]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "gimple.h"
33 #include "gimple-iterator.h"
34 #include "gimple-ssa.h"
35 #include "tree-cfg.h"
36 #include "tree-phinodes.h"
37 #include "ssa-iterators.h"
38 #include "stringpool.h"
39 #include "tree-ssanames.h"
40 #include "tree-into-ssa.h"
41 #include "expr.h"
42 #include "tree-dfa.h"
43 #include "tree-ssa.h"
44 #include "tree-inline.h"
45 #include "hash-table.h"
46 #include "tree-pass.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "params.h"
50 #include "diagnostic-core.h"
51 #include "tree-into-ssa.h"
52
53 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
54
55 /* This file builds the SSA form for a function as described in:
56 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
57 Computing Static Single Assignment Form and the Control Dependence
58 Graph. ACM Transactions on Programming Languages and Systems,
59 13(4):451-490, October 1991. */
60
61 /* Structure to map a variable VAR to the set of blocks that contain
62 definitions for VAR. */
63 struct def_blocks_d
64 {
65 /* Blocks that contain definitions of VAR. Bit I will be set if the
66 Ith block contains a definition of VAR. */
67 bitmap def_blocks;
68
69 /* Blocks that contain a PHI node for VAR. */
70 bitmap phi_blocks;
71
72 /* Blocks where VAR is live-on-entry. Similar semantics as
73 DEF_BLOCKS. */
74 bitmap livein_blocks;
75 };
76
77 typedef struct def_blocks_d *def_blocks_p;
78
79
80 /* Stack of trees used to restore the global currdefs to its original
81 state after completing rewriting of a block and its dominator
82 children. Its elements have the following properties:
83
84 - An SSA_NAME (N) indicates that the current definition of the
85 underlying variable should be set to the given SSA_NAME. If the
86 symbol associated with the SSA_NAME is not a GIMPLE register, the
87 next slot in the stack must be a _DECL node (SYM). In this case,
88 the name N in the previous slot is the current reaching
89 definition for SYM.
90
91 - A _DECL node indicates that the underlying variable has no
92 current definition.
93
94 - A NULL node at the top entry is used to mark the last slot
95 associated with the current block. */
96 static vec<tree> block_defs_stack;
97
98
99 /* Set of existing SSA names being replaced by update_ssa. */
100 static sbitmap old_ssa_names;
101
102 /* Set of new SSA names being added by update_ssa. Note that both
103 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
104 the operations done on them are presence tests. */
105 static sbitmap new_ssa_names;
106
107 static sbitmap interesting_blocks;
108
109 /* Set of SSA names that have been marked to be released after they
110 were registered in the replacement table. They will be finally
111 released after we finish updating the SSA web. */
112 static bitmap names_to_release;
113
114 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
115 the to basic block with index I. Allocated once per compilation, *not*
116 released between different functions. */
117 static vec<gimple_vec> phis_to_rewrite;
118
119 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
120 static bitmap blocks_with_phis_to_rewrite;
121
122 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
123 to grow as the callers to create_new_def_for will create new names on
124 the fly.
125 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
126 need to find a reasonable growth strategy. */
127 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
128
129
130 /* The function the SSA updating data structures have been initialized for.
131 NULL if they need to be initialized by create_new_def_for. */
132 static struct function *update_ssa_initialized_fn = NULL;
133
134 /* Global data to attach to the main dominator walk structure. */
135 struct mark_def_sites_global_data
136 {
137 /* This bitmap contains the variables which are set before they
138 are used in a basic block. */
139 bitmap kills;
140 };
141
142 /* It is advantageous to avoid things like life analysis for variables which
143 do not need PHI nodes. This enum describes whether or not a particular
144 variable may need a PHI node. */
145
146 enum need_phi_state {
147 /* This is the default. If we are still in this state after finding
148 all the definition and use sites, then we will assume the variable
149 needs PHI nodes. This is probably an overly conservative assumption. */
150 NEED_PHI_STATE_UNKNOWN,
151
152 /* This state indicates that we have seen one or more sets of the
153 variable in a single basic block and that the sets dominate all
154 uses seen so far. If after finding all definition and use sites
155 we are still in this state, then the variable does not need any
156 PHI nodes. */
157 NEED_PHI_STATE_NO,
158
159 /* This state indicates that we have either seen multiple definitions of
160 the variable in multiple blocks, or that we encountered a use in a
161 block that was not dominated by the block containing the set(s) of
162 this variable. This variable is assumed to need PHI nodes. */
163 NEED_PHI_STATE_MAYBE
164 };
165
166 /* Information stored for both SSA names and decls. */
167 struct common_info_d
168 {
169 /* This field indicates whether or not the variable may need PHI nodes.
170 See the enum's definition for more detailed information about the
171 states. */
172 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
173
174 /* The current reaching definition replacing this var. */
175 tree current_def;
176
177 /* Definitions for this var. */
178 struct def_blocks_d def_blocks;
179 };
180
181 /* The information associated with decls and SSA names. */
182 typedef struct common_info_d *common_info_p;
183
184 /* Information stored for decls. */
185 struct var_info_d
186 {
187 /* The variable. */
188 tree var;
189
190 /* Information stored for both SSA names and decls. */
191 struct common_info_d info;
192 };
193
194 /* The information associated with decls. */
195 typedef struct var_info_d *var_info_p;
196
197
198 /* VAR_INFOS hashtable helpers. */
199
200 struct var_info_hasher : typed_free_remove <var_info_d>
201 {
202 typedef var_info_d value_type;
203 typedef var_info_d compare_type;
204 static inline hashval_t hash (const value_type *);
205 static inline bool equal (const value_type *, const compare_type *);
206 };
207
208 inline hashval_t
209 var_info_hasher::hash (const value_type *p)
210 {
211 return DECL_UID (p->var);
212 }
213
214 inline bool
215 var_info_hasher::equal (const value_type *p1, const compare_type *p2)
216 {
217 return p1->var == p2->var;
218 }
219
220
221 /* Each entry in VAR_INFOS contains an element of type STRUCT
222 VAR_INFO_D. */
223 static hash_table <var_info_hasher> var_infos;
224
225
226 /* Information stored for SSA names. */
227 struct ssa_name_info
228 {
229 /* Age of this record (so that info_for_ssa_name table can be cleared
230 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
231 are assumed to be null. */
232 unsigned age;
233
234 /* Replacement mappings, allocated from update_ssa_obstack. */
235 bitmap repl_set;
236
237 /* Information stored for both SSA names and decls. */
238 struct common_info_d info;
239 };
240
241 /* The information associated with names. */
242 typedef struct ssa_name_info *ssa_name_info_p;
243
244 static vec<ssa_name_info_p> info_for_ssa_name;
245 static unsigned current_info_for_ssa_name_age;
246
247 static bitmap_obstack update_ssa_obstack;
248
249 /* The set of blocks affected by update_ssa. */
250 static bitmap blocks_to_update;
251
252 /* The main entry point to the SSA renamer (rewrite_blocks) may be
253 called several times to do different, but related, tasks.
254 Initially, we need it to rename the whole program into SSA form.
255 At other times, we may need it to only rename into SSA newly
256 exposed symbols. Finally, we can also call it to incrementally fix
257 an already built SSA web. */
258 enum rewrite_mode {
259 /* Convert the whole function into SSA form. */
260 REWRITE_ALL,
261
262 /* Incrementally update the SSA web by replacing existing SSA
263 names with new ones. See update_ssa for details. */
264 REWRITE_UPDATE
265 };
266
267 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
268 static bitmap symbols_to_rename_set;
269 static vec<tree> symbols_to_rename;
270
271 /* Mark SYM for renaming. */
272
273 static void
274 mark_for_renaming (tree sym)
275 {
276 if (!symbols_to_rename_set)
277 symbols_to_rename_set = BITMAP_ALLOC (NULL);
278 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
279 symbols_to_rename.safe_push (sym);
280 }
281
282 /* Return true if SYM is marked for renaming. */
283
284 static bool
285 marked_for_renaming (tree sym)
286 {
287 if (!symbols_to_rename_set || sym == NULL_TREE)
288 return false;
289 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
290 }
291
292
293 /* Return true if STMT needs to be rewritten. When renaming a subset
294 of the variables, not all statements will be processed. This is
295 decided in mark_def_sites. */
296
297 static inline bool
298 rewrite_uses_p (gimple stmt)
299 {
300 return gimple_visited_p (stmt);
301 }
302
303
304 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
305
306 static inline void
307 set_rewrite_uses (gimple stmt, bool rewrite_p)
308 {
309 gimple_set_visited (stmt, rewrite_p);
310 }
311
312
313 /* Return true if the DEFs created by statement STMT should be
314 registered when marking new definition sites. This is slightly
315 different than rewrite_uses_p: it's used by update_ssa to
316 distinguish statements that need to have both uses and defs
317 processed from those that only need to have their defs processed.
318 Statements that define new SSA names only need to have their defs
319 registered, but they don't need to have their uses renamed. */
320
321 static inline bool
322 register_defs_p (gimple stmt)
323 {
324 return gimple_plf (stmt, GF_PLF_1) != 0;
325 }
326
327
328 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
329
330 static inline void
331 set_register_defs (gimple stmt, bool register_defs_p)
332 {
333 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
334 }
335
336
337 /* Get the information associated with NAME. */
338
339 static inline ssa_name_info_p
340 get_ssa_name_ann (tree name)
341 {
342 unsigned ver = SSA_NAME_VERSION (name);
343 unsigned len = info_for_ssa_name.length ();
344 struct ssa_name_info *info;
345
346 /* Re-allocate the vector at most once per update/into-SSA. */
347 if (ver >= len)
348 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
349
350 /* But allocate infos lazily. */
351 info = info_for_ssa_name[ver];
352 if (!info)
353 {
354 info = XCNEW (struct ssa_name_info);
355 info->age = current_info_for_ssa_name_age;
356 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
357 info_for_ssa_name[ver] = info;
358 }
359
360 if (info->age < current_info_for_ssa_name_age)
361 {
362 info->age = current_info_for_ssa_name_age;
363 info->repl_set = NULL;
364 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
365 info->info.current_def = NULL_TREE;
366 info->info.def_blocks.def_blocks = NULL;
367 info->info.def_blocks.phi_blocks = NULL;
368 info->info.def_blocks.livein_blocks = NULL;
369 }
370
371 return info;
372 }
373
374 /* Return and allocate the auxiliar information for DECL. */
375
376 static inline var_info_p
377 get_var_info (tree decl)
378 {
379 struct var_info_d vi;
380 var_info_d **slot;
381 vi.var = decl;
382 slot = var_infos.find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
383 if (*slot == NULL)
384 {
385 var_info_p v = XCNEW (struct var_info_d);
386 v->var = decl;
387 *slot = v;
388 return v;
389 }
390 return *slot;
391 }
392
393
394 /* Clears info for SSA names. */
395
396 static void
397 clear_ssa_name_info (void)
398 {
399 current_info_for_ssa_name_age++;
400
401 /* If current_info_for_ssa_name_age wraps we use stale information.
