]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-if-conv.c
cfgloop.h (struct loop): Rename force_vect into force_vectorize.
[thirdparty/gcc.git] / gcc / tree-if-conv.c
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Devang Patel <dpatel@apple.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This pass implements a tree level if-conversion of loops. Its
22 initial goal is to help the vectorizer to vectorize loops with
23 conditions.
24
25 A short description of if-conversion:
26
27 o Decide if a loop is if-convertible or not.
28 o Walk all loop basic blocks in breadth first order (BFS order).
29 o Remove conditional statements (at the end of basic block)
30 and propagate condition into destination basic blocks'
31 predicate list.
32 o Replace modify expression with conditional modify expression
33 using current basic block's condition.
34 o Merge all basic blocks
35 o Replace phi nodes with conditional modify expr
36 o Merge all basic blocks into header
37
38 Sample transformation:
39
40 INPUT
41 -----
42
43 # i_23 = PHI <0(0), i_18(10)>;
44 <L0>:;
45 j_15 = A[i_23];
46 if (j_15 > 41) goto <L1>; else goto <L17>;
47
48 <L17>:;
49 goto <bb 3> (<L3>);
50
51 <L1>:;
52
53 # iftmp.2_4 = PHI <0(8), 42(2)>;
54 <L3>:;
55 A[i_23] = iftmp.2_4;
56 i_18 = i_23 + 1;
57 if (i_18 <= 15) goto <L19>; else goto <L18>;
58
59 <L19>:;
60 goto <bb 1> (<L0>);
61
62 <L18>:;
63
64 OUTPUT
65 ------
66
67 # i_23 = PHI <0(0), i_18(10)>;
68 <L0>:;
69 j_15 = A[i_23];
70
71 <L3>:;
72 iftmp.2_4 = j_15 > 41 ? 42 : 0;
73 A[i_23] = iftmp.2_4;
74 i_18 = i_23 + 1;
75 if (i_18 <= 15) goto <L19>; else goto <L18>;
76
77 <L19>:;
78 goto <bb 1> (<L0>);
79
80 <L18>:;
81 */
82
83 #include "config.h"
84 #include "system.h"
85 #include "coretypes.h"
86 #include "tm.h"
87 #include "tree.h"
88 #include "stor-layout.h"
89 #include "flags.h"
90 #include "basic-block.h"
91 #include "gimple-pretty-print.h"
92 #include "tree-ssa-alias.h"
93 #include "internal-fn.h"
94 #include "gimple-fold.h"
95 #include "gimple-expr.h"
96 #include "is-a.h"
97 #include "gimple.h"
98 #include "gimplify.h"
99 #include "gimple-iterator.h"
100 #include "gimplify-me.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "stringpool.h"
106 #include "tree-ssanames.h"
107 #include "tree-into-ssa.h"
108 #include "tree-ssa.h"
109 #include "cfgloop.h"
110 #include "tree-chrec.h"
111 #include "tree-data-ref.h"
112 #include "tree-scalar-evolution.h"
113 #include "tree-ssa-loop-ivopts.h"
114 #include "tree-ssa-address.h"
115 #include "tree-pass.h"
116 #include "dbgcnt.h"
117 #include "expr.h"
118 #include "optabs.h"
119
120 /* List of basic blocks in if-conversion-suitable order. */
121 static basic_block *ifc_bbs;
122
123 /* Structure used to predicate basic blocks. This is attached to the
124 ->aux field of the BBs in the loop to be if-converted. */
125 typedef struct bb_predicate_s {
126
127 /* The condition under which this basic block is executed. */
128 tree predicate;
129
130 /* PREDICATE is gimplified, and the sequence of statements is
131 recorded here, in order to avoid the duplication of computations
132 that occur in previous conditions. See PR44483. */
133 gimple_seq predicate_gimplified_stmts;
134 } *bb_predicate_p;
135
136 /* Returns true when the basic block BB has a predicate. */
137
138 static inline bool
139 bb_has_predicate (basic_block bb)
140 {
141 return bb->aux != NULL;
142 }
143
144 /* Returns the gimplified predicate for basic block BB. */
145
146 static inline tree
147 bb_predicate (basic_block bb)
148 {
149 return ((bb_predicate_p) bb->aux)->predicate;
150 }
151
152 /* Sets the gimplified predicate COND for basic block BB. */
153
154 static inline void
155 set_bb_predicate (basic_block bb, tree cond)
156 {
157 gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
158 && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
159 || is_gimple_condexpr (cond));
160 ((bb_predicate_p) bb->aux)->predicate = cond;
161 }
162
163 /* Returns the sequence of statements of the gimplification of the
164 predicate for basic block BB. */
165
166 static inline gimple_seq
167 bb_predicate_gimplified_stmts (basic_block bb)
168 {
169 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
170 }
171
172 /* Sets the sequence of statements STMTS of the gimplification of the
173 predicate for basic block BB. */
174
175 static inline void
176 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
177 {
178 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
179 }
180
181 /* Adds the sequence of statements STMTS to the sequence of statements
182 of the predicate for basic block BB. */
183
184 static inline void
185 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
186 {
187 gimple_seq_add_seq
188 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
189 }
190
191 /* Initializes to TRUE the predicate of basic block BB. */
192
193 static inline void
194 init_bb_predicate (basic_block bb)
195 {
196 bb->aux = XNEW (struct bb_predicate_s);
197 set_bb_predicate_gimplified_stmts (bb, NULL);
198 set_bb_predicate (bb, boolean_true_node);
199 }
200
201 /* Release the SSA_NAMEs associated with the predicate of basic block BB,
202 but don't actually free it. */
203
204 static inline void
205 release_bb_predicate (basic_block bb)
206 {
207 gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
208 if (stmts)
209 {
210 gimple_stmt_iterator i;
211
212 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
213 free_stmt_operands (cfun, gsi_stmt (i));
214 set_bb_predicate_gimplified_stmts (bb, NULL);
215 }
216 }
217
218 /* Free the predicate of basic block BB. */
219
220 static inline void
221 free_bb_predicate (basic_block bb)
222 {
223 if (!bb_has_predicate (bb))
224 return;
225
226 release_bb_predicate (bb);
227 free (bb->aux);
228 bb->aux = NULL;
229 }
230
231 /* Reinitialize predicate of BB with the true predicate. */
232
233 static inline void
234 reset_bb_predicate (basic_block bb)
235 {
236 if (!bb_has_predicate (bb))
237 init_bb_predicate (bb);
238 else
239 {
240 release_bb_predicate (bb);
241 set_bb_predicate (bb, boolean_true_node);
242 }
243 }
244
245 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
246 the expression EXPR. Inserts the statement created for this
247 computation before GSI and leaves the iterator GSI at the same
248 statement. */
249
250 static tree
251 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
252 {
253 tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
254 gimple stmt = gimple_build_assign (new_name, expr);
255 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
256 return new_name;
257 }
258
259 /* Return true when COND is a true predicate. */
260
261 static inline bool
262 is_true_predicate (tree cond)
263 {
264 return (cond == NULL_TREE
265 || cond == boolean_true_node
266 || integer_onep (cond));
267 }
268
269 /* Returns true when BB has a predicate that is not trivial: true or
270 NULL_TREE. */
271
272 static inline bool
273 is_predicated (basic_block bb)
274 {
275 return !is_true_predicate (bb_predicate (bb));
276 }
277
278 /* Parses the predicate COND and returns its comparison code and
279 operands OP0 and OP1. */
280
281 static enum tree_code
282 parse_predicate (tree cond, tree *op0, tree *op1)
283 {
284 gimple s;
285
286 if (TREE_CODE (cond) == SSA_NAME
287 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
288 {
289 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
290 {
291 *op0 = gimple_assign_rhs1 (s);
292 *op1 = gimple_assign_rhs2 (s);
293 return gimple_assign_rhs_code (s);
294 }
295
296 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
297 {
298 tree op = gimple_assign_rhs1 (s);
299 tree type = TREE_TYPE (op);
300 enum tree_code code = parse_predicate (op, op0, op1);
301
302 return code == ERROR_MARK ? ERROR_MARK
