]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
Merger of git branch "gimple-classes-v2-option-3"
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "hashtab.h"
32 #include "hash-set.h"
33 #include "machmode.h"
34 #include "hard-reg-set.h"
35 #include "input.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "cfganal.h"
40 #include "basic-block.h"
41 #include "gimple-pretty-print.h"
42 #include "hash-table.h"
43 #include "tree-ssa-alias.h"
44 #include "internal-fn.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-inline.h"
60 #include "tree-pass.h"
61 #include "cfgloop.h"
62 #include "domwalk.h"
63 #include "params.h"
64 #include "diagnostic-core.h"
65 #include "tree-into-ssa.h"
66
67 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
68
69 /* This file builds the SSA form for a function as described in:
70 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
71 Computing Static Single Assignment Form and the Control Dependence
72 Graph. ACM Transactions on Programming Languages and Systems,
73 13(4):451-490, October 1991. */
74
75 /* Structure to map a variable VAR to the set of blocks that contain
76 definitions for VAR. */
77 struct def_blocks_d
78 {
79 /* Blocks that contain definitions of VAR. Bit I will be set if the
80 Ith block contains a definition of VAR. */
81 bitmap def_blocks;
82
83 /* Blocks that contain a PHI node for VAR. */
84 bitmap phi_blocks;
85
86 /* Blocks where VAR is live-on-entry. Similar semantics as
87 DEF_BLOCKS. */
88 bitmap livein_blocks;
89 };
90
91 typedef struct def_blocks_d *def_blocks_p;
92
93
94 /* Stack of trees used to restore the global currdefs to its original
95 state after completing rewriting of a block and its dominator
96 children. Its elements have the following properties:
97
98 - An SSA_NAME (N) indicates that the current definition of the
99 underlying variable should be set to the given SSA_NAME. If the
100 symbol associated with the SSA_NAME is not a GIMPLE register, the
101 next slot in the stack must be a _DECL node (SYM). In this case,
102 the name N in the previous slot is the current reaching
103 definition for SYM.
104
105 - A _DECL node indicates that the underlying variable has no
106 current definition.
107
108 - A NULL node at the top entry is used to mark the last slot
109 associated with the current block. */
110 static vec<tree> block_defs_stack;
111
112
113 /* Set of existing SSA names being replaced by update_ssa. */
114 static sbitmap old_ssa_names;
115
116 /* Set of new SSA names being added by update_ssa. Note that both
117 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
118 the operations done on them are presence tests. */
119 static sbitmap new_ssa_names;
120
121 static sbitmap interesting_blocks;
122
123 /* Set of SSA names that have been marked to be released after they
124 were registered in the replacement table. They will be finally
125 released after we finish updating the SSA web. */
126 static bitmap names_to_release;
127
128 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
129 the to basic block with index I. Allocated once per compilation, *not*
130 released between different functions. */
131 static vec< vec<gphi *> > phis_to_rewrite;
132
133 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
134 static bitmap blocks_with_phis_to_rewrite;
135
136 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
137 to grow as the callers to create_new_def_for will create new names on
138 the fly.
139 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
140 need to find a reasonable growth strategy. */
141 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
142
143
144 /* The function the SSA updating data structures have been initialized for.
145 NULL if they need to be initialized by create_new_def_for. */
146 static struct function *update_ssa_initialized_fn = NULL;
147
148 /* Global data to attach to the main dominator walk structure. */
149 struct mark_def_sites_global_data
150 {
151 /* This bitmap contains the variables which are set before they
152 are used in a basic block. */
153 bitmap kills;
154 };
155
156 /* It is advantageous to avoid things like life analysis for variables which
157 do not need PHI nodes. This enum describes whether or not a particular
158 variable may need a PHI node. */
159
160 enum need_phi_state {
161 /* This is the default. If we are still in this state after finding
162 all the definition and use sites, then we will assume the variable
163 needs PHI nodes. This is probably an overly conservative assumption. */
164 NEED_PHI_STATE_UNKNOWN,
165
166 /* This state indicates that we have seen one or more sets of the
167 variable in a single basic block and that the sets dominate all
168 uses seen so far. If after finding all definition and use sites
169 we are still in this state, then the variable does not need any
170 PHI nodes. */
171 NEED_PHI_STATE_NO,
172
173 /* This state indicates that we have either seen multiple definitions of
174 the variable in multiple blocks, or that we encountered a use in a
175 block that was not dominated by the block containing the set(s) of
176 this variable. This variable is assumed to need PHI nodes. */
177 NEED_PHI_STATE_MAYBE
178 };
179
180 /* Information stored for both SSA names and decls. */
181 struct common_info_d
182 {
183 /* This field indicates whether or not the variable may need PHI nodes.
184 See the enum's definition for more detailed information about the
185 states. */
186 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
187
188 /* The current reaching definition replacing this var. */
189 tree current_def;
190
191 /* Definitions for this var. */
192 struct def_blocks_d def_blocks;
193 };
194
195 /* The information associated with decls and SSA names. */
196 typedef struct common_info_d *common_info_p;
197
198 /* Information stored for decls. */
199 struct var_info_d
200 {
201 /* The variable. */
202 tree var;
203
204 /* Information stored for both SSA names and decls. */
205 struct common_info_d info;
206 };
207
208 /* The information associated with decls. */
209 typedef struct var_info_d *var_info_p;
210
211
212 /* VAR_INFOS hashtable helpers. */
213
214 struct var_info_hasher : typed_free_remove <var_info_d>
215 {
216 typedef var_info_d *value_type;
217 typedef var_info_d *compare_type;
218 typedef int store_values_directly;
219 static inline hashval_t hash (const value_type &);
220 static inline bool equal (const value_type &, const compare_type &);
221 };
222
223 inline hashval_t
224 var_info_hasher::hash (const value_type &p)
225 {
226 return DECL_UID (p->var);
227 }
228
229 inline bool
230 var_info_hasher::equal (const value_type &p1, const compare_type &p2)
231 {
232 return p1->var == p2->var;
233 }
234
235
236 /* Each entry in VAR_INFOS contains an element of type STRUCT
237 VAR_INFO_D. */
238 static hash_table<var_info_hasher> *var_infos;
239
240
241 /* Information stored for SSA names. */
242 struct ssa_name_info
243 {
244 /* Age of this record (so that info_for_ssa_name table can be cleared
245 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
246 are assumed to be null. */
247 unsigned age;
248
249 /* Replacement mappings, allocated from update_ssa_obstack. */
250 bitmap repl_set;
251
252 /* Information stored for both SSA names and decls. */
253 struct common_info_d info;
254 };
255
256 /* The information associated with names. */
257 typedef struct ssa_name_info *ssa_name_info_p;
258
259 static vec<ssa_name_info_p> info_for_ssa_name;
260 static unsigned current_info_for_ssa_name_age;
261
262 static bitmap_obstack update_ssa_obstack;
263
264 /* The set of blocks affected by update_ssa. */
265 static bitmap blocks_to_update;
266
267 /* The main entry point to the SSA renamer (rewrite_blocks) may be
268 called several times to do different, but related, tasks.
269 Initially, we need it to rename the whole program into SSA form.
270 At other times, we may need it to only rename into SSA newly
271 exposed symbols. Finally, we can also call it to incrementally fix
272 an already built SSA web. */
273 enum rewrite_mode {
274 /* Convert the whole function into SSA form. */
275 REWRITE_ALL,
276
277 /* Incrementally update the SSA web by replacing existing SSA
278 names with new ones. See update_ssa for details. */
279 REWRITE_UPDATE
280 };
281
282 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
283 static bitmap symbols_to_rename_set;
284 static vec<tree> symbols_to_rename;
285
286 /* Mark SYM for renaming. */
287
288 static void
289 mark_for_renaming (tree sym)
290 {
291 if (!symbols_to_rename_set)
292 symbols_to_rename_set = BITMAP_ALLOC (NULL);
293 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
294 symbols_to_rename.safe_push (sym);
295 }
296
297 /* Return true if SYM is marked for renaming. */
298
299 static bool
300 marked_for_renaming (tree sym)
301 {
302 if (!symbols_to_rename_set || sym == NULL_TREE)
303 return false;
304 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
305 }
306
307
308 /* Return true if STMT needs to be rewritten. When renaming a subset
309 of the variables, not all statements will be processed. This is
310 decided in mark_def_sites. */
311
312 static inline bool
313 rewrite_uses_p (gimple stmt)
314 {
315 return gimple_visited_p (stmt);
316 }
317
318
319 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
320
321 static inline void
322 set_rewrite_uses (gimple stmt, bool rewrite_p)
323 {
324 gimple_set_visited (stmt, rewrite_p);
325 }
326
327
328 /* Return true if the DEFs created by statement STMT should be
329 registered when marking new definition sites. This is slightly
330 different than rewrite_uses_p: it's used by update_ssa to
331 distinguish statements that need to have both uses and defs
332 processed from those that only need to have their defs processed.
333 Statements that define new SSA names only need to have their defs
334 registered, but they don't need to have their uses renamed. */
335
336 static inline bool
337 register_defs_p (gimple stmt)
338 {
339 return gimple_plf (stmt, GF_PLF_1) != 0;
340 }
341
342
343 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
344
345 static inline void
346 set_register_defs (gimple stmt, bool register_defs_p)
347 {
348 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
349 }
350
351
352 /* Get the information associated with NAME. */
353
354 static inline ssa_name_info_p
355 get_ssa_name_ann (tree name)
356 {
357 unsigned ver = SSA_NAME_VERSION (name);
358 unsigned len = info_for_ssa_name.length ();
359 struct ssa_name_info *info;
360
361 /* Re-allocate the vector at most once per update/into-SSA. */
362 if (ver >= len)
363 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
364
365 /* But allocate infos lazily. */
366 info = info_for_ssa_name[ver];
367 if (!info)
368 {
369 info = XCNEW (struct ssa_name_info);
370 info->age = current_info_for_ssa_name_age;
371 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
372 info_for_ssa_name[ver] = info;
373 }
374
375 if (info->age < current_info_for_ssa_name_age)
376 {
377 info->age = current_info_for_ssa_name_age;
378 info->repl_set = NULL;
379 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
380 info->info.current_def = NULL_TREE;
381 info->info.def_blocks.def_blocks = NULL;
382 info->info.def_blocks.phi_blocks = NULL;
383 info->info.def_blocks.livein_blocks = NULL;
384 }
385
386 return info;
387 }
388
389 /* Return and allocate the auxiliar information for DECL. */
390
391 static inline var_info_p
392 get_var_info (tree decl)
393 {
394 struct var_info_d vi;
395 var_info_d **slot;
396 vi.var = decl;
397 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
398 if (*slot == NULL)
399 {
400 var_info_p v = XCNEW (struct var_info_d);
401 v->var = decl;
402 *slot = v;
403 return v;
404 }
405 return *slot;
406 }
407
408
409 /* Clears info for SSA names. */
410
411 static void
412 clear_ssa_name_info (void)
413 {
414 current_info_for_ssa_name_age++;
415
416 /* If current_info_for_ssa_name_age wraps we use stale information.
417 Asser that this does not happen. */
418 gcc_assert (current_info_for_ssa_name_age != 0);
419 }
420
421
422 /* Get access to the auxiliar information stored per SSA name or decl. */
423
424 static inline common_info_p
425 get_common_info (tree var)
426 {
427 if (TREE_CODE (var) == SSA_NAME)
428 return &get_ssa_name_ann (var)->info;
429 else
430 return &get_var_info (var)->info;
431 }
432
433
434 /* Return the current definition for VAR. */
435
436 tree
437 get_current_def (tree var)
438 {
439 return get_common_info (var)->current_def;
440 }
441
442
443 /* Sets current definition of VAR to DEF. */
444
445 void
446 set_current_def (tree var, tree def)
447 {
448 get_common_info (var)->current_def = def;
449 }
450
451 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
452 all statements in basic block BB. */
453
454 static void
455 initialize_flags_in_bb (basic_block bb)
456 {
457 gimple stmt;
458 gimple_stmt_iterator gsi;
459
460 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
461 {
462 gimple phi = gsi_stmt (gsi);
463 set_rewrite_uses (phi, false);
464 set_register_defs (phi, false);
465 }
466
467 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
468 {
469 stmt = gsi_stmt (gsi);
470
471 /* We are going to use the operand cache API, such as
472 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
473 cache for each statement should be up-to-date. */
474 gcc_checking_assert (!gimple_modified_p (stmt));
475 set_rewrite_uses (stmt, false);
476 set_register_defs (stmt, false);
477 }
478 }
479
480 /* Mark block BB as interesting for update_ssa. */
481
482 static void
483 mark_block_for_update (basic_block bb)
484 {
485 gcc_checking_assert (blocks_to_update != NULL);
486 if (!bitmap_set_bit (blocks_to_update, bb->index))
487 return;
488 initialize_flags_in_bb (bb);
489 }
490
491 /* Return the set of blocks where variable VAR is defined and the blocks
492 where VAR is live on entry (livein). If no entry is found in
493 DEF_BLOCKS, a new one is created and returned. */
494
495 static inline struct def_blocks_d *
496 get_def_blocks_for (common_info_p info)
497 {
498 struct def_blocks_d *db_p = &info->def_blocks;
499 if (!db_p->def_blocks)
500 {
501 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
502 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
503 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
504 }
505
506 return db_p;
507 }
508
509
510 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
511 VAR is defined by a PHI node. */
512
513 static void
514 set_def_block (tree var, basic_block bb, bool phi_p)
515 {
516 struct def_blocks_d *db_p;
517 common_info_p info;
518
519 info = get_common_info (var);
520 db_p = get_def_blocks_for (info);
521
522 /* Set the bit corresponding to the block where VAR is defined. */
523 bitmap_set_bit (db_p->def_blocks, bb->index);
524 if (phi_p)
525 bitmap_set_bit (db_p->phi_blocks, bb->index);
526
527 /* Keep track of whether or not we may need to insert PHI nodes.