402 Asser that this does not happen. */
403 gcc_assert (current_info_for_ssa_name_age != 0);
404 }
405
406
407 /* Get access to the auxiliar information stored per SSA name or decl. */
408
409 static inline common_info_p
410 get_common_info (tree var)
411 {
412 if (TREE_CODE (var) == SSA_NAME)
413 return &get_ssa_name_ann (var)->info;
414 else
415 return &get_var_info (var)->info;
416 }
417
418
419 /* Return the current definition for VAR. */
420
421 tree
422 get_current_def (tree var)
423 {
424 return get_common_info (var)->current_def;
425 }
426
427
428 /* Sets current definition of VAR to DEF. */
429
430 void
431 set_current_def (tree var, tree def)
432 {
433 get_common_info (var)->current_def = def;
434 }
435
436 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
437 all statements in basic block BB. */
438
439 static void
440 initialize_flags_in_bb (basic_block bb)
441 {
442 gimple stmt;
443 gimple_stmt_iterator gsi;
444
445 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
446 {
447 gimple phi = gsi_stmt (gsi);
448 set_rewrite_uses (phi, false);
449 set_register_defs (phi, false);
450 }
451
452 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
453 {
454 stmt = gsi_stmt (gsi);
455
456 /* We are going to use the operand cache API, such as
457 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
458 cache for each statement should be up-to-date. */
459 gcc_checking_assert (!gimple_modified_p (stmt));
460 set_rewrite_uses (stmt, false);
461 set_register_defs (stmt, false);
462 }
463 }
464
465 /* Mark block BB as interesting for update_ssa. */
466
467 static void
468 mark_block_for_update (basic_block bb)
469 {
470 gcc_checking_assert (blocks_to_update != NULL);
471 if (!bitmap_set_bit (blocks_to_update, bb->index))
472 return;
473 initialize_flags_in_bb (bb);
474 }
475
476 /* Return the set of blocks where variable VAR is defined and the blocks
477 where VAR is live on entry (livein). If no entry is found in
478 DEF_BLOCKS, a new one is created and returned. */
479
480 static inline struct def_blocks_d *
481 get_def_blocks_for (common_info_p info)
482 {
483 struct def_blocks_d *db_p = &info->def_blocks;
484 if (!db_p->def_blocks)
485 {
486 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
487 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
488 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
489 }
490
491 return db_p;
492 }
493
494
495 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
496 VAR is defined by a PHI node. */
497
498 static void
499 set_def_block (tree var, basic_block bb, bool phi_p)
500 {
501 struct def_blocks_d *db_p;
502 common_info_p info;
503
504 info = get_common_info (var);
505 db_p = get_def_blocks_for (info);
506
507 /* Set the bit corresponding to the block where VAR is defined. */
508 bitmap_set_bit (db_p->def_blocks, bb->index);
509 if (phi_p)
510 bitmap_set_bit (db_p->phi_blocks, bb->index);
511
512 /* Keep track of whether or not we may need to insert PHI nodes.
513
514 If we are in the UNKNOWN state, then this is the first definition
515 of VAR. Additionally, we have not seen any uses of VAR yet, so
516 we do not need a PHI node for this variable at this time (i.e.,
517 transition to NEED_PHI_STATE_NO).
518
519 If we are in any other state, then we either have multiple definitions
520 of this variable occurring in different blocks or we saw a use of the
521 variable which was not dominated by the block containing the
522 definition(s). In this case we may need a PHI node, so enter
523 state NEED_PHI_STATE_MAYBE. */
524 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
525 info->need_phi_state = NEED_PHI_STATE_NO;
526 else
527 info->need_phi_state = NEED_PHI_STATE_MAYBE;
528 }
529
530
531 /* Mark block BB as having VAR live at the entry to BB. */
532
533 static void
534 set_livein_block (tree var, basic_block bb)
535 {
536 common_info_p info;
537 struct def_blocks_d *db_p;
538
539 info = get_common_info (var);
540 db_p = get_def_blocks_for (info);
541
542 /* Set the bit corresponding to the block where VAR is live in. */
543 bitmap_set_bit (db_p->livein_blocks, bb->index);
544
545 /* Keep track of whether or not we may need to insert PHI nodes.
546
547 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
548 by the single block containing the definition(s) of this variable. If
549 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
550 NEED_PHI_STATE_MAYBE. */
551 if (info->need_phi_state == NEED_PHI_STATE_NO)
552 {
553 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
554
555 if (def_block_index == -1
556 || ! dominated_by_p (CDI_DOMINATORS, bb,
557 BASIC_BLOCK (def_block_index)))
558 info->need_phi_state = NEED_PHI_STATE_MAYBE;
559 }
560 else
561 info->need_phi_state = NEED_PHI_STATE_MAYBE;
562 }
563
564
565 /* Return true if NAME is in OLD_SSA_NAMES. */
566
567 static inline bool
568 is_old_name (tree name)
569 {
570 unsigned ver = SSA_NAME_VERSION (name);
571 if (!new_ssa_names)
572 return false;
573 return (ver < SBITMAP_SIZE (new_ssa_names)
574 && bitmap_bit_p (old_ssa_names, ver));
575 }
576
577
578 /* Return true if NAME is in NEW_SSA_NAMES. */
579
580 static inline bool
581 is_new_name (tree name)
582 {
583 unsigned ver = SSA_NAME_VERSION (name);
584 if (!new_ssa_names)
585 return false;
586 return (ver < SBITMAP_SIZE (new_ssa_names)
587 && bitmap_bit_p (new_ssa_names, ver));
588 }
589
590
591 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
592
593 static inline bitmap
594 names_replaced_by (tree new_tree)
595 {
596 return get_ssa_name_ann (new_tree)->repl_set;
597 }
598
599
600 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
601
602 static inline void
603 add_to_repl_tbl (tree new_tree, tree old)
604 {
605 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
606 if (!*set)
607 *set = BITMAP_ALLOC (&update_ssa_obstack);
608 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
609 }
610
611
612 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
613 represents the set of names O_1 ... O_j replaced by N_i. This is
614 used by update_ssa and its helpers to introduce new SSA names in an
615 already formed SSA web. */
616
617 static void
618 add_new_name_mapping (tree new_tree, tree old)
619 {
620 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
621 gcc_checking_assert (new_tree != old
622 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
623
624 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
625 caller may have created new names since the set was created. */
626 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
627 {
628 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
629 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
630 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
631 }
632
633 /* Update the REPL_TBL table. */
634 add_to_repl_tbl (new_tree, old);
635
636 /* If OLD had already been registered as a new name, then all the
637 names that OLD replaces should also be replaced by NEW_TREE. */
638 if (is_new_name (old))
639 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
640
641 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
642 respectively. */
643 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
644 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
645 }
646
647
648 /* Call back for walk_dominator_tree used to collect definition sites
649 for every variable in the function. For every statement S in block
650 BB:
651
652 1- Variables defined by S in the DEFS of S are marked in the bitmap
653 KILLS.
654
655 2- If S uses a variable VAR and there is no preceding kill of VAR,
656 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
657
658 This information is used to determine which variables are live
659 across block boundaries to reduce the number of PHI nodes
660 we create. */
661
662 static void
663 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
664 {
665 tree def;
666 use_operand_p use_p;
667 ssa_op_iter iter;
668
669 /* Since this is the first time that we rewrite the program into SSA
670 form, force an operand scan on every statement. */
671 update_stmt (stmt);
672
673 gcc_checking_assert (blocks_to_update == NULL);
674 set_register_defs (stmt, false);
675 set_rewrite_uses (stmt, false);
676
677 if (is_gimple_debug (stmt))
678 {
679 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
680 {
681 tree sym = USE_FROM_PTR (use_p);
682 gcc_checking_assert (DECL_P (sym));
683 set_rewrite_uses (stmt, true);
684 }
685 if (rewrite_uses_p (stmt))
686 bitmap_set_bit (interesting_blocks, bb->index);
687 return;
688 }
689
690 /* If a variable is used before being set, then the variable is live
691 across a block boundary, so mark it live-on-entry to BB. */
692 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
693 {
694 tree sym = USE_FROM_PTR (use_p);
695 gcc_checking_assert (DECL_P (sym));
696 if (!bitmap_bit_p (kills, DECL_UID (sym)))
697 set_livein_block (sym, bb);
698 set_rewrite_uses (stmt, true);
699 }
700
701 /* Now process the defs. Mark BB as the definition block and add
702 each def to the set of killed symbols. */
703 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
704 {
705 gcc_checking_assert (DECL_P (def));
706 set_def_block (def, bb, false);
707 bitmap_set_bit (kills, DECL_UID (def));
708 set_register_defs (stmt, true);
709 }
710
711 /* If we found the statement interesting then also mark the block BB
712 as interesting. */
713 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
714 bitmap_set_bit (interesting_blocks, bb->index);
715 }
716
717 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
718 in the dfs numbering of the dominance tree. */
719
720 struct dom_dfsnum
721 {
722 /* Basic block whose index this entry corresponds to. */
723 unsigned bb_index;
724
725 /* The dfs number of this node. */
726 unsigned dfs_num;
727 };
728
729 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
730 for qsort. */
731
732 static int
733 cmp_dfsnum (const void *a, const void *b)
734 {
735 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
736 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
737
738 return (int) da->dfs_num - (int) db->dfs_num;
739 }
740
741 /* Among the intervals starting at the N points specified in DEFS, find
742 the one that contains S, and return its bb_index. */
743
744 static unsigned
745 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
746 {
747 unsigned f = 0, t = n, m;
748
749 while (t > f + 1)
750 {
751 m = (f + t) / 2;
752 if (defs[m].dfs_num <= s)
753 f = m;
754 else
755 t = m;
756 }
757
758 return defs[f].bb_index;
759 }
760
761 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
762 KILLS is a bitmap of blocks where the value is defined before any use. */
763
764 static void
765 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
766 {
767 vec<int> worklist;
768 bitmap_iterator bi;
769 unsigned i, b, p, u, top;
770 bitmap live_phis;
771 basic_block def_bb, use_bb;
772 edge e;
773 edge_iterator ei;
774 bitmap to_remove;
775 struct dom_dfsnum *defs;
776 unsigned n_defs, adef;
777
778 if (bitmap_empty_p (uses))
779 {
780 bitmap_clear (phis);
781 return;
782 }
783
784 /* The phi must dominate a use, or an argument of a live phi. Also, we
785 do not create any phi nodes in def blocks, unless they are also livein. */
786 to_remove = BITMAP_ALLOC (NULL);
787 bitmap_and_compl (to_remove, kills, uses);
788 bitmap_and_compl_into (phis, to_remove);
789 if (bitmap_empty_p (phis))
790 {
791 BITMAP_FREE (to_remove);
792 return;
793 }
794
795 /* We want to remove the unnecessary phi nodes, but we do not want to compute
796 liveness information, as that may be linear in the size of CFG, and if
797 there are lot of different variables to rewrite, this may lead to quadratic
798 behavior.
799
800 Instead, we basically emulate standard dce. We put all uses to worklist,
801 then for each of them find the nearest def that dominates them. If this
802 def is a phi node, we mark it live, and if it was not live before, we
803 add the predecessors of its basic block to the worklist.
804
805 To quickly locate the nearest def that dominates use, we use dfs numbering
806 of the dominance tree (that is already available in order to speed up
807 queries). For each def, we have the interval given by the dfs number on
808 entry to and on exit from the corresponding subtree in the dominance tree.
809 The nearest dominator for a given use is the smallest of these intervals
810 that contains entry and exit dfs numbers for the basic block with the use.