303 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
304 }
305
306 return ERROR_MARK;
307 }
308
309 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
310 {
311 *op0 = TREE_OPERAND (cond, 0);
312 *op1 = TREE_OPERAND (cond, 1);
313 return TREE_CODE (cond);
314 }
315
316 return ERROR_MARK;
317 }
318
319 /* Returns the fold of predicate C1 OR C2 at location LOC. */
320
321 static tree
322 fold_or_predicates (location_t loc, tree c1, tree c2)
323 {
324 tree op1a, op1b, op2a, op2b;
325 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
326 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
327
328 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
329 {
330 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
331 code2, op2a, op2b);
332 if (t)
333 return t;
334 }
335
336 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
337 }
338
339 /* Returns true if N is either a constant or a SSA_NAME. */
340
341 static bool
342 constant_or_ssa_name (tree n)
343 {
344 switch (TREE_CODE (n))
345 {
346 case SSA_NAME:
347 case INTEGER_CST:
348 case REAL_CST:
349 case COMPLEX_CST:
350 case VECTOR_CST:
351 return true;
352 default:
353 return false;
354 }
355 }
356
357 /* Returns either a COND_EXPR or the folded expression if the folded
358 expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
359 a constant or a SSA_NAME. */
360
361 static tree
362 fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
363 {
364 tree rhs1, lhs1, cond_expr;
365 cond_expr = fold_ternary (COND_EXPR, type, cond,
366 rhs, lhs);
367
368 if (cond_expr == NULL_TREE)
369 return build3 (COND_EXPR, type, cond, rhs, lhs);
370
371 STRIP_USELESS_TYPE_CONVERSION (cond_expr);
372
373 if (constant_or_ssa_name (cond_expr))
374 return cond_expr;
375
376 if (TREE_CODE (cond_expr) == ABS_EXPR)
377 {
378 rhs1 = TREE_OPERAND (cond_expr, 1);
379 STRIP_USELESS_TYPE_CONVERSION (rhs1);
380 if (constant_or_ssa_name (rhs1))
381 return build1 (ABS_EXPR, type, rhs1);
382 }
383
384 if (TREE_CODE (cond_expr) == MIN_EXPR
385 || TREE_CODE (cond_expr) == MAX_EXPR)
386 {
387 lhs1 = TREE_OPERAND (cond_expr, 0);
388 STRIP_USELESS_TYPE_CONVERSION (lhs1);
389 rhs1 = TREE_OPERAND (cond_expr, 1);
390 STRIP_USELESS_TYPE_CONVERSION (rhs1);
391 if (constant_or_ssa_name (rhs1)
392 && constant_or_ssa_name (lhs1))
393 return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
394 }
395 return build3 (COND_EXPR, type, cond, rhs, lhs);
396 }
397
398 /* Add condition NC to the predicate list of basic block BB. LOOP is
399 the loop to be if-converted. */
400
401 static inline void
402 add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
403 {
404 tree bc, *tp;
405
406 if (is_true_predicate (nc))
407 return;
408
409 if (!is_predicated (bb))
410 {
411 /* If dominance tells us this basic block is always executed, don't
412 record any predicates for it. */
413 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
414 return;
415
416 bc = nc;
417 }
418 else
419 {
420 bc = bb_predicate (bb);
421 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
422 if (is_true_predicate (bc))
423 {
424 reset_bb_predicate (bb);
425 return;
426 }
427 }
428
429 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
430 if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
431 tp = &TREE_OPERAND (bc, 0);
432 else
433 tp = &bc;
434 if (!is_gimple_condexpr (*tp))
435 {
436 gimple_seq stmts;
437 *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
438 add_bb_predicate_gimplified_stmts (bb, stmts);
439 }
440 set_bb_predicate (bb, bc);
441 }
442
443 /* Add the condition COND to the previous condition PREV_COND, and add
444 this to the predicate list of the destination of edge E. LOOP is
445 the loop to be if-converted. */
446
447 static void
448 add_to_dst_predicate_list (struct loop *loop, edge e,
449 tree prev_cond, tree cond)
450 {
451 if (!flow_bb_inside_loop_p (loop, e->dest))
452 return;
453
454 if (!is_true_predicate (prev_cond))
455 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
456 prev_cond, cond);
457
458 add_to_predicate_list (loop, e->dest, cond);
459 }
460
461 /* Return true if one of the successor edges of BB exits LOOP. */
462
463 static bool
464 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
465 {
466 edge e;
467 edge_iterator ei;
468
469 FOR_EACH_EDGE (e, ei, bb->succs)
470 if (loop_exit_edge_p (loop, e))
471 return true;
472
473 return false;
474 }
475
476 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
477 and it belongs to basic block BB.
478
479 PHI is not if-convertible if:
480 - it has more than 2 arguments.
481
482 When the flag_tree_loop_if_convert_stores is not set, PHI is not
483 if-convertible if:
484 - a virtual PHI is immediately used in another PHI node,
485 - there is a virtual PHI in a BB other than the loop->header. */
486
487 static bool
488 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi,
489 bool any_mask_load_store)
490 {
491 if (dump_file && (dump_flags & TDF_DETAILS))
492 {
493 fprintf (dump_file, "-------------------------\n");
494 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
495 }
496
497 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
498 {
499 if (dump_file && (dump_flags & TDF_DETAILS))
500 fprintf (dump_file, "More than two phi node args.\n");
501 return false;
502 }
503
504 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
505 return true;
506
507 /* When the flag_tree_loop_if_convert_stores is not set, check
508 that there are no memory writes in the branches of the loop to be
509 if-converted. */
510 if (virtual_operand_p (gimple_phi_result (phi)))
511 {
512 imm_use_iterator imm_iter;
513 use_operand_p use_p;
514
515 if (bb != loop->header)
516 {
517 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, "Virtual phi not on loop->header.\n");
519 return false;
520 }
521
522 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
523 {
524 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
525 {
526 if (dump_file && (dump_flags & TDF_DETAILS))
527 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
528 return false;
529 }
530 }
531 }
532
533 return true;
534 }
535
536 /* Records the status of a data reference. This struct is attached to
537 each DR->aux field. */
538
539 struct ifc_dr {
540 /* -1 when not initialized, 0 when false, 1 when true. */
541 int written_at_least_once;
542
543 /* -1 when not initialized, 0 when false, 1 when true. */
544 int rw_unconditionally;
545 };
546
547 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
548 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
549 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
550
551 /* Returns true when the memory references of STMT are read or written
552 unconditionally. In other words, this function returns true when
553 for every data reference A in STMT there exist other accesses to
554 a data reference with the same base with predicates that add up (OR-up) to
555 the true predicate: this ensures that the data reference A is touched
556 (read or written) on every iteration of the if-converted loop. */
557
558 static bool
559 memrefs_read_or_written_unconditionally (gimple stmt,
560 vec<data_reference_p> drs)
561 {
562 int i, j;
563 data_reference_p a, b;
564 tree ca = bb_predicate (gimple_bb (stmt));
565
566 for (i = 0; drs.iterate (i, &a); i++)
567 if (DR_STMT (a) == stmt)
568 {
569 bool found = false;
570 int x = DR_RW_UNCONDITIONALLY (a);
571
572 if (x == 0)
573 return false;
574
575 if (x == 1)
576 continue;
577
578 for (j = 0; drs.iterate (j, &b); j++)
579 {
580 tree ref_base_a = DR_REF (a);
581 tree ref_base_b = DR_REF (b);
582
583 if (DR_STMT (b) == stmt)
584 continue;
585
586 while (TREE_CODE (ref_base_a) == COMPONENT_REF
587 || TREE_CODE (ref_base_a) == IMAGPART_EXPR
588 || TREE_CODE (ref_base_a) == REALPART_EXPR)
