]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
add auto_vec
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "expr.h"
27 #include "calls.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "pointer-set.h"
32 #include "gimple.h"
33 #include "gimple-iterator.h"
34 #include "gimple-ssa.h"
35 #include "cgraph.h"
36 #include "tree-cfg.h"
37 #include "tree-phinodes.h"
38 #include "ssa-iterators.h"
39 #include "stringpool.h"
40 #include "tree-ssanames.h"
41 #include "tree-into-ssa.h"
42 #include "tree-ssa.h"
43 #include "tree-inline.h"
44 #include "tree-pass.h"
45 #include "langhooks.h"
46 #include "ggc.h"
47 #include "diagnostic-core.h"
48 #include "target.h"
49 #include "cfgloop.h"
50 #include "gimple-low.h"
51
52 /* In some instances a tree and a gimple need to be stored in a same table,
53 i.e. in hash tables. This is a structure to do this. */
54 typedef union {tree *tp; tree t; gimple g;} treemple;
55
56 /* Misc functions used in this file. */
57
58 /* Remember and lookup EH landing pad data for arbitrary statements.
59 Really this means any statement that could_throw_p. We could
60 stuff this information into the stmt_ann data structure, but:
61
62 (1) We absolutely rely on this information being kept until
63 we get to rtl. Once we're done with lowering here, if we lose
64 the information there's no way to recover it!
65
66 (2) There are many more statements that *cannot* throw as
67 compared to those that can. We should be saving some amount
68 of space by only allocating memory for those that can throw. */
69
70 /* Add statement T in function IFUN to landing pad NUM. */
71
72 static void
73 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
74 {
75 struct throw_stmt_node *n;
76 void **slot;
77
78 gcc_assert (num != 0);
79
80 n = ggc_alloc_throw_stmt_node ();
81 n->stmt = t;
82 n->lp_nr = num;
83
84 if (!get_eh_throw_stmt_table (ifun))
85 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
86 struct_ptr_eq,
87 ggc_free));
88
89 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
90 gcc_assert (!*slot);
91 *slot = n;
92 }
93
94 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
95
96 void
97 add_stmt_to_eh_lp (gimple t, int num)
98 {
99 add_stmt_to_eh_lp_fn (cfun, t, num);
100 }
101
102 /* Add statement T to the single EH landing pad in REGION. */
103
104 static void
105 record_stmt_eh_region (eh_region region, gimple t)
106 {
107 if (region == NULL)
108 return;
109 if (region->type == ERT_MUST_NOT_THROW)
110 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
111 else
112 {
113 eh_landing_pad lp = region->landing_pads;
114 if (lp == NULL)
115 lp = gen_eh_landing_pad (region);
116 else
117 gcc_assert (lp->next_lp == NULL);
118 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
119 }
120 }
121
122
123 /* Remove statement T in function IFUN from its EH landing pad. */
124
125 bool
126 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
127 {
128 struct throw_stmt_node dummy;
129 void **slot;
130
131 if (!get_eh_throw_stmt_table (ifun))
132 return false;
133
134 dummy.stmt = t;
135 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
136 NO_INSERT);
137 if (slot)
138 {
139 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
140 return true;
141 }
142 else
143 return false;
144 }
145
146
147 /* Remove statement T in the current function (cfun) from its
148 EH landing pad. */
149
150 bool
151 remove_stmt_from_eh_lp (gimple t)
152 {
153 return remove_stmt_from_eh_lp_fn (cfun, t);
154 }
155
156 /* Determine if statement T is inside an EH region in function IFUN.
157 Positive numbers indicate a landing pad index; negative numbers
158 indicate a MUST_NOT_THROW region index; zero indicates that the
159 statement is not recorded in the region table. */
160
161 int
162 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
163 {
164 struct throw_stmt_node *p, n;
165
166 if (ifun->eh->throw_stmt_table == NULL)
167 return 0;
168
169 n.stmt = t;
170 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
171 return p ? p->lp_nr : 0;
172 }
173
174 /* Likewise, but always use the current function. */
175
176 int
177 lookup_stmt_eh_lp (gimple t)
178 {
179 /* We can get called from initialized data when -fnon-call-exceptions
180 is on; prevent crash. */
181 if (!cfun)
182 return 0;
183 return lookup_stmt_eh_lp_fn (cfun, t);
184 }
185
186 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
187 nodes and LABEL_DECL nodes. We will use this during the second phase to
188 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
189
190 struct finally_tree_node
191 {
192 /* When storing a GIMPLE_TRY, we have to record a gimple. However
193 when deciding whether a GOTO to a certain LABEL_DECL (which is a
194 tree) leaves the TRY block, its necessary to record a tree in
195 this field. Thus a treemple is used. */
196 treemple child;
197 gimple parent;
198 };
199
200 /* Hashtable helpers. */
201
202 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
203 {
204 typedef finally_tree_node value_type;
205 typedef finally_tree_node compare_type;
206 static inline hashval_t hash (const value_type *);
207 static inline bool equal (const value_type *, const compare_type *);
208 };
209
210 inline hashval_t
211 finally_tree_hasher::hash (const value_type *v)
212 {
213 return (intptr_t)v->child.t >> 4;
214 }
215
216 inline bool
217 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
218 {
219 return v->child.t == c->child.t;
220 }
221
222 /* Note that this table is *not* marked GTY. It is short-lived. */
223 static hash_table <finally_tree_hasher> finally_tree;
224
225 static void
226 record_in_finally_tree (treemple child, gimple parent)
227 {
228 struct finally_tree_node *n;
229 finally_tree_node **slot;
230
231 n = XNEW (struct finally_tree_node);
232 n->child = child;
233 n->parent = parent;
234
235 slot = finally_tree.find_slot (n, INSERT);
236 gcc_assert (!*slot);
237 *slot = n;
238 }
239
240 static void
241 collect_finally_tree (gimple stmt, gimple region);
242
243 /* Go through the gimple sequence. Works with collect_finally_tree to
244 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
245
246 static void
247 collect_finally_tree_1 (gimple_seq seq, gimple region)
248 {
249 gimple_stmt_iterator gsi;
250
251 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
252 collect_finally_tree (gsi_stmt (gsi), region);
253 }
254
255 static void
256 collect_finally_tree (gimple stmt, gimple region)
257 {
258 treemple temp;
259
260 switch (gimple_code (stmt))
261 {
262 case GIMPLE_LABEL:
263 temp.t = gimple_label_label (stmt);
264 record_in_finally_tree (temp, region);
265 break;
266
267 case GIMPLE_TRY:
268 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
269 {
270 temp.g = stmt;
271 record_in_finally_tree (temp, region);
272 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
273 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
274 }
275 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
276 {
277 collect_finally_tree_1 (gimple_try_eval (stmt), region);
278 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
279 }
280 break;
281
282 case GIMPLE_CATCH:
283 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
284 break;
285
286 case GIMPLE_EH_FILTER:
287 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
288 break;
289
290 case GIMPLE_EH_ELSE:
291 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
292 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
293 break;
294
295 default:
296 /* A type, a decl, or some kind of statement that we're not
297 interested in. Don't walk them. */
298 break;
299 }
300 }
301
302
303 /* Use the finally tree to determine if a jump from START to TARGET
304 would leave the try_finally node that START lives in. */
305
306 static bool
307 outside_finally_tree (treemple start, gimple target)
308 {
309 struct finally_tree_node n, *p;
310
311 do
312 {
313 n.child = start;
314 p = finally_tree.find (&n);
315 if (!p)
316 return true;
317 start.g = p->parent;
318 }
319 while (start.g != target);
320
321 return false;
322 }
323
324 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
325 nodes into a set of gotos, magic labels, and eh regions.
326 The eh region creation is straight-forward, but frobbing all the gotos
327 and such into shape isn't. */
328
329 /* The sequence into which we record all EH stuff. This will be
330 placed at the end of the function when we're all done. */
331 static gimple_seq eh_seq;
332
333 /* Record whether an EH region contains something that can throw,
334 indexed by EH region number. */
335 static bitmap eh_region_may_contain_throw_map;
336
337 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
338 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
339 The idea is to record a gimple statement for everything except for
340 the conditionals, which get their labels recorded. Since labels are
341 of type 'tree', we need this node to store both gimple and tree
342 objects. REPL_STMT is the sequence used to replace the goto/return
343 statement. CONT_STMT is used to store the statement that allows
344 the return/goto to jump to the original destination. */
345
346 struct goto_queue_node
347 {
348 treemple stmt;
349 location_t location;
350 gimple_seq repl_stmt;
351 gimple cont_stmt;
352 int index;
353 /* This is used when index >= 0 to indicate that stmt is a label (as
354 opposed to a goto stmt). */
355 int is_label;
356 };
357
358 /* State of the world while lowering. */
359
360 struct leh_state
361 {
362 /* What's "current" while constructing the eh region tree. These
363 correspond to variables of the same name in cfun->eh, which we
364 don't have easy access to. */
365 eh_region cur_region;
366
367 /* What's "current" for the purposes of __builtin_eh_pointer. For
368 a CATCH, this is the associated TRY. For an EH_FILTER, this is
369 the associated ALLOWED_EXCEPTIONS, etc. */
370 eh_region ehp_region;
371
372 /* Processing of TRY_FINALLY requires a bit more state. This is
373 split out into a separate structure so that we don't have to
374 copy so much when processing other nodes. */
375 struct leh_tf_state *tf;
376 };
377
378 struct leh_tf_state
379 {
380 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
381 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
382 this so that outside_finally_tree can reliably reference the tree used
383 in the collect_finally_tree data structures. */
384 gimple try_finally_expr;
385 gimple top_p;
386
387 /* While lowering a top_p usually it is expanded into multiple statements,
388 thus we need the following field to store them. */
389 gimple_seq top_p_seq;
390
391 /* The state outside this try_finally node. */
392 struct leh_state *outer;
393
394 /* The exception region created for it. */
395 eh_region region;
396
397 /* The goto queue. */
398 struct goto_queue_node *goto_queue;
399 size_t goto_queue_size;
400 size_t goto_queue_active;
401
402 /* Pointer map to help in searching goto_queue when it is large. */
403 struct pointer_map_t *goto_queue_map;
404
405 /* The set of unique labels seen as entries in the goto queue. */
406 vec<tree> dest_array;
407
408 /* A label to be added at the end of the completed transformed
409 sequence. It will be set if may_fallthru was true *at one time*,
410 though subsequent transformations may have cleared that flag. */
411 tree fallthru_label;
412
413 /* True if it is possible to fall out the bottom of the try block.
414 Cleared if the fallthru is converted to a goto. */
415 bool may_fallthru;
416
417 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
418 bool may_return;
419
420 /* True if the finally block can receive an exception edge.
421 Cleared if the exception case is handled by code duplication. */
422 bool may_throw;
423 };
424
425 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
426
427 /* Search for STMT in the goto queue. Return the replacement,
428 or null if the statement isn't in the queue. */
429
430 #define LARGE_GOTO_QUEUE 20
431
432 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
433
434 static gimple_seq
435 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
436 {
437 unsigned int i;
438 void **slot;
439
440 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
441 {
442 for (i = 0; i < tf->goto_queue_active; i++)
443 if ( tf->goto_queue[i].stmt.g == stmt.g)
444 return tf->goto_queue[i].repl_stmt;
445 return NULL;
446 }
447
448 /* If we have a large number of entries in the goto_queue, create a
449 pointer map and use that for searching. */
450
451 if (!tf->goto_queue_map)
452 {
453 tf->goto_queue_map = pointer_map_create ();
454 for (i = 0; i < tf->goto_queue_active; i++)
455 {
456 slot = pointer_map_insert (tf->goto_queue_map,
457 tf->goto_queue[i].stmt.g);
458 gcc_assert (*slot == NULL);
459 *slot = &tf->goto_queue[i];
460 }
461 }
462
463 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
464 if (slot != NULL)
465 return (((struct goto_queue_node *) *slot)->repl_stmt);
466
467 return NULL;
468 }
469
470 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
471 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
472 then we can just splat it in, otherwise we add the new stmts immediately
473 after the GIMPLE_COND and redirect. */
474
475 static void
476 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
477 gimple_stmt_iterator *gsi)
478 {
479 tree label;
480 gimple_seq new_seq;
481 treemple temp;
482 location_t loc = gimple_location (gsi_stmt (*gsi));
483
484 temp.tp = tp;
485 new_seq = find_goto_replacement (tf, temp);
486 if (!new_seq)
487 return;
488
489 if (gimple_seq_singleton_p (new_seq)
490 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
491 {
492 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
493 return;
494 }
495
496 label = create_artificial_label (loc);
497 /* Set the new label for the GIMPLE_COND */
498 *tp = label;
499
500 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
501 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
502 }
503
504 /* The real work of replace_goto_queue. Returns with TSI updated to
505 point to the next statement. */
506
507 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
508
509 static void
510 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
511 gimple_stmt_iterator *gsi)
512 {
513 gimple_seq seq;
514 treemple temp;
515 temp.g = NULL;
516
517 switch (gimple_code (stmt))
518 {
519 case GIMPLE_GOTO:
520 case GIMPLE_RETURN:
521 temp.g = stmt;
522 seq = find_goto_replacement (tf, temp);
523 if (seq)
524 {
525 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
526 gsi_remove (gsi, false);
527 return;
528 }
529 break;
530
531 case GIMPLE_COND:
532 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
533 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
534 break;
535
536 case GIMPLE_TRY:
537 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
538 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
539 break;
540 case GIMPLE_CATCH:
541 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
542 break;
543 case GIMPLE_EH_FILTER:
544 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
545 break;
546 case GIMPLE_EH_ELSE:
547 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
548 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
549 break;
550
551 default:
552 /* These won't have gotos in them. */
553 break;
554 }
555
556 gsi_next (gsi);
557 }
558
559 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
560
561 static void
562 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
563 {
564 gimple_stmt_iterator gsi = gsi_start (*seq);
565
566 while (!gsi_end_p (gsi))
567 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
568 }
569
570 /* Replace all goto queue members. */
571
572 static void
573 replace_goto_queue (struct leh_tf_state *tf)
574 {
575 if (tf->goto_queue_active == 0)
576 return;
577 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
578 replace_goto_queue_stmt_list (&eh_seq, tf);
579 }
580
581 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
582 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
583 a gimple return. */
584
585 static void
586 record_in_goto_queue (struct leh_tf_state *tf,
587 treemple new_stmt,
588 int index,
589 bool is_label,
590 location_t location)
591 {
592 size_t active, size;
593 struct goto_queue_node *q;
594
595 gcc_assert (!tf->goto_queue_map);
596
597 active = tf->goto_queue_active;
598 size = tf->goto_queue_size;
599 if (active >= size)
600 {
601 size = (size ? size * 2 : 32);
602 tf->goto_queue_size = size;
603 tf->goto_queue
604 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
605 }
606
607 q = &tf->goto_queue[active];
608 tf->goto_queue_active = active + 1;
609
610 memset (q, 0, sizeof (*q));
611 q->stmt = new_stmt;
612 q->index = index;
613 q->location = location;
614 q->is_label = is_label;
615 }
616
617 /* Record the LABEL label in the goto queue contained in TF.
