]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
tree-eh.c (lower_eh_constructs_2): Don't add assignments below statements that can...
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "tree-inline.h"
34 #include "tree-iterator.h"
35 #include "tree-pass.h"
36 #include "timevar.h"
37 #include "langhooks.h"
38 #include "ggc.h"
39 #include "toplev.h"
40 #include "gimple.h"
41 #include "target.h"
42
43 /* In some instances a tree and a gimple need to be stored in a same table,
44 i.e. in hash tables. This is a structure to do this. */
45 typedef union {tree *tp; tree t; gimple g;} treemple;
46
47 /* Nonzero if we are using EH to handle cleanups. */
48 static int using_eh_for_cleanups_p = 0;
49
50 void
51 using_eh_for_cleanups (void)
52 {
53 using_eh_for_cleanups_p = 1;
54 }
55
56 /* Misc functions used in this file. */
57
58 /* Compare and hash for any structure which begins with a canonical
59 pointer. Assumes all pointers are interchangeable, which is sort
60 of already assumed by gcc elsewhere IIRC. */
61
62 static int
63 struct_ptr_eq (const void *a, const void *b)
64 {
65 const void * const * x = (const void * const *) a;
66 const void * const * y = (const void * const *) b;
67 return *x == *y;
68 }
69
70 static hashval_t
71 struct_ptr_hash (const void *a)
72 {
73 const void * const * x = (const void * const *) a;
74 return (size_t)*x >> 4;
75 }
76
77
78 /* Remember and lookup EH landing pad data for arbitrary statements.
79 Really this means any statement that could_throw_p. We could
80 stuff this information into the stmt_ann data structure, but:
81
82 (1) We absolutely rely on this information being kept until
83 we get to rtl. Once we're done with lowering here, if we lose
84 the information there's no way to recover it!
85
86 (2) There are many more statements that *cannot* throw as
87 compared to those that can. We should be saving some amount
88 of space by only allocating memory for those that can throw. */
89
90 /* Add statement T in function IFUN to landing pad NUM. */
91
92 void
93 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
94 {
95 struct throw_stmt_node *n;
96 void **slot;
97
98 gcc_assert (num != 0);
99
100 n = GGC_NEW (struct throw_stmt_node);
101 n->stmt = t;
102 n->lp_nr = num;
103
104 if (!get_eh_throw_stmt_table (ifun))
105 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
106 struct_ptr_eq,
107 ggc_free));
108
109 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
110 gcc_assert (!*slot);
111 *slot = n;
112 }
113
114 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
115
116 void
117 add_stmt_to_eh_lp (gimple t, int num)
118 {
119 add_stmt_to_eh_lp_fn (cfun, t, num);
120 }
121
122 /* Add statement T to the single EH landing pad in REGION. */
123
124 static void
125 record_stmt_eh_region (eh_region region, gimple t)
126 {
127 if (region == NULL)
128 return;
129 if (region->type == ERT_MUST_NOT_THROW)
130 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
131 else
132 {
133 eh_landing_pad lp = region->landing_pads;
134 if (lp == NULL)
135 lp = gen_eh_landing_pad (region);
136 else
137 gcc_assert (lp->next_lp == NULL);
138 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
139 }
140 }
141
142
143 /* Remove statement T in function IFUN from its EH landing pad. */
144
145 bool
146 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
147 {
148 struct throw_stmt_node dummy;
149 void **slot;
150
151 if (!get_eh_throw_stmt_table (ifun))
152 return false;
153
154 dummy.stmt = t;
155 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
156 NO_INSERT);
157 if (slot)
158 {
159 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
160 return true;
161 }
162 else
163 return false;
164 }
165
166
167 /* Remove statement T in the current function (cfun) from its
168 EH landing pad. */
169
170 bool
171 remove_stmt_from_eh_lp (gimple t)
172 {
173 return remove_stmt_from_eh_lp_fn (cfun, t);
174 }
175
176 /* Determine if statement T is inside an EH region in function IFUN.
177 Positive numbers indicate a landing pad index; negative numbers
178 indicate a MUST_NOT_THROW region index; zero indicates that the
179 statement is not recorded in the region table. */
180
181 int
182 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
183 {
184 struct throw_stmt_node *p, n;
185
186 if (ifun->eh->throw_stmt_table == NULL)
187 return 0;
188
189 n.stmt = t;
190 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
191 return p ? p->lp_nr : 0;
192 }
193
194 /* Likewise, but always use the current function. */
195
196 int
197 lookup_stmt_eh_lp (gimple t)
198 {
199 /* We can get called from initialized data when -fnon-call-exceptions
200 is on; prevent crash. */
201 if (!cfun)
202 return 0;
203 return lookup_stmt_eh_lp_fn (cfun, t);
204 }
205
206 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
207 nodes and LABEL_DECL nodes. We will use this during the second phase to
208 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
209
210 struct finally_tree_node
211 {
212 /* When storing a GIMPLE_TRY, we have to record a gimple. However
213 when deciding whether a GOTO to a certain LABEL_DECL (which is a
214 tree) leaves the TRY block, its necessary to record a tree in
215 this field. Thus a treemple is used. */
216 treemple child;
217 gimple parent;
218 };
219
220 /* Note that this table is *not* marked GTY. It is short-lived. */
221 static htab_t finally_tree;
222
223 static void
224 record_in_finally_tree (treemple child, gimple parent)
225 {
226 struct finally_tree_node *n;
227 void **slot;
228
229 n = XNEW (struct finally_tree_node);
230 n->child = child;
231 n->parent = parent;
232
233 slot = htab_find_slot (finally_tree, n, INSERT);
234 gcc_assert (!*slot);
235 *slot = n;
236 }
237
238 static void
239 collect_finally_tree (gimple stmt, gimple region);
240
241 /* Go through the gimple sequence. Works with collect_finally_tree to
242 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
243
244 static void
245 collect_finally_tree_1 (gimple_seq seq, gimple region)
246 {
247 gimple_stmt_iterator gsi;
248
249 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
250 collect_finally_tree (gsi_stmt (gsi), region);
251 }
252
253 static void
254 collect_finally_tree (gimple stmt, gimple region)
255 {
256 treemple temp;
257
258 switch (gimple_code (stmt))
259 {
260 case GIMPLE_LABEL:
261 temp.t = gimple_label_label (stmt);
262 record_in_finally_tree (temp, region);
263 break;
264
265 case GIMPLE_TRY:
266 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
267 {
268 temp.g = stmt;
269 record_in_finally_tree (temp, region);
270 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
271 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
272 }
273 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
274 {
275 collect_finally_tree_1 (gimple_try_eval (stmt), region);
276 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
277 }
278 break;
279
280 case GIMPLE_CATCH:
281 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
282 break;
283
284 case GIMPLE_EH_FILTER:
285 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
286 break;
287
288 default:
289 /* A type, a decl, or some kind of statement that we're not
290 interested in. Don't walk them. */
291 break;
292 }
293 }
294
295
296 /* Use the finally tree to determine if a jump from START to TARGET
297 would leave the try_finally node that START lives in. */
298
299 static bool
300 outside_finally_tree (treemple start, gimple target)
301 {
302 struct finally_tree_node n, *p;
303
304 do
305 {
306 n.child = start;
307 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
308 if (!p)
309 return true;
310 start.g = p->parent;
311 }
312 while (start.g != target);
313
314 return false;
315 }
316
317 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
318 nodes into a set of gotos, magic labels, and eh regions.
319 The eh region creation is straight-forward, but frobbing all the gotos
320 and such into shape isn't. */
321
322 /* The sequence into which we record all EH stuff. This will be
323 placed at the end of the function when we're all done. */
324 static gimple_seq eh_seq;
325
326 /* Record whether an EH region contains something that can throw,
327 indexed by EH region number. */
328 static bitmap eh_region_may_contain_throw_map;
329
330 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
331 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
332 The idea is to record a gimple statement for everything except for
333 the conditionals, which get their labels recorded. Since labels are
334 of type 'tree', we need this node to store both gimple and tree
335 objects. REPL_STMT is the sequence used to replace the goto/return
336 statement. CONT_STMT is used to store the statement that allows
337 the return/goto to jump to the original destination. */
338
339 struct goto_queue_node
340 {
341 treemple stmt;
342 gimple_seq repl_stmt;
343 gimple cont_stmt;
344 int index;
345 /* This is used when index >= 0 to indicate that stmt is a label (as
346 opposed to a goto stmt). */
347 int is_label;
348 };
349
350 /* State of the world while lowering. */
351
352 struct leh_state
353 {
354 /* What's "current" while constructing the eh region tree. These
355 correspond to variables of the same name in cfun->eh, which we
356 don't have easy access to. */
357 eh_region cur_region;
358
359 /* What's "current" for the purposes of __builtin_eh_pointer. For
360 a CATCH, this is the associated TRY. For an EH_FILTER, this is
361 the associated ALLOWED_EXCEPTIONS, etc. */
362 eh_region ehp_region;
363
364 /* Processing of TRY_FINALLY requires a bit more state. This is
365 split out into a separate structure so that we don't have to
366 copy so much when processing other nodes. */
367 struct leh_tf_state *tf;
368 };
369
370 struct leh_tf_state
371 {
372 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
373 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
374 this so that outside_finally_tree can reliably reference the tree used
375 in the collect_finally_tree data structures. */
376 gimple try_finally_expr;
377 gimple top_p;
378
379 /* While lowering a top_p usually it is expanded into multiple statements,
380 thus we need the following field to store them. */
381 gimple_seq top_p_seq;
382
383 /* The state outside this try_finally node. */
384 struct leh_state *outer;
385
386 /* The exception region created for it. */
387 eh_region region;
388
389 /* The goto queue. */
390 struct goto_queue_node *goto_queue;
391 size_t goto_queue_size;
392 size_t goto_queue_active;
393
394 /* Pointer map to help in searching goto_queue when it is large. */
395 struct pointer_map_t *goto_queue_map;
396
397 /* The set of unique labels seen as entries in the goto queue. */
398 VEC(tree,heap) *dest_array;
399
400 /* A label to be added at the end of the completed transformed
401 sequence. It will be set if may_fallthru was true *at one time*,
402 though subsequent transformations may have cleared that flag. */
403 tree fallthru_label;
404
405 /* True if it is possible to fall out the bottom of the try block.
406 Cleared if the fallthru is converted to a goto. */
407 bool may_fallthru;
408
409 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
410 bool may_return;
411
412 /* True if the finally block can receive an exception edge.
413 Cleared if the exception case is handled by code duplication. */
414 bool may_throw;
415 };
416
417 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
418
419 /* Search for STMT in the goto queue. Return the replacement,
420 or null if the statement isn't in the queue. */
421
422 #define LARGE_GOTO_QUEUE 20
423
424 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
425
426 static gimple_seq
427 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
428 {
429 unsigned int i;
430 void **slot;
431
432 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
433 {
434 for (i = 0; i < tf->goto_queue_active; i++)
435 if ( tf->goto_queue[i].stmt.g == stmt.g)
436 return tf->goto_queue[i].repl_stmt;
437 return NULL;
438 }
439
440 /* If we have a large number of entries in the goto_queue, create a
441 pointer map and use that for searching. */
442
443 if (!tf->goto_queue_map)
444 {
445 tf->goto_queue_map = pointer_map_create ();
446 for (i = 0; i < tf->goto_queue_active; i++)
447 {
448 slot = pointer_map_insert (tf->goto_queue_map,
449 tf->goto_queue[i].stmt.g);
450 gcc_assert (*slot == NULL);
451 *slot = &tf->goto_queue[i];
452 }
453 }
454
455 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
456 if (slot != NULL)
457 return (((struct goto_queue_node *) *slot)->repl_stmt);
458
459 return NULL;
460 }
461
462 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
463 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
464 then we can just splat it in, otherwise we add the new stmts immediately
465 after the GIMPLE_COND and redirect. */
466
467 static void
468 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
469 gimple_stmt_iterator *gsi)
470 {
471 tree label;
472 gimple_seq new_seq;
473 treemple temp;
474 location_t loc = gimple_location (gsi_stmt (*gsi));
475
476 temp.tp = tp;
477 new_seq = find_goto_replacement (tf, temp);
478 if (!new_seq)
479 return;
480
481 if (gimple_seq_singleton_p (new_seq)
482 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
483 {
484 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
485 return;
486 }
487
488 label = create_artificial_label (loc);
489 /* Set the new label for the GIMPLE_COND */
490 *tp = label;
491
492 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
493 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
494 }
495
496 /* The real work of replace_goto_queue. Returns with TSI updated to
497 point to the next statement. */
498
499 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
500
501 static void
502 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
503 gimple_stmt_iterator *gsi)
504 {
505 gimple_seq seq;
506 treemple temp;
507 temp.g = NULL;
508
509 switch (gimple_code (stmt))
510 {
511 case GIMPLE_GOTO:
512 case GIMPLE_RETURN:
513 temp.g = stmt;
514 seq = find_goto_replacement (tf, temp);
515 if (seq)
516 {
517 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
518 gsi_remove (gsi, false);
519 return;
520 }
521 break;
522
523 case GIMPLE_COND:
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
525 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
526 break;
527
528 case GIMPLE_TRY:
529 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
530 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
531 break;
532 case GIMPLE_CATCH:
533 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
534 break;
535 case GIMPLE_EH_FILTER:
536 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
537 break;
538
539 default:
540 /* These won't have gotos in them. */
541 break;
542 }
543
544 gsi_next (gsi);
545 }
546
547 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
548
549 static void
550 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
551 {
552 gimple_stmt_iterator gsi = gsi_start (seq);
553
554 while (!gsi_end_p (gsi))
555 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
556 }
557
558 /* Replace all goto queue members. */
559
560 static void
561 replace_goto_queue (struct leh_tf_state *tf)
562 {
563 if (tf->goto_queue_active == 0)
564 return;
565 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646
647 }
648
649 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
650 node, and if so record that fact in the goto queue associated with that
651 try_finally node. */
652
653 static void
654 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
655 {
656 struct leh_tf_state *tf = state->tf;
657 treemple new_stmt;
658
659 if (!tf)
660 return;
661
662 switch (gimple_code (stmt))
663 {
664 case GIMPLE_COND:
665 new_stmt.tp = gimple_op_ptr (stmt, 2);
666 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
667 new_stmt.tp = gimple_op_ptr (stmt, 3);
668 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
669 break;
670 case GIMPLE_GOTO:
671 new_stmt.g = stmt;
672 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
673 break;
674
675 case GIMPLE_RETURN:
676 tf->may_return = true;
677 new_stmt.g = stmt;
678 record_in_goto_queue (tf, new_stmt, -1, false);
679 break;
680
681 default:
682 gcc_unreachable ();
683 }
684 }
685
686
687 #ifdef ENABLE_CHECKING
688 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
689 was in fact structured, and we've not yet done jump threading, then none
690 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
691
692 static void
693 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
694 {
695 struct leh_tf_state *tf = state->tf;
696 size_t i, n;
697
698 if (!tf)
699 return;
700
701 n = gimple_switch_num_labels (switch_expr);
702
703 for (i = 0; i < n; ++i)
704 {
705 treemple temp;
706 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
707 temp.t = lab;
708 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
709 }
710 }
711 #else
712 #define verify_norecord_switch_expr(state, switch_expr)
713 #endif
714
715 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
716 whatever is needed to finish the return. If MOD is non-null, insert it
717 before the new branch. RETURN_VALUE_P is a cache containing a temporary
718 variable to be used in manipulating the value returned from the function. */
719
720 static void
721 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
722 tree *return_value_p)
723 {
724 tree ret_expr;
725 gimple x;
726
727 /* In the case of a return, the queue node must be a gimple statement. */
728 gcc_assert (!q->is_label);
729
730 ret_expr = gimple_return_retval (q->stmt.g);
731
732 if (ret_expr)
733 {
734 if (!*return_value_p)
735 *return_value_p = ret_expr;
736 else
737 gcc_assert (*return_value_p == ret_expr);
738 q->cont_stmt = q->stmt.g;
739 /* The nasty part about redirecting the return value is that the
740 return value itself is to be computed before the FINALLY block
741 is executed. e.g.
