]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
remove has_gate
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "hash-table.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "gimple-expr.h"
36 #include "is-a.h"
37 #include "gimple.h"
38 #include "gimple-iterator.h"
39 #include "gimple-ssa.h"
40 #include "tree-cfg.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "expr.h"
47 #include "tree-dfa.h"
48 #include "tree-ssa.h"
49 #include "tree-inline.h"
50 #include "tree-pass.h"
51 #include "cfgloop.h"
52 #include "domwalk.h"
53 #include "params.h"
54 #include "diagnostic-core.h"
55 #include "tree-into-ssa.h"
56
57 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
58
59 /* This file builds the SSA form for a function as described in:
60 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
61 Computing Static Single Assignment Form and the Control Dependence
62 Graph. ACM Transactions on Programming Languages and Systems,
63 13(4):451-490, October 1991. */
64
65 /* Structure to map a variable VAR to the set of blocks that contain
66 definitions for VAR. */
67 struct def_blocks_d
68 {
69 /* Blocks that contain definitions of VAR. Bit I will be set if the
70 Ith block contains a definition of VAR. */
71 bitmap def_blocks;
72
73 /* Blocks that contain a PHI node for VAR. */
74 bitmap phi_blocks;
75
76 /* Blocks where VAR is live-on-entry. Similar semantics as
77 DEF_BLOCKS. */
78 bitmap livein_blocks;
79 };
80
81 typedef struct def_blocks_d *def_blocks_p;
82
83
84 /* Stack of trees used to restore the global currdefs to its original
85 state after completing rewriting of a block and its dominator
86 children. Its elements have the following properties:
87
88 - An SSA_NAME (N) indicates that the current definition of the
89 underlying variable should be set to the given SSA_NAME. If the
90 symbol associated with the SSA_NAME is not a GIMPLE register, the
91 next slot in the stack must be a _DECL node (SYM). In this case,
92 the name N in the previous slot is the current reaching
93 definition for SYM.
94
95 - A _DECL node indicates that the underlying variable has no
96 current definition.
97
98 - A NULL node at the top entry is used to mark the last slot
99 associated with the current block. */
100 static vec<tree> block_defs_stack;
101
102
103 /* Set of existing SSA names being replaced by update_ssa. */
104 static sbitmap old_ssa_names;
105
106 /* Set of new SSA names being added by update_ssa. Note that both
107 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
108 the operations done on them are presence tests. */
109 static sbitmap new_ssa_names;
110
111 static sbitmap interesting_blocks;
112
113 /* Set of SSA names that have been marked to be released after they
114 were registered in the replacement table. They will be finally
115 released after we finish updating the SSA web. */
116 static bitmap names_to_release;
117
118 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
119 the to basic block with index I. Allocated once per compilation, *not*
120 released between different functions. */
121 static vec<gimple_vec> phis_to_rewrite;
122
123 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
124 static bitmap blocks_with_phis_to_rewrite;
125
126 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
127 to grow as the callers to create_new_def_for will create new names on
128 the fly.
129 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
130 need to find a reasonable growth strategy. */
131 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
132
133
134 /* The function the SSA updating data structures have been initialized for.
135 NULL if they need to be initialized by create_new_def_for. */
136 static struct function *update_ssa_initialized_fn = NULL;
137
138 /* Global data to attach to the main dominator walk structure. */
139 struct mark_def_sites_global_data
140 {
141 /* This bitmap contains the variables which are set before they
142 are used in a basic block. */
143 bitmap kills;
144 };
145
146 /* It is advantageous to avoid things like life analysis for variables which
147 do not need PHI nodes. This enum describes whether or not a particular
148 variable may need a PHI node. */
149
150 enum need_phi_state {
151 /* This is the default. If we are still in this state after finding
152 all the definition and use sites, then we will assume the variable
153 needs PHI nodes. This is probably an overly conservative assumption. */
154 NEED_PHI_STATE_UNKNOWN,
155
156 /* This state indicates that we have seen one or more sets of the
157 variable in a single basic block and that the sets dominate all
158 uses seen so far. If after finding all definition and use sites
159 we are still in this state, then the variable does not need any
160 PHI nodes. */
161 NEED_PHI_STATE_NO,
162
163 /* This state indicates that we have either seen multiple definitions of
164 the variable in multiple blocks, or that we encountered a use in a
165 block that was not dominated by the block containing the set(s) of
166 this variable. This variable is assumed to need PHI nodes. */
167 NEED_PHI_STATE_MAYBE
168 };
169
170 /* Information stored for both SSA names and decls. */
171 struct common_info_d
172 {
173 /* This field indicates whether or not the variable may need PHI nodes.
174 See the enum's definition for more detailed information about the
175 states. */
176 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
177
178 /* The current reaching definition replacing this var. */
179 tree current_def;
180
181 /* Definitions for this var. */
182 struct def_blocks_d def_blocks;
183 };
184
185 /* The information associated with decls and SSA names. */
186 typedef struct common_info_d *common_info_p;
187
188 /* Information stored for decls. */
189 struct var_info_d
190 {
191 /* The variable. */
192 tree var;
193
194 /* Information stored for both SSA names and decls. */
195 struct common_info_d info;
196 };
197
198 /* The information associated with decls. */
199 typedef struct var_info_d *var_info_p;
200
201
202 /* VAR_INFOS hashtable helpers. */
203
204 struct var_info_hasher : typed_free_remove <var_info_d>
205 {
206 typedef var_info_d value_type;
207 typedef var_info_d compare_type;
208 static inline hashval_t hash (const value_type *);
209 static inline bool equal (const value_type *, const compare_type *);
210 };
211
212 inline hashval_t
213 var_info_hasher::hash (const value_type *p)
214 {
215 return DECL_UID (p->var);
216 }
217
218 inline bool
219 var_info_hasher::equal (const value_type *p1, const compare_type *p2)
220 {
221 return p1->var == p2->var;
222 }
223
224
225 /* Each entry in VAR_INFOS contains an element of type STRUCT
226 VAR_INFO_D. */
227 static hash_table <var_info_hasher> var_infos;
228
229
230 /* Information stored for SSA names. */
231 struct ssa_name_info
232 {
233 /* Age of this record (so that info_for_ssa_name table can be cleared
234 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
235 are assumed to be null. */
236 unsigned age;
237
238 /* Replacement mappings, allocated from update_ssa_obstack. */
239 bitmap repl_set;
240
241 /* Information stored for both SSA names and decls. */
242 struct common_info_d info;
243 };
244
245 /* The information associated with names. */
246 typedef struct ssa_name_info *ssa_name_info_p;
247
248 static vec<ssa_name_info_p> info_for_ssa_name;
249 static unsigned current_info_for_ssa_name_age;
250
251 static bitmap_obstack update_ssa_obstack;
252
253 /* The set of blocks affected by update_ssa. */
254 static bitmap blocks_to_update;
255
256 /* The main entry point to the SSA renamer (rewrite_blocks) may be
257 called several times to do different, but related, tasks.
258 Initially, we need it to rename the whole program into SSA form.
259 At other times, we may need it to only rename into SSA newly
260 exposed symbols. Finally, we can also call it to incrementally fix
261 an already built SSA web. */
262 enum rewrite_mode {
263 /* Convert the whole function into SSA form. */
264 REWRITE_ALL,
265
266 /* Incrementally update the SSA web by replacing existing SSA
267 names with new ones. See update_ssa for details. */
268 REWRITE_UPDATE
269 };
270
271 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
272 static bitmap symbols_to_rename_set;
273 static vec<tree> symbols_to_rename;
274
275 /* Mark SYM for renaming. */
276
277 static void
278 mark_for_renaming (tree sym)
279 {
280 if (!symbols_to_rename_set)
281 symbols_to_rename_set = BITMAP_ALLOC (NULL);
282 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
283 symbols_to_rename.safe_push (sym);
284 }
285
286 /* Return true if SYM is marked for renaming. */
287
288 static bool
289 marked_for_renaming (tree sym)
290 {
291 if (!symbols_to_rename_set || sym == NULL_TREE)
292 return false;
293 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
294 }
295
296
297 /* Return true if STMT needs to be rewritten. When renaming a subset
298 of the variables, not all statements will be processed. This is
299 decided in mark_def_sites. */
300
301 static inline bool
302 rewrite_uses_p (gimple stmt)
303 {
304 return gimple_visited_p (stmt);
305 }
306
307
308 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
309
310 static inline void
311 set_rewrite_uses (gimple stmt, bool rewrite_p)
312 {
313 gimple_set_visited (stmt, rewrite_p);
314 }
315
316
317 /* Return true if the DEFs created by statement STMT should be
318 registered when marking new definition sites. This is slightly
319 different than rewrite_uses_p: it's used by update_ssa to
320 distinguish statements that need to have both uses and defs
321 processed from those that only need to have their defs processed.
322 Statements that define new SSA names only need to have their defs
323 registered, but they don't need to have their uses renamed. */
324
325 static inline bool
326 register_defs_p (gimple stmt)
327 {
328 return gimple_plf (stmt, GF_PLF_1) != 0;
329 }
330
331
332 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
333
334 static inline void
335 set_register_defs (gimple stmt, bool register_defs_p)
336 {
337 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
338 }
339
340
341 /* Get the information associated with NAME. */
342
343 static inline ssa_name_info_p
344 get_ssa_name_ann (tree name)
345 {
346 unsigned ver = SSA_NAME_VERSION (name);
347 unsigned len = info_for_ssa_name.length ();
348 struct ssa_name_info *info;
349
350 /* Re-allocate the vector at most once per update/into-SSA. */
351 if (ver >= len)
352 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
353
354 /* But allocate infos lazily. */
355 info = info_for_ssa_name[ver];
356 if (!info)
357 {
358 info = XCNEW (struct ssa_name_info);
359 info->age = current_info_for_ssa_name_age;
360 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
361 info_for_ssa_name[ver] = info;
362 }
363
364 if (info->age < current_info_for_ssa_name_age)
365 {
366 info->age = current_info_for_ssa_name_age;
367 info->repl_set = NULL;
368 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
369 info->info.current_def = NULL_TREE;
370 info->info.def_blocks.def_blocks = NULL;
371 info->info.def_blocks.phi_blocks = NULL;
372 info->info.def_blocks.livein_blocks = NULL;
373 }
374
375 return info;
376 }
377
378 /* Return and allocate the auxiliar information for DECL. */
379
380 static inline var_info_p
381 get_var_info (tree decl)
382 {
383 struct var_info_d vi;
384 var_info_d **slot;
385 vi.var = decl;
386 slot = var_infos.find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
387 if (*slot == NULL)
388 {
389 var_info_p v = XCNEW (struct var_info_d);
390 v->var = decl;
391 *slot = v;
392 return v;
393 }
394 return *slot;
395 }
396
397
398 /* Clears info for SSA names. */
399
400 static void
401 clear_ssa_name_info (void)
402 {
403 current_info_for_ssa_name_age++;
404
405 /* If current_info_for_ssa_name_age wraps we use stale information.