618 TF is not null. */
619
620 static void
621 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
622 location_t location)
623 {
624 int index;
625 treemple temp, new_stmt;
626
627 if (!label)
628 return;
629
630 /* Computed and non-local gotos do not get processed. Given
631 their nature we can neither tell whether we've escaped the
632 finally block nor redirect them if we knew. */
633 if (TREE_CODE (label) != LABEL_DECL)
634 return;
635
636 /* No need to record gotos that don't leave the try block. */
637 temp.t = label;
638 if (!outside_finally_tree (temp, tf->try_finally_expr))
639 return;
640
641 if (! tf->dest_array.exists ())
642 {
643 tf->dest_array.create (10);
644 tf->dest_array.quick_push (label);
645 index = 0;
646 }
647 else
648 {
649 int n = tf->dest_array.length ();
650 for (index = 0; index < n; ++index)
651 if (tf->dest_array[index] == label)
652 break;
653 if (index == n)
654 tf->dest_array.safe_push (label);
655 }
656
657 /* In the case of a GOTO we want to record the destination label,
658 since with a GIMPLE_COND we have an easy access to the then/else
659 labels. */
660 new_stmt = stmt;
661 record_in_goto_queue (tf, new_stmt, index, true, location);
662 }
663
664 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
665 node, and if so record that fact in the goto queue associated with that
666 try_finally node. */
667
668 static void
669 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
670 {
671 struct leh_tf_state *tf = state->tf;
672 treemple new_stmt;
673
674 if (!tf)
675 return;
676
677 switch (gimple_code (stmt))
678 {
679 case GIMPLE_COND:
680 new_stmt.tp = gimple_op_ptr (stmt, 2);
681 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
682 EXPR_LOCATION (*new_stmt.tp));
683 new_stmt.tp = gimple_op_ptr (stmt, 3);
684 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
685 EXPR_LOCATION (*new_stmt.tp));
686 break;
687 case GIMPLE_GOTO:
688 new_stmt.g = stmt;
689 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
690 gimple_location (stmt));
691 break;
692
693 case GIMPLE_RETURN:
694 tf->may_return = true;
695 new_stmt.g = stmt;
696 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
697 break;
698
699 default:
700 gcc_unreachable ();
701 }
702 }
703
704
705 #ifdef ENABLE_CHECKING
706 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
707 was in fact structured, and we've not yet done jump threading, then none
708 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
709
710 static void
711 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
712 {
713 struct leh_tf_state *tf = state->tf;
714 size_t i, n;
715
716 if (!tf)
717 return;
718
719 n = gimple_switch_num_labels (switch_expr);
720
721 for (i = 0; i < n; ++i)
722 {
723 treemple temp;
724 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
725 temp.t = lab;
726 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
727 }
728 }
729 #else
730 #define verify_norecord_switch_expr(state, switch_expr)
731 #endif
732
733 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
734 non-null, insert it before the new branch. */
735
736 static void
737 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
738 {
739 gimple x;
740
741 /* In the case of a return, the queue node must be a gimple statement. */
742 gcc_assert (!q->is_label);
743
744 /* Note that the return value may have already been computed, e.g.,
745
746 int x;
747 int foo (void)
748 {
749 x = 0;
750 try {
751 return x;
752 } finally {
753 x++;
754 }
755 }
756
757 should return 0, not 1. We don't have to do anything to make
758 this happens because the return value has been placed in the
759 RESULT_DECL already. */
760
761 q->cont_stmt = q->stmt.g;
762
763 if (mod)
764 gimple_seq_add_seq (&q->repl_stmt, mod);
765
766 x = gimple_build_goto (finlab);
767 gimple_set_location (x, q->location);
768 gimple_seq_add_stmt (&q->repl_stmt, x);
769 }
770
771 /* Similar, but easier, for GIMPLE_GOTO. */
772
773 static void
774 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
775 struct leh_tf_state *tf)
776 {
777 gimple x;
778
779 gcc_assert (q->is_label);
780
781 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
782
783 if (mod)
784 gimple_seq_add_seq (&q->repl_stmt, mod);
785
786 x = gimple_build_goto (finlab);
787 gimple_set_location (x, q->location);
788 gimple_seq_add_stmt (&q->repl_stmt, x);
789 }
790
791 /* Emit a standard landing pad sequence into SEQ for REGION. */
792
793 static void
794 emit_post_landing_pad (gimple_seq *seq, eh_region region)
795 {
796 eh_landing_pad lp = region->landing_pads;
797 gimple x;
798
799 if (lp == NULL)
800 lp = gen_eh_landing_pad (region);
801
802 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
803 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
804
805 x = gimple_build_label (lp->post_landing_pad);
806 gimple_seq_add_stmt (seq, x);
807 }
808
809 /* Emit a RESX statement into SEQ for REGION. */
810
811 static void
812 emit_resx (gimple_seq *seq, eh_region region)
813 {
814 gimple x = gimple_build_resx (region->index);
815 gimple_seq_add_stmt (seq, x);
816 if (region->outer)
817 record_stmt_eh_region (region->outer, x);
818 }
819
820 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
821
822 static void
823 emit_eh_dispatch (gimple_seq *seq, eh_region region)
824 {
825 gimple x = gimple_build_eh_dispatch (region->index);
826 gimple_seq_add_stmt (seq, x);
827 }
828
829 /* Note that the current EH region may contain a throw, or a
830 call to a function which itself may contain a throw. */
831
832 static void
833 note_eh_region_may_contain_throw (eh_region region)
834 {
835 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
836 {
837 if (region->type == ERT_MUST_NOT_THROW)
838 break;
839 region = region->outer;
840 if (region == NULL)
841 break;
842 }
843 }
844
845 /* Check if REGION has been marked as containing a throw. If REGION is
846 NULL, this predicate is false. */
847
848 static inline bool
849 eh_region_may_contain_throw (eh_region r)
850 {
851 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
852 }
853
854 /* We want to transform
855 try { body; } catch { stuff; }
856 to
857 normal_seqence:
858 body;
859 over:
860 eh_seqence:
861 landing_pad:
862 stuff;
863 goto over;
864
865 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
866 should be placed before the second operand, or NULL. OVER is
867 an existing label that should be put at the exit, or NULL. */
868
869 static gimple_seq
870 frob_into_branch_around (gimple tp, eh_region region, tree over)
871 {
872 gimple x;
873 gimple_seq cleanup, result;
874 location_t loc = gimple_location (tp);
875
876 cleanup = gimple_try_cleanup (tp);
877 result = gimple_try_eval (tp);
878
879 if (region)
880 emit_post_landing_pad (&eh_seq, region);
881
882 if (gimple_seq_may_fallthru (cleanup))
883 {
884 if (!over)
885 over = create_artificial_label (loc);
886 x = gimple_build_goto (over);
887 gimple_set_location (x, loc);
888 gimple_seq_add_stmt (&cleanup, x);
889 }
890 gimple_seq_add_seq (&eh_seq, cleanup);
891
892 if (over)
893 {
894 x = gimple_build_label (over);
895 gimple_seq_add_stmt (&result, x);
896 }
897 return result;
898 }
899
900 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
901 Make sure to record all new labels found. */
902
903 static gimple_seq
904 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
905 location_t loc)
906 {
907 gimple region = NULL;
908 gimple_seq new_seq;
909 gimple_stmt_iterator gsi;
910
911 new_seq = copy_gimple_seq_and_replace_locals (seq);
912
913 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
914 {
915 gimple stmt = gsi_stmt (gsi);
916 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
917 {
918 tree block = gimple_block (stmt);
919 gimple_set_location (stmt, loc);
920 gimple_set_block (stmt, block);
921 }
922 }
923
924 if (outer_state->tf)
925 region = outer_state->tf->try_finally_expr;
926 collect_finally_tree_1 (new_seq, region);
927
928 return new_seq;
929 }
930
931 /* A subroutine of lower_try_finally. Create a fallthru label for
932 the given try_finally state. The only tricky bit here is that
933 we have to make sure to record the label in our outer context. */
934
935 static tree
936 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
937 {
938 tree label = tf->fallthru_label;
939 treemple temp;
940
941 if (!label)
942 {
943 label = create_artificial_label (gimple_location (tf->try_finally_expr));
944 tf->fallthru_label = label;
945 if (tf->outer->tf)
946 {
947 temp.t = label;
948 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
949 }
950 }
951 return label;
952 }
953
954 /* A subroutine of lower_try_finally. If FINALLY consits of a
955 GIMPLE_EH_ELSE node, return it. */
956
957 static inline gimple
958 get_eh_else (gimple_seq finally)
959 {
960 gimple x = gimple_seq_first_stmt (finally);
961 if (gimple_code (x) == GIMPLE_EH_ELSE)
962 {
963 gcc_assert (gimple_seq_singleton_p (finally));
964 return x;
965 }
966 return NULL;
967 }
968
969 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
970 langhook returns non-null, then the language requires that the exception
971 path out of a try_finally be treated specially. To wit: the code within
972 the finally block may not itself throw an exception. We have two choices
973 here. First we can duplicate the finally block and wrap it in a
974 must_not_throw region. Second, we can generate code like
975
976 try {
977 finally_block;
978 } catch {
979 if (fintmp == eh_edge)
980 protect_cleanup_actions;
981 }
982
983 where "fintmp" is the temporary used in the switch statement generation
984 alternative considered below. For the nonce, we always choose the first
985 option.
986
987 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
988
989 static void
990 honor_protect_cleanup_actions (struct leh_state *outer_state,
991 struct leh_state *this_state,
992 struct leh_tf_state *tf)
993 {
994 tree protect_cleanup_actions;
995 gimple_stmt_iterator gsi;
996 bool finally_may_fallthru;
997 gimple_seq finally;
998 gimple x, eh_else;
999
1000 /* First check for nothing to do. */
1001 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1002 return;
1003 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1004 if (protect_cleanup_actions == NULL)
1005 return;
1006
1007 finally = gimple_try_cleanup (tf->top_p);
1008 eh_else = get_eh_else (finally);
1009
1010 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1011 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1012 if (eh_else)
1013 {
1014 finally = gimple_eh_else_e_body (eh_else);
1015 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1016 }
1017 else if (this_state)
1018 finally = lower_try_finally_dup_block (finally, outer_state,
1019 gimple_location (tf->try_finally_expr));
1020 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1021
1022 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1023 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1024 to be in an enclosing scope, but needs to be implemented at this level
1025 to avoid a nesting violation (see wrap_temporary_cleanups in
1026 cp/decl.c). Since it's logically at an outer level, we should call
1027 terminate before we get to it, so strip it away before adding the
1028 MUST_NOT_THROW filter. */
1029 gsi = gsi_start (finally);
1030 x = gsi_stmt (gsi);
1031 if (gimple_code (x) == GIMPLE_TRY
1032 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1033 && gimple_try_catch_is_cleanup (x))
1034 {
1035 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1036 gsi_remove (&gsi, false);
1037 }
1038
1039 /* Wrap the block with protect_cleanup_actions as the action. */
1040 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1041 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1042 GIMPLE_TRY_CATCH);
1043 finally = lower_eh_must_not_throw (outer_state, x);
1044
1045 /* Drop all of this into the exception sequence. */
1046 emit_post_landing_pad (&eh_seq, tf->region);
1047 gimple_seq_add_seq (&eh_seq, finally);
1048 if (finally_may_fallthru)
1049 emit_resx (&eh_seq, tf->region);
1050
1051 /* Having now been handled, EH isn't to be considered with
1052 the rest of the outgoing edges. */
1053 tf->may_throw = false;
1054 }
1055
1056 /* A subroutine of lower_try_finally. We have determined that there is
1057 no fallthru edge out of the finally block. This means that there is
1058 no outgoing edge corresponding to any incoming edge. Restructure the
1059 try_finally node for this special case. */
1060
1061 static void
1062 lower_try_finally_nofallthru (struct leh_state *state,
1063 struct leh_tf_state *tf)
1064 {
1065 tree lab;
1066 gimple x, eh_else;
1067 gimple_seq finally;
1068 struct goto_queue_node *q, *qe;
1069
1070 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1071
1072 /* We expect that tf->top_p is a GIMPLE_TRY. */
1073 finally = gimple_try_cleanup (tf->top_p);
1074 tf->top_p_seq = gimple_try_eval (tf->top_p);
1075
1076 x = gimple_build_label (lab);
1077 gimple_seq_add_stmt (&tf->top_p_seq, x);
1078
1079 q = tf->goto_queue;
1080 qe = q + tf->goto_queue_active;
1081 for (; q < qe; ++q)
1082 if (q->index < 0)
1083 do_return_redirection (q, lab, NULL);
1084 else
1085 do_goto_redirection (q, lab, NULL, tf);
1086
1087 replace_goto_queue (tf);
1088
1089 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1090 eh_else = get_eh_else (finally);
1091 if (eh_else)
1092 {
1093 finally = gimple_eh_else_n_body (eh_else);
1094 lower_eh_constructs_1 (state, &finally);
1095 gimple_seq_add_seq (&tf->top_p_seq, finally);
1096
1097 if (tf->may_throw)
1098 {
1099 finally = gimple_eh_else_e_body (eh_else);
1100 lower_eh_constructs_1 (state, &finally);
1101
1102 emit_post_landing_pad (&eh_seq, tf->region);
1103 gimple_seq_add_seq (&eh_seq, finally);
1104 }
1105 }
1106 else
1107 {
1108 lower_eh_constructs_1 (state, &finally);
1109 gimple_seq_add_seq (&tf->top_p_seq, finally);
1110
1111 if (tf->may_throw)
1112 {
1113 emit_post_landing_pad (&eh_seq, tf->region);
1114
1115 x = gimple_build_goto (lab);
1116 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1117 gimple_seq_add_stmt (&eh_seq, x);
1118 }
1119 }
1120 }
1121
1122 /* A subroutine of lower_try_finally. We have determined that there is
1123 exactly one destination of the finally block. Restructure the
1124 try_finally node for this special case. */
1125
1126 static void
1127 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1128 {
1129 struct goto_queue_node *q, *qe;
1130 gimple x;
1131 gimple_seq finally;
1132 gimple_stmt_iterator gsi;
1133 tree finally_label;
1134 location_t loc = gimple_location (tf->try_finally_expr);
1135
1136 finally = gimple_try_cleanup (tf->top_p);
1137 tf->top_p_seq = gimple_try_eval (tf->top_p);
1138
1139 /* Since there's only one destination, and the destination edge can only
1140 either be EH or non-EH, that implies that all of our incoming edges
1141 are of the same type. Therefore we can lower EH_ELSE immediately. */
1142 x = get_eh_else (finally);
1143 if (x)
1144 {
1145 if (tf->may_throw)
1146 finally = gimple_eh_else_e_body (x);
1147 else
1148 finally = gimple_eh_else_n_body (x);
1149 }
1150
1151 lower_eh_constructs_1 (state, &finally);
1152
1153 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1154 {
1155 gimple stmt = gsi_stmt (gsi);
1156 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1157 {
1158 tree block = gimple_block (stmt);
1159 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1160 gimple_set_block (stmt, block);
1161 }
1162 }
1163
1164 if (tf->may_throw)
1165 {
1166 /* Only reachable via the exception edge. Add the given label to
1167 the head of the FINALLY block. Append a RESX at the end. */
1168 emit_post_landing_pad (&eh_seq, tf->region);
1169 gimple_seq_add_seq (&eh_seq, finally);
1170 emit_resx (&eh_seq, tf->region);
1171 return;
1172 }
1173
1174 if (tf->may_fallthru)
1175 {
1176 /* Only reachable via the fallthru edge. Do nothing but let
1177 the two blocks run together; we'll fall out the bottom. */
1178 gimple_seq_add_seq (&tf->top_p_seq, finally);
1179 return;
1180 }
1181
1182 finally_label = create_artificial_label (loc);
1183 x = gimple_build_label (finally_label);
1184 gimple_seq_add_stmt (&tf->top_p_seq, x);
1185
1186 gimple_seq_add_seq (&tf->top_p_seq, finally);
1187
1188 q = tf->goto_queue;
1189 qe = q + tf->goto_queue_active;
1190
1191 if (tf->may_return)
1192 {
1193 /* Reachable by return expressions only. Redirect them. */
1194 for (; q < qe; ++q)
1195 do_return_redirection (q, finally_label, NULL);
1196 replace_goto_queue (tf);
1197 }
1198 else
1199 {
1200 /* Reachable by goto expressions only. Redirect them. */
1201 for (; q < qe; ++q)
1202 do_goto_redirection (q, finally_label, NULL, tf);
1203 replace_goto_queue (tf);
1204
1205 if (tf->dest_array[0] == tf->fallthru_label)
1206 {
1207 /* Reachable by goto to fallthru label only. Redirect it
1208 to the new label (already created, sadly), and do not
1209 emit the final branch out, or the fallthru label. */
1210 tf->fallthru_label = NULL;
1211 return;
1212 }
1213 }
1214
1215 /* Place the original return/goto to the original destination
1216 immediately after the finally block. */
1217 x = tf->goto_queue[0].cont_stmt;
1218 gimple_seq_add_stmt (&tf->top_p_seq, x);
1219 maybe_record_in_goto_queue (state, x);
1220 }
1221
1222 /* A subroutine of lower_try_finally. There are multiple edges incoming