811 If we store the bounds for all the uses to an array and sort it, we can
812 locate the nearest dominating def in logarithmic time by binary search.*/
813 bitmap_ior (to_remove, kills, phis);
814 n_defs = bitmap_count_bits (to_remove);
815 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
816 defs[0].bb_index = 1;
817 defs[0].dfs_num = 0;
818 adef = 1;
819 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
820 {
821 def_bb = BASIC_BLOCK (i);
822 defs[adef].bb_index = i;
823 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
824 defs[adef + 1].bb_index = i;
825 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
826 adef += 2;
827 }
828 BITMAP_FREE (to_remove);
829 gcc_assert (adef == 2 * n_defs + 1);
830 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
831 gcc_assert (defs[0].bb_index == 1);
832
833 /* Now each DEFS entry contains the number of the basic block to that the
834 dfs number corresponds. Change them to the number of basic block that
835 corresponds to the interval following the dfs number. Also, for the
836 dfs_out numbers, increase the dfs number by one (so that it corresponds
837 to the start of the following interval, not to the end of the current
838 one). We use WORKLIST as a stack. */
839 worklist.create (n_defs + 1);
840 worklist.quick_push (1);
841 top = 1;
842 n_defs = 1;
843 for (i = 1; i < adef; i++)
844 {
845 b = defs[i].bb_index;
846 if (b == top)
847 {
848 /* This is a closing element. Interval corresponding to the top
849 of the stack after removing it follows. */
850 worklist.pop ();
851 top = worklist[worklist.length () - 1];
852 defs[n_defs].bb_index = top;
853 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
854 }
855 else
856 {
857 /* Opening element. Nothing to do, just push it to the stack and move
858 it to the correct position. */
859 defs[n_defs].bb_index = defs[i].bb_index;
860 defs[n_defs].dfs_num = defs[i].dfs_num;
861 worklist.quick_push (b);
862 top = b;
863 }
864
865 /* If this interval starts at the same point as the previous one, cancel
866 the previous one. */
867 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
868 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
869 else
870 n_defs++;
871 }
872 worklist.pop ();
873 gcc_assert (worklist.is_empty ());
874
875 /* Now process the uses. */
876 live_phis = BITMAP_ALLOC (NULL);
877 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
878 {
879 worklist.safe_push (i);
880 }
881
882 while (!worklist.is_empty ())
883 {
884 b = worklist.pop ();
885 if (b == ENTRY_BLOCK)
886 continue;
887
888 /* If there is a phi node in USE_BB, it is made live. Otherwise,
889 find the def that dominates the immediate dominator of USE_BB
890 (the kill in USE_BB does not dominate the use). */
891 if (bitmap_bit_p (phis, b))
892 p = b;
893 else
894 {
895 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
896 p = find_dfsnum_interval (defs, n_defs,
897 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
898 if (!bitmap_bit_p (phis, p))
899 continue;
900 }
901
902 /* If the phi node is already live, there is nothing to do. */
903 if (!bitmap_set_bit (live_phis, p))
904 continue;
905
906 /* Add the new uses to the worklist. */
907 def_bb = BASIC_BLOCK (p);
908 FOR_EACH_EDGE (e, ei, def_bb->preds)
909 {
910 u = e->src->index;
911 if (bitmap_bit_p (uses, u))
912 continue;
913
914 /* In case there is a kill directly in the use block, do not record
915 the use (this is also necessary for correctness, as we assume that
916 uses dominated by a def directly in their block have been filtered
917 out before). */
918 if (bitmap_bit_p (kills, u))
919 continue;
920
921 bitmap_set_bit (uses, u);
922 worklist.safe_push (u);
923 }
924 }
925
926 worklist.release ();
927 bitmap_copy (phis, live_phis);
928 BITMAP_FREE (live_phis);
929 free (defs);
930 }
931
932 /* Return the set of blocks where variable VAR is defined and the blocks
933 where VAR is live on entry (livein). Return NULL, if no entry is
934 found in DEF_BLOCKS. */
935
936 static inline struct def_blocks_d *
937 find_def_blocks_for (tree var)
938 {
939 def_blocks_p p = &get_common_info (var)->def_blocks;
940 if (!p->def_blocks)
941 return NULL;
942 return p;
943 }
944
945
946 /* Marks phi node PHI in basic block BB for rewrite. */
947
948 static void
949 mark_phi_for_rewrite (basic_block bb, gimple phi)
950 {
951 gimple_vec phis;
952 unsigned n, idx = bb->index;
953
954 if (rewrite_uses_p (phi))
955 return;
956
957 set_rewrite_uses (phi, true);
958
959 if (!blocks_with_phis_to_rewrite)
960 return;
961
962 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
963
964 n = (unsigned) last_basic_block + 1;
965 if (phis_to_rewrite.length () < n)
966 phis_to_rewrite.safe_grow_cleared (n);
967
968 phis = phis_to_rewrite[idx];
969 phis.reserve (10);
970
971 phis.safe_push (phi);
972 phis_to_rewrite[idx] = phis;
973 }
974
975 /* Insert PHI nodes for variable VAR using the iterated dominance
976 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
977 function assumes that the caller is incrementally updating the
978 existing SSA form, in which case VAR may be an SSA name instead of
979 a symbol.
980
981 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
982 PHI node for VAR. On exit, only the nodes that received a PHI node
983 for VAR will be present in PHI_INSERTION_POINTS. */
984
985 static void
986 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
987 {
988 unsigned bb_index;
989 edge e;
990 gimple phi;
991 basic_block bb;
992 bitmap_iterator bi;
993 struct def_blocks_d *def_map = find_def_blocks_for (var);
994
995 /* Remove the blocks where we already have PHI nodes for VAR. */
996 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
997
998 /* Remove obviously useless phi nodes. */
999 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1000 def_map->livein_blocks);
1001
1002 /* And insert the PHI nodes. */
1003 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1004 {
1005 bb = BASIC_BLOCK (bb_index);
1006 if (update_p)
1007 mark_block_for_update (bb);
1008
1009 if (dump_file && (dump_flags & TDF_DETAILS))
1010 {
1011 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1012 print_generic_expr (dump_file, var, TDF_SLIM);
1013 fprintf (dump_file, "\n");
1014 }
1015 phi = NULL;
1016
1017 if (TREE_CODE (var) == SSA_NAME)
1018 {
1019 /* If we are rewriting SSA names, create the LHS of the PHI
1020 node by duplicating VAR. This is useful in the case of
1021 pointers, to also duplicate pointer attributes (alias
1022 information, in particular). */
1023 edge_iterator ei;
1024 tree new_lhs;
1025
1026 gcc_checking_assert (update_p);
1027 new_lhs = duplicate_ssa_name (var, NULL);
1028 phi = create_phi_node (new_lhs, bb);
1029 add_new_name_mapping (new_lhs, var);
1030
1031 /* Add VAR to every argument slot of PHI. We need VAR in
1032 every argument so that rewrite_update_phi_arguments knows
1033 which name is this PHI node replacing. If VAR is a
1034 symbol marked for renaming, this is not necessary, the
1035 renamer will use the symbol on the LHS to get its
1036 reaching definition. */
1037 FOR_EACH_EDGE (e, ei, bb->preds)
1038 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1039 }
1040 else
1041 {
1042 tree tracked_var;
1043
1044 gcc_checking_assert (DECL_P (var));
1045 phi = create_phi_node (var, bb);
1046
1047 tracked_var = target_for_debug_bind (var);
1048 if (tracked_var)
1049 {
1050 gimple note = gimple_build_debug_bind (tracked_var,
1051 PHI_RESULT (phi),
1052 phi);
1053 gimple_stmt_iterator si = gsi_after_labels (bb);
1054 gsi_insert_before (&si, note, GSI_SAME_STMT);
1055 }
1056 }
1057
1058 /* Mark this PHI node as interesting for update_ssa. */
1059 set_register_defs (phi, true);
1060 mark_phi_for_rewrite (bb, phi);
1061 }
1062 }
1063
1064 /* Sort var_infos after DECL_UID of their var. */
1065
1066 static int
1067 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1068 {
1069 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1070 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1071 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1072 return -1;
1073 else
1074 return 1;
1075 }
1076
1077 /* Insert PHI nodes at the dominance frontier of blocks with variable
1078 definitions. DFS contains the dominance frontier information for
1079 the flowgraph. */
1080
1081 static void
1082 insert_phi_nodes (bitmap_head *dfs)
1083 {
1084 hash_table <var_info_hasher>::iterator hi;
1085 unsigned i;
1086 var_info_p info;
1087 vec<var_info_p> vars;
1088
1089 timevar_push (TV_TREE_INSERT_PHI_NODES);
1090
1091 vars.create (var_infos.elements ());
1092 FOR_EACH_HASH_TABLE_ELEMENT (var_infos, info, var_info_p, hi)
1093 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1094 vars.quick_push (info);
1095
1096 /* Do two stages to avoid code generation differences for UID
1097 differences but no UID ordering differences. */
1098 vars.qsort (insert_phi_nodes_compare_var_infos);
1099
1100 FOR_EACH_VEC_ELT (vars, i, info)
1101 {
1102 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1103 insert_phi_nodes_for (info->var, idf, false);
1104 BITMAP_FREE (idf);
1105 }
1106
1107 vars.release ();
1108
1109 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1110 }
1111
1112
1113 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1114 register DEF (an SSA_NAME) to be a new definition for SYM. */
1115
1116 static void
1117 register_new_def (tree def, tree sym)
1118 {
1119 common_info_p info = get_common_info (sym);
1120 tree currdef;
1121
1122 /* If this variable is set in a single basic block and all uses are
1123 dominated by the set(s) in that single basic block, then there is
1124 no reason to record anything for this variable in the block local
1125 definition stacks. Doing so just wastes time and memory.
1126
1127 This is the same test to prune the set of variables which may
1128 need PHI nodes. So we just use that information since it's already
1129 computed and available for us to use. */
1130 if (info->need_phi_state == NEED_PHI_STATE_NO)
1131 {
1132 info->current_def = def;
1133 return;
1134 }
1135
1136 currdef = info->current_def;
1137
1138 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1139 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1140 in the stack so that we know which symbol is being defined by
1141 this SSA name when we unwind the stack. */
1142 if (currdef && !is_gimple_reg (sym))
1143 block_defs_stack.safe_push (sym);
1144
1145 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1146 stack is later used by the dominator tree callbacks to restore
1147 the reaching definitions for all the variables defined in the
1148 block after a recursive visit to all its immediately dominated
1149 blocks. If there is no current reaching definition, then just
1150 record the underlying _DECL node. */
1151 block_defs_stack.safe_push (currdef ? currdef : sym);
1152
1153 /* Set the current reaching definition for SYM to be DEF. */
1154 info->current_def = def;
1155 }
1156
1157
1158 /* Perform a depth-first traversal of the dominator tree looking for
1159 variables to rename. BB is the block where to start searching.
1160 Renaming is a five step process:
1161
1162 1- Every definition made by PHI nodes at the start of the blocks is
1163 registered as the current definition for the corresponding variable.
1164
1165 2- Every statement in BB is rewritten. USE and VUSE operands are
1166 rewritten with their corresponding reaching definition. DEF and
1167 VDEF targets are registered as new definitions.
1168
1169 3- All the PHI nodes in successor blocks of BB are visited. The
1170 argument corresponding to BB is replaced with its current reaching
1171 definition.
1172
1173 4- Recursively rewrite every dominator child block of BB.