406 Asser that this does not happen. */
407 gcc_assert (current_info_for_ssa_name_age != 0);
408 }
409
410
411 /* Get access to the auxiliar information stored per SSA name or decl. */
412
413 static inline common_info_p
414 get_common_info (tree var)
415 {
416 if (TREE_CODE (var) == SSA_NAME)
417 return &get_ssa_name_ann (var)->info;
418 else
419 return &get_var_info (var)->info;
420 }
421
422
423 /* Return the current definition for VAR. */
424
425 tree
426 get_current_def (tree var)
427 {
428 return get_common_info (var)->current_def;
429 }
430
431
432 /* Sets current definition of VAR to DEF. */
433
434 void
435 set_current_def (tree var, tree def)
436 {
437 get_common_info (var)->current_def = def;
438 }
439
440 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
441 all statements in basic block BB. */
442
443 static void
444 initialize_flags_in_bb (basic_block bb)
445 {
446 gimple stmt;
447 gimple_stmt_iterator gsi;
448
449 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
450 {
451 gimple phi = gsi_stmt (gsi);
452 set_rewrite_uses (phi, false);
453 set_register_defs (phi, false);
454 }
455
456 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
457 {
458 stmt = gsi_stmt (gsi);
459
460 /* We are going to use the operand cache API, such as
461 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
462 cache for each statement should be up-to-date. */
463 gcc_checking_assert (!gimple_modified_p (stmt));
464 set_rewrite_uses (stmt, false);
465 set_register_defs (stmt, false);
466 }
467 }
468
469 /* Mark block BB as interesting for update_ssa. */
470
471 static void
472 mark_block_for_update (basic_block bb)
473 {
474 gcc_checking_assert (blocks_to_update != NULL);
475 if (!bitmap_set_bit (blocks_to_update, bb->index))
476 return;
477 initialize_flags_in_bb (bb);
478 }
479
480 /* Return the set of blocks where variable VAR is defined and the blocks
481 where VAR is live on entry (livein). If no entry is found in
482 DEF_BLOCKS, a new one is created and returned. */
483
484 static inline struct def_blocks_d *
485 get_def_blocks_for (common_info_p info)
486 {
487 struct def_blocks_d *db_p = &info->def_blocks;
488 if (!db_p->def_blocks)
489 {
490 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
491 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
492 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
493 }
494
495 return db_p;
496 }
497
498
499 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
500 VAR is defined by a PHI node. */
501
502 static void
503 set_def_block (tree var, basic_block bb, bool phi_p)
504 {
505 struct def_blocks_d *db_p;
506 common_info_p info;
507
508 info = get_common_info (var);
509 db_p = get_def_blocks_for (info);
510
511 /* Set the bit corresponding to the block where VAR is defined. */
512 bitmap_set_bit (db_p->def_blocks, bb->index);
513 if (phi_p)
514 bitmap_set_bit (db_p->phi_blocks, bb->index);
515
516 /* Keep track of whether or not we may need to insert PHI nodes.
517
518 If we are in the UNKNOWN state, then this is the first definition
519 of VAR. Additionally, we have not seen any uses of VAR yet, so
520 we do not need a PHI node for this variable at this time (i.e.,
521 transition to NEED_PHI_STATE_NO).
522
523 If we are in any other state, then we either have multiple definitions
524 of this variable occurring in different blocks or we saw a use of the
525 variable which was not dominated by the block containing the
526 definition(s). In this case we may need a PHI node, so enter
527 state NEED_PHI_STATE_MAYBE. */
528 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
529 info->need_phi_state = NEED_PHI_STATE_NO;
530 else
531 info->need_phi_state = NEED_PHI_STATE_MAYBE;
532 }
533
534
535 /* Mark block BB as having VAR live at the entry to BB. */
536
537 static void
538 set_livein_block (tree var, basic_block bb)
539 {
540 common_info_p info;
541 struct def_blocks_d *db_p;
542
543 info = get_common_info (var);
544 db_p = get_def_blocks_for (info);
545
546 /* Set the bit corresponding to the block where VAR is live in. */
547 bitmap_set_bit (db_p->livein_blocks, bb->index);
548
549 /* Keep track of whether or not we may need to insert PHI nodes.
550
551 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
552 by the single block containing the definition(s) of this variable. If
553 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
554 NEED_PHI_STATE_MAYBE. */
555 if (info->need_phi_state == NEED_PHI_STATE_NO)
556 {
557 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
558
559 if (def_block_index == -1
560 || ! dominated_by_p (CDI_DOMINATORS, bb,
561 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
562 info->need_phi_state = NEED_PHI_STATE_MAYBE;
563 }
564 else
565 info->need_phi_state = NEED_PHI_STATE_MAYBE;
566 }
567
568
569 /* Return true if NAME is in OLD_SSA_NAMES. */
570
571 static inline bool
572 is_old_name (tree name)
573 {
574 unsigned ver = SSA_NAME_VERSION (name);
575 if (!new_ssa_names)
576 return false;
577 return (ver < SBITMAP_SIZE (new_ssa_names)
578 && bitmap_bit_p (old_ssa_names, ver));
579 }
580
581
582 /* Return true if NAME is in NEW_SSA_NAMES. */
583
584 static inline bool
585 is_new_name (tree name)
586 {
587 unsigned ver = SSA_NAME_VERSION (name);
588 if (!new_ssa_names)
589 return false;
590 return (ver < SBITMAP_SIZE (new_ssa_names)
591 && bitmap_bit_p (new_ssa_names, ver));
592 }
593
594
595 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
596
597 static inline bitmap
598 names_replaced_by (tree new_tree)
599 {
600 return get_ssa_name_ann (new_tree)->repl_set;
601 }
602
603
604 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
605
606 static inline void
607 add_to_repl_tbl (tree new_tree, tree old)
608 {
609 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
610 if (!*set)
611 *set = BITMAP_ALLOC (&update_ssa_obstack);
612 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
613 }
614
615
616 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
617 represents the set of names O_1 ... O_j replaced by N_i. This is
618 used by update_ssa and its helpers to introduce new SSA names in an
619 already formed SSA web. */
620
621 static void
622 add_new_name_mapping (tree new_tree, tree old)
623 {
624 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
625 gcc_checking_assert (new_tree != old
626 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
627
628 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
629 caller may have created new names since the set was created. */
630 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
631 {
632 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
633 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
634 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
635 }
636
637 /* Update the REPL_TBL table. */
638 add_to_repl_tbl (new_tree, old);
639
640 /* If OLD had already been registered as a new name, then all the
641 names that OLD replaces should also be replaced by NEW_TREE. */
642 if (is_new_name (old))
643 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
644
645 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
646 respectively. */
647 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
648 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
649 }
650
651
652 /* Call back for walk_dominator_tree used to collect definition sites
653 for every variable in the function. For every statement S in block
654 BB:
655
656 1- Variables defined by S in the DEFS of S are marked in the bitmap
657 KILLS.
658
659 2- If S uses a variable VAR and there is no preceding kill of VAR,
660 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
661
662 This information is used to determine which variables are live
663 across block boundaries to reduce the number of PHI nodes
664 we create. */
665
666 static void
667 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
668 {
669 tree def;
670 use_operand_p use_p;
671 ssa_op_iter iter;
672
673 /* Since this is the first time that we rewrite the program into SSA
674 form, force an operand scan on every statement. */
675 update_stmt (stmt);
676
677 gcc_checking_assert (blocks_to_update == NULL);
678 set_register_defs (stmt, false);
679 set_rewrite_uses (stmt, false);
680
681 if (is_gimple_debug (stmt))
682 {
683 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
684 {
685 tree sym = USE_FROM_PTR (use_p);
686 gcc_checking_assert (DECL_P (sym));
687 set_rewrite_uses (stmt, true);
688 }
689 if (rewrite_uses_p (stmt))
690 bitmap_set_bit (interesting_blocks, bb->index);
691 return;
692 }
693
694 /* If a variable is used before being set, then the variable is live
695 across a block boundary, so mark it live-on-entry to BB. */
696 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
697 {
698 tree sym = USE_FROM_PTR (use_p);
699 gcc_checking_assert (DECL_P (sym));
700 if (!bitmap_bit_p (kills, DECL_UID (sym)))
701 set_livein_block (sym, bb);
702 set_rewrite_uses (stmt, true);
703 }
704
705 /* Now process the defs. Mark BB as the definition block and add
706 each def to the set of killed symbols. */
707 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
708 {
709 gcc_checking_assert (DECL_P (def));
710 set_def_block (def, bb, false);
711 bitmap_set_bit (kills, DECL_UID (def));
712 set_register_defs (stmt, true);
713 }
714
715 /* If we found the statement interesting then also mark the block BB
716 as interesting. */
717 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
718 bitmap_set_bit (interesting_blocks, bb->index);
719 }
720
721 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
722 in the dfs numbering of the dominance tree. */
723
724 struct dom_dfsnum
725 {
726 /* Basic block whose index this entry corresponds to. */
727 unsigned bb_index;
728
729 /* The dfs number of this node. */
730 unsigned dfs_num;
731 };
732
733 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
734 for qsort. */
735
736 static int
737 cmp_dfsnum (const void *a, const void *b)
738 {
739 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
740 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
741
742 return (int) da->dfs_num - (int) db->dfs_num;
743 }
744
745 /* Among the intervals starting at the N points specified in DEFS, find
746 the one that contains S, and return its bb_index. */
747
748 static unsigned
749 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
750 {
751 unsigned f = 0, t = n, m;
752
753 while (t > f + 1)
754 {
755 m = (f + t) / 2;
756 if (defs[m].dfs_num <= s)
757 f = m;
758 else
759 t = m;
760 }
761
762 return defs[f].bb_index;
763 }
764
765 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
766 KILLS is a bitmap of blocks where the value is defined before any use. */
767
768 static void
769 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
770 {
771 bitmap_iterator bi;
772 unsigned i, b, p, u, top;
773 bitmap live_phis;
774 basic_block def_bb, use_bb;
775 edge e;
776 edge_iterator ei;
777 bitmap to_remove;
778 struct dom_dfsnum *defs;
779 unsigned n_defs, adef;
780
781 if (bitmap_empty_p (uses))
782 {
783 bitmap_clear (phis);
784 return;
785 }
786
787 /* The phi must dominate a use, or an argument of a live phi. Also, we
788 do not create any phi nodes in def blocks, unless they are also livein. */
789 to_remove = BITMAP_ALLOC (NULL);
790 bitmap_and_compl (to_remove, kills, uses);
791 bitmap_and_compl_into (phis, to_remove);
792 if (bitmap_empty_p (phis))
793 {
794 BITMAP_FREE (to_remove);
795 return;
796 }
797
798 /* We want to remove the unnecessary phi nodes, but we do not want to compute
799 liveness information, as that may be linear in the size of CFG, and if
800 there are lot of different variables to rewrite, this may lead to quadratic
801 behavior.
802
803 Instead, we basically emulate standard dce. We put all uses to worklist,
804 then for each of them find the nearest def that dominates them. If this
805 def is a phi node, we mark it live, and if it was not live before, we
806 add the predecessors of its basic block to the worklist.
807
808 To quickly locate the nearest def that dominates use, we use dfs numbering
809 of the dominance tree (that is already available in order to speed up
810 queries). For each def, we have the interval given by the dfs number on
811 entry to and on exit from the corresponding subtree in the dominance tree.
812 The nearest dominator for a given use is the smallest of these intervals
813 that contains entry and exit dfs numbers for the basic block with the use.