589 ref_base_a = TREE_OPERAND (ref_base_a, 0);
590
591 while (TREE_CODE (ref_base_b) == COMPONENT_REF
592 || TREE_CODE (ref_base_b) == IMAGPART_EXPR
593 || TREE_CODE (ref_base_b) == REALPART_EXPR)
594 ref_base_b = TREE_OPERAND (ref_base_b, 0);
595
596 if (!operand_equal_p (ref_base_a, ref_base_b, 0))
597 {
598 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
599
600 if (DR_RW_UNCONDITIONALLY (b) == 1
601 || is_true_predicate (cb)
602 || is_true_predicate (ca
603 = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
604 {
605 DR_RW_UNCONDITIONALLY (a) = 1;
606 DR_RW_UNCONDITIONALLY (b) = 1;
607 found = true;
608 break;
609 }
610 }
611 }
612
613 if (!found)
614 {
615 DR_RW_UNCONDITIONALLY (a) = 0;
616 return false;
617 }
618 }
619
620 return true;
621 }
622
623 /* Returns true when the memory references of STMT are unconditionally
624 written. In other words, this function returns true when for every
625 data reference A written in STMT, there exist other writes to the
626 same data reference with predicates that add up (OR-up) to the true
627 predicate: this ensures that the data reference A is written on
628 every iteration of the if-converted loop. */
629
630 static bool
631 write_memrefs_written_at_least_once (gimple stmt,
632 vec<data_reference_p> drs)
633 {
634 int i, j;
635 data_reference_p a, b;
636 tree ca = bb_predicate (gimple_bb (stmt));
637
638 for (i = 0; drs.iterate (i, &a); i++)
639 if (DR_STMT (a) == stmt
640 && DR_IS_WRITE (a))
641 {
642 bool found = false;
643 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
644
645 if (x == 0)
646 return false;
647
648 if (x == 1)
649 continue;
650
651 for (j = 0; drs.iterate (j, &b); j++)
652 if (DR_STMT (b) != stmt
653 && DR_IS_WRITE (b)
654 && same_data_refs_base_objects (a, b))
655 {
656 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
657
658 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
659 || is_true_predicate (cb)
660 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
661 ca, cb)))
662 {
663 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
664 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
665 found = true;
666 break;
667 }
668 }
669
670 if (!found)
671 {
672 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
673 return false;
674 }
675 }
676
677 return true;
678 }
679
680 /* Return true when the memory references of STMT won't trap in the
681 if-converted code. There are two things that we have to check for:
682
683 - writes to memory occur to writable memory: if-conversion of
684 memory writes transforms the conditional memory writes into
685 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
686 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
687 be executed at all in the original code, it may be a readonly
688 memory. To check that A is not const-qualified, we check that
689 there exists at least an unconditional write to A in the current
690 function.
691
692 - reads or writes to memory are valid memory accesses for every
693 iteration. To check that the memory accesses are correctly formed
694 and that we are allowed to read and write in these locations, we
695 check that the memory accesses to be if-converted occur at every
696 iteration unconditionally. */
697
698 static bool
699 ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
700 {
701 return write_memrefs_written_at_least_once (stmt, refs)
702 && memrefs_read_or_written_unconditionally (stmt, refs);
703 }
704
705 /* Wrapper around gimple_could_trap_p refined for the needs of the
706 if-conversion. Try to prove that the memory accesses of STMT could
707 not trap in the innermost loop containing STMT. */
708
709 static bool
710 ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
711 {
712 if (gimple_vuse (stmt)
713 && !gimple_could_trap_p_1 (stmt, false, false)
714 && ifcvt_memrefs_wont_trap (stmt, refs))
715 return false;
716
717 return gimple_could_trap_p (stmt);
718 }
719
720 /* Return true if STMT could be converted into a masked load or store
721 (conditional load or store based on a mask computed from bb predicate). */
722
723 static bool
724 ifcvt_can_use_mask_load_store (gimple stmt)
725 {
726 tree lhs, ref;
727 enum machine_mode mode;
728 basic_block bb = gimple_bb (stmt);
729 bool is_load;
730
731 if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
732 || bb->loop_father->dont_vectorize
733 || !gimple_assign_single_p (stmt)
734 || gimple_has_volatile_ops (stmt))
735 return false;
736
737 /* Check whether this is a load or store. */
738 lhs = gimple_assign_lhs (stmt);
739 if (gimple_store_p (stmt))
740 {
741 if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
742 return false;
743 is_load = false;
744 ref = lhs;
745 }
746 else if (gimple_assign_load_p (stmt))
747 {
748 is_load = true;
749 ref = gimple_assign_rhs1 (stmt);
750 }
751 else
752 return false;
753
754 if (may_be_nonaddressable_p (ref))
755 return false;
756
757 /* Mask should be integer mode of the same size as the load/store
758 mode. */
759 mode = TYPE_MODE (TREE_TYPE (lhs));
760 if (int_mode_for_mode (mode) == BLKmode
761 || VECTOR_MODE_P (mode))
762 return false;
763
764 if (can_vec_mask_load_store_p (mode, is_load))
765 return true;
766
767 return false;
768 }
769
770 /* Return true when STMT is if-convertible.
771
772 GIMPLE_ASSIGN statement is not if-convertible if,
773 - it is not movable,
774 - it could trap,
775 - LHS is not var decl. */
776
777 static bool
778 if_convertible_gimple_assign_stmt_p (gimple stmt,
779 vec<data_reference_p> refs,
780 bool *any_mask_load_store)
781 {
782 tree lhs = gimple_assign_lhs (stmt);
783 basic_block bb;
784
785 if (dump_file && (dump_flags & TDF_DETAILS))
786 {
787 fprintf (dump_file, "-------------------------\n");
788 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
789 }
790
791 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
792 return false;
793
794 /* Some of these constrains might be too conservative. */
795 if (stmt_ends_bb_p (stmt)
796 || gimple_has_volatile_ops (stmt)
797 || (TREE_CODE (lhs) == SSA_NAME
798 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
799 || gimple_has_side_effects (stmt))
800 {
801 if (dump_file && (dump_flags & TDF_DETAILS))
802 fprintf (dump_file, "stmt not suitable for ifcvt\n");
803 return false;
804 }
805
806 /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
807 in between if_convertible_loop_p and combine_blocks
808 we can perform loop versioning. */
809 gimple_set_plf (stmt, GF_PLF_2, false);
810
811 if (flag_tree_loop_if_convert_stores)
812 {
813 if (ifcvt_could_trap_p (stmt, refs))
814 {
815 if (ifcvt_can_use_mask_load_store (stmt))
816 {
817 gimple_set_plf (stmt, GF_PLF_2, true);
818 *any_mask_load_store = true;
819 return true;
820 }
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 fprintf (dump_file, "tree could trap...\n");
823 return false;
824 }
825 return true;
826 }
827
828 if (gimple_assign_rhs_could_trap_p (stmt))
829 {
830 if (ifcvt_can_use_mask_load_store (stmt))
831 {
832 gimple_set_plf (stmt, GF_PLF_2, true);
833 *any_mask_load_store = true;
834 return true;
835 }
836 if (dump_file && (dump_flags & TDF_DETAILS))
837 fprintf (dump_file, "tree could trap...\n");
838 return false;
839 }
840
841 bb = gimple_bb (stmt);
842
843 if (TREE_CODE (lhs) != SSA_NAME
844 && bb != bb->loop_father->header
845 && !bb_with_exit_edge_p (bb->loop_father, bb))
846 {
847 if (ifcvt_can_use_mask_load_store (stmt))
848 {
849 gimple_set_plf (stmt, GF_PLF_2, true);
850 *any_mask_load_store = true;
851 return true;
852 }
853 if (dump_file && (dump_flags & TDF_DETAILS))
854 {
855 fprintf (dump_file, "LHS is not var\n");
856 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
857 }
858 return false;
859 }
860
861 return true;
862 }
863
864 /* Return true when STMT is if-convertible.
