]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
re PR tree-optimization/50780 (ICE: verify_gimple failed: invalid operands in ternary...
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
60
61 static int
62 struct_ptr_eq (const void *a, const void *b)
63 {
64 const void * const * x = (const void * const *) a;
65 const void * const * y = (const void * const *) b;
66 return *x == *y;
67 }
68
69 static hashval_t
70 struct_ptr_hash (const void *a)
71 {
72 const void * const * x = (const void * const *) a;
73 return (size_t)*x >> 4;
74 }
75
76
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
80
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
84
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
88
89 /* Add statement T in function IFUN to landing pad NUM. */
90
91 void
92 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
93 {
94 struct throw_stmt_node *n;
95 void **slot;
96
97 gcc_assert (num != 0);
98
99 n = ggc_alloc_throw_stmt_node ();
100 n->stmt = t;
101 n->lp_nr = num;
102
103 if (!get_eh_throw_stmt_table (ifun))
104 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
105 struct_ptr_eq,
106 ggc_free));
107
108 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
109 gcc_assert (!*slot);
110 *slot = n;
111 }
112
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
114
115 void
116 add_stmt_to_eh_lp (gimple t, int num)
117 {
118 add_stmt_to_eh_lp_fn (cfun, t, num);
119 }
120
121 /* Add statement T to the single EH landing pad in REGION. */
122
123 static void
124 record_stmt_eh_region (eh_region region, gimple t)
125 {
126 if (region == NULL)
127 return;
128 if (region->type == ERT_MUST_NOT_THROW)
129 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
130 else
131 {
132 eh_landing_pad lp = region->landing_pads;
133 if (lp == NULL)
134 lp = gen_eh_landing_pad (region);
135 else
136 gcc_assert (lp->next_lp == NULL);
137 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
138 }
139 }
140
141
142 /* Remove statement T in function IFUN from its EH landing pad. */
143
144 bool
145 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
146 {
147 struct throw_stmt_node dummy;
148 void **slot;
149
150 if (!get_eh_throw_stmt_table (ifun))
151 return false;
152
153 dummy.stmt = t;
154 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
155 NO_INSERT);
156 if (slot)
157 {
158 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
159 return true;
160 }
161 else
162 return false;
163 }
164
165
166 /* Remove statement T in the current function (cfun) from its
167 EH landing pad. */
168
169 bool
170 remove_stmt_from_eh_lp (gimple t)
171 {
172 return remove_stmt_from_eh_lp_fn (cfun, t);
173 }
174
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
179
180 int
181 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
182 {
183 struct throw_stmt_node *p, n;
184
185 if (ifun->eh->throw_stmt_table == NULL)
186 return 0;
187
188 n.stmt = t;
189 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
190 return p ? p->lp_nr : 0;
191 }
192
193 /* Likewise, but always use the current function. */
194
195 int
196 lookup_stmt_eh_lp (gimple t)
197 {
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
200 if (!cfun)
201 return 0;
202 return lookup_stmt_eh_lp_fn (cfun, t);
203 }
204
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
208
209 struct finally_tree_node
210 {
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
215 treemple child;
216 gimple parent;
217 };
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 void **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = htab_find_slot (finally_tree, n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 default:
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
290 break;
291 }
292 }
293
294
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
297
298 static bool
299 outside_finally_tree (treemple start, gimple target)
300 {
301 struct finally_tree_node n, *p;
302
303 do
304 {
305 n.child = start;
306 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
307 if (!p)
308 return true;
309 start.g = p->parent;
310 }
311 while (start.g != target);
312
313 return false;
314 }
315
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
320
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq;
324
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map;
328
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
337
338 struct goto_queue_node
339 {
340 treemple stmt;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr;
376 gimple top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree,heap) *dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429 void **slot;
430
431 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
432 {
433 for (i = 0; i < tf->goto_queue_active; i++)
434 if ( tf->goto_queue[i].stmt.g == stmt.g)
435 return tf->goto_queue[i].repl_stmt;
436 return NULL;
437 }
438
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
441
442 if (!tf->goto_queue_map)
443 {
444 tf->goto_queue_map = pointer_map_create ();
445 for (i = 0; i < tf->goto_queue_active; i++)
446 {
447 slot = pointer_map_insert (tf->goto_queue_map,
448 tf->goto_queue[i].stmt.g);
449 gcc_assert (*slot == NULL);
450 *slot = &tf->goto_queue[i];
451 }
452 }
453
454 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
455 if (slot != NULL)
456 return (((struct goto_queue_node *) *slot)->repl_stmt);
457
458 return NULL;
459 }
460
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
465
466 static void
467 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
468 gimple_stmt_iterator *gsi)
469 {
470 tree label;
471 gimple_seq new_seq;
472 treemple temp;
473 location_t loc = gimple_location (gsi_stmt (*gsi));
474
475 temp.tp = tp;
476 new_seq = find_goto_replacement (tf, temp);
477 if (!new_seq)
478 return;
479
480 if (gimple_seq_singleton_p (new_seq)
481 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
482 {
483 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
484 return;
485 }
486
487 label = create_artificial_label (loc);
488 /* Set the new label for the GIMPLE_COND */
489 *tp = label;
490
491 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
492 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
493 }
494
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
497
498 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
499
500 static void
501 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
502 gimple_stmt_iterator *gsi)
503 {
504 gimple_seq seq;
505 treemple temp;
506 temp.g = NULL;
507
508 switch (gimple_code (stmt))
509 {
510 case GIMPLE_GOTO:
511 case GIMPLE_RETURN:
512 temp.g = stmt;
513 seq = find_goto_replacement (tf, temp);
514 if (seq)
515 {
516 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
517 gsi_remove (gsi, false);
518 return;
519 }
520 break;
521
522 case GIMPLE_COND:
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
525 break;
526
527 case GIMPLE_TRY:
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
530 break;
531 case GIMPLE_CATCH:
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
536 break;
537
538 default:
539 /* These won't have gotos in them. */
540 break;
541 }
542
543 gsi_next (gsi);
544 }
545
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
547
548 static void
549 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
550 {
551 gimple_stmt_iterator gsi = gsi_start (seq);
552
553 while (!gsi_end_p (gsi))
554 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
555 }
556
557 /* Replace all goto queue members. */
558
559 static void
560 replace_goto_queue (struct leh_tf_state *tf)
561 {
562 if (tf->goto_queue_active == 0)
563 return;
564 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
565 replace_goto_queue_stmt_list (eh_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 new_stmt.tp = gimple_op_ptr (stmt, 2);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
666 new_stmt.tp = gimple_op_ptr (stmt, 3);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
668 break;
669 case GIMPLE_GOTO:
670 new_stmt.g = stmt;
671 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
672 break;
673
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false);
678 break;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
690
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
693 {
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
696
697 if (!tf)
698 return;
699
700 n = gimple_switch_num_labels (switch_expr);
701
702 for (i = 0; i < n; ++i)
703 {
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
708 }
709 }
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
713
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
718
719 static void
720 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
721 tree *return_value_p)
722 {
723 tree ret_expr;
724 gimple x;
725
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q->is_label);
728
729 ret_expr = gimple_return_retval (q->stmt.g);
730
731 if (ret_expr)
732 {
733 if (!*return_value_p)
734 *return_value_p = ret_expr;
735 else
736 gcc_assert (*return_value_p == ret_expr);
737 q->cont_stmt = q->stmt.g;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
740 is executed. e.g.
741
742 int x;
743 int foo (void)
744 {
745 x = 0;
746 try {
747 return x;
748 } finally {
749 x++;
750 }
751 }
752
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
759
760 if (TREE_CODE (ret_expr) == RESULT_DECL)
761 {
762 if (!*return_value_p)
763 *return_value_p = ret_expr;
764 else
765 gcc_assert (*return_value_p == ret_expr);
766 q->cont_stmt = q->stmt.g;
767 }
768 else
769 gcc_unreachable ();
770 }
771 else
772 /* If we don't return a value, all return statements are the same. */
773 q->cont_stmt = q->stmt.g;
774
775 if (!q->repl_stmt)
776 q->repl_stmt = gimple_seq_alloc ();
777
778 if (mod)
779 gimple_seq_add_seq (&q->repl_stmt, mod);
780
781 x = gimple_build_goto (finlab);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
783 }
784
785 /* Similar, but easier, for GIMPLE_GOTO. */
786
787 static void
788 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
789 struct leh_tf_state *tf)
790 {
791 gimple x;
792
793 gcc_assert (q->is_label);
794 if (!q->repl_stmt)
795 q->repl_stmt = gimple_seq_alloc ();
796
797 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
798
799 if (mod)
800 gimple_seq_add_seq (&q->repl_stmt, mod);
801
802 x = gimple_build_goto (finlab);
803 gimple_seq_add_stmt (&q->repl_stmt, x);
804 }
805
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
807
808 static void
809 emit_post_landing_pad (gimple_seq *seq, eh_region region)
810 {
811 eh_landing_pad lp = region->landing_pads;
812 gimple x;
813
814 if (lp == NULL)
815 lp = gen_eh_landing_pad (region);
816
817 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
818 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
819
820 x = gimple_build_label (lp->post_landing_pad);
821 gimple_seq_add_stmt (seq, x);
822 }
823
824 /* Emit a RESX statement into SEQ for REGION. */
825
826 static void
827 emit_resx (gimple_seq *seq, eh_region region)
828 {
829 gimple x = gimple_build_resx (region->index);
830 gimple_seq_add_stmt (seq, x);
831 if (region->outer)
832 record_stmt_eh_region (region->outer, x);
833 }
834
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
836
837 static void
838 emit_eh_dispatch (gimple_seq *seq, eh_region region)
839 {
840 gimple x = gimple_build_eh_dispatch (region->index);
841 gimple_seq_add_stmt (seq, x);
842 }
843
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
846
847 static void
848 note_eh_region_may_contain_throw (eh_region region)
849 {
850 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
851 {
852 if (region->type == ERT_MUST_NOT_THROW)
853 break;
854 region = region->outer;
855 if (region == NULL)
856 break;
857 }
858 }
859
860 /* Check if REGION has been marked as containing a throw. If REGION is
861 NULL, this predicate is false. */
862
863 static inline bool
864 eh_region_may_contain_throw (eh_region r)
865 {
866 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
867 }
868
869 /* We want to transform
870 try { body; } catch { stuff; }
871 to
872 normal_seqence:
873 body;
874 over:
875 eh_seqence:
876 landing_pad:
877 stuff;
878 goto over;
879
880 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
881 should be placed before the second operand, or NULL. OVER is
882 an existing label that should be put at the exit, or NULL. */
883
884 static gimple_seq
885 frob_into_branch_around (gimple tp, eh_region region, tree over)
886 {
887 gimple x;
888 gimple_seq cleanup, result;
889 location_t loc = gimple_location (tp);
890
891 cleanup = gimple_try_cleanup (tp);
892 result = gimple_try_eval (tp);
893
894 if (region)
895 emit_post_landing_pad (&eh_seq, region);
896
897 if (gimple_seq_may_fallthru (cleanup))
898 {
899 if (!over)
900 over = create_artificial_label (loc);
901 x = gimple_build_goto (over);
902 gimple_seq_add_stmt (&cleanup, x);
903 }
904 gimple_seq_add_seq (&eh_seq, cleanup);
905
906 if (over)
907 {
908 x = gimple_build_label (over);
909 gimple_seq_add_stmt (&result, x);
910 }
911 return result;
912 }
913
914 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
915 Make sure to record all new labels found. */
916
917 static gimple_seq
918 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
919 {
920 gimple region = NULL;
921 gimple_seq new_seq;
922
923 new_seq = copy_gimple_seq_and_replace_locals (seq);
924
925 if (outer_state->tf)
926 region = outer_state->tf->try_finally_expr;
927 collect_finally_tree_1 (new_seq, region);
928
929 return new_seq;
930 }
931
932 /* A subroutine of lower_try_finally. Create a fallthru label for
933 the given try_finally state. The only tricky bit here is that
934 we have to make sure to record the label in our outer context. */
935
936 static tree
937 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
938 {
939 tree label = tf->fallthru_label;
940 treemple temp;
941
942 if (!label)
943 {
944 label = create_artificial_label (gimple_location (tf->try_finally_expr));
945 tf->fallthru_label = label;
946 if (tf->outer->tf)
947 {
948 temp.t = label;
949 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
950 }
951 }
952 return label;
953 }
954
955 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
956 langhook returns non-null, then the language requires that the exception
957 path out of a try_finally be treated specially. To wit: the code within
958 the finally block may not itself throw an exception. We have two choices
959 here. First we can duplicate the finally block and wrap it in a
960 must_not_throw region. Second, we can generate code like
961
962 try {
963 finally_block;
964 } catch {
965 if (fintmp == eh_edge)
966 protect_cleanup_actions;
967 }
968
969 where "fintmp" is the temporary used in the switch statement generation
970 alternative considered below. For the nonce, we always choose the first
971 option.