814 If we store the bounds for all the uses to an array and sort it, we can
815 locate the nearest dominating def in logarithmic time by binary search.*/
816 bitmap_ior (to_remove, kills, phis);
817 n_defs = bitmap_count_bits (to_remove);
818 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
819 defs[0].bb_index = 1;
820 defs[0].dfs_num = 0;
821 adef = 1;
822 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
823 {
824 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
825 defs[adef].bb_index = i;
826 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
827 defs[adef + 1].bb_index = i;
828 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
829 adef += 2;
830 }
831 BITMAP_FREE (to_remove);
832 gcc_assert (adef == 2 * n_defs + 1);
833 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
834 gcc_assert (defs[0].bb_index == 1);
835
836 /* Now each DEFS entry contains the number of the basic block to that the
837 dfs number corresponds. Change them to the number of basic block that
838 corresponds to the interval following the dfs number. Also, for the
839 dfs_out numbers, increase the dfs number by one (so that it corresponds
840 to the start of the following interval, not to the end of the current
841 one). We use WORKLIST as a stack. */
842 auto_vec<int> worklist (n_defs + 1);
843 worklist.quick_push (1);
844 top = 1;
845 n_defs = 1;
846 for (i = 1; i < adef; i++)
847 {
848 b = defs[i].bb_index;
849 if (b == top)
850 {
851 /* This is a closing element. Interval corresponding to the top
852 of the stack after removing it follows. */
853 worklist.pop ();
854 top = worklist[worklist.length () - 1];
855 defs[n_defs].bb_index = top;
856 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
857 }
858 else
859 {
860 /* Opening element. Nothing to do, just push it to the stack and move
861 it to the correct position. */
862 defs[n_defs].bb_index = defs[i].bb_index;
863 defs[n_defs].dfs_num = defs[i].dfs_num;
864 worklist.quick_push (b);
865 top = b;
866 }
867
868 /* If this interval starts at the same point as the previous one, cancel
869 the previous one. */
870 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
871 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
872 else
873 n_defs++;
874 }
875 worklist.pop ();
876 gcc_assert (worklist.is_empty ());
877
878 /* Now process the uses. */
879 live_phis = BITMAP_ALLOC (NULL);
880 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
881 {
882 worklist.safe_push (i);
883 }
884
885 while (!worklist.is_empty ())
886 {
887 b = worklist.pop ();
888 if (b == ENTRY_BLOCK)
889 continue;
890
891 /* If there is a phi node in USE_BB, it is made live. Otherwise,
892 find the def that dominates the immediate dominator of USE_BB
893 (the kill in USE_BB does not dominate the use). */
894 if (bitmap_bit_p (phis, b))
895 p = b;
896 else
897 {
898 use_bb = get_immediate_dominator (CDI_DOMINATORS,
899 BASIC_BLOCK_FOR_FN (cfun, b));
900 p = find_dfsnum_interval (defs, n_defs,
901 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
902 if (!bitmap_bit_p (phis, p))
903 continue;
904 }
905
906 /* If the phi node is already live, there is nothing to do. */
907 if (!bitmap_set_bit (live_phis, p))
908 continue;
909
910 /* Add the new uses to the worklist. */
911 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
912 FOR_EACH_EDGE (e, ei, def_bb->preds)
913 {
914 u = e->src->index;
915 if (bitmap_bit_p (uses, u))
916 continue;
917
918 /* In case there is a kill directly in the use block, do not record
919 the use (this is also necessary for correctness, as we assume that
920 uses dominated by a def directly in their block have been filtered
921 out before). */
922 if (bitmap_bit_p (kills, u))
923 continue;
924
925 bitmap_set_bit (uses, u);
926 worklist.safe_push (u);
927 }
928 }
929
930 bitmap_copy (phis, live_phis);
931 BITMAP_FREE (live_phis);
932 free (defs);
933 }
934
935 /* Return the set of blocks where variable VAR is defined and the blocks
936 where VAR is live on entry (livein). Return NULL, if no entry is
937 found in DEF_BLOCKS. */
938
939 static inline struct def_blocks_d *
940 find_def_blocks_for (tree var)
941 {
942 def_blocks_p p = &get_common_info (var)->def_blocks;
943 if (!p->def_blocks)
944 return NULL;
945 return p;
946 }
947
948
949 /* Marks phi node PHI in basic block BB for rewrite. */
950
951 static void
952 mark_phi_for_rewrite (basic_block bb, gimple phi)
953 {
954 gimple_vec phis;
955 unsigned n, idx = bb->index;
956
957 if (rewrite_uses_p (phi))
958 return;
959
960 set_rewrite_uses (phi, true);
961
962 if (!blocks_with_phis_to_rewrite)
963 return;
964
965 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
966
967 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
968 if (phis_to_rewrite.length () < n)
969 phis_to_rewrite.safe_grow_cleared (n);
970
971 phis = phis_to_rewrite[idx];
972 phis.reserve (10);
973
974 phis.safe_push (phi);
975 phis_to_rewrite[idx] = phis;
976 }
977
978 /* Insert PHI nodes for variable VAR using the iterated dominance
979 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
980 function assumes that the caller is incrementally updating the
981 existing SSA form, in which case VAR may be an SSA name instead of
982 a symbol.
983
984 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
985 PHI node for VAR. On exit, only the nodes that received a PHI node
986 for VAR will be present in PHI_INSERTION_POINTS. */
987
988 static void
989 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
990 {
991 unsigned bb_index;
992 edge e;
993 gimple phi;
994 basic_block bb;
995 bitmap_iterator bi;
996 struct def_blocks_d *def_map = find_def_blocks_for (var);
997
998 /* Remove the blocks where we already have PHI nodes for VAR. */
999 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1000
1001 /* Remove obviously useless phi nodes. */
1002 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1003 def_map->livein_blocks);
1004
1005 /* And insert the PHI nodes. */
1006 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1007 {
1008 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1009 if (update_p)
1010 mark_block_for_update (bb);
1011
1012 if (dump_file && (dump_flags & TDF_DETAILS))
1013 {
1014 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1015 print_generic_expr (dump_file, var, TDF_SLIM);
1016 fprintf (dump_file, "\n");
1017 }
1018 phi = NULL;
1019
1020 if (TREE_CODE (var) == SSA_NAME)
1021 {
1022 /* If we are rewriting SSA names, create the LHS of the PHI
1023 node by duplicating VAR. This is useful in the case of
1024 pointers, to also duplicate pointer attributes (alias
1025 information, in particular). */
1026 edge_iterator ei;
1027 tree new_lhs;
1028
1029 gcc_checking_assert (update_p);
1030 new_lhs = duplicate_ssa_name (var, NULL);
1031 phi = create_phi_node (new_lhs, bb);
1032 add_new_name_mapping (new_lhs, var);
1033
1034 /* Add VAR to every argument slot of PHI. We need VAR in
1035 every argument so that rewrite_update_phi_arguments knows
1036 which name is this PHI node replacing. If VAR is a
1037 symbol marked for renaming, this is not necessary, the
1038 renamer will use the symbol on the LHS to get its
1039 reaching definition. */
1040 FOR_EACH_EDGE (e, ei, bb->preds)
1041 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1042 }
1043 else
1044 {
1045 tree tracked_var;
1046
1047 gcc_checking_assert (DECL_P (var));
1048 phi = create_phi_node (var, bb);
1049
1050 tracked_var = target_for_debug_bind (var);
1051 if (tracked_var)
1052 {
1053 gimple note = gimple_build_debug_bind (tracked_var,
1054 PHI_RESULT (phi),
1055 phi);
1056 gimple_stmt_iterator si = gsi_after_labels (bb);
1057 gsi_insert_before (&si, note, GSI_SAME_STMT);
1058 }
1059 }
1060
1061 /* Mark this PHI node as interesting for update_ssa. */
1062 set_register_defs (phi, true);
1063 mark_phi_for_rewrite (bb, phi);
1064 }
1065 }
1066
1067 /* Sort var_infos after DECL_UID of their var. */
1068
1069 static int
1070 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1071 {
1072 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1073 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1074 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1075 return -1;
1076 else
1077 return 1;
1078 }
1079
1080 /* Insert PHI nodes at the dominance frontier of blocks with variable
1081 definitions. DFS contains the dominance frontier information for
1082 the flowgraph. */
1083
1084 static void
1085 insert_phi_nodes (bitmap_head *dfs)
1086 {
1087 hash_table <var_info_hasher>::iterator hi;
1088 unsigned i;
1089 var_info_p info;
1090
1091 timevar_push (TV_TREE_INSERT_PHI_NODES);
1092
1093 auto_vec<var_info_p> vars (var_infos.elements ());
1094 FOR_EACH_HASH_TABLE_ELEMENT (var_infos, info, var_info_p, hi)
1095 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1096 vars.quick_push (info);
1097
1098 /* Do two stages to avoid code generation differences for UID
1099 differences but no UID ordering differences. */
1100 vars.qsort (insert_phi_nodes_compare_var_infos);
1101
1102 FOR_EACH_VEC_ELT (vars, i, info)
1103 {
1104 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1105 insert_phi_nodes_for (info->var, idf, false);
1106 BITMAP_FREE (idf);
1107 }
1108
1109 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1110 }
1111
1112
1113 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1114 register DEF (an SSA_NAME) to be a new definition for SYM. */
1115
1116 static void
1117 register_new_def (tree def, tree sym)
1118 {
1119 common_info_p info = get_common_info (sym);
1120 tree currdef;
1121
1122 /* If this variable is set in a single basic block and all uses are
1123 dominated by the set(s) in that single basic block, then there is
1124 no reason to record anything for this variable in the block local
1125 definition stacks. Doing so just wastes time and memory.
1126
1127 This is the same test to prune the set of variables which may
1128 need PHI nodes. So we just use that information since it's already
1129 computed and available for us to use. */
1130 if (info->need_phi_state == NEED_PHI_STATE_NO)
1131 {
1132 info->current_def = def;
1133 return;
1134 }
1135
1136 currdef = info->current_def;
1137
1138 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1139 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1140 in the stack so that we know which symbol is being defined by
1141 this SSA name when we unwind the stack. */
1142 if (currdef && !is_gimple_reg (sym))
1143 block_defs_stack.safe_push (sym);
1144
1145 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1146 stack is later used by the dominator tree callbacks to restore
1147 the reaching definitions for all the variables defined in the
1148 block after a recursive visit to all its immediately dominated
1149 blocks. If there is no current reaching definition, then just
1150 record the underlying _DECL node. */
1151 block_defs_stack.safe_push (currdef ? currdef : sym);
1152
1153 /* Set the current reaching definition for SYM to be DEF. */
1154 info->current_def = def;
1155 }
1156
1157
1158 /* Perform a depth-first traversal of the dominator tree looking for
1159 variables to rename. BB is the block where to start searching.
1160 Renaming is a five step process:
1161
1162 1- Every definition made by PHI nodes at the start of the blocks is
1163 registered as the current definition for the corresponding variable.
1164
1165 2- Every statement in BB is rewritten. USE and VUSE operands are
1166 rewritten with their corresponding reaching definition. DEF and
1167 VDEF targets are registered as new definitions.
1168
1169 3- All the PHI nodes in successor blocks of BB are visited. The
1170 argument corresponding to BB is replaced with its current reaching
1171 definition.
1172
1173 4- Recursively rewrite every dominator child block of BB.