1223 and outgoing from the finally block. Implement this by duplicating the
1224 finally block for every destination. */
1225
1226 static void
1227 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1228 {
1229 gimple_seq finally;
1230 gimple_seq new_stmt;
1231 gimple_seq seq;
1232 gimple x, eh_else;
1233 tree tmp;
1234 location_t tf_loc = gimple_location (tf->try_finally_expr);
1235
1236 finally = gimple_try_cleanup (tf->top_p);
1237
1238 /* Notice EH_ELSE, and simplify some of the remaining code
1239 by considering FINALLY to be the normal return path only. */
1240 eh_else = get_eh_else (finally);
1241 if (eh_else)
1242 finally = gimple_eh_else_n_body (eh_else);
1243
1244 tf->top_p_seq = gimple_try_eval (tf->top_p);
1245 new_stmt = NULL;
1246
1247 if (tf->may_fallthru)
1248 {
1249 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1250 lower_eh_constructs_1 (state, &seq);
1251 gimple_seq_add_seq (&new_stmt, seq);
1252
1253 tmp = lower_try_finally_fallthru_label (tf);
1254 x = gimple_build_goto (tmp);
1255 gimple_set_location (x, tf_loc);
1256 gimple_seq_add_stmt (&new_stmt, x);
1257 }
1258
1259 if (tf->may_throw)
1260 {
1261 /* We don't need to copy the EH path of EH_ELSE,
1262 since it is only emitted once. */
1263 if (eh_else)
1264 seq = gimple_eh_else_e_body (eh_else);
1265 else
1266 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1267 lower_eh_constructs_1 (state, &seq);
1268
1269 emit_post_landing_pad (&eh_seq, tf->region);
1270 gimple_seq_add_seq (&eh_seq, seq);
1271 emit_resx (&eh_seq, tf->region);
1272 }
1273
1274 if (tf->goto_queue)
1275 {
1276 struct goto_queue_node *q, *qe;
1277 int return_index, index;
1278 struct labels_s
1279 {
1280 struct goto_queue_node *q;
1281 tree label;
1282 } *labels;
1283
1284 return_index = tf->dest_array.length ();
1285 labels = XCNEWVEC (struct labels_s, return_index + 1);
1286
1287 q = tf->goto_queue;
1288 qe = q + tf->goto_queue_active;
1289 for (; q < qe; q++)
1290 {
1291 index = q->index < 0 ? return_index : q->index;
1292
1293 if (!labels[index].q)
1294 labels[index].q = q;
1295 }
1296
1297 for (index = 0; index < return_index + 1; index++)
1298 {
1299 tree lab;
1300
1301 q = labels[index].q;
1302 if (! q)
1303 continue;
1304
1305 lab = labels[index].label
1306 = create_artificial_label (tf_loc);
1307
1308 if (index == return_index)
1309 do_return_redirection (q, lab, NULL);
1310 else
1311 do_goto_redirection (q, lab, NULL, tf);
1312
1313 x = gimple_build_label (lab);
1314 gimple_seq_add_stmt (&new_stmt, x);
1315
1316 seq = lower_try_finally_dup_block (finally, state, q->location);
1317 lower_eh_constructs_1 (state, &seq);
1318 gimple_seq_add_seq (&new_stmt, seq);
1319
1320 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1321 maybe_record_in_goto_queue (state, q->cont_stmt);
1322 }
1323
1324 for (q = tf->goto_queue; q < qe; q++)
1325 {
1326 tree lab;
1327
1328 index = q->index < 0 ? return_index : q->index;
1329
1330 if (labels[index].q == q)
1331 continue;
1332
1333 lab = labels[index].label;
1334
1335 if (index == return_index)
1336 do_return_redirection (q, lab, NULL);
1337 else
1338 do_goto_redirection (q, lab, NULL, tf);
1339 }
1340
1341 replace_goto_queue (tf);
1342 free (labels);
1343 }
1344
1345 /* Need to link new stmts after running replace_goto_queue due
1346 to not wanting to process the same goto stmts twice. */
1347 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1348 }
1349
1350 /* A subroutine of lower_try_finally. There are multiple edges incoming
1351 and outgoing from the finally block. Implement this by instrumenting
1352 each incoming edge and creating a switch statement at the end of the
1353 finally block that branches to the appropriate destination. */
1354
1355 static void
1356 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1357 {
1358 struct goto_queue_node *q, *qe;
1359 tree finally_tmp, finally_label;
1360 int return_index, eh_index, fallthru_index;
1361 int nlabels, ndests, j, last_case_index;
1362 tree last_case;
1363 vec<tree> case_label_vec;
1364 gimple_seq switch_body = NULL;
1365 gimple x, eh_else;
1366 tree tmp;
1367 gimple switch_stmt;
1368 gimple_seq finally;
1369 struct pointer_map_t *cont_map = NULL;
1370 /* The location of the TRY_FINALLY stmt. */
1371 location_t tf_loc = gimple_location (tf->try_finally_expr);
1372 /* The location of the finally block. */
1373 location_t finally_loc;
1374
1375 finally = gimple_try_cleanup (tf->top_p);
1376 eh_else = get_eh_else (finally);
1377
1378 /* Mash the TRY block to the head of the chain. */
1379 tf->top_p_seq = gimple_try_eval (tf->top_p);
1380
1381 /* The location of the finally is either the last stmt in the finally
1382 block or the location of the TRY_FINALLY itself. */
1383 x = gimple_seq_last_stmt (finally);
1384 finally_loc = x ? gimple_location (x) : tf_loc;
1385
1386 /* Lower the finally block itself. */
1387 lower_eh_constructs_1 (state, &finally);
1388
1389 /* Prepare for switch statement generation. */
1390 nlabels = tf->dest_array.length ();
1391 return_index = nlabels;
1392 eh_index = return_index + tf->may_return;
1393 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1394 ndests = fallthru_index + tf->may_fallthru;
1395
1396 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1397 finally_label = create_artificial_label (finally_loc);
1398
1399 /* We use vec::quick_push on case_label_vec throughout this function,
1400 since we know the size in advance and allocate precisely as muce
1401 space as needed. */
1402 case_label_vec.create (ndests);
1403 last_case = NULL;
1404 last_case_index = 0;
1405
1406 /* Begin inserting code for getting to the finally block. Things
1407 are done in this order to correspond to the sequence the code is
1408 laid out. */
1409
1410 if (tf->may_fallthru)
1411 {
1412 x = gimple_build_assign (finally_tmp,
1413 build_int_cst (integer_type_node,
1414 fallthru_index));
1415 gimple_seq_add_stmt (&tf->top_p_seq, x);
1416
1417 tmp = build_int_cst (integer_type_node, fallthru_index);
1418 last_case = build_case_label (tmp, NULL,
1419 create_artificial_label (tf_loc));
1420 case_label_vec.quick_push (last_case);
1421 last_case_index++;
1422
1423 x = gimple_build_label (CASE_LABEL (last_case));
1424 gimple_seq_add_stmt (&switch_body, x);
1425
1426 tmp = lower_try_finally_fallthru_label (tf);
1427 x = gimple_build_goto (tmp);
1428 gimple_set_location (x, tf_loc);
1429 gimple_seq_add_stmt (&switch_body, x);
1430 }
1431
1432 /* For EH_ELSE, emit the exception path (plus resx) now, then
1433 subsequently we only need consider the normal path. */
1434 if (eh_else)
1435 {
1436 if (tf->may_throw)
1437 {
1438 finally = gimple_eh_else_e_body (eh_else);
1439 lower_eh_constructs_1 (state, &finally);
1440
1441 emit_post_landing_pad (&eh_seq, tf->region);
1442 gimple_seq_add_seq (&eh_seq, finally);
1443 emit_resx (&eh_seq, tf->region);
1444 }
1445
1446 finally = gimple_eh_else_n_body (eh_else);
1447 }
1448 else if (tf->may_throw)
1449 {
1450 emit_post_landing_pad (&eh_seq, tf->region);
1451
1452 x = gimple_build_assign (finally_tmp,
1453 build_int_cst (integer_type_node, eh_index));
1454 gimple_seq_add_stmt (&eh_seq, x);
1455
1456 x = gimple_build_goto (finally_label);
1457 gimple_set_location (x, tf_loc);
1458 gimple_seq_add_stmt (&eh_seq, x);
1459
1460 tmp = build_int_cst (integer_type_node, eh_index);
1461 last_case = build_case_label (tmp, NULL,
1462 create_artificial_label (tf_loc));
1463 case_label_vec.quick_push (last_case);
1464 last_case_index++;
1465
1466 x = gimple_build_label (CASE_LABEL (last_case));
1467 gimple_seq_add_stmt (&eh_seq, x);
1468 emit_resx (&eh_seq, tf->region);
1469 }
1470
1471 x = gimple_build_label (finally_label);
1472 gimple_seq_add_stmt (&tf->top_p_seq, x);
1473
1474 gimple_seq_add_seq (&tf->top_p_seq, finally);
1475
1476 /* Redirect each incoming goto edge. */
1477 q = tf->goto_queue;
1478 qe = q + tf->goto_queue_active;
1479 j = last_case_index + tf->may_return;
1480 /* Prepare the assignments to finally_tmp that are executed upon the
1481 entrance through a particular edge. */
1482 for (; q < qe; ++q)
1483 {
1484 gimple_seq mod = NULL;
1485 int switch_id;
1486 unsigned int case_index;
1487
1488 if (q->index < 0)
1489 {
1490 x = gimple_build_assign (finally_tmp,
1491 build_int_cst (integer_type_node,
1492 return_index));
1493 gimple_seq_add_stmt (&mod, x);
1494 do_return_redirection (q, finally_label, mod);
1495 switch_id = return_index;
1496 }
1497 else
1498 {
1499 x = gimple_build_assign (finally_tmp,
1500 build_int_cst (integer_type_node, q->index));
1501 gimple_seq_add_stmt (&mod, x);
1502 do_goto_redirection (q, finally_label, mod, tf);
1503 switch_id = q->index;
1504 }
1505
1506 case_index = j + q->index;
1507 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1508 {
1509 tree case_lab;
1510 void **slot;
1511 tmp = build_int_cst (integer_type_node, switch_id);
1512 case_lab = build_case_label (tmp, NULL,
1513 create_artificial_label (tf_loc));
1514 /* We store the cont_stmt in the pointer map, so that we can recover
1515 it in the loop below. */
1516 if (!cont_map)
1517 cont_map = pointer_map_create ();
1518 slot = pointer_map_insert (cont_map, case_lab);
1519 *slot = q->cont_stmt;
1520 case_label_vec.quick_push (case_lab);
1521 }
1522 }
1523 for (j = last_case_index; j < last_case_index + nlabels; j++)
1524 {
1525 gimple cont_stmt;
1526 void **slot;
1527
1528 last_case = case_label_vec[j];
1529
1530 gcc_assert (last_case);
1531 gcc_assert (cont_map);
1532
1533 slot = pointer_map_contains (cont_map, last_case);
1534 gcc_assert (slot);
1535 cont_stmt = *(gimple *) slot;
1536
1537 x = gimple_build_label (CASE_LABEL (last_case));
1538 gimple_seq_add_stmt (&switch_body, x);
1539 gimple_seq_add_stmt (&switch_body, cont_stmt);
1540 maybe_record_in_goto_queue (state, cont_stmt);
1541 }
1542 if (cont_map)
1543 pointer_map_destroy (cont_map);
1544
1545 replace_goto_queue (tf);
1546
1547 /* Make sure that the last case is the default label, as one is required.
1548 Then sort the labels, which is also required in GIMPLE. */
1549 CASE_LOW (last_case) = NULL;
1550 sort_case_labels (case_label_vec);
1551
1552 /* Build the switch statement, setting last_case to be the default
1553 label. */
1554 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1555 case_label_vec);
1556 gimple_set_location (switch_stmt, finally_loc);
1557
1558 /* Need to link SWITCH_STMT after running replace_goto_queue
1559 due to not wanting to process the same goto stmts twice. */
1560 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1561 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1562 }
1563
1564 /* Decide whether or not we are going to duplicate the finally block.
1565 There are several considerations.
1566
1567 First, if this is Java, then the finally block contains code
1568 written by the user. It has line numbers associated with it,
1569 so duplicating the block means it's difficult to set a breakpoint.
1570 Since controlling code generation via -g is verboten, we simply
1571 never duplicate code without optimization.
1572
1573 Second, we'd like to prevent egregious code growth. One way to
1574 do this is to estimate the size of the finally block, multiply
1575 that by the number of copies we'd need to make, and compare against
1576 the estimate of the size of the switch machinery we'd have to add. */
1577
1578 static bool
1579 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1580 {
1581 int f_estimate, sw_estimate;
1582 gimple eh_else;
1583
1584 /* If there's an EH_ELSE involved, the exception path is separate
1585 and really doesn't come into play for this computation. */
1586 eh_else = get_eh_else (finally);
1587 if (eh_else)
1588 {
1589 ndests -= may_throw;
1590 finally = gimple_eh_else_n_body (eh_else);
1591 }
1592
1593 if (!optimize)
1594 {
1595 gimple_stmt_iterator gsi;
1596
1597 if (ndests == 1)
1598 return true;
1599
1600 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1601 {
1602 gimple stmt = gsi_stmt (gsi);
1603 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1604 return false;
1605 }
1606 return true;
1607 }
1608
1609 /* Finally estimate N times, plus N gotos. */
1610 f_estimate = count_insns_seq (finally, &eni_size_weights);
1611 f_estimate = (f_estimate + 1) * ndests;
1612
1613 /* Switch statement (cost 10), N variable assignments, N gotos. */
1614 sw_estimate = 10 + 2 * ndests;
1615
1616 /* Optimize for size clearly wants our best guess. */
1617 if (optimize_function_for_size_p (cfun))
1618 return f_estimate < sw_estimate;
1619
1620 /* ??? These numbers are completely made up so far. */
1621 if (optimize > 1)
1622 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1623 else
1624 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1625 }
1626
1627 /* REG is the enclosing region for a possible cleanup region, or the region
1628 itself. Returns TRUE if such a region would be unreachable.
1629
1630 Cleanup regions within a must-not-throw region aren't actually reachable
1631 even if there are throwing stmts within them, because the personality
1632 routine will call terminate before unwinding. */
1633
1634 static bool
1635 cleanup_is_dead_in (eh_region reg)
1636 {
1637 while (reg && reg->type == ERT_CLEANUP)
1638 reg = reg->outer;
1639 return (reg && reg->type == ERT_MUST_NOT_THROW);
1640 }
1641
1642 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1643 to a sequence of labels and blocks, plus the exception region trees
1644 that record all the magic. This is complicated by the need to
1645 arrange for the FINALLY block to be executed on all exits. */
1646
1647 static gimple_seq
1648 lower_try_finally (struct leh_state *state, gimple tp)
1649 {
1650 struct leh_tf_state this_tf;
1651 struct leh_state this_state;
1652 int ndests;
1653 gimple_seq old_eh_seq;
1654
1655 /* Process the try block. */
1656
1657 memset (&this_tf, 0, sizeof (this_tf));
1658 this_tf.try_finally_expr = tp;
1659 this_tf.top_p = tp;
1660 this_tf.outer = state;
1661 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1662 {
1663 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1664 this_state.cur_region = this_tf.region;
1665 }
1666 else
1667 {
1668 this_tf.region = NULL;
1669 this_state.cur_region = state->cur_region;
1670 }
1671
1672 this_state.ehp_region = state->ehp_region;
1673 this_state.tf = &this_tf;
1674
1675 old_eh_seq = eh_seq;
1676 eh_seq = NULL;
1677
1678 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1679
1680 /* Determine if the try block is escaped through the bottom. */
1681 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1682
1683 /* Determine if any exceptions are possible within the try block. */
1684 if (this_tf.region)
1685 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1686 if (this_tf.may_throw)
1687 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1688
1689 /* Determine how many edges (still) reach the finally block. Or rather,
1690 how many destinations are reached by the finally block. Use this to
1691 determine how we process the finally block itself. */
1692
1693 ndests = this_tf.dest_array.length ();
1694 ndests += this_tf.may_fallthru;
1695 ndests += this_tf.may_return;
1696 ndests += this_tf.may_throw;
1697
1698 /* If the FINALLY block is not reachable, dike it out. */
1699 if (ndests == 0)
1700 {
1701 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1702 gimple_try_set_cleanup (tp, NULL);
1703 }
1704 /* If the finally block doesn't fall through, then any destination
1705 we might try to impose there isn't reached either. There may be
1706 some minor amount of cleanup and redirection still needed. */
1707 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1708 lower_try_finally_nofallthru (state, &this_tf);
1709
1710 /* We can easily special-case redirection to a single destination. */
1711 else if (ndests == 1)
1712 lower_try_finally_onedest (state, &this_tf);
1713 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1714 gimple_try_cleanup (tp)))
1715 lower_try_finally_copy (state, &this_tf);
1716 else
1717 lower_try_finally_switch (state, &this_tf);
1718
1719 /* If someone requested we add a label at the end of the transformed
1720 block, do so. */
1721 if (this_tf.fallthru_label)
1722 {
1723 /* This must be reached only if ndests == 0. */
1724 gimple x = gimple_build_label (this_tf.fallthru_label);
1725 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1726 }
1727
1728 this_tf.dest_array.release ();
1729 free (this_tf.goto_queue);
1730 if (this_tf.goto_queue_map)
1731 pointer_map_destroy (this_tf.goto_queue_map);
1732
1733 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1734 If there was no old eh_seq, then the append is trivially already done. */
1735 if (old_eh_seq)
1736 {
1737 if (eh_seq == NULL)
1738 eh_seq = old_eh_seq;
1739 else
1740 {
1741 gimple_seq new_eh_seq = eh_seq;
1742 eh_seq = old_eh_seq;
1743 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1744 }
1745 }
1746
1747 return this_tf.top_p_seq;
1748 }
1749
1750 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1751 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1752 exception region trees that records all the magic. */
1753
1754 static gimple_seq
1755 lower_catch (struct leh_state *state, gimple tp)
1756 {
1757 eh_region try_region = NULL;