972
973 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
974
975 static void
976 honor_protect_cleanup_actions (struct leh_state *outer_state,
977 struct leh_state *this_state,
978 struct leh_tf_state *tf)
979 {
980 tree protect_cleanup_actions;
981 gimple_stmt_iterator gsi;
982 bool finally_may_fallthru;
983 gimple_seq finally;
984 gimple x;
985
986 /* First check for nothing to do. */
987 if (lang_hooks.eh_protect_cleanup_actions == NULL)
988 return;
989 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
990 if (protect_cleanup_actions == NULL)
991 return;
992
993 finally = gimple_try_cleanup (tf->top_p);
994 finally_may_fallthru = gimple_seq_may_fallthru (finally);
995
996 /* Duplicate the FINALLY block. Only need to do this for try-finally,
997 and not for cleanups. */
998 if (this_state)
999 finally = lower_try_finally_dup_block (finally, outer_state);
1000
1001 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1002 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1003 to be in an enclosing scope, but needs to be implemented at this level
1004 to avoid a nesting violation (see wrap_temporary_cleanups in
1005 cp/decl.c). Since it's logically at an outer level, we should call
1006 terminate before we get to it, so strip it away before adding the
1007 MUST_NOT_THROW filter. */
1008 gsi = gsi_start (finally);
1009 x = gsi_stmt (gsi);
1010 if (gimple_code (x) == GIMPLE_TRY
1011 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1012 && gimple_try_catch_is_cleanup (x))
1013 {
1014 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1015 gsi_remove (&gsi, false);
1016 }
1017
1018 /* Wrap the block with protect_cleanup_actions as the action. */
1019 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1020 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1021 GIMPLE_TRY_CATCH);
1022 finally = lower_eh_must_not_throw (outer_state, x);
1023
1024 /* Drop all of this into the exception sequence. */
1025 emit_post_landing_pad (&eh_seq, tf->region);
1026 gimple_seq_add_seq (&eh_seq, finally);
1027 if (finally_may_fallthru)
1028 emit_resx (&eh_seq, tf->region);
1029
1030 /* Having now been handled, EH isn't to be considered with
1031 the rest of the outgoing edges. */
1032 tf->may_throw = false;
1033 }
1034
1035 /* A subroutine of lower_try_finally. We have determined that there is
1036 no fallthru edge out of the finally block. This means that there is
1037 no outgoing edge corresponding to any incoming edge. Restructure the
1038 try_finally node for this special case. */
1039
1040 static void
1041 lower_try_finally_nofallthru (struct leh_state *state,
1042 struct leh_tf_state *tf)
1043 {
1044 tree lab, return_val;
1045 gimple x;
1046 gimple_seq finally;
1047 struct goto_queue_node *q, *qe;
1048
1049 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1050
1051 /* We expect that tf->top_p is a GIMPLE_TRY. */
1052 finally = gimple_try_cleanup (tf->top_p);
1053 tf->top_p_seq = gimple_try_eval (tf->top_p);
1054
1055 x = gimple_build_label (lab);
1056 gimple_seq_add_stmt (&tf->top_p_seq, x);
1057
1058 return_val = NULL;
1059 q = tf->goto_queue;
1060 qe = q + tf->goto_queue_active;
1061 for (; q < qe; ++q)
1062 if (q->index < 0)
1063 do_return_redirection (q, lab, NULL, &return_val);
1064 else
1065 do_goto_redirection (q, lab, NULL, tf);
1066
1067 replace_goto_queue (tf);
1068
1069 lower_eh_constructs_1 (state, finally);
1070 gimple_seq_add_seq (&tf->top_p_seq, finally);
1071
1072 if (tf->may_throw)
1073 {
1074 emit_post_landing_pad (&eh_seq, tf->region);
1075
1076 x = gimple_build_goto (lab);
1077 gimple_seq_add_stmt (&eh_seq, x);
1078 }
1079 }
1080
1081 /* A subroutine of lower_try_finally. We have determined that there is
1082 exactly one destination of the finally block. Restructure the
1083 try_finally node for this special case. */
1084
1085 static void
1086 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1087 {
1088 struct goto_queue_node *q, *qe;
1089 gimple x;
1090 gimple_seq finally;
1091 tree finally_label;
1092 location_t loc = gimple_location (tf->try_finally_expr);
1093
1094 finally = gimple_try_cleanup (tf->top_p);
1095 tf->top_p_seq = gimple_try_eval (tf->top_p);
1096
1097 lower_eh_constructs_1 (state, finally);
1098
1099 if (tf->may_throw)
1100 {
1101 /* Only reachable via the exception edge. Add the given label to
1102 the head of the FINALLY block. Append a RESX at the end. */
1103 emit_post_landing_pad (&eh_seq, tf->region);
1104 gimple_seq_add_seq (&eh_seq, finally);
1105 emit_resx (&eh_seq, tf->region);
1106 return;
1107 }
1108
1109 if (tf->may_fallthru)
1110 {
1111 /* Only reachable via the fallthru edge. Do nothing but let
1112 the two blocks run together; we'll fall out the bottom. */
1113 gimple_seq_add_seq (&tf->top_p_seq, finally);
1114 return;
1115 }
1116
1117 finally_label = create_artificial_label (loc);
1118 x = gimple_build_label (finally_label);
1119 gimple_seq_add_stmt (&tf->top_p_seq, x);
1120
1121 gimple_seq_add_seq (&tf->top_p_seq, finally);
1122
1123 q = tf->goto_queue;
1124 qe = q + tf->goto_queue_active;
1125
1126 if (tf->may_return)
1127 {
1128 /* Reachable by return expressions only. Redirect them. */
1129 tree return_val = NULL;
1130 for (; q < qe; ++q)
1131 do_return_redirection (q, finally_label, NULL, &return_val);
1132 replace_goto_queue (tf);
1133 }
1134 else
1135 {
1136 /* Reachable by goto expressions only. Redirect them. */
1137 for (; q < qe; ++q)
1138 do_goto_redirection (q, finally_label, NULL, tf);
1139 replace_goto_queue (tf);
1140
1141 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1142 {
1143 /* Reachable by goto to fallthru label only. Redirect it
1144 to the new label (already created, sadly), and do not
1145 emit the final branch out, or the fallthru label. */
1146 tf->fallthru_label = NULL;
1147 return;
1148 }
1149 }
1150
1151 /* Place the original return/goto to the original destination
1152 immediately after the finally block. */
1153 x = tf->goto_queue[0].cont_stmt;
1154 gimple_seq_add_stmt (&tf->top_p_seq, x);
1155 maybe_record_in_goto_queue (state, x);
1156 }
1157
1158 /* A subroutine of lower_try_finally. There are multiple edges incoming
1159 and outgoing from the finally block. Implement this by duplicating the
1160 finally block for every destination. */
1161
1162 static void
1163 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1164 {
1165 gimple_seq finally;
1166 gimple_seq new_stmt;
1167 gimple_seq seq;
1168 gimple x;
1169 tree tmp;
1170 location_t tf_loc = gimple_location (tf->try_finally_expr);
1171
1172 finally = gimple_try_cleanup (tf->top_p);
1173 tf->top_p_seq = gimple_try_eval (tf->top_p);
1174 new_stmt = NULL;
1175
1176 if (tf->may_fallthru)
1177 {
1178 seq = lower_try_finally_dup_block (finally, state);
1179 lower_eh_constructs_1 (state, seq);
1180 gimple_seq_add_seq (&new_stmt, seq);
1181
1182 tmp = lower_try_finally_fallthru_label (tf);
1183 x = gimple_build_goto (tmp);
1184 gimple_seq_add_stmt (&new_stmt, x);
1185 }
1186
1187 if (tf->may_throw)
1188 {
1189 seq = lower_try_finally_dup_block (finally, state);
1190 lower_eh_constructs_1 (state, seq);
1191
1192 emit_post_landing_pad (&eh_seq, tf->region);
1193 gimple_seq_add_seq (&eh_seq, seq);
1194 emit_resx (&eh_seq, tf->region);
1195 }
1196
1197 if (tf->goto_queue)
1198 {
1199 struct goto_queue_node *q, *qe;
1200 tree return_val = NULL;
1201 int return_index, index;
1202 struct labels_s
1203 {
1204 struct goto_queue_node *q;
1205 tree label;
1206 } *labels;
1207
1208 return_index = VEC_length (tree, tf->dest_array);
1209 labels = XCNEWVEC (struct labels_s, return_index + 1);
1210
1211 q = tf->goto_queue;
1212 qe = q + tf->goto_queue_active;
1213 for (; q < qe; q++)
1214 {
1215 index = q->index < 0 ? return_index : q->index;
1216
1217 if (!labels[index].q)
1218 labels[index].q = q;
1219 }
1220
1221 for (index = 0; index < return_index + 1; index++)
1222 {
1223 tree lab;
1224
1225 q = labels[index].q;
1226 if (! q)
1227 continue;
1228
1229 lab = labels[index].label
1230 = create_artificial_label (tf_loc);
1231
1232 if (index == return_index)
1233 do_return_redirection (q, lab, NULL, &return_val);
1234 else
1235 do_goto_redirection (q, lab, NULL, tf);
1236
1237 x = gimple_build_label (lab);
1238 gimple_seq_add_stmt (&new_stmt, x);
1239
1240 seq = lower_try_finally_dup_block (finally, state);
1241 lower_eh_constructs_1 (state, seq);
1242 gimple_seq_add_seq (&new_stmt, seq);
1243
1244 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1245 maybe_record_in_goto_queue (state, q->cont_stmt);
1246 }
1247
1248 for (q = tf->goto_queue; q < qe; q++)
1249 {
1250 tree lab;
1251
1252 index = q->index < 0 ? return_index : q->index;
1253
1254 if (labels[index].q == q)
1255 continue;
1256
1257 lab = labels[index].label;
1258
1259 if (index == return_index)
1260 do_return_redirection (q, lab, NULL, &return_val);
1261 else
1262 do_goto_redirection (q, lab, NULL, tf);
1263 }
1264
1265 replace_goto_queue (tf);
1266 free (labels);
1267 }
1268
1269 /* Need to link new stmts after running replace_goto_queue due
1270 to not wanting to process the same goto stmts twice. */
1271 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1272 }
1273
1274 /* A subroutine of lower_try_finally. There are multiple edges incoming
1275 and outgoing from the finally block. Implement this by instrumenting
1276 each incoming edge and creating a switch statement at the end of the
1277 finally block that branches to the appropriate destination. */
1278
1279 static void
1280 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1281 {
1282 struct goto_queue_node *q, *qe;
1283 tree return_val = NULL;
1284 tree finally_tmp, finally_label;
1285 int return_index, eh_index, fallthru_index;
1286 int nlabels, ndests, j, last_case_index;
1287 tree last_case;
1288 VEC (tree,heap) *case_label_vec;
1289 gimple_seq switch_body;
1290 gimple x;
1291 tree tmp;
1292 gimple switch_stmt;
1293 gimple_seq finally;
1294 struct pointer_map_t *cont_map = NULL;
1295 /* The location of the TRY_FINALLY stmt. */
1296 location_t tf_loc = gimple_location (tf->try_finally_expr);
1297 /* The location of the finally block. */
1298 location_t finally_loc;
1299
1300 switch_body = gimple_seq_alloc ();
1301
1302 /* Mash the TRY block to the head of the chain. */
1303 finally = gimple_try_cleanup (tf->top_p);
1304 tf->top_p_seq = gimple_try_eval (tf->top_p);
1305
1306 /* The location of the finally is either the last stmt in the finally
1307 block or the location of the TRY_FINALLY itself. */
1308 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1309 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1310 : tf_loc;
1311
1312 /* Lower the finally block itself. */
1313 lower_eh_constructs_1 (state, finally);
1314
1315 /* Prepare for switch statement generation. */
1316 nlabels = VEC_length (tree, tf->dest_array);
1317 return_index = nlabels;
1318 eh_index = return_index + tf->may_return;
1319 fallthru_index = eh_index + tf->may_throw;
1320 ndests = fallthru_index + tf->may_fallthru;
1321
1322 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1323 finally_label = create_artificial_label (finally_loc);
1324
1325 /* We use VEC_quick_push on case_label_vec throughout this function,
1326 since we know the size in advance and allocate precisely as muce
1327 space as needed. */
1328 case_label_vec = VEC_alloc (tree, heap, ndests);
1329 last_case = NULL;
1330 last_case_index = 0;
1331
1332 /* Begin inserting code for getting to the finally block. Things
1333 are done in this order to correspond to the sequence the code is
1334 layed out. */
1335
1336 if (tf->may_fallthru)
1337 {
1338 x = gimple_build_assign (finally_tmp,
1339 build_int_cst (integer_type_node,
1340 fallthru_index));
1341 gimple_seq_add_stmt (&tf->top_p_seq, x);
1342
1343 tmp = build_int_cst (integer_type_node, fallthru_index);
1344 last_case = build_case_label (tmp, NULL,
1345 create_artificial_label (tf_loc));
1346 VEC_quick_push (tree, case_label_vec, last_case);
1347 last_case_index++;
1348
1349 x = gimple_build_label (CASE_LABEL (last_case));
1350 gimple_seq_add_stmt (&switch_body, x);
1351
1352 tmp = lower_try_finally_fallthru_label (tf);
1353 x = gimple_build_goto (tmp);
1354 gimple_seq_add_stmt (&switch_body, x);
1355 }
1356
1357 if (tf->may_throw)
1358 {
1359 emit_post_landing_pad (&eh_seq, tf->region);
1360
1361 x = gimple_build_assign (finally_tmp,
1362 build_int_cst (integer_type_node, eh_index));
1363 gimple_seq_add_stmt (&eh_seq, x);
1364
1365 x = gimple_build_goto (finally_label);
1366 gimple_seq_add_stmt (&eh_seq, x);
1367
1368 tmp = build_int_cst (integer_type_node, eh_index);
1369 last_case = build_case_label (tmp, NULL,
1370 create_artificial_label (tf_loc));
1371 VEC_quick_push (tree, case_label_vec, last_case);
1372 last_case_index++;
1373
1374 x = gimple_build_label (CASE_LABEL (last_case));
1375 gimple_seq_add_stmt (&eh_seq, x);
1376 emit_resx (&eh_seq, tf->region);
1377 }
1378
1379 x = gimple_build_label (finally_label);
1380 gimple_seq_add_stmt (&tf->top_p_seq, x);
1381
1382 gimple_seq_add_seq (&tf->top_p_seq, finally);
1383
1384 /* Redirect each incoming goto edge. */
1385 q = tf->goto_queue;
1386 qe = q + tf->goto_queue_active;
1387 j = last_case_index + tf->may_return;
1388 /* Prepare the assignments to finally_tmp that are executed upon the
1389 entrance through a particular edge. */
1390 for (; q < qe; ++q)
1391 {
1392 gimple_seq mod;
1393 int switch_id;
1394 unsigned int case_index;
1395
1396 mod = gimple_seq_alloc ();
1397
1398 if (q->index < 0)
1399 {
1400 x = gimple_build_assign (finally_tmp,
1401 build_int_cst (integer_type_node,
1402 return_index));
1403 gimple_seq_add_stmt (&mod, x);
1404 do_return_redirection (q, finally_label, mod, &return_val);
1405 switch_id = return_index;
1406 }
1407 else
1408 {
1409 x = gimple_build_assign (finally_tmp,
1410 build_int_cst (integer_type_node, q->index));
1411 gimple_seq_add_stmt (&mod, x);
1412 do_goto_redirection (q, finally_label, mod, tf);
1413 switch_id = q->index;
1414 }
1415
1416 case_index = j + q->index;
1417 if (VEC_length (tree, case_label_vec) <= case_index
1418 || !VEC_index (tree, case_label_vec, case_index))
1419 {
1420 tree case_lab;
1421 void **slot;
1422 tmp = build_int_cst (integer_type_node, switch_id);
1423 case_lab = build_case_label (tmp, NULL,
1424 create_artificial_label (tf_loc));
1425 /* We store the cont_stmt in the pointer map, so that we can recover
1426 it in the loop below. */
1427 if (!cont_map)
1428 cont_map = pointer_map_create ();
1429 slot = pointer_map_insert (cont_map, case_lab);
1430 *slot = q->cont_stmt;
1431 VEC_quick_push (tree, case_label_vec, case_lab);
1432 }
1433 }
1434 for (j = last_case_index; j < last_case_index + nlabels; j++)
1435 {
1436 gimple cont_stmt;
1437 void **slot;
1438
1439 last_case = VEC_index (tree, case_label_vec, j);
1440
1441 gcc_assert (last_case);
1442 gcc_assert (cont_map);
1443
1444 slot = pointer_map_contains (cont_map, last_case);
1445 gcc_assert (slot);
1446 cont_stmt = *(gimple *) slot;
1447
1448 x = gimple_build_label (CASE_LABEL (last_case));
1449 gimple_seq_add_stmt (&switch_body, x);
1450 gimple_seq_add_stmt (&switch_body, cont_stmt);
1451 maybe_record_in_goto_queue (state, cont_stmt);
1452 }
1453 if (cont_map)
1454 pointer_map_destroy (cont_map);
1455
1456 replace_goto_queue (tf);
1457
1458 /* Make sure that the last case is the default label, as one is required.