742
743 int x;
744 int foo (void)
745 {
746 x = 0;
747 try {
748 return x;
749 } finally {
750 x++;
751 }
752 }
753
754 should return 0, not 1. Arrange for this to happen by copying
755 computed the return value into a local temporary. This also
756 allows us to redirect multiple return statements through the
757 same destination block; whether this is a net win or not really
758 depends, I guess, but it does make generation of the switch in
759 lower_try_finally_switch easier. */
760
761 if (TREE_CODE (ret_expr) == RESULT_DECL)
762 {
763 if (!*return_value_p)
764 *return_value_p = ret_expr;
765 else
766 gcc_assert (*return_value_p == ret_expr);
767 q->cont_stmt = q->stmt.g;
768 }
769 else
770 gcc_unreachable ();
771 }
772 else
773 /* If we don't return a value, all return statements are the same. */
774 q->cont_stmt = q->stmt.g;
775
776 if (!q->repl_stmt)
777 q->repl_stmt = gimple_seq_alloc ();
778
779 if (mod)
780 gimple_seq_add_seq (&q->repl_stmt, mod);
781
782 x = gimple_build_goto (finlab);
783 gimple_seq_add_stmt (&q->repl_stmt, x);
784 }
785
786 /* Similar, but easier, for GIMPLE_GOTO. */
787
788 static void
789 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
790 struct leh_tf_state *tf)
791 {
792 gimple x;
793
794 gcc_assert (q->is_label);
795 if (!q->repl_stmt)
796 q->repl_stmt = gimple_seq_alloc ();
797
798 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
799
800 if (mod)
801 gimple_seq_add_seq (&q->repl_stmt, mod);
802
803 x = gimple_build_goto (finlab);
804 gimple_seq_add_stmt (&q->repl_stmt, x);
805 }
806
807 /* Emit a standard landing pad sequence into SEQ for REGION. */
808
809 static void
810 emit_post_landing_pad (gimple_seq *seq, eh_region region)
811 {
812 eh_landing_pad lp = region->landing_pads;
813 gimple x;
814
815 if (lp == NULL)
816 lp = gen_eh_landing_pad (region);
817
818 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
819 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
820
821 x = gimple_build_label (lp->post_landing_pad);
822 gimple_seq_add_stmt (seq, x);
823 }
824
825 /* Emit a RESX statement into SEQ for REGION. */
826
827 static void
828 emit_resx (gimple_seq *seq, eh_region region)
829 {
830 gimple x = gimple_build_resx (region->index);
831 gimple_seq_add_stmt (seq, x);
832 if (region->outer)
833 record_stmt_eh_region (region->outer, x);
834 }
835
836 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
837
838 static void
839 emit_eh_dispatch (gimple_seq *seq, eh_region region)
840 {
841 gimple x = gimple_build_eh_dispatch (region->index);
842 gimple_seq_add_stmt (seq, x);
843 }
844
845 /* Note that the current EH region may contain a throw, or a
846 call to a function which itself may contain a throw. */
847
848 static void
849 note_eh_region_may_contain_throw (eh_region region)
850 {
851 while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
852 {
853 bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
854 region = region->outer;
855 if (region == NULL)
856 break;
857 }
858 }
859
860 /* Check if REGION has been marked as containing a throw. If REGION is
861 NULL, this predicate is false. */
862
863 static inline bool
864 eh_region_may_contain_throw (eh_region r)
865 {
866 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
867 }
868
869 /* We want to transform
870 try { body; } catch { stuff; }
871 to
872 normal_seqence:
873 body;
874 over:
875 eh_seqence:
876 landing_pad:
877 stuff;
878 goto over;
879
880 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
881 should be placed before the second operand, or NULL. OVER is
882 an existing label that should be put at the exit, or NULL. */
883
884 static gimple_seq
885 frob_into_branch_around (gimple tp, eh_region region, tree over)
886 {
887 gimple x;
888 gimple_seq cleanup, result;
889 location_t loc = gimple_location (tp);
890
891 cleanup = gimple_try_cleanup (tp);
892 result = gimple_try_eval (tp);
893
894 if (region)
895 emit_post_landing_pad (&eh_seq, region);
896
897 if (gimple_seq_may_fallthru (cleanup))
898 {
899 if (!over)
900 over = create_artificial_label (loc);
901 x = gimple_build_goto (over);
902 gimple_seq_add_stmt (&cleanup, x);
903 }
904 gimple_seq_add_seq (&eh_seq, cleanup);
905
906 if (over)
907 {
908 x = gimple_build_label (over);
909 gimple_seq_add_stmt (&result, x);
910 }
911 return result;
912 }
913
914 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
915 Make sure to record all new labels found. */
916
917 static gimple_seq
918 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
919 {
920 gimple region = NULL;
921 gimple_seq new_seq;
922
923 new_seq = copy_gimple_seq_and_replace_locals (seq);
924
925 if (outer_state->tf)
926 region = outer_state->tf->try_finally_expr;
927 collect_finally_tree_1 (new_seq, region);
928
929 return new_seq;
930 }
931
932 /* A subroutine of lower_try_finally. Create a fallthru label for
933 the given try_finally state. The only tricky bit here is that
934 we have to make sure to record the label in our outer context. */
935
936 static tree
937 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
938 {
939 tree label = tf->fallthru_label;
940 treemple temp;
941
942 if (!label)
943 {
944 label = create_artificial_label (gimple_location (tf->try_finally_expr));
945 tf->fallthru_label = label;
946 if (tf->outer->tf)
947 {
948 temp.t = label;
949 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
950 }
951 }
952 return label;
953 }
954
955 /* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
956 returns non-null, then the language requires that the exception path out
957 of a try_finally be treated specially. To wit: the code within the
958 finally block may not itself throw an exception. We have two choices here.
959 First we can duplicate the finally block and wrap it in a must_not_throw
960 region. Second, we can generate code like
961
962 try {
963 finally_block;
964 } catch {
965 if (fintmp == eh_edge)
966 protect_cleanup_actions;
967 }
968
969 where "fintmp" is the temporary used in the switch statement generation
970 alternative considered below. For the nonce, we always choose the first
971 option.
972
973 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
974
975 static void
976 honor_protect_cleanup_actions (struct leh_state *outer_state,
977 struct leh_state *this_state,
978 struct leh_tf_state *tf)
979 {
980 tree protect_cleanup_actions;
981 gimple_stmt_iterator gsi;
982 bool finally_may_fallthru;
983 gimple_seq finally;
984 gimple x;
985
986 /* First check for nothing to do. */
987 if (lang_protect_cleanup_actions == NULL)
988 return;
989 protect_cleanup_actions = lang_protect_cleanup_actions ();
990 if (protect_cleanup_actions == NULL)
991 return;
992
993 finally = gimple_try_cleanup (tf->top_p);
994 finally_may_fallthru = gimple_seq_may_fallthru (finally);
995
996 /* Duplicate the FINALLY block. Only need to do this for try-finally,
997 and not for cleanups. */
998 if (this_state)
999 finally = lower_try_finally_dup_block (finally, outer_state);
1000
1001 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1002 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1003 to be in an enclosing scope, but needs to be implemented at this level
1004 to avoid a nesting violation (see wrap_temporary_cleanups in
1005 cp/decl.c). Since it's logically at an outer level, we should call
1006 terminate before we get to it, so strip it away before adding the
1007 MUST_NOT_THROW filter. */
1008 gsi = gsi_start (finally);
1009 x = gsi_stmt (gsi);
1010 if (gimple_code (x) == GIMPLE_TRY
1011 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1012 && gimple_try_catch_is_cleanup (x))
1013 {
1014 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1015 gsi_remove (&gsi, false);
1016 }
1017
1018 /* Wrap the block with protect_cleanup_actions as the action. */
1019 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1020 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1021 GIMPLE_TRY_CATCH);
1022 finally = lower_eh_must_not_throw (outer_state, x);
1023
1024 /* Drop all of this into the exception sequence. */
1025 emit_post_landing_pad (&eh_seq, tf->region);
1026 gimple_seq_add_seq (&eh_seq, finally);
1027 if (finally_may_fallthru)
1028 emit_resx (&eh_seq, tf->region);
1029
1030 /* Having now been handled, EH isn't to be considered with
1031 the rest of the outgoing edges. */
1032 tf->may_throw = false;
1033 }
1034
1035 /* A subroutine of lower_try_finally. We have determined that there is
1036 no fallthru edge out of the finally block. This means that there is
1037 no outgoing edge corresponding to any incoming edge. Restructure the
1038 try_finally node for this special case. */
1039
1040 static void
1041 lower_try_finally_nofallthru (struct leh_state *state,
1042 struct leh_tf_state *tf)
1043 {
1044 tree lab, return_val;
1045 gimple x;
1046 gimple_seq finally;
1047 struct goto_queue_node *q, *qe;
1048
1049 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1050
1051 /* We expect that tf->top_p is a GIMPLE_TRY. */
1052 finally = gimple_try_cleanup (tf->top_p);
1053 tf->top_p_seq = gimple_try_eval (tf->top_p);
1054
1055 x = gimple_build_label (lab);
1056 gimple_seq_add_stmt (&tf->top_p_seq, x);
1057
1058 return_val = NULL;
1059 q = tf->goto_queue;
1060 qe = q + tf->goto_queue_active;
1061 for (; q < qe; ++q)
1062 if (q->index < 0)
1063 do_return_redirection (q, lab, NULL, &return_val);
1064 else
1065 do_goto_redirection (q, lab, NULL, tf);
1066
1067 replace_goto_queue (tf);
1068
1069 lower_eh_constructs_1 (state, finally);
1070 gimple_seq_add_seq (&tf->top_p_seq, finally);
1071
1072 if (tf->may_throw)
1073 {
1074 emit_post_landing_pad (&eh_seq, tf->region);
1075
1076 x = gimple_build_goto (lab);
1077 gimple_seq_add_stmt (&eh_seq, x);
1078 }
1079 }
1080
1081 /* A subroutine of lower_try_finally. We have determined that there is
1082 exactly one destination of the finally block. Restructure the
1083 try_finally node for this special case. */
1084
1085 static void
1086 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1087 {
1088 struct goto_queue_node *q, *qe;
1089 gimple x;
1090 gimple_seq finally;
1091 tree finally_label;
1092 location_t loc = gimple_location (tf->try_finally_expr);
1093
1094 finally = gimple_try_cleanup (tf->top_p);
1095 tf->top_p_seq = gimple_try_eval (tf->top_p);
1096
1097 lower_eh_constructs_1 (state, finally);
1098
1099 if (tf->may_throw)
1100 {
1101 /* Only reachable via the exception edge. Add the given label to
1102 the head of the FINALLY block. Append a RESX at the end. */
1103 emit_post_landing_pad (&eh_seq, tf->region);
1104 gimple_seq_add_seq (&eh_seq, finally);
1105 emit_resx (&eh_seq, tf->region);
1106 return;
1107 }
1108
1109 if (tf->may_fallthru)
1110 {
1111 /* Only reachable via the fallthru edge. Do nothing but let
1112 the two blocks run together; we'll fall out the bottom. */
1113 gimple_seq_add_seq (&tf->top_p_seq, finally);
1114 return;
1115 }
1116
1117 finally_label = create_artificial_label (loc);
1118 x = gimple_build_label (finally_label);
1119 gimple_seq_add_stmt (&tf->top_p_seq, x);
1120
1121 gimple_seq_add_seq (&tf->top_p_seq, finally);
1122
1123 q = tf->goto_queue;
1124 qe = q + tf->goto_queue_active;
1125
1126 if (tf->may_return)
1127 {
1128 /* Reachable by return expressions only. Redirect them. */
1129 tree return_val = NULL;
1130 for (; q < qe; ++q)
1131 do_return_redirection (q, finally_label, NULL, &return_val);