1174
1175 5- Restore (in reverse order) the current reaching definition for every
1176 new definition introduced in this block. This is done so that when
1177 we return from the recursive call, all the current reaching
1178 definitions are restored to the names that were valid in the
1179 dominator parent of BB. */
1180
1181 /* Return the current definition for variable VAR. If none is found,
1182 create a new SSA name to act as the zeroth definition for VAR. */
1183
1184 static tree
1185 get_reaching_def (tree var)
1186 {
1187 common_info_p info = get_common_info (var);
1188 tree currdef;
1189
1190 /* Lookup the current reaching definition for VAR. */
1191 currdef = info->current_def;
1192
1193 /* If there is no reaching definition for VAR, create and register a
1194 default definition for it (if needed). */
1195 if (currdef == NULL_TREE)
1196 {
1197 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1198 currdef = get_or_create_ssa_default_def (cfun, sym);
1199 }
1200
1201 /* Return the current reaching definition for VAR, or the default
1202 definition, if we had to create one. */
1203 return currdef;
1204 }
1205
1206
1207 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1208
1209 static void
1210 rewrite_debug_stmt_uses (gimple stmt)
1211 {
1212 use_operand_p use_p;
1213 ssa_op_iter iter;
1214 bool update = false;
1215
1216 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1217 {
1218 tree var = USE_FROM_PTR (use_p), def;
1219 common_info_p info = get_common_info (var);
1220 gcc_checking_assert (DECL_P (var));
1221 def = info->current_def;
1222 if (!def)
1223 {
1224 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1225 {
1226 gimple_stmt_iterator gsi
1227 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1228 int lim;
1229 /* Search a few source bind stmts at the start of first bb to
1230 see if a DEBUG_EXPR_DECL can't be reused. */
1231 for (lim = 32;
1232 !gsi_end_p (gsi) && lim > 0;
1233 gsi_next (&gsi), lim--)
1234 {
1235 gimple gstmt = gsi_stmt (gsi);
1236 if (!gimple_debug_source_bind_p (gstmt))
1237 break;
1238 if (gimple_debug_source_bind_get_value (gstmt) == var)
1239 {
1240 def = gimple_debug_source_bind_get_var (gstmt);
1241 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1242 break;
1243 else
1244 def = NULL_TREE;
1245 }
1246 }
1247 /* If not, add a new source bind stmt. */
1248 if (def == NULL_TREE)
1249 {
1250 gimple def_temp;
1251 def = make_node (DEBUG_EXPR_DECL);
1252 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1253 DECL_ARTIFICIAL (def) = 1;
1254 TREE_TYPE (def) = TREE_TYPE (var);
1255 DECL_MODE (def) = DECL_MODE (var);
1256 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1257 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1258 }
1259 update = true;
1260 }
1261 }
1262 else
1263 {
1264 /* Check if info->current_def can be trusted. */
1265 basic_block bb = gimple_bb (stmt);
1266 basic_block def_bb
1267 = SSA_NAME_IS_DEFAULT_DEF (def)
1268 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1269
1270 /* If definition is in current bb, it is fine. */
1271 if (bb == def_bb)
1272 ;
1273 /* If definition bb doesn't dominate the current bb,
1274 it can't be used. */
1275 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1276 def = NULL;
1277 /* If there is just one definition and dominates the current
1278 bb, it is fine. */
1279 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1280 ;
1281 else
1282 {
1283 struct def_blocks_d *db_p = get_def_blocks_for (info);
1284
1285 /* If there are some non-debug uses in the current bb,
1286 it is fine. */
1287 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1288 ;
1289 /* Otherwise give up for now. */
1290 else
1291 def = NULL;
1292 }
1293 }
1294 if (def == NULL)
1295 {
1296 gimple_debug_bind_reset_value (stmt);
1297 update_stmt (stmt);
1298 return;
1299 }
1300 SET_USE (use_p, def);
1301 }
1302 if (update)
1303 update_stmt (stmt);
1304 }
1305
1306 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1307 the block with its immediate reaching definitions. Update the current
1308 definition of a variable when a new real or virtual definition is found. */
1309
1310 static void
1311 rewrite_stmt (gimple_stmt_iterator *si)
1312 {
1313 use_operand_p use_p;
1314 def_operand_p def_p;
1315 ssa_op_iter iter;
1316 gimple stmt = gsi_stmt (*si);
1317
1318 /* If mark_def_sites decided that we don't need to rewrite this
1319 statement, ignore it. */
1320 gcc_assert (blocks_to_update == NULL);
1321 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1322 return;
1323
1324 if (dump_file && (dump_flags & TDF_DETAILS))
1325 {
1326 fprintf (dump_file, "Renaming statement ");
1327 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1328 fprintf (dump_file, "\n");
1329 }
1330
1331 /* Step 1. Rewrite USES in the statement. */
1332 if (rewrite_uses_p (stmt))
1333 {
1334 if (is_gimple_debug (stmt))
1335 rewrite_debug_stmt_uses (stmt);
1336 else
1337 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1338 {
1339 tree var = USE_FROM_PTR (use_p);
1340 gcc_checking_assert (DECL_P (var));
1341 SET_USE (use_p, get_reaching_def (var));
1342 }
1343 }
1344
1345 /* Step 2. Register the statement's DEF operands. */
1346 if (register_defs_p (stmt))
1347 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1348 {
1349 tree var = DEF_FROM_PTR (def_p);
1350 tree name;
1351 tree tracked_var;
1352
1353 gcc_checking_assert (DECL_P (var));
1354
1355 if (gimple_clobber_p (stmt)
1356 && is_gimple_reg (var))
1357 {
1358 /* If we rewrite a DECL into SSA form then drop its
1359 clobber stmts and replace uses with a new default def. */
1360 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1361 && !gimple_vdef (stmt));
1362 gsi_replace (si, gimple_build_nop (), true);
1363 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1364 break;
1365 }
1366
1367 name = make_ssa_name (var, stmt);
1368 SET_DEF (def_p, name);
1369 register_new_def (DEF_FROM_PTR (def_p), var);
1370
1371 tracked_var = target_for_debug_bind (var);
1372 if (tracked_var)
1373 {
1374 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1375 gsi_insert_after (si, note, GSI_SAME_STMT);
1376 }
1377 }
1378 }
1379
1380
1381 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1382 PHI nodes. For every PHI node found, add a new argument containing the
1383 current reaching definition for the variable and the edge through which
1384 that definition is reaching the PHI node. */
1385
1386 static void
1387 rewrite_add_phi_arguments (basic_block bb)
1388 {
1389 edge e;
1390 edge_iterator ei;
1391
1392 FOR_EACH_EDGE (e, ei, bb->succs)
1393 {
1394 gimple phi;
1395 gimple_stmt_iterator gsi;
1396
1397 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1398 gsi_next (&gsi))
1399 {
1400 tree currdef, res;
1401 location_t loc;
1402
1403 phi = gsi_stmt (gsi);
1404 res = gimple_phi_result (phi);
1405 currdef = get_reaching_def (SSA_NAME_VAR (res));
1406 /* Virtual operand PHI args do not need a location. */
1407 if (virtual_operand_p (res))
1408 loc = UNKNOWN_LOCATION;
1409 else
1410 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1411 add_phi_arg (phi, currdef, e, loc);
1412 }
1413 }
1414 }
1415
1416 class rewrite_dom_walker : public dom_walker
1417 {
1418 public:
1419 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1420
1421 virtual void before_dom_children (basic_block);
1422 virtual void after_dom_children (basic_block);
1423 };
1424
1425 /* SSA Rewriting Step 1. Initialization, create a block local stack
1426 of reaching definitions for new SSA names produced in this block
1427 (BLOCK_DEFS). Register new definitions for every PHI node in the
1428 block. */
1429
1430 void
1431 rewrite_dom_walker::before_dom_children (basic_block bb)
1432 {
1433 gimple_stmt_iterator gsi;
1434
1435 if (dump_file && (dump_flags & TDF_DETAILS))
1436 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1437
1438 /* Mark the unwind point for this block. */
1439 block_defs_stack.safe_push (NULL_TREE);
1440
1441 /* Step 1. Register new definitions for every PHI node in the block.
1442 Conceptually, all the PHI nodes are executed in parallel and each PHI
1443 node introduces a new version for the associated variable. */
1444 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1445 {
1446 tree result = gimple_phi_result (gsi_stmt (gsi));
1447 register_new_def (result, SSA_NAME_VAR (result));
1448 }
1449
1450 /* Step 2. Rewrite every variable used in each statement in the block
1451 with its immediate reaching definitions. Update the current definition
1452 of a variable when a new real or virtual definition is found. */
1453 if (bitmap_bit_p (interesting_blocks, bb->index))
1454 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1455 rewrite_stmt (&gsi);
1456
1457 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1458 For every PHI node found, add a new argument containing the current
1459 reaching definition for the variable and the edge through which that
1460 definition is reaching the PHI node. */
1461 rewrite_add_phi_arguments (bb);
1462 }
1463
1464
1465
1466 /* Called after visiting all the statements in basic block BB and all
1467 of its dominator children. Restore CURRDEFS to its original value. */
1468
1469 void
1470 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1471 {
1472 /* Restore CURRDEFS to its original state. */
1473 while (block_defs_stack.length () > 0)
1474 {
1475 tree tmp = block_defs_stack.pop ();
1476 tree saved_def, var;
1477
1478 if (tmp == NULL_TREE)
1479 break;
1480
1481 if (TREE_CODE (tmp) == SSA_NAME)
1482 {
1483 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1484 current definition of its underlying variable. Note that
1485 if the SSA_NAME is not for a GIMPLE register, the symbol
1486 being defined is stored in the next slot in the stack.
1487 This mechanism is needed because an SSA name for a
1488 non-register symbol may be the definition for more than
1489 one symbol (e.g., SFTs, aliased variables, etc). */
1490 saved_def = tmp;
1491 var = SSA_NAME_VAR (saved_def);
1492 if (!is_gimple_reg (var))
1493 var = block_defs_stack.pop ();
1494 }
1495 else
1496 {
1497 /* If we recorded anything else, it must have been a _DECL
1498 node and its current reaching definition must have been
1499 NULL. */
1500 saved_def = NULL;
1501 var = tmp;
1502 }
1503
1504 get_common_info (var)->current_def = saved_def;
1505 }
1506 }
1507
1508
1509 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1510
1511 DEBUG_FUNCTION void
1512 debug_decl_set (bitmap set)
1513 {
1514 dump_decl_set (stderr, set);
1515 fprintf (stderr, "\n");
1516 }
1517
1518
1519 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1520 stack up to a maximum of N levels. If N is -1, the whole stack is
1521 dumped. New levels are created when the dominator tree traversal
1522 used for renaming enters a new sub-tree. */
1523
1524 void
1525 dump_defs_stack (FILE *file, int n)
1526 {
1527 int i, j;
1528
1529 fprintf (file, "\n\nRenaming stack");
1530 if (n > 0)
1531 fprintf (file, " (up to %d levels)", n);
1532 fprintf (file, "\n\n");
1533
1534 i = 1;
1535 fprintf (file, "Level %d (current level)\n", i);
1536 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1537 {
1538 tree name, var;
1539
1540 name = block_defs_stack[j];
1541 if (name == NULL_TREE)
1542 {
1543 i++;
1544 if (n > 0 && i > n)
1545 break;
1546 fprintf (file, "\nLevel %d\n", i);
1547 continue;
1548 }
1549
1550 if (DECL_P (name))
1551 {
1552 var = name;
1553 name = NULL_TREE;
1554 }
1555 else
1556 {
1557 var = SSA_NAME_VAR (name);
1558 if (!is_gimple_reg (var))
1559 {
1560 j--;
1561 var = block_defs_stack[j];
1562 }
1563 }
1564
1565 fprintf (file, " Previous CURRDEF (");
1566 print_generic_expr (file, var, 0);
1567 fprintf (file, ") = ");
1568 if (name)
1569 print_generic_expr (file, name, 0);
1570 else
1571 fprintf (file, "<NIL>");
1572 fprintf (file, "\n");
1573 }
1574 }
1575
1576
1577 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1578 stack up to a maximum of N levels. If N is -1, the whole stack is
1579 dumped. New levels are created when the dominator tree traversal
1580 used for renaming enters a new sub-tree. */
1581
1582 DEBUG_FUNCTION void
1583 debug_defs_stack (int n)
1584 {
1585 dump_defs_stack (stderr, n);
1586 }
1587
1588
1589 /* Dump the current reaching definition of every symbol to FILE. */
1590
1591 void
1592 dump_currdefs (FILE *file)
1593 {
1594 unsigned i;
1595 tree var;
1596
1597 if (symbols_to_rename.is_empty ())
1598 return;
1599
1600 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1601 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1602 {
1603 common_info_p info = get_common_info (var);
1604 fprintf (file, "CURRDEF (");
1605 print_generic_expr (file, var, 0);
1606 fprintf (file, ") = ");
1607 if (info->current_def)
1608 print_generic_expr (file, info->current_def, 0);
1609 else
1610 fprintf (file, "<NIL>");
1611 fprintf (file, "\n");
1612 }
1613 }
1614
1615
1616 /* Dump the current reaching definition of every symbol to stderr. */
1617
1618 DEBUG_FUNCTION void
1619 debug_currdefs (void)
1620 {
1621 dump_currdefs (stderr);
1622 }
1623
1624
1625 /* Dump SSA information to FILE. */
1626
1627 void
1628 dump_tree_ssa (FILE *file)
1629 {
1630 const char *funcname
1631 = lang_hooks.decl_printable_name (current_function_decl, 2);
1632
1633 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1634
1635 dump_var_infos (file);
1636 dump_defs_stack (file, -1);
1637 dump_currdefs (file);
1638 dump_tree_ssa_stats (file);
1639 }
1640
1641
1642 /* Dump SSA information to stderr. */
1643
1644 DEBUG_FUNCTION void
1645 debug_tree_ssa (void)
1646 {
1647 dump_tree_ssa (stderr);
1648 }
1649
1650
1651 /* Dump statistics for the hash table HTAB. */
1652
1653 static void
1654 htab_statistics (FILE *file, hash_table <var_info_hasher> htab)
1655 {
1656 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1657 (long) htab.size (),
1658 (long) htab.elements (),
1659 htab.collisions ());
1660 }
1661
1662
1663 /* Dump SSA statistics on FILE. */
1664
1665 void
1666 dump_tree_ssa_stats (FILE *file)
1667 {
1668 if (var_infos.is_created ())
1669 {
1670 fprintf (file, "\nHash table statistics:\n");
1671 fprintf (file, " var_infos: ");
1672 htab_statistics (file, var_infos);
1673 fprintf (file, "\n");
1674 }
1675 }
1676
1677
1678 /* Dump SSA statistics on stderr. */
1679
1680 DEBUG_FUNCTION void
1681 debug_tree_ssa_stats (void)
1682 {
1683 dump_tree_ssa_stats (stderr);
1684 }
1685
1686
1687 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1688
1689 int
1690 debug_var_infos_r (var_info_d **slot, FILE *file)