1758 struct leh_state this_state = *state;
1759 gimple_stmt_iterator gsi;
1760 tree out_label;
1761 gimple_seq new_seq, cleanup;
1762 gimple x;
1763 location_t try_catch_loc = gimple_location (tp);
1764
1765 if (flag_exceptions)
1766 {
1767 try_region = gen_eh_region_try (state->cur_region);
1768 this_state.cur_region = try_region;
1769 }
1770
1771 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1772
1773 if (!eh_region_may_contain_throw (try_region))
1774 return gimple_try_eval (tp);
1775
1776 new_seq = NULL;
1777 emit_eh_dispatch (&new_seq, try_region);
1778 emit_resx (&new_seq, try_region);
1779
1780 this_state.cur_region = state->cur_region;
1781 this_state.ehp_region = try_region;
1782
1783 out_label = NULL;
1784 cleanup = gimple_try_cleanup (tp);
1785 for (gsi = gsi_start (cleanup);
1786 !gsi_end_p (gsi);
1787 gsi_next (&gsi))
1788 {
1789 eh_catch c;
1790 gimple gcatch;
1791 gimple_seq handler;
1792
1793 gcatch = gsi_stmt (gsi);
1794 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1795
1796 handler = gimple_catch_handler (gcatch);
1797 lower_eh_constructs_1 (&this_state, &handler);
1798
1799 c->label = create_artificial_label (UNKNOWN_LOCATION);
1800 x = gimple_build_label (c->label);
1801 gimple_seq_add_stmt (&new_seq, x);
1802
1803 gimple_seq_add_seq (&new_seq, handler);
1804
1805 if (gimple_seq_may_fallthru (new_seq))
1806 {
1807 if (!out_label)
1808 out_label = create_artificial_label (try_catch_loc);
1809
1810 x = gimple_build_goto (out_label);
1811 gimple_seq_add_stmt (&new_seq, x);
1812 }
1813 if (!c->type_list)
1814 break;
1815 }
1816
1817 gimple_try_set_cleanup (tp, new_seq);
1818
1819 return frob_into_branch_around (tp, try_region, out_label);
1820 }
1821
1822 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1823 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1824 region trees that record all the magic. */
1825
1826 static gimple_seq
1827 lower_eh_filter (struct leh_state *state, gimple tp)
1828 {
1829 struct leh_state this_state = *state;
1830 eh_region this_region = NULL;
1831 gimple inner, x;
1832 gimple_seq new_seq;
1833
1834 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1835
1836 if (flag_exceptions)
1837 {
1838 this_region = gen_eh_region_allowed (state->cur_region,
1839 gimple_eh_filter_types (inner));
1840 this_state.cur_region = this_region;
1841 }
1842
1843 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1844
1845 if (!eh_region_may_contain_throw (this_region))
1846 return gimple_try_eval (tp);
1847
1848 new_seq = NULL;
1849 this_state.cur_region = state->cur_region;
1850 this_state.ehp_region = this_region;
1851
1852 emit_eh_dispatch (&new_seq, this_region);
1853 emit_resx (&new_seq, this_region);
1854
1855 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1856 x = gimple_build_label (this_region->u.allowed.label);
1857 gimple_seq_add_stmt (&new_seq, x);
1858
1859 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1860 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1861
1862 gimple_try_set_cleanup (tp, new_seq);
1863
1864 return frob_into_branch_around (tp, this_region, NULL);
1865 }
1866
1867 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1868 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1869 plus the exception region trees that record all the magic. */
1870
1871 static gimple_seq
1872 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1873 {
1874 struct leh_state this_state = *state;
1875
1876 if (flag_exceptions)
1877 {
1878 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1879 eh_region this_region;
1880
1881 this_region = gen_eh_region_must_not_throw (state->cur_region);
1882 this_region->u.must_not_throw.failure_decl
1883 = gimple_eh_must_not_throw_fndecl (inner);
1884 this_region->u.must_not_throw.failure_loc
1885 = LOCATION_LOCUS (gimple_location (tp));
1886
1887 /* In order to get mangling applied to this decl, we must mark it
1888 used now. Otherwise, pass_ipa_free_lang_data won't think it
1889 needs to happen. */
1890 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1891
1892 this_state.cur_region = this_region;
1893 }
1894
1895 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1896
1897 return gimple_try_eval (tp);
1898 }
1899
1900 /* Implement a cleanup expression. This is similar to try-finally,
1901 except that we only execute the cleanup block for exception edges. */
1902
1903 static gimple_seq
1904 lower_cleanup (struct leh_state *state, gimple tp)
1905 {
1906 struct leh_state this_state = *state;
1907 eh_region this_region = NULL;
1908 struct leh_tf_state fake_tf;
1909 gimple_seq result;
1910 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1911
1912 if (flag_exceptions && !cleanup_dead)
1913 {
1914 this_region = gen_eh_region_cleanup (state->cur_region);
1915 this_state.cur_region = this_region;
1916 }
1917
1918 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1919
1920 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1921 return gimple_try_eval (tp);
1922
1923 /* Build enough of a try-finally state so that we can reuse
1924 honor_protect_cleanup_actions. */
1925 memset (&fake_tf, 0, sizeof (fake_tf));
1926 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1927 fake_tf.outer = state;
1928 fake_tf.region = this_region;
1929 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1930 fake_tf.may_throw = true;
1931
1932 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1933
1934 if (fake_tf.may_throw)
1935 {
1936 /* In this case honor_protect_cleanup_actions had nothing to do,
1937 and we should process this normally. */
1938 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1939 result = frob_into_branch_around (tp, this_region,
1940 fake_tf.fallthru_label);
1941 }
1942 else
1943 {
1944 /* In this case honor_protect_cleanup_actions did nearly all of
1945 the work. All we have left is to append the fallthru_label. */
1946
1947 result = gimple_try_eval (tp);
1948 if (fake_tf.fallthru_label)
1949 {
1950 gimple x = gimple_build_label (fake_tf.fallthru_label);
1951 gimple_seq_add_stmt (&result, x);
1952 }
1953 }
1954 return result;
1955 }
1956
1957 /* Main loop for lowering eh constructs. Also moves gsi to the next
1958 statement. */
1959
1960 static void
1961 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1962 {
1963 gimple_seq replace;
1964 gimple x;
1965 gimple stmt = gsi_stmt (*gsi);
1966
1967 switch (gimple_code (stmt))
1968 {
1969 case GIMPLE_CALL:
1970 {
1971 tree fndecl = gimple_call_fndecl (stmt);
1972 tree rhs, lhs;
1973
1974 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1975 switch (DECL_FUNCTION_CODE (fndecl))
1976 {
1977 case BUILT_IN_EH_POINTER:
1978 /* The front end may have generated a call to
1979 __builtin_eh_pointer (0) within a catch region. Replace
1980 this zero argument with the current catch region number. */
1981 if (state->ehp_region)
1982 {
1983 tree nr = build_int_cst (integer_type_node,
1984 state->ehp_region->index);
1985 gimple_call_set_arg (stmt, 0, nr);
1986 }
1987 else
1988 {
1989 /* The user has dome something silly. Remove it. */
1990 rhs = null_pointer_node;
1991 goto do_replace;
1992 }
1993 break;
1994
1995 case BUILT_IN_EH_FILTER:
1996 /* ??? This should never appear, but since it's a builtin it
1997 is accessible to abuse by users. Just remove it and
1998 replace the use with the arbitrary value zero. */
1999 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2000 do_replace:
2001 lhs = gimple_call_lhs (stmt);
2002 x = gimple_build_assign (lhs, rhs);
2003 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2004 /* FALLTHRU */
2005
2006 case BUILT_IN_EH_COPY_VALUES:
2007 /* Likewise this should not appear. Remove it. */
2008 gsi_remove (gsi, true);
2009 return;
2010
2011 default:
2012 break;
2013 }
2014 }
2015 /* FALLTHRU */
2016
2017 case GIMPLE_ASSIGN:
2018 /* If the stmt can throw use a new temporary for the assignment
2019 to a LHS. This makes sure the old value of the LHS is
2020 available on the EH edge. Only do so for statements that
2021 potentially fall through (no noreturn calls e.g.), otherwise
2022 this new assignment might create fake fallthru regions. */
2023 if (stmt_could_throw_p (stmt)
2024 && gimple_has_lhs (stmt)
2025 && gimple_stmt_may_fallthru (stmt)
2026 && !tree_could_throw_p (gimple_get_lhs (stmt))
2027 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2028 {
2029 tree lhs = gimple_get_lhs (stmt);
2030 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2031 gimple s = gimple_build_assign (lhs, tmp);
2032 gimple_set_location (s, gimple_location (stmt));
2033 gimple_set_block (s, gimple_block (stmt));
2034 gimple_set_lhs (stmt, tmp);
2035 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2036 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2037 DECL_GIMPLE_REG_P (tmp) = 1;
2038 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2039 }
2040 /* Look for things that can throw exceptions, and record them. */
2041 if (state->cur_region && stmt_could_throw_p (stmt))
2042 {
2043 record_stmt_eh_region (state->cur_region, stmt);
2044 note_eh_region_may_contain_throw (state->cur_region);
2045 }
2046 break;
2047
2048 case GIMPLE_COND:
2049 case GIMPLE_GOTO:
2050 case GIMPLE_RETURN:
2051 maybe_record_in_goto_queue (state, stmt);
2052 break;
2053
2054 case GIMPLE_SWITCH:
2055 verify_norecord_switch_expr (state, stmt);
2056 break;
2057
2058 case GIMPLE_TRY:
2059 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2060 replace = lower_try_finally (state, stmt);
2061 else
2062 {
2063 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2064 if (!x)
2065 {
2066 replace = gimple_try_eval (stmt);
2067 lower_eh_constructs_1 (state, &replace);
2068 }
2069 else
2070 switch (gimple_code (x))
2071 {
2072 case GIMPLE_CATCH:
2073 replace = lower_catch (state, stmt);
2074 break;
2075 case GIMPLE_EH_FILTER:
2076 replace = lower_eh_filter (state, stmt);
2077 break;
2078 case GIMPLE_EH_MUST_NOT_THROW:
2079 replace = lower_eh_must_not_throw (state, stmt);
2080 break;
2081 case GIMPLE_EH_ELSE:
2082 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2083 gcc_unreachable ();
2084 default:
2085 replace = lower_cleanup (state, stmt);
2086 break;
2087 }
2088 }
2089
2090 /* Remove the old stmt and insert the transformed sequence
2091 instead. */
2092 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2093 gsi_remove (gsi, true);
2094
2095 /* Return since we don't want gsi_next () */
2096 return;
2097
2098 case GIMPLE_EH_ELSE:
2099 /* We should be eliminating this in lower_try_finally et al. */
2100 gcc_unreachable ();
2101
2102 default:
2103 /* A type, a decl, or some kind of statement that we're not
2104 interested in. Don't walk them. */
2105 break;
2106 }
2107
2108 gsi_next (gsi);
2109 }
2110
2111 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2112
2113 static void
2114 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2115 {
2116 gimple_stmt_iterator gsi;
2117 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2118 lower_eh_constructs_2 (state, &gsi);
2119 }
2120
2121 static unsigned int
2122 lower_eh_constructs (void)
2123 {
2124 struct leh_state null_state;
2125 gimple_seq bodyp;
2126
2127 bodyp = gimple_body (current_function_decl);
2128 if (bodyp == NULL)
2129 return 0;
2130
2131 finally_tree.create (31);
2132 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2133 memset (&null_state, 0, sizeof (null_state));
2134
2135 collect_finally_tree_1 (bodyp, NULL);
2136 lower_eh_constructs_1 (&null_state, &bodyp);
2137 gimple_set_body (current_function_decl, bodyp);
2138
2139 /* We assume there's a return statement, or something, at the end of
2140 the function, and thus ploping the EH sequence afterward won't
2141 change anything. */
2142 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2143 gimple_seq_add_seq (&bodyp, eh_seq);
2144
2145 /* We assume that since BODYP already existed, adding EH_SEQ to it
2146 didn't change its value, and we don't have to re-set the function. */
2147 gcc_assert (bodyp == gimple_body (current_function_decl));
2148
2149 finally_tree.dispose ();
2150 BITMAP_FREE (eh_region_may_contain_throw_map);
2151 eh_seq = NULL;
2152
2153 /* If this function needs a language specific EH personality routine
2154 and the frontend didn't already set one do so now. */
2155 if (function_needs_eh_personality (cfun) == eh_personality_lang
2156 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2157 DECL_FUNCTION_PERSONALITY (current_function_decl)
2158 = lang_hooks.eh_personality ();
2159
2160 return 0;
2161 }
2162
2163 namespace {
2164
2165 const pass_data pass_data_lower_eh =
2166 {
2167 GIMPLE_PASS, /* type */
2168 "eh", /* name */
2169 OPTGROUP_NONE, /* optinfo_flags */
2170 false, /* has_gate */
2171 true, /* has_execute */
2172 TV_TREE_EH, /* tv_id */
2173 PROP_gimple_lcf, /* properties_required */
2174 PROP_gimple_leh, /* properties_provided */
2175 0, /* properties_destroyed */
2176 0, /* todo_flags_start */
2177 0, /* todo_flags_finish */
2178 };
2179
2180 class pass_lower_eh : public gimple_opt_pass
2181 {
2182 public:
2183 pass_lower_eh (gcc::context *ctxt)
2184 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2185 {}
2186
2187 /* opt_pass methods: */
2188 unsigned int execute () { return lower_eh_constructs (); }
2189
2190 }; // class pass_lower_eh
2191
2192 } // anon namespace
2193
2194 gimple_opt_pass *
2195 make_pass_lower_eh (gcc::context *ctxt)
2196 {
2197 return new pass_lower_eh (ctxt);
2198 }
2199 \f
2200 /* Create the multiple edges from an EH_DISPATCH statement to all of
2201 the possible handlers for its EH region. Return true if there's
2202 no fallthru edge; false if there is. */
2203
2204 bool
2205 make_eh_dispatch_edges (gimple stmt)
2206 {
2207 eh_region r;
2208 eh_catch c;
2209 basic_block src, dst;
2210
2211 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2212 src = gimple_bb (stmt);
2213
2214 switch (r->type)
2215 {
2216 case ERT_TRY:
2217 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2218 {
2219 dst = label_to_block (c->label);
2220 make_edge (src, dst, 0);
2221
2222 /* A catch-all handler doesn't have a fallthru. */
2223 if (c->type_list == NULL)
2224 return false;
2225 }
2226 break;
2227
2228 case ERT_ALLOWED_EXCEPTIONS:
2229 dst = label_to_block (r->u.allowed.label);
2230 make_edge (src, dst, 0);
2231 break;
2232
2233 default:
2234 gcc_unreachable ();
2235 }
2236
2237 return true;
2238 }
2239
2240 /* Create the single EH edge from STMT to its nearest landing pad,
2241 if there is such a landing pad within the current function. */
2242
2243 void
2244 make_eh_edges (gimple stmt)
2245 {
2246 basic_block src, dst;
2247 eh_landing_pad lp;
2248 int lp_nr;
2249
2250 lp_nr = lookup_stmt_eh_lp (stmt);
2251 if (lp_nr <= 0)
2252 return;
2253
2254 lp = get_eh_landing_pad_from_number (lp_nr);
2255 gcc_assert (lp != NULL);
2256
2257 src = gimple_bb (stmt);
2258 dst = label_to_block (lp->post_landing_pad);
2259 make_edge (src, dst, EDGE_EH);
2260 }
2261
2262 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2263 do not actually perform the final edge redirection.
2264
2265 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2266 we intend to change the destination EH region as well; this means
2267 EH_LANDING_PAD_NR must already be set on the destination block label.
2268 If false, we're being called from generic cfg manipulation code and we
2269 should preserve our place within the region tree. */
2270
2271 static void
2272 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2273 {
2274 eh_landing_pad old_lp, new_lp;
2275 basic_block old_bb;
2276 gimple throw_stmt;
2277 int old_lp_nr, new_lp_nr;
2278 tree old_label, new_label;
2279 edge_iterator ei;
2280 edge e;
2281
2282 old_bb = edge_in->dest;
2283 old_label = gimple_block_label (old_bb);
2284 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2285 gcc_assert (old_lp_nr > 0);
2286 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2287
2288 throw_stmt = last_stmt (edge_in->src);
2289 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2290
2291 new_label = gimple_block_label (new_bb);
2292
2293 /* Look for an existing region that might be using NEW_BB already. */
2294 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2295 if (new_lp_nr)
2296 {
2297 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2298 gcc_assert (new_lp);
2299
2300 /* Unless CHANGE_REGION is true, the new and old landing pad
2301 had better be associated with the same EH region. */
2302 gcc_assert (change_region || new_lp->region == old_lp->region);
2303 }
2304 else
2305 {
2306 new_lp = NULL;
2307 gcc_assert (!change_region);
2308 }
2309
2310 /* Notice when we redirect the last EH edge away from OLD_BB. */
2311 FOR_EACH_EDGE (e, ei, old_bb->preds)
2312 if (e != edge_in && (e->flags & EDGE_EH))
2313 break;
2314
2315 if (new_lp)
2316 {
2317 /* NEW_LP already exists. If there are still edges into OLD_LP,
2318 there's nothing to do with the EH tree. If there are no more
2319 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2320 If CHANGE_REGION is true, then our caller is expecting to remove
2321 the landing pad. */
2322 if (e == NULL && !change_region)
2323 remove_eh_landing_pad (old_lp);
2324 }
2325 else
2326 {
2327 /* No correct landing pad exists. If there are no more edges
2328 into OLD_LP, then we can simply re-use the existing landing pad.