1132 replace_goto_queue (tf);
1133 }
1134 else
1135 {
1136 /* Reachable by goto expressions only. Redirect them. */
1137 for (; q < qe; ++q)
1138 do_goto_redirection (q, finally_label, NULL, tf);
1139 replace_goto_queue (tf);
1140
1141 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1142 {
1143 /* Reachable by goto to fallthru label only. Redirect it
1144 to the new label (already created, sadly), and do not
1145 emit the final branch out, or the fallthru label. */
1146 tf->fallthru_label = NULL;
1147 return;
1148 }
1149 }
1150
1151 /* Place the original return/goto to the original destination
1152 immediately after the finally block. */
1153 x = tf->goto_queue[0].cont_stmt;
1154 gimple_seq_add_stmt (&tf->top_p_seq, x);
1155 maybe_record_in_goto_queue (state, x);
1156 }
1157
1158 /* A subroutine of lower_try_finally. There are multiple edges incoming
1159 and outgoing from the finally block. Implement this by duplicating the
1160 finally block for every destination. */
1161
1162 static void
1163 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1164 {
1165 gimple_seq finally;
1166 gimple_seq new_stmt;
1167 gimple_seq seq;
1168 gimple x;
1169 tree tmp;
1170 location_t tf_loc = gimple_location (tf->try_finally_expr);
1171
1172 finally = gimple_try_cleanup (tf->top_p);
1173 tf->top_p_seq = gimple_try_eval (tf->top_p);
1174 new_stmt = NULL;
1175
1176 if (tf->may_fallthru)
1177 {
1178 seq = lower_try_finally_dup_block (finally, state);
1179 lower_eh_constructs_1 (state, seq);
1180 gimple_seq_add_seq (&new_stmt, seq);
1181
1182 tmp = lower_try_finally_fallthru_label (tf);
1183 x = gimple_build_goto (tmp);
1184 gimple_seq_add_stmt (&new_stmt, x);
1185 }
1186
1187 if (tf->may_throw)
1188 {
1189 seq = lower_try_finally_dup_block (finally, state);
1190 lower_eh_constructs_1 (state, seq);
1191
1192 emit_post_landing_pad (&eh_seq, tf->region);
1193 gimple_seq_add_seq (&eh_seq, seq);
1194 emit_resx (&eh_seq, tf->region);
1195 }
1196
1197 if (tf->goto_queue)
1198 {
1199 struct goto_queue_node *q, *qe;
1200 tree return_val = NULL;
1201 int return_index, index;
1202 struct labels_s
1203 {
1204 struct goto_queue_node *q;
1205 tree label;
1206 } *labels;
1207
1208 return_index = VEC_length (tree, tf->dest_array);
1209 labels = XCNEWVEC (struct labels_s, return_index + 1);
1210
1211 q = tf->goto_queue;
1212 qe = q + tf->goto_queue_active;
1213 for (; q < qe; q++)
1214 {
1215 index = q->index < 0 ? return_index : q->index;
1216
1217 if (!labels[index].q)
1218 labels[index].q = q;
1219 }
1220
1221 for (index = 0; index < return_index + 1; index++)
1222 {
1223 tree lab;
1224
1225 q = labels[index].q;
1226 if (! q)
1227 continue;
1228
1229 lab = labels[index].label
1230 = create_artificial_label (tf_loc);
1231
1232 if (index == return_index)
1233 do_return_redirection (q, lab, NULL, &return_val);
1234 else
1235 do_goto_redirection (q, lab, NULL, tf);
1236
1237 x = gimple_build_label (lab);
1238 gimple_seq_add_stmt (&new_stmt, x);
1239
1240 seq = lower_try_finally_dup_block (finally, state);
1241 lower_eh_constructs_1 (state, seq);
1242 gimple_seq_add_seq (&new_stmt, seq);
1243
1244 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1245 maybe_record_in_goto_queue (state, q->cont_stmt);
1246 }
1247
1248 for (q = tf->goto_queue; q < qe; q++)
1249 {
1250 tree lab;
1251
1252 index = q->index < 0 ? return_index : q->index;
1253
1254 if (labels[index].q == q)
1255 continue;
1256
1257 lab = labels[index].label;
1258
1259 if (index == return_index)
1260 do_return_redirection (q, lab, NULL, &return_val);
1261 else
1262 do_goto_redirection (q, lab, NULL, tf);
1263 }
1264
1265 replace_goto_queue (tf);
1266 free (labels);
1267 }
1268
1269 /* Need to link new stmts after running replace_goto_queue due
1270 to not wanting to process the same goto stmts twice. */
1271 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1272 }
1273
1274 /* A subroutine of lower_try_finally. There are multiple edges incoming
1275 and outgoing from the finally block. Implement this by instrumenting
1276 each incoming edge and creating a switch statement at the end of the
1277 finally block that branches to the appropriate destination. */
1278
1279 static void
1280 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1281 {
1282 struct goto_queue_node *q, *qe;
1283 tree return_val = NULL;
1284 tree finally_tmp, finally_label;
1285 int return_index, eh_index, fallthru_index;
1286 int nlabels, ndests, j, last_case_index;
1287 tree last_case;
1288 VEC (tree,heap) *case_label_vec;
1289 gimple_seq switch_body;
1290 gimple x;
1291 tree tmp;
1292 gimple switch_stmt;
1293 gimple_seq finally;
1294 struct pointer_map_t *cont_map = NULL;
1295 /* The location of the TRY_FINALLY stmt. */
1296 location_t tf_loc = gimple_location (tf->try_finally_expr);
1297 /* The location of the finally block. */
1298 location_t finally_loc;
1299
1300 switch_body = gimple_seq_alloc ();
1301
1302 /* Mash the TRY block to the head of the chain. */
1303 finally = gimple_try_cleanup (tf->top_p);
1304 tf->top_p_seq = gimple_try_eval (tf->top_p);
1305
1306 /* The location of the finally is either the last stmt in the finally
1307 block or the location of the TRY_FINALLY itself. */
1308 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1309 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1310 : tf_loc;
1311
1312 /* Lower the finally block itself. */
1313 lower_eh_constructs_1 (state, finally);
1314
1315 /* Prepare for switch statement generation. */
1316 nlabels = VEC_length (tree, tf->dest_array);
1317 return_index = nlabels;
1318 eh_index = return_index + tf->may_return;
1319 fallthru_index = eh_index + tf->may_throw;
1320 ndests = fallthru_index + tf->may_fallthru;
1321
1322 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1323 finally_label = create_artificial_label (finally_loc);
1324
1325 /* We use VEC_quick_push on case_label_vec throughout this function,
1326 since we know the size in advance and allocate precisely as muce
1327 space as needed. */
1328 case_label_vec = VEC_alloc (tree, heap, ndests);
1329 last_case = NULL;
1330 last_case_index = 0;
1331
1332 /* Begin inserting code for getting to the finally block. Things
1333 are done in this order to correspond to the sequence the code is
1334 layed out. */
1335
1336 if (tf->may_fallthru)
1337 {
1338 x = gimple_build_assign (finally_tmp,
1339 build_int_cst (NULL, fallthru_index));
1340 gimple_seq_add_stmt (&tf->top_p_seq, x);
1341
1342 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1343 build_int_cst (NULL, fallthru_index),
1344 NULL, create_artificial_label (tf_loc));
1345 VEC_quick_push (tree, case_label_vec, last_case);
1346 last_case_index++;
1347
1348 x = gimple_build_label (CASE_LABEL (last_case));
1349 gimple_seq_add_stmt (&switch_body, x);
1350
1351 tmp = lower_try_finally_fallthru_label (tf);
1352 x = gimple_build_goto (tmp);
1353 gimple_seq_add_stmt (&switch_body, x);
1354 }
1355
1356 if (tf->may_throw)
1357 {
1358 emit_post_landing_pad (&eh_seq, tf->region);
1359
1360 x = gimple_build_assign (finally_tmp,
1361 build_int_cst (NULL, eh_index));
1362 gimple_seq_add_stmt (&eh_seq, x);
1363
1364 x = gimple_build_goto (finally_label);
1365 gimple_seq_add_stmt (&eh_seq, x);
1366
1367 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1368 build_int_cst (NULL, eh_index),
1369 NULL, create_artificial_label (tf_loc));
1370 VEC_quick_push (tree, case_label_vec, last_case);
1371 last_case_index++;
1372
1373 x = gimple_build_label (CASE_LABEL (last_case));
1374 gimple_seq_add_stmt (&eh_seq, x);
1375 emit_resx (&eh_seq, tf->region);
1376 }
1377
1378 x = gimple_build_label (finally_label);
1379 gimple_seq_add_stmt (&tf->top_p_seq, x);
1380
1381 gimple_seq_add_seq (&tf->top_p_seq, finally);
1382
1383 /* Redirect each incoming goto edge. */
1384 q = tf->goto_queue;
1385 qe = q + tf->goto_queue_active;
1386 j = last_case_index + tf->may_return;
1387 /* Prepare the assignments to finally_tmp that are executed upon the
1388 entrance through a particular edge. */
1389 for (; q < qe; ++q)
1390 {
1391 gimple_seq mod;
1392 int switch_id;
1393 unsigned int case_index;
1394
1395 mod = gimple_seq_alloc ();
1396
1397 if (q->index < 0)
1398 {
1399 x = gimple_build_assign (finally_tmp,
1400 build_int_cst (NULL, return_index));
1401 gimple_seq_add_stmt (&mod, x);
1402 do_return_redirection (q, finally_label, mod, &return_val);
1403 switch_id = return_index;
1404 }
1405 else
1406 {
1407 x = gimple_build_assign (finally_tmp,
1408 build_int_cst (NULL, q->index));
1409 gimple_seq_add_stmt (&mod, x);
1410 do_goto_redirection (q, finally_label, mod, tf);
1411 switch_id = q->index;
1412 }
1413
1414 case_index = j + q->index;
1415 if (VEC_length (tree, case_label_vec) <= case_index
1416 || !VEC_index (tree, case_label_vec, case_index))
1417 {
1418 tree case_lab;
1419 void **slot;
1420 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1421 build_int_cst (NULL, switch_id),
1422 NULL, NULL);
1423 /* We store the cont_stmt in the pointer map, so that we can recover
1424 it in the loop below. We don't create the new label while
1425 walking the goto_queue because pointers don't offer a stable
1426 order. */
1427 if (!cont_map)
1428 cont_map = pointer_map_create ();
1429 slot = pointer_map_insert (cont_map, case_lab);
1430 *slot = q->cont_stmt;
1431 VEC_quick_push (tree, case_label_vec, case_lab);
1432 }
1433 }
1434 for (j = last_case_index; j < last_case_index + nlabels; j++)
1435 {
1436 tree label;
1437 gimple cont_stmt;
1438 void **slot;
1439
1440 last_case = VEC_index (tree, case_label_vec, j);
1441
1442 gcc_assert (last_case);
1443 gcc_assert (cont_map);
1444
1445 slot = pointer_map_contains (cont_map, last_case);
1446 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1447 placeholder, it does not store an actual label, yet. */
1448 gcc_assert (slot);
1449 cont_stmt = *(gimple *) slot;
1450
1451 label = create_artificial_label (tf_loc);
1452 CASE_LABEL (last_case) = label;
1453
1454 x = gimple_build_label (label);
1455 gimple_seq_add_stmt (&switch_body, x);
1456 gimple_seq_add_stmt (&switch_body, cont_stmt);
1457 maybe_record_in_goto_queue (state, cont_stmt);
1458 }
1459 if (cont_map)
1460 pointer_map_destroy (cont_map);
1461
1462 replace_goto_queue (tf);
1463
1464 /* Make sure that the last case is the default label, as one is required.
1465 Then sort the labels, which is also required in GIMPLE. */
1466 CASE_LOW (last_case) = NULL;
1467 sort_case_labels (case_label_vec);
1468
1469 /* Build the switch statement, setting last_case to be the default
1470 label. */
1471 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1472 case_label_vec);
1473 gimple_set_location (switch_stmt, finally_loc);
1474
1475 /* Need to link SWITCH_STMT after running replace_goto_queue
1476 due to not wanting to process the same goto stmts twice. */
1477 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1478 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1479 }
1480
1481 /* Decide whether or not we are going to duplicate the finally block.
1482 There are several considerations.
1483
1484 First, if this is Java, then the finally block contains code
1485 written by the user. It has line numbers associated with it,
1486 so duplicating the block means it's difficult to set a breakpoint.
1487 Since controlling code generation via -g is verboten, we simply
1488 never duplicate code without optimization.