1691 {
1692 struct var_info_d *info = *slot;
1693
1694 fprintf (file, "VAR: ");
1695 print_generic_expr (file, info->var, dump_flags);
1696 bitmap_print (file, info->info.def_blocks.def_blocks,
1697 ", DEF_BLOCKS: { ", "}");
1698 bitmap_print (file, info->info.def_blocks.livein_blocks,
1699 ", LIVEIN_BLOCKS: { ", "}");
1700 bitmap_print (file, info->info.def_blocks.phi_blocks,
1701 ", PHI_BLOCKS: { ", "}\n");
1702
1703 return 1;
1704 }
1705
1706
1707 /* Dump the VAR_INFOS hash table on FILE. */
1708
1709 void
1710 dump_var_infos (FILE *file)
1711 {
1712 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1713 if (var_infos.is_created ())
1714 var_infos.traverse <FILE *, debug_var_infos_r> (file);
1715 }
1716
1717
1718 /* Dump the VAR_INFOS hash table on stderr. */
1719
1720 DEBUG_FUNCTION void
1721 debug_var_infos (void)
1722 {
1723 dump_var_infos (stderr);
1724 }
1725
1726
1727 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1728
1729 static inline void
1730 register_new_update_single (tree new_name, tree old_name)
1731 {
1732 common_info_p info = get_common_info (old_name);
1733 tree currdef = info->current_def;
1734
1735 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1736 This stack is later used by the dominator tree callbacks to
1737 restore the reaching definitions for all the variables
1738 defined in the block after a recursive visit to all its
1739 immediately dominated blocks. */
1740 block_defs_stack.reserve (2);
1741 block_defs_stack.quick_push (currdef);
1742 block_defs_stack.quick_push (old_name);
1743
1744 /* Set the current reaching definition for OLD_NAME to be
1745 NEW_NAME. */
1746 info->current_def = new_name;
1747 }
1748
1749
1750 /* Register NEW_NAME to be the new reaching definition for all the
1751 names in OLD_NAMES. Used by the incremental SSA update routines to
1752 replace old SSA names with new ones. */
1753
1754 static inline void
1755 register_new_update_set (tree new_name, bitmap old_names)
1756 {
1757 bitmap_iterator bi;
1758 unsigned i;
1759
1760 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1761 register_new_update_single (new_name, ssa_name (i));
1762 }
1763
1764
1765
1766 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1767 it is a symbol marked for renaming, replace it with USE_P's current
1768 reaching definition. */
1769
1770 static inline void
1771 maybe_replace_use (use_operand_p use_p)
1772 {
1773 tree rdef = NULL_TREE;
1774 tree use = USE_FROM_PTR (use_p);
1775 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1776
1777 if (marked_for_renaming (sym))
1778 rdef = get_reaching_def (sym);
1779 else if (is_old_name (use))
1780 rdef = get_reaching_def (use);
1781
1782 if (rdef && rdef != use)
1783 SET_USE (use_p, rdef);
1784 }
1785
1786
1787 /* Same as maybe_replace_use, but without introducing default stmts,
1788 returning false to indicate a need to do so. */
1789
1790 static inline bool
1791 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1792 {
1793 tree rdef = NULL_TREE;
1794 tree use = USE_FROM_PTR (use_p);
1795 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1796
1797 if (marked_for_renaming (sym))
1798 rdef = get_var_info (sym)->info.current_def;
1799 else if (is_old_name (use))
1800 {
1801 rdef = get_ssa_name_ann (use)->info.current_def;
1802 /* We can't assume that, if there's no current definition, the
1803 default one should be used. It could be the case that we've
1804 rearranged blocks so that the earlier definition no longer
1805 dominates the use. */
1806 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1807 rdef = use;
1808 }
1809 else
1810 rdef = use;
1811
1812 if (rdef && rdef != use)
1813 SET_USE (use_p, rdef);
1814
1815 return rdef != NULL_TREE;
1816 }
1817
1818
1819 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1820 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1821 register it as the current definition for the names replaced by
1822 DEF_P. */
1823
1824 static inline void
1825 maybe_register_def (def_operand_p def_p, gimple stmt,
1826 gimple_stmt_iterator gsi)
1827 {
1828 tree def = DEF_FROM_PTR (def_p);
1829 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1830
1831 /* If DEF is a naked symbol that needs renaming, create a new
1832 name for it. */
1833 if (marked_for_renaming (sym))
1834 {
1835 if (DECL_P (def))
1836 {
1837 tree tracked_var;
1838
1839 def = make_ssa_name (def, stmt);
1840 SET_DEF (def_p, def);
1841
1842 tracked_var = target_for_debug_bind (sym);
1843 if (tracked_var)
1844 {
1845 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1846 /* If stmt ends the bb, insert the debug stmt on the single
1847 non-EH edge from the stmt. */
1848 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1849 {
1850 basic_block bb = gsi_bb (gsi);
1851 edge_iterator ei;
1852 edge e, ef = NULL;
1853 FOR_EACH_EDGE (e, ei, bb->succs)
1854 if (!(e->flags & EDGE_EH))
1855 {
1856 gcc_checking_assert (!ef);
1857 ef = e;
1858 }
1859 /* If there are other predecessors to ef->dest, then
1860 there must be PHI nodes for the modified
1861 variable, and therefore there will be debug bind
1862 stmts after the PHI nodes. The debug bind notes
1863 we'd insert would force the creation of a new
1864 block (diverging codegen) and be redundant with
1865 the post-PHI bind stmts, so don't add them.
1866
1867 As for the exit edge, there wouldn't be redundant
1868 bind stmts, but there wouldn't be a PC to bind
1869 them to either, so avoid diverging the CFG. */
1870 if (ef && single_pred_p (ef->dest)
1871 && ef->dest != EXIT_BLOCK_PTR)
1872 {
1873 /* If there were PHI nodes in the node, we'd
1874 have to make sure the value we're binding
1875 doesn't need rewriting. But there shouldn't
1876 be PHI nodes in a single-predecessor block,
1877 so we just add the note. */
1878 gsi_insert_on_edge_immediate (ef, note);
1879 }
1880 }
1881 else
1882 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1883 }
1884 }
1885
1886 register_new_update_single (def, sym);
1887 }
1888 else
1889 {
1890 /* If DEF is a new name, register it as a new definition
1891 for all the names replaced by DEF. */
1892 if (is_new_name (def))
1893 register_new_update_set (def, names_replaced_by (def));
1894
1895 /* If DEF is an old name, register DEF as a new
1896 definition for itself. */
1897 if (is_old_name (def))
1898 register_new_update_single (def, def);
1899 }
1900 }
1901
1902
1903 /* Update every variable used in the statement pointed-to by SI. The
1904 statement is assumed to be in SSA form already. Names in
1905 OLD_SSA_NAMES used by SI will be updated to their current reaching
1906 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1907 will be registered as a new definition for their corresponding name
1908 in OLD_SSA_NAMES. */
1909
1910 static void
1911 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1912 {
1913 use_operand_p use_p;
1914 def_operand_p def_p;
1915 ssa_op_iter iter;
1916
1917 /* Only update marked statements. */
1918 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1919 return;
1920
1921 if (dump_file && (dump_flags & TDF_DETAILS))
1922 {
1923 fprintf (dump_file, "Updating SSA information for statement ");
1924 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1925 }
1926
1927 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1928 symbol is marked for renaming. */
1929 if (rewrite_uses_p (stmt))
1930 {
1931 if (is_gimple_debug (stmt))
1932 {
1933 bool failed = false;
1934
1935 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1936 if (!maybe_replace_use_in_debug_stmt (use_p))
1937 {
1938 failed = true;
1939 break;
1940 }
1941
1942 if (failed)
1943 {
1944 /* DOM sometimes threads jumps in such a way that a
1945 debug stmt ends up referencing a SSA variable that no
1946 longer dominates the debug stmt, but such that all
1947 incoming definitions refer to the same definition in
1948 an earlier dominator. We could try to recover that
1949 definition somehow, but this will have to do for now.
1950
1951 Introducing a default definition, which is what
1952 maybe_replace_use() would do in such cases, may
1953 modify code generation, for the otherwise-unused
1954 default definition would never go away, modifying SSA
1955 version numbers all over. */
1956 gimple_debug_bind_reset_value (stmt);
1957 update_stmt (stmt);
1958 }
1959 }
1960 else
1961 {
1962 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1963 maybe_replace_use (use_p);
1964 }
1965 }
1966
1967 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1968 Also register definitions for names whose underlying symbol is
1969 marked for renaming. */
1970 if (register_defs_p (stmt))
1971 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1972 maybe_register_def (def_p, stmt, gsi);
1973 }
1974
1975
1976 /* Visit all the successor blocks of BB looking for PHI nodes. For
1977 every PHI node found, check if any of its arguments is in
1978 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1979 definition, replace it. */
1980
1981 static void
1982 rewrite_update_phi_arguments (basic_block bb)
1983 {
1984 edge e;
1985 edge_iterator ei;
1986 unsigned i;
1987
1988 FOR_EACH_EDGE (e, ei, bb->succs)
1989 {
1990 gimple phi;
1991 gimple_vec phis;
1992
1993 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1994 continue;
1995
1996 phis = phis_to_rewrite[e->dest->index];
1997 FOR_EACH_VEC_ELT (phis, i, phi)
1998 {
1999 tree arg, lhs_sym, reaching_def = NULL;
2000 use_operand_p arg_p;
2001
2002 gcc_checking_assert (rewrite_uses_p (phi));
2003
2004 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2005 arg = USE_FROM_PTR (arg_p);
2006
2007 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2008 continue;
2009
2010 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2011
2012 if (arg == NULL_TREE)
2013 {
2014 /* When updating a PHI node for a recently introduced
2015 symbol we may find NULL arguments. That's why we
2016 take the symbol from the LHS of the PHI node. */
2017 reaching_def = get_reaching_def (lhs_sym);
2018
2019 }
2020 else
2021 {
2022 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2023
2024 if (marked_for_renaming (sym))
2025 reaching_def = get_reaching_def (sym);
2026 else if (is_old_name (arg))
2027 reaching_def = get_reaching_def (arg);
2028 }
2029
2030 /* Update the argument if there is a reaching def. */
2031 if (reaching_def)
2032 {
2033 source_location locus;
2034 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2035
2036 SET_USE (arg_p, reaching_def);
2037
2038 /* Virtual operands do not need a location. */
2039 if (virtual_operand_p (reaching_def))
2040 locus = UNKNOWN_LOCATION;
2041 else
2042 {
2043 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2044
2045 /* Single element PHI nodes behave like copies, so get the
2046 location from the phi argument. */
2047 if (gimple_code (stmt) == GIMPLE_PHI
2048 && gimple_phi_num_args (stmt) == 1)
2049 locus = gimple_phi_arg_location (stmt, 0);
2050 else
2051 locus = gimple_location (stmt);
2052 }
2053
2054 gimple_phi_arg_set_location (phi, arg_i, locus);
2055 }
2056
2057
2058 if (e->flags & EDGE_ABNORMAL)
2059 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2060 }
2061 }
2062 }
2063
2064 class rewrite_update_dom_walker : public dom_walker
2065 {
2066 public:
2067 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2068
2069 virtual void before_dom_children (basic_block);
2070 virtual void after_dom_children (basic_block);
2071 };
2072
2073 /* Initialization of block data structures for the incremental SSA
2074 update pass. Create a block local stack of reaching definitions
2075 for new SSA names produced in this block (BLOCK_DEFS). Register
2076 new definitions for every PHI node in the block. */
2077
2078 void
2079 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2080 {
2081 bool is_abnormal_phi;
2082 gimple_stmt_iterator gsi;
2083
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2086 bb->index);
2087
2088 /* Mark the unwind point for this block. */
2089 block_defs_stack.safe_push (NULL_TREE);
2090
2091 if (!bitmap_bit_p (blocks_to_update, bb->index))
2092 return;
2093
2094 /* Mark the LHS if any of the arguments flows through an abnormal
2095 edge. */
2096 is_abnormal_phi = bb_has_abnormal_pred (bb);
2097
2098 /* If any of the PHI nodes is a replacement for a name in
2099 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2100 register it as a new definition for its corresponding name. Also
2101 register definitions for names whose underlying symbols are
2102 marked for renaming. */
2103 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2104 {
2105 tree lhs, lhs_sym;
2106 gimple phi = gsi_stmt (gsi);
2107
2108 if (!register_defs_p (phi))
2109 continue;
2110
2111 lhs = gimple_phi_result (phi);
2112 lhs_sym = SSA_NAME_VAR (lhs);
2113
2114 if (marked_for_renaming (lhs_sym))
2115 register_new_update_single (lhs, lhs_sym);
2116 else
2117 {
2118
2119 /* If LHS is a new name, register a new definition for all
2120 the names replaced by LHS. */
2121 if (is_new_name (lhs))
2122 register_new_update_set (lhs, names_replaced_by (lhs));
2123
2124 /* If LHS is an OLD name, register it as a new definition
2125 for itself. */
2126 if (is_old_name (lhs))
2127 register_new_update_single (lhs, lhs);
2128 }
2129
2130 if (is_abnormal_phi)
2131 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2132 }
2133
2134 /* Step 2. Rewrite every variable used in each statement in the block. */
2135 if (bitmap_bit_p (interesting_blocks, bb->index))
2136 {
2137 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2138 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2139 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2140 }
2141
2142 /* Step 3. Update PHI nodes. */
2143 rewrite_update_phi_arguments (bb);
2144 }
2145
2146 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2147 the current reaching definition of every name re-written in BB to
2148 the original reaching definition before visiting BB. This
2149 unwinding must be done in the opposite order to what is done in
2150 register_new_update_set. */
2151
2152 void
2153 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2154 {
2155 while (block_defs_stack.length () > 0)
2156 {
2157 tree var = block_defs_stack.pop ();
2158 tree saved_def;
2159
2160 /* NULL indicates the unwind stop point for this block (see
2161 rewrite_update_enter_block). */
2162 if (var == NULL)
2163 return;
2164
2165 saved_def = block_defs_stack.pop ();
2166 get_common_info (var)->current_def = saved_def;
2167 }
2168 }
2169
2170
2171 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2172 form.