1459 Then sort the labels, which is also required in GIMPLE. */
1460 CASE_LOW (last_case) = NULL;
1461 sort_case_labels (case_label_vec);
1462
1463 /* Build the switch statement, setting last_case to be the default
1464 label. */
1465 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1466 case_label_vec);
1467 gimple_set_location (switch_stmt, finally_loc);
1468
1469 /* Need to link SWITCH_STMT after running replace_goto_queue
1470 due to not wanting to process the same goto stmts twice. */
1471 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1472 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1473 }
1474
1475 /* Decide whether or not we are going to duplicate the finally block.
1476 There are several considerations.
1477
1478 First, if this is Java, then the finally block contains code
1479 written by the user. It has line numbers associated with it,
1480 so duplicating the block means it's difficult to set a breakpoint.
1481 Since controlling code generation via -g is verboten, we simply
1482 never duplicate code without optimization.
1483
1484 Second, we'd like to prevent egregious code growth. One way to
1485 do this is to estimate the size of the finally block, multiply
1486 that by the number of copies we'd need to make, and compare against
1487 the estimate of the size of the switch machinery we'd have to add. */
1488
1489 static bool
1490 decide_copy_try_finally (int ndests, gimple_seq finally)
1491 {
1492 int f_estimate, sw_estimate;
1493
1494 if (!optimize)
1495 return false;
1496
1497 /* Finally estimate N times, plus N gotos. */
1498 f_estimate = count_insns_seq (finally, &eni_size_weights);
1499 f_estimate = (f_estimate + 1) * ndests;
1500
1501 /* Switch statement (cost 10), N variable assignments, N gotos. */
1502 sw_estimate = 10 + 2 * ndests;
1503
1504 /* Optimize for size clearly wants our best guess. */
1505 if (optimize_function_for_size_p (cfun))
1506 return f_estimate < sw_estimate;
1507
1508 /* ??? These numbers are completely made up so far. */
1509 if (optimize > 1)
1510 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1511 else
1512 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1513 }
1514
1515 /* REG is the enclosing region for a possible cleanup region, or the region
1516 itself. Returns TRUE if such a region would be unreachable.
1517
1518 Cleanup regions within a must-not-throw region aren't actually reachable
1519 even if there are throwing stmts within them, because the personality
1520 routine will call terminate before unwinding. */
1521
1522 static bool
1523 cleanup_is_dead_in (eh_region reg)
1524 {
1525 while (reg && reg->type == ERT_CLEANUP)
1526 reg = reg->outer;
1527 return (reg && reg->type == ERT_MUST_NOT_THROW);
1528 }
1529
1530 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1531 to a sequence of labels and blocks, plus the exception region trees
1532 that record all the magic. This is complicated by the need to
1533 arrange for the FINALLY block to be executed on all exits. */
1534
1535 static gimple_seq
1536 lower_try_finally (struct leh_state *state, gimple tp)
1537 {
1538 struct leh_tf_state this_tf;
1539 struct leh_state this_state;
1540 int ndests;
1541 gimple_seq old_eh_seq;
1542
1543 /* Process the try block. */
1544
1545 memset (&this_tf, 0, sizeof (this_tf));
1546 this_tf.try_finally_expr = tp;
1547 this_tf.top_p = tp;
1548 this_tf.outer = state;
1549 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1550 {
1551 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1552 this_state.cur_region = this_tf.region;
1553 }
1554 else
1555 {
1556 this_tf.region = NULL;
1557 this_state.cur_region = state->cur_region;
1558 }
1559
1560 this_state.ehp_region = state->ehp_region;
1561 this_state.tf = &this_tf;
1562
1563 old_eh_seq = eh_seq;
1564 eh_seq = NULL;
1565
1566 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1567
1568 /* Determine if the try block is escaped through the bottom. */
1569 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1570
1571 /* Determine if any exceptions are possible within the try block. */
1572 if (this_tf.region)
1573 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1574 if (this_tf.may_throw)
1575 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1576
1577 /* Determine how many edges (still) reach the finally block. Or rather,
1578 how many destinations are reached by the finally block. Use this to
1579 determine how we process the finally block itself. */
1580
1581 ndests = VEC_length (tree, this_tf.dest_array);
1582 ndests += this_tf.may_fallthru;
1583 ndests += this_tf.may_return;
1584 ndests += this_tf.may_throw;
1585
1586 /* If the FINALLY block is not reachable, dike it out. */
1587 if (ndests == 0)
1588 {
1589 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1590 gimple_try_set_cleanup (tp, NULL);
1591 }
1592 /* If the finally block doesn't fall through, then any destination
1593 we might try to impose there isn't reached either. There may be
1594 some minor amount of cleanup and redirection still needed. */
1595 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1596 lower_try_finally_nofallthru (state, &this_tf);
1597
1598 /* We can easily special-case redirection to a single destination. */
1599 else if (ndests == 1)
1600 lower_try_finally_onedest (state, &this_tf);
1601 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1602 lower_try_finally_copy (state, &this_tf);
1603 else
1604 lower_try_finally_switch (state, &this_tf);
1605
1606 /* If someone requested we add a label at the end of the transformed
1607 block, do so. */
1608 if (this_tf.fallthru_label)
1609 {
1610 /* This must be reached only if ndests == 0. */
1611 gimple x = gimple_build_label (this_tf.fallthru_label);
1612 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1613 }
1614
1615 VEC_free (tree, heap, this_tf.dest_array);
1616 free (this_tf.goto_queue);
1617 if (this_tf.goto_queue_map)
1618 pointer_map_destroy (this_tf.goto_queue_map);
1619
1620 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1621 If there was no old eh_seq, then the append is trivially already done. */
1622 if (old_eh_seq)
1623 {
1624 if (eh_seq == NULL)
1625 eh_seq = old_eh_seq;
1626 else
1627 {
1628 gimple_seq new_eh_seq = eh_seq;
1629 eh_seq = old_eh_seq;
1630 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1631 }
1632 }
1633
1634 return this_tf.top_p_seq;
1635 }
1636
1637 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1638 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1639 exception region trees that records all the magic. */
1640
1641 static gimple_seq
1642 lower_catch (struct leh_state *state, gimple tp)
1643 {
1644 eh_region try_region = NULL;
1645 struct leh_state this_state = *state;
1646 gimple_stmt_iterator gsi;
1647 tree out_label;
1648 gimple_seq new_seq;
1649 gimple x;
1650 location_t try_catch_loc = gimple_location (tp);
1651
1652 if (flag_exceptions)
1653 {
1654 try_region = gen_eh_region_try (state->cur_region);
1655 this_state.cur_region = try_region;
1656 }
1657
1658 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1659
1660 if (!eh_region_may_contain_throw (try_region))
1661 return gimple_try_eval (tp);
1662
1663 new_seq = NULL;
1664 emit_eh_dispatch (&new_seq, try_region);
1665 emit_resx (&new_seq, try_region);
1666
1667 this_state.cur_region = state->cur_region;
1668 this_state.ehp_region = try_region;
1669
1670 out_label = NULL;
1671 for (gsi = gsi_start (gimple_try_cleanup (tp));
1672 !gsi_end_p (gsi);
1673 gsi_next (&gsi))
1674 {
1675 eh_catch c;
1676 gimple gcatch;
1677 gimple_seq handler;
1678
1679 gcatch = gsi_stmt (gsi);
1680 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1681
1682 handler = gimple_catch_handler (gcatch);
1683 lower_eh_constructs_1 (&this_state, handler);
1684
1685 c->label = create_artificial_label (UNKNOWN_LOCATION);
1686 x = gimple_build_label (c->label);
1687 gimple_seq_add_stmt (&new_seq, x);
1688
1689 gimple_seq_add_seq (&new_seq, handler);
1690
1691 if (gimple_seq_may_fallthru (new_seq))
1692 {
1693 if (!out_label)
1694 out_label = create_artificial_label (try_catch_loc);
1695
1696 x = gimple_build_goto (out_label);
1697 gimple_seq_add_stmt (&new_seq, x);
1698 }
1699 if (!c->type_list)
1700 break;
1701 }
1702
1703 gimple_try_set_cleanup (tp, new_seq);
1704
1705 return frob_into_branch_around (tp, try_region, out_label);
1706 }
1707
1708 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1709 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1710 region trees that record all the magic. */
1711
1712 static gimple_seq
1713 lower_eh_filter (struct leh_state *state, gimple tp)
1714 {
1715 struct leh_state this_state = *state;
1716 eh_region this_region = NULL;
1717 gimple inner, x;
1718 gimple_seq new_seq;
1719
1720 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1721
1722 if (flag_exceptions)
1723 {
1724 this_region = gen_eh_region_allowed (state->cur_region,
1725 gimple_eh_filter_types (inner));
1726 this_state.cur_region = this_region;
1727 }
1728
1729 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1730
1731 if (!eh_region_may_contain_throw (this_region))
1732 return gimple_try_eval (tp);
1733
1734 new_seq = NULL;
1735 this_state.cur_region = state->cur_region;
1736 this_state.ehp_region = this_region;
1737
1738 emit_eh_dispatch (&new_seq, this_region);
1739 emit_resx (&new_seq, this_region);
1740
1741 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1742 x = gimple_build_label (this_region->u.allowed.label);
1743 gimple_seq_add_stmt (&new_seq, x);
1744
1745 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1746 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1747
1748 gimple_try_set_cleanup (tp, new_seq);
1749
1750 return frob_into_branch_around (tp, this_region, NULL);
1751 }
1752
1753 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1754 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1755 plus the exception region trees that record all the magic. */
1756
1757 static gimple_seq
1758 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1759 {
1760 struct leh_state this_state = *state;
1761
1762 if (flag_exceptions)
1763 {
1764 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1765 eh_region this_region;
1766
1767 this_region = gen_eh_region_must_not_throw (state->cur_region);
1768 this_region->u.must_not_throw.failure_decl
1769 = gimple_eh_must_not_throw_fndecl (inner);
1770 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1771
1772 /* In order to get mangling applied to this decl, we must mark it
1773 used now. Otherwise, pass_ipa_free_lang_data won't think it
1774 needs to happen. */
1775 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1776
1777 this_state.cur_region = this_region;
1778 }
1779
1780 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1781
1782 return gimple_try_eval (tp);
1783 }
1784
1785 /* Implement a cleanup expression. This is similar to try-finally,
1786 except that we only execute the cleanup block for exception edges. */
1787
1788 static gimple_seq
1789 lower_cleanup (struct leh_state *state, gimple tp)
1790 {
1791 struct leh_state this_state = *state;
1792 eh_region this_region = NULL;
1793 struct leh_tf_state fake_tf;
1794 gimple_seq result;
1795 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1796
1797 if (flag_exceptions && !cleanup_dead)
1798 {
1799 this_region = gen_eh_region_cleanup (state->cur_region);
1800 this_state.cur_region = this_region;
1801 }
1802
1803 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1804
1805 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1806 return gimple_try_eval (tp);
1807