1489
1490 Second, we'd like to prevent egregious code growth. One way to
1491 do this is to estimate the size of the finally block, multiply
1492 that by the number of copies we'd need to make, and compare against
1493 the estimate of the size of the switch machinery we'd have to add. */
1494
1495 static bool
1496 decide_copy_try_finally (int ndests, gimple_seq finally)
1497 {
1498 int f_estimate, sw_estimate;
1499
1500 if (!optimize)
1501 return false;
1502
1503 /* Finally estimate N times, plus N gotos. */
1504 f_estimate = count_insns_seq (finally, &eni_size_weights);
1505 f_estimate = (f_estimate + 1) * ndests;
1506
1507 /* Switch statement (cost 10), N variable assignments, N gotos. */
1508 sw_estimate = 10 + 2 * ndests;
1509
1510 /* Optimize for size clearly wants our best guess. */
1511 if (optimize_function_for_size_p (cfun))
1512 return f_estimate < sw_estimate;
1513
1514 /* ??? These numbers are completely made up so far. */
1515 if (optimize > 1)
1516 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1517 else
1518 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1519 }
1520
1521
1522 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1523 to a sequence of labels and blocks, plus the exception region trees
1524 that record all the magic. This is complicated by the need to
1525 arrange for the FINALLY block to be executed on all exits. */
1526
1527 static gimple_seq
1528 lower_try_finally (struct leh_state *state, gimple tp)
1529 {
1530 struct leh_tf_state this_tf;
1531 struct leh_state this_state;
1532 int ndests;
1533
1534 /* Process the try block. */
1535
1536 memset (&this_tf, 0, sizeof (this_tf));
1537 this_tf.try_finally_expr = tp;
1538 this_tf.top_p = tp;
1539 this_tf.outer = state;
1540 if (using_eh_for_cleanups_p)
1541 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1542 else
1543 this_tf.region = NULL;
1544
1545 this_state.cur_region = this_tf.region;
1546 this_state.ehp_region = state->ehp_region;
1547 this_state.tf = &this_tf;
1548
1549 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1550
1551 /* Determine if the try block is escaped through the bottom. */
1552 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1553
1554 /* Determine if any exceptions are possible within the try block. */
1555 if (using_eh_for_cleanups_p)
1556 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1557 if (this_tf.may_throw)
1558 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1559
1560 /* Determine how many edges (still) reach the finally block. Or rather,
1561 how many destinations are reached by the finally block. Use this to
1562 determine how we process the finally block itself. */
1563
1564 ndests = VEC_length (tree, this_tf.dest_array);
1565 ndests += this_tf.may_fallthru;
1566 ndests += this_tf.may_return;
1567 ndests += this_tf.may_throw;
1568
1569 /* If the FINALLY block is not reachable, dike it out. */
1570 if (ndests == 0)
1571 {
1572 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1573 gimple_try_set_cleanup (tp, NULL);
1574 }
1575 /* If the finally block doesn't fall through, then any destination
1576 we might try to impose there isn't reached either. There may be
1577 some minor amount of cleanup and redirection still needed. */
1578 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1579 lower_try_finally_nofallthru (state, &this_tf);
1580
1581 /* We can easily special-case redirection to a single destination. */
1582 else if (ndests == 1)
1583 lower_try_finally_onedest (state, &this_tf);
1584 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1585 lower_try_finally_copy (state, &this_tf);
1586 else
1587 lower_try_finally_switch (state, &this_tf);
1588
1589 /* If someone requested we add a label at the end of the transformed
1590 block, do so. */
1591 if (this_tf.fallthru_label)
1592 {
1593 /* This must be reached only if ndests == 0. */
1594 gimple x = gimple_build_label (this_tf.fallthru_label);
1595 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1596 }
1597
1598 VEC_free (tree, heap, this_tf.dest_array);
1599 if (this_tf.goto_queue)
1600 free (this_tf.goto_queue);
1601 if (this_tf.goto_queue_map)
1602 pointer_map_destroy (this_tf.goto_queue_map);
1603
1604 return this_tf.top_p_seq;
1605 }
1606
1607 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1608 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1609 exception region trees that records all the magic. */
1610
1611 static gimple_seq
1612 lower_catch (struct leh_state *state, gimple tp)
1613 {
1614 eh_region try_region = NULL;
1615 struct leh_state this_state = *state;
1616 gimple_stmt_iterator gsi;
1617 tree out_label;
1618 gimple_seq new_seq;
1619 gimple x;
1620 location_t try_catch_loc = gimple_location (tp);
1621
1622 if (flag_exceptions)
1623 {
1624 try_region = gen_eh_region_try (state->cur_region);
1625 this_state.cur_region = try_region;
1626 }
1627
1628 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1629
1630 if (!eh_region_may_contain_throw (try_region))
1631 return gimple_try_eval (tp);
1632
1633 new_seq = NULL;
1634 emit_eh_dispatch (&new_seq, try_region);
1635 emit_resx (&new_seq, try_region);
1636
1637 this_state.cur_region = state->cur_region;
1638 this_state.ehp_region = try_region;
1639
1640 out_label = NULL;
1641 for (gsi = gsi_start (gimple_try_cleanup (tp));
1642 !gsi_end_p (gsi);
1643 gsi_next (&gsi))
1644 {
1645 eh_catch c;
1646 gimple gcatch;
1647 gimple_seq handler;
1648
1649 gcatch = gsi_stmt (gsi);
1650 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1651
1652 handler = gimple_catch_handler (gcatch);
1653 lower_eh_constructs_1 (&this_state, handler);
1654
1655 c->label = create_artificial_label (UNKNOWN_LOCATION);
1656 x = gimple_build_label (c->label);
1657 gimple_seq_add_stmt (&new_seq, x);
1658
1659 gimple_seq_add_seq (&new_seq, handler);
1660
1661 if (gimple_seq_may_fallthru (new_seq))
1662 {
1663 if (!out_label)
1664 out_label = create_artificial_label (try_catch_loc);
1665
1666 x = gimple_build_goto (out_label);
1667 gimple_seq_add_stmt (&new_seq, x);
1668 }
1669 }
1670
1671 gimple_try_set_cleanup (tp, new_seq);
1672
1673 return frob_into_branch_around (tp, try_region, out_label);
1674 }
1675
1676 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1677 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1678 region trees that record all the magic. */
1679
1680 static gimple_seq
1681 lower_eh_filter (struct leh_state *state, gimple tp)
1682 {
1683 struct leh_state this_state = *state;
1684 eh_region this_region = NULL;
1685 gimple inner, x;
1686 gimple_seq new_seq;
1687
1688 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1689
1690 if (flag_exceptions)
1691 {
1692 this_region = gen_eh_region_allowed (state->cur_region,
1693 gimple_eh_filter_types (inner));
1694 this_state.cur_region = this_region;
1695 }
1696
1697 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1698
1699 if (!eh_region_may_contain_throw (this_region))
1700 return gimple_try_eval (tp);
1701
1702 new_seq = NULL;
1703 this_state.cur_region = state->cur_region;
1704 this_state.ehp_region = this_region;
1705
1706 emit_eh_dispatch (&new_seq, this_region);
1707 emit_resx (&new_seq, this_region);
1708
1709 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1710 x = gimple_build_label (this_region->u.allowed.label);
1711 gimple_seq_add_stmt (&new_seq, x);
1712
1713 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1714 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1715
1716 gimple_try_set_cleanup (tp, new_seq);
1717
1718 return frob_into_branch_around (tp, this_region, NULL);
1719 }
1720
1721 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1722 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1723 plus the exception region trees that record all the magic. */
1724
1725 static gimple_seq
1726 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1727 {
1728 struct leh_state this_state = *state;
1729
1730 if (flag_exceptions)
1731 {
1732 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1733 eh_region this_region;
1734
1735 this_region = gen_eh_region_must_not_throw (state->cur_region);
1736 this_region->u.must_not_throw.failure_decl
1737 = gimple_eh_must_not_throw_fndecl (inner);
1738 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1739
1740 /* In order to get mangling applied to this decl, we must mark it
1741 used now. Otherwise, pass_ipa_free_lang_data won't think it
1742 needs to happen. */
1743 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1744
1745 this_state.cur_region = this_region;
1746 }
1747
1748 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1749
1750 return gimple_try_eval (tp);
1751 }
1752
1753 /* Implement a cleanup expression. This is similar to try-finally,
1754 except that we only execute the cleanup block for exception edges. */
1755
1756 static gimple_seq
1757 lower_cleanup (struct leh_state *state, gimple tp)
1758 {
1759 struct leh_state this_state = *state;
1760 eh_region this_region = NULL;
1761 struct leh_tf_state fake_tf;
1762 gimple_seq result;
1763
1764 if (flag_exceptions)
1765 {
1766 this_region = gen_eh_region_cleanup (state->cur_region);
1767 this_state.cur_region = this_region;
1768 }
1769
1770 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1771
1772 if (!eh_region_may_contain_throw (this_region))
1773 return gimple_try_eval (tp);
1774
1775 /* Build enough of a try-finally state so that we can reuse
1776 honor_protect_cleanup_actions. */
1777 memset (&fake_tf, 0, sizeof (fake_tf));
1778 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1779 fake_tf.outer = state;
1780 fake_tf.region = this_region;
1781 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1782 fake_tf.may_throw = true;
1783
1784 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1785
1786 if (fake_tf.may_throw)
1787 {
1788 /* In this case honor_protect_cleanup_actions had nothing to do,
1789 and we should process this normally. */
1790 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1791 result = frob_into_branch_around (tp, this_region,
1792 fake_tf.fallthru_label);
1793 }
1794 else
1795 {
1796 /* In this case honor_protect_cleanup_actions did nearly all of
1797 the work. All we have left is to append the fallthru_label. */
1798
1799 result = gimple_try_eval (tp);
1800 if (fake_tf.fallthru_label)
1801 {
1802 gimple x = gimple_build_label (fake_tf.fallthru_label);
1803 gimple_seq_add_stmt (&result, x);
1804 }
1805 }
1806 return result;
1807 }
1808
1809 /* Main loop for lowering eh constructs. Also moves gsi to the next
1810 statement. */
1811
1812 static void
1813 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1814 {
1815 gimple_seq replace;
1816 gimple x;
1817 gimple stmt = gsi_stmt (*gsi);
1818
1819 switch (gimple_code (stmt))
1820 {
1821 case GIMPLE_CALL:
1822 {
1823 tree fndecl = gimple_call_fndecl (stmt);
1824 tree rhs, lhs;
1825
1826 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1827 switch (DECL_FUNCTION_CODE (fndecl))
1828 {
1829 case BUILT_IN_EH_POINTER:
1830 /* The front end may have generated a call to
1831 __builtin_eh_pointer (0) within a catch region. Replace
1832 this zero argument with the current catch region number. */
1833 if (state->ehp_region)
1834 {
1835 tree nr = build_int_cst (NULL, state->ehp_region->index);
1836 gimple_call_set_arg (stmt, 0, nr);
1837 }
1838 else
1839 {
1840 /* The user has dome something silly. Remove it. */
1841 rhs = build_int_cst (ptr_type_node, 0);
1842 goto do_replace;
1843 }
1844 break;
1845
1846 case BUILT_IN_EH_FILTER:
1847 /* ??? This should never appear, but since it's a builtin it
1848 is accessible to abuse by users. Just remove it and
1849 replace the use with the arbitrary value zero. */
1850 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1851 do_replace:
1852 lhs = gimple_call_lhs (stmt);
1853 x = gimple_build_assign (lhs, rhs);
1854 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1855 /* FALLTHRU */
1856
1857 case BUILT_IN_EH_COPY_VALUES:
1858 /* Likewise this should not appear. Remove it. */
1859 gsi_remove (gsi, true);
1860 return;
1861
1862 default:
1863 break;
1864 }
1865 }
1866 /* FALLTHRU */
1867
1868 case GIMPLE_ASSIGN:
1869 /* If the stmt can throw use a new temporary for the assignment
1870 to a LHS. This makes sure the old value of the LHS is
1871 available on the EH edge. Only do so for statements that
1872 potentially fall thru (no noreturn calls e.g.), otherwise
1873 this new assignment might create fake fallthru regions. */
1874 if (stmt_could_throw_p (stmt)
1875 && gimple_has_lhs (stmt)
1876 && gimple_stmt_may_fallthru (stmt)
1877 && !tree_could_throw_p (gimple_get_lhs (stmt))
1878 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1879 {
1880 tree lhs = gimple_get_lhs (stmt);
1881 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1882 gimple s = gimple_build_assign (lhs, tmp);
1883 gimple_set_location (s, gimple_location (stmt));
1884 gimple_set_block (s, gimple_block (stmt));
1885 gimple_set_lhs (stmt, tmp);
1886 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1887 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1888 DECL_GIMPLE_REG_P (tmp) = 1;
1889 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1890 }
1891 /* Look for things that can throw exceptions, and record them. */
1892 if (state->cur_region && stmt_could_throw_p (stmt))
1893 {
1894 record_stmt_eh_region (state->cur_region, stmt);
1895 note_eh_region_may_contain_throw (state->cur_region);
1896 }
1897 break;
1898
1899 case GIMPLE_COND:
1900 case GIMPLE_GOTO:
1901 case GIMPLE_RETURN:
1902 maybe_record_in_goto_queue (state, stmt);
1903 break;
1904
1905 case GIMPLE_SWITCH:
1906 verify_norecord_switch_expr (state, stmt);
1907 break;
1908
1909 case GIMPLE_TRY:
1910 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1911 replace = lower_try_finally (state, stmt);
1912 else
1913 {
1914 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1915 if (!x)
1916 {
1917 replace = gimple_try_eval (stmt);
1918 lower_eh_constructs_1 (state, replace);
1919 }
1920 else
1921 switch (gimple_code (x))
1922 {
1923 case GIMPLE_CATCH:
1924 replace = lower_catch (state, stmt);
1925 break;
1926 case GIMPLE_EH_FILTER:
1927 replace = lower_eh_filter (state, stmt);
1928 break;
1929 case GIMPLE_EH_MUST_NOT_THROW:
1930 replace = lower_eh_must_not_throw (state, stmt);
1931 break;
1932 default:
1933 replace = lower_cleanup (state, stmt);
1934 break;
1935 }
1936 }
1937
1938 /* Remove the old stmt and insert the transformed sequence
1939 instead. */
1940 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1941 gsi_remove (gsi, true);
1942
1943 /* Return since we don't want gsi_next () */
1944 return;
1945
1946 default:
1947 /* A type, a decl, or some kind of statement that we're not
1948 interested in. Don't walk them. */
1949 break;
1950 }
1951
1952 gsi_next (gsi);
1953 }
1954
1955 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1956
1957 static void
1958 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1959 {
1960 gimple_stmt_iterator gsi;
1961 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1962 lower_eh_constructs_2 (state, &gsi);
1963 }
1964
1965 static unsigned int
1966 lower_eh_constructs (void)
1967 {
1968 struct leh_state null_state;
1969 gimple_seq bodyp;
1970
1971 bodyp = gimple_body (current_function_decl);
1972 if (bodyp == NULL)
1973 return 0;
1974
1975 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1976 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1977 memset (&null_state, 0, sizeof (null_state));
1978
1979 collect_finally_tree_1 (bodyp, NULL);
1980 lower_eh_constructs_1 (&null_state, bodyp);
1981
1982 /* We assume there's a return statement, or something, at the end of
1983 the function, and thus ploping the EH sequence afterward won't
1984 change anything. */
1985 gcc_assert (!gimple_seq_may_fallthru (bodyp));
1986 gimple_seq_add_seq (&bodyp, eh_seq);
1987
1988 /* We assume that since BODYP already existed, adding EH_SEQ to it
1989 didn't change its value, and we don't have to re-set the function. */
1990 gcc_assert (bodyp == gimple_body (current_function_decl));
1991
1992 htab_delete (finally_tree);
1993 BITMAP_FREE (eh_region_may_contain_throw_map);
1994 eh_seq = NULL;
1995
1996 /* If this function needs a language specific EH personality routine
1997 and the frontend didn't already set one do so now. */
1998 if (function_needs_eh_personality (cfun) == eh_personality_lang
1999 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2000 DECL_FUNCTION_PERSONALITY (current_function_decl)
2001 = lang_hooks.eh_personality ();
2002
2003 return 0;
2004 }
2005
2006 struct gimple_opt_pass pass_lower_eh =
2007 {
2008 {
2009 GIMPLE_PASS,
2010 "eh", /* name */
2011 NULL, /* gate */
2012 lower_eh_constructs, /* execute */
2013 NULL, /* sub */
2014 NULL, /* next */
2015 0, /* static_pass_number */
2016 TV_TREE_EH, /* tv_id */
2017 PROP_gimple_lcf, /* properties_required */
2018 PROP_gimple_leh, /* properties_provided */
2019 0, /* properties_destroyed */
2020 0, /* todo_flags_start */
2021 TODO_dump_func /* todo_flags_finish */
2022 }
2023 };
2024 \f
2025 /* Create the multiple edges from an EH_DISPATCH statement to all of
2026 the possible handlers for its EH region. Return true if there's
2027 no fallthru edge; false if there is. */
2028
2029 bool
2030 make_eh_dispatch_edges (gimple stmt)
2031 {
2032 eh_region r;
2033 eh_catch c;
2034 basic_block src, dst;
2035
2036 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2037 src = gimple_bb (stmt);
2038
2039 switch (r->type)
2040 {
2041 case ERT_TRY:
2042 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2043 {
2044 dst = label_to_block (c->label);
2045 make_edge (src, dst, 0);
2046
2047 /* A catch-all handler doesn't have a fallthru. */
2048 if (c->type_list == NULL)
2049 return false;
2050 }
2051 break;
2052
2053 case ERT_ALLOWED_EXCEPTIONS:
2054 dst = label_to_block (r->u.allowed.label);
2055 make_edge (src, dst, 0);
2056 break;
2057
2058 default:
2059 gcc_unreachable ();
2060 }
2061
2062 return true;
2063 }
2064
2065 /* Create the single EH edge from STMT to its nearest landing pad,
2066 if there is such a landing pad within the current function. */
2067
2068 void
2069 make_eh_edges (gimple stmt)
2070 {
2071 basic_block src, dst;
2072 eh_landing_pad lp;
2073 int lp_nr;
2074
2075 lp_nr = lookup_stmt_eh_lp (stmt);
2076 if (lp_nr <= 0)
2077 return;
2078
2079 lp = get_eh_landing_pad_from_number (lp_nr);
2080 gcc_assert (lp != NULL);
2081
2082 src = gimple_bb (stmt);
2083 dst = label_to_block (lp->post_landing_pad);
2084 make_edge (src, dst, EDGE_EH);
2085 }
2086
2087 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2088 do not actually perform the final edge redirection.