2173
2174 ENTRY indicates the block where to start. Every block dominated by
2175 ENTRY will be rewritten.
2176
2177 WHAT indicates what actions will be taken by the renamer (see enum
2178 rewrite_mode).
2179
2180 BLOCKS are the set of interesting blocks for the dominator walker
2181 to process. If this set is NULL, then all the nodes dominated
2182 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2183 are not present in BLOCKS are ignored. */
2184
2185 static void
2186 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2187 {
2188 /* Rewrite all the basic blocks in the program. */
2189 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2190
2191 block_defs_stack.create (10);
2192
2193 /* Recursively walk the dominator tree rewriting each statement in
2194 each basic block. */
2195 if (what == REWRITE_ALL)
2196 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2197 else if (what == REWRITE_UPDATE)
2198 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2199 else
2200 gcc_unreachable ();
2201
2202 /* Debugging dumps. */
2203 if (dump_file && (dump_flags & TDF_STATS))
2204 {
2205 dump_dfa_stats (dump_file);
2206 if (var_infos.is_created ())
2207 dump_tree_ssa_stats (dump_file);
2208 }
2209
2210 block_defs_stack.release ();
2211
2212 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2213 }
2214
2215 class mark_def_dom_walker : public dom_walker
2216 {
2217 public:
2218 mark_def_dom_walker (cdi_direction direction);
2219 ~mark_def_dom_walker ();
2220
2221 virtual void before_dom_children (basic_block);
2222
2223 private:
2224 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2225 large enough to accommodate all the variables referenced in the
2226 function, not just the ones we are renaming. */
2227 bitmap m_kills;
2228 };
2229
2230 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2231 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2232 {
2233 }
2234
2235 mark_def_dom_walker::~mark_def_dom_walker ()
2236 {
2237 BITMAP_FREE (m_kills);
2238 }
2239
2240 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2241 at the start of each block, and call mark_def_sites for each statement. */
2242
2243 void
2244 mark_def_dom_walker::before_dom_children (basic_block bb)
2245 {
2246 gimple_stmt_iterator gsi;
2247
2248 bitmap_clear (m_kills);
2249 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2250 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2251 }
2252
2253 /* Initialize internal data needed during renaming. */
2254
2255 static void
2256 init_ssa_renamer (void)
2257 {
2258 cfun->gimple_df->in_ssa_p = false;
2259
2260 /* Allocate memory for the DEF_BLOCKS hash table. */
2261 gcc_assert (!var_infos.is_created ());
2262 var_infos.create (vec_safe_length (cfun->local_decls));
2263
2264 bitmap_obstack_initialize (&update_ssa_obstack);
2265 }
2266
2267
2268 /* Deallocate internal data structures used by the renamer. */
2269
2270 static void
2271 fini_ssa_renamer (void)
2272 {
2273 if (var_infos.is_created ())
2274 var_infos.dispose ();
2275
2276 bitmap_obstack_release (&update_ssa_obstack);
2277
2278 cfun->gimple_df->ssa_renaming_needed = 0;
2279 cfun->gimple_df->rename_vops = 0;
2280 cfun->gimple_df->in_ssa_p = true;
2281 }
2282
2283 /* Main entry point into the SSA builder. The renaming process
2284 proceeds in four main phases:
2285
2286 1- Compute dominance frontier and immediate dominators, needed to
2287 insert PHI nodes and rename the function in dominator tree
2288 order.
2289
2290 2- Find and mark all the blocks that define variables.
2291
2292 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2293
2294 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2295
2296 Steps 3 and 4 are done using the dominator tree walker
2297 (walk_dominator_tree). */
2298
2299 static unsigned int
2300 rewrite_into_ssa (void)
2301 {
2302 bitmap_head *dfs;
2303 basic_block bb;
2304 unsigned i;
2305
2306 /* Initialize operand data structures. */
2307 init_ssa_operands (cfun);
2308
2309 /* Initialize internal data needed by the renamer. */
2310 init_ssa_renamer ();
2311
2312 /* Initialize the set of interesting blocks. The callback
2313 mark_def_sites will add to this set those blocks that the renamer
2314 should process. */
2315 interesting_blocks = sbitmap_alloc (last_basic_block);
2316 bitmap_clear (interesting_blocks);
2317
2318 /* Initialize dominance frontier. */
2319 dfs = XNEWVEC (bitmap_head, last_basic_block);
2320 FOR_EACH_BB (bb)
2321 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2322
2323 /* 1- Compute dominance frontiers. */
2324 calculate_dominance_info (CDI_DOMINATORS);
2325 compute_dominance_frontiers (dfs);
2326
2327 /* 2- Find and mark definition sites. */
2328 mark_def_dom_walker (CDI_DOMINATORS).walk (cfun->cfg->x_entry_block_ptr);
2329
2330 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2331 insert_phi_nodes (dfs);
2332
2333 /* 4- Rename all the blocks. */
2334 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2335
2336 /* Free allocated memory. */
2337 FOR_EACH_BB (bb)
2338 bitmap_clear (&dfs[bb->index]);
2339 free (dfs);
2340
2341 sbitmap_free (interesting_blocks);
2342
2343 fini_ssa_renamer ();
2344
2345 /* Try to get rid of all gimplifier generated temporaries by making
2346 its SSA names anonymous. This way we can garbage collect them
2347 all after removing unused locals which we do in our TODO. */
2348 for (i = 1; i < num_ssa_names; ++i)
2349 {
2350 tree decl, name = ssa_name (i);
2351 if (!name
2352 || SSA_NAME_IS_DEFAULT_DEF (name))
2353 continue;
2354 decl = SSA_NAME_VAR (name);
2355 if (decl
2356 && TREE_CODE (decl) == VAR_DECL
2357 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2358 && DECL_IGNORED_P (decl))
2359 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2360 }
2361
2362 return 0;
2363 }
2364
2365 /* Gate for IPCP optimization. */
2366
2367 static bool
2368 gate_into_ssa (void)
2369 {
2370 /* Do nothing for funcions that was produced already in SSA form. */
2371 return !(cfun->curr_properties & PROP_ssa);
2372 }
2373
2374 namespace {
2375
2376 const pass_data pass_data_build_ssa =
2377 {
2378 GIMPLE_PASS, /* type */
2379 "ssa", /* name */
2380 OPTGROUP_NONE, /* optinfo_flags */
2381 true, /* has_gate */
2382 true, /* has_execute */
2383 TV_TREE_SSA_OTHER, /* tv_id */
2384 PROP_cfg, /* properties_required */
2385 PROP_ssa, /* properties_provided */
2386 0, /* properties_destroyed */
2387 0, /* todo_flags_start */
2388 ( TODO_verify_ssa | TODO_remove_unused_locals ), /* todo_flags_finish */
2389 };
2390
2391 class pass_build_ssa : public gimple_opt_pass
2392 {
2393 public:
2394 pass_build_ssa (gcc::context *ctxt)
2395 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2396 {}
2397
2398 /* opt_pass methods: */
2399 bool gate () { return gate_into_ssa (); }
2400 unsigned int execute () { return rewrite_into_ssa (); }
2401
2402 }; // class pass_build_ssa
2403
2404 } // anon namespace
2405
2406 gimple_opt_pass *
2407 make_pass_build_ssa (gcc::context *ctxt)
2408 {
2409 return new pass_build_ssa (ctxt);
2410 }
2411
2412
2413 /* Mark the definition of VAR at STMT and BB as interesting for the
2414 renamer. BLOCKS is the set of blocks that need updating. */
2415
2416 static void
2417 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2418 {
2419 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2420 set_register_defs (stmt, true);
2421
2422 if (insert_phi_p)
2423 {
2424 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2425
2426 set_def_block (var, bb, is_phi_p);
2427
2428 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2429 site for both itself and all the old names replaced by it. */
2430 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2431 {
2432 bitmap_iterator bi;
2433 unsigned i;
2434 bitmap set = names_replaced_by (var);
2435 if (set)
2436 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2437 set_def_block (ssa_name (i), bb, is_phi_p);
2438 }
2439 }
2440 }
2441
2442
2443 /* Mark the use of VAR at STMT and BB as interesting for the
2444 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2445 nodes. */
2446
2447 static inline void
2448 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2449 {
2450 basic_block def_bb = gimple_bb (stmt);
2451
2452 mark_block_for_update (def_bb);
2453 mark_block_for_update (bb);
2454
2455 if (gimple_code (stmt) == GIMPLE_PHI)
2456 mark_phi_for_rewrite (def_bb, stmt);
2457 else
2458 {
2459 set_rewrite_uses (stmt, true);
2460
2461 if (is_gimple_debug (stmt))
2462 return;
2463 }
2464
2465 /* If VAR has not been defined in BB, then it is live-on-entry
2466 to BB. Note that we cannot just use the block holding VAR's
2467 definition because if VAR is one of the names in OLD_SSA_NAMES,
2468 it will have several definitions (itself and all the names that
2469 replace it). */
2470 if (insert_phi_p)
2471 {
2472 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2473 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2474 set_livein_block (var, bb);
2475 }
2476 }
2477
2478
2479 /* Do a dominator walk starting at BB processing statements that
2480 reference symbols in SSA operands. This is very similar to
2481 mark_def_sites, but the scan handles statements whose operands may
2482 already be SSA names.
2483
2484 If INSERT_PHI_P is true, mark those uses as live in the
2485 corresponding block. This is later used by the PHI placement
2486 algorithm to make PHI pruning decisions.