1174
1175 5- Restore (in reverse order) the current reaching definition for every
1176 new definition introduced in this block. This is done so that when
1177 we return from the recursive call, all the current reaching
1178 definitions are restored to the names that were valid in the
1179 dominator parent of BB. */
1180
1181 /* Return the current definition for variable VAR. If none is found,
1182 create a new SSA name to act as the zeroth definition for VAR. */
1183
1184 static tree
1185 get_reaching_def (tree var)
1186 {
1187 common_info_p info = get_common_info (var);
1188 tree currdef;
1189
1190 /* Lookup the current reaching definition for VAR. */
1191 currdef = info->current_def;
1192
1193 /* If there is no reaching definition for VAR, create and register a
1194 default definition for it (if needed). */
1195 if (currdef == NULL_TREE)
1196 {
1197 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1198 currdef = get_or_create_ssa_default_def (cfun, sym);
1199 }
1200
1201 /* Return the current reaching definition for VAR, or the default
1202 definition, if we had to create one. */
1203 return currdef;
1204 }
1205
1206
1207 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1208
1209 static void
1210 rewrite_debug_stmt_uses (gimple stmt)
1211 {
1212 use_operand_p use_p;
1213 ssa_op_iter iter;
1214 bool update = false;
1215
1216 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1217 {
1218 tree var = USE_FROM_PTR (use_p), def;
1219 common_info_p info = get_common_info (var);
1220 gcc_checking_assert (DECL_P (var));
1221 def = info->current_def;
1222 if (!def)
1223 {
1224 if (TREE_CODE (var) == PARM_DECL
1225 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1226 {
1227 gimple_stmt_iterator gsi
1228 =
1229 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1230 int lim;
1231 /* Search a few source bind stmts at the start of first bb to
1232 see if a DEBUG_EXPR_DECL can't be reused. */
1233 for (lim = 32;
1234 !gsi_end_p (gsi) && lim > 0;
1235 gsi_next (&gsi), lim--)
1236 {
1237 gimple gstmt = gsi_stmt (gsi);
1238 if (!gimple_debug_source_bind_p (gstmt))
1239 break;
1240 if (gimple_debug_source_bind_get_value (gstmt) == var)
1241 {
1242 def = gimple_debug_source_bind_get_var (gstmt);
1243 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1244 break;
1245 else
1246 def = NULL_TREE;
1247 }
1248 }
1249 /* If not, add a new source bind stmt. */
1250 if (def == NULL_TREE)
1251 {
1252 gimple def_temp;
1253 def = make_node (DEBUG_EXPR_DECL);
1254 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1255 DECL_ARTIFICIAL (def) = 1;
1256 TREE_TYPE (def) = TREE_TYPE (var);
1257 DECL_MODE (def) = DECL_MODE (var);
1258 gsi =
1259 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1260 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1261 }
1262 update = true;
1263 }
1264 }
1265 else
1266 {
1267 /* Check if info->current_def can be trusted. */
1268 basic_block bb = gimple_bb (stmt);
1269 basic_block def_bb
1270 = SSA_NAME_IS_DEFAULT_DEF (def)
1271 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1272
1273 /* If definition is in current bb, it is fine. */
1274 if (bb == def_bb)
1275 ;
1276 /* If definition bb doesn't dominate the current bb,
1277 it can't be used. */
1278 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1279 def = NULL;
1280 /* If there is just one definition and dominates the current
1281 bb, it is fine. */
1282 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1283 ;
1284 else
1285 {
1286 struct def_blocks_d *db_p = get_def_blocks_for (info);
1287
1288 /* If there are some non-debug uses in the current bb,
1289 it is fine. */
1290 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1291 ;
1292 /* Otherwise give up for now. */
1293 else
1294 def = NULL;
1295 }
1296 }
1297 if (def == NULL)
1298 {
1299 gimple_debug_bind_reset_value (stmt);
1300 update_stmt (stmt);
1301 return;
1302 }
1303 SET_USE (use_p, def);
1304 }
1305 if (update)
1306 update_stmt (stmt);
1307 }
1308
1309 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1310 the block with its immediate reaching definitions. Update the current
1311 definition of a variable when a new real or virtual definition is found. */
1312
1313 static void
1314 rewrite_stmt (gimple_stmt_iterator *si)
1315 {
1316 use_operand_p use_p;
1317 def_operand_p def_p;
1318 ssa_op_iter iter;
1319 gimple stmt = gsi_stmt (*si);
1320
1321 /* If mark_def_sites decided that we don't need to rewrite this
1322 statement, ignore it. */
1323 gcc_assert (blocks_to_update == NULL);
1324 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1325 return;
1326
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 {
1329 fprintf (dump_file, "Renaming statement ");
1330 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1331 fprintf (dump_file, "\n");
1332 }
1333
1334 /* Step 1. Rewrite USES in the statement. */
1335 if (rewrite_uses_p (stmt))
1336 {
1337 if (is_gimple_debug (stmt))
1338 rewrite_debug_stmt_uses (stmt);
1339 else
1340 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1341 {
1342 tree var = USE_FROM_PTR (use_p);
1343 gcc_checking_assert (DECL_P (var));
1344 SET_USE (use_p, get_reaching_def (var));
1345 }
1346 }
1347
1348 /* Step 2. Register the statement's DEF operands. */
1349 if (register_defs_p (stmt))
1350 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1351 {
1352 tree var = DEF_FROM_PTR (def_p);
1353 tree name;
1354 tree tracked_var;
1355
1356 gcc_checking_assert (DECL_P (var));
1357
1358 if (gimple_clobber_p (stmt)
1359 && is_gimple_reg (var))
1360 {
1361 /* If we rewrite a DECL into SSA form then drop its
1362 clobber stmts and replace uses with a new default def. */
1363 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1364 && !gimple_vdef (stmt));
1365 gsi_replace (si, gimple_build_nop (), true);
1366 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1367 break;
1368 }
1369
1370 name = make_ssa_name (var, stmt);
1371 SET_DEF (def_p, name);
1372 register_new_def (DEF_FROM_PTR (def_p), var);
1373
1374 tracked_var = target_for_debug_bind (var);
1375 if (tracked_var)
1376 {
1377 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1378 gsi_insert_after (si, note, GSI_SAME_STMT);
1379 }
1380 }
1381 }
1382
1383
1384 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1385 PHI nodes. For every PHI node found, add a new argument containing the
1386 current reaching definition for the variable and the edge through which
1387 that definition is reaching the PHI node. */
1388
1389 static void
1390 rewrite_add_phi_arguments (basic_block bb)
1391 {
1392 edge e;
1393 edge_iterator ei;
1394
1395 FOR_EACH_EDGE (e, ei, bb->succs)
1396 {
1397 gimple phi;
1398 gimple_stmt_iterator gsi;
1399
1400 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1401 gsi_next (&gsi))
1402 {
1403 tree currdef, res;
1404 location_t loc;
1405
1406 phi = gsi_stmt (gsi);
1407 res = gimple_phi_result (phi);
1408 currdef = get_reaching_def (SSA_NAME_VAR (res));
1409 /* Virtual operand PHI args do not need a location. */
1410 if (virtual_operand_p (res))
1411 loc = UNKNOWN_LOCATION;
1412 else
1413 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1414 add_phi_arg (phi, currdef, e, loc);
1415 }
1416 }
1417 }
1418
1419 class rewrite_dom_walker : public dom_walker
1420 {
1421 public:
1422 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1423
1424 virtual void before_dom_children (basic_block);
1425 virtual void after_dom_children (basic_block);
1426 };
1427
1428 /* SSA Rewriting Step 1. Initialization, create a block local stack
1429 of reaching definitions for new SSA names produced in this block
1430 (BLOCK_DEFS). Register new definitions for every PHI node in the
1431 block. */
1432
1433 void
1434 rewrite_dom_walker::before_dom_children (basic_block bb)
1435 {
1436 gimple_stmt_iterator gsi;
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1440
1441 /* Mark the unwind point for this block. */
1442 block_defs_stack.safe_push (NULL_TREE);
1443
1444 /* Step 1. Register new definitions for every PHI node in the block.
1445 Conceptually, all the PHI nodes are executed in parallel and each PHI
1446 node introduces a new version for the associated variable. */
1447 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1448 {
1449 tree result = gimple_phi_result (gsi_stmt (gsi));
1450 register_new_def (result, SSA_NAME_VAR (result));
1451 }
1452
1453 /* Step 2. Rewrite every variable used in each statement in the block
1454 with its immediate reaching definitions. Update the current definition
1455 of a variable when a new real or virtual definition is found. */
1456 if (bitmap_bit_p (interesting_blocks, bb->index))
1457 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1458 rewrite_stmt (&gsi);
1459
1460 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1461 For every PHI node found, add a new argument containing the current
1462 reaching definition for the variable and the edge through which that
1463 definition is reaching the PHI node. */
1464 rewrite_add_phi_arguments (bb);
1465 }
1466
1467
1468
1469 /* Called after visiting all the statements in basic block BB and all
1470 of its dominator children. Restore CURRDEFS to its original value. */
1471
1472 void
1473 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1474 {
1475 /* Restore CURRDEFS to its original state. */
1476 while (block_defs_stack.length () > 0)
1477 {
1478 tree tmp = block_defs_stack.pop ();
1479 tree saved_def, var;
1480
1481 if (tmp == NULL_TREE)
1482 break;
1483
1484 if (TREE_CODE (tmp) == SSA_NAME)
1485 {
1486 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1487 current definition of its underlying variable. Note that
1488 if the SSA_NAME is not for a GIMPLE register, the symbol
1489 being defined is stored in the next slot in the stack.