1808 /* Build enough of a try-finally state so that we can reuse
1809 honor_protect_cleanup_actions. */
1810 memset (&fake_tf, 0, sizeof (fake_tf));
1811 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1812 fake_tf.outer = state;
1813 fake_tf.region = this_region;
1814 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1815 fake_tf.may_throw = true;
1816
1817 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1818
1819 if (fake_tf.may_throw)
1820 {
1821 /* In this case honor_protect_cleanup_actions had nothing to do,
1822 and we should process this normally. */
1823 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1824 result = frob_into_branch_around (tp, this_region,
1825 fake_tf.fallthru_label);
1826 }
1827 else
1828 {
1829 /* In this case honor_protect_cleanup_actions did nearly all of
1830 the work. All we have left is to append the fallthru_label. */
1831
1832 result = gimple_try_eval (tp);
1833 if (fake_tf.fallthru_label)
1834 {
1835 gimple x = gimple_build_label (fake_tf.fallthru_label);
1836 gimple_seq_add_stmt (&result, x);
1837 }
1838 }
1839 return result;
1840 }
1841
1842 /* Main loop for lowering eh constructs. Also moves gsi to the next
1843 statement. */
1844
1845 static void
1846 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1847 {
1848 gimple_seq replace;
1849 gimple x;
1850 gimple stmt = gsi_stmt (*gsi);
1851
1852 switch (gimple_code (stmt))
1853 {
1854 case GIMPLE_CALL:
1855 {
1856 tree fndecl = gimple_call_fndecl (stmt);
1857 tree rhs, lhs;
1858
1859 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1860 switch (DECL_FUNCTION_CODE (fndecl))
1861 {
1862 case BUILT_IN_EH_POINTER:
1863 /* The front end may have generated a call to
1864 __builtin_eh_pointer (0) within a catch region. Replace
1865 this zero argument with the current catch region number. */
1866 if (state->ehp_region)
1867 {
1868 tree nr = build_int_cst (integer_type_node,
1869 state->ehp_region->index);
1870 gimple_call_set_arg (stmt, 0, nr);
1871 }
1872 else
1873 {
1874 /* The user has dome something silly. Remove it. */
1875 rhs = null_pointer_node;
1876 goto do_replace;
1877 }
1878 break;
1879
1880 case BUILT_IN_EH_FILTER:
1881 /* ??? This should never appear, but since it's a builtin it
1882 is accessible to abuse by users. Just remove it and
1883 replace the use with the arbitrary value zero. */
1884 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1885 do_replace:
1886 lhs = gimple_call_lhs (stmt);
1887 x = gimple_build_assign (lhs, rhs);
1888 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1889 /* FALLTHRU */
1890
1891 case BUILT_IN_EH_COPY_VALUES:
1892 /* Likewise this should not appear. Remove it. */
1893 gsi_remove (gsi, true);
1894 return;
1895
1896 default:
1897 break;
1898 }
1899 }
1900 /* FALLTHRU */
1901
1902 case GIMPLE_ASSIGN:
1903 /* If the stmt can throw use a new temporary for the assignment
1904 to a LHS. This makes sure the old value of the LHS is
1905 available on the EH edge. Only do so for statements that
1906 potentially fall thru (no noreturn calls e.g.), otherwise
1907 this new assignment might create fake fallthru regions. */
1908 if (stmt_could_throw_p (stmt)
1909 && gimple_has_lhs (stmt)
1910 && gimple_stmt_may_fallthru (stmt)
1911 && !tree_could_throw_p (gimple_get_lhs (stmt))
1912 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1913 {
1914 tree lhs = gimple_get_lhs (stmt);
1915 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1916 gimple s = gimple_build_assign (lhs, tmp);
1917 gimple_set_location (s, gimple_location (stmt));
1918 gimple_set_block (s, gimple_block (stmt));
1919 gimple_set_lhs (stmt, tmp);
1920 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1921 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1922 DECL_GIMPLE_REG_P (tmp) = 1;
1923 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1924 }
1925 /* Look for things that can throw exceptions, and record them. */
1926 if (state->cur_region && stmt_could_throw_p (stmt))
1927 {
1928 record_stmt_eh_region (state->cur_region, stmt);
1929 note_eh_region_may_contain_throw (state->cur_region);
1930 }
1931 break;
1932
1933 case GIMPLE_COND:
1934 case GIMPLE_GOTO:
1935 case GIMPLE_RETURN:
1936 maybe_record_in_goto_queue (state, stmt);
1937 break;
1938
1939 case GIMPLE_SWITCH:
1940 verify_norecord_switch_expr (state, stmt);
1941 break;
1942
1943 case GIMPLE_TRY:
1944 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1945 replace = lower_try_finally (state, stmt);
1946 else
1947 {
1948 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1949 if (!x)
1950 {
1951 replace = gimple_try_eval (stmt);
1952 lower_eh_constructs_1 (state, replace);
1953 }
1954 else
1955 switch (gimple_code (x))
1956 {
1957 case GIMPLE_CATCH:
1958 replace = lower_catch (state, stmt);
1959 break;
1960 case GIMPLE_EH_FILTER:
1961 replace = lower_eh_filter (state, stmt);
1962 break;
1963 case GIMPLE_EH_MUST_NOT_THROW:
1964 replace = lower_eh_must_not_throw (state, stmt);
1965 break;
1966 default:
1967 replace = lower_cleanup (state, stmt);
1968 break;
1969 }
1970 }
1971
1972 /* Remove the old stmt and insert the transformed sequence
1973 instead. */
1974 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1975 gsi_remove (gsi, true);
1976
1977 /* Return since we don't want gsi_next () */
1978 return;
1979
1980 default:
1981 /* A type, a decl, or some kind of statement that we're not
1982 interested in. Don't walk them. */
1983 break;
1984 }
1985
1986 gsi_next (gsi);
1987 }
1988
1989 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1990
1991 static void
1992 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1993 {
1994 gimple_stmt_iterator gsi;
1995 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1996 lower_eh_constructs_2 (state, &gsi);
1997 }
1998
1999 static unsigned int
2000 lower_eh_constructs (void)
2001 {
2002 struct leh_state null_state;
2003 gimple_seq bodyp;
2004
2005 bodyp = gimple_body (current_function_decl);
2006 if (bodyp == NULL)
2007 return 0;
2008
2009 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2010 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2011 memset (&null_state, 0, sizeof (null_state));
2012
2013 collect_finally_tree_1 (bodyp, NULL);
2014 lower_eh_constructs_1 (&null_state, bodyp);
2015
2016 /* We assume there's a return statement, or something, at the end of
2017 the function, and thus ploping the EH sequence afterward won't
2018 change anything. */
2019 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2020 gimple_seq_add_seq (&bodyp, eh_seq);
2021
2022 /* We assume that since BODYP already existed, adding EH_SEQ to it
2023 didn't change its value, and we don't have to re-set the function. */
2024 gcc_assert (bodyp == gimple_body (current_function_decl));
2025
2026 htab_delete (finally_tree);
2027 BITMAP_FREE (eh_region_may_contain_throw_map);
2028 eh_seq = NULL;
2029
2030 /* If this function needs a language specific EH personality routine
2031 and the frontend didn't already set one do so now. */
2032 if (function_needs_eh_personality (cfun) == eh_personality_lang
2033 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2034 DECL_FUNCTION_PERSONALITY (current_function_decl)
2035 = lang_hooks.eh_personality ();
2036
2037 return 0;
2038 }
2039
2040 struct gimple_opt_pass pass_lower_eh =
2041 {
2042 {
2043 GIMPLE_PASS,
2044 "eh", /* name */
2045 NULL, /* gate */
2046 lower_eh_constructs, /* execute */
2047 NULL, /* sub */
2048 NULL, /* next */
2049 0, /* static_pass_number */
2050 TV_TREE_EH, /* tv_id */
2051 PROP_gimple_lcf, /* properties_required */
2052 PROP_gimple_leh, /* properties_provided */
2053 0, /* properties_destroyed */
2054 0, /* todo_flags_start */
2055 0 /* todo_flags_finish */
2056 }
2057 };
2058 \f
2059 /* Create the multiple edges from an EH_DISPATCH statement to all of
2060 the possible handlers for its EH region. Return true if there's
2061 no fallthru edge; false if there is. */
2062
2063 bool
2064 make_eh_dispatch_edges (gimple stmt)
2065 {
2066 eh_region r;
2067 eh_catch c;
2068 basic_block src, dst;
2069
2070 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2071 src = gimple_bb (stmt);
2072
2073 switch (r->type)
2074 {
2075 case ERT_TRY:
2076 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2077 {
2078 dst = label_to_block (c->label);
2079 make_edge (src, dst, 0);
2080
2081 /* A catch-all handler doesn't have a fallthru. */
2082 if (c->type_list == NULL)
2083 return false;
2084 }
2085 break;
2086
2087 case ERT_ALLOWED_EXCEPTIONS:
2088 dst = label_to_block (r->u.allowed.label);
2089 make_edge (src, dst, 0);
2090 break;
2091
2092 default:
2093 gcc_unreachable ();
2094 }
2095
2096 return true;
2097 }
2098
2099 /* Create the single EH edge from STMT to its nearest landing pad,
2100 if there is such a landing pad within the current function. */
2101
2102 void
2103 make_eh_edges (gimple stmt)
2104 {
2105 basic_block src, dst;
2106 eh_landing_pad lp;
2107 int lp_nr;
2108
2109 lp_nr = lookup_stmt_eh_lp (stmt);
2110 if (lp_nr <= 0)
2111 return;
2112
2113 lp = get_eh_landing_pad_from_number (lp_nr);
2114 gcc_assert (lp != NULL);
2115
2116 src = gimple_bb (stmt);
2117 dst = label_to_block (lp->post_landing_pad);
2118 make_edge (src, dst, EDGE_EH);
2119 }
2120
2121 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2122 do not actually perform the final edge redirection.
2123
2124 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2125 we intend to change the destination EH region as well; this means
2126 EH_LANDING_PAD_NR must already be set on the destination block label.
2127 If false, we're being called from generic cfg manipulation code and we
2128 should preserve our place within the region tree. */
2129
2130 static void
2131 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2132 {
2133 eh_landing_pad old_lp, new_lp;
2134 basic_block old_bb;
2135 gimple throw_stmt;
2136 int old_lp_nr, new_lp_nr;
2137 tree old_label, new_label;
2138 edge_iterator ei;
2139 edge e;
2140
2141 old_bb = edge_in->dest;
2142 old_label = gimple_block_label (old_bb);
2143 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2144 gcc_assert (old_lp_nr > 0);
2145 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2146
2147 throw_stmt = last_stmt (edge_in->src);
2148 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2149
2150 new_label = gimple_block_label (new_bb);
2151
2152 /* Look for an existing region that might be using NEW_BB already. */
2153 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2154 if (new_lp_nr)
2155 {
2156 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2157 gcc_assert (new_lp);
2158
2159 /* Unless CHANGE_REGION is true, the new and old landing pad
2160 had better be associated with the same EH region. */
2161 gcc_assert (change_region || new_lp->region == old_lp->region);
2162 }
2163 else
2164 {
2165 new_lp = NULL;
2166 gcc_assert (!change_region);
2167 }
2168
2169 /* Notice when we redirect the last EH edge away from OLD_BB. */
2170 FOR_EACH_EDGE (e, ei, old_bb->preds)
2171 if (e != edge_in && (e->flags & EDGE_EH))
2172 break;
2173
2174 if (new_lp)
2175 {
2176 /* NEW_LP already exists. If there are still edges into OLD_LP,
2177 there's nothing to do with the EH tree. If there are no more
2178 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2179 If CHANGE_REGION is true, then our caller is expecting to remove
2180 the landing pad. */
2181 if (e == NULL && !change_region)
2182 remove_eh_landing_pad (old_lp);
2183 }
2184 else
2185 {
2186 /* No correct landing pad exists. If there are no more edges
2187 into OLD_LP, then we can simply re-use the existing landing pad.