865
866 A statement is if-convertible if:
867 - it is an if-convertible GIMPLE_ASSIGN,
868 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
869
870 static bool
871 if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs,
872 bool *any_mask_load_store)
873 {
874 switch (gimple_code (stmt))
875 {
876 case GIMPLE_LABEL:
877 case GIMPLE_DEBUG:
878 case GIMPLE_COND:
879 return true;
880
881 case GIMPLE_ASSIGN:
882 return if_convertible_gimple_assign_stmt_p (stmt, refs,
883 any_mask_load_store);
884
885 case GIMPLE_CALL:
886 {
887 tree fndecl = gimple_call_fndecl (stmt);
888 if (fndecl)
889 {
890 int flags = gimple_call_flags (stmt);
891 if ((flags & ECF_CONST)
892 && !(flags & ECF_LOOPING_CONST_OR_PURE)
893 /* We can only vectorize some builtins at the moment,
894 so restrict if-conversion to those. */
895 && DECL_BUILT_IN (fndecl))
896 return true;
897 }
898 return false;
899 }
900
901 default:
902 /* Don't know what to do with 'em so don't do anything. */
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 {
905 fprintf (dump_file, "don't know what to do\n");
906 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
907 }
908 return false;
909 break;
910 }
911
912 return true;
913 }
914
915 /* Return true when BB is if-convertible. This routine does not check
916 basic block's statements and phis.
917
918 A basic block is not if-convertible if:
919 - it is non-empty and it is after the exit block (in BFS order),
920 - it is after the exit block but before the latch,
921 - its edges are not normal.
922
923 EXIT_BB is the basic block containing the exit of the LOOP. BB is
924 inside LOOP. */
925
926 static bool
927 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
928 {
929 edge e;
930 edge_iterator ei;
931
932 if (dump_file && (dump_flags & TDF_DETAILS))
933 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
934
935 if (EDGE_COUNT (bb->preds) > 2
936 || EDGE_COUNT (bb->succs) > 2)
937 return false;
938
939 if (exit_bb)
940 {
941 if (bb != loop->latch)
942 {
943 if (dump_file && (dump_flags & TDF_DETAILS))
944 fprintf (dump_file, "basic block after exit bb but before latch\n");
945 return false;
946 }
947 else if (!empty_block_p (bb))
948 {
949 if (dump_file && (dump_flags & TDF_DETAILS))
950 fprintf (dump_file, "non empty basic block after exit bb\n");
951 return false;
952 }
953 else if (bb == loop->latch
954 && bb != exit_bb
955 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
956 {
957 if (dump_file && (dump_flags & TDF_DETAILS))
958 fprintf (dump_file, "latch is not dominated by exit_block\n");
959 return false;
960 }
961 }
962
963 /* Be less adventurous and handle only normal edges. */
964 FOR_EACH_EDGE (e, ei, bb->succs)
965 if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
966 {
967 if (dump_file && (dump_flags & TDF_DETAILS))
968 fprintf (dump_file, "Difficult to handle edges\n");
969 return false;
970 }
971
972 /* At least one incoming edge has to be non-critical as otherwise edge
973 predicates are not equal to basic-block predicates of the edge
974 source. */
975 if (EDGE_COUNT (bb->preds) > 1
976 && bb != loop->header)
977 {
978 bool found = false;
979 FOR_EACH_EDGE (e, ei, bb->preds)
980 if (EDGE_COUNT (e->src->succs) == 1)
981 found = true;
982 if (!found)
983 {
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "only critical predecessors\n");
986 return false;
987 }
988 }
989
990 return true;
991 }
992
993 /* Return true when all predecessor blocks of BB are visited. The
994 VISITED bitmap keeps track of the visited blocks. */
995
996 static bool
997 pred_blocks_visited_p (basic_block bb, bitmap *visited)
998 {
999 edge e;
1000 edge_iterator ei;
1001 FOR_EACH_EDGE (e, ei, bb->preds)
1002 if (!bitmap_bit_p (*visited, e->src->index))
1003 return false;
1004
1005 return true;
1006 }
1007
1008 /* Get body of a LOOP in suitable order for if-conversion. It is
1009 caller's responsibility to deallocate basic block list.
1010 If-conversion suitable order is, breadth first sort (BFS) order
1011 with an additional constraint: select a block only if all its
1012 predecessors are already selected. */
1013
1014 static basic_block *
1015 get_loop_body_in_if_conv_order (const struct loop *loop)
1016 {
1017 basic_block *blocks, *blocks_in_bfs_order;
1018 basic_block bb;
1019 bitmap visited;
1020 unsigned int index = 0;
1021 unsigned int visited_count = 0;
1022
1023 gcc_assert (loop->num_nodes);
1024 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1025
1026 blocks = XCNEWVEC (basic_block, loop->num_nodes);
1027 visited = BITMAP_ALLOC (NULL);
1028
1029 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
1030
1031 index = 0;
1032 while (index < loop->num_nodes)
1033 {
1034 bb = blocks_in_bfs_order [index];
1035
1036 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1037 {
1038 free (blocks_in_bfs_order);
1039 BITMAP_FREE (visited);
1040 free (blocks);
1041 return NULL;
1042 }
1043
1044 if (!bitmap_bit_p (visited, bb->index))
1045 {
1046 if (pred_blocks_visited_p (bb, &visited)
1047 || bb == loop->header)
1048 {
1049 /* This block is now visited. */
1050 bitmap_set_bit (visited, bb->index);
1051 blocks[visited_count++] = bb;
1052 }
1053 }
1054
1055 index++;
1056
1057 if (index == loop->num_nodes
1058 && visited_count != loop->num_nodes)
1059 /* Not done yet. */
1060 index = 0;
1061 }
1062 free (blocks_in_bfs_order);
1063 BITMAP_FREE (visited);
1064 return blocks;
1065 }
1066
1067 /* Returns true when the analysis of the predicates for all the basic
1068 blocks in LOOP succeeded.
1069
1070 predicate_bbs first allocates the predicates of the basic blocks.