528
529 If we are in the UNKNOWN state, then this is the first definition
530 of VAR. Additionally, we have not seen any uses of VAR yet, so
531 we do not need a PHI node for this variable at this time (i.e.,
532 transition to NEED_PHI_STATE_NO).
533
534 If we are in any other state, then we either have multiple definitions
535 of this variable occurring in different blocks or we saw a use of the
536 variable which was not dominated by the block containing the
537 definition(s). In this case we may need a PHI node, so enter
538 state NEED_PHI_STATE_MAYBE. */
539 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
540 info->need_phi_state = NEED_PHI_STATE_NO;
541 else
542 info->need_phi_state = NEED_PHI_STATE_MAYBE;
543 }
544
545
546 /* Mark block BB as having VAR live at the entry to BB. */
547
548 static void
549 set_livein_block (tree var, basic_block bb)
550 {
551 common_info_p info;
552 struct def_blocks_d *db_p;
553
554 info = get_common_info (var);
555 db_p = get_def_blocks_for (info);
556
557 /* Set the bit corresponding to the block where VAR is live in. */
558 bitmap_set_bit (db_p->livein_blocks, bb->index);
559
560 /* Keep track of whether or not we may need to insert PHI nodes.
561
562 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
563 by the single block containing the definition(s) of this variable. If
564 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
565 NEED_PHI_STATE_MAYBE. */
566 if (info->need_phi_state == NEED_PHI_STATE_NO)
567 {
568 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
569
570 if (def_block_index == -1
571 || ! dominated_by_p (CDI_DOMINATORS, bb,
572 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
573 info->need_phi_state = NEED_PHI_STATE_MAYBE;
574 }
575 else
576 info->need_phi_state = NEED_PHI_STATE_MAYBE;
577 }
578
579
580 /* Return true if NAME is in OLD_SSA_NAMES. */
581
582 static inline bool
583 is_old_name (tree name)
584 {
585 unsigned ver = SSA_NAME_VERSION (name);
586 if (!old_ssa_names)
587 return false;
588 return (ver < SBITMAP_SIZE (old_ssa_names)
589 && bitmap_bit_p (old_ssa_names, ver));
590 }
591
592
593 /* Return true if NAME is in NEW_SSA_NAMES. */
594
595 static inline bool
596 is_new_name (tree name)
597 {
598 unsigned ver = SSA_NAME_VERSION (name);
599 if (!new_ssa_names)
600 return false;
601 return (ver < SBITMAP_SIZE (new_ssa_names)
602 && bitmap_bit_p (new_ssa_names, ver));
603 }
604
605
606 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
607
608 static inline bitmap
609 names_replaced_by (tree new_tree)
610 {
611 return get_ssa_name_ann (new_tree)->repl_set;
612 }
613
614
615 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
616
617 static inline void
618 add_to_repl_tbl (tree new_tree, tree old)
619 {
620 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
621 if (!*set)
622 *set = BITMAP_ALLOC (&update_ssa_obstack);
623 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
624 }
625
626
627 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
628 represents the set of names O_1 ... O_j replaced by N_i. This is
629 used by update_ssa and its helpers to introduce new SSA names in an
630 already formed SSA web. */
631
632 static void
633 add_new_name_mapping (tree new_tree, tree old)
634 {
635 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
636 gcc_checking_assert (new_tree != old
637 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
638
639 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
640 caller may have created new names since the set was created. */
641 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
642 {
643 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
644 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
645 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
646 }
647
648 /* Update the REPL_TBL table. */
649 add_to_repl_tbl (new_tree, old);
650
651 /* If OLD had already been registered as a new name, then all the
652 names that OLD replaces should also be replaced by NEW_TREE. */
653 if (is_new_name (old))
654 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
655
656 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
657 respectively. */
658 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
659 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
660 }
661
662
663 /* Call back for walk_dominator_tree used to collect definition sites
664 for every variable in the function. For every statement S in block
665 BB:
666
667 1- Variables defined by S in the DEFS of S are marked in the bitmap
668 KILLS.
669
670 2- If S uses a variable VAR and there is no preceding kill of VAR,
671 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
672
673 This information is used to determine which variables are live
674 across block boundaries to reduce the number of PHI nodes
675 we create. */
676
677 static void
678 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
679 {
680 tree def;
681 use_operand_p use_p;
682 ssa_op_iter iter;
683
684 /* Since this is the first time that we rewrite the program into SSA
685 form, force an operand scan on every statement. */
686 update_stmt (stmt);
687
688 gcc_checking_assert (blocks_to_update == NULL);
689 set_register_defs (stmt, false);
690 set_rewrite_uses (stmt, false);
691
692 if (is_gimple_debug (stmt))
693 {
694 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
695 {
696 tree sym = USE_FROM_PTR (use_p);
697 gcc_checking_assert (DECL_P (sym));
698 set_rewrite_uses (stmt, true);
699 }
700 if (rewrite_uses_p (stmt))
701 bitmap_set_bit (interesting_blocks, bb->index);
702 return;
703 }
704
705 /* If a variable is used before being set, then the variable is live
706 across a block boundary, so mark it live-on-entry to BB. */
707 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
708 {
709 tree sym = USE_FROM_PTR (use_p);
710 gcc_checking_assert (DECL_P (sym));
711 if (!bitmap_bit_p (kills, DECL_UID (sym)))
712 set_livein_block (sym, bb);
713 set_rewrite_uses (stmt, true);
714 }
715
716 /* Now process the defs. Mark BB as the definition block and add
717 each def to the set of killed symbols. */
718 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
719 {
720 gcc_checking_assert (DECL_P (def));
721 set_def_block (def, bb, false);
722 bitmap_set_bit (kills, DECL_UID (def));
723 set_register_defs (stmt, true);
724 }
725
726 /* If we found the statement interesting then also mark the block BB
727 as interesting. */
728 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
729 bitmap_set_bit (interesting_blocks, bb->index);
730 }
731
732 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
733 in the dfs numbering of the dominance tree. */
734
735 struct dom_dfsnum
736 {
737 /* Basic block whose index this entry corresponds to. */
738 unsigned bb_index;
739
740 /* The dfs number of this node. */
741 unsigned dfs_num;
742 };
743
744 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
745 for qsort. */
746
747 static int
748 cmp_dfsnum (const void *a, const void *b)
749 {
750 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
751 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
752
753 return (int) da->dfs_num - (int) db->dfs_num;
754 }
755
756 /* Among the intervals starting at the N points specified in DEFS, find
757 the one that contains S, and return its bb_index. */
758
759 static unsigned
760 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
761 {
762 unsigned f = 0, t = n, m;
763
764 while (t > f + 1)
765 {
766 m = (f + t) / 2;
767 if (defs[m].dfs_num <= s)
768 f = m;
769 else
770 t = m;
771 }
772
773 return defs[f].bb_index;
774 }
775
776 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
777 KILLS is a bitmap of blocks where the value is defined before any use. */
778
779 static void
780 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
781 {
782 bitmap_iterator bi;
783 unsigned i, b, p, u, top;
784 bitmap live_phis;
785 basic_block def_bb, use_bb;
786 edge e;
787 edge_iterator ei;
788 bitmap to_remove;
789 struct dom_dfsnum *defs;
790 unsigned n_defs, adef;
791
792 if (bitmap_empty_p (uses))
793 {
794 bitmap_clear (phis);
795 return;
796 }
797
798 /* The phi must dominate a use, or an argument of a live phi. Also, we
799 do not create any phi nodes in def blocks, unless they are also livein. */
800 to_remove = BITMAP_ALLOC (NULL);
801 bitmap_and_compl (to_remove, kills, uses);
802 bitmap_and_compl_into (phis, to_remove);
803 if (bitmap_empty_p (phis))
804 {
805 BITMAP_FREE (to_remove);
806 return;
807 }
808
809 /* We want to remove the unnecessary phi nodes, but we do not want to compute
810 liveness information, as that may be linear in the size of CFG, and if
811 there are lot of different variables to rewrite, this may lead to quadratic
812 behavior.
813
814 Instead, we basically emulate standard dce. We put all uses to worklist,
815 then for each of them find the nearest def that dominates them. If this
816 def is a phi node, we mark it live, and if it was not live before, we
817 add the predecessors of its basic block to the worklist.
818
819 To quickly locate the nearest def that dominates use, we use dfs numbering
820 of the dominance tree (that is already available in order to speed up
821 queries). For each def, we have the interval given by the dfs number on
822 entry to and on exit from the corresponding subtree in the dominance tree.
823 The nearest dominator for a given use is the smallest of these intervals
824 that contains entry and exit dfs numbers for the basic block with the use.
825 If we store the bounds for all the uses to an array and sort it, we can
826 locate the nearest dominating def in logarithmic time by binary search.*/
827 bitmap_ior (to_remove, kills, phis);
828 n_defs = bitmap_count_bits (to_remove);
829 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
830 defs[0].bb_index = 1;
831 defs[0].dfs_num = 0;
832 adef = 1;
833 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
834 {
835 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
836 defs[adef].bb_index = i;
837 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
838 defs[adef + 1].bb_index = i;
839 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
840 adef += 2;
841 }
842 BITMAP_FREE (to_remove);
843 gcc_assert (adef == 2 * n_defs + 1);
844 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
845 gcc_assert (defs[0].bb_index == 1);
846
847 /* Now each DEFS entry contains the number of the basic block to that the
848 dfs number corresponds. Change them to the number of basic block that
849 corresponds to the interval following the dfs number. Also, for the
850 dfs_out numbers, increase the dfs number by one (so that it corresponds
851 to the start of the following interval, not to the end of the current
852 one). We use WORKLIST as a stack. */
853 auto_vec<int> worklist (n_defs + 1);
854 worklist.quick_push (1);
855 top = 1;
856 n_defs = 1;
857 for (i = 1; i < adef; i++)
858 {
859 b = defs[i].bb_index;
860 if (b == top)
861 {
862 /* This is a closing element. Interval corresponding to the top
863 of the stack after removing it follows. */
864 worklist.pop ();
865 top = worklist[worklist.length () - 1];
866 defs[n_defs].bb_index = top;
867 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
868 }
869 else
870 {
871 /* Opening element. Nothing to do, just push it to the stack and move
872 it to the correct position. */
873 defs[n_defs].bb_index = defs[i].bb_index;
874 defs[n_defs].dfs_num = defs[i].dfs_num;
875 worklist.quick_push (b);
876 top = b;
877 }
878
879 /* If this interval starts at the same point as the previous one, cancel
880 the previous one. */
881 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
882 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
883 else
884 n_defs++;
885 }
886 worklist.pop ();
887 gcc_assert (worklist.is_empty ());
888
889 /* Now process the uses. */
890 live_phis = BITMAP_ALLOC (NULL);
891 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
892 {
893 worklist.safe_push (i);
894 }
895
896 while (!worklist.is_empty ())
897 {
898 b = worklist.pop ();
899 if (b == ENTRY_BLOCK)
900 continue;
901
902 /* If there is a phi node in USE_BB, it is made live. Otherwise,
903 find the def that dominates the immediate dominator of USE_BB
904 (the kill in USE_BB does not dominate the use). */
905 if (bitmap_bit_p (phis, b))
906 p = b;
907 else
908 {
909 use_bb = get_immediate_dominator (CDI_DOMINATORS,
910 BASIC_BLOCK_FOR_FN (cfun, b));
911 p = find_dfsnum_interval (defs, n_defs,
912 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
913 if (!bitmap_bit_p (phis, p))
914 continue;
915 }
916
917 /* If the phi node is already live, there is nothing to do. */
918 if (!bitmap_set_bit (live_phis, p))
919 continue;
920
921 /* Add the new uses to the worklist. */
922 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
923 FOR_EACH_EDGE (e, ei, def_bb->preds)
924 {
925 u = e->src->index;
926 if (bitmap_bit_p (uses, u))
927 continue;
928
929 /* In case there is a kill directly in the use block, do not record
930 the use (this is also necessary for correctness, as we assume that
931 uses dominated by a def directly in their block have been filtered
932 out before). */
933 if (bitmap_bit_p (kills, u))
934 continue;
935
936 bitmap_set_bit (uses, u);
937 worklist.safe_push (u);
938 }
939 }
940
941 bitmap_copy (phis, live_phis);
942 BITMAP_FREE (live_phis);
943 free (defs);
944 }
945
946 /* Return the set of blocks where variable VAR is defined and the blocks
947 where VAR is live on entry (livein). Return NULL, if no entry is
948 found in DEF_BLOCKS. */
949
950 static inline struct def_blocks_d *
951 find_def_blocks_for (tree var)
952 {
953 def_blocks_p p = &get_common_info (var)->def_blocks;
954 if (!p->def_blocks)
955 return NULL;
956 return p;
957 }
958
959
960 /* Marks phi node PHI in basic block BB for rewrite. */
961
962 static void
963 mark_phi_for_rewrite (basic_block bb, gphi *phi)
964 {
965 vec<gphi *> phis;
966 unsigned n, idx = bb->index;
967
968 if (rewrite_uses_p (phi))
969 return;
970
971 set_rewrite_uses (phi, true);
972
973 if (!blocks_with_phis_to_rewrite)
974 return;
975
976 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
977
978 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
979 if (phis_to_rewrite.length () < n)
980 phis_to_rewrite.safe_grow_cleared (n);
981
982 phis = phis_to_rewrite[idx];
983 phis.reserve (10);
984
985 phis.safe_push (phi);
986 phis_to_rewrite[idx] = phis;
987 }
988
989 /* Insert PHI nodes for variable VAR using the iterated dominance
990 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
991 function assumes that the caller is incrementally updating the
992 existing SSA form, in which case VAR may be an SSA name instead of
993 a symbol.