2329 Otherwise, we have to create a new landing pad. */
2330 if (e == NULL)
2331 {
2332 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2333 new_lp = old_lp;
2334 }
2335 else
2336 new_lp = gen_eh_landing_pad (old_lp->region);
2337 new_lp->post_landing_pad = new_label;
2338 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2339 }
2340
2341 /* Maybe move the throwing statement to the new region. */
2342 if (old_lp != new_lp)
2343 {
2344 remove_stmt_from_eh_lp (throw_stmt);
2345 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2346 }
2347 }
2348
2349 /* Redirect EH edge E to NEW_BB. */
2350
2351 edge
2352 redirect_eh_edge (edge edge_in, basic_block new_bb)
2353 {
2354 redirect_eh_edge_1 (edge_in, new_bb, false);
2355 return ssa_redirect_edge (edge_in, new_bb);
2356 }
2357
2358 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2359 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2360 The actual edge update will happen in the caller. */
2361
2362 void
2363 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2364 {
2365 tree new_lab = gimple_block_label (new_bb);
2366 bool any_changed = false;
2367 basic_block old_bb;
2368 eh_region r;
2369 eh_catch c;
2370
2371 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2372 switch (r->type)
2373 {
2374 case ERT_TRY:
2375 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2376 {
2377 old_bb = label_to_block (c->label);
2378 if (old_bb == e->dest)
2379 {
2380 c->label = new_lab;
2381 any_changed = true;
2382 }
2383 }
2384 break;
2385
2386 case ERT_ALLOWED_EXCEPTIONS:
2387 old_bb = label_to_block (r->u.allowed.label);
2388 gcc_assert (old_bb == e->dest);
2389 r->u.allowed.label = new_lab;
2390 any_changed = true;
2391 break;
2392
2393 default:
2394 gcc_unreachable ();
2395 }
2396
2397 gcc_assert (any_changed);
2398 }
2399 \f
2400 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2401
2402 bool
2403 operation_could_trap_helper_p (enum tree_code op,
2404 bool fp_operation,
2405 bool honor_trapv,
2406 bool honor_nans,
2407 bool honor_snans,
2408 tree divisor,
2409 bool *handled)
2410 {
2411 *handled = true;
2412 switch (op)
2413 {
2414 case TRUNC_DIV_EXPR:
2415 case CEIL_DIV_EXPR:
2416 case FLOOR_DIV_EXPR:
2417 case ROUND_DIV_EXPR:
2418 case EXACT_DIV_EXPR:
2419 case CEIL_MOD_EXPR:
2420 case FLOOR_MOD_EXPR:
2421 case ROUND_MOD_EXPR:
2422 case TRUNC_MOD_EXPR:
2423 case RDIV_EXPR:
2424 if (honor_snans || honor_trapv)
2425 return true;
2426 if (fp_operation)
2427 return flag_trapping_math;
2428 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2429 return true;
2430 return false;
2431
2432 case LT_EXPR:
2433 case LE_EXPR:
2434 case GT_EXPR:
2435 case GE_EXPR:
2436 case LTGT_EXPR:
2437 /* Some floating point comparisons may trap. */
2438 return honor_nans;
2439
2440 case EQ_EXPR:
2441 case NE_EXPR:
2442 case UNORDERED_EXPR:
2443 case ORDERED_EXPR:
2444 case UNLT_EXPR:
2445 case UNLE_EXPR:
2446 case UNGT_EXPR:
2447 case UNGE_EXPR:
2448 case UNEQ_EXPR:
2449 return honor_snans;
2450
2451 case CONVERT_EXPR:
2452 case FIX_TRUNC_EXPR:
2453 /* Conversion of floating point might trap. */
2454 return honor_nans;
2455
2456 case NEGATE_EXPR:
2457 case ABS_EXPR:
2458 case CONJ_EXPR:
2459 /* These operations don't trap with floating point. */
2460 if (honor_trapv)
2461 return true;
2462 return false;
2463
2464 case PLUS_EXPR:
2465 case MINUS_EXPR:
2466 case MULT_EXPR:
2467 /* Any floating arithmetic may trap. */
2468 if (fp_operation && flag_trapping_math)
2469 return true;
2470 if (honor_trapv)
2471 return true;
2472 return false;
2473
2474 case COMPLEX_EXPR:
2475 case CONSTRUCTOR:
2476 /* Constructing an object cannot trap. */
2477 return false;
2478
2479 default:
2480 /* Any floating arithmetic may trap. */
2481 if (fp_operation && flag_trapping_math)
2482 return true;
2483
2484 *handled = false;
2485 return false;
2486 }
2487 }
2488
2489 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2490 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2491 type operands that may trap. If OP is a division operator, DIVISOR contains
2492 the value of the divisor. */
2493
2494 bool
2495 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2496 tree divisor)
2497 {
2498 bool honor_nans = (fp_operation && flag_trapping_math
2499 && !flag_finite_math_only);
2500 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2501 bool handled;
2502
2503 if (TREE_CODE_CLASS (op) != tcc_comparison
2504 && TREE_CODE_CLASS (op) != tcc_unary
2505 && TREE_CODE_CLASS (op) != tcc_binary)
2506 return false;
2507
2508 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2509 honor_nans, honor_snans, divisor,
2510 &handled);
2511 }
2512
2513
2514 /* Returns true if it is possible to prove that the index of
2515 an array access REF (an ARRAY_REF expression) falls into the
2516 array bounds. */
2517
2518 static bool
2519 in_array_bounds_p (tree ref)
2520 {
2521 tree idx = TREE_OPERAND (ref, 1);
2522 tree min, max;
2523
2524 if (TREE_CODE (idx) != INTEGER_CST)
2525 return false;
2526
2527 min = array_ref_low_bound (ref);
2528 max = array_ref_up_bound (ref);
2529 if (!min
2530 || !max
2531 || TREE_CODE (min) != INTEGER_CST
2532 || TREE_CODE (max) != INTEGER_CST)
2533 return false;
2534
2535 if (tree_int_cst_lt (idx, min)
2536 || tree_int_cst_lt (max, idx))
2537 return false;
2538
2539 return true;
2540 }
2541
2542 /* Returns true if it is possible to prove that the range of
2543 an array access REF (an ARRAY_RANGE_REF expression) falls
2544 into the array bounds. */
2545
2546 static bool
2547 range_in_array_bounds_p (tree ref)
2548 {
2549 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2550 tree range_min, range_max, min, max;
2551
2552 range_min = TYPE_MIN_VALUE (domain_type);
2553 range_max = TYPE_MAX_VALUE (domain_type);
2554 if (!range_min
2555 || !range_max
2556 || TREE_CODE (range_min) != INTEGER_CST
2557 || TREE_CODE (range_max) != INTEGER_CST)
2558 return false;
2559
2560 min = array_ref_low_bound (ref);
2561 max = array_ref_up_bound (ref);
2562 if (!min
2563 || !max
2564 || TREE_CODE (min) != INTEGER_CST
2565 || TREE_CODE (max) != INTEGER_CST)
2566 return false;
2567
2568 if (tree_int_cst_lt (range_min, min)
2569 || tree_int_cst_lt (max, range_max))
2570 return false;
2571
2572 return true;
2573 }
2574
2575 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2576 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2577 This routine expects only GIMPLE lhs or rhs input. */
2578
2579 bool
2580 tree_could_trap_p (tree expr)
2581 {
2582 enum tree_code code;
2583 bool fp_operation = false;
2584 bool honor_trapv = false;
2585 tree t, base, div = NULL_TREE;
2586
2587 if (!expr)
2588 return false;
2589
2590 code = TREE_CODE (expr);
2591 t = TREE_TYPE (expr);
2592
2593 if (t)
2594 {
2595 if (COMPARISON_CLASS_P (expr))
2596 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2597 else
2598 fp_operation = FLOAT_TYPE_P (t);
2599 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2600 }
2601
2602 if (TREE_CODE_CLASS (code) == tcc_binary)
2603 div = TREE_OPERAND (expr, 1);
2604 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2605 return true;
2606
2607 restart:
2608 switch (code)
2609 {
2610 case TARGET_MEM_REF:
2611 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2612 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2613 return false;
2614 return !TREE_THIS_NOTRAP (expr);
2615
2616 case COMPONENT_REF:
2617 case REALPART_EXPR:
2618 case IMAGPART_EXPR:
2619 case BIT_FIELD_REF:
2620 case VIEW_CONVERT_EXPR:
2621 case WITH_SIZE_EXPR:
2622 expr = TREE_OPERAND (expr, 0);
2623 code = TREE_CODE (expr);
2624 goto restart;
2625
2626 case ARRAY_RANGE_REF:
2627 base = TREE_OPERAND (expr, 0);
2628 if (tree_could_trap_p (base))
2629 return true;
2630 if (TREE_THIS_NOTRAP (expr))
2631 return false;
2632 return !range_in_array_bounds_p (expr);
2633
2634 case ARRAY_REF:
2635 base = TREE_OPERAND (expr, 0);
2636 if (tree_could_trap_p (base))
2637 return true;
2638 if (TREE_THIS_NOTRAP (expr))
2639 return false;
2640 return !in_array_bounds_p (expr);
2641
2642 case MEM_REF:
2643 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2644 return false;
2645 /* Fallthru. */
2646 case INDIRECT_REF:
2647 return !TREE_THIS_NOTRAP (expr);
2648
2649 case ASM_EXPR:
2650 return TREE_THIS_VOLATILE (expr);
2651
2652 case CALL_EXPR:
2653 t = get_callee_fndecl (expr);
2654 /* Assume that calls to weak functions may trap. */
2655 if (!t || !DECL_P (t))
2656 return true;
2657 if (DECL_WEAK (t))
2658 return tree_could_trap_p (t);
2659 return false;
2660
2661 case FUNCTION_DECL:
2662 /* Assume that accesses to weak functions may trap, unless we know
2663 they are certainly defined in current TU or in some other
2664 LTO partition. */
2665 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2666 {
2667 struct cgraph_node *node;
2668 if (!DECL_EXTERNAL (expr))
2669 return false;
2670 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2671 if (node && node->in_other_partition)
2672 return false;
2673 return true;
2674 }
2675 return false;
2676
2677 case VAR_DECL:
2678 /* Assume that accesses to weak vars may trap, unless we know
2679 they are certainly defined in current TU or in some other
2680 LTO partition. */
2681 if (DECL_WEAK (expr) && !DECL_COMDAT (expr))
2682 {
2683 struct varpool_node *node;
2684 if (!DECL_EXTERNAL (expr))
2685 return false;
2686 node = varpool_variable_node (varpool_get_node (expr), NULL);
2687 if (node && node->in_other_partition)
2688 return false;
2689 return true;
2690 }
2691 return false;
2692
2693 default:
2694 return false;
2695 }
2696 }
2697
2698
2699 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2700 an assignment or a conditional) may throw. */
2701
2702 static bool
2703 stmt_could_throw_1_p (gimple stmt)
2704 {
2705 enum tree_code code = gimple_expr_code (stmt);
2706 bool honor_nans = false;
2707 bool honor_snans = false;
2708 bool fp_operation = false;
2709 bool honor_trapv = false;
2710 tree t;
2711 size_t i;
2712 bool handled, ret;
2713
2714 if (TREE_CODE_CLASS (code) == tcc_comparison
2715 || TREE_CODE_CLASS (code) == tcc_unary
2716 || TREE_CODE_CLASS (code) == tcc_binary)
2717 {
2718 if (is_gimple_assign (stmt)
2719 && TREE_CODE_CLASS (code) == tcc_comparison)
2720 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2721 else if (gimple_code (stmt) == GIMPLE_COND)
2722 t = TREE_TYPE (gimple_cond_lhs (stmt));
2723 else
2724 t = gimple_expr_type (stmt);
2725 fp_operation = FLOAT_TYPE_P (t);
2726 if (fp_operation)
2727 {
2728 honor_nans = flag_trapping_math && !flag_finite_math_only;
2729 honor_snans = flag_signaling_nans != 0;
2730 }
2731 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2732 honor_trapv = true;
2733 }
2734
2735 /* Check if the main expression may trap. */
2736 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2737 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2738 honor_nans, honor_snans, t,
2739 &handled);
2740 if (handled)
2741 return ret;
2742
2743 /* If the expression does not trap, see if any of the individual operands may
2744 trap. */
2745 for (i = 0; i < gimple_num_ops (stmt); i++)
2746 if (tree_could_trap_p (gimple_op (stmt, i)))
2747 return true;
2748
2749 return false;
2750 }
2751
2752
2753 /* Return true if statement STMT could throw an exception. */
2754
2755 bool
2756 stmt_could_throw_p (gimple stmt)
2757 {
2758 if (!flag_exceptions)
2759 return false;
2760
2761 /* The only statements that can throw an exception are assignments,
2762 conditionals, calls, resx, and asms. */
2763 switch (gimple_code (stmt))
2764 {
2765 case GIMPLE_RESX:
2766 return true;
2767
2768 case GIMPLE_CALL:
2769 return !gimple_call_nothrow_p (stmt);
2770
2771 case GIMPLE_ASSIGN:
2772 case GIMPLE_COND:
2773 if (!cfun->can_throw_non_call_exceptions)
2774 return false;
2775 return stmt_could_throw_1_p (stmt);
2776
2777 case GIMPLE_ASM:
2778 if (!cfun->can_throw_non_call_exceptions)
2779 return false;
2780 return gimple_asm_volatile_p (stmt);
2781
2782 default:
2783 return false;
2784 }
2785 }
2786
2787
2788 /* Return true if expression T could throw an exception. */
2789
2790 bool
2791 tree_could_throw_p (tree t)
2792 {
2793 if (!flag_exceptions)
2794 return false;
2795 if (TREE_CODE (t) == MODIFY_EXPR)
2796 {
2797 if (cfun->can_throw_non_call_exceptions
2798 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2799 return true;
2800 t = TREE_OPERAND (t, 1);
2801 }
2802
2803 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2804 t = TREE_OPERAND (t, 0);
2805 if (TREE_CODE (t) == CALL_EXPR)
2806 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2807 if (cfun->can_throw_non_call_exceptions)
2808 return tree_could_trap_p (t);
2809 return false;
2810 }
2811
2812 /* Return true if STMT can throw an exception that is not caught within
2813 the current function (CFUN). */
2814
2815 bool
2816 stmt_can_throw_external (gimple stmt)
2817 {
2818 int lp_nr;
2819
2820 if (!stmt_could_throw_p (stmt))
2821 return false;
2822
2823 lp_nr = lookup_stmt_eh_lp (stmt);
2824 return lp_nr == 0;
2825 }
2826
2827 /* Return true if STMT can throw an exception that is caught within
2828 the current function (CFUN). */
2829
2830 bool
2831 stmt_can_throw_internal (gimple stmt)
2832 {
2833 int lp_nr;
2834
2835 if (!stmt_could_throw_p (stmt))
2836 return false;
2837
2838 lp_nr = lookup_stmt_eh_lp (stmt);
2839 return lp_nr > 0;
2840 }
2841
2842 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2843 remove any entry it might have from the EH table. Return true if
2844 any change was made. */
2845
2846 bool
2847 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2848 {
2849 if (stmt_could_throw_p (stmt))
2850 return false;
2851 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2852 }
2853
2854 /* Likewise, but always use the current function. */
2855
2856 bool
2857 maybe_clean_eh_stmt (gimple stmt)
2858 {
2859 return maybe_clean_eh_stmt_fn (cfun, stmt);
2860 }
2861
2862 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2863 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2864 in the table if it should be in there. Return TRUE if a replacement was
2865 done that my require an EH edge purge. */
2866
2867 bool
2868 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2869 {
2870 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2871
2872 if (lp_nr != 0)
2873 {
2874 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2875
2876 if (new_stmt == old_stmt && new_stmt_could_throw)
2877 return false;
2878
2879 remove_stmt_from_eh_lp (old_stmt);
2880 if (new_stmt_could_throw)
2881 {
2882 add_stmt_to_eh_lp (new_stmt, lp_nr);
2883 return false;
2884 }
2885 else
2886 return true;
2887 }
2888
2889 return false;
2890 }
2891
2892 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2893 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2894 operand is the return value of duplicate_eh_regions. */
2895
2896 bool
2897 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2898 struct function *old_fun, gimple old_stmt,
2899 struct pointer_map_t *map, int default_lp_nr)
2900 {
2901 int old_lp_nr, new_lp_nr;
2902 void **slot;
2903
2904 if (!stmt_could_throw_p (new_stmt))
2905 return false;
2906
2907 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2908 if (old_lp_nr == 0)
2909 {
2910 if (default_lp_nr == 0)
2911 return false;
2912 new_lp_nr = default_lp_nr;
2913 }
2914 else if (old_lp_nr > 0)
2915 {
2916 eh_landing_pad old_lp, new_lp;
2917
2918 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2919 slot = pointer_map_contains (map, old_lp);
2920 new_lp = (eh_landing_pad) *slot;
2921 new_lp_nr = new_lp->index;
2922 }
2923 else
2924 {
2925 eh_region old_r, new_r;
2926
2927 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2928 slot = pointer_map_contains (map, old_r);
2929 new_r = (eh_region) *slot;
2930 new_lp_nr = -new_r->index;
2931 }
2932
2933 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2934 return true;
2935 }
2936
2937 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2938 and thus no remapping is required. */
2939
2940 bool
2941 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2942 {
2943 int lp_nr;
2944
2945 if (!stmt_could_throw_p (new_stmt))
2946 return false;
2947
2948 lp_nr = lookup_stmt_eh_lp (old_stmt);
2949 if (lp_nr == 0)
2950 return false;
2951
2952 add_stmt_to_eh_lp (new_stmt, lp_nr);
2953 return true;
2954 }
2955 \f
2956 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2957 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2958 this only handles handlers consisting of a single call, as that's the