1071 These fields are then initialized with the tree expressions
1072 representing the predicates under which a basic block is executed
1073 in the LOOP. As the loop->header is executed at each iteration, it
1074 has the "true" predicate. Other statements executed under a
1075 condition are predicated with that condition, for example
1076
1077 | if (x)
1078 | S1;
1079 | else
1080 | S2;
1081
1082 S1 will be predicated with "x", and
1083 S2 will be predicated with "!x". */
1084
1085 static void
1086 predicate_bbs (loop_p loop)
1087 {
1088 unsigned int i;
1089
1090 for (i = 0; i < loop->num_nodes; i++)
1091 init_bb_predicate (ifc_bbs[i]);
1092
1093 for (i = 0; i < loop->num_nodes; i++)
1094 {
1095 basic_block bb = ifc_bbs[i];
1096 tree cond;
1097 gimple stmt;
1098
1099 /* The loop latch is always executed and has no extra conditions
1100 to be processed: skip it. */
1101 if (bb == loop->latch)
1102 {
1103 reset_bb_predicate (loop->latch);
1104 continue;
1105 }
1106
1107 cond = bb_predicate (bb);
1108 stmt = last_stmt (bb);
1109 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1110 {
1111 tree c2;
1112 edge true_edge, false_edge;
1113 location_t loc = gimple_location (stmt);
1114 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
1115 boolean_type_node,
1116 gimple_cond_lhs (stmt),
1117 gimple_cond_rhs (stmt));
1118
1119 /* Add new condition into destination's predicate list. */
1120 extract_true_false_edges_from_block (gimple_bb (stmt),
1121 &true_edge, &false_edge);
1122
1123 /* If C is true, then TRUE_EDGE is taken. */
1124 add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
1125 unshare_expr (c));
1126
1127 /* If C is false, then FALSE_EDGE is taken. */
1128 c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
1129 unshare_expr (c));
1130 add_to_dst_predicate_list (loop, false_edge,
1131 unshare_expr (cond), c2);
1132
1133 cond = NULL_TREE;
1134 }
1135
1136 /* If current bb has only one successor, then consider it as an
1137 unconditional goto. */
1138 if (single_succ_p (bb))
1139 {
1140 basic_block bb_n = single_succ (bb);
1141
1142 /* The successor bb inherits the predicate of its
1143 predecessor. If there is no predicate in the predecessor
1144 bb, then consider the successor bb as always executed. */
1145 if (cond == NULL_TREE)
1146 cond = boolean_true_node;
1147
1148 add_to_predicate_list (loop, bb_n, cond);
1149 }
1150 }
1151
1152 /* The loop header is always executed. */
1153 reset_bb_predicate (loop->header);
1154 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1155 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1156 }
1157
1158 /* Return true when LOOP is if-convertible. This is a helper function
1159 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1160 in if_convertible_loop_p. */
1161
1162 static bool
1163 if_convertible_loop_p_1 (struct loop *loop,
1164 vec<loop_p> *loop_nest,
1165 vec<data_reference_p> *refs,
1166 vec<ddr_p> *ddrs, bool *any_mask_load_store)
1167 {
1168 bool res;
1169 unsigned int i;
1170 basic_block exit_bb = NULL;
1171
1172 /* Don't if-convert the loop when the data dependences cannot be
1173 computed: the loop won't be vectorized in that case. */
1174 res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1175 if (!res)
1176 return false;
1177
1178 calculate_dominance_info (CDI_DOMINATORS);
1179
1180 /* Allow statements that can be handled during if-conversion. */
1181 ifc_bbs = get_loop_body_in_if_conv_order (loop);
1182 if (!ifc_bbs)
1183 {
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1185 fprintf (dump_file, "Irreducible loop\n");
1186 return false;
1187 }
1188
1189 for (i = 0; i < loop->num_nodes; i++)
1190 {
1191 basic_block bb = ifc_bbs[i];
1192
1193 if (!if_convertible_bb_p (loop, bb, exit_bb))
1194 return false;
1195
1196 if (bb_with_exit_edge_p (loop, bb))
1197 exit_bb = bb;
1198 }
1199
1200 for (i = 0; i < loop->num_nodes; i++)
1201 {
1202 basic_block bb = ifc_bbs[i];
1203 gimple_stmt_iterator gsi;
1204
1205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1206 switch (gimple_code (gsi_stmt (gsi)))
1207 {
1208 case GIMPLE_LABEL:
1209 case GIMPLE_ASSIGN:
1210 case GIMPLE_CALL:
1211 case GIMPLE_DEBUG:
1212 case GIMPLE_COND:
1213 break;
1214 default:
1215 return false;
1216 }
1217 }
1218
1219 if (flag_tree_loop_if_convert_stores)
1220 {
1221 data_reference_p dr;
1222
1223 for (i = 0; refs->iterate (i, &dr); i++)
1224 {
1225 dr->aux = XNEW (struct ifc_dr);
1226 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1227 DR_RW_UNCONDITIONALLY (dr) = -1;
1228 }
1229 predicate_bbs (loop);
1230 }
1231
1232 for (i = 0; i < loop->num_nodes; i++)
1233 {
1234 basic_block bb = ifc_bbs[i];
1235 gimple_stmt_iterator itr;
1236
1237 /* Check the if-convertibility of statements in predicated BBs. */
1238 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1239 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1240 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs,
1241 any_mask_load_store))
1242 return false;
1243 }
1244
1245 if (flag_tree_loop_if_convert_stores)
1246 for (i = 0; i < loop->num_nodes; i++)
1247 free_bb_predicate (ifc_bbs[i]);
1248
1249 /* Checking PHIs needs to be done after stmts, as the fact whether there
1250 are any masked loads or stores affects the tests. */
1251 for (i = 0; i < loop->num_nodes; i++)
1252 {
1253 basic_block bb = ifc_bbs[i];
1254 gimple_stmt_iterator itr;
1255
1256 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1257 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr),
1258 *any_mask_load_store))
1259 return false;
1260 }
1261
1262 if (dump_file)
1263 fprintf (dump_file, "Applying if-conversion\n");
1264
1265 return true;
1266 }
1267
1268 /* Return true when LOOP is if-convertible.
1269 LOOP is if-convertible if:
1270 - it is innermost,
1271 - it has two or more basic blocks,
1272 - it has only one exit,
1273 - loop header is not the exit edge,
1274 - if its basic blocks and phi nodes are if convertible. */
1275
1276 static bool
1277 if_convertible_loop_p (struct loop *loop, bool *any_mask_load_store)
1278 {
1279 edge e;
1280 edge_iterator ei;
1281 bool res = false;
1282 vec<data_reference_p> refs;
1283 vec<ddr_p> ddrs;
1284
1285 /* Handle only innermost loop. */
1286 if (!loop || loop->inner)
1287 {
1288 if (dump_file && (dump_flags & TDF_DETAILS))
1289 fprintf (dump_file, "not innermost loop\n");
1290 return false;
1291 }
1292
1293 /* If only one block, no need for if-conversion. */
1294 if (loop->num_nodes <= 2)
1295 {
1296 if (dump_file && (dump_flags & TDF_DETAILS))
1297 fprintf (dump_file, "less than 2 basic blocks\n");
1298 return false;
1299 }
1300
1301 /* More than one loop exit is too much to handle. */
1302 if (!single_exit (loop))
1303 {
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file, "multiple exits\n");
1306 return false;
1307 }
1308
1309 /* If one of the loop header's edge is an exit edge then do not
1310 apply if-conversion. */
1311 FOR_EACH_EDGE (e, ei, loop->header->succs)
1312 if (loop_exit_edge_p (loop, e))
1313 return false;
1314
1315 refs.create (5);
1316 ddrs.create (25);
1317 auto_vec<loop_p, 3> loop_nest;
1318 res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs,
1319 any_mask_load_store);
1320
1321 if (flag_tree_loop_if_convert_stores)
1322 {
1323 data_reference_p dr;
1324 unsigned int i;
1325
1326 for (i = 0; refs.iterate (i, &dr); i++)
1327 free (dr->aux);
1328 }
1329
1330 free_data_refs (refs);
1331 free_dependence_relations (ddrs);
1332 return res;
1333 }
1334
1335 /* Basic block BB has two predecessors. Using predecessor's bb
1336 predicate, set an appropriate condition COND for the PHI node
1337 replacement. Return the true block whose phi arguments are
1338 selected when cond is true. LOOP is the loop containing the
1339 if-converted region, GSI is the place to insert the code for the
1340 if-conversion. */
1341
1342 static basic_block
1343 find_phi_replacement_condition (basic_block bb, tree *cond,
1344 gimple_stmt_iterator *gsi)
1345 {
1346 edge first_edge, second_edge;
1347 tree tmp_cond;
1348
1349 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1350 first_edge = EDGE_PRED (bb, 0);
1351 second_edge = EDGE_PRED (bb, 1);
1352
1353 /* Prefer an edge with a not negated predicate.