1490 This mechanism is needed because an SSA name for a
1491 non-register symbol may be the definition for more than
1492 one symbol (e.g., SFTs, aliased variables, etc). */
1493 saved_def = tmp;
1494 var = SSA_NAME_VAR (saved_def);
1495 if (!is_gimple_reg (var))
1496 var = block_defs_stack.pop ();
1497 }
1498 else
1499 {
1500 /* If we recorded anything else, it must have been a _DECL
1501 node and its current reaching definition must have been
1502 NULL. */
1503 saved_def = NULL;
1504 var = tmp;
1505 }
1506
1507 get_common_info (var)->current_def = saved_def;
1508 }
1509 }
1510
1511
1512 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1513
1514 DEBUG_FUNCTION void
1515 debug_decl_set (bitmap set)
1516 {
1517 dump_decl_set (stderr, set);
1518 fprintf (stderr, "\n");
1519 }
1520
1521
1522 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1523 stack up to a maximum of N levels. If N is -1, the whole stack is
1524 dumped. New levels are created when the dominator tree traversal
1525 used for renaming enters a new sub-tree. */
1526
1527 void
1528 dump_defs_stack (FILE *file, int n)
1529 {
1530 int i, j;
1531
1532 fprintf (file, "\n\nRenaming stack");
1533 if (n > 0)
1534 fprintf (file, " (up to %d levels)", n);
1535 fprintf (file, "\n\n");
1536
1537 i = 1;
1538 fprintf (file, "Level %d (current level)\n", i);
1539 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1540 {
1541 tree name, var;
1542
1543 name = block_defs_stack[j];
1544 if (name == NULL_TREE)
1545 {
1546 i++;
1547 if (n > 0 && i > n)
1548 break;
1549 fprintf (file, "\nLevel %d\n", i);
1550 continue;
1551 }
1552
1553 if (DECL_P (name))
1554 {
1555 var = name;
1556 name = NULL_TREE;
1557 }
1558 else
1559 {
1560 var = SSA_NAME_VAR (name);
1561 if (!is_gimple_reg (var))
1562 {
1563 j--;
1564 var = block_defs_stack[j];
1565 }
1566 }
1567
1568 fprintf (file, " Previous CURRDEF (");
1569 print_generic_expr (file, var, 0);
1570 fprintf (file, ") = ");
1571 if (name)
1572 print_generic_expr (file, name, 0);
1573 else
1574 fprintf (file, "<NIL>");
1575 fprintf (file, "\n");
1576 }
1577 }
1578
1579
1580 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1581 stack up to a maximum of N levels. If N is -1, the whole stack is
1582 dumped. New levels are created when the dominator tree traversal
1583 used for renaming enters a new sub-tree. */
1584
1585 DEBUG_FUNCTION void
1586 debug_defs_stack (int n)
1587 {
1588 dump_defs_stack (stderr, n);
1589 }
1590
1591
1592 /* Dump the current reaching definition of every symbol to FILE. */
1593
1594 void
1595 dump_currdefs (FILE *file)
1596 {
1597 unsigned i;
1598 tree var;
1599
1600 if (symbols_to_rename.is_empty ())
1601 return;
1602
1603 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1604 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1605 {
1606 common_info_p info = get_common_info (var);
1607 fprintf (file, "CURRDEF (");
1608 print_generic_expr (file, var, 0);
1609 fprintf (file, ") = ");
1610 if (info->current_def)
1611 print_generic_expr (file, info->current_def, 0);
1612 else
1613 fprintf (file, "<NIL>");
1614 fprintf (file, "\n");
1615 }
1616 }
1617
1618
1619 /* Dump the current reaching definition of every symbol to stderr. */
1620
1621 DEBUG_FUNCTION void
1622 debug_currdefs (void)
1623 {
1624 dump_currdefs (stderr);
1625 }
1626
1627
1628 /* Dump SSA information to FILE. */
1629
1630 void
1631 dump_tree_ssa (FILE *file)
1632 {
1633 const char *funcname
1634 = lang_hooks.decl_printable_name (current_function_decl, 2);
1635
1636 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1637
1638 dump_var_infos (file);
1639 dump_defs_stack (file, -1);
1640 dump_currdefs (file);
1641 dump_tree_ssa_stats (file);
1642 }
1643
1644
1645 /* Dump SSA information to stderr. */
1646
1647 DEBUG_FUNCTION void
1648 debug_tree_ssa (void)
1649 {
1650 dump_tree_ssa (stderr);
1651 }
1652
1653
1654 /* Dump statistics for the hash table HTAB. */
1655
1656 static void
1657 htab_statistics (FILE *file, hash_table <var_info_hasher> htab)
1658 {
1659 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1660 (long) htab.size (),
1661 (long) htab.elements (),
1662 htab.collisions ());
1663 }
1664
1665
1666 /* Dump SSA statistics on FILE. */
1667
1668 void
1669 dump_tree_ssa_stats (FILE *file)
1670 {
1671 if (var_infos.is_created ())
1672 {
1673 fprintf (file, "\nHash table statistics:\n");
1674 fprintf (file, " var_infos: ");
1675 htab_statistics (file, var_infos);
1676 fprintf (file, "\n");
1677 }
1678 }
1679
1680
1681 /* Dump SSA statistics on stderr. */
1682
1683 DEBUG_FUNCTION void
1684 debug_tree_ssa_stats (void)
1685 {
1686 dump_tree_ssa_stats (stderr);
1687 }
1688
1689
1690 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1691
1692 int
1693 debug_var_infos_r (var_info_d **slot, FILE *file)
1694 {
1695 struct var_info_d *info = *slot;
1696
1697 fprintf (file, "VAR: ");
1698 print_generic_expr (file, info->var, dump_flags);
1699 bitmap_print (file, info->info.def_blocks.def_blocks,
1700 ", DEF_BLOCKS: { ", "}");
1701 bitmap_print (file, info->info.def_blocks.livein_blocks,
1702 ", LIVEIN_BLOCKS: { ", "}");
1703 bitmap_print (file, info->info.def_blocks.phi_blocks,
1704 ", PHI_BLOCKS: { ", "}\n");
1705
1706 return 1;
1707 }
1708
1709
1710 /* Dump the VAR_INFOS hash table on FILE. */
1711
1712 void
1713 dump_var_infos (FILE *file)
1714 {
1715 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1716 if (var_infos.is_created ())
1717 var_infos.traverse <FILE *, debug_var_infos_r> (file);
1718 }
1719
1720
1721 /* Dump the VAR_INFOS hash table on stderr. */
1722
1723 DEBUG_FUNCTION void
1724 debug_var_infos (void)
1725 {
1726 dump_var_infos (stderr);
1727 }
1728
1729
1730 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1731
1732 static inline void
1733 register_new_update_single (tree new_name, tree old_name)
1734 {
1735 common_info_p info = get_common_info (old_name);
1736 tree currdef = info->current_def;
1737
1738 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1739 This stack is later used by the dominator tree callbacks to
1740 restore the reaching definitions for all the variables
1741 defined in the block after a recursive visit to all its
1742 immediately dominated blocks. */
1743 block_defs_stack.reserve (2);
1744 block_defs_stack.quick_push (currdef);
1745 block_defs_stack.quick_push (old_name);
1746
1747 /* Set the current reaching definition for OLD_NAME to be
1748 NEW_NAME. */
1749 info->current_def = new_name;
1750 }
1751
1752
1753 /* Register NEW_NAME to be the new reaching definition for all the
1754 names in OLD_NAMES. Used by the incremental SSA update routines to
1755 replace old SSA names with new ones. */
1756
1757 static inline void
1758 register_new_update_set (tree new_name, bitmap old_names)
1759 {
1760 bitmap_iterator bi;
1761 unsigned i;
1762
1763 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1764 register_new_update_single (new_name, ssa_name (i));
1765 }
1766
1767
1768
1769 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1770 it is a symbol marked for renaming, replace it with USE_P's current
1771 reaching definition. */
1772
1773 static inline void
1774 maybe_replace_use (use_operand_p use_p)
1775 {
1776 tree rdef = NULL_TREE;
1777 tree use = USE_FROM_PTR (use_p);
1778 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1779
1780 if (marked_for_renaming (sym))
1781 rdef = get_reaching_def (sym);
1782 else if (is_old_name (use))
1783 rdef = get_reaching_def (use);
1784
1785 if (rdef && rdef != use)
1786 SET_USE (use_p, rdef);
1787 }
1788
1789
1790 /* Same as maybe_replace_use, but without introducing default stmts,
1791 returning false to indicate a need to do so. */
1792
1793 static inline bool
1794 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1795 {
1796 tree rdef = NULL_TREE;
1797 tree use = USE_FROM_PTR (use_p);
1798 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1799
1800 if (marked_for_renaming (sym))
1801 rdef = get_var_info (sym)->info.current_def;
1802 else if (is_old_name (use))
1803 {
1804 rdef = get_ssa_name_ann (use)->info.current_def;
1805 /* We can't assume that, if there's no current definition, the
1806 default one should be used. It could be the case that we've
1807 rearranged blocks so that the earlier definition no longer
1808 dominates the use. */
1809 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1810 rdef = use;
1811 }
1812 else
1813 rdef = use;
1814
1815 if (rdef && rdef != use)
1816 SET_USE (use_p, rdef);
1817
1818 return rdef != NULL_TREE;
1819 }
1820
1821
1822 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1823 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1824 register it as the current definition for the names replaced by
1825 DEF_P. */
1826
1827 static inline void
1828 maybe_register_def (def_operand_p def_p, gimple stmt,
1829 gimple_stmt_iterator gsi)
1830 {
1831 tree def = DEF_FROM_PTR (def_p);
1832 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1833
1834 /* If DEF is a naked symbol that needs renaming, create a new
1835 name for it. */
1836 if (marked_for_renaming (sym))
1837 {
1838 if (DECL_P (def))
1839 {
1840 tree tracked_var;
1841
1842 def = make_ssa_name (def, stmt);
1843 SET_DEF (def_p, def);
1844
1845 tracked_var = target_for_debug_bind (sym);
1846 if (tracked_var)
1847 {
1848 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1849 /* If stmt ends the bb, insert the debug stmt on the single
1850 non-EH edge from the stmt. */
1851 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1852 {
1853 basic_block bb = gsi_bb (gsi);
1854 edge_iterator ei;
1855 edge e, ef = NULL;
1856 FOR_EACH_EDGE (e, ei, bb->succs)
1857 if (!(e->flags & EDGE_EH))
1858 {
1859 gcc_checking_assert (!ef);
1860 ef = e;
1861 }
1862 /* If there are other predecessors to ef->dest, then
1863 there must be PHI nodes for the modified
1864 variable, and therefore there will be debug bind
1865 stmts after the PHI nodes. The debug bind notes
1866 we'd insert would force the creation of a new
1867 block (diverging codegen) and be redundant with
1868 the post-PHI bind stmts, so don't add them.
1869
1870 As for the exit edge, there wouldn't be redundant
1871 bind stmts, but there wouldn't be a PC to bind
1872 them to either, so avoid diverging the CFG. */
1873 if (ef && single_pred_p (ef->dest)
1874 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1875 {
1876 /* If there were PHI nodes in the node, we'd
1877 have to make sure the value we're binding
1878 doesn't need rewriting. But there shouldn't
1879 be PHI nodes in a single-predecessor block,
1880 so we just add the note. */
1881 gsi_insert_on_edge_immediate (ef, note);
1882 }
1883 }
1884 else
1885 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1886 }
1887 }
1888
1889 register_new_update_single (def, sym);
1890 }
1891 else
1892 {
1893 /* If DEF is a new name, register it as a new definition
1894 for all the names replaced by DEF. */
1895 if (is_new_name (def))
1896 register_new_update_set (def, names_replaced_by (def));
1897
1898 /* If DEF is an old name, register DEF as a new
1899 definition for itself. */
1900 if (is_old_name (def))
1901 register_new_update_single (def, def);
1902 }
1903 }
1904
1905
1906 /* Update every variable used in the statement pointed-to by SI. The
1907 statement is assumed to be in SSA form already. Names in
1908 OLD_SSA_NAMES used by SI will be updated to their current reaching
1909 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1910 will be registered as a new definition for their corresponding name
1911 in OLD_SSA_NAMES. */
1912
1913 static void
1914 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1915 {
1916 use_operand_p use_p;
1917 def_operand_p def_p;
1918 ssa_op_iter iter;
1919
1920 /* Only update marked statements. */
1921 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1922 return;
1923
1924 if (dump_file && (dump_flags & TDF_DETAILS))
1925 {
1926 fprintf (dump_file, "Updating SSA information for statement ");
1927 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1928 }
1929
1930 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1931 symbol is marked for renaming. */
1932 if (rewrite_uses_p (stmt))
1933 {
1934 if (is_gimple_debug (stmt))
1935 {
1936 bool failed = false;
1937
1938 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1939 if (!maybe_replace_use_in_debug_stmt (use_p))
1940 {
1941 failed = true;
1942 break;
1943 }
1944
1945 if (failed)
1946 {
1947 /* DOM sometimes threads jumps in such a way that a
1948 debug stmt ends up referencing a SSA variable that no
1949 longer dominates the debug stmt, but such that all
1950 incoming definitions refer to the same definition in
1951 an earlier dominator. We could try to recover that
1952 definition somehow, but this will have to do for now.