2959 important case for C++: a destructor call for a particular object showing
2960 up in multiple handlers. */
2961
2962 static bool
2963 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2964 {
2965 gimple_stmt_iterator gsi;
2966 gimple ones, twos;
2967 unsigned int ai;
2968
2969 gsi = gsi_start (oneh);
2970 if (!gsi_one_before_end_p (gsi))
2971 return false;
2972 ones = gsi_stmt (gsi);
2973
2974 gsi = gsi_start (twoh);
2975 if (!gsi_one_before_end_p (gsi))
2976 return false;
2977 twos = gsi_stmt (gsi);
2978
2979 if (!is_gimple_call (ones)
2980 || !is_gimple_call (twos)
2981 || gimple_call_lhs (ones)
2982 || gimple_call_lhs (twos)
2983 || gimple_call_chain (ones)
2984 || gimple_call_chain (twos)
2985 || !gimple_call_same_target_p (ones, twos)
2986 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2987 return false;
2988
2989 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2990 if (!operand_equal_p (gimple_call_arg (ones, ai),
2991 gimple_call_arg (twos, ai), 0))
2992 return false;
2993
2994 return true;
2995 }
2996
2997 /* Optimize
2998 try { A() } finally { try { ~B() } catch { ~A() } }
2999 try { ... } finally { ~A() }
3000 into
3001 try { A() } catch { ~B() }
3002 try { ~B() ... } finally { ~A() }
3003
3004 This occurs frequently in C++, where A is a local variable and B is a
3005 temporary used in the initializer for A. */
3006
3007 static void
3008 optimize_double_finally (gimple one, gimple two)
3009 {
3010 gimple oneh;
3011 gimple_stmt_iterator gsi;
3012 gimple_seq cleanup;
3013
3014 cleanup = gimple_try_cleanup (one);
3015 gsi = gsi_start (cleanup);
3016 if (!gsi_one_before_end_p (gsi))
3017 return;
3018
3019 oneh = gsi_stmt (gsi);
3020 if (gimple_code (oneh) != GIMPLE_TRY
3021 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3022 return;
3023
3024 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3025 {
3026 gimple_seq seq = gimple_try_eval (oneh);
3027
3028 gimple_try_set_cleanup (one, seq);
3029 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3030 seq = copy_gimple_seq_and_replace_locals (seq);
3031 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3032 gimple_try_set_eval (two, seq);
3033 }
3034 }
3035
3036 /* Perform EH refactoring optimizations that are simpler to do when code
3037 flow has been lowered but EH structures haven't. */
3038
3039 static void
3040 refactor_eh_r (gimple_seq seq)
3041 {
3042 gimple_stmt_iterator gsi;
3043 gimple one, two;
3044
3045 one = NULL;
3046 two = NULL;
3047 gsi = gsi_start (seq);
3048 while (1)
3049 {
3050 one = two;
3051 if (gsi_end_p (gsi))
3052 two = NULL;
3053 else
3054 two = gsi_stmt (gsi);
3055 if (one
3056 && two
3057 && gimple_code (one) == GIMPLE_TRY
3058 && gimple_code (two) == GIMPLE_TRY
3059 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
3060 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
3061 optimize_double_finally (one, two);
3062 if (one)
3063 switch (gimple_code (one))
3064 {
3065 case GIMPLE_TRY:
3066 refactor_eh_r (gimple_try_eval (one));
3067 refactor_eh_r (gimple_try_cleanup (one));
3068 break;
3069 case GIMPLE_CATCH:
3070 refactor_eh_r (gimple_catch_handler (one));
3071 break;
3072 case GIMPLE_EH_FILTER:
3073 refactor_eh_r (gimple_eh_filter_failure (one));
3074 break;
3075 case GIMPLE_EH_ELSE:
3076 refactor_eh_r (gimple_eh_else_n_body (one));
3077 refactor_eh_r (gimple_eh_else_e_body (one));
3078 break;
3079 default:
3080 break;
3081 }
3082 if (two)
3083 gsi_next (&gsi);
3084 else
3085 break;
3086 }
3087 }
3088
3089 static unsigned
3090 refactor_eh (void)
3091 {
3092 refactor_eh_r (gimple_body (current_function_decl));
3093 return 0;
3094 }
3095
3096 static bool
3097 gate_refactor_eh (void)
3098 {
3099 return flag_exceptions != 0;
3100 }
3101
3102 namespace {
3103
3104 const pass_data pass_data_refactor_eh =
3105 {
3106 GIMPLE_PASS, /* type */
3107 "ehopt", /* name */
3108 OPTGROUP_NONE, /* optinfo_flags */
3109 true, /* has_gate */
3110 true, /* has_execute */
3111 TV_TREE_EH, /* tv_id */
3112 PROP_gimple_lcf, /* properties_required */
3113 0, /* properties_provided */
3114 0, /* properties_destroyed */
3115 0, /* todo_flags_start */
3116 0, /* todo_flags_finish */
3117 };
3118
3119 class pass_refactor_eh : public gimple_opt_pass
3120 {
3121 public:
3122 pass_refactor_eh (gcc::context *ctxt)
3123 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3124 {}
3125
3126 /* opt_pass methods: */
3127 bool gate () { return gate_refactor_eh (); }
3128 unsigned int execute () { return refactor_eh (); }
3129
3130 }; // class pass_refactor_eh
3131
3132 } // anon namespace
3133
3134 gimple_opt_pass *
3135 make_pass_refactor_eh (gcc::context *ctxt)
3136 {
3137 return new pass_refactor_eh (ctxt);
3138 }
3139 \f
3140 /* At the end of gimple optimization, we can lower RESX. */
3141
3142 static bool
3143 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3144 {
3145 int lp_nr;
3146 eh_region src_r, dst_r;
3147 gimple_stmt_iterator gsi;
3148 gimple x;
3149 tree fn, src_nr;
3150 bool ret = false;
3151
3152 lp_nr = lookup_stmt_eh_lp (stmt);
3153 if (lp_nr != 0)
3154 dst_r = get_eh_region_from_lp_number (lp_nr);
3155 else
3156 dst_r = NULL;
3157
3158 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3159 gsi = gsi_last_bb (bb);
3160
3161 if (src_r == NULL)
3162 {
3163 /* We can wind up with no source region when pass_cleanup_eh shows
3164 that there are no entries into an eh region and deletes it, but
3165 then the block that contains the resx isn't removed. This can
3166 happen without optimization when the switch statement created by
3167 lower_try_finally_switch isn't simplified to remove the eh case.
3168
3169 Resolve this by expanding the resx node to an abort. */
3170
3171 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3172 x = gimple_build_call (fn, 0);
3173 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3174
3175 while (EDGE_COUNT (bb->succs) > 0)
3176 remove_edge (EDGE_SUCC (bb, 0));
3177 }
3178 else if (dst_r)
3179 {
3180 /* When we have a destination region, we resolve this by copying
3181 the excptr and filter values into place, and changing the edge
3182 to immediately after the landing pad. */
3183 edge e;
3184
3185 if (lp_nr < 0)
3186 {
3187 basic_block new_bb;
3188 void **slot;
3189 tree lab;
3190
3191 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3192 the failure decl into a new block, if needed. */
3193 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3194
3195 slot = pointer_map_contains (mnt_map, dst_r);
3196 if (slot == NULL)
3197 {
3198 gimple_stmt_iterator gsi2;
3199
3200 new_bb = create_empty_bb (bb);
3201 if (current_loops)
3202 add_bb_to_loop (new_bb, bb->loop_father);
3203 lab = gimple_block_label (new_bb);
3204 gsi2 = gsi_start_bb (new_bb);
3205
3206 fn = dst_r->u.must_not_throw.failure_decl;
3207 x = gimple_build_call (fn, 0);
3208 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3209 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3210
3211 slot = pointer_map_insert (mnt_map, dst_r);
3212 *slot = lab;
3213 }
3214 else
3215 {
3216 lab = (tree) *slot;
3217 new_bb = label_to_block (lab);
3218 }
3219
3220 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3221 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3222 e->count = bb->count;
3223 e->probability = REG_BR_PROB_BASE;
3224 }
3225 else
3226 {
3227 edge_iterator ei;
3228 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3229
3230 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3231 src_nr = build_int_cst (integer_type_node, src_r->index);
3232 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3233 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3234
3235 /* Update the flags for the outgoing edge. */
3236 e = single_succ_edge (bb);
3237 gcc_assert (e->flags & EDGE_EH);
3238 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3239
3240 /* If there are no more EH users of the landing pad, delete it. */
3241 FOR_EACH_EDGE (e, ei, e->dest->preds)
3242 if (e->flags & EDGE_EH)
3243 break;
3244 if (e == NULL)
3245 {
3246 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3247 remove_eh_landing_pad (lp);
3248 }
3249 }
3250
3251 ret = true;
3252 }
3253 else
3254 {
3255 tree var;
3256
3257 /* When we don't have a destination region, this exception escapes
3258 up the call chain. We resolve this by generating a call to the
3259 _Unwind_Resume library function. */
3260
3261 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3262 with no arguments for C++ and Java. Check for that. */
3263 if (src_r->use_cxa_end_cleanup)
3264 {
3265 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3266 x = gimple_build_call (fn, 0);
3267 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3268 }
3269 else
3270 {
3271 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3272 src_nr = build_int_cst (integer_type_node, src_r->index);
3273 x = gimple_build_call (fn, 1, src_nr);
3274 var = create_tmp_var (ptr_type_node, NULL);
3275 var = make_ssa_name (var, x);
3276 gimple_call_set_lhs (x, var);
3277 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3278
3279 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3280 x = gimple_build_call (fn, 1, var);
3281 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3282 }
3283
3284 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3285 }
3286
3287 gsi_remove (&gsi, true);
3288
3289 return ret;
3290 }
3291
3292 static unsigned
3293 execute_lower_resx (void)
3294 {
3295 basic_block bb;
3296 struct pointer_map_t *mnt_map;
3297 bool dominance_invalidated = false;
3298 bool any_rewritten = false;
3299
3300 mnt_map = pointer_map_create ();
3301
3302 FOR_EACH_BB (bb)
3303 {
3304 gimple last = last_stmt (bb);
3305 if (last && is_gimple_resx (last))
3306 {
3307 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3308 any_rewritten = true;
3309 }
3310 }
3311
3312 pointer_map_destroy (mnt_map);
3313
3314 if (dominance_invalidated)
3315 {
3316 free_dominance_info (CDI_DOMINATORS);
3317 free_dominance_info (CDI_POST_DOMINATORS);
3318 }
3319
3320 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3321 }
3322
3323 static bool
3324 gate_lower_resx (void)
3325 {
3326 return flag_exceptions != 0;
3327 }
3328
3329 namespace {
3330
3331 const pass_data pass_data_lower_resx =
3332 {
3333 GIMPLE_PASS, /* type */
3334 "resx", /* name */
3335 OPTGROUP_NONE, /* optinfo_flags */
3336 true, /* has_gate */
3337 true, /* has_execute */
3338 TV_TREE_EH, /* tv_id */
3339 PROP_gimple_lcf, /* properties_required */
3340 0, /* properties_provided */
3341 0, /* properties_destroyed */
3342 0, /* todo_flags_start */
3343 TODO_verify_flow, /* todo_flags_finish */
3344 };
3345
3346 class pass_lower_resx : public gimple_opt_pass
3347 {
3348 public:
3349 pass_lower_resx (gcc::context *ctxt)
3350 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3351 {}
3352
3353 /* opt_pass methods: */
3354 bool gate () { return gate_lower_resx (); }
3355 unsigned int execute () { return execute_lower_resx (); }
3356
3357 }; // class pass_lower_resx
3358
3359 } // anon namespace
3360
3361 gimple_opt_pass *
3362 make_pass_lower_resx (gcc::context *ctxt)
3363 {
3364 return new pass_lower_resx (ctxt);
3365 }
3366
3367 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3368 external throw. */
3369
3370 static void
3371 optimize_clobbers (basic_block bb)
3372 {
3373 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3374 bool any_clobbers = false;
3375 bool seen_stack_restore = false;
3376 edge_iterator ei;
3377 edge e;
3378
3379 /* Only optimize anything if the bb contains at least one clobber,
3380 ends with resx (checked by caller), optionally contains some
3381 debug stmts or labels, or at most one __builtin_stack_restore
3382 call, and has an incoming EH edge. */
3383 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3384 {
3385 gimple stmt = gsi_stmt (gsi);
3386 if (is_gimple_debug (stmt))
3387 continue;
3388 if (gimple_clobber_p (stmt))
3389 {
3390 any_clobbers = true;
3391 continue;
3392 }
3393 if (!seen_stack_restore
3394 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3395 {
3396 seen_stack_restore = true;
3397 continue;
3398 }
3399 if (gimple_code (stmt) == GIMPLE_LABEL)
3400 break;
3401 return;
3402 }
3403 if (!any_clobbers)
3404 return;
3405 FOR_EACH_EDGE (e, ei, bb->preds)
3406 if (e->flags & EDGE_EH)
3407 break;
3408 if (e == NULL)
3409 return;
3410 gsi = gsi_last_bb (bb);
3411 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3412 {
3413 gimple stmt = gsi_stmt (gsi);
3414 if (!gimple_clobber_p (stmt))
3415 continue;
3416 unlink_stmt_vdef (stmt);
3417 gsi_remove (&gsi, true);
3418 release_defs (stmt);
3419 }
3420 }
3421
3422 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3423 internal throw to successor BB. */
3424
3425 static int
3426 sink_clobbers (basic_block bb)
3427 {
3428 edge e;
3429 edge_iterator ei;
3430 gimple_stmt_iterator gsi, dgsi;
3431 basic_block succbb;
3432 bool any_clobbers = false;
3433 unsigned todo = 0;
3434
3435 /* Only optimize if BB has a single EH successor and
3436 all predecessor edges are EH too. */
3437 if (!single_succ_p (bb)
3438 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3439 return 0;
3440
3441 FOR_EACH_EDGE (e, ei, bb->preds)
3442 {
3443 if ((e->flags & EDGE_EH) == 0)
3444 return 0;
3445 }
3446
3447 /* And BB contains only CLOBBER stmts before the final
3448 RESX. */
3449 gsi = gsi_last_bb (bb);
3450 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3451 {
3452 gimple stmt = gsi_stmt (gsi);
3453 if (is_gimple_debug (stmt))
3454 continue;
3455 if (gimple_code (stmt) == GIMPLE_LABEL)
3456 break;
3457 if (!gimple_clobber_p (stmt))
3458 return 0;
3459 any_clobbers = true;
3460 }
3461 if (!any_clobbers)
3462 return 0;
3463
3464 edge succe = single_succ_edge (bb);
3465 succbb = succe->dest;
3466
3467 /* See if there is a virtual PHI node to take an updated virtual
3468 operand from. */
3469 gimple vphi = NULL;
3470 tree vuse = NULL_TREE;
3471 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3472 {
3473 tree res = gimple_phi_result (gsi_stmt (gsi));
3474 if (virtual_operand_p (res))
3475 {
3476 vphi = gsi_stmt (gsi);
3477 vuse = res;
3478 break;
3479 }
3480 }
3481
3482 dgsi = gsi_after_labels (succbb);
3483 gsi = gsi_last_bb (bb);
3484 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3485 {
3486 gimple stmt = gsi_stmt (gsi);
3487 tree lhs;
3488 if (is_gimple_debug (stmt))
3489 continue;
3490 if (gimple_code (stmt) == GIMPLE_LABEL)
3491 break;
3492 lhs = gimple_assign_lhs (stmt);
3493 /* Unfortunately we don't have dominance info updated at this
3494 point, so checking if
3495 dominated_by_p (CDI_DOMINATORS, succbb,
3496 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3497 would be too costly. Thus, avoid sinking any clobbers that
3498 refer to non-(D) SSA_NAMEs. */
3499 if (TREE_CODE (lhs) == MEM_REF
3500 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3501 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3502 {
3503 unlink_stmt_vdef (stmt);
3504 gsi_remove (&gsi, true);
3505 release_defs (stmt);
3506 continue;
3507 }
3508
3509 /* As we do not change stmt order when sinking across a
3510 forwarder edge we can keep virtual operands in place. */
3511 gsi_remove (&gsi, false);
3512 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3513
3514 /* But adjust virtual operands if we sunk across a PHI node. */
3515 if (vuse)
3516 {
3517 gimple use_stmt;
3518 imm_use_iterator iter;
3519 use_operand_p use_p;
3520 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3521 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3522 SET_USE (use_p, gimple_vdef (stmt));
3523 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3524 {
3525 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3526 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3527 }
3528 /* Adjust the incoming virtual operand. */
3529 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3530 SET_USE (gimple_vuse_op (stmt), vuse);
3531 }
3532 /* If there isn't a single predecessor but no virtual PHI node
3533 arrange for virtual operands to be renamed. */
3534 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3535 && !single_pred_p (succbb))
3536 {
3537 /* In this case there will be no use of the VDEF of this stmt.
3538 ??? Unless this is a secondary opportunity and we have not
3539 removed unreachable blocks yet, so we cannot assert this.