2089
2090 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2091 we intend to change the destination EH region as well; this means
2092 EH_LANDING_PAD_NR must already be set on the destination block label.
2093 If false, we're being called from generic cfg manipulation code and we
2094 should preserve our place within the region tree. */
2095
2096 static void
2097 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2098 {
2099 eh_landing_pad old_lp, new_lp;
2100 basic_block old_bb;
2101 gimple throw_stmt;
2102 int old_lp_nr, new_lp_nr;
2103 tree old_label, new_label;
2104 edge_iterator ei;
2105 edge e;
2106
2107 old_bb = edge_in->dest;
2108 old_label = gimple_block_label (old_bb);
2109 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2110 gcc_assert (old_lp_nr > 0);
2111 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2112
2113 throw_stmt = last_stmt (edge_in->src);
2114 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2115
2116 new_label = gimple_block_label (new_bb);
2117
2118 /* Look for an existing region that might be using NEW_BB already. */
2119 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2120 if (new_lp_nr)
2121 {
2122 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2123 gcc_assert (new_lp);
2124
2125 /* Unless CHANGE_REGION is true, the new and old landing pad
2126 had better be associated with the same EH region. */
2127 gcc_assert (change_region || new_lp->region == old_lp->region);
2128 }
2129 else
2130 {
2131 new_lp = NULL;
2132 gcc_assert (!change_region);
2133 }
2134
2135 /* Notice when we redirect the last EH edge away from OLD_BB. */
2136 FOR_EACH_EDGE (e, ei, old_bb->preds)
2137 if (e != edge_in && (e->flags & EDGE_EH))
2138 break;
2139
2140 if (new_lp)
2141 {
2142 /* NEW_LP already exists. If there are still edges into OLD_LP,
2143 there's nothing to do with the EH tree. If there are no more
2144 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2145 If CHANGE_REGION is true, then our caller is expecting to remove
2146 the landing pad. */
2147 if (e == NULL && !change_region)
2148 remove_eh_landing_pad (old_lp);
2149 }
2150 else
2151 {
2152 /* No correct landing pad exists. If there are no more edges
2153 into OLD_LP, then we can simply re-use the existing landing pad.
2154 Otherwise, we have to create a new landing pad. */
2155 if (e == NULL)
2156 {
2157 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2158 new_lp = old_lp;
2159 }
2160 else
2161 new_lp = gen_eh_landing_pad (old_lp->region);
2162 new_lp->post_landing_pad = new_label;
2163 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2164 }
2165
2166 /* Maybe move the throwing statement to the new region. */
2167 if (old_lp != new_lp)
2168 {
2169 remove_stmt_from_eh_lp (throw_stmt);
2170 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2171 }
2172 }
2173
2174 /* Redirect EH edge E to NEW_BB. */
2175
2176 edge
2177 redirect_eh_edge (edge edge_in, basic_block new_bb)
2178 {
2179 redirect_eh_edge_1 (edge_in, new_bb, false);
2180 return ssa_redirect_edge (edge_in, new_bb);
2181 }
2182
2183 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2184 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2185 The actual edge update will happen in the caller. */
2186
2187 void
2188 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2189 {
2190 tree new_lab = gimple_block_label (new_bb);
2191 bool any_changed = false;
2192 basic_block old_bb;
2193 eh_region r;
2194 eh_catch c;
2195
2196 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2197 switch (r->type)
2198 {
2199 case ERT_TRY:
2200 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2201 {
2202 old_bb = label_to_block (c->label);
2203 if (old_bb == e->dest)
2204 {
2205 c->label = new_lab;
2206 any_changed = true;
2207 }
2208 }
2209 break;
2210
2211 case ERT_ALLOWED_EXCEPTIONS:
2212 old_bb = label_to_block (r->u.allowed.label);
2213 gcc_assert (old_bb == e->dest);
2214 r->u.allowed.label = new_lab;
2215 any_changed = true;
2216 break;
2217
2218 default:
2219 gcc_unreachable ();
2220 }
2221
2222 gcc_assert (any_changed);
2223 }
2224 \f
2225 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2226
2227 bool
2228 operation_could_trap_helper_p (enum tree_code op,
2229 bool fp_operation,
2230 bool honor_trapv,
2231 bool honor_nans,
2232 bool honor_snans,
2233 tree divisor,
2234 bool *handled)
2235 {
2236 *handled = true;
2237 switch (op)
2238 {
2239 case TRUNC_DIV_EXPR:
2240 case CEIL_DIV_EXPR:
2241 case FLOOR_DIV_EXPR:
2242 case ROUND_DIV_EXPR:
2243 case EXACT_DIV_EXPR:
2244 case CEIL_MOD_EXPR:
2245 case FLOOR_MOD_EXPR:
2246 case ROUND_MOD_EXPR:
2247 case TRUNC_MOD_EXPR:
2248 case RDIV_EXPR:
2249 if (honor_snans || honor_trapv)
2250 return true;
2251 if (fp_operation)
2252 return flag_trapping_math;
2253 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2254 return true;
2255 return false;
2256
2257 case LT_EXPR:
2258 case LE_EXPR:
2259 case GT_EXPR:
2260 case GE_EXPR:
2261 case LTGT_EXPR:
2262 /* Some floating point comparisons may trap. */
2263 return honor_nans;
2264
2265 case EQ_EXPR:
2266 case NE_EXPR:
2267 case UNORDERED_EXPR:
2268 case ORDERED_EXPR:
2269 case UNLT_EXPR:
2270 case UNLE_EXPR:
2271 case UNGT_EXPR:
2272 case UNGE_EXPR:
2273 case UNEQ_EXPR:
2274 return honor_snans;
2275
2276 case CONVERT_EXPR:
2277 case FIX_TRUNC_EXPR:
2278 /* Conversion of floating point might trap. */
2279 return honor_nans;
2280
2281 case NEGATE_EXPR:
2282 case ABS_EXPR:
2283 case CONJ_EXPR:
2284 /* These operations don't trap with floating point. */
2285 if (honor_trapv)
2286 return true;
2287 return false;
2288
2289 case PLUS_EXPR:
2290 case MINUS_EXPR:
2291 case MULT_EXPR:
2292 /* Any floating arithmetic may trap. */
2293 if (fp_operation && flag_trapping_math)
2294 return true;
2295 if (honor_trapv)
2296 return true;
2297 return false;
2298
2299 default:
2300 /* Any floating arithmetic may trap. */
2301 if (fp_operation && flag_trapping_math)
2302 return true;
2303
2304 *handled = false;
2305 return false;
2306 }
2307 }
2308
2309 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2310 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2311 type operands that may trap. If OP is a division operator, DIVISOR contains
2312 the value of the divisor. */
2313
2314 bool
2315 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2316 tree divisor)
2317 {
2318 bool honor_nans = (fp_operation && flag_trapping_math
2319 && !flag_finite_math_only);
2320 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2321 bool handled;
2322
2323 if (TREE_CODE_CLASS (op) != tcc_comparison
2324 && TREE_CODE_CLASS (op) != tcc_unary
2325 && TREE_CODE_CLASS (op) != tcc_binary)
2326 return false;
2327
2328 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2329 honor_nans, honor_snans, divisor,
2330 &handled);
2331 }
2332
2333 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2334 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2335 This routine expects only GIMPLE lhs or rhs input. */
2336
2337 bool
2338 tree_could_trap_p (tree expr)
2339 {
2340 enum tree_code code;
2341 bool fp_operation = false;
2342 bool honor_trapv = false;
2343 tree t, base, div = NULL_TREE;
2344
2345 if (!expr)
2346 return false;
2347
2348 code = TREE_CODE (expr);
2349 t = TREE_TYPE (expr);
2350
2351 if (t)
2352 {
2353 if (COMPARISON_CLASS_P (expr))
2354 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2355 else
2356 fp_operation = FLOAT_TYPE_P (t);
2357 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2358 }
2359
2360 if (TREE_CODE_CLASS (code) == tcc_binary)
2361 div = TREE_OPERAND (expr, 1);
2362 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2363 return true;
2364
2365 restart:
2366 switch (code)
2367 {
2368 case TARGET_MEM_REF:
2369 /* For TARGET_MEM_REFs use the information based on the original
2370 reference. */
2371 expr = TMR_ORIGINAL (expr);
2372 code = TREE_CODE (expr);
2373 goto restart;
2374
2375 case COMPONENT_REF:
2376 case REALPART_EXPR:
2377 case IMAGPART_EXPR:
2378 case BIT_FIELD_REF:
2379 case VIEW_CONVERT_EXPR:
2380 case WITH_SIZE_EXPR:
2381 expr = TREE_OPERAND (expr, 0);
2382 code = TREE_CODE (expr);
2383 goto restart;
2384
2385 case ARRAY_RANGE_REF:
2386 base = TREE_OPERAND (expr, 0);
2387 if (tree_could_trap_p (base))
2388 return true;
2389 if (TREE_THIS_NOTRAP (expr))
2390 return false;
2391 return !range_in_array_bounds_p (expr);
2392
2393 case ARRAY_REF:
2394 base = TREE_OPERAND (expr, 0);
2395 if (tree_could_trap_p (base))
2396 return true;
2397 if (TREE_THIS_NOTRAP (expr))
2398 return false;
2399 return !in_array_bounds_p (expr);
2400
2401 case INDIRECT_REF:
2402 case ALIGN_INDIRECT_REF:
2403 case MISALIGNED_INDIRECT_REF:
2404 return !TREE_THIS_NOTRAP (expr);
2405
2406 case ASM_EXPR:
2407 return TREE_THIS_VOLATILE (expr);
2408
2409 case CALL_EXPR:
2410 t = get_callee_fndecl (expr);
2411 /* Assume that calls to weak functions may trap. */
2412 if (!t || !DECL_P (t) || DECL_WEAK (t))
2413 return true;
2414 return false;
2415
2416 default:
2417 return false;
2418 }
2419 }
2420
2421
2422 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2423 an assignment or a conditional) may throw. */
2424
2425 static bool
2426 stmt_could_throw_1_p (gimple stmt)
2427 {
2428 enum tree_code code = gimple_expr_code (stmt);
2429 bool honor_nans = false;
2430 bool honor_snans = false;
2431 bool fp_operation = false;
2432 bool honor_trapv = false;
2433 tree t;
2434 size_t i;
2435 bool handled, ret;
2436
2437 if (TREE_CODE_CLASS (code) == tcc_comparison
2438 || TREE_CODE_CLASS (code) == tcc_unary
2439 || TREE_CODE_CLASS (code) == tcc_binary)
2440 {
2441 t = gimple_expr_type (stmt);
2442 fp_operation = FLOAT_TYPE_P (t);
2443 if (fp_operation)
2444 {
2445 honor_nans = flag_trapping_math && !flag_finite_math_only;
2446 honor_snans = flag_signaling_nans != 0;
2447 }
2448 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2449 honor_trapv = true;
2450 }
2451
2452 /* Check if the main expression may trap. */
2453 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2454 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2455 honor_nans, honor_snans, t,
2456 &handled);
2457 if (handled)
2458 return ret;
2459
2460 /* If the expression does not trap, see if any of the individual operands may
2461 trap. */
2462 for (i = 0; i < gimple_num_ops (stmt); i++)
2463 if (tree_could_trap_p (gimple_op (stmt, i)))
2464 return true;
2465
2466 return false;
2467 }
2468
2469
2470 /* Return true if statement STMT could throw an exception. */
2471
2472 bool
2473 stmt_could_throw_p (gimple stmt)
2474 {
2475 if (!flag_exceptions)
2476 return false;
2477
2478 /* The only statements that can throw an exception are assignments,
2479 conditionals, calls, resx, and asms. */
2480 switch (gimple_code (stmt))
2481 {
2482 case GIMPLE_RESX:
2483 return true;
2484
2485 case GIMPLE_CALL:
2486 return !gimple_call_nothrow_p (stmt);
2487
2488 case GIMPLE_ASSIGN:
2489 case GIMPLE_COND:
2490 if (!flag_non_call_exceptions)
2491 return false;
2492 return stmt_could_throw_1_p (stmt);
2493
2494 case GIMPLE_ASM:
2495 if (!flag_non_call_exceptions)
2496 return false;
2497 return gimple_asm_volatile_p (stmt);
2498
2499 default:
2500 return false;
2501 }
2502 }
2503
2504
2505 /* Return true if expression T could throw an exception. */
2506
2507 bool
2508 tree_could_throw_p (tree t)
2509 {
2510 if (!flag_exceptions)
2511 return false;
2512 if (TREE_CODE (t) == MODIFY_EXPR)
2513 {
2514 if (flag_non_call_exceptions
2515 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2516 return true;
2517 t = TREE_OPERAND (t, 1);
2518 }
2519
2520 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2521 t = TREE_OPERAND (t, 0);
2522 if (TREE_CODE (t) == CALL_EXPR)
2523 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2524 if (flag_non_call_exceptions)
2525 return tree_could_trap_p (t);
2526 return false;
2527 }
2528
2529 /* Return true if STMT can throw an exception that is not caught within
2530 the current function (CFUN). */
2531
2532 bool
2533 stmt_can_throw_external (gimple stmt)
2534 {
2535 int lp_nr;
2536
2537 if (!stmt_could_throw_p (stmt))
2538 return false;
2539
2540 lp_nr = lookup_stmt_eh_lp (stmt);
2541 return lp_nr == 0;
2542 }
2543
2544 /* Return true if STMT can throw an exception that is caught within
2545 the current function (CFUN). */
2546
2547 bool
2548 stmt_can_throw_internal (gimple stmt)
2549 {
2550 int lp_nr;
2551
2552 if (!stmt_could_throw_p (stmt))
2553 return false;
2554
2555 lp_nr = lookup_stmt_eh_lp (stmt);
2556 return lp_nr > 0;
2557 }
2558
2559 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2560 remove any entry it might have from the EH table. Return true if
2561 any change was made. */
2562
2563 bool
2564 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2565 {
2566 if (stmt_could_throw_p (stmt))
2567 return false;
2568 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2569 }
2570
2571 /* Likewise, but always use the current function. */
2572
2573 bool
2574 maybe_clean_eh_stmt (gimple stmt)
2575 {
2576 return maybe_clean_eh_stmt_fn (cfun, stmt);
2577 }
2578
2579 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2580 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2581 in the table if it should be in there. Return TRUE if a replacement was
2582 done that my require an EH edge purge. */
2583
2584 bool
2585 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2586 {
2587 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2588
2589 if (lp_nr != 0)
2590 {
2591 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2592
2593 if (new_stmt == old_stmt && new_stmt_could_throw)
2594 return false;
2595
2596 remove_stmt_from_eh_lp (old_stmt);
2597 if (new_stmt_could_throw)
2598 {