1953
1954 Introducing a default definition, which is what
1955 maybe_replace_use() would do in such cases, may
1956 modify code generation, for the otherwise-unused
1957 default definition would never go away, modifying SSA
1958 version numbers all over. */
1959 gimple_debug_bind_reset_value (stmt);
1960 update_stmt (stmt);
1961 }
1962 }
1963 else
1964 {
1965 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1966 maybe_replace_use (use_p);
1967 }
1968 }
1969
1970 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1971 Also register definitions for names whose underlying symbol is
1972 marked for renaming. */
1973 if (register_defs_p (stmt))
1974 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1975 maybe_register_def (def_p, stmt, gsi);
1976 }
1977
1978
1979 /* Visit all the successor blocks of BB looking for PHI nodes. For
1980 every PHI node found, check if any of its arguments is in
1981 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1982 definition, replace it. */
1983
1984 static void
1985 rewrite_update_phi_arguments (basic_block bb)
1986 {
1987 edge e;
1988 edge_iterator ei;
1989 unsigned i;
1990
1991 FOR_EACH_EDGE (e, ei, bb->succs)
1992 {
1993 gimple phi;
1994 gimple_vec phis;
1995
1996 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1997 continue;
1998
1999 phis = phis_to_rewrite[e->dest->index];
2000 FOR_EACH_VEC_ELT (phis, i, phi)
2001 {
2002 tree arg, lhs_sym, reaching_def = NULL;
2003 use_operand_p arg_p;
2004
2005 gcc_checking_assert (rewrite_uses_p (phi));
2006
2007 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2008 arg = USE_FROM_PTR (arg_p);
2009
2010 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2011 continue;
2012
2013 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2014
2015 if (arg == NULL_TREE)
2016 {
2017 /* When updating a PHI node for a recently introduced
2018 symbol we may find NULL arguments. That's why we
2019 take the symbol from the LHS of the PHI node. */
2020 reaching_def = get_reaching_def (lhs_sym);
2021
2022 }
2023 else
2024 {
2025 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2026
2027 if (marked_for_renaming (sym))
2028 reaching_def = get_reaching_def (sym);
2029 else if (is_old_name (arg))
2030 reaching_def = get_reaching_def (arg);
2031 }
2032
2033 /* Update the argument if there is a reaching def. */
2034 if (reaching_def)
2035 {
2036 source_location locus;
2037 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2038
2039 SET_USE (arg_p, reaching_def);
2040
2041 /* Virtual operands do not need a location. */
2042 if (virtual_operand_p (reaching_def))
2043 locus = UNKNOWN_LOCATION;
2044 else
2045 {
2046 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2047
2048 /* Single element PHI nodes behave like copies, so get the
2049 location from the phi argument. */
2050 if (gimple_code (stmt) == GIMPLE_PHI
2051 && gimple_phi_num_args (stmt) == 1)
2052 locus = gimple_phi_arg_location (stmt, 0);
2053 else
2054 locus = gimple_location (stmt);
2055 }
2056
2057 gimple_phi_arg_set_location (phi, arg_i, locus);
2058 }
2059
2060
2061 if (e->flags & EDGE_ABNORMAL)
2062 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2063 }
2064 }
2065 }
2066
2067 class rewrite_update_dom_walker : public dom_walker
2068 {
2069 public:
2070 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2071
2072 virtual void before_dom_children (basic_block);
2073 virtual void after_dom_children (basic_block);
2074 };
2075
2076 /* Initialization of block data structures for the incremental SSA
2077 update pass. Create a block local stack of reaching definitions
2078 for new SSA names produced in this block (BLOCK_DEFS). Register
2079 new definitions for every PHI node in the block. */
2080
2081 void
2082 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2083 {
2084 bool is_abnormal_phi;
2085 gimple_stmt_iterator gsi;
2086
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2088 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2089 bb->index);
2090
2091 /* Mark the unwind point for this block. */
2092 block_defs_stack.safe_push (NULL_TREE);
2093
2094 if (!bitmap_bit_p (blocks_to_update, bb->index))
2095 return;
2096
2097 /* Mark the LHS if any of the arguments flows through an abnormal
2098 edge. */
2099 is_abnormal_phi = bb_has_abnormal_pred (bb);
2100
2101 /* If any of the PHI nodes is a replacement for a name in
2102 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2103 register it as a new definition for its corresponding name. Also
2104 register definitions for names whose underlying symbols are
2105 marked for renaming. */
2106 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2107 {
2108 tree lhs, lhs_sym;
2109 gimple phi = gsi_stmt (gsi);
2110
2111 if (!register_defs_p (phi))
2112 continue;
2113
2114 lhs = gimple_phi_result (phi);
2115 lhs_sym = SSA_NAME_VAR (lhs);
2116
2117 if (marked_for_renaming (lhs_sym))
2118 register_new_update_single (lhs, lhs_sym);
2119 else
2120 {
2121
2122 /* If LHS is a new name, register a new definition for all
2123 the names replaced by LHS. */
2124 if (is_new_name (lhs))
2125 register_new_update_set (lhs, names_replaced_by (lhs));
2126
2127 /* If LHS is an OLD name, register it as a new definition
2128 for itself. */
2129 if (is_old_name (lhs))
2130 register_new_update_single (lhs, lhs);
2131 }
2132
2133 if (is_abnormal_phi)
2134 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2135 }
2136
2137 /* Step 2. Rewrite every variable used in each statement in the block. */
2138 if (bitmap_bit_p (interesting_blocks, bb->index))
2139 {
2140 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2141 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2142 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2143 }
2144
2145 /* Step 3. Update PHI nodes. */
2146 rewrite_update_phi_arguments (bb);
2147 }
2148
2149 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2150 the current reaching definition of every name re-written in BB to
2151 the original reaching definition before visiting BB. This
2152 unwinding must be done in the opposite order to what is done in
2153 register_new_update_set. */
2154
2155 void
2156 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2157 {
2158 while (block_defs_stack.length () > 0)
2159 {
2160 tree var = block_defs_stack.pop ();
2161 tree saved_def;
2162
2163 /* NULL indicates the unwind stop point for this block (see
2164 rewrite_update_enter_block). */
2165 if (var == NULL)
2166 return;
2167
2168 saved_def = block_defs_stack.pop ();
2169 get_common_info (var)->current_def = saved_def;
2170 }
2171 }
2172
2173
2174 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2175 form.
2176
2177 ENTRY indicates the block where to start. Every block dominated by
2178 ENTRY will be rewritten.
2179
2180 WHAT indicates what actions will be taken by the renamer (see enum
2181 rewrite_mode).
2182
2183 BLOCKS are the set of interesting blocks for the dominator walker
2184 to process. If this set is NULL, then all the nodes dominated
2185 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2186 are not present in BLOCKS are ignored. */
2187
2188 static void
2189 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2190 {
2191 /* Rewrite all the basic blocks in the program. */
2192 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2193
2194 block_defs_stack.create (10);
2195
2196 /* Recursively walk the dominator tree rewriting each statement in
2197 each basic block. */
2198 if (what == REWRITE_ALL)
2199 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2200 else if (what == REWRITE_UPDATE)
2201 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2202 else
2203 gcc_unreachable ();
2204
2205 /* Debugging dumps. */
2206 if (dump_file && (dump_flags & TDF_STATS))
2207 {
2208 dump_dfa_stats (dump_file);
2209 if (var_infos.is_created ())
2210 dump_tree_ssa_stats (dump_file);
2211 }
2212
2213 block_defs_stack.release ();
2214
2215 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2216 }
2217
2218 class mark_def_dom_walker : public dom_walker
2219 {
2220 public:
2221 mark_def_dom_walker (cdi_direction direction);
2222 ~mark_def_dom_walker ();
2223
2224 virtual void before_dom_children (basic_block);
2225
2226 private:
2227 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2228 large enough to accommodate all the variables referenced in the
2229 function, not just the ones we are renaming. */
2230 bitmap m_kills;
2231 };
2232
2233 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2234 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2235 {
2236 }
2237
2238 mark_def_dom_walker::~mark_def_dom_walker ()
2239 {
2240 BITMAP_FREE (m_kills);
2241 }
2242
2243 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2244 at the start of each block, and call mark_def_sites for each statement. */
2245
2246 void
2247 mark_def_dom_walker::before_dom_children (basic_block bb)
2248 {
2249 gimple_stmt_iterator gsi;
2250
2251 bitmap_clear (m_kills);
2252 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2253 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2254 }
2255
2256 /* Initialize internal data needed during renaming. */
2257
2258 static void
2259 init_ssa_renamer (void)
2260 {
2261 cfun->gimple_df->in_ssa_p = false;
2262
2263 /* Allocate memory for the DEF_BLOCKS hash table. */
2264 gcc_assert (!var_infos.is_created ());
2265 var_infos.create (vec_safe_length (cfun->local_decls));
2266
2267 bitmap_obstack_initialize (&update_ssa_obstack);
2268 }
2269
2270
2271 /* Deallocate internal data structures used by the renamer. */
2272
2273 static void
2274 fini_ssa_renamer (void)
2275 {
2276 if (var_infos.is_created ())
2277 var_infos.dispose ();
2278
2279 bitmap_obstack_release (&update_ssa_obstack);
2280
2281 cfun->gimple_df->ssa_renaming_needed = 0;
2282 cfun->gimple_df->rename_vops = 0;
2283 cfun->gimple_df->in_ssa_p = true;
2284 }
2285
2286 /* Main entry point into the SSA builder. The renaming process
2287 proceeds in four main phases:
2288
2289 1- Compute dominance frontier and immediate dominators, needed to
2290 insert PHI nodes and rename the function in dominator tree
2291 order.
2292
2293 2- Find and mark all the blocks that define variables.