2188 Otherwise, we have to create a new landing pad. */
2189 if (e == NULL)
2190 {
2191 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2192 new_lp = old_lp;
2193 }
2194 else
2195 new_lp = gen_eh_landing_pad (old_lp->region);
2196 new_lp->post_landing_pad = new_label;
2197 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2198 }
2199
2200 /* Maybe move the throwing statement to the new region. */
2201 if (old_lp != new_lp)
2202 {
2203 remove_stmt_from_eh_lp (throw_stmt);
2204 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2205 }
2206 }
2207
2208 /* Redirect EH edge E to NEW_BB. */
2209
2210 edge
2211 redirect_eh_edge (edge edge_in, basic_block new_bb)
2212 {
2213 redirect_eh_edge_1 (edge_in, new_bb, false);
2214 return ssa_redirect_edge (edge_in, new_bb);
2215 }
2216
2217 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2218 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2219 The actual edge update will happen in the caller. */
2220
2221 void
2222 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2223 {
2224 tree new_lab = gimple_block_label (new_bb);
2225 bool any_changed = false;
2226 basic_block old_bb;
2227 eh_region r;
2228 eh_catch c;
2229
2230 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2231 switch (r->type)
2232 {
2233 case ERT_TRY:
2234 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2235 {
2236 old_bb = label_to_block (c->label);
2237 if (old_bb == e->dest)
2238 {
2239 c->label = new_lab;
2240 any_changed = true;
2241 }
2242 }
2243 break;
2244
2245 case ERT_ALLOWED_EXCEPTIONS:
2246 old_bb = label_to_block (r->u.allowed.label);
2247 gcc_assert (old_bb == e->dest);
2248 r->u.allowed.label = new_lab;
2249 any_changed = true;
2250 break;
2251
2252 default:
2253 gcc_unreachable ();
2254 }
2255
2256 gcc_assert (any_changed);
2257 }
2258 \f
2259 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2260
2261 bool
2262 operation_could_trap_helper_p (enum tree_code op,
2263 bool fp_operation,
2264 bool honor_trapv,
2265 bool honor_nans,
2266 bool honor_snans,
2267 tree divisor,
2268 bool *handled)
2269 {
2270 *handled = true;
2271 switch (op)
2272 {
2273 case TRUNC_DIV_EXPR:
2274 case CEIL_DIV_EXPR:
2275 case FLOOR_DIV_EXPR:
2276 case ROUND_DIV_EXPR:
2277 case EXACT_DIV_EXPR:
2278 case CEIL_MOD_EXPR:
2279 case FLOOR_MOD_EXPR:
2280 case ROUND_MOD_EXPR:
2281 case TRUNC_MOD_EXPR:
2282 case RDIV_EXPR:
2283 if (honor_snans || honor_trapv)
2284 return true;
2285 if (fp_operation)
2286 return flag_trapping_math;
2287 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2288 return true;
2289 return false;
2290
2291 case LT_EXPR:
2292 case LE_EXPR:
2293 case GT_EXPR:
2294 case GE_EXPR:
2295 case LTGT_EXPR:
2296 /* Some floating point comparisons may trap. */
2297 return honor_nans;
2298
2299 case EQ_EXPR:
2300 case NE_EXPR:
2301 case UNORDERED_EXPR:
2302 case ORDERED_EXPR:
2303 case UNLT_EXPR:
2304 case UNLE_EXPR:
2305 case UNGT_EXPR:
2306 case UNGE_EXPR:
2307 case UNEQ_EXPR:
2308 return honor_snans;
2309
2310 case CONVERT_EXPR:
2311 case FIX_TRUNC_EXPR:
2312 /* Conversion of floating point might trap. */
2313 return honor_nans;
2314
2315 case NEGATE_EXPR:
2316 case ABS_EXPR:
2317 case CONJ_EXPR:
2318 /* These operations don't trap with floating point. */
2319 if (honor_trapv)
2320 return true;
2321 return false;
2322
2323 case PLUS_EXPR:
2324 case MINUS_EXPR:
2325 case MULT_EXPR:
2326 /* Any floating arithmetic may trap. */
2327 if (fp_operation && flag_trapping_math)
2328 return true;
2329 if (honor_trapv)
2330 return true;
2331 return false;
2332
2333 case COMPLEX_EXPR:
2334 case CONSTRUCTOR:
2335 /* Constructing an object cannot trap. */
2336 return false;
2337
2338 default:
2339 /* Any floating arithmetic may trap. */
2340 if (fp_operation && flag_trapping_math)
2341 return true;
2342
2343 *handled = false;
2344 return false;
2345 }
2346 }
2347
2348 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2349 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2350 type operands that may trap. If OP is a division operator, DIVISOR contains
2351 the value of the divisor. */
2352
2353 bool
2354 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2355 tree divisor)
2356 {
2357 bool honor_nans = (fp_operation && flag_trapping_math
2358 && !flag_finite_math_only);
2359 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2360 bool handled;
2361
2362 if (TREE_CODE_CLASS (op) != tcc_comparison
2363 && TREE_CODE_CLASS (op) != tcc_unary
2364 && TREE_CODE_CLASS (op) != tcc_binary)
2365 return false;
2366
2367 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2368 honor_nans, honor_snans, divisor,
2369 &handled);
2370 }
2371
2372 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2373 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2374 This routine expects only GIMPLE lhs or rhs input. */
2375
2376 bool
2377 tree_could_trap_p (tree expr)
2378 {
2379 enum tree_code code;
2380 bool fp_operation = false;
2381 bool honor_trapv = false;
2382 tree t, base, div = NULL_TREE;
2383
2384 if (!expr)
2385 return false;
2386
2387 code = TREE_CODE (expr);
2388 t = TREE_TYPE (expr);
2389
2390 if (t)
2391 {
2392 if (COMPARISON_CLASS_P (expr))
2393 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2394 else
2395 fp_operation = FLOAT_TYPE_P (t);
2396 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2397 }
2398
2399 if (TREE_CODE_CLASS (code) == tcc_binary)
2400 div = TREE_OPERAND (expr, 1);
2401 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2402 return true;
2403
2404 restart:
2405 switch (code)
2406 {
2407 case TARGET_MEM_REF:
2408 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2409 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2410 return false;
2411 return !TREE_THIS_NOTRAP (expr);
2412
2413 case COMPONENT_REF:
2414 case REALPART_EXPR:
2415 case IMAGPART_EXPR:
2416 case BIT_FIELD_REF:
2417 case VIEW_CONVERT_EXPR:
2418 case WITH_SIZE_EXPR:
2419 expr = TREE_OPERAND (expr, 0);
2420 code = TREE_CODE (expr);
2421 goto restart;
2422
2423 case ARRAY_RANGE_REF:
2424 base = TREE_OPERAND (expr, 0);
2425 if (tree_could_trap_p (base))
2426 return true;
2427 if (TREE_THIS_NOTRAP (expr))
2428 return false;
2429 return !range_in_array_bounds_p (expr);
2430
2431 case ARRAY_REF:
2432 base = TREE_OPERAND (expr, 0);
2433 if (tree_could_trap_p (base))
2434 return true;
2435 if (TREE_THIS_NOTRAP (expr))
2436 return false;
2437 return !in_array_bounds_p (expr);
2438
2439 case MEM_REF:
2440 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2441 return false;
2442 /* Fallthru. */
2443 case INDIRECT_REF:
2444 return !TREE_THIS_NOTRAP (expr);
2445
2446 case ASM_EXPR:
2447 return TREE_THIS_VOLATILE (expr);
2448
2449 case CALL_EXPR:
2450 t = get_callee_fndecl (expr);
2451 /* Assume that calls to weak functions may trap. */
2452 if (!t || !DECL_P (t))
2453 return true;
2454 if (DECL_WEAK (t))
2455 return tree_could_trap_p (t);
2456 return false;
2457
2458 case FUNCTION_DECL:
2459 /* Assume that accesses to weak functions may trap, unless we know
2460 they are certainly defined in current TU or in some other
2461 LTO partition. */
2462 if (DECL_WEAK (expr))
2463 {
2464 struct cgraph_node *node;
2465 if (!DECL_EXTERNAL (expr))
2466 return false;
2467 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2468 if (node && node->in_other_partition)
2469 return false;
2470 return true;
2471 }
2472 return false;
2473
2474 case VAR_DECL:
2475 /* Assume that accesses to weak vars may trap, unless we know
2476 they are certainly defined in current TU or in some other
2477 LTO partition. */
2478 if (DECL_WEAK (expr))
2479 {
2480 struct varpool_node *node;
2481 if (!DECL_EXTERNAL (expr))
2482 return false;
2483 node = varpool_variable_node (varpool_get_node (expr), NULL);
2484 if (node && node->in_other_partition)
2485 return false;
2486 return true;
2487 }
2488 return false;
2489
2490 default:
2491 return false;
2492 }
2493 }
2494
2495
2496 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2497 an assignment or a conditional) may throw. */
2498
2499 static bool
2500 stmt_could_throw_1_p (gimple stmt)
2501 {
2502 enum tree_code code = gimple_expr_code (stmt);
2503 bool honor_nans = false;
2504 bool honor_snans = false;
2505 bool fp_operation = false;
2506 bool honor_trapv = false;
2507 tree t;
2508 size_t i;
2509 bool handled, ret;
2510
2511 if (TREE_CODE_CLASS (code) == tcc_comparison
2512 || TREE_CODE_CLASS (code) == tcc_unary
2513 || TREE_CODE_CLASS (code) == tcc_binary)
2514 {
2515 if (is_gimple_assign (stmt)
2516 && TREE_CODE_CLASS (code) == tcc_comparison)
2517 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2518 else if (gimple_code (stmt) == GIMPLE_COND)
2519 t = TREE_TYPE (gimple_cond_lhs (stmt));
2520 else
2521 t = gimple_expr_type (stmt);
2522 fp_operation = FLOAT_TYPE_P (t);
2523 if (fp_operation)
2524 {
2525 honor_nans = flag_trapping_math && !flag_finite_math_only;
2526 honor_snans = flag_signaling_nans != 0;
2527 }
2528 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2529 honor_trapv = true;
2530 }
2531
2532 /* Check if the main expression may trap. */
2533 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2534 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2535 honor_nans, honor_snans, t,
2536 &handled);
2537 if (handled)
2538 return ret;
2539
2540 /* If the expression does not trap, see if any of the individual operands may
2541 trap. */
2542 for (i = 0; i < gimple_num_ops (stmt); i++)
2543 if (tree_could_trap_p (gimple_op (stmt, i)))
2544 return true;
2545
2546 return false;
2547 }
2548
2549
2550 /* Return true if statement STMT could throw an exception. */
2551
2552 bool
2553 stmt_could_throw_p (gimple stmt)
2554 {
2555 if (!flag_exceptions)
2556 return false;
2557
2558 /* The only statements that can throw an exception are assignments,
2559 conditionals, calls, resx, and asms. */
2560 switch (gimple_code (stmt))
2561 {
2562 case GIMPLE_RESX:
2563 return true;
2564
2565 case GIMPLE_CALL:
2566 return !gimple_call_nothrow_p (stmt);
2567
2568 case GIMPLE_ASSIGN:
2569 case GIMPLE_COND:
2570 if (!cfun->can_throw_non_call_exceptions)
2571 return false;
2572 return stmt_could_throw_1_p (stmt);
2573
2574 case GIMPLE_ASM:
2575 if (!cfun->can_throw_non_call_exceptions)
2576 return false;
2577 return gimple_asm_volatile_p (stmt);
2578
2579 default:
2580 return false;
2581 }
2582 }
2583
2584
2585 /* Return true if expression T could throw an exception. */
2586
2587 bool
2588 tree_could_throw_p (tree t)
2589 {
2590 if (!flag_exceptions)
2591 return false;
2592 if (TREE_CODE (t) == MODIFY_EXPR)
2593 {
2594 if (cfun->can_throw_non_call_exceptions
2595 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2596 return true;
2597 t = TREE_OPERAND (t, 1);
2598 }
2599
2600 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2601 t = TREE_OPERAND (t, 0);
2602 if (TREE_CODE (t) == CALL_EXPR)
2603 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2604 if (cfun->can_throw_non_call_exceptions)
2605 return tree_could_trap_p (t);
2606 return false;
2607 }
2608
2609 /* Return true if STMT can throw an exception that is not caught within
2610 the current function (CFUN). */
2611
2612 bool
2613 stmt_can_throw_external (gimple stmt)
2614 {
2615 int lp_nr;
2616
2617 if (!stmt_could_throw_p (stmt))
2618 return false;
2619
2620 lp_nr = lookup_stmt_eh_lp (stmt);
2621 return lp_nr == 0;
2622 }
2623
2624 /* Return true if STMT can throw an exception that is caught within
2625 the current function (CFUN). */
2626
2627 bool
2628 stmt_can_throw_internal (gimple stmt)
2629 {
2630 int lp_nr;
2631
2632 if (!stmt_could_throw_p (stmt))
2633 return false;
2634
2635 lp_nr = lookup_stmt_eh_lp (stmt);
2636 return lp_nr > 0;
2637 }
2638
2639 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2640 remove any entry it might have from the EH table. Return true if
2641 any change was made. */
2642
2643 bool
2644 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2645 {
2646 if (stmt_could_throw_p (stmt))
2647 return false;
2648 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2649 }
2650
2651 /* Likewise, but always use the current function. */
2652
2653 bool
2654 maybe_clean_eh_stmt (gimple stmt)
2655 {
2656 return maybe_clean_eh_stmt_fn (cfun, stmt);
2657 }
2658
2659 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2660 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2661 in the table if it should be in there. Return TRUE if a replacement was
2662 done that my require an EH edge purge. */
2663
2664 bool
2665 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2666 {
2667 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2668
2669 if (lp_nr != 0)
2670 {
2671 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2672
2673 if (new_stmt == old_stmt && new_stmt_could_throw)
2674 return false;
2675
2676 remove_stmt_from_eh_lp (old_stmt);
2677 if (new_stmt_could_throw)
2678 {
2679 add_stmt_to_eh_lp (new_stmt, lp_nr);
2680 return false;
2681 }
2682 else
2683 return true;
2684 }
2685
2686 return false;
2687 }
2688
2689 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2690 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2691 operand is the return value of duplicate_eh_regions. */
2692
2693 bool
2694 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2695 struct function *old_fun, gimple old_stmt,
2696 struct pointer_map_t *map, int default_lp_nr)
2697 {
2698 int old_lp_nr, new_lp_nr;
2699 void **slot;
2700
2701 if (!stmt_could_throw_p (new_stmt))
2702 return false;
2703
2704 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2705 if (old_lp_nr == 0)
2706 {
2707 if (default_lp_nr == 0)
2708 return false;
