachable landing pads. */
4079 remove_unreachable_handlers ();
4080
4081 /* Watch out for the region tree vanishing due to all unreachable. */
4082 if (cfun->eh->region_tree && optimize)
4083 {
4084 bool changed = false;
4085
4086 changed |= unsplit_all_eh ();
4087 changed |= cleanup_all_empty_eh ();
4088
4089 if (changed)
4090 {
4091 free_dominance_info (CDI_DOMINATORS);
4092 free_dominance_info (CDI_POST_DOMINATORS);
4093
4094 /* We delayed all basic block deletion, as we may have performed
4095 cleanups on EH edges while non-EH edges were still present. */
4096 delete_unreachable_blocks ();
4097
4098 /* We manipulated the landing pads. Remove any region that no
4099 longer has a landing pad. */
4100 remove_unreachable_handlers_no_lp ();
4101
4102 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4103 }
4104 }
4105
4106 return 0;
4107 }
4108
4109 static unsigned int
4110 execute_cleanup_eh (void)
4111 {
4112 int ret = execute_cleanup_eh_1 ();
4113
4114 /* If the function no longer needs an EH personality routine
4115 clear it. This exposes cross-language inlining opportunities
4116 and avoids references to a never defined personality routine. */
4117 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4118 && function_needs_eh_personality (cfun) != eh_personality_lang)
4119 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4120
4121 return ret;
4122 }
4123
4124 static bool
4125 gate_cleanup_eh (void)
4126 {
4127 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4128 }
4129
4130 struct gimple_opt_pass pass_cleanup_eh = {
4131 {
4132 GIMPLE_PASS,
4133 "ehcleanup", /* name */
4134 gate_cleanup_eh, /* gate */
4135 execute_cleanup_eh, /* execute */
4136 NULL, /* sub */
4137 NULL, /* next */
4138 0, /* static_pass_number */
4139 TV_TREE_EH, /* tv_id */
4140 PROP_gimple_lcf, /* properties_required */
4141 0, /* properties_provided */
4142 0, /* properties_destroyed */
4143 0, /* todo_flags_start */
4144 0 /* todo_flags_finish */
4145 }
4146 };
4147 \f
4148 /* Verify that BB containing STMT as the last statement, has precisely the
4149 edge that make_eh_edges would create. */
4150
4151 DEBUG_FUNCTION bool
4152 verify_eh_edges (gimple stmt)
4153 {
4154 basic_block bb = gimple_bb (stmt);
4155 eh_landing_pad lp = NULL;
4156 int lp_nr;
4157 edge_iterator ei;
4158 edge e, eh_edge;
4159
4160 lp_nr = lookup_stmt_eh_lp (stmt);
4161 if (lp_nr > 0)
4162 lp = get_eh_landing_pad_from_number (lp_nr);
4163
4164 eh_edge = NULL;
4165 FOR_EACH_EDGE (e, ei, bb->succs)
4166 {
4167 if (e->flags & EDGE_EH)
4168 {
4169 if (eh_edge)
4170 {
4171 error ("BB %i has multiple EH edges", bb->index);
4172 return true;
4173 }
4174 else
4175 eh_edge = e;
4176 }
4177 }
4178
4179 if (lp == NULL)
4180 {
4181 if (eh_edge)
4182 {
4183 error ("BB %i can not throw but has an EH edge", bb->index);
4184 return true;
4185 }
4186 return false;
4187 }
4188
4189 if (!stmt_could_throw_p (stmt))
4190 {
4191 error ("BB %i last statement has incorrectly set lp", bb->index);
4192 return true;
4193 }
4194
4195 if (eh_edge == NULL)
4196 {
4197 error ("BB %i is missing an EH edge", bb->index);
4198 return true;
4199 }
4200
4201 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4202 {
4203 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4204 return true;
4205 }
4206
4207 return false;
4208 }
4209
4210 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4211
4212 DEBUG_FUNCTION bool
4213 verify_eh_dispatch_edge (gimple stmt)
4214 {
4215 eh_region r;
4216 eh_catch c;
4217 basic_block src, dst;
4218 bool want_fallthru = true;
4219 edge_iterator ei;
4220 edge e, fall_edge;
4221
4222 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4223 src = gimple_bb (stmt);
4224
4225 FOR_EACH_EDGE (e, ei, src->succs)
4226 gcc_assert (e->aux == NULL);
4227
4228 switch (r->type)
4229 {
4230 case ERT_TRY:
4231 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4232 {
4233 dst = label_to_block (c->label);
4234 e = find_edge (src, dst);
4235 if (e == NULL)
4236 {
4237 error ("BB %i is missing an edge", src->index);
4238 return true;
4239 }
4240 e->aux = (void *)e;
4241
4242 /* A catch-all handler doesn't have a fallthru. */
4243 if (c->type_list == NULL)
4244 {
4245 want_fallthru = false;
4246 break;
4247 }
4248 }
4249 break;
4250
4251 case ERT_ALLOWED_EXCEPTIONS:
4252 dst = label_to_block (r->u.allowed.label);
4253 e = find_edge (src, dst);
4254 if (e == NULL)
4255 {
4256 error ("BB %i is missing an edge", src->index);
4257 return true;
4258 }
4259 e->aux = (void *)e;
4260 break;
4261
4262 default:
4263 gcc_unreachable ();
4264 }
4265
4266 fall_edge = NULL;
4267 FOR_EACH_EDGE (e, ei, src->succs)
4268 {
4269 if (e->flags & EDGE_FALLTHRU)
4270 {
4271 if (fall_edge != NULL)
4272 {
4273 error ("BB %i too many fallthru edges", src->index);
4274 return true;
4275 }
4276 fall_edge = e;
4277 }
4278 else if (e->aux)
4279 e->aux = NULL;
4280 else
4281 {
4282 error ("BB %i has incorrect edge", src->index);
4283 return true;
4284 }
4285 }
4286 if ((fall_edge != NULL) ^ want_fallthru)
4287 {
4288 error ("BB %i has incorrect fallthru edge", src->index);
4289 return true;
4290 }
4291
4292 return false;
4293 }