1354 ??? That's a very weak cost model. */
1355 tmp_cond = bb_predicate (first_edge->src);
1356 gcc_assert (tmp_cond);
1357 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1358 {
1359 edge tmp_edge;
1360
1361 tmp_edge = first_edge;
1362 first_edge = second_edge;
1363 second_edge = tmp_edge;
1364 }
1365
1366 /* Check if the edge we take the condition from is not critical.
1367 We know that at least one non-critical edge exists. */
1368 if (EDGE_COUNT (first_edge->src->succs) > 1)
1369 {
1370 *cond = bb_predicate (second_edge->src);
1371
1372 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1373 *cond = TREE_OPERAND (*cond, 0);
1374 else
1375 /* Select non loop header bb. */
1376 first_edge = second_edge;
1377 }
1378 else
1379 *cond = bb_predicate (first_edge->src);
1380
1381 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1382 *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1383 is_gimple_condexpr, NULL_TREE,
1384 true, GSI_SAME_STMT);
1385
1386 return first_edge->src;
1387 }
1388
1389 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1390 This routine does not handle PHI nodes with more than two
1391 arguments.
1392
1393 For example,
1394 S1: A = PHI <x1(1), x2(5)>
1395 is converted into,
1396 S2: A = cond ? x1 : x2;
1397
1398 The generated code is inserted at GSI that points to the top of
1399 basic block's statement list. When COND is true, phi arg from
1400 TRUE_BB is selected. */
1401
1402 static void
1403 predicate_scalar_phi (gimple phi, tree cond,
1404 basic_block true_bb,
1405 gimple_stmt_iterator *gsi)
1406 {
1407 gimple new_stmt;
1408 basic_block bb;
1409 tree rhs, res, arg, scev;
1410
1411 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1412 && gimple_phi_num_args (phi) == 2);
1413
1414 res = gimple_phi_result (phi);
1415 /* Do not handle virtual phi nodes. */
1416 if (virtual_operand_p (res))
1417 return;
1418
1419 bb = gimple_bb (phi);
1420
1421 if ((arg = degenerate_phi_result (phi))
1422 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1423 res))
1424 && !chrec_contains_undetermined (scev)
1425 && scev != res
1426 && (arg = gimple_phi_arg_def (phi, 0))))
1427 rhs = arg;
1428 else
1429 {
1430 tree arg_0, arg_1;
1431 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1432 if (EDGE_PRED (bb, 1)->src == true_bb)
1433 {
1434 arg_0 = gimple_phi_arg_def (phi, 1);
1435 arg_1 = gimple_phi_arg_def (phi, 0);
1436 }
1437 else
1438 {
1439 arg_0 = gimple_phi_arg_def (phi, 0);
1440 arg_1 = gimple_phi_arg_def (phi, 1);
1441 }
1442
1443 /* Build new RHS using selected condition and arguments. */
1444 rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1445 arg_0, arg_1);
1446 }
1447
1448 new_stmt = gimple_build_assign (res, rhs);
1449 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1450 update_stmt (new_stmt);
1451
1452 if (dump_file && (dump_flags & TDF_DETAILS))
1453 {
1454 fprintf (dump_file, "new phi replacement stmt\n");
1455 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1456 }
1457 }
1458
1459 /* Replaces in LOOP all the scalar phi nodes other than those in the
1460 LOOP->header block with conditional modify expressions. */
1461
1462 static void
1463 predicate_all_scalar_phis (struct loop *loop)
1464 {
1465 basic_block bb;
1466 unsigned int orig_loop_num_nodes = loop->num_nodes;
1467 unsigned int i;
1468
1469 for (i = 1; i < orig_loop_num_nodes; i++)
1470 {
1471 gimple phi;
1472 tree cond = NULL_TREE;
1473 gimple_stmt_iterator gsi, phi_gsi;
1474 basic_block true_bb = NULL;
1475 bb = ifc_bbs[i];
1476
1477 if (bb == loop->header)
1478 continue;
1479
1480 phi_gsi = gsi_start_phis (bb);
1481 if (gsi_end_p (phi_gsi))
1482 continue;
1483
1484 /* BB has two predecessors. Using predecessor's aux field, set
1485 appropriate condition for the PHI node replacement. */
1486 gsi = gsi_after_labels (bb);
1487 true_bb = find_phi_replacement_condition (bb, &cond, &gsi);
1488
1489 while (!gsi_end_p (phi_gsi))
1490 {
1491 phi = gsi_stmt (phi_gsi);
1492 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1493 release_phi_node (phi);
1494 gsi_next (&phi_gsi);
1495 }
1496
1497 set_phi_nodes (bb, NULL);
1498 }
1499 }
1500
1501 /* Insert in each basic block of LOOP the statements produced by the
1502 gimplification of the predicates. */
1503
1504 static void
1505 insert_gimplified_predicates (loop_p loop, bool any_mask_load_store)
1506 {
1507 unsigned int i;
1508
1509 for (i = 0; i < loop->num_nodes; i++)
1510 {
1511 basic_block bb = ifc_bbs[i];
1512 gimple_seq stmts;
1513
1514 if (!is_predicated (bb))
1515 {
1516 /* Do not insert statements for a basic block that is not
1517 predicated. Also make sure that the predicate of the
1518 basic block is set to true. */
1519 reset_bb_predicate (bb);
1520 continue;
1521 }
1522
1523 stmts = bb_predicate_gimplified_stmts (bb);
1524 if (stmts)
1525 {
1526 if (flag_tree_loop_if_convert_stores
1527 || any_mask_load_store)
1528 {
1529 /* Insert the predicate of the BB just after the label,
1530 as the if-conversion of memory writes will use this
1531 predicate. */
1532 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1533 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1534 }
1535 else
1536 {
1537 /* Insert the predicate of the BB at the end of the BB
1538 as this would reduce the register pressure: the only
1539 use of this predicate will be in successor BBs. */
1540 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1541
1542 if (gsi_end_p (gsi)
1543 || stmt_ends_bb_p (gsi_stmt (gsi)))
1544 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1545 else
1546 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1547 }
1548
1549 /* Once the sequence is code generated, set it to NULL. */
1550 set_bb_predicate_gimplified_stmts (bb, NULL);
1551 }
1552 }
1553 }
1554
1555 /* Predicate each write to memory in LOOP.