2709 new_lp_nr = default_lp_nr;
2710 }
2711 else if (old_lp_nr > 0)
2712 {
2713 eh_landing_pad old_lp, new_lp;
2714
2715 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2716 slot = pointer_map_contains (map, old_lp);
2717 new_lp = (eh_landing_pad) *slot;
2718 new_lp_nr = new_lp->index;
2719 }
2720 else
2721 {
2722 eh_region old_r, new_r;
2723
2724 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2725 slot = pointer_map_contains (map, old_r);
2726 new_r = (eh_region) *slot;
2727 new_lp_nr = -new_r->index;
2728 }
2729
2730 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2731 return true;
2732 }
2733
2734 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2735 and thus no remapping is required. */
2736
2737 bool
2738 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2739 {
2740 int lp_nr;
2741
2742 if (!stmt_could_throw_p (new_stmt))
2743 return false;
2744
2745 lp_nr = lookup_stmt_eh_lp (old_stmt);
2746 if (lp_nr == 0)
2747 return false;
2748
2749 add_stmt_to_eh_lp (new_stmt, lp_nr);
2750 return true;
2751 }
2752 \f
2753 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2754 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2755 this only handles handlers consisting of a single call, as that's the
2756 important case for C++: a destructor call for a particular object showing
2757 up in multiple handlers. */
2758
2759 static bool
2760 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2761 {
2762 gimple_stmt_iterator gsi;
2763 gimple ones, twos;
2764 unsigned int ai;
2765
2766 gsi = gsi_start (oneh);
2767 if (!gsi_one_before_end_p (gsi))
2768 return false;
2769 ones = gsi_stmt (gsi);
2770
2771 gsi = gsi_start (twoh);
2772 if (!gsi_one_before_end_p (gsi))
2773 return false;
2774 twos = gsi_stmt (gsi);
2775
2776 if (!is_gimple_call (ones)
2777 || !is_gimple_call (twos)
2778 || gimple_call_lhs (ones)
2779 || gimple_call_lhs (twos)
2780 || gimple_call_chain (ones)
2781 || gimple_call_chain (twos)
2782 || !gimple_call_same_target_p (ones, twos)
2783 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2784 return false;
2785
2786 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2787 if (!operand_equal_p (gimple_call_arg (ones, ai),
2788 gimple_call_arg (twos, ai), 0))
2789 return false;
2790
2791 return true;
2792 }
2793
2794 /* Optimize
2795 try { A() } finally { try { ~B() } catch { ~A() } }
2796 try { ... } finally { ~A() }
2797 into
2798 try { A() } catch { ~B() }
2799 try { ~B() ... } finally { ~A() }
2800
2801 This occurs frequently in C++, where A is a local variable and B is a
2802 temporary used in the initializer for A. */
2803
2804 static void
2805 optimize_double_finally (gimple one, gimple two)
2806 {
2807 gimple oneh;
2808 gimple_stmt_iterator gsi;
2809
2810 gsi = gsi_start (gimple_try_cleanup (one));
2811 if (!gsi_one_before_end_p (gsi))
2812 return;
2813
2814 oneh = gsi_stmt (gsi);
2815 if (gimple_code (oneh) != GIMPLE_TRY
2816 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2817 return;
2818
2819 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2820 {
2821 gimple_seq seq = gimple_try_eval (oneh);
2822
2823 gimple_try_set_cleanup (one, seq);
2824 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2825 seq = copy_gimple_seq_and_replace_locals (seq);
2826 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2827 gimple_try_set_eval (two, seq);
2828 }
2829 }
2830
2831 /* Perform EH refactoring optimizations that are simpler to do when code
2832 flow has been lowered but EH structures haven't. */
2833
2834 static void
2835 refactor_eh_r (gimple_seq seq)
2836 {
2837 gimple_stmt_iterator gsi;
2838 gimple one, two;
2839
2840 one = NULL;
2841 two = NULL;
2842 gsi = gsi_start (seq);
2843 while (1)
2844 {
2845 one = two;
2846 if (gsi_end_p (gsi))
2847 two = NULL;
2848 else
2849 two = gsi_stmt (gsi);
2850 if (one
2851 && two
2852 && gimple_code (one) == GIMPLE_TRY
2853 && gimple_code (two) == GIMPLE_TRY
2854 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2855 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2856 optimize_double_finally (one, two);
2857 if (one)
2858 switch (gimple_code (one))
2859 {
2860 case GIMPLE_TRY:
2861 refactor_eh_r (gimple_try_eval (one));
2862 refactor_eh_r (gimple_try_cleanup (one));
2863 break;
2864 case GIMPLE_CATCH:
2865 refactor_eh_r (gimple_catch_handler (one));
2866 break;
2867 case GIMPLE_EH_FILTER:
2868 refactor_eh_r (gimple_eh_filter_failure (one));
2869 break;
2870 default:
2871 break;
2872 }
2873 if (two)
2874 gsi_next (&gsi);
2875 else
2876 break;
2877 }
2878 }
2879
2880 static unsigned
2881 refactor_eh (void)
2882 {
2883 refactor_eh_r (gimple_body (current_function_decl));
2884 return 0;
2885 }
2886
2887 static bool
2888 gate_refactor_eh (void)
2889 {
2890 return flag_exceptions != 0;
2891 }
2892
2893 struct gimple_opt_pass pass_refactor_eh =
2894 {
2895 {
2896 GIMPLE_PASS,
2897 "ehopt", /* name */
2898 gate_refactor_eh, /* gate */
2899 refactor_eh, /* execute */
2900 NULL, /* sub */
2901 NULL, /* next */
2902 0, /* static_pass_number */
2903 TV_TREE_EH, /* tv_id */
2904 PROP_gimple_lcf, /* properties_required */
2905 0, /* properties_provided */
2906 0, /* properties_destroyed */
2907 0, /* todo_flags_start */
2908 0 /* todo_flags_finish */
2909 }
2910 };
2911 \f
2912 /* At the end of gimple optimization, we can lower RESX. */
2913
2914 static bool
2915 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2916 {
2917 int lp_nr;
2918 eh_region src_r, dst_r;
2919 gimple_stmt_iterator gsi;
2920 gimple x;
2921 tree fn, src_nr;
2922 bool ret = false;
2923
2924 lp_nr = lookup_stmt_eh_lp (stmt);
2925 if (lp_nr != 0)
2926 dst_r = get_eh_region_from_lp_number (lp_nr);
2927 else
2928 dst_r = NULL;
2929
2930 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2931 gsi = gsi_last_bb (bb);
2932
2933 if (src_r == NULL)
2934 {
2935 /* We can wind up with no source region when pass_cleanup_eh shows
2936 that there are no entries into an eh region and deletes it, but
2937 then the block that contains the resx isn't removed. This can
2938 happen without optimization when the switch statement created by
2939 lower_try_finally_switch isn't simplified to remove the eh case.
2940
2941 Resolve this by expanding the resx node to an abort. */
2942
2943 fn = builtin_decl_implicit (BUILT_IN_TRAP);
2944 x = gimple_build_call (fn, 0);
2945 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2946
2947 while (EDGE_COUNT (bb->succs) > 0)
2948 remove_edge (EDGE_SUCC (bb, 0));
2949 }
2950 else if (dst_r)
2951 {
2952 /* When we have a destination region, we resolve this by copying
2953 the excptr and filter values into place, and changing the edge
2954 to immediately after the landing pad. */
2955 edge e;
2956
2957 if (lp_nr < 0)
2958 {
2959 basic_block new_bb;
2960 void **slot;
2961 tree lab;
2962
2963 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2964 the failure decl into a new block, if needed. */
2965 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2966
2967 slot = pointer_map_contains (mnt_map, dst_r);
2968 if (slot == NULL)
2969 {
2970 gimple_stmt_iterator gsi2;
2971
2972 new_bb = create_empty_bb (bb);
2973 lab = gimple_block_label (new_bb);
2974 gsi2 = gsi_start_bb (new_bb);
2975
2976 fn = dst_r->u.must_not_throw.failure_decl;
2977 x = gimple_build_call (fn, 0);
2978 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2979 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2980
2981 slot = pointer_map_insert (mnt_map, dst_r);
2982 *slot = lab;
2983 }
2984 else
2985 {
2986 lab = (tree) *slot;
2987 new_bb = label_to_block (lab);
2988 }
2989
2990 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2991 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2992 e->count = bb->count;
2993 e->probability = REG_BR_PROB_BASE;
2994 }
2995 else
2996 {
2997 edge_iterator ei;
2998 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
2999
3000 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3001 src_nr = build_int_cst (integer_type_node, src_r->index);
3002 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3003 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3004
3005 /* Update the flags for the outgoing edge. */
3006 e = single_succ_edge (bb);
3007 gcc_assert (e->flags & EDGE_EH);
3008 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3009
3010 /* If there are no more EH users of the landing pad, delete it. */
3011 FOR_EACH_EDGE (e, ei, e->dest->preds)
3012 if (e->flags & EDGE_EH)
3013 break;
3014 if (e == NULL)
3015 {
3016 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3017 remove_eh_landing_pad (lp);
3018 }
3019 }
3020
3021 ret = true;
3022 }
3023 else
3024 {
3025 tree var;
3026
3027 /* When we don't have a destination region, this exception escapes
3028 up the call chain. We resolve this by generating a call to the
3029 _Unwind_Resume library function. */
3030
3031 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3032 with no arguments for C++ and Java. Check for that. */
3033 if (src_r->use_cxa_end_cleanup)
3034 {
3035 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3036 x = gimple_build_call (fn, 0);
3037 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3038 }
3039 else
3040 {
3041 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3042 src_nr = build_int_cst (integer_type_node, src_r->index);
3043 x = gimple_build_call (fn, 1, src_nr);
3044 var = create_tmp_var (ptr_type_node, NULL);
3045 var = make_ssa_name (var, x);
3046 gimple_call_set_lhs (x, var);
3047 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3048
3049 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3050 x = gimple_build_call (fn, 1, var);
3051 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3052 }
3053
3054 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3055 }
3056
3057 gsi_remove (&gsi, true);
3058
3059 return ret;
3060 }
3061
3062 static unsigned
3063 execute_lower_resx (void)
3064 {
3065 basic_block bb;
3066 struct pointer_map_t *mnt_map;
3067 bool dominance_invalidated = false;
3068 bool any_rewritten = false;
3069
3070 mnt_map = pointer_map_create ();
3071
3072 FOR_EACH_BB (bb)
3073 {
3074 gimple last = last_stmt (bb);
3075 if (last && is_gimple_resx (last))
3076 {
3077 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3078 any_rewritten = true;
3079 }
3080 }
3081
3082 pointer_map_destroy (mnt_map);
3083
3084 if (dominance_invalidated)
3085 {
3086 free_dominance_info (CDI_DOMINATORS);
3087 free_dominance_info (CDI_POST_DOMINATORS);
3088 }
3089
3090 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3091 }
3092
3093 static bool
3094 gate_lower_resx (void)
3095 {
3096 return flag_exceptions != 0;
3097 }
3098
3099 struct gimple_opt_pass pass_lower_resx =
3100 {
3101 {
3102 GIMPLE_PASS,
3103 "resx", /* name */
3104 gate_lower_resx, /* gate */
3105 execute_lower_resx, /* execute */
3106 NULL, /* sub */
3107 NULL, /* next */
3108 0, /* static_pass_number */
3109 TV_TREE_EH, /* tv_id */
3110 PROP_gimple_lcf, /* properties_required */
3111 0, /* properties_provided */
3112 0, /* properties_destroyed */
3113 0, /* todo_flags_start */
3114 TODO_verify_flow /* todo_flags_finish */
3115 }
3116 };
3117
3118
3119 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3120 we have found some duplicate labels and removed some edges. */
3121
3122 static bool
3123 lower_eh_dispatch (basic_block src, gimple stmt)
3124 {
3125 gimple_stmt_iterator gsi;
3126 int region_nr;
3127 eh_region r;
3128 tree filter, fn;
3129 gimple x;
3130 bool redirected = false;
3131
3132 region_nr = gimple_eh_dispatch_region (stmt);
3133 r = get_eh_region_from_number (region_nr);
3134
3135 gsi = gsi_last_bb (src);
3136
3137 switch (r->type)
3138 {
3139 case ERT_TRY:
3140 {
3141 VEC (tree, heap) *labels = NULL;
3142 tree default_label = NULL;
3143 eh_catch c;
3144 edge_iterator ei;
3145 edge e;
3146 struct pointer_set_t *seen_values = pointer_set_create ();
3147
3148 /* Collect the labels for a switch. Zero the post_landing_pad
3149 field becase we'll no longer have anything keeping these labels
3150 in existance and the optimizer will be free to merge these
3151 blocks at will. */
3152 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3153 {
3154 tree tp_node, flt_node, lab = c->label;
3155 bool have_label = false;
3156
3157 c->label = NULL;
3158 tp_node = c->type_list;
3159 flt_node = c->filter_list;
3160
3161 if (tp_node == NULL)
3162 {
3163 default_label = lab;
3164 break;
3165 }
3166 do
3167 {
3168 /* Filter out duplicate labels that arise when this handler
3169 is shadowed by an earlier one. When no labels are
3170 attached to the handler anymore, we remove
3171 the corresponding edge and then we delete unreachable
3172 blocks at the end of this pass. */
3173 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3174 {
3175 tree t = build_case_label (TREE_VALUE (flt_node),
3176 NULL, lab);
3177 VEC_safe_push (tree, heap, labels, t);
3178 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3179 have_label = true;
3180 }
3181
3182 tp_node = TREE_CHAIN (tp_node);
3183 flt_node = TREE_CHAIN (flt_node);
3184 }
3185 while (tp_node);
3186 if (! have_label)
3187 {
3188 remove_edge (find_edge (src, label_to_block (lab)));
3189 redirected = true;
3190 }
3191 }
3192
3193 /* Clean up the edge flags. */
3194 FOR_EACH_EDGE (e, ei, src->succs)
3195 {
3196 if (e->flags & EDGE_FALLTHRU)
3197 {
3198 /* If there was no catch-all, use the fallthru edge. */
3199 if (default_label == NULL)
3200 default_label = gimple_block_label (e->dest);
3201 e->flags &= ~EDGE_FALLTHRU;
3202 }
3203 }
3204 gcc_assert (default_label != NULL);
3205
3206 /* Don't generate a switch if there's only a default case.