2487
2488 FIXME. Most of this would be unnecessary if we could associate a
2489 symbol to all the SSA names that reference it. But that
2490 sounds like it would be expensive to maintain. Still, it
2491 would be interesting to see if it makes better sense to do
2492 that. */
2493
2494 static void
2495 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2496 {
2497 basic_block son;
2498 gimple_stmt_iterator si;
2499 edge e;
2500 edge_iterator ei;
2501
2502 mark_block_for_update (bb);
2503
2504 /* Process PHI nodes marking interesting those that define or use
2505 the symbols that we are interested in. */
2506 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2507 {
2508 gimple phi = gsi_stmt (si);
2509 tree lhs_sym, lhs = gimple_phi_result (phi);
2510
2511 if (TREE_CODE (lhs) == SSA_NAME
2512 && (! virtual_operand_p (lhs)
2513 || ! cfun->gimple_df->rename_vops))
2514 continue;
2515
2516 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2517 mark_for_renaming (lhs_sym);
2518 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2519
2520 /* Mark the uses in phi nodes as interesting. It would be more correct
2521 to process the arguments of the phi nodes of the successor edges of
2522 BB at the end of prepare_block_for_update, however, that turns out
2523 to be significantly more expensive. Doing it here is conservatively
2524 correct -- it may only cause us to believe a value to be live in a
2525 block that also contains its definition, and thus insert a few more
2526 phi nodes for it. */
2527 FOR_EACH_EDGE (e, ei, bb->preds)
2528 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2529 }
2530
2531 /* Process the statements. */
2532 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2533 {
2534 gimple stmt;
2535 ssa_op_iter i;
2536 use_operand_p use_p;
2537 def_operand_p def_p;
2538
2539 stmt = gsi_stmt (si);
2540
2541 if (cfun->gimple_df->rename_vops
2542 && gimple_vuse (stmt))
2543 {
2544 tree use = gimple_vuse (stmt);
2545 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2546 mark_for_renaming (sym);
2547 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2548 }
2549
2550 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2551 {
2552 tree use = USE_FROM_PTR (use_p);
2553 if (!DECL_P (use))
2554 continue;
2555 mark_for_renaming (use);
2556 mark_use_interesting (use, stmt, bb, insert_phi_p);
2557 }
2558
2559 if (cfun->gimple_df->rename_vops
2560 && gimple_vdef (stmt))
2561 {
2562 tree def = gimple_vdef (stmt);
2563 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2564 mark_for_renaming (sym);
2565 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2566 }
2567
2568 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2569 {
2570 tree def = DEF_FROM_PTR (def_p);
2571 if (!DECL_P (def))
2572 continue;
2573 mark_for_renaming (def);
2574 mark_def_interesting (def, stmt, bb, insert_phi_p);
2575 }
2576 }
2577
2578 /* Now visit all the blocks dominated by BB. */
2579 for (son = first_dom_son (CDI_DOMINATORS, bb);
2580 son;
2581 son = next_dom_son (CDI_DOMINATORS, son))
2582 prepare_block_for_update (son, insert_phi_p);
2583 }
2584
2585
2586 /* Helper for prepare_names_to_update. Mark all the use sites for
2587 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2588 prepare_names_to_update. */
2589
2590 static void
2591 prepare_use_sites_for (tree name, bool insert_phi_p)
2592 {
2593 use_operand_p use_p;
2594 imm_use_iterator iter;
2595
2596 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2597 {
2598 gimple stmt = USE_STMT (use_p);
2599 basic_block bb = gimple_bb (stmt);
2600
2601 if (gimple_code (stmt) == GIMPLE_PHI)
2602 {
2603 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2604 edge e = gimple_phi_arg_edge (stmt, ix);
2605 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2606 }
2607 else
2608 {
2609 /* For regular statements, mark this as an interesting use
2610 for NAME. */
2611 mark_use_interesting (name, stmt, bb, insert_phi_p);
2612 }
2613 }
2614 }
2615
2616
2617 /* Helper for prepare_names_to_update. Mark the definition site for
2618 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2619 prepare_names_to_update. */
2620
2621 static void
2622 prepare_def_site_for (tree name, bool insert_phi_p)
2623 {
2624 gimple stmt;
2625 basic_block bb;
2626
2627 gcc_checking_assert (names_to_release == NULL
2628 || !bitmap_bit_p (names_to_release,
2629 SSA_NAME_VERSION (name)));
2630
2631 stmt = SSA_NAME_DEF_STMT (name);
2632 bb = gimple_bb (stmt);
2633 if (bb)
2634 {
2635 gcc_checking_assert (bb->index < last_basic_block);
2636 mark_block_for_update (bb);
2637 mark_def_interesting (name, stmt, bb, insert_phi_p);
2638 }
2639 }
2640
2641
2642 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2643 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2644 PHI nodes for newly created names. */
2645
2646 static void
2647 prepare_names_to_update (bool insert_phi_p)
2648 {
2649 unsigned i = 0;
2650 bitmap_iterator bi;
2651 sbitmap_iterator sbi;
2652
2653 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2654 remove it from NEW_SSA_NAMES so that we don't try to visit its
2655 defining basic block (which most likely doesn't exist). Notice
2656 that we cannot do the same with names in OLD_SSA_NAMES because we
2657 want to replace existing instances. */
2658 if (names_to_release)
2659 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2660 bitmap_clear_bit (new_ssa_names, i);
2661
2662 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2663 names may be considered to be live-in on blocks that contain
2664 definitions for their replacements. */
2665 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2666 prepare_def_site_for (ssa_name (i), insert_phi_p);
2667
2668 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2669 OLD_SSA_NAMES, but we have to ignore its definition site. */
2670 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2671 {
2672 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2673 prepare_def_site_for (ssa_name (i), insert_phi_p);
2674 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2675 }
2676 }
2677
2678
2679 /* Dump all the names replaced by NAME to FILE. */
2680
2681 void
2682 dump_names_replaced_by (FILE *file, tree name)
2683 {
2684 unsigned i;
2685 bitmap old_set;
2686 bitmap_iterator bi;
2687
2688 print_generic_expr (file, name, 0);
2689 fprintf (file, " -> { ");
2690
2691 old_set = names_replaced_by (name);
2692 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2693 {
2694 print_generic_expr (file, ssa_name (i), 0);
2695 fprintf (file, " ");
2696 }
2697
2698 fprintf (file, "}\n");
2699 }
2700
2701
2702 /* Dump all the names replaced by NAME to stderr. */
2703
2704 DEBUG_FUNCTION void
2705 debug_names_replaced_by (tree name)
2706 {
2707 dump_names_replaced_by (stderr, name);
2708 }
2709
2710
2711 /* Dump SSA update information to FILE. */
2712
2713 void
2714 dump_update_ssa (FILE *file)
2715 {
2716 unsigned i = 0;
2717 bitmap_iterator bi;
2718
2719 if (!need_ssa_update_p (cfun))
2720 return;
2721
2722 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2723 {
2724 sbitmap_iterator sbi;
2725
2726 fprintf (file, "\nSSA replacement table\n");
2727 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2728 "O_1, ..., O_j\n\n");
2729
2730 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2731 dump_names_replaced_by (file, ssa_name (i));
2732 }
2733
2734 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2735 {
2736 fprintf (file, "\nSymbols to be put in SSA form\n");
2737 dump_decl_set (file, symbols_to_rename_set);
2738 fprintf (file, "\n");
2739 }
2740
2741 if (names_to_release && !bitmap_empty_p (names_to_release))
2742 {
2743 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2744 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2745 {
2746 print_generic_expr (file, ssa_name (i), 0);
2747 fprintf (file, " ");
2748 }
2749 fprintf (file, "\n");
2750 }
2751 }
2752
2753
2754 /* Dump SSA update information to stderr. */
2755
2756 DEBUG_FUNCTION void
2757 debug_update_ssa (void)
2758 {
2759 dump_update_ssa (stderr);
2760 }
2761
2762
2763 /* Initialize data structures used for incremental SSA updates. */
2764
2765 static void
2766 init_update_ssa (struct function *fn)
2767 {
2768 /* Reserve more space than the current number of names. The calls to
2769 add_new_name_mapping are typically done after creating new SSA
2770 names, so we'll need to reallocate these arrays. */
2771 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2772 bitmap_clear (old_ssa_names);
2773
2774 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2775 bitmap_clear (new_ssa_names);
2776
2777 bitmap_obstack_initialize (&update_ssa_obstack);
2778
2779 names_to_release = NULL;
2780 update_ssa_initialized_fn = fn;
2781 }
2782
2783
2784 /* Deallocate data structures used for incremental SSA updates. */
2785
2786 void
2787 delete_update_ssa (void)
2788 {
2789 unsigned i;
2790 bitmap_iterator bi;
2791
2792 sbitmap_free (old_ssa_names);
2793 old_ssa_names = NULL;
2794
2795 sbitmap_free (new_ssa_names);
2796 new_ssa_names = NULL;
2797
2798 BITMAP_FREE (symbols_to_rename_set);
2799 symbols_to_rename_set = NULL;
2800 symbols_to_rename.release ();
2801
2802 if (names_to_release)
2803 {
2804 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2805 release_ssa_name (ssa_name (i));
2806 BITMAP_FREE (names_to_release);
2807 }
2808
2809 clear_ssa_name_info ();
2810
2811 fini_ssa_renamer ();
2812
2813 if (blocks_with_phis_to_rewrite)
2814 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2815 {
2816 gimple_vec phis = phis_to_rewrite[i];
2817 phis.release ();
2818 phis_to_rewrite[i].create (0);
2819 }
2820
2821 BITMAP_FREE (blocks_with_phis_to_rewrite);
2822 BITMAP_FREE (blocks_to_update);
2823
2824 update_ssa_initialized_fn = NULL;
2825 }
2826
2827
2828 /* Create a new name for OLD_NAME in statement STMT and replace the
2829 operand pointed to by DEF_P with the newly created name. If DEF_P
2830 is NULL then STMT should be a GIMPLE assignment.
2831 Return the new name and register the replacement mapping <NEW, OLD> in
2832 update_ssa's tables. */
2833
2834 tree
2835 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2836 {
2837 tree new_name;
2838
2839 timevar_push (TV_TREE_SSA_INCREMENTAL);
2840
2841 if (!update_ssa_initialized_fn)
2842 init_update_ssa (cfun);
2843
2844 gcc_assert (update_ssa_initialized_fn == cfun);
2845
2846 new_name = duplicate_ssa_name (old_name, stmt);
2847 if (def)
2848 SET_DEF (def, new_name);
2849 else
2850 gimple_assign_set_lhs (stmt, new_name);
2851
2852 if (gimple_code (stmt) == GIMPLE_PHI)
2853 {
2854 basic_block bb = gimple_bb (stmt);
2855
2856 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2857 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2858 }
2859
2860 add_new_name_mapping (new_name, old_name);
2861
2862 /* For the benefit of passes that will be updating the SSA form on
2863 their own, set the current reaching definition of OLD_NAME to be
2864 NEW_NAME. */
2865 get_ssa_name_ann (old_name)->info.current_def = new_name;
2866
2867 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2868
2869 return new_name;
2870 }
2871
2872
2873 /* Mark virtual operands of FN for renaming by update_ssa. */
2874
2875 void
2876 mark_virtual_operands_for_renaming (struct function *fn)
2877 {
2878 fn->gimple_df->ssa_renaming_needed = 1;
2879 fn->gimple_df->rename_vops = 1;
2880 }
2881
2882 /* Replace all uses of NAME by underlying variable and mark it
2883 for renaming. This assumes the defining statement of NAME is
2884 going to be removed. */
2885
2886 void
2887 mark_virtual_operand_for_renaming (tree name)
2888 {
2889 tree name_var = SSA_NAME_VAR (name);
2890 bool used = false;
2891 imm_use_iterator iter;
2892 use_operand_p use_p;
2893 gimple stmt;
2894
2895 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2896 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2897 {
2898 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2899 SET_USE (use_p, name_var);
2900 used = true;
2901 }
2902 if (used)
2903 mark_virtual_operands_for_renaming (cfun);
2904 }
2905
2906 /* Replace all uses of the virtual PHI result by its underlying variable
2907 and mark it for renaming. This assumes the PHI node is going to be
2908 removed. */
2909
2910 void
2911 mark_virtual_phi_result_for_renaming (gimple phi)
2912 {
2913 if (dump_file && (dump_flags & TDF_DETAILS))
2914 {
2915 fprintf (dump_file, "Marking result for renaming : ");
2916 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2917 fprintf (dump_file, "\n");
2918 }
2919
2920 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2921 }
2922
2923 /* Return true if there is any work to be done by update_ssa
2924 for function FN. */
2925
2926 bool
2927 need_ssa_update_p (struct function *fn)
2928 {
2929 gcc_assert (fn != NULL);
2930 return (update_ssa_initialized_fn == fn
2931 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2932 }
2933
2934 /* Return true if name N has been registered in the replacement table. */
2935
2936 bool
2937 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2938 {
2939 if (!update_ssa_initialized_fn)
2940 return false;
2941
2942 gcc_assert (update_ssa_initialized_fn == cfun);
2943
2944 return is_new_name (n) || is_old_name (n);
2945 }
2946
2947
2948 /* Mark NAME to be released after update_ssa has finished. */
2949
2950 void
2951 release_ssa_name_after_update_ssa (tree name)
2952 {
2953 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2954
2955 if (names_to_release == NULL)
2956 names_to_release = BITMAP_ALLOC (NULL);
2957
2958 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2959 }
2960
2961
2962 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2963 frontier information. BLOCKS is the set of blocks to be updated.
2964
2965 This is slightly different than the regular PHI insertion
2966 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2967 real names (i.e., GIMPLE registers) are inserted:
2968
2969 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2970 nodes inside the region affected by the block that defines VAR
2971 and the blocks that define all its replacements. All these
2972 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2973
2974 First, we compute the entry point to the region (ENTRY). This is
2975 given by the nearest common dominator to all the definition
2976 blocks. When computing the iterated dominance frontier (IDF), any
2977 block not strictly dominated by ENTRY is ignored.