994
995 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
996 PHI node for VAR. On exit, only the nodes that received a PHI node
997 for VAR will be present in PHI_INSERTION_POINTS. */
998
999 static void
1000 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1001 {
1002 unsigned bb_index;
1003 edge e;
1004 gphi *phi;
1005 basic_block bb;
1006 bitmap_iterator bi;
1007 struct def_blocks_d *def_map = find_def_blocks_for (var);
1008
1009 /* Remove the blocks where we already have PHI nodes for VAR. */
1010 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1011
1012 /* Remove obviously useless phi nodes. */
1013 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1014 def_map->livein_blocks);
1015
1016 /* And insert the PHI nodes. */
1017 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1018 {
1019 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1020 if (update_p)
1021 mark_block_for_update (bb);
1022
1023 if (dump_file && (dump_flags & TDF_DETAILS))
1024 {
1025 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1026 print_generic_expr (dump_file, var, TDF_SLIM);
1027 fprintf (dump_file, "\n");
1028 }
1029 phi = NULL;
1030
1031 if (TREE_CODE (var) == SSA_NAME)
1032 {
1033 /* If we are rewriting SSA names, create the LHS of the PHI
1034 node by duplicating VAR. This is useful in the case of
1035 pointers, to also duplicate pointer attributes (alias
1036 information, in particular). */
1037 edge_iterator ei;
1038 tree new_lhs;
1039
1040 gcc_checking_assert (update_p);
1041 new_lhs = duplicate_ssa_name (var, NULL);
1042 phi = create_phi_node (new_lhs, bb);
1043 add_new_name_mapping (new_lhs, var);
1044
1045 /* Add VAR to every argument slot of PHI. We need VAR in
1046 every argument so that rewrite_update_phi_arguments knows
1047 which name is this PHI node replacing. If VAR is a
1048 symbol marked for renaming, this is not necessary, the
1049 renamer will use the symbol on the LHS to get its
1050 reaching definition. */
1051 FOR_EACH_EDGE (e, ei, bb->preds)
1052 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1053 }
1054 else
1055 {
1056 tree tracked_var;
1057
1058 gcc_checking_assert (DECL_P (var));
1059 phi = create_phi_node (var, bb);
1060
1061 tracked_var = target_for_debug_bind (var);
1062 if (tracked_var)
1063 {
1064 gimple note = gimple_build_debug_bind (tracked_var,
1065 PHI_RESULT (phi),
1066 phi);
1067 gimple_stmt_iterator si = gsi_after_labels (bb);
1068 gsi_insert_before (&si, note, GSI_SAME_STMT);
1069 }
1070 }
1071
1072 /* Mark this PHI node as interesting for update_ssa. */
1073 set_register_defs (phi, true);
1074 mark_phi_for_rewrite (bb, phi);
1075 }
1076 }
1077
1078 /* Sort var_infos after DECL_UID of their var. */
1079
1080 static int
1081 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1082 {
1083 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1084 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1085 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1086 return -1;
1087 else
1088 return 1;
1089 }
1090
1091 /* Insert PHI nodes at the dominance frontier of blocks with variable
1092 definitions. DFS contains the dominance frontier information for
1093 the flowgraph. */
1094
1095 static void
1096 insert_phi_nodes (bitmap_head *dfs)
1097 {
1098 hash_table<var_info_hasher>::iterator hi;
1099 unsigned i;
1100 var_info_p info;
1101
1102 timevar_push (TV_TREE_INSERT_PHI_NODES);
1103
1104 auto_vec<var_info_p> vars (var_infos->elements ());
1105 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi)
1106 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1107 vars.quick_push (info);
1108
1109 /* Do two stages to avoid code generation differences for UID
1110 differences but no UID ordering differences. */
1111 vars.qsort (insert_phi_nodes_compare_var_infos);
1112
1113 FOR_EACH_VEC_ELT (vars, i, info)
1114 {
1115 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1116 insert_phi_nodes_for (info->var, idf, false);
1117 BITMAP_FREE (idf);
1118 }
1119
1120 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1121 }
1122
1123
1124 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1125 register DEF (an SSA_NAME) to be a new definition for SYM. */
1126
1127 static void
1128 register_new_def (tree def, tree sym)
1129 {
1130 common_info_p info = get_common_info (sym);
1131 tree currdef;
1132
1133 /* If this variable is set in a single basic block and all uses are
1134 dominated by the set(s) in that single basic block, then there is
1135 no reason to record anything for this variable in the block local
1136 definition stacks. Doing so just wastes time and memory.
1137
1138 This is the same test to prune the set of variables which may
1139 need PHI nodes. So we just use that information since it's already
1140 computed and available for us to use. */
1141 if (info->need_phi_state == NEED_PHI_STATE_NO)
1142 {
1143 info->current_def = def;
1144 return;
1145 }
1146
1147 currdef = info->current_def;
1148
1149 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1150 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1151 in the stack so that we know which symbol is being defined by
1152 this SSA name when we unwind the stack. */
1153 if (currdef && !is_gimple_reg (sym))
1154 block_defs_stack.safe_push (sym);
1155
1156 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1157 stack is later used by the dominator tree callbacks to restore
1158 the reaching definitions for all the variables defined in the
1159 block after a recursive visit to all its immediately dominated
1160 blocks. If there is no current reaching definition, then just
1161 record the underlying _DECL node. */
1162 block_defs_stack.safe_push (currdef ? currdef : sym);
1163
1164 /* Set the current reaching definition for SYM to be DEF. */
1165 info->current_def = def;
1166 }
1167
1168
1169 /* Perform a depth-first traversal of the dominator tree looking for
1170 variables to rename. BB is the block where to start searching.
1171 Renaming is a five step process:
1172
1173 1- Every definition made by PHI nodes at the start of the blocks is
1174 registered as the current definition for the corresponding variable.
1175
1176 2- Every statement in BB is rewritten. USE and VUSE operands are
1177 rewritten with their corresponding reaching definition. DEF and
1178 VDEF targets are registered as new definitions.
1179
1180 3- All the PHI nodes in successor blocks of BB are visited. The
1181 argument corresponding to BB is replaced with its current reaching
1182 definition.
1183
1184 4- Recursively rewrite every dominator child block of BB.
1185
1186 5- Restore (in reverse order) the current reaching definition for every
1187 new definition introduced in this block. This is done so that when
1188 we return from the recursive call, all the current reaching
1189 definitions are restored to the names that were valid in the
1190 dominator parent of BB. */
1191
1192 /* Return the current definition for variable VAR. If none is found,
1193 create a new SSA name to act as the zeroth definition for VAR. */
1194
1195 static tree
1196 get_reaching_def (tree var)
1197 {
1198 common_info_p info = get_common_info (var);
1199 tree currdef;
1200
1201 /* Lookup the current reaching definition for VAR. */
1202 currdef = info->current_def;
1203
1204 /* If there is no reaching definition for VAR, create and register a
1205 default definition for it (if needed). */
1206 if (currdef == NULL_TREE)
1207 {
1208 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1209 currdef = get_or_create_ssa_default_def (cfun, sym);
1210 }
1211
1212 /* Return the current reaching definition for VAR, or the default
1213 definition, if we had to create one. */
1214 return currdef;
1215 }
1216
1217
1218 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1219
1220 static void
1221 rewrite_debug_stmt_uses (gimple stmt)
1222 {
1223 use_operand_p use_p;
1224 ssa_op_iter iter;
1225 bool update = false;
1226
1227 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1228 {
1229 tree var = USE_FROM_PTR (use_p), def;
1230 common_info_p info = get_common_info (var);
1231 gcc_checking_assert (DECL_P (var));
1232 def = info->current_def;
1233 if (!def)
1234 {
1235 if (TREE_CODE (var) == PARM_DECL
1236 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1237 {
1238 gimple_stmt_iterator gsi
1239 =
1240 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1241 int lim;
1242 /* Search a few source bind stmts at the start of first bb to
1243 see if a DEBUG_EXPR_DECL can't be reused. */
1244 for (lim = 32;
1245 !gsi_end_p (gsi) && lim > 0;
1246 gsi_next (&gsi), lim--)
1247 {
1248 gimple gstmt = gsi_stmt (gsi);
1249 if (!gimple_debug_source_bind_p (gstmt))
1250 break;
1251 if (gimple_debug_source_bind_get_value (gstmt) == var)
1252 {
1253 def = gimple_debug_source_bind_get_var (gstmt);
1254 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1255 break;
1256 else
1257 def = NULL_TREE;
1258 }
1259 }
1260 /* If not, add a new source bind stmt. */
1261 if (def == NULL_TREE)
1262 {
1263 gimple def_temp;
1264 def = make_node (DEBUG_EXPR_DECL);
1265 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1266 DECL_ARTIFICIAL (def) = 1;
1267 TREE_TYPE (def) = TREE_TYPE (var);
1268 DECL_MODE (def) = DECL_MODE (var);
1269 gsi =
1270 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1271 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1272 }
1273 update = true;
1274 }
1275 }
1276 else
1277 {
1278 /* Check if info->current_def can be trusted. */
1279 basic_block bb = gimple_bb (stmt);
1280 basic_block def_bb
1281 = SSA_NAME_IS_DEFAULT_DEF (def)
1282 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1283
1284 /* If definition is in current bb, it is fine. */
1285 if (bb == def_bb)
1286 ;
1287 /* If definition bb doesn't dominate the current bb,
1288 it can't be used. */
1289 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1290 def = NULL;
1291 /* If there is just one definition and dominates the current
1292 bb, it is fine. */
1293 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1294 ;
1295 else
1296 {
1297 struct def_blocks_d *db_p = get_def_blocks_for (info);
1298
1299 /* If there are some non-debug uses in the current bb,
1300 it is fine. */
1301 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1302 ;
1303 /* Otherwise give up for now. */
1304 else
1305 def = NULL;
1306 }
1307 }
1308 if (def == NULL)
1309 {
1310 gimple_debug_bind_reset_value (stmt);
1311 update_stmt (stmt);
1312 return;
1313 }
1314 SET_USE (use_p, def);
1315 }
1316 if (update)
1317 update_stmt (stmt);
1318 }
1319
1320 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1321 the block with its immediate reaching definitions. Update the current
1322 definition of a variable when a new real or virtual definition is found. */
1323
1324 static void
1325 rewrite_stmt (gimple_stmt_iterator *si)
1326 {
1327 use_operand_p use_p;
1328 def_operand_p def_p;
1329 ssa_op_iter iter;
1330 gimple stmt = gsi_stmt (*si);
1331
1332 /* If mark_def_sites decided that we don't need to rewrite this
1333 statement, ignore it. */
1334 gcc_assert (blocks_to_update == NULL);
1335 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1336 return;
1337
1338 if (dump_file && (dump_flags & TDF_DETAILS))
1339 {
1340 fprintf (dump_file, "Renaming statement ");
1341 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1342 fprintf (dump_file, "\n");
1343 }
1344
1345 /* Step 1. Rewrite USES in the statement. */
1346 if (rewrite_uses_p (stmt))
1347 {
1348 if (is_gimple_debug (stmt))
1349 rewrite_debug_stmt_uses (stmt);
1350 else
1351 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1352 {
1353 tree var = USE_FROM_PTR (use_p);
1354 gcc_checking_assert (DECL_P (var));
1355 SET_USE (use_p, get_reaching_def (var));
1356 }
1357 }
1358
1359 /* Step 2. Register the statement's DEF operands. */
1360 if (register_defs_p (stmt))
1361 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1362 {
1363 tree var = DEF_FROM_PTR (def_p);
1364 tree name;
1365 tree tracked_var;
1366
1367 gcc_checking_assert (DECL_P (var));
1368
1369 if (gimple_clobber_p (stmt)
1370 && is_gimple_reg (var))
1371 {
1372 /* If we rewrite a DECL into SSA form then drop its