3207 This is common in the form of try { A; } catch (...) { B; }. */
3208 if (labels == NULL)
3209 {
3210 e = single_succ_edge (src);
3211 e->flags |= EDGE_FALLTHRU;
3212 }
3213 else
3214 {
3215 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3216 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3217 region_nr));
3218 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3219 filter = make_ssa_name (filter, x);
3220 gimple_call_set_lhs (x, filter);
3221 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3222
3223 /* Turn the default label into a default case. */
3224 default_label = build_case_label (NULL, NULL, default_label);
3225 sort_case_labels (labels);
3226
3227 x = gimple_build_switch_vec (filter, default_label, labels);
3228 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3229
3230 VEC_free (tree, heap, labels);
3231 }
3232 pointer_set_destroy (seen_values);
3233 }
3234 break;
3235
3236 case ERT_ALLOWED_EXCEPTIONS:
3237 {
3238 edge b_e = BRANCH_EDGE (src);
3239 edge f_e = FALLTHRU_EDGE (src);
3240
3241 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3242 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3243 region_nr));
3244 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3245 filter = make_ssa_name (filter, x);
3246 gimple_call_set_lhs (x, filter);
3247 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3248
3249 r->u.allowed.label = NULL;
3250 x = gimple_build_cond (EQ_EXPR, filter,
3251 build_int_cst (TREE_TYPE (filter),
3252 r->u.allowed.filter),
3253 NULL_TREE, NULL_TREE);
3254 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3255
3256 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3257 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3258 }
3259 break;
3260
3261 default:
3262 gcc_unreachable ();
3263 }
3264
3265 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3266 gsi_remove (&gsi, true);
3267 return redirected;
3268 }
3269
3270 static unsigned
3271 execute_lower_eh_dispatch (void)
3272 {
3273 basic_block bb;
3274 bool any_rewritten = false;
3275 bool redirected = false;
3276
3277 assign_filter_values ();
3278
3279 FOR_EACH_BB (bb)
3280 {
3281 gimple last = last_stmt (bb);
3282 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3283 {
3284 redirected |= lower_eh_dispatch (bb, last);
3285 any_rewritten = true;
3286 }
3287 }
3288
3289 if (redirected)
3290 delete_unreachable_blocks ();
3291 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3292 }
3293
3294 static bool
3295 gate_lower_eh_dispatch (void)
3296 {
3297 return cfun->eh->region_tree != NULL;
3298 }
3299
3300 struct gimple_opt_pass pass_lower_eh_dispatch =
3301 {
3302 {
3303 GIMPLE_PASS,
3304 "ehdisp", /* name */
3305 gate_lower_eh_dispatch, /* gate */
3306 execute_lower_eh_dispatch, /* execute */
3307 NULL, /* sub */
3308 NULL, /* next */
3309 0, /* static_pass_number */
3310 TV_TREE_EH, /* tv_id */
3311 PROP_gimple_lcf, /* properties_required */
3312 0, /* properties_provided */
3313 0, /* properties_destroyed */
3314 0, /* todo_flags_start */
3315 TODO_verify_flow /* todo_flags_finish */
3316 }
3317 };
3318 \f
3319 /* Walk statements, see what regions are really referenced and remove
3320 those that are unused. */
3321
3322 static void
3323 remove_unreachable_handlers (void)
3324 {
3325 sbitmap r_reachable, lp_reachable;
3326 eh_region region;
3327 eh_landing_pad lp;
3328 basic_block bb;
3329 int lp_nr, r_nr;
3330
3331 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3332 lp_reachable
3333 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3334 sbitmap_zero (r_reachable);
3335 sbitmap_zero (lp_reachable);
3336
3337 FOR_EACH_BB (bb)
3338 {
3339 gimple_stmt_iterator gsi;
3340
3341 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3342 {
3343 gimple stmt = gsi_stmt (gsi);
3344 lp_nr = lookup_stmt_eh_lp (stmt);
3345
3346 /* Negative LP numbers are MUST_NOT_THROW regions which
3347 are not considered BB enders. */
3348 if (lp_nr < 0)
3349 SET_BIT (r_reachable, -lp_nr);
3350
3351 /* Positive LP numbers are real landing pads, are are BB enders. */
3352 else if (lp_nr > 0)
3353 {
3354 gcc_assert (gsi_one_before_end_p (gsi));
3355 region = get_eh_region_from_lp_number (lp_nr);
3356 SET_BIT (r_reachable, region->index);
3357 SET_BIT (lp_reachable, lp_nr);
3358 }
3359
3360 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3361 switch (gimple_code (stmt))
3362 {
3363 case GIMPLE_RESX:
3364 SET_BIT (r_reachable, gimple_resx_region (stmt));
3365 break;
3366 case GIMPLE_EH_DISPATCH:
3367 SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3368 break;
3369 default:
3370 break;
3371 }
3372 }
3373 }
3374
3375 if (dump_file)
3376 {
3377 fprintf (dump_file, "Before removal of unreachable regions:\n");
3378 dump_eh_tree (dump_file, cfun);
3379 fprintf (dump_file, "Reachable regions: ");
3380 dump_sbitmap_file (dump_file, r_reachable);
3381 fprintf (dump_file, "Reachable landing pads: ");
3382 dump_sbitmap_file (dump_file, lp_reachable);
3383 }
3384
3385 for (r_nr = 1;
3386 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3387 if (region && !TEST_BIT (r_reachable, r_nr))
3388 {
3389 if (dump_file)
3390 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3391 remove_eh_handler (region);
3392 }
3393
3394 for (lp_nr = 1;
3395 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3396 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3397 {
3398 if (dump_file)
3399 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3400 remove_eh_landing_pad (lp);
3401 }
3402
3403 if (dump_file)
3404 {
3405 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3406 dump_eh_tree (dump_file, cfun);
3407 fprintf (dump_file, "\n\n");
3408 }
3409
3410 sbitmap_free (r_reachable);
3411 sbitmap_free (lp_reachable);
3412
3413 #ifdef ENABLE_CHECKING
3414 verify_eh_tree (cfun);
3415 #endif
3416 }
3417
3418 /* Remove regions that do not have landing pads. This assumes
3419 that remove_unreachable_handlers has already been run, and
3420 that we've just manipulated the landing pads since then. */
3421
3422 static void
3423 remove_unreachable_handlers_no_lp (void)
3424 {
3425 eh_region r;
3426 int i;
3427
3428 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3429 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3430 {
3431 if (dump_file)
3432 fprintf (dump_file, "Removing unreachable region %d\n", i);
3433 remove_eh_handler (r);
3434 }
3435 }
3436
3437 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3438 optimisticaly split all sorts of edges, including EH edges. The
3439 optimization passes in between may not have needed them; if not,
3440 we should undo the split.
3441
3442 Recognize this case by having one EH edge incoming to the BB and
3443 one normal edge outgoing; BB should be empty apart from the
3444 post_landing_pad label.
3445
3446 Note that this is slightly different from the empty handler case
3447 handled by cleanup_empty_eh, in that the actual handler may yet
3448 have actual code but the landing pad has been separated from the
3449 handler. As such, cleanup_empty_eh relies on this transformation
3450 having been done first. */
3451
3452 static bool
3453 unsplit_eh (eh_landing_pad lp)
3454 {
3455 basic_block bb = label_to_block (lp->post_landing_pad);
3456 gimple_stmt_iterator gsi;
3457 edge e_in, e_out;
3458
3459 /* Quickly check the edge counts on BB for singularity. */
3460 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3461 return false;
3462 e_in = EDGE_PRED (bb, 0);
3463 e_out = EDGE_SUCC (bb, 0);
3464
3465 /* Input edge must be EH and output edge must be normal. */
3466 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3467 return false;
3468
3469 /* The block must be empty except for the labels and debug insns. */
3470 gsi = gsi_after_labels (bb);
3471 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3472 gsi_next_nondebug (&gsi);
3473 if (!gsi_end_p (gsi))
3474 return false;
3475
3476 /* The destination block must not already have a landing pad
3477 for a different region. */
3478 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3479 {
3480 gimple stmt = gsi_stmt (gsi);
3481 tree lab;
3482 int lp_nr;
3483
3484 if (gimple_code (stmt) != GIMPLE_LABEL)
3485 break;
3486 lab = gimple_label_label (stmt);
3487 lp_nr = EH_LANDING_PAD_NR (lab);
3488 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3489 return false;
3490 }
3491
3492 /* The new destination block must not already be a destination of
3493 the source block, lest we merge fallthru and eh edges and get
3494 all sorts of confused. */
3495 if (find_edge (e_in->src, e_out->dest))
3496 return false;
3497
3498 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3499 thought this should have been cleaned up by a phicprop pass, but
3500 that doesn't appear to handle virtuals. Propagate by hand. */
3501 if (!gimple_seq_empty_p (phi_nodes (bb)))
3502 {
3503 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3504 {
3505 gimple use_stmt, phi = gsi_stmt (gsi);
3506 tree lhs = gimple_phi_result (phi);
3507 tree rhs = gimple_phi_arg_def (phi, 0);
3508 use_operand_p use_p;
3509 imm_use_iterator iter;
3510
3511 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3512 {
3513 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3514 SET_USE (use_p, rhs);
3515 }
3516
3517 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3518 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3519
3520 remove_phi_node (&gsi, true);
3521 }
3522 }
3523
3524 if (dump_file && (dump_flags & TDF_DETAILS))
3525 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3526 lp->index, e_out->dest->index);
3527
3528 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3529 a successor edge, humor it. But do the real CFG change with the
3530 predecessor of E_OUT in order to preserve the ordering of arguments
3531 to the PHI nodes in E_OUT->DEST. */
3532 redirect_eh_edge_1 (e_in, e_out->dest, false);
3533 redirect_edge_pred (e_out, e_in->src);
3534 e_out->flags = e_in->flags;
3535 e_out->probability = e_in->probability;
3536 e_out->count = e_in->count;
3537 remove_edge (e_in);
3538
3539 return true;
3540 }
3541
3542 /* Examine each landing pad block and see if it matches unsplit_eh. */
3543
3544 static bool
3545 unsplit_all_eh (void)
3546 {
3547 bool changed = false;
3548 eh_landing_pad lp;
3549 int i;
3550
3551 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3552 if (lp)
3553 changed |= unsplit_eh (lp);
3554
3555 return changed;
3556 }
3557
3558 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3559 to OLD_BB to NEW_BB; return true on success, false on failure.
3560
3561 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3562 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3563 Virtual PHIs may be deleted and marked for renaming. */
3564
3565 static bool
3566 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3567 edge old_bb_out, bool change_region)
3568 {
3569 gimple_stmt_iterator ngsi, ogsi;
3570 edge_iterator ei;
3571 edge e;
3572 bitmap rename_virts;
3573 bitmap ophi_handled;
3574
3575 FOR_EACH_EDGE (e, ei, old_bb->preds)
3576 redirect_edge_var_map_clear (e);
3577
3578 ophi_handled = BITMAP_ALLOC (NULL);
3579 rename_virts = BITMAP_ALLOC (NULL);
3580
3581 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3582 for the edges we're going to move. */
3583 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3584 {
3585 gimple ophi, nphi = gsi_stmt (ngsi);
3586 tree nresult, nop;
3587
3588 nresult = gimple_phi_result (nphi);
3589 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3590
3591 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3592 the source ssa_name. */
3593 ophi = NULL;
3594 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3595 {
3596 ophi = gsi_stmt (ogsi);
3597 if (gimple_phi_result (ophi) == nop)
3598 break;
3599 ophi = NULL;
3600 }
3601
3602 /* If we did find the corresponding PHI, copy those inputs. */
3603 if (ophi)
3604 {
3605 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3606 if (!has_single_use (nop))
3607 {
3608 imm_use_iterator imm_iter;
3609 use_operand_p use_p;
3610
3611 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3612 {
3613 if (!gimple_debug_bind_p (USE_STMT (use_p))
3614 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3615 || gimple_bb (USE_STMT (use_p)) != new_bb))
3616 goto fail;
3617 }
3618 }
3619 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3620 FOR_EACH_EDGE (e, ei, old_bb->preds)
3621 {
3622 location_t oloc;
3623 tree oop;
3624
3625 if ((e->flags & EDGE_EH) == 0)
3626 continue;
3627 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3628 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3629 redirect_edge_var_map_add (e, nresult, oop, oloc);
3630 }
3631 }
3632 /* If we didn't find the PHI, but it's a VOP, remember to rename
3633 it later, assuming all other tests succeed. */
3634 else if (!is_gimple_reg (nresult))
3635 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3636 /* If we didn't find the PHI, and it's a real variable, we know
3637 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3638 variable is unchanged from input to the block and we can simply
3639 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3640 else
3641 {
3642 location_t nloc
3643 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3644 FOR_EACH_EDGE (e, ei, old_bb->preds)
3645 redirect_edge_var_map_add (e, nresult, nop, nloc);
3646 }
3647 }
3648
3649 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3650 we don't know what values from the other edges into NEW_BB to use. */
3651 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3652 {
3653 gimple ophi = gsi_stmt (ogsi);
3654 tree oresult = gimple_phi_result (ophi);
3655 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3656 goto fail;
3657 }
3658
3659 /* At this point we know that the merge will succeed. Remove the PHI
3660 nodes for the virtuals that we want to rename. */
3661 if (!bitmap_empty_p (rename_virts))
3662 {
3663 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3664 {
3665 gimple nphi = gsi_stmt (ngsi);
3666 tree nresult = gimple_phi_result (nphi);
3667 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3668 {
3669 mark_virtual_phi_result_for_renaming (nphi);
3670 remove_phi_node (&ngsi, true);
3671 }
3672 else
3673 gsi_next (&ngsi);
3674 }
3675 }
3676
3677 /* Finally, move the edges and update the PHIs. */
3678 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3679 if (e->flags & EDGE_EH)
3680 {
3681 redirect_eh_edge_1 (e, new_bb, change_region);
3682 redirect_edge_succ (e, new_bb);
3683 flush_pending_stmts (e);
3684 }
3685 else
3686 ei_next (&ei);
3687
3688 BITMAP_FREE (ophi_handled);
3689 BITMAP_FREE (rename_virts);