3540 Which also means we will end up renaming too many times. */
3541 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3542 mark_virtual_operands_for_renaming (cfun);
3543 todo |= TODO_update_ssa_only_virtuals;
3544 }
3545 }
3546
3547 return todo;
3548 }
3549
3550 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3551 we have found some duplicate labels and removed some edges. */
3552
3553 static bool
3554 lower_eh_dispatch (basic_block src, gimple stmt)
3555 {
3556 gimple_stmt_iterator gsi;
3557 int region_nr;
3558 eh_region r;
3559 tree filter, fn;
3560 gimple x;
3561 bool redirected = false;
3562
3563 region_nr = gimple_eh_dispatch_region (stmt);
3564 r = get_eh_region_from_number (region_nr);
3565
3566 gsi = gsi_last_bb (src);
3567
3568 switch (r->type)
3569 {
3570 case ERT_TRY:
3571 {
3572 auto_vec<tree> labels;
3573 tree default_label = NULL;
3574 eh_catch c;
3575 edge_iterator ei;
3576 edge e;
3577 struct pointer_set_t *seen_values = pointer_set_create ();
3578
3579 /* Collect the labels for a switch. Zero the post_landing_pad
3580 field becase we'll no longer have anything keeping these labels
3581 in existence and the optimizer will be free to merge these
3582 blocks at will. */
3583 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3584 {
3585 tree tp_node, flt_node, lab = c->label;
3586 bool have_label = false;
3587
3588 c->label = NULL;
3589 tp_node = c->type_list;
3590 flt_node = c->filter_list;
3591
3592 if (tp_node == NULL)
3593 {
3594 default_label = lab;
3595 break;
3596 }
3597 do
3598 {
3599 /* Filter out duplicate labels that arise when this handler
3600 is shadowed by an earlier one. When no labels are
3601 attached to the handler anymore, we remove
3602 the corresponding edge and then we delete unreachable
3603 blocks at the end of this pass. */
3604 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3605 {
3606 tree t = build_case_label (TREE_VALUE (flt_node),
3607 NULL, lab);
3608 labels.safe_push (t);
3609 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3610 have_label = true;
3611 }
3612
3613 tp_node = TREE_CHAIN (tp_node);
3614 flt_node = TREE_CHAIN (flt_node);
3615 }
3616 while (tp_node);
3617 if (! have_label)
3618 {
3619 remove_edge (find_edge (src, label_to_block (lab)));
3620 redirected = true;
3621 }
3622 }
3623
3624 /* Clean up the edge flags. */
3625 FOR_EACH_EDGE (e, ei, src->succs)
3626 {
3627 if (e->flags & EDGE_FALLTHRU)
3628 {
3629 /* If there was no catch-all, use the fallthru edge. */
3630 if (default_label == NULL)
3631 default_label = gimple_block_label (e->dest);
3632 e->flags &= ~EDGE_FALLTHRU;
3633 }
3634 }
3635 gcc_assert (default_label != NULL);
3636
3637 /* Don't generate a switch if there's only a default case.
3638 This is common in the form of try { A; } catch (...) { B; }. */
3639 if (!labels.exists ())
3640 {
3641 e = single_succ_edge (src);
3642 e->flags |= EDGE_FALLTHRU;
3643 }
3644 else
3645 {
3646 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3647 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3648 region_nr));
3649 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3650 filter = make_ssa_name (filter, x);
3651 gimple_call_set_lhs (x, filter);
3652 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3653
3654 /* Turn the default label into a default case. */
3655 default_label = build_case_label (NULL, NULL, default_label);
3656 sort_case_labels (labels);
3657
3658 x = gimple_build_switch (filter, default_label, labels);
3659 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3660 }
3661 pointer_set_destroy (seen_values);
3662 }
3663 break;
3664
3665 case ERT_ALLOWED_EXCEPTIONS:
3666 {
3667 edge b_e = BRANCH_EDGE (src);
3668 edge f_e = FALLTHRU_EDGE (src);
3669
3670 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3671 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3672 region_nr));
3673 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3674 filter = make_ssa_name (filter, x);
3675 gimple_call_set_lhs (x, filter);
3676 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3677
3678 r->u.allowed.label = NULL;
3679 x = gimple_build_cond (EQ_EXPR, filter,
3680 build_int_cst (TREE_TYPE (filter),
3681 r->u.allowed.filter),
3682 NULL_TREE, NULL_TREE);
3683 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3684
3685 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3686 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3687 }
3688 break;
3689
3690 default:
3691 gcc_unreachable ();
3692 }
3693
3694 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3695 gsi_remove (&gsi, true);
3696 return redirected;
3697 }
3698
3699 static unsigned
3700 execute_lower_eh_dispatch (void)
3701 {
3702 basic_block bb;
3703 int flags = 0;
3704 bool redirected = false;
3705
3706 assign_filter_values ();
3707
3708 FOR_EACH_BB (bb)
3709 {
3710 gimple last = last_stmt (bb);
3711 if (last == NULL)
3712 continue;
3713 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3714 {
3715 redirected |= lower_eh_dispatch (bb, last);
3716 flags |= TODO_update_ssa_only_virtuals;
3717 }
3718 else if (gimple_code (last) == GIMPLE_RESX)
3719 {
3720 if (stmt_can_throw_external (last))
3721 optimize_clobbers (bb);
3722 else
3723 flags |= sink_clobbers (bb);
3724 }
3725 }
3726
3727 if (redirected)
3728 delete_unreachable_blocks ();
3729 return flags;
3730 }
3731
3732 static bool
3733 gate_lower_eh_dispatch (void)
3734 {
3735 return cfun->eh->region_tree != NULL;
3736 }
3737
3738 namespace {
3739
3740 const pass_data pass_data_lower_eh_dispatch =
3741 {
3742 GIMPLE_PASS, /* type */
3743 "ehdisp", /* name */
3744 OPTGROUP_NONE, /* optinfo_flags */
3745 true, /* has_gate */
3746 true, /* has_execute */
3747 TV_TREE_EH, /* tv_id */
3748 PROP_gimple_lcf, /* properties_required */
3749 0, /* properties_provided */
3750 0, /* properties_destroyed */
3751 0, /* todo_flags_start */
3752 TODO_verify_flow, /* todo_flags_finish */
3753 };
3754
3755 class pass_lower_eh_dispatch : public gimple_opt_pass
3756 {
3757 public:
3758 pass_lower_eh_dispatch (gcc::context *ctxt)
3759 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3760 {}
3761
3762 /* opt_pass methods: */
3763 bool gate () { return gate_lower_eh_dispatch (); }
3764 unsigned int execute () { return execute_lower_eh_dispatch (); }
3765
3766 }; // class pass_lower_eh_dispatch
3767
3768 } // anon namespace
3769
3770 gimple_opt_pass *
3771 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3772 {
3773 return new pass_lower_eh_dispatch (ctxt);
3774 }
3775 \f
3776 /* Walk statements, see what regions and, optionally, landing pads
3777 are really referenced.
3778
3779 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3780 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3781
3782 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3783 regions are marked.
3784
3785 The caller is responsible for freeing the returned sbitmaps. */
3786
3787 static void
3788 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3789 {
3790 sbitmap r_reachable, lp_reachable;
3791 basic_block bb;
3792 bool mark_landing_pads = (lp_reachablep != NULL);
3793 gcc_checking_assert (r_reachablep != NULL);
3794
3795 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3796 bitmap_clear (r_reachable);
3797 *r_reachablep = r_reachable;
3798
3799 if (mark_landing_pads)
3800 {
3801 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3802 bitmap_clear (lp_reachable);
3803 *lp_reachablep = lp_reachable;
3804 }
3805 else
3806 lp_reachable = NULL;
3807
3808 FOR_EACH_BB (bb)
3809 {
3810 gimple_stmt_iterator gsi;
3811
3812 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3813 {
3814 gimple stmt = gsi_stmt (gsi);
3815
3816 if (mark_landing_pads)
3817 {
3818 int lp_nr = lookup_stmt_eh_lp (stmt);
3819
3820 /* Negative LP numbers are MUST_NOT_THROW regions which
3821 are not considered BB enders. */
3822 if (lp_nr < 0)
3823 bitmap_set_bit (r_reachable, -lp_nr);
3824
3825 /* Positive LP numbers are real landing pads, and BB enders. */
3826 else if (lp_nr > 0)
3827 {
3828 gcc_assert (gsi_one_before_end_p (gsi));
3829 eh_region region = get_eh_region_from_lp_number (lp_nr);
3830 bitmap_set_bit (r_reachable, region->index);
3831 bitmap_set_bit (lp_reachable, lp_nr);
3832 }
3833 }
3834
3835 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3836 switch (gimple_code (stmt))
3837 {
3838 case GIMPLE_RESX:
3839 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3840 break;
3841 case GIMPLE_EH_DISPATCH:
3842 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3843 break;
3844 default:
3845 break;
3846 }
3847 }
3848 }
3849 }
3850
3851 /* Remove unreachable handlers and unreachable landing pads. */
3852
3853 static void
3854 remove_unreachable_handlers (void)
3855 {
3856 sbitmap r_reachable, lp_reachable;
3857 eh_region region;
3858 eh_landing_pad lp;
3859 unsigned i;
3860
3861 mark_reachable_handlers (&r_reachable, &lp_reachable);
3862
3863 if (dump_file)
3864 {
3865 fprintf (dump_file, "Before removal of unreachable regions:\n");
3866 dump_eh_tree (dump_file, cfun);
3867 fprintf (dump_file, "Reachable regions: ");
3868 dump_bitmap_file (dump_file, r_reachable);
3869 fprintf (dump_file, "Reachable landing pads: ");
3870 dump_bitmap_file (dump_file, lp_reachable);
3871 }
3872
3873 if (dump_file)
3874 {
3875 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3876 if (region && !bitmap_bit_p (r_reachable, region->index))
3877 fprintf (dump_file,
3878 "Removing unreachable region %d\n",
3879 region->index);
3880 }
3881
3882 remove_unreachable_eh_regions (r_reachable);
3883
3884 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3885 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3886 {
3887 if (dump_file)
3888 fprintf (dump_file,
3889 "Removing unreachable landing pad %d\n",
3890 lp->index);
3891 remove_eh_landing_pad (lp);
3892 }
3893
3894 if (dump_file)
3895 {
3896 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3897 dump_eh_tree (dump_file, cfun);
3898 fprintf (dump_file, "\n\n");
3899 }
3900
3901 sbitmap_free (r_reachable);
3902 sbitmap_free (lp_reachable);
3903
3904 #ifdef ENABLE_CHECKING
3905 verify_eh_tree (cfun);
3906 #endif
3907 }
3908
3909 /* Remove unreachable handlers if any landing pads have been removed after
3910 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3911
3912 void
3913 maybe_remove_unreachable_handlers (void)
3914 {
3915 eh_landing_pad lp;
3916 unsigned i;
3917
3918 if (cfun->eh == NULL)
3919 return;
3920
3921 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3922 if (lp && lp->post_landing_pad)
3923 {
3924 if (label_to_block (lp->post_landing_pad) == NULL)
3925 {
3926 remove_unreachable_handlers ();
3927 return;
3928 }
3929 }
3930 }
3931
3932 /* Remove regions that do not have landing pads. This assumes
3933 that remove_unreachable_handlers has already been run, and
3934 that we've just manipulated the landing pads since then.
3935
3936 Preserve regions with landing pads and regions that prevent
3937 exceptions from propagating further, even if these regions
3938 are not reachable. */
3939
3940 static void
3941 remove_unreachable_handlers_no_lp (void)
3942 {
3943 eh_region region;
3944 sbitmap r_reachable;
3945 unsigned i;
3946
3947 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3948
3949 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3950 {
3951 if (! region)
3952 continue;
3953
3954 if (region->landing_pads != NULL
3955 || region->type == ERT_MUST_NOT_THROW)
3956 bitmap_set_bit (r_reachable, region->index);
3957
3958 if (dump_file
3959 && !bitmap_bit_p (r_reachable, region->index))
3960 fprintf (dump_file,
3961 "Removing unreachable region %d\n",
3962 region->index);
3963 }
3964
3965 remove_unreachable_eh_regions (r_reachable);
3966
3967 sbitmap_free (r_reachable);
3968 }
3969
3970 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3971 optimisticaly split all sorts of edges, including EH edges. The
3972 optimization passes in between may not have needed them; if not,
3973 we should undo the split.
3974
3975 Recognize this case by having one EH edge incoming to the BB and
3976 one normal edge outgoing; BB should be empty apart from the
3977 post_landing_pad label.
3978
3979 Note that this is slightly different from the empty handler case
3980 handled by cleanup_empty_eh, in that the actual handler may yet
3981 have actual code but the landing pad has been separated from the
3982 handler. As such, cleanup_empty_eh relies on this transformation
3983 having been done first. */
3984
3985 static bool
3986 unsplit_eh (eh_landing_pad lp)
3987 {
3988 basic_block bb = label_to_block (lp->post_landing_pad);
3989 gimple_stmt_iterator gsi;
3990 edge e_in, e_out;
3991
3992 /* Quickly check the edge counts on BB for singularity. */
3993 if (!single_pred_p (bb) || !single_succ_p (bb))
3994 return false;
3995 e_in = single_pred_edge (bb);
3996 e_out = single_succ_edge (bb);
3997
3998 /* Input edge must be EH and output edge must be normal. */
3999 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4000 return false;
4001
4002 /* The block must be empty except for the labels and debug insns. */
4003 gsi = gsi_after_labels (bb);
4004 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4005 gsi_next_nondebug (&gsi);
4006 if (!gsi_end_p (gsi))
4007 return false;
4008
4009 /* The destination block must not already have a landing pad
4010 for a different region. */
4011 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4012 {
4013 gimple stmt = gsi_stmt (gsi);
4014 tree lab;
4015 int lp_nr;
4016
4017 if (gimple_code (stmt) != GIMPLE_LABEL)
4018 break;
4019 lab = gimple_label_label (stmt);
4020 lp_nr = EH_LANDING_PAD_NR (lab);
4021 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4022 return false;
4023 }
4024
4025 /* The new destination block must not already be a destination of
4026 the source block, lest we merge fallthru and eh edges and get
4027 all sorts of confused. */
4028 if (find_edge (e_in->src, e_out->dest))
4029 return false;
4030
4031 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4032 thought this should have been cleaned up by a phicprop pass, but
4033 that doesn't appear to handle virtuals. Propagate by hand. */
4034 if (!gimple_seq_empty_p (phi_nodes (bb)))
4035 {
4036 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
4037 {
4038 gimple use_stmt, phi = gsi_stmt (gsi);
4039 tree lhs = gimple_phi_result (phi);
4040 tree rhs = gimple_phi_arg_def (phi, 0);
4041 use_operand_p use_p;
4042 imm_use_iterator iter;
4043
4044 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4045 {
4046 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4047 SET_USE (use_p, rhs);
4048 }
4049
4050 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4051 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4052
4053 remove_phi_node (&gsi, true);
4054 }
4055 }
4056
4057 if (dump_file && (dump_flags & TDF_DETAILS))
4058 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4059 lp->index, e_out->dest->index);
4060
4061 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4062 a successor edge, humor it. But do the real CFG change with the
4063 predecessor of E_OUT in order to preserve the ordering of arguments
4064 to the PHI nodes in E_OUT->DEST. */
4065 redirect_eh_edge_1 (e_in, e_out->dest, false);
4066 redirect_edge_pred (e_out, e_in->src);
4067 e_out->flags = e_in->flags;
4068 e_out->probability = e_in->probability;
4069 e_out->count = e_in->count;
4070 remove_edge (e_in);
4071
4072 return true;
4073 }
4074
4075 /* Examine each landing pad block and see if it matches unsplit_eh. */
4076
4077 static bool
4078 unsplit_all_eh (void)
4079 {
4080 bool changed = false;
4081 eh_landing_pad lp;
4082 int i;
4083
4084 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4085 if (lp)
4086 changed |= unsplit_eh (lp);
4087
4088 return changed;
4089 }
4090
4091 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4092 to OLD_BB to NEW_BB; return true on success, false on failure.
4093
4094 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4095 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4096 Virtual PHIs may be deleted and marked for renaming. */
4097
4098 static bool
4099 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4100 edge old_bb_out, bool change_region)
4101 {
4102 gimple_stmt_iterator ngsi, ogsi;
4103 edge_iterator ei;
4104 edge e;
4105 bitmap ophi_handled;
4106
4107 /* The destination block must not be a regular successor for any
4108 of the preds of the landing pad. Thus, avoid turning
4109 <..>
4110 | \ EH
4111 | <..>
4112 | /
4113 <..>
4114 into
4115 <..>
4116 | | EH
4117 <..>
4118 which CFG verification would choke on. See PR45172 and PR51089. */
4119 FOR_EACH_EDGE (e, ei, old_bb->preds)
4120 if (find_edge (e->src, new_bb))
4121 return false;
4122
4123 FOR_EACH_EDGE (e, ei, old_bb->preds)
4124 redirect_edge_var_map_clear (e);
4125
4126 ophi_handled = BITMAP_ALLOC (NULL);
4127
4128 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4129 for the edges we're going to move. */
4130 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4131 {
4132 gimple ophi, nphi = gsi_stmt (ngsi);
4133 tree nresult, nop;
4134
4135 nresult = gimple_phi_result (nphi);
4136 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4137
4138 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4139 the source ssa_name. */
4140 ophi = NULL;
4141 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4142 {
4143 ophi = gsi_stmt (ogsi);
4144 if (gimple_phi_result (ophi) == nop)
4145 break;
4146 ophi = NULL;
4147 }
4148
4149 /* If we did find the corresponding PHI, copy those inputs. */
4150 if (ophi)
4151 {
4152 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4153 if (!has_single_use (nop))
4154 {
4155 imm_use_iterator imm_iter;
4156 use_operand_p use_p;
4157
4158 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4159 {
4160 if (!gimple_debug_bind_p (USE_STMT (use_p))
4161 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4162 || gimple_bb (USE_STMT (use_p)) != new_bb))
4163 goto fail;
4164 }
4165 }
4166 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4167 FOR_EACH_EDGE (e, ei, old_bb->preds)
4168 {
4169 location_t oloc;
4170 tree oop;
4171
4172 if ((e->flags & EDGE_EH) == 0)
4173 continue;
4174 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4175 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4176 redirect_edge_var_map_add (e, nresult, oop, oloc);
4177 }
4178 }
4179 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4180 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4181 variable is unchanged from input to the block and we can simply
4182 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4183 else
4184 {
4185 location_t nloc
4186 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4187 FOR_EACH_EDGE (e, ei, old_bb->preds)
4188 redirect_edge_var_map_add (e, nresult, nop, nloc);
4189 }
4190 }
4191
4192 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4193 we don't know what values from the other edges into NEW_BB to use. */
4194 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4195 {
4196 gimple ophi = gsi_stmt (ogsi);
4197 tree oresult = gimple_phi_result (ophi);
4198 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4199 goto fail;
4200 }
4201
4202 /* Finally, move the edges and update the PHIs. */
4203 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4204 if (e->flags & EDGE_EH)
4205 {
4206 /* ??? CFG manipluation routines do not try to update loop
4207 form on edge redirection. Do so manually here for now. */
4208 /* If we redirect a loop entry or latch edge that will either create
4209 a multiple entry loop or rotate the loop. If the loops merge
4210 we may have created a loop with multiple latches.