1556
1557 This function transforms control flow constructs containing memory
1558 writes of the form:
1559
1560 | for (i = 0; i < N; i++)
1561 | if (cond)
1562 | A[i] = expr;
1563
1564 into the following form that does not contain control flow:
1565
1566 | for (i = 0; i < N; i++)
1567 | A[i] = cond ? expr : A[i];
1568
1569 The original CFG looks like this:
1570
1571 | bb_0
1572 | i = 0
1573 | end_bb_0
1574 |
1575 | bb_1
1576 | if (i < N) goto bb_5 else goto bb_2
1577 | end_bb_1
1578 |
1579 | bb_2
1580 | cond = some_computation;
1581 | if (cond) goto bb_3 else goto bb_4
1582 | end_bb_2
1583 |
1584 | bb_3
1585 | A[i] = expr;
1586 | goto bb_4
1587 | end_bb_3
1588 |
1589 | bb_4
1590 | goto bb_1
1591 | end_bb_4
1592
1593 insert_gimplified_predicates inserts the computation of the COND
1594 expression at the beginning of the destination basic block:
1595
1596 | bb_0
1597 | i = 0
1598 | end_bb_0
1599 |
1600 | bb_1
1601 | if (i < N) goto bb_5 else goto bb_2
1602 | end_bb_1
1603 |
1604 | bb_2
1605 | cond = some_computation;
1606 | if (cond) goto bb_3 else goto bb_4
1607 | end_bb_2
1608 |
1609 | bb_3
1610 | cond = some_computation;
1611 | A[i] = expr;
1612 | goto bb_4
1613 | end_bb_3
1614 |
1615 | bb_4
1616 | goto bb_1
1617 | end_bb_4
1618
1619 predicate_mem_writes is then predicating the memory write as follows:
1620
1621 | bb_0
1622 | i = 0
1623 | end_bb_0
1624 |
1625 | bb_1
1626 | if (i < N) goto bb_5 else goto bb_2
1627 | end_bb_1
1628 |
1629 | bb_2
1630 | if (cond) goto bb_3 else goto bb_4
1631 | end_bb_2
1632 |
1633 | bb_3
1634 | cond = some_computation;
1635 | A[i] = cond ? expr : A[i];
1636 | goto bb_4
1637 | end_bb_3
1638 |
1639 | bb_4
1640 | goto bb_1
1641 | end_bb_4
1642
1643 and finally combine_blocks removes the basic block boundaries making
1644 the loop vectorizable:
1645
1646 | bb_0
1647 | i = 0
1648 | if (i < N) goto bb_5 else goto bb_1
1649 | end_bb_0
1650 |
1651 | bb_1
1652 | cond = some_computation;
1653 | A[i] = cond ? expr : A[i];
1654 | if (i < N) goto bb_5 else goto bb_4
1655 | end_bb_1
1656 |
1657 | bb_4
1658 | goto bb_1
1659 | end_bb_4
1660 */
1661
1662 static void
1663 predicate_mem_writes (loop_p loop)
1664 {
1665 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1666
1667 for (i = 1; i < orig_loop_num_nodes; i++)
1668 {
1669 gimple_stmt_iterator gsi;
1670 basic_block bb = ifc_bbs[i];
1671 tree cond = bb_predicate (bb);
1672 bool swap;
1673 gimple stmt;
1674
1675 if (is_true_predicate (cond))
1676 continue;
1677
1678 swap = false;
1679 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1680 {
1681 swap = true;
1682 cond = TREE_OPERAND (cond, 0);
1683 }
1684
1685 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1686 if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
1687 continue;
1688 else if (gimple_plf (stmt, GF_PLF_2))
1689 {
1690 tree lhs = gimple_assign_lhs (stmt);
1691 tree rhs = gimple_assign_rhs1 (stmt);
1692 tree ref, addr, ptr, masktype, mask_op0, mask_op1, mask;
1693 gimple new_stmt;
1694 int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs)));
1695
1696 masktype = build_nonstandard_integer_type (bitsize, 1);
1697 mask_op0 = build_int_cst (masktype, swap ? 0 : -1);
1698 mask_op1 = build_int_cst (masktype, swap ? -1 : 0);
1699 ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
1700 mark_addressable (ref);
1701 addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
1702 true, NULL_TREE, true,
1703 GSI_SAME_STMT);
1704 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1705 is_gimple_condexpr, NULL_TREE,
1706 true, GSI_SAME_STMT);
1707 mask = fold_build_cond_expr (masktype, unshare_expr (cond),
1708 mask_op0, mask_op1);
1709 mask = ifc_temp_var (masktype, mask, &gsi);
1710 ptr = build_int_cst (reference_alias_ptr_type (ref), 0);
1711 /* Copy points-to info if possible. */
1712 if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
1713 copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
1714 ref);
1715 if (TREE_CODE (lhs) == SSA_NAME)
1716 {
1717 new_stmt
1718 = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
1719 ptr, mask);
1720 gimple_call_set_lhs (new_stmt, lhs);
1721 }
1722 else
1723 new_stmt
1724 = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
1725 mask, rhs);
1726 gsi_replace (&gsi, new_stmt, true);
1727 }
1728 else if (gimple_vdef (stmt))
1729 {
1730 tree lhs = gimple_assign_lhs (stmt);
1731 tree rhs = gimple_assign_rhs1 (stmt);
1732 tree type = TREE_TYPE (lhs);
1733
1734 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1735 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1736 if (swap)
1737 {
1738 tree tem = lhs;
1739 lhs = rhs;
1740 rhs = tem;
1741 }
1742 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1743 is_gimple_condexpr, NULL_TREE,
1744 true, GSI_SAME_STMT);
1745 rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
1746 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1747 update_stmt (stmt);
1748 }
1749 }
1750 }
1751
1752 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1753 other than the exit and latch of the LOOP. Also resets the
1754 GIMPLE_DEBUG information. */
1755
1756 static void
1757 remove_conditions_and_labels (loop_p loop)
1758 {
1759 gimple_stmt_iterator gsi;
1760 unsigned int i;
1761
1762 for (i = 0; i < loop->num_nodes; i++)
1763 {
1764 basic_block bb = ifc_bbs[i];
1765
1766 if (bb_with_exit_edge_p (loop, bb)
1767 || bb == loop->latch)
1768 continue;
1769
1770 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1771 switch (gimple_code (gsi_stmt (gsi)))
1772 {
1773 case GIMPLE_COND:
1774 case GIMPLE_LABEL:
1775 gsi_remove (&gsi, true);
1776 break;
1777
1778 case GIMPLE_DEBUG:
1779 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1780 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1781 {
1782 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1783 update_stmt (gsi_stmt (gsi));
1784 }
1785 gsi_next (&gsi);
1786 break;
1787
1788 default:
1789 gsi_next (&gsi);
1790 }
1791 }
1792 }
1793
1794 /* Combine all the basic blocks from LOOP into one or two super basic
1795 blocks. Replace PHI nodes with conditional modify expressions. */
1796
1797 static void
1798 combine_blocks (struct loop *loop, bool any_mask_load_store)
1799 {
1800 basic_block bb, exit_bb, merge_target_bb;
1801 unsigned int orig_loop_num_nodes = loop->num_nodes;
1802 unsigned int i;
1803 edge e;
1804 edge_iterator ei;
1805
1806 predicate_bbs (loop);
1807 remove_conditions_and_labels (loop);
1808 insert_gimplified_predicates (loop, any_mask_load_store);
1809 predicate_all_scalar_phis (loop);
1810
1811 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
1812 predicate_mem_writes (loop);
1813
1814 /* Merge basic blocks: first remove all the edges in the loop,
1815 except for those from the exit block. */
1816 exit_bb = NULL;
1817 for (i = 0; i < orig_loop_num_nodes; i++)
1818 {
1819 bb = ifc_bbs[i];
1820 free_bb_predicate (bb);
1821 if (bb_with_exit_edge_p (loop, bb))
1822 {
1823 gcc_assert (exit_bb == NULL);
1824 exit_bb = bb;
1825 }
1826 }
1827 gcc_assert (exit_bb != loop->latch);
1828
1829 for (i = 1; i < orig_loop_num_nodes; i++)
1830 {
1831 bb = ifc_bbs[i];
1832
1833 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1834 {
1835 if (e->src == exit_bb)
1836 ei_next (&ei);
1837 else
1838 remove_edge (e);
1839 }
1840 }
1841
1842 if (exit_bb != NULL)
1843 {
1844 if (exit_bb != loop->header)
1845 {
1846 /* Connect this node to loop header. */
1847 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1848 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1849 }
1850
1851 /* Redirect non-exit edges to loop->latch. */
1852 FOR_EACH_EDGE (e, ei, exit_bb->succs)
1853 {
1854 if (!loop_exit_edge_p (loop, e))
1855 redirect_edge_and_branch (e, loop->latch);
1856 }
1857 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
1858 }
1859 else
1860 {
1861 /* If the loop does not have an exit, reconnect header and latch. */
1862 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
1863 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
1864 }
1865
1866 merge_target_bb = loop->header;
1867 for (i = 1; i < orig_loop_num_nodes; i++)
1868 {
1869 gimple_stmt_iterator gsi;
1870 gimple_stmt_iterator last;
1871
1872 bb = ifc_bbs[i];
1873
1874 if (bb == exit_bb || bb == loop->latch)
1875 continue;
1876
1877 /* Make stmts member of loop->header. */
1878 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1879 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
1880
1881 /* Update stmt list. */
1882 last = gsi_last_bb (merge_target_bb);
1883 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
1884 set_bb_seq (bb, NULL);
1885
1886 delete_basic_block (bb);
1887 }
1888
1889 /* If possible, merge loop header to the block with the exit edge.