2294
2295 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2296
2297 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2298
2299 Steps 3 and 4 are done using the dominator tree walker
2300 (walk_dominator_tree). */
2301
2302 static unsigned int
2303 rewrite_into_ssa (void)
2304 {
2305 bitmap_head *dfs;
2306 basic_block bb;
2307 unsigned i;
2308
2309 /* Initialize operand data structures. */
2310 init_ssa_operands (cfun);
2311
2312 /* Initialize internal data needed by the renamer. */
2313 init_ssa_renamer ();
2314
2315 /* Initialize the set of interesting blocks. The callback
2316 mark_def_sites will add to this set those blocks that the renamer
2317 should process. */
2318 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2319 bitmap_clear (interesting_blocks);
2320
2321 /* Initialize dominance frontier. */
2322 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
2323 FOR_EACH_BB_FN (bb, cfun)
2324 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2325
2326 /* 1- Compute dominance frontiers. */
2327 calculate_dominance_info (CDI_DOMINATORS);
2328 compute_dominance_frontiers (dfs);
2329
2330 /* 2- Find and mark definition sites. */
2331 mark_def_dom_walker (CDI_DOMINATORS).walk (cfun->cfg->x_entry_block_ptr);
2332
2333 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2334 insert_phi_nodes (dfs);
2335
2336 /* 4- Rename all the blocks. */
2337 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (cfun), REWRITE_ALL);
2338
2339 /* Free allocated memory. */
2340 FOR_EACH_BB_FN (bb, cfun)
2341 bitmap_clear (&dfs[bb->index]);
2342 free (dfs);
2343
2344 sbitmap_free (interesting_blocks);
2345
2346 fini_ssa_renamer ();
2347
2348 /* Try to get rid of all gimplifier generated temporaries by making
2349 its SSA names anonymous. This way we can garbage collect them
2350 all after removing unused locals which we do in our TODO. */
2351 for (i = 1; i < num_ssa_names; ++i)
2352 {
2353 tree decl, name = ssa_name (i);
2354 if (!name
2355 || SSA_NAME_IS_DEFAULT_DEF (name))
2356 continue;
2357 decl = SSA_NAME_VAR (name);
2358 if (decl
2359 && TREE_CODE (decl) == VAR_DECL
2360 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2361 && DECL_IGNORED_P (decl))
2362 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2363 }
2364
2365 return 0;
2366 }
2367
2368 /* Gate for IPCP optimization. */
2369
2370 static bool
2371 gate_into_ssa (void)
2372 {
2373 /* Do nothing for funcions that was produced already in SSA form. */
2374 return !(cfun->curr_properties & PROP_ssa);
2375 }
2376
2377 namespace {
2378
2379 const pass_data pass_data_build_ssa =
2380 {
2381 GIMPLE_PASS, /* type */
2382 "ssa", /* name */
2383 OPTGROUP_NONE, /* optinfo_flags */
2384 true, /* has_execute */
2385 TV_TREE_SSA_OTHER, /* tv_id */
2386 PROP_cfg, /* properties_required */
2387 PROP_ssa, /* properties_provided */
2388 0, /* properties_destroyed */
2389 0, /* todo_flags_start */
2390 ( TODO_verify_ssa | TODO_remove_unused_locals ), /* todo_flags_finish */
2391 };
2392
2393 class pass_build_ssa : public gimple_opt_pass
2394 {
2395 public:
2396 pass_build_ssa (gcc::context *ctxt)
2397 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2398 {}
2399
2400 /* opt_pass methods: */
2401 bool gate () { return gate_into_ssa (); }
2402 unsigned int execute () { return rewrite_into_ssa (); }
2403
2404 }; // class pass_build_ssa
2405
2406 } // anon namespace
2407
2408 gimple_opt_pass *
2409 make_pass_build_ssa (gcc::context *ctxt)
2410 {
2411 return new pass_build_ssa (ctxt);
2412 }
2413
2414
2415 /* Mark the definition of VAR at STMT and BB as interesting for the
2416 renamer. BLOCKS is the set of blocks that need updating. */
2417
2418 static void
2419 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2420 {
2421 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2422 set_register_defs (stmt, true);
2423
2424 if (insert_phi_p)
2425 {
2426 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2427
2428 set_def_block (var, bb, is_phi_p);
2429
2430 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2431 site for both itself and all the old names replaced by it. */
2432 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2433 {
2434 bitmap_iterator bi;
2435 unsigned i;
2436 bitmap set = names_replaced_by (var);
2437 if (set)
2438 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2439 set_def_block (ssa_name (i), bb, is_phi_p);
2440 }
2441 }
2442 }
2443
2444
2445 /* Mark the use of VAR at STMT and BB as interesting for the
2446 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2447 nodes. */
2448
2449 static inline void
2450 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2451 {
2452 basic_block def_bb = gimple_bb (stmt);
2453
2454 mark_block_for_update (def_bb);
2455 mark_block_for_update (bb);
2456
2457 if (gimple_code (stmt) == GIMPLE_PHI)
2458 mark_phi_for_rewrite (def_bb, stmt);
2459 else
2460 {
2461 set_rewrite_uses (stmt, true);
2462
2463 if (is_gimple_debug (stmt))
2464 return;
2465 }
2466
2467 /* If VAR has not been defined in BB, then it is live-on-entry
2468 to BB. Note that we cannot just use the block holding VAR's
2469 definition because if VAR is one of the names in OLD_SSA_NAMES,
2470 it will have several definitions (itself and all the names that
2471 replace it). */
2472 if (insert_phi_p)
2473 {
2474 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2475 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2476 set_livein_block (var, bb);
2477 }
2478 }
2479
2480
2481 /* Do a dominator walk starting at BB processing statements that
2482 reference symbols in SSA operands. This is very similar to
2483 mark_def_sites, but the scan handles statements whose operands may
2484 already be SSA names.
2485
2486 If INSERT_PHI_P is true, mark those uses as live in the
2487 corresponding block. This is later used by the PHI placement
2488 algorithm to make PHI pruning decisions.
2489
2490 FIXME. Most of this would be unnecessary if we could associate a
2491 symbol to all the SSA names that reference it. But that
2492 sounds like it would be expensive to maintain. Still, it
2493 would be interesting to see if it makes better sense to do
2494 that. */
2495
2496 static void
2497 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2498 {
2499 basic_block son;
2500 gimple_stmt_iterator si;
2501 edge e;
2502 edge_iterator ei;
2503
2504 mark_block_for_update (bb);
2505
2506 /* Process PHI nodes marking interesting those that define or use
2507 the symbols that we are interested in. */
2508 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2509 {
2510 gimple phi = gsi_stmt (si);
2511 tree lhs_sym, lhs = gimple_phi_result (phi);
2512
2513 if (TREE_CODE (lhs) == SSA_NAME
2514 && (! virtual_operand_p (lhs)
2515 || ! cfun->gimple_df->rename_vops))
2516 continue;
2517
2518 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2519 mark_for_renaming (lhs_sym);
2520 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2521
2522 /* Mark the uses in phi nodes as interesting. It would be more correct
2523 to process the arguments of the phi nodes of the successor edges of
2524 BB at the end of prepare_block_for_update, however, that turns out
2525 to be significantly more expensive. Doing it here is conservatively
2526 correct -- it may only cause us to believe a value to be live in a
2527 block that also contains its definition, and thus insert a few more
2528 phi nodes for it. */
2529 FOR_EACH_EDGE (e, ei, bb->preds)
2530 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2531 }
2532
2533 /* Process the statements. */
2534 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2535 {
2536 gimple stmt;
2537 ssa_op_iter i;
2538 use_operand_p use_p;
2539 def_operand_p def_p;
2540
2541 stmt = gsi_stmt (si);
2542
2543 if (cfun->gimple_df->rename_vops
2544 && gimple_vuse (stmt))
2545 {
2546 tree use = gimple_vuse (stmt);
2547 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2548 mark_for_renaming (sym);
2549 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2550 }
2551
2552 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2553 {
2554 tree use = USE_FROM_PTR (use_p);
2555 if (!DECL_P (use))
2556 continue;
2557 mark_for_renaming (use);
2558 mark_use_interesting (use, stmt, bb, insert_phi_p);
2559 }
2560
2561 if (cfun->gimple_df->rename_vops
2562 && gimple_vdef (stmt))
2563 {
2564 tree def = gimple_vdef (stmt);
2565 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2566 mark_for_renaming (sym);
2567 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2568 }
2569
2570 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2571 {
2572 tree def = DEF_FROM_PTR (def_p);
2573 if (!DECL_P (def))
2574 continue;
2575 mark_for_renaming (def);
2576 mark_def_interesting (def, stmt, bb, insert_phi_p);
2577 }
2578 }
2579
2580 /* Now visit all the blocks dominated by BB. */
2581 for (son = first_dom_son (CDI_DOMINATORS, bb);
2582 son;
2583 son = next_dom_son (CDI_DOMINATORS, son))
2584 prepare_block_for_update (son, insert_phi_p);
2585 }
2586
2587
2588 /* Helper for prepare_names_to_update. Mark all the use sites for
2589 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2590 prepare_names_to_update. */
2591
2592 static void
2593 prepare_use_sites_for (tree name, bool insert_phi_p)
2594 {
2595 use_operand_p use_p;
2596 imm_use_iterator iter;
2597
2598 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2599 {
2600 gimple stmt = USE_STMT (use_p);
2601 basic_block bb = gimple_bb (stmt);
2602
2603 if (gimple_code (stmt) == GIMPLE_PHI)
2604 {
2605 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2606 edge e = gimple_phi_arg_edge (stmt, ix);
2607 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2608 }
2609 else
2610 {
2611 /* For regular statements, mark this as an interesting use
2612 for NAME. */
2613 mark_use_interesting (name, stmt, bb, insert_phi_p);
2614 }
2615 }
2616 }
2617
2618
2619 /* Helper for prepare_names_to_update. Mark the definition site for
2620 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2621 prepare_names_to_update. */
2622
2623 static void
2624 prepare_def_site_for (tree name, bool insert_phi_p)
2625 {
2626 gimple stmt;
2627 basic_block bb;
2628
2629 gcc_checking_assert (names_to_release == NULL
2630 || !bitmap_bit_p (names_to_release,
2631 SSA_NAME_VERSION (name)));
2632
2633 stmt = SSA_NAME_DEF_STMT (name);
2634 bb = gimple_bb (stmt);
2635 if (bb)
2636 {
2637 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2638 mark_block_for_update (bb);
2639 mark_def_interesting (name, stmt, bb, insert_phi_p);
2640 }
2641 }
2642
2643
2644 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2645 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2646 PHI nodes for newly created names. */
2647
2648 static void
2649 prepare_names_to_update (bool insert_phi_p)
2650 {
2651 unsigned i = 0;
2652 bitmap_iterator bi;
2653 sbitmap_iterator sbi;
2654
2655 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2656 remove it from NEW_SSA_NAMES so that we don't try to visit its
2657 defining basic block (which most likely doesn't exist). Notice
2658 that we cannot do the same with names in OLD_SSA_NAMES because we
2659 want to replace existing instances. */
2660 if (names_to_release)
2661 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2662 bitmap_clear_bit (new_ssa_names, i);
2663
2664 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2665 names may be considered to be live-in on blocks that contain
2666 definitions for their replacements. */
2667 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2668 prepare_def_site_for (ssa_name (i), insert_phi_p);
2669
2670 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2671 OLD_SSA_NAMES, but we have to ignore its definition site. */
2672 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2673 {
2674 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2675 prepare_def_site_for (ssa_name (i), insert_phi_p);
2676 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2677 }
2678 }
2679
2680
2681 /* Dump all the names replaced by NAME to FILE. */
2682
2683 void
2684 dump_names_replaced_by (FILE *file, tree name)
2685 {
2686 unsigned i;
2687 bitmap old_set;
2688 bitmap_iterator bi;
2689
2690 print_generic_expr (file, name, 0);
2691 fprintf (file, " -> { ");
2692
2693 old_set = names_replaced_by (name);
2694 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2695 {
2696 print_generic_expr (file, ssa_name (i), 0);
2697 fprintf (file, " ");
2698 }
2699
2700 fprintf (file, "}\n");
2701 }
2702
2703
2704 /* Dump all the names replaced by NAME to stderr. */
2705
2706 DEBUG_FUNCTION void
2707 debug_names_replaced_by (tree name)
2708 {
2709 dump_names_replaced_by (stderr, name);
2710 }
2711
2712
2713 /* Dump SSA update information to FILE. */
2714
2715 void
2716 dump_update_ssa (FILE *file)
2717 {
2718 unsigned i = 0;
2719 bitmap_iterator bi;
2720
2721 if (!need_ssa_update_p (cfun))
2722 return;
2723
2724 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2725 {
2726 sbitmap_iterator sbi;
2727
2728 fprintf (file, "\nSSA replacement table\n");
2729 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2730 "O_1, ..., O_j\n\n");
2731
2732 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2733 dump_names_replaced_by (file, ssa_name (i));
2734 }
2735
2736 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2737 {
2738 fprintf (file, "\nSymbols to be put in SSA form\n");
2739 dump_decl_set (file, symbols_to_rename_set);
2740 fprintf (file, "\n");
2741 }
2742
2743 if (names_to_release && !bitmap_empty_p (names_to_release))
2744 {
2745 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2746 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2747 {
2748 print_generic_expr (file, ssa_name (i), 0);
2749 fprintf (file, " ");
2750 }
2751 fprintf (file, "\n");
2752 }
2753 }
2754
2755
2756 /* Dump SSA update information to stderr. */
2757
2758 DEBUG_FUNCTION void
2759 debug_update_ssa (void)
2760 {
2761 dump_update_ssa (stderr);
2762 }
2763
2764
2765 /* Initialize data structures used for incremental SSA updates. */
2766
2767 static void
2768 init_update_ssa (struct function *fn)
2769 {
2770 /* Reserve more space than the current number of names. The calls to
2771 add_new_name_mapping are typically done after creating new SSA
2772 names, so we'll need to reallocate these arrays. */
2773 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2774 bitmap_clear (old_ssa_names);
2775
2776 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2777 bitmap_clear (new_ssa_names);
2778
2779 bitmap_obstack_initialize (&update_ssa_obstack);
2780
2781 names_to_release = NULL;
2782 update_ssa_initialized_fn = fn;
2783 }
2784
2785
2786 /* Deallocate data structures used for incremental SSA updates. */
2787
2788 void
2789 delete_update_ssa (void)
2790 {
2791 unsigned i;
2792 bitmap_iterator bi;
2793
2794 sbitmap_free (old_ssa_names);
2795 old_ssa_names = NULL;
2796
2797 sbitmap_free (new_ssa_names);
2798 new_ssa_names = NULL;
2799
2800 BITMAP_FREE (symbols_to_rename_set);
2801 symbols_to_rename_set = NULL;
2802 symbols_to_rename.release ();
2803
2804 if (names_to_release)
2805 {
2806 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2807 release_ssa_name (ssa_name (i));
2808 BITMAP_FREE (names_to_release);
2809 }
2810
2811 clear_ssa_name_info ();
2812
2813 fini_ssa_renamer ();
2814
2815 if (blocks_with_phis_to_rewrite)
2816 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2817 {
2818 gimple_vec phis = phis_to_rewrite[i];
2819 phis.release ();
2820 phis_to_rewrite[i].create (0);
2821 }
2822
2823 BITMAP_FREE (blocks_with_phis_to_rewrite);
2824 BITMAP_FREE (blocks_to_update);
2825
2826 update_ssa_initialized_fn = NULL;
2827 }
2828
2829
2830 /* Create a new name for OLD_NAME in statement STMT and replace the
2831 operand pointed to by DEF_P with the newly created name. If DEF_P
2832 is NULL then STMT should be a GIMPLE assignment.