2599 add_stmt_to_eh_lp (new_stmt, lp_nr);
2600 return false;
2601 }
2602 else
2603 return true;
2604 }
2605
2606 return false;
2607 }
2608
2609 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2610 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2611 operand is the return value of duplicate_eh_regions. */
2612
2613 bool
2614 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2615 struct function *old_fun, gimple old_stmt,
2616 struct pointer_map_t *map, int default_lp_nr)
2617 {
2618 int old_lp_nr, new_lp_nr;
2619 void **slot;
2620
2621 if (!stmt_could_throw_p (new_stmt))
2622 return false;
2623
2624 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2625 if (old_lp_nr == 0)
2626 {
2627 if (default_lp_nr == 0)
2628 return false;
2629 new_lp_nr = default_lp_nr;
2630 }
2631 else if (old_lp_nr > 0)
2632 {
2633 eh_landing_pad old_lp, new_lp;
2634
2635 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2636 slot = pointer_map_contains (map, old_lp);
2637 new_lp = (eh_landing_pad) *slot;
2638 new_lp_nr = new_lp->index;
2639 }
2640 else
2641 {
2642 eh_region old_r, new_r;
2643
2644 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2645 slot = pointer_map_contains (map, old_r);
2646 new_r = (eh_region) *slot;
2647 new_lp_nr = -new_r->index;
2648 }
2649
2650 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2651 return true;
2652 }
2653
2654 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2655 and thus no remapping is required. */
2656
2657 bool
2658 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2659 {
2660 int lp_nr;
2661
2662 if (!stmt_could_throw_p (new_stmt))
2663 return false;
2664
2665 lp_nr = lookup_stmt_eh_lp (old_stmt);
2666 if (lp_nr == 0)
2667 return false;
2668
2669 add_stmt_to_eh_lp (new_stmt, lp_nr);
2670 return true;
2671 }
2672 \f
2673 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2674 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2675 this only handles handlers consisting of a single call, as that's the
2676 important case for C++: a destructor call for a particular object showing
2677 up in multiple handlers. */
2678
2679 static bool
2680 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2681 {
2682 gimple_stmt_iterator gsi;
2683 gimple ones, twos;
2684 unsigned int ai;
2685
2686 gsi = gsi_start (oneh);
2687 if (!gsi_one_before_end_p (gsi))
2688 return false;
2689 ones = gsi_stmt (gsi);
2690
2691 gsi = gsi_start (twoh);
2692 if (!gsi_one_before_end_p (gsi))
2693 return false;
2694 twos = gsi_stmt (gsi);
2695
2696 if (!is_gimple_call (ones)
2697 || !is_gimple_call (twos)
2698 || gimple_call_lhs (ones)
2699 || gimple_call_lhs (twos)
2700 || gimple_call_chain (ones)
2701 || gimple_call_chain (twos)
2702 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2703 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2704 return false;
2705
2706 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2707 if (!operand_equal_p (gimple_call_arg (ones, ai),
2708 gimple_call_arg (twos, ai), 0))
2709 return false;
2710
2711 return true;
2712 }
2713
2714 /* Optimize
2715 try { A() } finally { try { ~B() } catch { ~A() } }
2716 try { ... } finally { ~A() }
2717 into
2718 try { A() } catch { ~B() }
2719 try { ~B() ... } finally { ~A() }
2720
2721 This occurs frequently in C++, where A is a local variable and B is a
2722 temporary used in the initializer for A. */
2723
2724 static void
2725 optimize_double_finally (gimple one, gimple two)
2726 {
2727 gimple oneh;
2728 gimple_stmt_iterator gsi;
2729
2730 gsi = gsi_start (gimple_try_cleanup (one));
2731 if (!gsi_one_before_end_p (gsi))
2732 return;
2733
2734 oneh = gsi_stmt (gsi);
2735 if (gimple_code (oneh) != GIMPLE_TRY
2736 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2737 return;
2738
2739 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2740 {
2741 gimple_seq seq = gimple_try_eval (oneh);
2742
2743 gimple_try_set_cleanup (one, seq);
2744 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2745 seq = copy_gimple_seq_and_replace_locals (seq);
2746 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2747 gimple_try_set_eval (two, seq);
2748 }
2749 }
2750
2751 /* Perform EH refactoring optimizations that are simpler to do when code
2752 flow has been lowered but EH structures haven't. */
2753
2754 static void
2755 refactor_eh_r (gimple_seq seq)
2756 {
2757 gimple_stmt_iterator gsi;
2758 gimple one, two;
2759
2760 one = NULL;
2761 two = NULL;
2762 gsi = gsi_start (seq);
2763 while (1)
2764 {
2765 one = two;
2766 if (gsi_end_p (gsi))
2767 two = NULL;
2768 else
2769 two = gsi_stmt (gsi);
2770 if (one
2771 && two
2772 && gimple_code (one) == GIMPLE_TRY
2773 && gimple_code (two) == GIMPLE_TRY
2774 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2775 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2776 optimize_double_finally (one, two);
2777 if (one)
2778 switch (gimple_code (one))
2779 {
2780 case GIMPLE_TRY:
2781 refactor_eh_r (gimple_try_eval (one));
2782 refactor_eh_r (gimple_try_cleanup (one));
2783 break;
2784 case GIMPLE_CATCH:
2785 refactor_eh_r (gimple_catch_handler (one));
2786 break;
2787 case GIMPLE_EH_FILTER:
2788 refactor_eh_r (gimple_eh_filter_failure (one));
2789 break;
2790 default:
2791 break;
2792 }
2793 if (two)
2794 gsi_next (&gsi);
2795 else
2796 break;
2797 }
2798 }
2799
2800 static unsigned
2801 refactor_eh (void)
2802 {
2803 refactor_eh_r (gimple_body (current_function_decl));
2804 return 0;
2805 }
2806
2807 static bool
2808 gate_refactor_eh (void)
2809 {
2810 return flag_exceptions != 0;
2811 }
2812
2813 struct gimple_opt_pass pass_refactor_eh =
2814 {
2815 {
2816 GIMPLE_PASS,
2817 "ehopt", /* name */
2818 gate_refactor_eh, /* gate */
2819 refactor_eh, /* execute */
2820 NULL, /* sub */
2821 NULL, /* next */
2822 0, /* static_pass_number */
2823 TV_TREE_EH, /* tv_id */
2824 PROP_gimple_lcf, /* properties_required */
2825 0, /* properties_provided */
2826 0, /* properties_destroyed */
2827 0, /* todo_flags_start */
2828 TODO_dump_func /* todo_flags_finish */
2829 }
2830 };
2831 \f
2832 /* At the end of gimple optimization, we can lower RESX. */
2833
2834 static bool
2835 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2836 {
2837 int lp_nr;
2838 eh_region src_r, dst_r;
2839 gimple_stmt_iterator gsi;
2840 gimple x;
2841 tree fn, src_nr;
2842 bool ret = false;
2843
2844 lp_nr = lookup_stmt_eh_lp (stmt);
2845 if (lp_nr != 0)
2846 dst_r = get_eh_region_from_lp_number (lp_nr);
2847 else
2848 dst_r = NULL;
2849
2850 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2851 gsi = gsi_last_bb (bb);
2852
2853 if (src_r == NULL)
2854 {
2855 /* We can wind up with no source region when pass_cleanup_eh shows
2856 that there are no entries into an eh region and deletes it, but
2857 then the block that contains the resx isn't removed. This can
2858 happen without optimization when the switch statement created by
2859 lower_try_finally_switch isn't simplified to remove the eh case.
2860
2861 Resolve this by expanding the resx node to an abort. */
2862
2863 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2864 x = gimple_build_call (fn, 0);
2865 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2866
2867 while (EDGE_COUNT (bb->succs) > 0)
2868 remove_edge (EDGE_SUCC (bb, 0));
2869 }
2870 else if (dst_r)
2871 {
2872 /* When we have a destination region, we resolve this by copying
2873 the excptr and filter values into place, and changing the edge
2874 to immediately after the landing pad. */
2875 edge e;
2876
2877 if (lp_nr < 0)
2878 {
2879 basic_block new_bb;
2880 void **slot;
2881 tree lab;
2882
2883 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2884 the failure decl into a new block, if needed. */
2885 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2886
2887 slot = pointer_map_contains (mnt_map, dst_r);
2888 if (slot == NULL)
2889 {
2890 gimple_stmt_iterator gsi2;
2891
2892 new_bb = create_empty_bb (bb);
2893 lab = gimple_block_label (new_bb);
2894 gsi2 = gsi_start_bb (new_bb);
2895
2896 fn = dst_r->u.must_not_throw.failure_decl;
2897 x = gimple_build_call (fn, 0);
2898 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2899 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2900
2901 slot = pointer_map_insert (mnt_map, dst_r);
2902 *slot = lab;
2903 }
2904 else
2905 {
2906 lab = (tree) *slot;
2907 new_bb = label_to_block (lab);
2908 }
2909
2910 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2911 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2912 e->count = bb->count;
2913 e->probability = REG_BR_PROB_BASE;
2914 }
2915 else
2916 {
2917 edge_iterator ei;
2918 tree dst_nr = build_int_cst (NULL, dst_r->index);
2919
2920 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2921 src_nr = build_int_cst (NULL, src_r->index);
2922 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2923 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2924
2925 /* Update the flags for the outgoing edge. */
2926 e = single_succ_edge (bb);
2927 gcc_assert (e->flags & EDGE_EH);
2928 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2929
2930 /* If there are no more EH users of the landing pad, delete it. */
2931 FOR_EACH_EDGE (e, ei, e->dest->preds)
2932 if (e->flags & EDGE_EH)
2933 break;
2934 if (e == NULL)
2935 {
2936 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2937 remove_eh_landing_pad (lp);
2938 }
2939 }
2940
2941 ret = true;
2942 }
2943 else
2944 {
2945 tree var;
2946
2947 /* When we don't have a destination region, this exception escapes
2948 up the call chain. We resolve this by generating a call to the
2949 _Unwind_Resume library function. */
2950
2951 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2952 with no arguments for C++ and Java. Check for that. */
2953 if (src_r->use_cxa_end_cleanup)
2954 {
2955 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2956 x = gimple_build_call (fn, 0);
2957 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2958 }
2959 else
2960 {
2961 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2962 src_nr = build_int_cst (NULL, src_r->index);
2963 x = gimple_build_call (fn, 1, src_nr);
2964 var = create_tmp_var (ptr_type_node, NULL);
2965 var = make_ssa_name (var, x);
2966 gimple_call_set_lhs (x, var);
2967 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2968
2969 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2970 x = gimple_build_call (fn, 1, var);
2971 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2972 }
2973
2974 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2975 }
2976
2977 gsi_remove (&gsi, true);
2978
2979 return ret;
2980 }
2981
2982 static unsigned
2983 execute_lower_resx (void)
2984 {
2985 basic_block bb;
2986 struct pointer_map_t *mnt_map;
2987 bool dominance_invalidated = false;
2988 bool any_rewritten = false;
2989
2990 mnt_map = pointer_map_create ();
2991
2992 FOR_EACH_BB (bb)
2993 {
2994 gimple last = last_stmt (bb);
2995 if (last && is_gimple_resx (last))
2996 {
2997 dominance_invalidated |= lower_resx (bb, last, mnt_map);
2998 any_rewritten = true;
2999 }
3000 }
3001
3002 pointer_map_destroy (mnt_map);
3003
3004 if (dominance_invalidated)
3005 {
3006 free_dominance_info (CDI_DOMINATORS);
3007 free_dominance_info (CDI_POST_DOMINATORS);
3008 }
3009
3010 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3011 }
3012
3013 static bool
3014 gate_lower_resx (void)
3015 {
3016 return flag_exceptions != 0;
3017 }
3018
3019 struct gimple_opt_pass pass_lower_resx =
3020 {
3021 {
3022 GIMPLE_PASS,
3023 "resx", /* name */
3024 gate_lower_resx, /* gate */
3025 execute_lower_resx, /* execute */
3026 NULL, /* sub */
3027 NULL, /* next */
3028 0, /* static_pass_number */
3029 TV_TREE_EH, /* tv_id */
3030 PROP_gimple_lcf, /* properties_required */
3031 0, /* properties_provided */
3032 0, /* properties_destroyed */
3033 0, /* todo_flags_start */
3034 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3035 }
3036 };
3037
3038
3039 /* At the end of inlining, we can lower EH_DISPATCH. */
3040
3041 static void
3042 lower_eh_dispatch (basic_block src, gimple stmt)
3043 {
3044 gimple_stmt_iterator gsi;
3045 int region_nr;
3046 eh_region r;
3047 tree filter, fn;
3048 gimple x;
3049
3050 region_nr = gimple_eh_dispatch_region (stmt);
3051 r = get_eh_region_from_number (region_nr);
3052
3053 gsi = gsi_last_bb (src);
3054
3055 switch (r->type)
3056 {
3057 case ERT_TRY:
3058 {
3059 VEC (tree, heap) *labels = NULL;
3060 tree default_label = NULL;
3061 eh_catch c;
3062 edge_iterator ei;
3063 edge e;
3064
3065 /* Collect the labels for a switch. Zero the post_landing_pad
3066 field becase we'll no longer have anything keeping these labels
3067 in existance and the optimizer will be free to merge these
3068 blocks at will. */
3069 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3070 {
3071 tree tp_node, flt_node, lab = c->label;
3072
3073 c->label = NULL;
3074 tp_node = c->type_list;
3075 flt_node = c->filter_list;
3076
3077 if (tp_node == NULL)
3078 {
3079 default_label = lab;
3080 break;
3081 }
3082 do
3083 {
3084 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3085 TREE_VALUE (flt_node), NULL, lab);
3086 VEC_safe_push (tree, heap, labels, t);
3087
3088 tp_node = TREE_CHAIN (tp_node);
3089 flt_node = TREE_CHAIN (flt_node);
3090 }
3091 while (tp_node);
3092 }
3093
3094 /* Clean up the edge flags. */
3095 FOR_EACH_EDGE (e, ei, src->succs)
3096 {
3097 if (e->flags & EDGE_FALLTHRU)
3098 {
3099 /* If there was no catch-all, use the fallthru edge. */
3100 if (default_label == NULL)
3101 default_label = gimple_block_label (e->dest);
3102 e->flags &= ~EDGE_FALLTHRU;
3103 }
3104 }
3105 gcc_assert (default_label != NULL);
3106
3107 /* Don't generate a switch if there's only a default case.