4211 All of this isn't easily fixed thus cancel the affected loop
4212 and mark the other loop as possibly having multiple latches. */
4213 if (current_loops
4214 && e->dest == e->dest->loop_father->header)
4215 {
4216 e->dest->loop_father->header = NULL;
4217 e->dest->loop_father->latch = NULL;
4218 new_bb->loop_father->latch = NULL;
4219 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4220 }
4221 redirect_eh_edge_1 (e, new_bb, change_region);
4222 redirect_edge_succ (e, new_bb);
4223 flush_pending_stmts (e);
4224 }
4225 else
4226 ei_next (&ei);
4227
4228 BITMAP_FREE (ophi_handled);
4229 return true;
4230
4231 fail:
4232 FOR_EACH_EDGE (e, ei, old_bb->preds)
4233 redirect_edge_var_map_clear (e);
4234 BITMAP_FREE (ophi_handled);
4235 return false;
4236 }
4237
4238 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4239 old region to NEW_REGION at BB. */
4240
4241 static void
4242 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4243 eh_landing_pad lp, eh_region new_region)
4244 {
4245 gimple_stmt_iterator gsi;
4246 eh_landing_pad *pp;
4247
4248 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4249 continue;
4250 *pp = lp->next_lp;
4251
4252 lp->region = new_region;
4253 lp->next_lp = new_region->landing_pads;
4254 new_region->landing_pads = lp;
4255
4256 /* Delete the RESX that was matched within the empty handler block. */
4257 gsi = gsi_last_bb (bb);
4258 unlink_stmt_vdef (gsi_stmt (gsi));
4259 gsi_remove (&gsi, true);
4260
4261 /* Clean up E_OUT for the fallthru. */
4262 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4263 e_out->probability = REG_BR_PROB_BASE;
4264 }
4265
4266 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4267 unsplitting than unsplit_eh was prepared to handle, e.g. when
4268 multiple incoming edges and phis are involved. */
4269
4270 static bool
4271 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4272 {
4273 gimple_stmt_iterator gsi;
4274 tree lab;
4275
4276 /* We really ought not have totally lost everything following
4277 a landing pad label. Given that BB is empty, there had better
4278 be a successor. */
4279 gcc_assert (e_out != NULL);
4280
4281 /* The destination block must not already have a landing pad
4282 for a different region. */
4283 lab = NULL;
4284 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4285 {
4286 gimple stmt = gsi_stmt (gsi);
4287 int lp_nr;
4288
4289 if (gimple_code (stmt) != GIMPLE_LABEL)
4290 break;
4291 lab = gimple_label_label (stmt);
4292 lp_nr = EH_LANDING_PAD_NR (lab);
4293 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4294 return false;
4295 }
4296
4297 /* Attempt to move the PHIs into the successor block. */
4298 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4299 {
4300 if (dump_file && (dump_flags & TDF_DETAILS))
4301 fprintf (dump_file,
4302 "Unsplit EH landing pad %d to block %i "
4303 "(via cleanup_empty_eh).\n",
4304 lp->index, e_out->dest->index);
4305 return true;
4306 }
4307
4308 return false;
4309 }
4310
4311 /* Return true if edge E_FIRST is part of an empty infinite loop
4312 or leads to such a loop through a series of single successor
4313 empty bbs. */
4314
4315 static bool
4316 infinite_empty_loop_p (edge e_first)
4317 {
4318 bool inf_loop = false;
4319 edge e;
4320
4321 if (e_first->dest == e_first->src)
4322 return true;
4323
4324 e_first->src->aux = (void *) 1;
4325 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4326 {
4327 gimple_stmt_iterator gsi;
4328 if (e->dest->aux)
4329 {
4330 inf_loop = true;
4331 break;
4332 }
4333 e->dest->aux = (void *) 1;
4334 gsi = gsi_after_labels (e->dest);
4335 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4336 gsi_next_nondebug (&gsi);
4337 if (!gsi_end_p (gsi))
4338 break;
4339 }
4340 e_first->src->aux = NULL;
4341 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4342 e->dest->aux = NULL;
4343
4344 return inf_loop;
4345 }
4346
4347 /* Examine the block associated with LP to determine if it's an empty
4348 handler for its EH region. If so, attempt to redirect EH edges to
4349 an outer region. Return true the CFG was updated in any way. This
4350 is similar to jump forwarding, just across EH edges. */
4351
4352 static bool
4353 cleanup_empty_eh (eh_landing_pad lp)
4354 {
4355 basic_block bb = label_to_block (lp->post_landing_pad);
4356 gimple_stmt_iterator gsi;
4357 gimple resx;
4358 eh_region new_region;
4359 edge_iterator ei;
4360 edge e, e_out;
4361 bool has_non_eh_pred;
4362 bool ret = false;
4363 int new_lp_nr;
4364
4365 /* There can be zero or one edges out of BB. This is the quickest test. */
4366 switch (EDGE_COUNT (bb->succs))
4367 {
4368 case 0:
4369 e_out = NULL;
4370 break;
4371 case 1:
4372 e_out = single_succ_edge (bb);
4373 break;
4374 default:
4375 return false;
4376 }
4377
4378 resx = last_stmt (bb);
4379 if (resx && is_gimple_resx (resx))
4380 {
4381 if (stmt_can_throw_external (resx))
4382 optimize_clobbers (bb);
4383 else if (sink_clobbers (bb))
4384 ret = true;
4385 }
4386
4387 gsi = gsi_after_labels (bb);
4388
4389 /* Make sure to skip debug statements. */
4390 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4391 gsi_next_nondebug (&gsi);
4392
4393 /* If the block is totally empty, look for more unsplitting cases. */
4394 if (gsi_end_p (gsi))
4395 {
4396 /* For the degenerate case of an infinite loop bail out. */
4397 if (infinite_empty_loop_p (e_out))
4398 return ret;
4399
4400 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4401 }
4402
4403 /* The block should consist only of a single RESX statement, modulo a
4404 preceding call to __builtin_stack_restore if there is no outgoing
4405 edge, since the call can be eliminated in this case. */
4406 resx = gsi_stmt (gsi);
4407 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4408 {
4409 gsi_next (&gsi);
4410 resx = gsi_stmt (gsi);
4411 }
4412 if (!is_gimple_resx (resx))
4413 return ret;
4414 gcc_assert (gsi_one_before_end_p (gsi));
4415
4416 /* Determine if there are non-EH edges, or resx edges into the handler. */
4417 has_non_eh_pred = false;
4418 FOR_EACH_EDGE (e, ei, bb->preds)
4419 if (!(e->flags & EDGE_EH))
4420 has_non_eh_pred = true;
4421
4422 /* Find the handler that's outer of the empty handler by looking at
4423 where the RESX instruction was vectored. */
4424 new_lp_nr = lookup_stmt_eh_lp (resx);
4425 new_region = get_eh_region_from_lp_number (new_lp_nr);
4426
4427 /* If there's no destination region within the current function,
4428 redirection is trivial via removing the throwing statements from
4429 the EH region, removing the EH edges, and allowing the block
4430 to go unreachable. */
4431 if (new_region == NULL)
4432 {
4433 gcc_assert (e_out == NULL);
4434 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4435 if (e->flags & EDGE_EH)
4436 {
4437 gimple stmt = last_stmt (e->src);
4438 remove_stmt_from_eh_lp (stmt);
4439 remove_edge (e);
4440 }
4441 else
4442 ei_next (&ei);
4443 goto succeed;
4444 }
4445
4446 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4447 to handle the abort and allow the blocks to go unreachable. */
4448 if (new_region->type == ERT_MUST_NOT_THROW)
4449 {
4450 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4451 if (e->flags & EDGE_EH)
4452 {
4453 gimple stmt = last_stmt (e->src);
4454 remove_stmt_from_eh_lp (stmt);
4455 add_stmt_to_eh_lp (stmt, new_lp_nr);
4456 remove_edge (e);
4457 }
4458 else
4459 ei_next (&ei);
4460 goto succeed;
4461 }
4462
4463 /* Try to redirect the EH edges and merge the PHIs into the destination
4464 landing pad block. If the merge succeeds, we'll already have redirected
4465 all the EH edges. The handler itself will go unreachable if there were
4466 no normal edges. */
4467 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4468 goto succeed;
4469
4470 /* Finally, if all input edges are EH edges, then we can (potentially)
4471 reduce the number of transfers from the runtime by moving the landing
4472 pad from the original region to the new region. This is a win when
4473 we remove the last CLEANUP region along a particular exception
4474 propagation path. Since nothing changes except for the region with
4475 which the landing pad is associated, the PHI nodes do not need to be
4476 adjusted at all. */
4477 if (!has_non_eh_pred)
4478 {
4479 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4480 if (dump_file && (dump_flags & TDF_DETAILS))
4481 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4482 lp->index, new_region->index);
4483
4484 /* ??? The CFG didn't change, but we may have rendered the
4485 old EH region unreachable. Trigger a cleanup there. */
4486 return true;
4487 }
4488
4489 return ret;
4490
4491 succeed:
4492 if (dump_file && (dump_flags & TDF_DETAILS))
4493 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4494 remove_eh_landing_pad (lp);
4495 return true;
4496 }
4497
4498 /* Do a post-order traversal of the EH region tree. Examine each
4499 post_landing_pad block and see if we can eliminate it as empty. */
4500
4501 static bool
4502 cleanup_all_empty_eh (void)
4503 {
4504 bool changed = false;
4505 eh_landing_pad lp;
4506 int i;
4507
4508 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4509 if (lp)
4510 changed |= cleanup_empty_eh (lp);
4511
4512 return changed;
4513 }
4514
4515 /* Perform cleanups and lowering of exception handling
4516 1) cleanups regions with handlers doing nothing are optimized out
4517 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4518 3) Info about regions that are containing instructions, and regions
4519 reachable via local EH edges is collected
4520 4) Eh tree is pruned for regions no longer necessary.
4521
4522 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4523 Unify those that have the same failure decl and locus.
4524 */
4525
4526 static unsigned int
4527 execute_cleanup_eh_1 (void)
4528 {
4529 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4530 looking up unreachable landing pads. */
4531 remove_unreachable_handlers ();
4532
4533 /* Watch out for the region tree vanishing due to all unreachable. */
4534 if (cfun->eh->region_tree && optimize)
4535 {
4536 bool changed = false;
4537
4538 changed |= unsplit_all_eh ();
4539 changed |= cleanup_all_empty_eh ();
4540
4541 if (changed)
4542 {
4543 free_dominance_info (CDI_DOMINATORS);
4544 free_dominance_info (CDI_POST_DOMINATORS);
4545
4546 /* We delayed all basic block deletion, as we may have performed
4547 cleanups on EH edges while non-EH edges were still present. */
4548 delete_unreachable_blocks ();
4549
4550 /* We manipulated the landing pads. Remove any region that no
4551 longer has a landing pad. */
4552 remove_unreachable_handlers_no_lp ();
4553
4554 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4555 }
4556 }
4557
4558 return 0;
4559 }
4560
4561 static unsigned int
4562 execute_cleanup_eh (void)
4563 {
4564 int ret = execute_cleanup_eh_1 ();
4565
4566 /* If the function no longer needs an EH personality routine
4567 clear it. This exposes cross-language inlining opportunities
4568 and avoids references to a never defined personality routine. */
4569 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4570 && function_needs_eh_personality (cfun) != eh_personality_lang)
4571 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4572
4573 return ret;
4574 }
4575
4576 static bool
4577 gate_cleanup_eh (void)
4578 {
4579 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4580 }
4581
4582 namespace {
4583
4584 const pass_data pass_data_cleanup_eh =
4585 {
4586 GIMPLE_PASS, /* type */
4587 "ehcleanup", /* name */
4588 OPTGROUP_NONE, /* optinfo_flags */
4589 true, /* has_gate */
4590 true, /* has_execute */
4591 TV_TREE_EH, /* tv_id */
4592 PROP_gimple_lcf, /* properties_required */
4593 0, /* properties_provided */
4594 0, /* properties_destroyed */
4595 0, /* todo_flags_start */
4596 TODO_verify_ssa, /* todo_flags_finish */
4597 };
4598
4599 class pass_cleanup_eh : public gimple_opt_pass
4600 {
4601 public:
4602 pass_cleanup_eh (gcc::context *ctxt)
4603 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4604 {}
4605
4606 /* opt_pass methods: */
4607 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4608 bool gate () { return gate_cleanup_eh (); }
4609 unsigned int execute () { return execute_cleanup_eh (); }
4610
4611 }; // class pass_cleanup_eh
4612
4613 } // anon namespace
4614
4615 gimple_opt_pass *
4616 make_pass_cleanup_eh (gcc::context *ctxt)
4617 {
4618 return new pass_cleanup_eh (ctxt);
4619 }
4620 \f
4621 /* Verify that BB containing STMT as the last statement, has precisely the
4622 edge that make_eh_edges would create. */
4623
4624 DEBUG_FUNCTION bool
4625 verify_eh_edges (gimple stmt)
4626 {
4627 basic_block bb = gimple_bb (stmt);
4628 eh_landing_pad lp = NULL;
4629 int lp_nr;
4630 edge_iterator ei;
4631 edge e, eh_edge;
4632
4633 lp_nr = lookup_stmt_eh_lp (stmt);
4634 if (lp_nr > 0)
4635 lp = get_eh_landing_pad_from_number (lp_nr);
4636
4637 eh_edge = NULL;
4638 FOR_EACH_EDGE (e, ei, bb->succs)
4639 {
4640 if (e->flags & EDGE_EH)
4641 {
4642 if (eh_edge)
4643 {
4644 error ("BB %i has multiple EH edges", bb->index);
4645 return true;
4646 }
4647 else
4648 eh_edge = e;
4649 }
4650 }
4651
4652 if (lp == NULL)
4653 {
4654 if (eh_edge)
4655 {
4656 error ("BB %i can not throw but has an EH edge", bb->index);
4657 return true;
4658 }
4659 return false;
4660 }
4661
4662 if (!stmt_could_throw_p (stmt))
4663 {
4664 error ("BB %i last statement has incorrectly set lp", bb->index);
4665 return true;
4666 }
4667
4668 if (eh_edge == NULL)
4669 {
4670 error ("BB %i is missing an EH edge", bb->index);
4671 return true;
4672 }
4673
4674 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4675 {
4676 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4677 return true;
4678 }
4679
4680 return false;
4681 }
4682
4683 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4684
4685 DEBUG_FUNCTION bool
4686 verify_eh_dispatch_edge (gimple stmt)
4687 {
4688 eh_region r;
4689 eh_catch c;
4690 basic_block src, dst;
4691 bool want_fallthru = true;
4692 edge_iterator ei;
4693 edge e, fall_edge;
4694
4695 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4696 src = gimple_bb (stmt);
4697
4698 FOR_EACH_EDGE (e, ei, src->succs)
4699 gcc_assert (e->aux == NULL);
4700
4701 switch (r->type)
4702 {
4703 case ERT_TRY:
4704 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4705 {
4706 dst = label_to_block (c->label);
4707 e = find_edge (src, dst);
4708 if (e == NULL)
4709 {
4710 error ("BB %i is missing an edge", src->index);
4711 return true;
4712 }
4713 e->aux = (void *)e;
4714
4715 /* A catch-all handler doesn't have a fallthru. */
4716 if (c->type_list == NULL)
4717 {
4718 want_fallthru = false;
4719 break;
4720 }
4721 }
4722 break;
4723
4724 case ERT_ALLOWED_EXCEPTIONS:
4725 dst = label_to_block (r->u.allowed.label);
4726 e = find_edge (src, dst);
4727 if (e == NULL)
4728 {
4729 error ("BB %i is missing an edge", src->index);
4730 return true;
4731 }
4732 e->aux = (void *)e;
4733 break;
4734
4735 default:
4736 gcc_unreachable ();
4737 }
4738
4739 fall_edge = NULL;
4740 FOR_EACH_EDGE (e, ei, src->succs)
4741 {
4742 if (e->flags & EDGE_FALLTHRU)
4743 {
4744 if (fall_edge != NULL)
4745 {
4746 error ("BB %i too many fallthru edges", src->index);
4747 return true;
4748 }
4749 fall_edge = e;
4750 }
4751 else if (e->aux)
4752 e->aux = NULL;
4753 else
4754 {
4755 error ("BB %i has incorrect edge", src->index);
4756 return true;
4757 }
4758 }
4759 if ((fall_edge != NULL) ^ want_fallthru)
4760 {
4761 error ("BB %i has incorrect fallthru edge", src->index);
4762 return true;
4763 }
4764
4765 return false;
4766 }