1373 clobber stmts and replace uses with a new default def. */
1374 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1375 && !gimple_vdef (stmt));
1376 gsi_replace (si, gimple_build_nop (), true);
1377 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1378 break;
1379 }
1380
1381 name = make_ssa_name (var, stmt);
1382 SET_DEF (def_p, name);
1383 register_new_def (DEF_FROM_PTR (def_p), var);
1384
1385 tracked_var = target_for_debug_bind (var);
1386 if (tracked_var)
1387 {
1388 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1389 gsi_insert_after (si, note, GSI_SAME_STMT);
1390 }
1391 }
1392 }
1393
1394
1395 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1396 PHI nodes. For every PHI node found, add a new argument containing the
1397 current reaching definition for the variable and the edge through which
1398 that definition is reaching the PHI node. */
1399
1400 static void
1401 rewrite_add_phi_arguments (basic_block bb)
1402 {
1403 edge e;
1404 edge_iterator ei;
1405
1406 FOR_EACH_EDGE (e, ei, bb->succs)
1407 {
1408 gphi *phi;
1409 gphi_iterator gsi;
1410
1411 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1412 gsi_next (&gsi))
1413 {
1414 tree currdef, res;
1415 location_t loc;
1416
1417 phi = gsi.phi ();
1418 res = gimple_phi_result (phi);
1419 currdef = get_reaching_def (SSA_NAME_VAR (res));
1420 /* Virtual operand PHI args do not need a location. */
1421 if (virtual_operand_p (res))
1422 loc = UNKNOWN_LOCATION;
1423 else
1424 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1425 add_phi_arg (phi, currdef, e, loc);
1426 }
1427 }
1428 }
1429
1430 class rewrite_dom_walker : public dom_walker
1431 {
1432 public:
1433 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1434
1435 virtual void before_dom_children (basic_block);
1436 virtual void after_dom_children (basic_block);
1437 };
1438
1439 /* SSA Rewriting Step 1. Initialization, create a block local stack
1440 of reaching definitions for new SSA names produced in this block
1441 (BLOCK_DEFS). Register new definitions for every PHI node in the
1442 block. */
1443
1444 void
1445 rewrite_dom_walker::before_dom_children (basic_block bb)
1446 {
1447 if (dump_file && (dump_flags & TDF_DETAILS))
1448 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1449
1450 /* Mark the unwind point for this block. */
1451 block_defs_stack.safe_push (NULL_TREE);
1452
1453 /* Step 1. Register new definitions for every PHI node in the block.
1454 Conceptually, all the PHI nodes are executed in parallel and each PHI
1455 node introduces a new version for the associated variable. */
1456 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1457 gsi_next (&gsi))
1458 {
1459 tree result = gimple_phi_result (gsi_stmt (gsi));
1460 register_new_def (result, SSA_NAME_VAR (result));
1461 }
1462
1463 /* Step 2. Rewrite every variable used in each statement in the block
1464 with its immediate reaching definitions. Update the current definition
1465 of a variable when a new real or virtual definition is found. */
1466 if (bitmap_bit_p (interesting_blocks, bb->index))
1467 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1468 gsi_next (&gsi))
1469 rewrite_stmt (&gsi);
1470
1471 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1472 For every PHI node found, add a new argument containing the current
1473 reaching definition for the variable and the edge through which that
1474 definition is reaching the PHI node. */
1475 rewrite_add_phi_arguments (bb);
1476 }
1477
1478
1479
1480 /* Called after visiting all the statements in basic block BB and all
1481 of its dominator children. Restore CURRDEFS to its original value. */
1482
1483 void
1484 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1485 {
1486 /* Restore CURRDEFS to its original state. */
1487 while (block_defs_stack.length () > 0)
1488 {
1489 tree tmp = block_defs_stack.pop ();
1490 tree saved_def, var;
1491
1492 if (tmp == NULL_TREE)
1493 break;
1494
1495 if (TREE_CODE (tmp) == SSA_NAME)
1496 {
1497 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1498 current definition of its underlying variable. Note that
1499 if the SSA_NAME is not for a GIMPLE register, the symbol
1500 being defined is stored in the next slot in the stack.
1501 This mechanism is needed because an SSA name for a
1502 non-register symbol may be the definition for more than
1503 one symbol (e.g., SFTs, aliased variables, etc). */
1504 saved_def = tmp;
1505 var = SSA_NAME_VAR (saved_def);
1506 if (!is_gimple_reg (var))
1507 var = block_defs_stack.pop ();
1508 }
1509 else
1510 {
1511 /* If we recorded anything else, it must have been a _DECL
1512 node and its current reaching definition must have been
1513 NULL. */
1514 saved_def = NULL;
1515 var = tmp;
1516 }
1517
1518 get_common_info (var)->current_def = saved_def;
1519 }
1520 }
1521
1522
1523 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1524
1525 DEBUG_FUNCTION void
1526 debug_decl_set (bitmap set)
1527 {
1528 dump_decl_set (stderr, set);
1529 fprintf (stderr, "\n");
1530 }
1531
1532
1533 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1534 stack up to a maximum of N levels. If N is -1, the whole stack is
1535 dumped. New levels are created when the dominator tree traversal
1536 used for renaming enters a new sub-tree. */
1537
1538 void
1539 dump_defs_stack (FILE *file, int n)
1540 {
1541 int i, j;
1542
1543 fprintf (file, "\n\nRenaming stack");
1544 if (n > 0)
1545 fprintf (file, " (up to %d levels)", n);
1546 fprintf (file, "\n\n");
1547
1548 i = 1;
1549 fprintf (file, "Level %d (current level)\n", i);
1550 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1551 {
1552 tree name, var;
1553
1554 name = block_defs_stack[j];
1555 if (name == NULL_TREE)
1556 {
1557 i++;
1558 if (n > 0 && i > n)
1559 break;
1560 fprintf (file, "\nLevel %d\n", i);
1561 continue;
1562 }
1563
1564 if (DECL_P (name))
1565 {
1566 var = name;
1567 name = NULL_TREE;
1568 }
1569 else
1570 {
1571 var = SSA_NAME_VAR (name);
1572 if (!is_gimple_reg (var))
1573 {
1574 j--;
1575 var = block_defs_stack[j];
1576 }
1577 }
1578
1579 fprintf (file, " Previous CURRDEF (");
1580 print_generic_expr (file, var, 0);
1581 fprintf (file, ") = ");
1582 if (name)
1583 print_generic_expr (file, name, 0);
1584 else
1585 fprintf (file, "<NIL>");
1586 fprintf (file, "\n");
1587 }
1588 }
1589
1590
1591 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1592 stack up to a maximum of N levels. If N is -1, the whole stack is
1593 dumped. New levels are created when the dominator tree traversal
1594 used for renaming enters a new sub-tree. */
1595
1596 DEBUG_FUNCTION void
1597 debug_defs_stack (int n)
1598 {
1599 dump_defs_stack (stderr, n);
1600 }
1601
1602
1603 /* Dump the current reaching definition of every symbol to FILE. */
1604
1605 void
1606 dump_currdefs (FILE *file)
1607 {
1608 unsigned i;
1609 tree var;
1610
1611 if (symbols_to_rename.is_empty ())
1612 return;
1613
1614 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1615 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1616 {
1617 common_info_p info = get_common_info (var);
1618 fprintf (file, "CURRDEF (");
1619 print_generic_expr (file, var, 0);
1620 fprintf (file, ") = ");
1621 if (info->current_def)
1622 print_generic_expr (file, info->current_def, 0);
1623 else
1624 fprintf (file, "<NIL>");
1625 fprintf (file, "\n");
1626 }
1627 }
1628
1629
1630 /* Dump the current reaching definition of every symbol to stderr. */
1631
1632 DEBUG_FUNCTION void
1633 debug_currdefs (void)
1634 {
1635 dump_currdefs (stderr);
1636 }
1637
1638
1639 /* Dump SSA information to FILE. */
1640
1641 void
1642 dump_tree_ssa (FILE *file)
1643 {
1644 const char *funcname
1645 = lang_hooks.decl_printable_name (current_function_decl, 2);
1646
1647 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1648
1649 dump_var_infos (file);
1650 dump_defs_stack (file, -1);
1651 dump_currdefs (file);
1652 dump_tree_ssa_stats (file);
1653 }
1654
1655
1656 /* Dump SSA information to stderr. */
1657
1658 DEBUG_FUNCTION void
1659 debug_tree_ssa (void)
1660 {
1661 dump_tree_ssa (stderr);
1662 }
1663
1664
1665 /* Dump statistics for the hash table HTAB. */
1666
1667 static void
1668 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab)
1669 {
1670 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1671 (long) htab.size (),
1672 (long) htab.elements (),
1673 htab.collisions ());
1674 }
1675
1676
1677 /* Dump SSA statistics on FILE. */
1678
1679 void
1680 dump_tree_ssa_stats (FILE *file)
1681 {
1682 if (var_infos)
1683 {
1684 fprintf (file, "\nHash table statistics:\n");
1685 fprintf (file, " var_infos: ");
1686 htab_statistics (file, *var_infos);
1687 fprintf (file, "\n");
1688 }
1689 }
1690
1691
1692 /* Dump SSA statistics on stderr. */
1693
1694 DEBUG_FUNCTION void
1695 debug_tree_ssa_stats (void)
1696 {
1697 dump_tree_ssa_stats (stderr);
1698 }
1699
1700
1701 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1702
1703 int
1704 debug_var_infos_r (var_info_d **slot, FILE *file)
1705 {
1706 struct var_info_d *info = *slot;
1707
1708 fprintf (file, "VAR: ");
1709 print_generic_expr (file, info->var, dump_flags);
1710 bitmap_print (file, info->info.def_blocks.def_blocks,
1711 ", DEF_BLOCKS: { ", "}");
1712 bitmap_print (file, info->info.def_blocks.livein_blocks,
1713 ", LIVEIN_BLOCKS: { ", "}");
1714 bitmap_print (file, info->info.def_blocks.phi_blocks,
1715 ", PHI_BLOCKS: { ", "}\n");
1716
1717 return 1;
1718 }
1719
1720
1721 /* Dump the VAR_INFOS hash table on FILE. */
1722
1723 void
1724 dump_var_infos (FILE *file)
1725 {
1726 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1727 if (var_infos)
1728 var_infos->traverse <FILE *, debug_var_infos_r> (file);
1729 }
1730
1731
1732 /* Dump the VAR_INFOS hash table on stderr. */
1733
1734 DEBUG_FUNCTION void
1735 debug_var_infos (void)
1736 {
1737 dump_var_infos (stderr);
1738 }
1739
1740
1741 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1742
1743 static inline void
1744 register_new_update_single (tree new_name, tree old_name)
1745 {
1746 common_info_p info = get_common_info (old_name);
1747 tree currdef = info->current_def;
1748
1749 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1750 This stack is later used by the dominator tree callbacks to
1751 restore the reaching definitions for all the variables
1752 defined in the block after a recursive visit to all its
1753 immediately dominated blocks. */
1754 block_defs_stack.reserve (2);
1755 block_defs_stack.quick_push (currdef);
1756 block_defs_stack.quick_push (old_name);
1757
1758 /* Set the current reaching definition for OLD_NAME to be
1759 NEW_NAME. */
1760 info->current_def = new_name;
1761 }
1762
1763
1764 /* Register NEW_NAME to be the new reaching definition for all the
1765 names in OLD_NAMES. Used by the incremental SSA update routines to
1766 replace old SSA names with new ones. */
1767
1768 static inline void
1769 register_new_update_set (tree new_name, bitmap old_names)
1770 {
1771 bitmap_iterator bi;
1772 unsigned i;
1773
1774 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1775 register_new_update_single (new_name, ssa_name (i));
1776 }
1777
1778
1779
1780 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1781 it is a symbol marked for renaming, replace it with USE_P's current
1782 reaching definition. */
1783
1784 static inline void
1785 maybe_replace_use (use_operand_p use_p)
1786 {
1787 tree rdef = NULL_TREE;
1788 tree use = USE_FROM_PTR (use_p);
1789 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1790
1791 if (marked_for_renaming (sym))
1792 rdef = get_reaching_def (sym);
1793 else if (is_old_name (use))
1794 rdef = get_reaching_def (use);
1795
1796 if (rdef && rdef != use)
1797 SET_USE (use_p, rdef);
1798 }
1799
1800
1801 /* Same as maybe_replace_use, but without introducing default stmts,
1802 returning false to indicate a need to do so. */
1803
1804 static inline bool
1805 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1806 {
1807 tree rdef = NULL_TREE;
1808 tree use = USE_FROM_PTR (use_p);
1809 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1810
1811 if (marked_for_renaming (sym))
1812 rdef = get_var_info (sym)->info.current_def;