3108 This is common in the form of try { A; } catch (...) { B; }. */
3109 if (labels == NULL)
3110 {
3111 e = single_succ_edge (src);
3112 e->flags |= EDGE_FALLTHRU;
3113 }
3114 else
3115 {
3116 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3117 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3118 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3119 filter = make_ssa_name (filter, x);
3120 gimple_call_set_lhs (x, filter);
3121 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3122
3123 /* Turn the default label into a default case. */
3124 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3125 NULL, NULL, default_label);
3126 sort_case_labels (labels);
3127
3128 x = gimple_build_switch_vec (filter, default_label, labels);
3129 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3130
3131 VEC_free (tree, heap, labels);
3132 }
3133 }
3134 break;
3135
3136 case ERT_ALLOWED_EXCEPTIONS:
3137 {
3138 edge b_e = BRANCH_EDGE (src);
3139 edge f_e = FALLTHRU_EDGE (src);
3140
3141 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3142 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3143 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3144 filter = make_ssa_name (filter, x);
3145 gimple_call_set_lhs (x, filter);
3146 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3147
3148 r->u.allowed.label = NULL;
3149 x = gimple_build_cond (EQ_EXPR, filter,
3150 build_int_cst (TREE_TYPE (filter),
3151 r->u.allowed.filter),
3152 NULL_TREE, NULL_TREE);
3153 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3154
3155 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3156 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3157 }
3158 break;
3159
3160 default:
3161 gcc_unreachable ();
3162 }
3163
3164 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3165 gsi_remove (&gsi, true);
3166 }
3167
3168 static unsigned
3169 execute_lower_eh_dispatch (void)
3170 {
3171 basic_block bb;
3172 bool any_rewritten = false;
3173
3174 assign_filter_values ();
3175
3176 FOR_EACH_BB (bb)
3177 {
3178 gimple last = last_stmt (bb);
3179 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3180 {
3181 lower_eh_dispatch (bb, last);
3182 any_rewritten = true;
3183 }
3184 }
3185
3186 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3187 }
3188
3189 static bool
3190 gate_lower_eh_dispatch (void)
3191 {
3192 return cfun->eh->region_tree != NULL;
3193 }
3194
3195 struct gimple_opt_pass pass_lower_eh_dispatch =
3196 {
3197 {
3198 GIMPLE_PASS,
3199 "ehdisp", /* name */
3200 gate_lower_eh_dispatch, /* gate */
3201 execute_lower_eh_dispatch, /* execute */
3202 NULL, /* sub */
3203 NULL, /* next */
3204 0, /* static_pass_number */
3205 TV_TREE_EH, /* tv_id */
3206 PROP_gimple_lcf, /* properties_required */
3207 0, /* properties_provided */
3208 0, /* properties_destroyed */
3209 0, /* todo_flags_start */
3210 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3211 }
3212 };
3213 \f
3214 /* Walk statements, see what regions are really referenced and remove
3215 those that are unused. */
3216
3217 static void
3218 remove_unreachable_handlers (void)
3219 {
3220 sbitmap r_reachable, lp_reachable;
3221 eh_region region;
3222 eh_landing_pad lp;
3223 basic_block bb;
3224 int lp_nr, r_nr;
3225
3226 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3227 lp_reachable
3228 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3229 sbitmap_zero (r_reachable);
3230 sbitmap_zero (lp_reachable);
3231
3232 FOR_EACH_BB (bb)
3233 {
3234 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3235
3236 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3237 {
3238 gimple stmt = gsi_stmt (gsi);
3239 lp_nr = lookup_stmt_eh_lp (stmt);
3240
3241 /* Negative LP numbers are MUST_NOT_THROW regions which
3242 are not considered BB enders. */
3243 if (lp_nr < 0)
3244 SET_BIT (r_reachable, -lp_nr);
3245
3246 /* Positive LP numbers are real landing pads, are are BB enders. */
3247 else if (lp_nr > 0)
3248 {
3249 gcc_assert (gsi_one_before_end_p (gsi));
3250 region = get_eh_region_from_lp_number (lp_nr);
3251 SET_BIT (r_reachable, region->index);
3252 SET_BIT (lp_reachable, lp_nr);
3253 }
3254 }
3255 }
3256
3257 if (dump_file)
3258 {
3259 fprintf (dump_file, "Before removal of unreachable regions:\n");
3260 dump_eh_tree (dump_file, cfun);
3261 fprintf (dump_file, "Reachable regions: ");
3262 dump_sbitmap_file (dump_file, r_reachable);
3263 fprintf (dump_file, "Reachable landing pads: ");
3264 dump_sbitmap_file (dump_file, lp_reachable);
3265 }
3266
3267 for (r_nr = 1;
3268 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3269 if (region && !TEST_BIT (r_reachable, r_nr))
3270 {
3271 if (dump_file)
3272 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3273 remove_eh_handler (region);
3274 }
3275
3276 for (lp_nr = 1;
3277 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3278 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3279 {
3280 if (dump_file)
3281 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3282 remove_eh_landing_pad (lp);
3283 }
3284
3285 if (dump_file)
3286 {
3287 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3288 dump_eh_tree (dump_file, cfun);
3289 fprintf (dump_file, "\n\n");
3290 }
3291
3292 sbitmap_free (r_reachable);
3293 sbitmap_free (lp_reachable);
3294
3295 #ifdef ENABLE_CHECKING
3296 verify_eh_tree (cfun);
3297 #endif
3298 }
3299
3300 /* Remove regions that do not have landing pads. This assumes
3301 that remove_unreachable_handlers has already been run, and
3302 that we've just manipulated the landing pads since then. */
3303
3304 static void
3305 remove_unreachable_handlers_no_lp (void)
3306 {
3307 eh_region r;
3308 int i;
3309
3310 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3311 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3312 {
3313 if (dump_file)
3314 fprintf (dump_file, "Removing unreachable region %d\n", i);
3315 remove_eh_handler (r);
3316 }
3317 }
3318
3319 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3320 optimisticaly split all sorts of edges, including EH edges. The
3321 optimization passes in between may not have needed them; if not,
3322 we should undo the split.
3323
3324 Recognize this case by having one EH edge incoming to the BB and
3325 one normal edge outgoing; BB should be empty apart from the
3326 post_landing_pad label.
3327
3328 Note that this is slightly different from the empty handler case
3329 handled by cleanup_empty_eh, in that the actual handler may yet
3330 have actual code but the landing pad has been separated from the
3331 handler. As such, cleanup_empty_eh relies on this transformation
3332 having been done first. */
3333
3334 static bool
3335 unsplit_eh (eh_landing_pad lp)
3336 {
3337 basic_block bb = label_to_block (lp->post_landing_pad);
3338 gimple_stmt_iterator gsi;
3339 edge e_in, e_out;
3340
3341 /* Quickly check the edge counts on BB for singularity. */
3342 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3343 return false;
3344 e_in = EDGE_PRED (bb, 0);
3345 e_out = EDGE_SUCC (bb, 0);
3346
3347 /* Input edge must be EH and output edge must be normal. */
3348 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3349 return false;
3350
3351 /* The block must be empty except for the labels. */
3352 if (!gsi_end_p (gsi_after_labels (bb)))
3353 return false;
3354
3355 /* The destination block must not already have a landing pad
3356 for a different region. */
3357 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3358 {
3359 gimple stmt = gsi_stmt (gsi);
3360 tree lab;
3361 int lp_nr;
3362
3363 if (gimple_code (stmt) != GIMPLE_LABEL)
3364 break;
3365 lab = gimple_label_label (stmt);
3366 lp_nr = EH_LANDING_PAD_NR (lab);
3367 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3368 return false;
3369 }
3370
3371 /* The new destination block must not already be a destination of
3372 the source block, lest we merge fallthru and eh edges and get
3373 all sorts of confused. */
3374 if (find_edge (e_in->src, e_out->dest))
3375 return false;
3376
3377 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3378 thought this should have been cleaned up by a phicprop pass, but
3379 that doesn't appear to handle virtuals. Propagate by hand. */
3380 if (!gimple_seq_empty_p (phi_nodes (bb)))
3381 {
3382 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3383 {
3384 gimple use_stmt, phi = gsi_stmt (gsi);
3385 tree lhs = gimple_phi_result (phi);
3386 tree rhs = gimple_phi_arg_def (phi, 0);
3387 use_operand_p use_p;
3388 imm_use_iterator iter;
3389
3390 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3391 {
3392 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3393 SET_USE (use_p, rhs);
3394 }
3395
3396 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3397 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3398
3399 remove_phi_node (&gsi, true);
3400 }
3401 }
3402
3403 if (dump_file && (dump_flags & TDF_DETAILS))
3404 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3405 lp->index, e_out->dest->index);
3406
3407 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3408 a successor edge, humor it. But do the real CFG change with the
3409 predecessor of E_OUT in order to preserve the ordering of arguments
3410 to the PHI nodes in E_OUT->DEST. */
3411 redirect_eh_edge_1 (e_in, e_out->dest, false);
3412 redirect_edge_pred (e_out, e_in->src);
3413 e_out->flags = e_in->flags;
3414 e_out->probability = e_in->probability;
3415 e_out->count = e_in->count;
3416 remove_edge (e_in);
3417
3418 return true;
3419 }
3420
3421 /* Examine each landing pad block and see if it matches unsplit_eh. */
3422
3423 static bool
3424 unsplit_all_eh (void)
3425 {
3426 bool changed = false;
3427 eh_landing_pad lp;
3428 int i;
3429
3430 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3431 if (lp)
3432 changed |= unsplit_eh (lp);
3433
3434 return changed;
3435 }
3436
3437 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3438 to OLD_BB to NEW_BB; return true on success, false on failure.