3690 return true;
3691
3692 fail:
3693 FOR_EACH_EDGE (e, ei, old_bb->preds)
3694 redirect_edge_var_map_clear (e);
3695 BITMAP_FREE (ophi_handled);
3696 BITMAP_FREE (rename_virts);
3697 return false;
3698 }
3699
3700 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3701 old region to NEW_REGION at BB. */
3702
3703 static void
3704 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3705 eh_landing_pad lp, eh_region new_region)
3706 {
3707 gimple_stmt_iterator gsi;
3708 eh_landing_pad *pp;
3709
3710 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3711 continue;
3712 *pp = lp->next_lp;
3713
3714 lp->region = new_region;
3715 lp->next_lp = new_region->landing_pads;
3716 new_region->landing_pads = lp;
3717
3718 /* Delete the RESX that was matched within the empty handler block. */
3719 gsi = gsi_last_bb (bb);
3720 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3721 gsi_remove (&gsi, true);
3722
3723 /* Clean up E_OUT for the fallthru. */
3724 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3725 e_out->probability = REG_BR_PROB_BASE;
3726 }
3727
3728 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3729 unsplitting than unsplit_eh was prepared to handle, e.g. when
3730 multiple incoming edges and phis are involved. */
3731
3732 static bool
3733 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3734 {
3735 gimple_stmt_iterator gsi;
3736 tree lab;
3737 edge_iterator ei;
3738 edge e;
3739
3740 /* We really ought not have totally lost everything following
3741 a landing pad label. Given that BB is empty, there had better
3742 be a successor. */
3743 gcc_assert (e_out != NULL);
3744
3745 /* The destination block must not already have a landing pad
3746 for a different region. */
3747 lab = NULL;
3748 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3749 {
3750 gimple stmt = gsi_stmt (gsi);
3751 int lp_nr;
3752
3753 if (gimple_code (stmt) != GIMPLE_LABEL)
3754 break;
3755 lab = gimple_label_label (stmt);
3756 lp_nr = EH_LANDING_PAD_NR (lab);
3757 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3758 return false;
3759 }
3760
3761 /* The destination block must not be a regular successor for any
3762 of the preds of the landing pad. Thus, avoid turning
3763 <..>
3764 | \ EH
3765 | <..>
3766 | /
3767 <..>
3768 into
3769 <..>
3770 | | EH
3771 <..>
3772 which CFG verification would choke on. See PR45172. */
3773 FOR_EACH_EDGE (e, ei, bb->preds)
3774 if (find_edge (e->src, e_out->dest))
3775 return false;
3776
3777 /* Attempt to move the PHIs into the successor block. */
3778 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3779 {
3780 if (dump_file && (dump_flags & TDF_DETAILS))
3781 fprintf (dump_file,
3782 "Unsplit EH landing pad %d to block %i "
3783 "(via cleanup_empty_eh).\n",
3784 lp->index, e_out->dest->index);
3785 return true;
3786 }
3787
3788 return false;
3789 }
3790
3791 /* Return true if edge E_FIRST is part of an empty infinite loop
3792 or leads to such a loop through a series of single successor
3793 empty bbs. */
3794
3795 static bool
3796 infinite_empty_loop_p (edge e_first)
3797 {
3798 bool inf_loop = false;
3799 edge e;
3800
3801 if (e_first->dest == e_first->src)
3802 return true;
3803
3804 e_first->src->aux = (void *) 1;
3805 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
3806 {
3807 gimple_stmt_iterator gsi;
3808 if (e->dest->aux)
3809 {
3810 inf_loop = true;
3811 break;
3812 }
3813 e->dest->aux = (void *) 1;
3814 gsi = gsi_after_labels (e->dest);
3815 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3816 gsi_next_nondebug (&gsi);
3817 if (!gsi_end_p (gsi))
3818 break;
3819 }
3820 e_first->src->aux = NULL;
3821 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
3822 e->dest->aux = NULL;
3823
3824 return inf_loop;
3825 }
3826
3827 /* Examine the block associated with LP to determine if it's an empty
3828 handler for its EH region. If so, attempt to redirect EH edges to
3829 an outer region. Return true the CFG was updated in any way. This
3830 is similar to jump forwarding, just across EH edges. */
3831
3832 static bool
3833 cleanup_empty_eh (eh_landing_pad lp)
3834 {
3835 basic_block bb = label_to_block (lp->post_landing_pad);
3836 gimple_stmt_iterator gsi;
3837 gimple resx;
3838 eh_region new_region;
3839 edge_iterator ei;
3840 edge e, e_out;
3841 bool has_non_eh_pred;
3842 int new_lp_nr;
3843
3844 /* There can be zero or one edges out of BB. This is the quickest test. */
3845 switch (EDGE_COUNT (bb->succs))
3846 {
3847 case 0:
3848 e_out = NULL;
3849 break;
3850 case 1:
3851 e_out = EDGE_SUCC (bb, 0);
3852 break;
3853 default:
3854 return false;
3855 }
3856 gsi = gsi_after_labels (bb);
3857
3858 /* Make sure to skip debug statements. */
3859 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3860 gsi_next_nondebug (&gsi);
3861
3862 /* If the block is totally empty, look for more unsplitting cases. */
3863 if (gsi_end_p (gsi))
3864 {
3865 /* For the degenerate case of an infinite loop bail out. */
3866 if (infinite_empty_loop_p (e_out))
3867 return false;
3868
3869 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3870 }
3871
3872 /* The block should consist only of a single RESX statement, modulo a
3873 preceding call to __builtin_stack_restore if there is no outgoing
3874 edge, since the call can be eliminated in this case. */
3875 resx = gsi_stmt (gsi);
3876 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
3877 {
3878 gsi_next (&gsi);
3879 resx = gsi_stmt (gsi);
3880 }
3881 if (!is_gimple_resx (resx))
3882 return false;
3883 gcc_assert (gsi_one_before_end_p (gsi));
3884
3885 /* Determine if there are non-EH edges, or resx edges into the handler. */
3886 has_non_eh_pred = false;
3887 FOR_EACH_EDGE (e, ei, bb->preds)
3888 if (!(e->flags & EDGE_EH))
3889 has_non_eh_pred = true;
3890
3891 /* Find the handler that's outer of the empty handler by looking at
3892 where the RESX instruction was vectored. */
3893 new_lp_nr = lookup_stmt_eh_lp (resx);
3894 new_region = get_eh_region_from_lp_number (new_lp_nr);
3895
3896 /* If there's no destination region within the current function,
3897 redirection is trivial via removing the throwing statements from
3898 the EH region, removing the EH edges, and allowing the block
3899 to go unreachable. */
3900 if (new_region == NULL)
3901 {
3902 gcc_assert (e_out == NULL);
3903 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3904 if (e->flags & EDGE_EH)
3905 {
3906 gimple stmt = last_stmt (e->src);
3907 remove_stmt_from_eh_lp (stmt);
3908 remove_edge (e);
3909 }
3910 else
3911 ei_next (&ei);
3912 goto succeed;
3913 }
3914
3915 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3916 to handle the abort and allow the blocks to go unreachable. */
3917 if (new_region->type == ERT_MUST_NOT_THROW)
3918 {
3919 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3920 if (e->flags & EDGE_EH)
3921 {
3922 gimple stmt = last_stmt (e->src);
3923 remove_stmt_from_eh_lp (stmt);
3924 add_stmt_to_eh_lp (stmt, new_lp_nr);
3925 remove_edge (e);
3926 }
3927 else
3928 ei_next (&ei);
3929 goto succeed;
3930 }
3931
3932 /* Try to redirect the EH edges and merge the PHIs into the destination
3933 landing pad block. If the merge succeeds, we'll already have redirected
3934 all the EH edges. The handler itself will go unreachable if there were
3935 no normal edges. */
3936 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3937 goto succeed;
3938
3939 /* Finally, if all input edges are EH edges, then we can (potentially)
3940 reduce the number of transfers from the runtime by moving the landing
3941 pad from the original region to the new region. This is a win when
3942 we remove the last CLEANUP region along a particular exception
3943 propagation path. Since nothing changes except for the region with
3944 which the landing pad is associated, the PHI nodes do not need to be
3945 adjusted at all. */
3946 if (!has_non_eh_pred)
3947 {
3948 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3949 if (dump_file && (dump_flags & TDF_DETAILS))
3950 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3951 lp->index, new_region->index);
3952
3953 /* ??? The CFG didn't change, but we may have rendered the
3954 old EH region unreachable. Trigger a cleanup there. */
3955 return true;
3956 }
3957
3958 return false;
3959
3960 succeed:
3961 if (dump_file && (dump_flags & TDF_DETAILS))
3962 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3963 remove_eh_landing_pad (lp);
3964 return true;
3965 }
3966
3967 /* Do a post-order traversal of the EH region tree. Examine each
3968 post_landing_pad block and see if we can eliminate it as empty. */
3969
3970 static bool
3971 cleanup_all_empty_eh (void)
3972 {
3973 bool changed = false;
3974 eh_landing_pad lp;
3975 int i;
3976
3977 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3978 if (lp)
3979 changed |= cleanup_empty_eh (lp);
3980
3981 return changed;
3982 }
3983
3984 /* Perform cleanups and lowering of exception handling
3985 1) cleanups regions with handlers doing nothing are optimized out
3986 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3987 3) Info about regions that are containing instructions, and regions
3988 reachable via local EH edges is collected
3989 4) Eh tree is pruned for regions no longer neccesary.
3990
3991 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3992 Unify those that have the same failure decl and locus.
3993 */
3994
3995 static unsigned int
3996 execute_cleanup_eh_1 (void)
3997 {
3998 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3999 looking up unreachable landing pads. */
4000 remove_unreachable_handlers ();
4001
4002 /* Watch out for the region tree vanishing due to all unreachable. */
4003 if (cfun->eh->region_tree && optimize)
4004 {
4005 bool changed = false;
4006
4007 changed |= unsplit_all_eh ();
4008 changed |= cleanup_all_empty_eh ();
4009
4010 if (changed)
4011 {
4012 free_dominance_info (CDI_DOMINATORS);
4013 free_dominance_info (CDI_POST_DOMINATORS);
4014
4015 /* We delayed all basic block deletion, as we may have performed
4016 cleanups on EH edges while non-EH edges were still present. */
4017 delete_unreachable_blocks ();
4018
4019 /* We manipulated the landing pads. Remove any region that no
4020 longer has a landing pad. */
4021 remove_unreachable_handlers_no_lp ();
4022
4023 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4024 }
4025 }
4026
4027 return 0;
4028 }
4029
4030 static unsigned int
4031 execute_cleanup_eh (void)
4032 {
4033 int ret = execute_cleanup_eh_1 ();
4034
4035 /* If the function no longer needs an EH personality routine
4036 clear it. This exposes cross-language inlining opportunities
4037 and avoids references to a never defined personality routine. */
4038 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4039 && function_needs_eh_personality (cfun) != eh_personality_lang)
4040 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4041
4042 return ret;
4043 }
4044
4045 static bool
4046 gate_cleanup_eh (void)
4047 {
4048 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4049 }
4050
4051 struct gimple_opt_pass pass_cleanup_eh = {
4052 {
4053 GIMPLE_PASS,
4054 "ehcleanup", /* name */
4055 gate_cleanup_eh, /* gate */
4056 execute_cleanup_eh, /* execute */
4057 NULL, /* sub */
4058 NULL, /* next */
4059 0, /* static_pass_number */
4060 TV_TREE_EH, /* tv_id */
4061 PROP_gimple_lcf, /* properties_required */
4062 0, /* properties_provided */
4063 0, /* properties_destroyed */
4064 0, /* todo_flags_start */
4065 0 /* todo_flags_finish */
4066 }
4067 };
4068 \f
4069 /* Verify that BB containing STMT as the last statement, has precisely the
4070 edge that make_eh_edges would create. */
4071
4072 DEBUG_FUNCTION bool
4073 verify_eh_edges (gimple stmt)
4074 {
4075 basic_block bb = gimple_bb (stmt);
4076 eh_landing_pad lp = NULL;
4077 int lp_nr;
4078 edge_iterator ei;
4079 edge e, eh_edge;
4080
4081 lp_nr = lookup_stmt_eh_lp (stmt);
4082 if (lp_nr > 0)
4083 lp = get_eh_landing_pad_from_number (lp_nr);
4084
4085 eh_edge = NULL;
4086 FOR_EACH_EDGE (e, ei, bb->succs)
4087 {
4088 if (e->flags & EDGE_EH)
4089 {
4090 if (eh_edge)
4091 {
4092 error ("BB %i has multiple EH edges", bb->index);
4093 return true;
4094 }
4095 else
4096 eh_edge = e;
4097 }
4098 }
4099
4100 if (lp == NULL)
4101 {
4102 if (eh_edge)
4103 {
4104 error ("BB %i can not throw but has an EH edge", bb->index);
4105 return true;
4106 }
4107 return false;
4108 }
4109
4110 if (!stmt_could_throw_p (stmt))
4111 {
4112 error ("BB %i last statement has incorrectly set lp", bb->index);
4113 return true;
4114 }
4115
4116 if (eh_edge == NULL)
4117 {
4118 error ("BB %i is missing an EH edge", bb->index);
4119 return true;
4120 }
4121
4122 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4123 {
4124 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4125 return true;
4126 }
4127
4128 return false;
4129 }
4130
4131 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4132
4133 DEBUG_FUNCTION bool
4134 verify_eh_dispatch_edge (gimple stmt)
4135 {
4136 eh_region r;
4137 eh_catch c;
4138 basic_block src, dst;
4139 bool want_fallthru = true;
4140 edge_iterator ei;
4141 edge e, fall_edge;
4142
4143 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4144 src = gimple_bb (stmt);
4145
4146 FOR_EACH_EDGE (e, ei, src->succs)
4147 gcc_assert (e->aux == NULL);
4148
4149 switch (r->type)
4150 {
4151 case ERT_TRY:
4152 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4153 {
4154 dst = label_to_block (c->label);
4155 e = find_edge (src, dst);
4156 if (e == NULL)
4157 {
4158 error ("BB %i is missing an edge", src->index);
4159 return true;
4160 }
4161 e->aux = (void *)e;
4162
4163 /* A catch-all handler doesn't have a fallthru. */
4164 if (c->type_list == NULL)
4165 {
4166 want_fallthru = false;
4167 break;
4168 }
4169 }
4170 break;
4171
4172 case ERT_ALLOWED_EXCEPTIONS:
4173 dst = label_to_block (r->u.allowed.label);
4174 e = find_edge (src, dst);
4175 if (e == NULL)
4176 {
4177 error ("BB %i is missing an edge", src->index);
4178 return true;
4179 }
4180 e->aux = (void *)e;
4181 break;
4182
4183 default:
4184 gcc_unreachable ();
4185 }
4186
4187 fall_edge = NULL;
4188 FOR_EACH_EDGE (e, ei, src->succs)
4189 {
4190 if (e->flags & EDGE_FALLTHRU)
4191 {
4192 if (fall_edge != NULL)
4193 {
4194 error ("BB %i too many fallthru edges", src->index);
4195 return true;
4196 }
4197 fall_edge = e;
4198 }
4199 else if (e->aux)
4200 e->aux = NULL;
4201 else
4202 {
4203 error ("BB %i has incorrect edge", src->index);
4204 return true;
4205 }
4206 }
4207 if ((fall_edge != NULL) ^ want_fallthru)
4208 {
4209 error ("BB %i has incorrect fallthru edge", src->index);
4210 return true;
4211 }
4212
4213 return false;
4214 }