1813 else if (is_old_name (use))
1814 {
1815 rdef = get_ssa_name_ann (use)->info.current_def;
1816 /* We can't assume that, if there's no current definition, the
1817 default one should be used. It could be the case that we've
1818 rearranged blocks so that the earlier definition no longer
1819 dominates the use. */
1820 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1821 rdef = use;
1822 }
1823 else
1824 rdef = use;
1825
1826 if (rdef && rdef != use)
1827 SET_USE (use_p, rdef);
1828
1829 return rdef != NULL_TREE;
1830 }
1831
1832
1833 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1834 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1835 register it as the current definition for the names replaced by
1836 DEF_P. Returns whether the statement should be removed. */
1837
1838 static inline bool
1839 maybe_register_def (def_operand_p def_p, gimple stmt,
1840 gimple_stmt_iterator gsi)
1841 {
1842 tree def = DEF_FROM_PTR (def_p);
1843 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1844 bool to_delete = false;
1845
1846 /* If DEF is a naked symbol that needs renaming, create a new
1847 name for it. */
1848 if (marked_for_renaming (sym))
1849 {
1850 if (DECL_P (def))
1851 {
1852 if (gimple_clobber_p (stmt) && is_gimple_reg (sym))
1853 {
1854 gcc_checking_assert (TREE_CODE (sym) == VAR_DECL);
1855 /* Replace clobber stmts with a default def. This new use of a
1856 default definition may make it look like SSA_NAMEs have
1857 conflicting lifetimes, so we need special code to let them
1858 coalesce properly. */
1859 to_delete = true;
1860 def = get_or_create_ssa_default_def (cfun, sym);
1861 }
1862 else
1863 def = make_ssa_name (def, stmt);
1864 SET_DEF (def_p, def);
1865
1866 tree tracked_var = target_for_debug_bind (sym);
1867 if (tracked_var)
1868 {
1869 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1870 /* If stmt ends the bb, insert the debug stmt on the single
1871 non-EH edge from the stmt. */
1872 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1873 {
1874 basic_block bb = gsi_bb (gsi);
1875 edge_iterator ei;
1876 edge e, ef = NULL;
1877 FOR_EACH_EDGE (e, ei, bb->succs)
1878 if (!(e->flags & EDGE_EH))
1879 {
1880 gcc_checking_assert (!ef);
1881 ef = e;
1882 }
1883 /* If there are other predecessors to ef->dest, then
1884 there must be PHI nodes for the modified
1885 variable, and therefore there will be debug bind
1886 stmts after the PHI nodes. The debug bind notes
1887 we'd insert would force the creation of a new
1888 block (diverging codegen) and be redundant with
1889 the post-PHI bind stmts, so don't add them.
1890
1891 As for the exit edge, there wouldn't be redundant
1892 bind stmts, but there wouldn't be a PC to bind
1893 them to either, so avoid diverging the CFG. */
1894 if (ef && single_pred_p (ef->dest)
1895 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1896 {
1897 /* If there were PHI nodes in the node, we'd
1898 have to make sure the value we're binding
1899 doesn't need rewriting. But there shouldn't
1900 be PHI nodes in a single-predecessor block,
1901 so we just add the note. */
1902 gsi_insert_on_edge_immediate (ef, note);
1903 }
1904 }
1905 else
1906 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1907 }
1908 }
1909
1910 register_new_update_single (def, sym);
1911 }
1912 else
1913 {
1914 /* If DEF is a new name, register it as a new definition
1915 for all the names replaced by DEF. */
1916 if (is_new_name (def))
1917 register_new_update_set (def, names_replaced_by (def));
1918
1919 /* If DEF is an old name, register DEF as a new
1920 definition for itself. */
1921 if (is_old_name (def))
1922 register_new_update_single (def, def);
1923 }
1924
1925 return to_delete;
1926 }
1927
1928
1929 /* Update every variable used in the statement pointed-to by SI. The
1930 statement is assumed to be in SSA form already. Names in
1931 OLD_SSA_NAMES used by SI will be updated to their current reaching
1932 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1933 will be registered as a new definition for their corresponding name
1934 in OLD_SSA_NAMES. Returns whether STMT should be removed. */
1935
1936 static bool
1937 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1938 {
1939 use_operand_p use_p;
1940 def_operand_p def_p;
1941 ssa_op_iter iter;
1942
1943 /* Only update marked statements. */
1944 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1945 return false;
1946
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 {
1949 fprintf (dump_file, "Updating SSA information for statement ");
1950 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1951 }
1952
1953 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1954 symbol is marked for renaming. */
1955 if (rewrite_uses_p (stmt))
1956 {
1957 if (is_gimple_debug (stmt))
1958 {
1959 bool failed = false;
1960
1961 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1962 if (!maybe_replace_use_in_debug_stmt (use_p))
1963 {
1964 failed = true;
1965 break;
1966 }
1967
1968 if (failed)
1969 {
1970 /* DOM sometimes threads jumps in such a way that a
1971 debug stmt ends up referencing a SSA variable that no
1972 longer dominates the debug stmt, but such that all
1973 incoming definitions refer to the same definition in
1974 an earlier dominator. We could try to recover that
1975 definition somehow, but this will have to do for now.
1976
1977 Introducing a default definition, which is what
1978 maybe_replace_use() would do in such cases, may
1979 modify code generation, for the otherwise-unused
1980 default definition would never go away, modifying SSA
1981 version numbers all over. */
1982 gimple_debug_bind_reset_value (stmt);
1983 update_stmt (stmt);
1984 }
1985 }
1986 else
1987 {
1988 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1989 maybe_replace_use (use_p);
1990 }
1991 }
1992
1993 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1994 Also register definitions for names whose underlying symbol is
1995 marked for renaming. */
1996 bool to_delete = false;
1997 if (register_defs_p (stmt))
1998 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1999 to_delete |= maybe_register_def (def_p, stmt, gsi);
2000
2001 return to_delete;
2002 }
2003
2004
2005 /* Visit all the successor blocks of BB looking for PHI nodes. For
2006 every PHI node found, check if any of its arguments is in
2007 OLD_SSA_NAMES. If so, and if the argument has a current reaching
2008 definition, replace it. */
2009
2010 static void
2011 rewrite_update_phi_arguments (basic_block bb)
2012 {
2013 edge e;
2014 edge_iterator ei;
2015 unsigned i;
2016
2017 FOR_EACH_EDGE (e, ei, bb->succs)
2018 {
2019 gphi *phi;
2020 vec<gphi *> phis;
2021
2022 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2023 continue;
2024
2025 phis = phis_to_rewrite[e->dest->index];
2026 FOR_EACH_VEC_ELT (phis, i, phi)
2027 {
2028 tree arg, lhs_sym, reaching_def = NULL;
2029 use_operand_p arg_p;
2030
2031 gcc_checking_assert (rewrite_uses_p (phi));
2032
2033 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2034 arg = USE_FROM_PTR (arg_p);
2035
2036 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2037 continue;
2038
2039 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2040
2041 if (arg == NULL_TREE)
2042 {
2043 /* When updating a PHI node for a recently introduced
2044 symbol we may find NULL arguments. That's why we
2045 take the symbol from the LHS of the PHI node. */
2046 reaching_def = get_reaching_def (lhs_sym);
2047
2048 }
2049 else
2050 {
2051 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2052
2053 if (marked_for_renaming (sym))
2054 reaching_def = get_reaching_def (sym);
2055 else if (is_old_name (arg))
2056 reaching_def = get_reaching_def (arg);
2057 }
2058
2059 /* Update the argument if there is a reaching def. */
2060 if (reaching_def)
2061 {
2062 source_location locus;
2063 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2064
2065 SET_USE (arg_p, reaching_def);
2066
2067 /* Virtual operands do not need a location. */
2068 if (virtual_operand_p (reaching_def))
2069 locus = UNKNOWN_LOCATION;
2070 else
2071 {
2072 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2073 gphi *other_phi = dyn_cast <gphi *> (stmt);
2074
2075 /* Single element PHI nodes behave like copies, so get the
2076 location from the phi argument. */
2077 if (other_phi
2078 && gimple_phi_num_args (other_phi) == 1)
2079 locus = gimple_phi_arg_location (other_phi, 0);
2080 else
2081 locus = gimple_location (stmt);
2082 }
2083
2084 gimple_phi_arg_set_location (phi, arg_i, locus);
2085 }
2086
2087
2088 if (e->flags & EDGE_ABNORMAL)
2089 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2090 }
2091 }
2092 }
2093
2094 class rewrite_update_dom_walker : public dom_walker
2095 {
2096 public:
2097 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2098
2099 virtual void before_dom_children (basic_block);
2100 virtual void after_dom_children (basic_block);
2101 };
2102
2103 /* Initialization of block data structures for the incremental SSA
2104 update pass. Create a block local stack of reaching definitions
2105 for new SSA names produced in this block (BLOCK_DEFS). Register
2106 new definitions for every PHI node in the block. */
2107
2108 void
2109 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2110 {
2111 bool is_abnormal_phi;
2112
2113 if (dump_file && (dump_flags & TDF_DETAILS))
2114 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2115 bb->index);
2116
2117 /* Mark the unwind point for this block. */
2118 block_defs_stack.safe_push (NULL_TREE);
2119
2120 if (!bitmap_bit_p (blocks_to_update, bb->index))
2121 return;
2122
2123 /* Mark the LHS if any of the arguments flows through an abnormal
2124 edge. */
2125 is_abnormal_phi = bb_has_abnormal_pred (bb);
2126
2127 /* If any of the PHI nodes is a replacement for a name in
2128 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2129 register it as a new definition for its corresponding name. Also
2130 register definitions for names whose underlying symbols are
2131 marked for renaming. */
2132 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2133 gsi_next (&gsi))
2134 {
2135 tree lhs, lhs_sym;
2136 gphi *phi = gsi.phi ();
2137
2138 if (!register_defs_p (phi))
2139 continue;
2140
2141 lhs = gimple_phi_result (phi);
2142 lhs_sym = SSA_NAME_VAR (lhs);
2143
2144 if (marked_for_renaming (lhs_sym))
2145 register_new_update_single (lhs, lhs_sym);
2146 else
2147 {
2148
2149 /* If LHS is a new name, register a new definition for all
2150 the names replaced by LHS. */
2151 if (is_new_name (lhs))
2152 register_new_update_set (lhs, names_replaced_by (lhs));
2153
2154 /* If LHS is an OLD name, register it as a new definition
2155 for itself. */
2156 if (is_old_name (lhs))
2157 register_new_update_single (lhs, lhs);
2158 }
2159
2160 if (is_abnormal_phi)
2161 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2162 }
2163
2164 /* Step 2. Rewrite every variable used in each statement in the block. */
2165 if (bitmap_bit_p (interesting_blocks, bb->index))
2166 {
2167 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2168 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2169 if (rewrite_update_stmt (gsi_stmt (gsi), gsi))
2170 gsi_remove (&gsi, true);
2171 else
2172 gsi_next (&gsi);
2173 }
2174
2175 /* Step 3. Update PHI nodes. */
2176 rewrite_update_phi_arguments (bb);
2177 }
2178
2179 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2180 the current reaching definition of every name re-written in BB to
2181 the original reaching definition before visiting BB. This
2182 unwinding must be done in the opposite order to what is done in
2183 register_new_update_set. */
2184
2185 void
2186 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2187 {
2188 while (block_defs_stack.length () > 0)
2189 {
2190 tree var = block_defs_stack.pop ();
2191 tree saved_def;
2192
2193 /* NULL indicates the unwind stop point for this block (see
2194 rewrite_update_enter_block). */
2195 if (var == NULL)
2196 return;
2197
2198 saved_def = block_defs_stack.pop ();
2199 get_common_info (var)->current_def = saved_def;
2200 }
2201 }
2202
2203
2204 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2205 form.