2978
2979 We then call the standard PHI insertion algorithm with the pruned
2980 IDF.
2981
2982 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2983 names is not pruned. PHI nodes are inserted at every IDF block. */
2984
2985 static void
2986 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2987 unsigned update_flags)
2988 {
2989 basic_block entry;
2990 struct def_blocks_d *db;
2991 bitmap idf, pruned_idf;
2992 bitmap_iterator bi;
2993 unsigned i;
2994
2995 if (TREE_CODE (var) == SSA_NAME)
2996 gcc_checking_assert (is_old_name (var));
2997 else
2998 gcc_checking_assert (marked_for_renaming (var));
2999
3000 /* Get all the definition sites for VAR. */
3001 db = find_def_blocks_for (var);
3002
3003 /* No need to do anything if there were no definitions to VAR. */
3004 if (db == NULL || bitmap_empty_p (db->def_blocks))
3005 return;
3006
3007 /* Compute the initial iterated dominance frontier. */
3008 idf = compute_idf (db->def_blocks, dfs);
3009 pruned_idf = BITMAP_ALLOC (NULL);
3010
3011 if (TREE_CODE (var) == SSA_NAME)
3012 {
3013 if (update_flags == TODO_update_ssa)
3014 {
3015 /* If doing regular SSA updates for GIMPLE registers, we are
3016 only interested in IDF blocks dominated by the nearest
3017 common dominator of all the definition blocks. */
3018 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3019 db->def_blocks);
3020 if (entry != ENTRY_BLOCK_PTR)
3021 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3022 if (BASIC_BLOCK (i) != entry
3023 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3024 bitmap_set_bit (pruned_idf, i);
3025 }
3026 else
3027 {
3028 /* Otherwise, do not prune the IDF for VAR. */
3029 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3030 bitmap_copy (pruned_idf, idf);
3031 }
3032 }
3033 else
3034 {
3035 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3036 for the first time, so we need to compute the full IDF for
3037 it. */
3038 bitmap_copy (pruned_idf, idf);
3039 }
3040
3041 if (!bitmap_empty_p (pruned_idf))
3042 {
3043 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3044 are included in the region to be updated. The feeding blocks
3045 are important to guarantee that the PHI arguments are renamed
3046 properly. */
3047
3048 /* FIXME, this is not needed if we are updating symbols. We are
3049 already starting at the ENTRY block anyway. */
3050 bitmap_ior_into (blocks, pruned_idf);
3051 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3052 {
3053 edge e;
3054 edge_iterator ei;
3055 basic_block bb = BASIC_BLOCK (i);
3056
3057 FOR_EACH_EDGE (e, ei, bb->preds)
3058 if (e->src->index >= 0)
3059 bitmap_set_bit (blocks, e->src->index);
3060 }
3061
3062 insert_phi_nodes_for (var, pruned_idf, true);
3063 }
3064
3065 BITMAP_FREE (pruned_idf);
3066 BITMAP_FREE (idf);
3067 }
3068
3069 /* Sort symbols_to_rename after their DECL_UID. */
3070
3071 static int
3072 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3073 {
3074 const_tree syma = *(const const_tree *)a;
3075 const_tree symb = *(const const_tree *)b;
3076 if (DECL_UID (syma) == DECL_UID (symb))
3077 return 0;
3078 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3079 }
3080
3081 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3082 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3083
3084 1- The names in OLD_SSA_NAMES dominated by the definitions of
3085 NEW_SSA_NAMES are all re-written to be reached by the
3086 appropriate definition from NEW_SSA_NAMES.
3087
3088 2- If needed, new PHI nodes are added to the iterated dominance
3089 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3090
3091 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3092 calling create_new_def_for to create new defs for names that the
3093 caller wants to replace.
3094
3095 The caller cretaes the new names to be inserted and the names that need
3096 to be replaced by calling create_new_def_for for each old definition
3097 to be replaced. Note that the function assumes that the
3098 new defining statement has already been inserted in the IL.
3099
3100 For instance, given the following code:
3101
3102 1 L0:
3103 2 x_1 = PHI (0, x_5)
3104 3 if (x_1 < 10)
3105 4 if (x_1 > 7)
3106 5 y_2 = 0
3107 6 else
3108 7 y_3 = x_1 + x_7
3109 8 endif
3110 9 x_5 = x_1 + 1
3111 10 goto L0;
3112 11 endif
3113
3114 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3115
3116 1 L0:
3117 2 x_1 = PHI (0, x_5)
3118 3 if (x_1 < 10)
3119 4 x_10 = ...
3120 5 if (x_1 > 7)
3121 6 y_2 = 0
3122 7 else
3123 8 x_11 = ...
3124 9 y_3 = x_1 + x_7
3125 10 endif
3126 11 x_5 = x_1 + 1
3127 12 goto L0;
3128 13 endif
3129
3130 We want to replace all the uses of x_1 with the new definitions of
3131 x_10 and x_11. Note that the only uses that should be replaced are
3132 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3133 *not* be replaced (this is why we cannot just mark symbol 'x' for
3134 renaming).
3135
3136 Additionally, we may need to insert a PHI node at line 11 because
3137 that is a merge point for x_10 and x_11. So the use of x_1 at line
3138 11 will be replaced with the new PHI node. The insertion of PHI
3139 nodes is optional. They are not strictly necessary to preserve the
3140 SSA form, and depending on what the caller inserted, they may not
3141 even be useful for the optimizers. UPDATE_FLAGS controls various
3142 aspects of how update_ssa operates, see the documentation for
3143 TODO_update_ssa*. */
3144
3145 void
3146 update_ssa (unsigned update_flags)
3147 {
3148 basic_block bb, start_bb;
3149 bitmap_iterator bi;
3150 unsigned i = 0;
3151 bool insert_phi_p;
3152 sbitmap_iterator sbi;
3153 tree sym;
3154
3155 /* Only one update flag should be set. */
3156 gcc_assert (update_flags == TODO_update_ssa
3157 || update_flags == TODO_update_ssa_no_phi
3158 || update_flags == TODO_update_ssa_full_phi
3159 || update_flags == TODO_update_ssa_only_virtuals);
3160
3161 if (!need_ssa_update_p (cfun))
3162 return;
3163
3164 timevar_push (TV_TREE_SSA_INCREMENTAL);
3165
3166 if (dump_file && (dump_flags & TDF_DETAILS))
3167 fprintf (dump_file, "\nUpdating SSA:\n");
3168
3169 if (!update_ssa_initialized_fn)
3170 init_update_ssa (cfun);
3171 else if (update_flags == TODO_update_ssa_only_virtuals)
3172 {
3173 /* If we only need to update virtuals, remove all the mappings for
3174 real names before proceeding. The caller is responsible for
3175 having dealt with the name mappings before calling update_ssa. */
3176 bitmap_clear (old_ssa_names);
3177 bitmap_clear (new_ssa_names);
3178 }
3179
3180 gcc_assert (update_ssa_initialized_fn == cfun);
3181
3182 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3183 if (!phis_to_rewrite.exists ())
3184 phis_to_rewrite.create (last_basic_block + 1);
3185 blocks_to_update = BITMAP_ALLOC (NULL);
3186
3187 /* Ensure that the dominance information is up-to-date. */
3188 calculate_dominance_info (CDI_DOMINATORS);
3189
3190 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3191
3192 /* If there are names defined in the replacement table, prepare
3193 definition and use sites for all the names in NEW_SSA_NAMES and
3194 OLD_SSA_NAMES. */
3195 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3196 {
3197 prepare_names_to_update (insert_phi_p);
3198
3199 /* If all the names in NEW_SSA_NAMES had been marked for
3200 removal, and there are no symbols to rename, then there's
3201 nothing else to do. */
3202 if (bitmap_first_set_bit (new_ssa_names) < 0
3203 && !cfun->gimple_df->ssa_renaming_needed)
3204 goto done;
3205 }
3206
3207 /* Next, determine the block at which to start the renaming process. */
3208 if (cfun->gimple_df->ssa_renaming_needed)
3209 {
3210 /* If we rename bare symbols initialize the mapping to
3211 auxiliar info we need to keep track of. */
3212 var_infos.create (47);
3213
3214 /* If we have to rename some symbols from scratch, we need to
3215 start the process at the root of the CFG. FIXME, it should
3216 be possible to determine the nearest block that had a
3217 definition for each of the symbols that are marked for
3218 updating. For now this seems more work than it's worth. */
3219 start_bb = ENTRY_BLOCK_PTR;
3220
3221 /* Traverse the CFG looking for existing definitions and uses of
3222 symbols in SSA operands. Mark interesting blocks and
3223 statements and set local live-in information for the PHI
3224 placement heuristics. */
3225 prepare_block_for_update (start_bb, insert_phi_p);
3226
3227 #ifdef ENABLE_CHECKING
3228 for (i = 1; i < num_ssa_names; ++i)
3229 {
3230 tree name = ssa_name (i);
3231 if (!name
3232 || virtual_operand_p (name))
3233 continue;
3234
3235 /* For all but virtual operands, which do not have SSA names
3236 with overlapping life ranges, ensure that symbols marked
3237 for renaming do not have existing SSA names associated with
3238 them as we do not re-write them out-of-SSA before going
3239 into SSA for the remaining symbol uses. */
3240 if (marked_for_renaming (SSA_NAME_VAR (name)))
3241 {
3242 fprintf (stderr, "Existing SSA name for symbol marked for "
3243 "renaming: ");
3244 print_generic_expr (stderr, name, TDF_SLIM);
3245 fprintf (stderr, "\n");
3246 internal_error ("SSA corruption");
3247 }
3248 }
3249 #endif
3250 }
3251 else
3252 {
3253 /* Otherwise, the entry block to the region is the nearest
3254 common dominator for the blocks in BLOCKS. */
3255 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3256 blocks_to_update);
3257 }
3258
3259 /* If requested, insert PHI nodes at the iterated dominance frontier
3260 of every block, creating new definitions for names in OLD_SSA_NAMES
3261 and for symbols found. */
3262 if (insert_phi_p)
3263 {
3264 bitmap_head *dfs;
3265
3266 /* If the caller requested PHI nodes to be added, compute
3267 dominance frontiers. */
3268 dfs = XNEWVEC (bitmap_head, last_basic_block);
3269 FOR_EACH_BB (bb)
3270 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3271 compute_dominance_frontiers (dfs);
3272
3273 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3274 {
3275 sbitmap_iterator sbi;
3276
3277 /* insert_update_phi_nodes_for will call add_new_name_mapping
3278 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3279 will grow while we are traversing it (but it will not
3280 gain any new members). Copy OLD_SSA_NAMES to a temporary
3281 for traversal. */
3282 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3283 bitmap_copy (tmp, old_ssa_names);
3284 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3285 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3286 update_flags);
3287 sbitmap_free (tmp);
3288 }
3289
3290 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3291 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3292 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3293 update_flags);
3294
3295 FOR_EACH_BB (bb)
3296 bitmap_clear (&dfs[bb->index]);
3297 free (dfs);
3298
3299 /* Insertion of PHI nodes may have added blocks to the region.
3300 We need to re-compute START_BB to include the newly added
3301 blocks. */
3302 if (start_bb != ENTRY_BLOCK_PTR)
3303 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3304 blocks_to_update);
3305 }
3306
3307 /* Reset the current definition for name and symbol before renaming
3308 the sub-graph. */
3309 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3310 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3311
3312 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3313 get_var_info (sym)->info.current_def = NULL_TREE;
3314
3315 /* Now start the renaming process at START_BB. */
3316 interesting_blocks = sbitmap_alloc (last_basic_block);
3317 bitmap_clear (interesting_blocks);
3318 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3319 bitmap_set_bit (interesting_blocks, i);
3320
3321 rewrite_blocks (start_bb, REWRITE_UPDATE);
3322
3323 sbitmap_free (interesting_blocks);
3324
3325 /* Debugging dumps. */
3326 if (dump_file)
3327 {
3328 int c;
3329 unsigned i;
3330
3331 dump_update_ssa (dump_file);
3332
3333 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3334 start_bb->index);
3335
3336 c = 0;
3337 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3338 c++;
3339 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3340 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3341 c, PERCENT (c, last_basic_block));
3342
3343 if (dump_flags & TDF_DETAILS)
3344 {
3345 fprintf (dump_file, "Affected blocks:");
3346 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3347 fprintf (dump_file, " %u", i);
3348 fprintf (dump_file, "\n");
3349 }
3350
3351 fprintf (dump_file, "\n\n");
3352 }
3353
3354 /* Free allocated memory. */
3355 done:
3356 delete_update_ssa ();
3357
3358 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3359 }