3439
3440 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3441 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3442 Virtual PHIs may be deleted and marked for renaming. */
3443
3444 static bool
3445 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3446 edge old_bb_out, bool change_region)
3447 {
3448 gimple_stmt_iterator ngsi, ogsi;
3449 edge_iterator ei;
3450 edge e;
3451 bitmap rename_virts;
3452 bitmap ophi_handled;
3453
3454 FOR_EACH_EDGE (e, ei, old_bb->preds)
3455 redirect_edge_var_map_clear (e);
3456
3457 ophi_handled = BITMAP_ALLOC (NULL);
3458 rename_virts = BITMAP_ALLOC (NULL);
3459
3460 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3461 for the edges we're going to move. */
3462 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3463 {
3464 gimple ophi, nphi = gsi_stmt (ngsi);
3465 tree nresult, nop;
3466
3467 nresult = gimple_phi_result (nphi);
3468 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3469
3470 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3471 the source ssa_name. */
3472 ophi = NULL;
3473 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3474 {
3475 ophi = gsi_stmt (ogsi);
3476 if (gimple_phi_result (ophi) == nop)
3477 break;
3478 ophi = NULL;
3479 }
3480
3481 /* If we did find the corresponding PHI, copy those inputs. */
3482 if (ophi)
3483 {
3484 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3485 FOR_EACH_EDGE (e, ei, old_bb->preds)
3486 {
3487 location_t oloc;
3488 tree oop;
3489
3490 if ((e->flags & EDGE_EH) == 0)
3491 continue;
3492 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3493 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3494 redirect_edge_var_map_add (e, nresult, oop, oloc);
3495 }
3496 }
3497 /* If we didn't find the PHI, but it's a VOP, remember to rename
3498 it later, assuming all other tests succeed. */
3499 else if (!is_gimple_reg (nresult))
3500 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3501 /* If we didn't find the PHI, and it's a real variable, we know
3502 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3503 variable is unchanged from input to the block and we can simply
3504 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3505 else
3506 {
3507 location_t nloc
3508 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3509 FOR_EACH_EDGE (e, ei, old_bb->preds)
3510 redirect_edge_var_map_add (e, nresult, nop, nloc);
3511 }
3512 }
3513
3514 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3515 we don't know what values from the other edges into NEW_BB to use. */
3516 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3517 {
3518 gimple ophi = gsi_stmt (ogsi);
3519 tree oresult = gimple_phi_result (ophi);
3520 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3521 goto fail;
3522 }
3523
3524 /* At this point we know that the merge will succeed. Remove the PHI
3525 nodes for the virtuals that we want to rename. */
3526 if (!bitmap_empty_p (rename_virts))
3527 {
3528 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3529 {
3530 gimple nphi = gsi_stmt (ngsi);
3531 tree nresult = gimple_phi_result (nphi);
3532 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3533 {
3534 mark_virtual_phi_result_for_renaming (nphi);
3535 remove_phi_node (&ngsi, true);
3536 }
3537 else
3538 gsi_next (&ngsi);
3539 }
3540 }
3541
3542 /* Finally, move the edges and update the PHIs. */
3543 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3544 if (e->flags & EDGE_EH)
3545 {
3546 redirect_eh_edge_1 (e, new_bb, change_region);
3547 redirect_edge_succ (e, new_bb);
3548 flush_pending_stmts (e);
3549 }
3550 else
3551 ei_next (&ei);
3552
3553 BITMAP_FREE (ophi_handled);
3554 BITMAP_FREE (rename_virts);
3555 return true;
3556
3557 fail:
3558 FOR_EACH_EDGE (e, ei, old_bb->preds)
3559 redirect_edge_var_map_clear (e);
3560 BITMAP_FREE (ophi_handled);
3561 BITMAP_FREE (rename_virts);
3562 return false;
3563 }
3564
3565 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3566 old region to NEW_REGION at BB. */
3567
3568 static void
3569 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3570 eh_landing_pad lp, eh_region new_region)
3571 {
3572 gimple_stmt_iterator gsi;
3573 eh_landing_pad *pp;
3574
3575 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3576 continue;
3577 *pp = lp->next_lp;
3578
3579 lp->region = new_region;
3580 lp->next_lp = new_region->landing_pads;
3581 new_region->landing_pads = lp;
3582
3583 /* Delete the RESX that was matched within the empty handler block. */
3584 gsi = gsi_last_bb (bb);
3585 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3586 gsi_remove (&gsi, true);
3587
3588 /* Clean up E_OUT for the fallthru. */
3589 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3590 e_out->probability = REG_BR_PROB_BASE;
3591 }
3592
3593 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3594 unsplitting than unsplit_eh was prepared to handle, e.g. when
3595 multiple incoming edges and phis are involved. */
3596
3597 static bool
3598 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3599 {
3600 gimple_stmt_iterator gsi;
3601 tree lab;
3602
3603 /* We really ought not have totally lost everything following
3604 a landing pad label. Given that BB is empty, there had better
3605 be a successor. */
3606 gcc_assert (e_out != NULL);
3607
3608 /* The destination block must not already have a landing pad
3609 for a different region. */
3610 lab = NULL;
3611 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3612 {
3613 gimple stmt = gsi_stmt (gsi);
3614 int lp_nr;
3615
3616 if (gimple_code (stmt) != GIMPLE_LABEL)
3617 break;
3618 lab = gimple_label_label (stmt);
3619 lp_nr = EH_LANDING_PAD_NR (lab);
3620 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3621 return false;
3622 }
3623
3624 /* Attempt to move the PHIs into the successor block. */
3625 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3626 {
3627 if (dump_file && (dump_flags & TDF_DETAILS))
3628 fprintf (dump_file,
3629 "Unsplit EH landing pad %d to block %i "
3630 "(via cleanup_empty_eh).\n",
3631 lp->index, e_out->dest->index);
3632 return true;
3633 }
3634
3635 return false;
3636 }
3637
3638 /* Examine the block associated with LP to determine if it's an empty
3639 handler for its EH region. If so, attempt to redirect EH edges to
3640 an outer region. Return true the CFG was updated in any way. This
3641 is similar to jump forwarding, just across EH edges. */
3642
3643 static bool
3644 cleanup_empty_eh (eh_landing_pad lp)
3645 {
3646 basic_block bb = label_to_block (lp->post_landing_pad);
3647 gimple_stmt_iterator gsi;
3648 gimple resx;
3649 eh_region new_region;
3650 edge_iterator ei;
3651 edge e, e_out;
3652 bool has_non_eh_pred;
3653 int new_lp_nr;
3654
3655 /* There can be zero or one edges out of BB. This is the quickest test. */
3656 switch (EDGE_COUNT (bb->succs))
3657 {
3658 case 0:
3659 e_out = NULL;
3660 break;
3661 case 1:
3662 e_out = EDGE_SUCC (bb, 0);
3663 break;
3664 default:
3665 return false;
3666 }
3667 gsi = gsi_after_labels (bb);
3668
3669 /* Make sure to skip debug statements. */
3670 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3671 gsi_next_nondebug (&gsi);
3672
3673 /* If the block is totally empty, look for more unsplitting cases. */
3674 if (gsi_end_p (gsi))
3675 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3676
3677 /* The block should consist only of a single RESX statement. */
3678 resx = gsi_stmt (gsi);
3679 if (!is_gimple_resx (resx))
3680 return false;
3681 gcc_assert (gsi_one_before_end_p (gsi));
3682
3683 /* Determine if there are non-EH edges, or resx edges into the handler. */
3684 has_non_eh_pred = false;
3685 FOR_EACH_EDGE (e, ei, bb->preds)
3686 if (!(e->flags & EDGE_EH))
3687 has_non_eh_pred = true;
3688
3689 /* Find the handler that's outer of the empty handler by looking at
3690 where the RESX instruction was vectored. */
3691 new_lp_nr = lookup_stmt_eh_lp (resx);
3692 new_region = get_eh_region_from_lp_number (new_lp_nr);
3693
3694 /* If there's no destination region within the current function,
3695 redirection is trivial via removing the throwing statements from
3696 the EH region, removing the EH edges, and allowing the block
3697 to go unreachable. */
3698 if (new_region == NULL)
3699 {
3700 gcc_assert (e_out == NULL);
3701 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3702 if (e->flags & EDGE_EH)
3703 {
3704 gimple stmt = last_stmt (e->src);
3705 remove_stmt_from_eh_lp (stmt);
3706 remove_edge (e);
3707 }
3708 else
3709 ei_next (&ei);
3710 goto succeed;
3711 }
3712
3713 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3714 to handle the abort and allow the blocks to go unreachable. */
3715 if (new_region->type == ERT_MUST_NOT_THROW)
3716 {
3717 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3718 if (e->flags & EDGE_EH)
3719 {
3720 gimple stmt = last_stmt (e->src);
3721 remove_stmt_from_eh_lp (stmt);
3722 add_stmt_to_eh_lp (stmt, new_lp_nr);
3723 remove_edge (e);
3724 }
3725 else
3726 ei_next (&ei);
3727 goto succeed;
3728 }
3729
3730 /* Try to redirect the EH edges and merge the PHIs into the destination
3731 landing pad block. If the merge succeeds, we'll already have redirected
3732 all the EH edges. The handler itself will go unreachable if there were
3733 no normal edges. */
3734 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3735 goto succeed;
3736
3737 /* Finally, if all input edges are EH edges, then we can (potentially)
3738 reduce the number of transfers from the runtime by moving the landing
3739 pad from the original region to the new region. This is a win when
3740 we remove the last CLEANUP region along a particular exception
3741 propagation path. Since nothing changes except for the region with
3742 which the landing pad is associated, the PHI nodes do not need to be
3743 adjusted at all. */
3744 if (!has_non_eh_pred)
3745 {
3746 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3747 if (dump_file && (dump_flags & TDF_DETAILS))
3748 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3749 lp->index, new_region->index);
3750
3751 /* ??? The CFG didn't change, but we may have rendered the
3752 old EH region unreachable. Trigger a cleanup there. */
3753 return true;
3754 }
3755
3756 return false;
3757
3758 succeed:
3759 if (dump_file && (dump_flags & TDF_DETAILS))
3760 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3761 remove_eh_landing_pad (lp);
3762 return true;
3763 }
3764
3765 /* Do a post-order traversal of the EH region tree. Examine each
3766 post_landing_pad block and see if we can eliminate it as empty. */
3767
3768 static bool
3769 cleanup_all_empty_eh (void)
3770 {
3771 bool changed = false;
3772 eh_landing_pad lp;
3773 int i;
3774
3775 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3776 if (lp)
3777 changed |= cleanup_empty_eh (lp);
3778
3779 return changed;
3780 }
3781
3782 /* Perform cleanups and lowering of exception handling
3783 1) cleanups regions with handlers doing nothing are optimized out
3784 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3785 3) Info about regions that are containing instructions, and regions
3786 reachable via local EH edges is collected
3787 4) Eh tree is pruned for regions no longer neccesary.
3788
3789 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3790 Unify those that have the same failure decl and locus.
3791 */
3792
3793 static unsigned int
3794 execute_cleanup_eh (void)
3795 {
3796 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3797 looking up unreachable landing pads. */
3798 remove_unreachable_handlers ();
3799
3800 /* Watch out for the region tree vanishing due to all unreachable. */
3801 if (cfun->eh->region_tree && optimize)
3802 {
3803 bool changed = false;
3804
3805 changed |= unsplit_all_eh ();
3806 changed |= cleanup_all_empty_eh ();
3807
3808 if (changed)
3809 {
3810 free_dominance_info (CDI_DOMINATORS);
3811 free_dominance_info (CDI_POST_DOMINATORS);
3812
3813 /* We delayed all basic block deletion, as we may have performed
3814 cleanups on EH edges while non-EH edges were still present. */
3815 delete_unreachable_blocks ();
3816
3817 /* We manipulated the landing pads. Remove any region that no
3818 longer has a landing pad. */
3819 remove_unreachable_handlers_no_lp ();
3820
3821 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3822 }
3823 }
3824
3825 return 0;
3826 }
3827
3828 static bool
3829 gate_cleanup_eh (void)
3830 {
3831 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3832 }
3833
3834 struct gimple_opt_pass pass_cleanup_eh = {
3835 {
3836 GIMPLE_PASS,
3837 "ehcleanup", /* name */
3838 gate_cleanup_eh, /* gate */
3839 execute_cleanup_eh, /* execute */
3840 NULL, /* sub */
3841 NULL, /* next */
3842 0, /* static_pass_number */
3843 TV_TREE_EH, /* tv_id */
3844 PROP_gimple_lcf, /* properties_required */
3845 0, /* properties_provided */
3846 0, /* properties_destroyed */
3847 0, /* todo_flags_start */
3848 TODO_dump_func /* todo_flags_finish */
3849 }
3850 };
3851 \f
3852 /* Verify that BB containing STMT as the last statement, has precisely the
3853 edge that make_eh_edges would create. */
3854
3855 bool
3856 verify_eh_edges (gimple stmt)
3857 {
3858 basic_block bb = gimple_bb (stmt);
3859 eh_landing_pad lp = NULL;
3860 int lp_nr;
3861 edge_iterator ei;
3862 edge e, eh_edge;
3863
3864 lp_nr = lookup_stmt_eh_lp (stmt);
3865 if (lp_nr > 0)
3866 lp = get_eh_landing_pad_from_number (lp_nr);
3867
3868 eh_edge = NULL;
3869 FOR_EACH_EDGE (e, ei, bb->succs)
3870 {
3871 if (e->flags & EDGE_EH)
3872 {
3873 if (eh_edge)
3874 {
3875 error ("BB %i has multiple EH edges", bb->index);
3876 return true;
3877 }
3878 else
3879 eh_edge = e;
3880 }
3881 }
3882
3883 if (lp == NULL)
3884 {
3885 if (eh_edge)
3886 {
3887 error ("BB %i can not throw but has an EH edge", bb->index);
3888 return true;
3889 }
3890 return false;
3891 }
3892
3893 if (!stmt_could_throw_p (stmt))
3894 {
3895 error ("BB %i last statement has incorrectly set lp", bb->index);
3896 return true;
3897 }
3898
3899 if (eh_edge == NULL)
3900 {
3901 error ("BB %i is missing an EH edge", bb->index);
3902 return true;
3903 }
3904
3905 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3906 {
3907 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3908 return true;
3909 }
3910
3911 return false;
3912 }
3913
3914 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3915
3916 bool
3917 verify_eh_dispatch_edge (gimple stmt)
3918 {
3919 eh_region r;
3920 eh_catch c;
3921 basic_block src, dst;
3922 bool want_fallthru = true;
3923 edge_iterator ei;
3924 edge e, fall_edge;
3925
3926 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
3927 src = gimple_bb (stmt);
3928
3929 FOR_EACH_EDGE (e, ei, src->succs)
3930 gcc_assert (e->aux == NULL);
3931
3932 switch (r->type)
3933 {
3934 case ERT_TRY:
3935 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3936 {
3937 dst = label_to_block (c->label);
3938 e = find_edge (src, dst);
3939 if (e == NULL)
3940 {
3941 error ("BB %i is missing an edge", src->index);
3942 return true;
3943 }
3944 e->aux = (void *)e;
3945
3946 /* A catch-all handler doesn't have a fallthru. */
3947 if (c->type_list == NULL)
3948 {
3949 want_fallthru = false;
3950 break;
3951 }
3952 }
3953 break;
3954
3955 case ERT_ALLOWED_EXCEPTIONS:
3956 dst = label_to_block (r->u.allowed.label);
3957 e = find_edge (src, dst);
3958 if (e == NULL)
3959 {
3960 error ("BB %i is missing an edge", src->index);
3961 return true;
3962 }
3963 e->aux = (void *)e;
3964 break;
3965
3966 default:
3967 gcc_unreachable ();
3968 }
3969
3970 fall_edge = NULL;
3971 FOR_EACH_EDGE (e, ei, src->succs)
3972 {
3973 if (e->flags & EDGE_FALLTHRU)
3974 {
3975 if (fall_edge != NULL)
3976 {
3977 error ("BB %i too many fallthru edges", src->index);
3978 return true;
3979 }
3980 fall_edge = e;
3981 }
3982 else if (e->aux)
3983 e->aux = NULL;
3984 else
3985 {
3986 error ("BB %i has incorrect edge", src->index);
3987 return true;
3988 }
3989 }
3990 if ((fall_edge != NULL) ^ want_fallthru)
3991 {
3992 error ("BB %i has incorrect fallthru edge", src->index);
3993 return true;
3994 }
3995
3996 return false;
3997 }