2206
2207 ENTRY indicates the block where to start. Every block dominated by
2208 ENTRY will be rewritten.
2209
2210 WHAT indicates what actions will be taken by the renamer (see enum
2211 rewrite_mode).
2212
2213 BLOCKS are the set of interesting blocks for the dominator walker
2214 to process. If this set is NULL, then all the nodes dominated
2215 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2216 are not present in BLOCKS are ignored. */
2217
2218 static void
2219 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2220 {
2221 /* Rewrite all the basic blocks in the program. */
2222 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2223
2224 block_defs_stack.create (10);
2225
2226 /* Recursively walk the dominator tree rewriting each statement in
2227 each basic block. */
2228 if (what == REWRITE_ALL)
2229 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2230 else if (what == REWRITE_UPDATE)
2231 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2232 else
2233 gcc_unreachable ();
2234
2235 /* Debugging dumps. */
2236 if (dump_file && (dump_flags & TDF_STATS))
2237 {
2238 dump_dfa_stats (dump_file);
2239 if (var_infos)
2240 dump_tree_ssa_stats (dump_file);
2241 }
2242
2243 block_defs_stack.release ();
2244
2245 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2246 }
2247
2248 class mark_def_dom_walker : public dom_walker
2249 {
2250 public:
2251 mark_def_dom_walker (cdi_direction direction);
2252 ~mark_def_dom_walker ();
2253
2254 virtual void before_dom_children (basic_block);
2255
2256 private:
2257 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2258 large enough to accommodate all the variables referenced in the
2259 function, not just the ones we are renaming. */
2260 bitmap m_kills;
2261 };
2262
2263 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2264 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2265 {
2266 }
2267
2268 mark_def_dom_walker::~mark_def_dom_walker ()
2269 {
2270 BITMAP_FREE (m_kills);
2271 }
2272
2273 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2274 at the start of each block, and call mark_def_sites for each statement. */
2275
2276 void
2277 mark_def_dom_walker::before_dom_children (basic_block bb)
2278 {
2279 gimple_stmt_iterator gsi;
2280
2281 bitmap_clear (m_kills);
2282 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2283 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2284 }
2285
2286 /* Initialize internal data needed during renaming. */
2287
2288 static void
2289 init_ssa_renamer (void)
2290 {
2291 cfun->gimple_df->in_ssa_p = false;
2292
2293 /* Allocate memory for the DEF_BLOCKS hash table. */
2294 gcc_assert (!var_infos);
2295 var_infos = new hash_table<var_info_hasher>
2296 (vec_safe_length (cfun->local_decls));
2297
2298 bitmap_obstack_initialize (&update_ssa_obstack);
2299 }
2300
2301
2302 /* Deallocate internal data structures used by the renamer. */
2303
2304 static void
2305 fini_ssa_renamer (void)
2306 {
2307 delete var_infos;
2308 var_infos = NULL;
2309
2310 bitmap_obstack_release (&update_ssa_obstack);
2311
2312 cfun->gimple_df->ssa_renaming_needed = 0;
2313 cfun->gimple_df->rename_vops = 0;
2314 cfun->gimple_df->in_ssa_p = true;
2315 }
2316
2317 /* Main entry point into the SSA builder. The renaming process
2318 proceeds in four main phases:
2319
2320 1- Compute dominance frontier and immediate dominators, needed to
2321 insert PHI nodes and rename the function in dominator tree
2322 order.
2323
2324 2- Find and mark all the blocks that define variables.
2325
2326 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2327
2328 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2329
2330 Steps 3 and 4 are done using the dominator tree walker
2331 (walk_dominator_tree). */
2332
2333 namespace {
2334
2335 const pass_data pass_data_build_ssa =
2336 {
2337 GIMPLE_PASS, /* type */
2338 "ssa", /* name */
2339 OPTGROUP_NONE, /* optinfo_flags */
2340 TV_TREE_SSA_OTHER, /* tv_id */
2341 PROP_cfg, /* properties_required */
2342 PROP_ssa, /* properties_provided */
2343 0, /* properties_destroyed */
2344 0, /* todo_flags_start */
2345 TODO_remove_unused_locals, /* todo_flags_finish */
2346 };
2347
2348 class pass_build_ssa : public gimple_opt_pass
2349 {
2350 public:
2351 pass_build_ssa (gcc::context *ctxt)
2352 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2353 {}
2354
2355 /* opt_pass methods: */
2356 virtual bool gate (function *fun)
2357 {
2358 /* Do nothing for funcions that was produced already in SSA form. */
2359 return !(fun->curr_properties & PROP_ssa);
2360 }
2361
2362 virtual unsigned int execute (function *);
2363
2364 }; // class pass_build_ssa
2365
2366 unsigned int
2367 pass_build_ssa::execute (function *fun)
2368 {
2369 bitmap_head *dfs;
2370 basic_block bb;
2371 unsigned i;
2372
2373 /* Initialize operand data structures. */
2374 init_ssa_operands (fun);
2375
2376 /* Initialize internal data needed by the renamer. */
2377 init_ssa_renamer ();
2378
2379 /* Initialize the set of interesting blocks. The callback
2380 mark_def_sites will add to this set those blocks that the renamer
2381 should process. */
2382 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun));
2383 bitmap_clear (interesting_blocks);
2384
2385 /* Initialize dominance frontier. */
2386 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun));
2387 FOR_EACH_BB_FN (bb, fun)
2388 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2389
2390 /* 1- Compute dominance frontiers. */
2391 calculate_dominance_info (CDI_DOMINATORS);
2392 compute_dominance_frontiers (dfs);
2393
2394 /* 2- Find and mark definition sites. */
2395 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
2396
2397 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2398 insert_phi_nodes (dfs);
2399
2400 /* 4- Rename all the blocks. */
2401 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL);
2402
2403 /* Free allocated memory. */
2404 FOR_EACH_BB_FN (bb, fun)
2405 bitmap_clear (&dfs[bb->index]);
2406 free (dfs);
2407
2408 sbitmap_free (interesting_blocks);
2409
2410 fini_ssa_renamer ();
2411
2412 /* Try to get rid of all gimplifier generated temporaries by making
2413 its SSA names anonymous. This way we can garbage collect them
2414 all after removing unused locals which we do in our TODO. */
2415 for (i = 1; i < num_ssa_names; ++i)
2416 {
2417 tree decl, name = ssa_name (i);
2418 if (!name
2419 || SSA_NAME_IS_DEFAULT_DEF (name))
2420 continue;
2421 decl = SSA_NAME_VAR (name);
2422 if (decl
2423 && TREE_CODE (decl) == VAR_DECL
2424 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2425 && DECL_IGNORED_P (decl))
2426 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2427 }
2428
2429 return 0;
2430 }
2431
2432 } // anon namespace
2433
2434 gimple_opt_pass *
2435 make_pass_build_ssa (gcc::context *ctxt)
2436 {
2437 return new pass_build_ssa (ctxt);
2438 }
2439
2440
2441 /* Mark the definition of VAR at STMT and BB as interesting for the
2442 renamer. BLOCKS is the set of blocks that need updating. */
2443
2444 static void
2445 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2446 {
2447 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2448 set_register_defs (stmt, true);
2449
2450 if (insert_phi_p)
2451 {
2452 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2453
2454 set_def_block (var, bb, is_phi_p);
2455
2456 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2457 site for both itself and all the old names replaced by it. */
2458 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2459 {
2460 bitmap_iterator bi;
2461 unsigned i;
2462 bitmap set = names_replaced_by (var);
2463 if (set)
2464 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2465 set_def_block (ssa_name (i), bb, is_phi_p);
2466 }
2467 }
2468 }
2469
2470
2471 /* Mark the use of VAR at STMT and BB as interesting for the
2472 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2473 nodes. */
2474
2475 static inline void
2476 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2477 {
2478 basic_block def_bb = gimple_bb (stmt);
2479
2480 mark_block_for_update (def_bb);
2481 mark_block_for_update (bb);
2482
2483 if (gimple_code (stmt) == GIMPLE_PHI)
2484 mark_phi_for_rewrite (def_bb, as_a <gphi *> (stmt));
2485 else
2486 {
2487 set_rewrite_uses (stmt, true);
2488
2489 if (is_gimple_debug (stmt))
2490 return;
2491 }
2492
2493 /* If VAR has not been defined in BB, then it is live-on-entry
2494 to BB. Note that we cannot just use the block holding VAR's
2495 definition because if VAR is one of the names in OLD_SSA_NAMES,
2496 it will have several definitions (itself and all the names that
2497 replace it). */
2498 if (insert_phi_p)
2499 {
2500 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2501 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2502 set_livein_block (var, bb);
2503 }
2504 }
2505
2506
2507 /* Do a dominator walk starting at BB processing statements that
2508 reference symbols in SSA operands. This is very similar to
2509 mark_def_sites, but the scan handles statements whose operands may
2510 already be SSA names.
2511
2512 If INSERT_PHI_P is true, mark those uses as live in the
2513 corresponding block. This is later used by the PHI placement
2514 algorithm to make PHI pruning decisions.