1890 This reduces the number of basic blocks to two, to please the
1891 vectorizer that handles only loops with two nodes. */
1892 if (exit_bb
1893 && exit_bb != loop->header
1894 && can_merge_blocks_p (loop->header, exit_bb))
1895 merge_blocks (loop->header, exit_bb);
1896
1897 free (ifc_bbs);
1898 ifc_bbs = NULL;
1899 }
1900
1901 /* Version LOOP before if-converting it, the original loop
1902 will be then if-converted, the new copy of the loop will not,
1903 and the LOOP_VECTORIZED internal call will be guarding which
1904 loop to execute. The vectorizer pass will fold this
1905 internal call into either true or false. */
1906
1907 static bool
1908 version_loop_for_if_conversion (struct loop *loop)
1909 {
1910 basic_block cond_bb;
1911 tree cond = make_ssa_name (boolean_type_node, NULL);
1912 struct loop *new_loop;
1913 gimple g;
1914 gimple_stmt_iterator gsi;
1915
1916 g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
1917 build_int_cst (integer_type_node, loop->num),
1918 integer_zero_node);
1919 gimple_call_set_lhs (g, cond);
1920
1921 initialize_original_copy_tables ();
1922 new_loop = loop_version (loop, cond, &cond_bb,
1923 REG_BR_PROB_BASE, REG_BR_PROB_BASE,
1924 REG_BR_PROB_BASE, true);
1925 free_original_copy_tables ();
1926 if (new_loop == NULL)
1927 return false;
1928 new_loop->dont_vectorize = true;
1929 new_loop->force_vectorize = false;
1930 gsi = gsi_last_bb (cond_bb);
1931 gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
1932 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1933 update_ssa (TODO_update_ssa);
1934 return true;
1935 }
1936
1937 /* If-convert LOOP when it is legal. For the moment this pass has no
1938 profitability analysis. Returns non-zero todo flags when something
1939 changed. */
1940
1941 static unsigned int
1942 tree_if_conversion (struct loop *loop)
1943 {
1944 unsigned int todo = 0;
1945 ifc_bbs = NULL;
1946 bool any_mask_load_store = false;
1947
1948 if (!if_convertible_loop_p (loop, &any_mask_load_store)
1949 || !dbg_cnt (if_conversion_tree))
1950 goto cleanup;
1951
1952 if (any_mask_load_store
1953 && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
1954 || loop->dont_vectorize))
1955 goto cleanup;
1956
1957 if (any_mask_load_store && !version_loop_for_if_conversion (loop))
1958 goto cleanup;
1959
1960 /* Now all statements are if-convertible. Combine all the basic
1961 blocks into one huge basic block doing the if-conversion
1962 on-the-fly. */
1963 combine_blocks (loop, any_mask_load_store);
1964
1965 todo |= TODO_cleanup_cfg;
1966 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
1967 {
1968 mark_virtual_operands_for_renaming (cfun);
1969 todo |= TODO_update_ssa_only_virtuals;
1970 }
1971
1972 cleanup:
1973 if (ifc_bbs)
1974 {
1975 unsigned int i;
1976
1977 for (i = 0; i < loop->num_nodes; i++)
1978 free_bb_predicate (ifc_bbs[i]);
1979
1980 free (ifc_bbs);
1981 ifc_bbs = NULL;
1982 }
1983
1984 return todo;
1985 }
1986
1987 /* Tree if-conversion pass management. */
1988
1989 static unsigned int
1990 main_tree_if_conversion (void)
1991 {
1992 struct loop *loop;
1993 unsigned todo = 0;
1994
1995 if (number_of_loops (cfun) <= 1)
1996 return 0;
1997
1998 FOR_EACH_LOOP (loop, 0)
1999 if (flag_tree_loop_if_convert == 1
2000 || flag_tree_loop_if_convert_stores == 1
2001 || ((flag_tree_loop_vectorize || loop->force_vectorize)
2002 && !loop->dont_vectorize))
2003 todo |= tree_if_conversion (loop);
2004
2005 #ifdef ENABLE_CHECKING
2006 {
2007 basic_block bb;
2008 FOR_EACH_BB_FN (bb, cfun)
2009 gcc_assert (!bb->aux);
2010 }
2011 #endif
2012
2013 return todo;
2014 }
2015
2016 /* Returns true when the if-conversion pass is enabled. */
2017
2018 static bool
2019 gate_tree_if_conversion (void)
2020 {
2021 return (((flag_tree_loop_vectorize || cfun->has_force_vectorize_loops)
2022 && flag_tree_loop_if_convert != 0)
2023 || flag_tree_loop_if_convert == 1
2024 || flag_tree_loop_if_convert_stores == 1);
2025 }
2026
2027 namespace {
2028
2029 const pass_data pass_data_if_conversion =
2030 {
2031 GIMPLE_PASS, /* type */
2032 "ifcvt", /* name */
2033 OPTGROUP_NONE, /* optinfo_flags */
2034 true, /* has_gate */
2035 true, /* has_execute */
2036 TV_NONE, /* tv_id */
2037 ( PROP_cfg | PROP_ssa ), /* properties_required */
2038 0, /* properties_provided */
2039 0, /* properties_destroyed */
2040 0, /* todo_flags_start */
2041 ( TODO_verify_stmts | TODO_verify_flow
2042 | TODO_verify_ssa ), /* todo_flags_finish */
2043 };
2044
2045 class pass_if_conversion : public gimple_opt_pass
2046 {
2047 public:
2048 pass_if_conversion (gcc::context *ctxt)
2049 : gimple_opt_pass (pass_data_if_conversion, ctxt)
2050 {}
2051
2052 /* opt_pass methods: */
2053 bool gate () { return gate_tree_if_conversion (); }
2054 unsigned int execute () { return main_tree_if_conversion (); }
2055
2056 }; // class pass_if_conversion
2057
2058 } // anon namespace
2059
2060 gimple_opt_pass *
2061 make_pass_if_conversion (gcc::context *ctxt)
2062 {
2063 return new pass_if_conversion (ctxt);
2064 }