2515
2516 FIXME. Most of this would be unnecessary if we could associate a
2517 symbol to all the SSA names that reference it. But that
2518 sounds like it would be expensive to maintain. Still, it
2519 would be interesting to see if it makes better sense to do
2520 that. */
2521
2522 static void
2523 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2524 {
2525 basic_block son;
2526 edge e;
2527 edge_iterator ei;
2528
2529 mark_block_for_update (bb);
2530
2531 /* Process PHI nodes marking interesting those that define or use
2532 the symbols that we are interested in. */
2533 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
2534 gsi_next (&si))
2535 {
2536 gphi *phi = si.phi ();
2537 tree lhs_sym, lhs = gimple_phi_result (phi);
2538
2539 if (TREE_CODE (lhs) == SSA_NAME
2540 && (! virtual_operand_p (lhs)
2541 || ! cfun->gimple_df->rename_vops))
2542 continue;
2543
2544 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2545 mark_for_renaming (lhs_sym);
2546 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2547
2548 /* Mark the uses in phi nodes as interesting. It would be more correct
2549 to process the arguments of the phi nodes of the successor edges of
2550 BB at the end of prepare_block_for_update, however, that turns out
2551 to be significantly more expensive. Doing it here is conservatively
2552 correct -- it may only cause us to believe a value to be live in a
2553 block that also contains its definition, and thus insert a few more
2554 phi nodes for it. */
2555 FOR_EACH_EDGE (e, ei, bb->preds)
2556 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2557 }
2558
2559 /* Process the statements. */
2560 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
2561 gsi_next (&si))
2562 {
2563 gimple stmt;
2564 ssa_op_iter i;
2565 use_operand_p use_p;
2566 def_operand_p def_p;
2567
2568 stmt = gsi_stmt (si);
2569
2570 if (cfun->gimple_df->rename_vops
2571 && gimple_vuse (stmt))
2572 {
2573 tree use = gimple_vuse (stmt);
2574 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2575 mark_for_renaming (sym);
2576 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2577 }
2578
2579 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2580 {
2581 tree use = USE_FROM_PTR (use_p);
2582 if (!DECL_P (use))
2583 continue;
2584 mark_for_renaming (use);
2585 mark_use_interesting (use, stmt, bb, insert_phi_p);
2586 }
2587
2588 if (cfun->gimple_df->rename_vops
2589 && gimple_vdef (stmt))
2590 {
2591 tree def = gimple_vdef (stmt);
2592 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2593 mark_for_renaming (sym);
2594 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2595 }
2596
2597 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2598 {
2599 tree def = DEF_FROM_PTR (def_p);
2600 if (!DECL_P (def))
2601 continue;
2602 mark_for_renaming (def);
2603 mark_def_interesting (def, stmt, bb, insert_phi_p);
2604 }
2605 }
2606
2607 /* Now visit all the blocks dominated by BB. */
2608 for (son = first_dom_son (CDI_DOMINATORS, bb);
2609 son;
2610 son = next_dom_son (CDI_DOMINATORS, son))
2611 prepare_block_for_update (son, insert_phi_p);
2612 }
2613
2614
2615 /* Helper for prepare_names_to_update. Mark all the use sites for
2616 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2617 prepare_names_to_update. */
2618
2619 static void
2620 prepare_use_sites_for (tree name, bool insert_phi_p)
2621 {
2622 use_operand_p use_p;
2623 imm_use_iterator iter;
2624
2625 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2626 {
2627 gimple stmt = USE_STMT (use_p);
2628 basic_block bb = gimple_bb (stmt);
2629
2630 if (gimple_code (stmt) == GIMPLE_PHI)
2631 {
2632 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2633 edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), ix);
2634 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2635 }
2636 else
2637 {
2638 /* For regular statements, mark this as an interesting use
2639 for NAME. */
2640 mark_use_interesting (name, stmt, bb, insert_phi_p);
2641 }
2642 }
2643 }
2644
2645
2646 /* Helper for prepare_names_to_update. Mark the definition site for
2647 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2648 prepare_names_to_update. */
2649
2650 static void
2651 prepare_def_site_for (tree name, bool insert_phi_p)
2652 {
2653 gimple stmt;
2654 basic_block bb;
2655
2656 gcc_checking_assert (names_to_release == NULL
2657 || !bitmap_bit_p (names_to_release,
2658 SSA_NAME_VERSION (name)));
2659
2660 stmt = SSA_NAME_DEF_STMT (name);
2661 bb = gimple_bb (stmt);
2662 if (bb)
2663 {
2664 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2665 mark_block_for_update (bb);
2666 mark_def_interesting (name, stmt, bb, insert_phi_p);
2667 }
2668 }
2669
2670
2671 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2672 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2673 PHI nodes for newly created names. */
2674
2675 static void
2676 prepare_names_to_update (bool insert_phi_p)
2677 {
2678 unsigned i = 0;
2679 bitmap_iterator bi;
2680 sbitmap_iterator sbi;
2681
2682 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2683 remove it from NEW_SSA_NAMES so that we don't try to visit its
2684 defining basic block (which most likely doesn't exist). Notice
2685 that we cannot do the same with names in OLD_SSA_NAMES because we
2686 want to replace existing instances. */
2687 if (names_to_release)
2688 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2689 bitmap_clear_bit (new_ssa_names, i);
2690
2691 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2692 names may be considered to be live-in on blocks that contain
2693 definitions for their replacements. */
2694 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2695 prepare_def_site_for (ssa_name (i), insert_phi_p);
2696
2697 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2698 OLD_SSA_NAMES, but we have to ignore its definition site. */
2699 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2700 {
2701 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2702 prepare_def_site_for (ssa_name (i), insert_phi_p);
2703 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2704 }
2705 }
2706
2707
2708 /* Dump all the names replaced by NAME to FILE. */
2709
2710 void
2711 dump_names_replaced_by (FILE *file, tree name)
2712 {
2713 unsigned i;
2714 bitmap old_set;
2715 bitmap_iterator bi;
2716
2717 print_generic_expr (file, name, 0);
2718 fprintf (file, " -> { ");
2719
2720 old_set = names_replaced_by (name);
2721 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2722 {
2723 print_generic_expr (file, ssa_name (i), 0);
2724 fprintf (file, " ");
2725 }
2726
2727 fprintf (file, "}\n");
2728 }
2729
2730
2731 /* Dump all the names replaced by NAME to stderr. */
2732
2733 DEBUG_FUNCTION void
2734 debug_names_replaced_by (tree name)
2735 {
2736 dump_names_replaced_by (stderr, name);
2737 }
2738
2739
2740 /* Dump SSA update information to FILE. */
2741
2742 void
2743 dump_update_ssa (FILE *file)
2744 {
2745 unsigned i = 0;
2746 bitmap_iterator bi;
2747
2748 if (!need_ssa_update_p (cfun))
2749 return;
2750
2751 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2752 {
2753 sbitmap_iterator sbi;
2754
2755 fprintf (file, "\nSSA replacement table\n");
2756 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2757 "O_1, ..., O_j\n\n");
2758
2759 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2760 dump_names_replaced_by (file, ssa_name (i));
2761 }
2762
2763 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2764 {
2765 fprintf (file, "\nSymbols to be put in SSA form\n");
2766 dump_decl_set (file, symbols_to_rename_set);
2767 fprintf (file, "\n");
2768 }
2769
2770 if (names_to_release && !bitmap_empty_p (names_to_release))
2771 {
2772 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2773 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2774 {
2775 print_generic_expr (file, ssa_name (i), 0);
2776 fprintf (file, " ");
2777 }
2778 fprintf (file, "\n");
2779 }
2780 }
2781
2782
2783 /* Dump SSA update information to stderr. */
2784
2785 DEBUG_FUNCTION void
2786 debug_update_ssa (void)
2787 {
2788 dump_update_ssa (stderr);
2789 }
2790
2791
2792 /* Initialize data structures used for incremental SSA updates. */
2793
2794 static void
2795 init_update_ssa (struct function *fn)
2796 {
2797 /* Reserve more space than the current number of names. The calls to
2798 add_new_name_mapping are typically done after creating new SSA
2799 names, so we'll need to reallocate these arrays. */
2800 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2801 bitmap_clear (old_ssa_names);
2802
2803 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2804 bitmap_clear (new_ssa_names);
2805
2806 bitmap_obstack_initialize (&update_ssa_obstack);
2807
2808 names_to_release = NULL;
2809 update_ssa_initialized_fn = fn;
2810 }
2811
2812
2813 /* Deallocate data structures used for incremental SSA updates. */
2814
2815 void
2816 delete_update_ssa (void)
2817 {
2818 unsigned i;
2819 bitmap_iterator bi;
2820
2821 sbitmap_free (old_ssa_names);
2822 old_ssa_names = NULL;
2823
2824 sbitmap_free (new_ssa_names);
2825 new_ssa_names = NULL;
2826
2827 BITMAP_FREE (symbols_to_rename_set);
2828 symbols_to_rename_set = NULL;
2829 symbols_to_rename.release ();
2830
2831 if (names_to_release)
2832 {
2833 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2834 release_ssa_name (ssa_name (i));
2835 BITMAP_FREE (names_to_release);
2836 }
2837
2838 clear_ssa_name_info ();
2839
2840 fini_ssa_renamer ();
2841
2842 if (blocks_with_phis_to_rewrite)
2843 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2844 {
2845 vec<gphi *> phis = phis_to_rewrite[i];
2846 phis.release ();
2847 phis_to_rewrite[i].create (0);
2848 }
2849
2850 BITMAP_FREE (blocks_with_phis_to_rewrite);
2851 BITMAP_FREE (blocks_to_update);
2852
2853 update_ssa_initialized_fn = NULL;
2854 }
2855
2856
2857 /* Create a new name for OLD_NAME in statement STMT and replace the
2858 operand pointed to by DEF_P with the newly created name. If DEF_P
2859 is NULL then STMT should be a GIMPLE assignment.
2860 Return the new name and register the replacement mapping <NEW, OLD> in
2861 update_ssa's tables. */
2862
2863 tree
2864 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2865 {
2866 tree new_name;
2867
2868 timevar_push (TV_TREE_SSA_INCREMENTAL);
2869
2870 if (!update_ssa_initialized_fn)
2871 init_update_ssa (cfun);
2872
2873 gcc_assert (update_ssa_initialized_fn == cfun);
2874
2875 new_name = duplicate_ssa_name (old_name, stmt);
2876 if (def)
2877 SET_DEF (def, new_name);
2878 else
2879 gimple_assign_set_lhs (stmt, new_name);
2880
2881 if (gimple_code (stmt) == GIMPLE_PHI)
2882 {
2883 basic_block bb = gimple_bb (stmt);
2884
2885 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2886 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2887 }
2888
2889 add_new_name_mapping (new_name, old_name);
2890
2891 /* For the benefit of passes that will be updating the SSA form on
2892 their own, set the current reaching definition of OLD_NAME to be
2893 NEW_NAME. */
2894 get_ssa_name_ann (old_name)->info.current_def = new_name;
2895
2896 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2897
2898 return new_name;
2899 }
2900
2901
2902 /* Mark virtual operands of FN for renaming by update_ssa. */
2903
2904 void
2905 mark_virtual_operands_for_renaming (struct function *fn)
2906 {
2907 fn->gimple_df->ssa_renaming_needed = 1;
2908 fn->gimple_df->rename_vops = 1;
2909 }
2910
2911 /* Replace all uses of NAME by underlying variable and mark it
2912 for renaming. This assumes the defining statement of NAME is
2913 going to be removed. */
2914
2915 void
2916 mark_virtual_operand_for_renaming (tree name)
2917 {
2918 tree name_var = SSA_NAME_VAR (name);
2919 bool used = false;
2920 imm_use_iterator iter;
2921 use_operand_p use_p;
2922 gimple stmt;
2923
2924 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2925 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2926 {
2927 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2928 SET_USE (use_p, name_var);
2929 used = true;
2930 }
2931 if (used)
2932 mark_virtual_operands_for_renaming (cfun);
2933 }
2934
2935 /* Replace all uses of the virtual PHI result by its underlying variable
2936 and mark it for renaming. This assumes the PHI node is going to be
2937 removed. */
2938
2939 void
2940 mark_virtual_phi_result_for_renaming (gphi *phi)
2941 {
2942 if (dump_file && (dump_flags & TDF_DETAILS))
2943 {
2944 fprintf (dump_file, "Marking result for renaming : ");
2945 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2946 fprintf (dump_file, "\n");
2947 }
2948
2949 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2950 }
2951
2952 /* Return true if there is any work to be done by update_ssa
2953 for function FN. */
2954
2955 bool
2956 need_ssa_update_p (struct function *fn)
2957 {
2958 gcc_assert (fn != NULL);
2959 return (update_ssa_initialized_fn == fn
2960 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2961 }
2962
2963 /* Return true if name N has been registered in the replacement table. */
2964
2965 bool
2966 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2967 {
2968 if (!update_ssa_initialized_fn)
2969 return false;
2970
2971 gcc_assert (update_ssa_initialized_fn == cfun);
2972
2973 return is_new_name (n) || is_old_name (n);
2974 }
2975
2976
2977 /* Mark NAME to be released after update_ssa has finished. */
2978
2979 void
2980 release_ssa_name_after_update_ssa (tree name)
2981 {
2982 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2983
2984 if (names_to_release == NULL)
2985 names_to_release = BITMAP_ALLOC (NULL);
2986
2987 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2988 }
2989
2990
2991 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2992 frontier information. BLOCKS is the set of blocks to be updated.
2993
2994 This is slightly different than the regular PHI insertion
2995 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2996 real names (i.e., GIMPLE registers) are inserted:
2997
2998 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2999 nodes inside the region affected by the block that defines VAR
3000 and the blocks that define all its replacements. All these
3001 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3002
3003 First, we compute the entry point to the region (ENTRY). This is
3004 given by the nearest common dominator to all the definition
3005 blocks. When computing the iterated dominance frontier (IDF), any
3006 block not strictly dominated by ENTRY is ignored.
3007
3008 We then call the standard PHI insertion algorithm with the pruned
3009 IDF.
3010
3011 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3012 names is not pruned. PHI nodes are inserted at every IDF block. */
3013
3014 static void
3015 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3016 unsigned update_flags)
3017 {
3018 basic_block entry;
3019 struct def_blocks_d *db;
3020 bitmap idf, pruned_idf;
3021 bitmap_iterator bi;
3022 unsigned i;
3023
3024 if (TREE_CODE (var) == SSA_NAME)
3025 gcc_checking_assert (is_old_name (var));
3026 else
3027 gcc_checking_assert (marked_for_renaming (var));
3028
3029 /* Get all the definition sites for VAR. */
3030 db = find_def_blocks_for (var);
3031
3032 /* No need to do anything if there were no definitions to VAR. */
3033 if (db == NULL || bitmap_empty_p (db->def_blocks))
3034 return;
3035
3036 /* Compute the initial iterated dominance frontier. */
3037 idf = compute_idf (db->def_blocks, dfs);
3038 pruned_idf = BITMAP_ALLOC (NULL);
3039
3040 if (TREE_CODE (var) == SSA_NAME)
3041 {
3042 if (update_flags == TODO_update_ssa)
3043 {
3044 /* If doing regular SSA updates for GIMPLE registers, we are
3045 only interested in IDF blocks dominated by the nearest
3046 common dominator of all the definition blocks. */
3047 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3048 db->def_blocks);
3049 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3050 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3051 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3052 && dominated_by_p (CDI_DOMINATORS,
3053 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3054 bitmap_set_bit (pruned_idf, i);
3055 }
3056 else
3057 {
3058 /* Otherwise, do not prune the IDF for VAR. */
3059 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3060 bitmap_copy (pruned_idf, idf);
3061 }
3062 }
3063 else
3064 {
3065 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3066 for the first time, so we need to compute the full IDF for
3067 it. */
3068 bitmap_copy (pruned_idf, idf);
3069 }
3070
3071 if (!bitmap_empty_p (pruned_idf))
3072 {
3073 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3074 are included in the region to be updated. The feeding blocks
3075 are important to guarantee that the PHI arguments are renamed
3076 properly. */
3077
3078 /* FIXME, this is not needed if we are updating symbols. We are
3079 already starting at the ENTRY block anyway. */
3080 bitmap_ior_into (blocks, pruned_idf);
3081 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3082 {
3083 edge e;
3084 edge_iterator ei;
3085 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3086
3087 FOR_EACH_EDGE (e, ei, bb->preds)
3088 if (e->src->index >= 0)
3089 bitmap_set_bit (blocks, e->src->index);
3090 }
3091
3092 insert_phi_nodes_for (var, pruned_idf, true);
3093 }
3094
3095 BITMAP_FREE (pruned_idf);
3096 BITMAP_FREE (idf);
3097 }
3098
3099 /* Sort symbols_to_rename after their DECL_UID. */
3100
3101 static int
3102 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3103 {
3104 const_tree syma = *(const const_tree *)a;
3105 const_tree symb = *(const const_tree *)b;
3106 if (DECL_UID (syma) == DECL_UID (symb))
3107 return 0;
3108 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3109 }
3110
3111 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3112 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3113
3114 1- The names in OLD_SSA_NAMES dominated by the definitions of
3115 NEW_SSA_NAMES are all re-written to be reached by the
3116 appropriate definition from NEW_SSA_NAMES.
3117
3118 2- If needed, new PHI nodes are added to the iterated dominance
3119 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3120
3121 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3122 calling create_new_def_for to create new defs for names that the
3123 caller wants to replace.
3124
3125 The caller cretaes the new names to be inserted and the names that need
3126 to be replaced by calling create_new_def_for for each old definition
3127 to be replaced. Note that the function assumes that the
3128 new defining statement has already been inserted in the IL.
3129
3130 For instance, given the following code:
3131
3132 1 L0:
3133 2 x_1 = PHI (0, x_5)
3134 3 if (x_1 < 10)
3135 4 if (x_1 > 7)
3136 5 y_2 = 0
3137 6 else
3138 7 y_3 = x_1 + x_7
3139 8 endif
3140 9 x_5 = x_1 + 1
3141 10 goto L0;
3142 11 endif
3143
3144 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3145
3146 1 L0:
3147 2 x_1 = PHI (0, x_5)
3148 3 if (x_1 < 10)
3149 4 x_10 = ...
3150 5 if (x_1 > 7)
3151 6 y_2 = 0
3152 7 else
3153 8 x_11 = ...
3154 9 y_3 = x_1 + x_7
3155 10 endif
3156 11 x_5 = x_1 + 1
3157 12 goto L0;
3158 13 endif
3159
3160 We want to replace all the uses of x_1 with the new definitions of
3161 x_10 and x_11. Note that the only uses that should be replaced are
3162 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3163 *not* be replaced (this is why we cannot just mark symbol 'x' for
3164 renaming).
3165
3166 Additionally, we may need to insert a PHI node at line 11 because
3167 that is a merge point for x_10 and x_11. So the use of x_1 at line
3168 11 will be replaced with the new PHI node. The insertion of PHI
3169 nodes is optional. They are not strictly necessary to preserve the
3170 SSA form, and depending on what the caller inserted, they may not
3171 even be useful for the optimizers. UPDATE_FLAGS controls various
3172 aspects of how update_ssa operates, see the documentation for
3173 TODO_update_ssa*. */
3174
3175 void
3176 update_ssa (unsigned update_flags)
3177 {
3178 basic_block bb, start_bb;
3179 bitmap_iterator bi;
3180 unsigned i = 0;
3181 bool insert_phi_p;
3182 sbitmap_iterator sbi;
3183 tree sym;
3184
3185 /* Only one update flag should be set. */
3186 gcc_assert (update_flags == TODO_update_ssa
3187 || update_flags == TODO_update_ssa_no_phi
3188 || update_flags == TODO_update_ssa_full_phi
3189 || update_flags == TODO_update_ssa_only_virtuals);
3190
3191 if (!need_ssa_update_p (cfun))
3192 return;
3193
3194 #ifdef ENABLE_CHECKING
3195 timevar_push (TV_TREE_STMT_VERIFY);
3196
3197 bool err = false;
3198
3199 FOR_EACH_BB_FN (bb, cfun)
3200 {
3201 gimple_stmt_iterator gsi;
3202 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3203 {
3204 gimple stmt = gsi_stmt (gsi);
3205
3206 ssa_op_iter i;
3207 use_operand_p use_p;
3208 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
3209 {
3210 tree use = USE_FROM_PTR (use_p);
3211 if (TREE_CODE (use) != SSA_NAME)
3212 continue;
3213
3214 if (SSA_NAME_IN_FREE_LIST (use))
3215 {
3216 error ("statement uses released SSA name:");
3217 debug_gimple_stmt (stmt);
3218 fprintf (stderr, "The use of ");
3219 print_generic_expr (stderr, use, 0);
3220 fprintf (stderr," should have been replaced\n");
3221 err = true;
3222 }
3223 }
3224 }
3225 }
3226
3227 if (err)
3228 internal_error ("cannot update SSA form");
3229
3230 timevar_pop (TV_TREE_STMT_VERIFY);
3231 #endif
3232
3233 timevar_push (TV_TREE_SSA_INCREMENTAL);
3234
3235 if (dump_file && (dump_flags & TDF_DETAILS))
3236 fprintf (dump_file, "\nUpdating SSA:\n");
3237
3238 if (!update_ssa_initialized_fn)
3239 init_update_ssa (cfun);
3240 else if (update_flags == TODO_update_ssa_only_virtuals)
3241 {
3242 /* If we only need to update virtuals, remove all the mappings for
3243 real names before proceeding. The caller is responsible for
3244 having dealt with the name mappings before calling update_ssa. */
3245 bitmap_clear (old_ssa_names);
3246 bitmap_clear (new_ssa_names);
3247 }
3248
3249 gcc_assert (update_ssa_initialized_fn == cfun);
3250
3251 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3252 if (!phis_to_rewrite.exists ())
3253 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3254 blocks_to_update = BITMAP_ALLOC (NULL);
3255
3256 /* Ensure that the dominance information is up-to-date. */
3257 calculate_dominance_info (CDI_DOMINATORS);
3258
3259 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3260
3261 /* If there are names defined in the replacement table, prepare
3262 definition and use sites for all the names in NEW_SSA_NAMES and
3263 OLD_SSA_NAMES. */
3264 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3265 {
3266 prepare_names_to_update (insert_phi_p);
3267
3268 /* If all the names in NEW_SSA_NAMES had been marked for
3269 removal, and there are no symbols to rename, then there's
3270 nothing else to do. */
3271 if (bitmap_first_set_bit (new_ssa_names) < 0
3272 && !cfun->gimple_df->ssa_renaming_needed)
3273 goto done;
3274 }
3275
3276 /* Next, determine the block at which to start the renaming process. */
3277 if (cfun->gimple_df->ssa_renaming_needed)
3278 {
3279 /* If we rename bare symbols initialize the mapping to
3280 auxiliar info we need to keep track of. */
3281 var_infos = new hash_table<var_info_hasher> (47);
3282
3283 /* If we have to rename some symbols from scratch, we need to
3284 start the process at the root of the CFG. FIXME, it should
3285 be possible to determine the nearest block that had a
3286 definition for each of the symbols that are marked for
3287 updating. For now this seems more work than it's worth. */
3288 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3289
3290 /* Traverse the CFG looking for existing definitions and uses of
3291 symbols in SSA operands. Mark interesting blocks and
3292 statements and set local live-in information for the PHI
3293 placement heuristics. */
3294 prepare_block_for_update (start_bb, insert_phi_p);
3295
3296 #ifdef ENABLE_CHECKING
3297 for (i = 1; i < num_ssa_names; ++i)
3298 {
3299 tree name = ssa_name (i);
3300 if (!name
3301 || virtual_operand_p (name))
3302 continue;
3303
3304 /* For all but virtual operands, which do not have SSA names
3305 with overlapping life ranges, ensure that symbols marked
3306 for renaming do not have existing SSA names associated with
3307 them as we do not re-write them out-of-SSA before going
3308 into SSA for the remaining symbol uses. */
3309 if (marked_for_renaming (SSA_NAME_VAR (name)))
3310 {
3311 fprintf (stderr, "Existing SSA name for symbol marked for "
3312 "renaming: ");
3313 print_generic_expr (stderr, name, TDF_SLIM);
3314 fprintf (stderr, "\n");
3315 internal_error ("SSA corruption");
3316 }
3317 }
3318 #endif
3319 }
3320 else
3321 {
3322 /* Otherwise, the entry block to the region is the nearest
3323 common dominator for the blocks in BLOCKS. */
3324 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3325 blocks_to_update);
3326 }
3327
3328 /* If requested, insert PHI nodes at the iterated dominance frontier
3329 of every block, creating new definitions for names in OLD_SSA_NAMES
3330 and for symbols found. */
3331 if (insert_phi_p)
3332 {
3333 bitmap_head *dfs;
3334
3335 /* If the caller requested PHI nodes to be added, compute
3336 dominance frontiers. */
3337 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3338 FOR_EACH_BB_FN (bb, cfun)
3339 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3340 compute_dominance_frontiers (dfs);
3341
3342 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3343 {
3344 sbitmap_iterator sbi;
3345
3346 /* insert_update_phi_nodes_for will call add_new_name_mapping
3347 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3348 will grow while we are traversing it (but it will not
3349 gain any new members). Copy OLD_SSA_NAMES to a temporary
3350 for traversal. */
3351 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3352 bitmap_copy (tmp, old_ssa_names);
3353 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3354 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3355 update_flags);
3356 sbitmap_free (tmp);
3357 }
3358
3359 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3360 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3361 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3362 update_flags);
3363
3364 FOR_EACH_BB_FN (bb, cfun)
3365 bitmap_clear (&dfs[bb->index]);
3366 free (dfs);
3367
3368 /* Insertion of PHI nodes may have added blocks to the region.
3369 We need to re-compute START_BB to include the newly added
3370 blocks. */
3371 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3372 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3373 blocks_to_update);
3374 }
3375
3376 /* Reset the current definition for name and symbol before renaming
3377 the sub-graph. */
3378 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3379 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3380
3381 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3382 get_var_info (sym)->info.current_def = NULL_TREE;
3383
3384 /* Now start the renaming process at START_BB. */
3385 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3386 bitmap_clear (interesting_blocks);
3387 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3388 bitmap_set_bit (interesting_blocks, i);
3389
3390 rewrite_blocks (start_bb, REWRITE_UPDATE);
3391
3392 sbitmap_free (interesting_blocks);
3393
3394 /* Debugging dumps. */
3395 if (dump_file)
3396 {
3397 int c;
3398 unsigned i;
3399
3400 dump_update_ssa (dump_file);
3401
3402 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3403 start_bb->index);
3404
3405 c = 0;
3406 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3407 c++;
3408 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3409 last_basic_block_for_fn (cfun));
3410 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3411 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3412
3413 if (dump_flags & TDF_DETAILS)
3414 {
3415 fprintf (dump_file, "Affected blocks:");
3416 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3417 fprintf (dump_file, " %u", i);
3418 fprintf (dump_file, "\n");
3419 }
3420
3421 fprintf (dump_file, "\n\n");
3422 }
3423
3424 /* Free allocated memory. */
3425 done:
3426 delete_update_ssa ();
3427
3428 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3429 }