2833 Return the new name and register the replacement mapping <NEW, OLD> in
2834 update_ssa's tables. */
2835
2836 tree
2837 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2838 {
2839 tree new_name;
2840
2841 timevar_push (TV_TREE_SSA_INCREMENTAL);
2842
2843 if (!update_ssa_initialized_fn)
2844 init_update_ssa (cfun);
2845
2846 gcc_assert (update_ssa_initialized_fn == cfun);
2847
2848 new_name = duplicate_ssa_name (old_name, stmt);
2849 if (def)
2850 SET_DEF (def, new_name);
2851 else
2852 gimple_assign_set_lhs (stmt, new_name);
2853
2854 if (gimple_code (stmt) == GIMPLE_PHI)
2855 {
2856 basic_block bb = gimple_bb (stmt);
2857
2858 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2859 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2860 }
2861
2862 add_new_name_mapping (new_name, old_name);
2863
2864 /* For the benefit of passes that will be updating the SSA form on
2865 their own, set the current reaching definition of OLD_NAME to be
2866 NEW_NAME. */
2867 get_ssa_name_ann (old_name)->info.current_def = new_name;
2868
2869 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2870
2871 return new_name;
2872 }
2873
2874
2875 /* Mark virtual operands of FN for renaming by update_ssa. */
2876
2877 void
2878 mark_virtual_operands_for_renaming (struct function *fn)
2879 {
2880 fn->gimple_df->ssa_renaming_needed = 1;
2881 fn->gimple_df->rename_vops = 1;
2882 }
2883
2884 /* Replace all uses of NAME by underlying variable and mark it
2885 for renaming. This assumes the defining statement of NAME is
2886 going to be removed. */
2887
2888 void
2889 mark_virtual_operand_for_renaming (tree name)
2890 {
2891 tree name_var = SSA_NAME_VAR (name);
2892 bool used = false;
2893 imm_use_iterator iter;
2894 use_operand_p use_p;
2895 gimple stmt;
2896
2897 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2898 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2899 {
2900 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2901 SET_USE (use_p, name_var);
2902 used = true;
2903 }
2904 if (used)
2905 mark_virtual_operands_for_renaming (cfun);
2906 }
2907
2908 /* Replace all uses of the virtual PHI result by its underlying variable
2909 and mark it for renaming. This assumes the PHI node is going to be
2910 removed. */
2911
2912 void
2913 mark_virtual_phi_result_for_renaming (gimple phi)
2914 {
2915 if (dump_file && (dump_flags & TDF_DETAILS))
2916 {
2917 fprintf (dump_file, "Marking result for renaming : ");
2918 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2919 fprintf (dump_file, "\n");
2920 }
2921
2922 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2923 }
2924
2925 /* Return true if there is any work to be done by update_ssa
2926 for function FN. */
2927
2928 bool
2929 need_ssa_update_p (struct function *fn)
2930 {
2931 gcc_assert (fn != NULL);
2932 return (update_ssa_initialized_fn == fn
2933 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2934 }
2935
2936 /* Return true if name N has been registered in the replacement table. */
2937
2938 bool
2939 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2940 {
2941 if (!update_ssa_initialized_fn)
2942 return false;
2943
2944 gcc_assert (update_ssa_initialized_fn == cfun);
2945
2946 return is_new_name (n) || is_old_name (n);
2947 }
2948
2949
2950 /* Mark NAME to be released after update_ssa has finished. */
2951
2952 void
2953 release_ssa_name_after_update_ssa (tree name)
2954 {
2955 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2956
2957 if (names_to_release == NULL)
2958 names_to_release = BITMAP_ALLOC (NULL);
2959
2960 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2961 }
2962
2963
2964 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2965 frontier information. BLOCKS is the set of blocks to be updated.
2966
2967 This is slightly different than the regular PHI insertion
2968 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2969 real names (i.e., GIMPLE registers) are inserted:
2970
2971 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2972 nodes inside the region affected by the block that defines VAR
2973 and the blocks that define all its replacements. All these
2974 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2975
2976 First, we compute the entry point to the region (ENTRY). This is
2977 given by the nearest common dominator to all the definition
2978 blocks. When computing the iterated dominance frontier (IDF), any
2979 block not strictly dominated by ENTRY is ignored.
2980
2981 We then call the standard PHI insertion algorithm with the pruned
2982 IDF.
2983
2984 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2985 names is not pruned. PHI nodes are inserted at every IDF block. */
2986
2987 static void
2988 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2989 unsigned update_flags)
2990 {
2991 basic_block entry;
2992 struct def_blocks_d *db;
2993 bitmap idf, pruned_idf;
2994 bitmap_iterator bi;
2995 unsigned i;
2996
2997 if (TREE_CODE (var) == SSA_NAME)
2998 gcc_checking_assert (is_old_name (var));
2999 else
3000 gcc_checking_assert (marked_for_renaming (var));
3001
3002 /* Get all the definition sites for VAR. */
3003 db = find_def_blocks_for (var);
3004
3005 /* No need to do anything if there were no definitions to VAR. */
3006 if (db == NULL || bitmap_empty_p (db->def_blocks))
3007 return;
3008
3009 /* Compute the initial iterated dominance frontier. */
3010 idf = compute_idf (db->def_blocks, dfs);
3011 pruned_idf = BITMAP_ALLOC (NULL);
3012
3013 if (TREE_CODE (var) == SSA_NAME)
3014 {
3015 if (update_flags == TODO_update_ssa)
3016 {
3017 /* If doing regular SSA updates for GIMPLE registers, we are
3018 only interested in IDF blocks dominated by the nearest
3019 common dominator of all the definition blocks. */
3020 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3021 db->def_blocks);
3022 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3023 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3024 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3025 && dominated_by_p (CDI_DOMINATORS,
3026 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3027 bitmap_set_bit (pruned_idf, i);
3028 }
3029 else
3030 {
3031 /* Otherwise, do not prune the IDF for VAR. */
3032 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3033 bitmap_copy (pruned_idf, idf);
3034 }
3035 }
3036 else
3037 {
3038 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3039 for the first time, so we need to compute the full IDF for
3040 it. */
3041 bitmap_copy (pruned_idf, idf);
3042 }
3043
3044 if (!bitmap_empty_p (pruned_idf))
3045 {
3046 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3047 are included in the region to be updated. The feeding blocks
3048 are important to guarantee that the PHI arguments are renamed
3049 properly. */
3050
3051 /* FIXME, this is not needed if we are updating symbols. We are
3052 already starting at the ENTRY block anyway. */
3053 bitmap_ior_into (blocks, pruned_idf);
3054 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3055 {
3056 edge e;
3057 edge_iterator ei;
3058 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3059
3060 FOR_EACH_EDGE (e, ei, bb->preds)
3061 if (e->src->index >= 0)
3062 bitmap_set_bit (blocks, e->src->index);
3063 }
3064
3065 insert_phi_nodes_for (var, pruned_idf, true);
3066 }
3067
3068 BITMAP_FREE (pruned_idf);
3069 BITMAP_FREE (idf);
3070 }
3071
3072 /* Sort symbols_to_rename after their DECL_UID. */
3073
3074 static int
3075 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3076 {
3077 const_tree syma = *(const const_tree *)a;
3078 const_tree symb = *(const const_tree *)b;
3079 if (DECL_UID (syma) == DECL_UID (symb))
3080 return 0;
3081 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3082 }
3083
3084 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3085 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3086
3087 1- The names in OLD_SSA_NAMES dominated by the definitions of
3088 NEW_SSA_NAMES are all re-written to be reached by the
3089 appropriate definition from NEW_SSA_NAMES.
3090
3091 2- If needed, new PHI nodes are added to the iterated dominance
3092 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3093
3094 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3095 calling create_new_def_for to create new defs for names that the
3096 caller wants to replace.
3097
3098 The caller cretaes the new names to be inserted and the names that need
3099 to be replaced by calling create_new_def_for for each old definition
3100 to be replaced. Note that the function assumes that the
3101 new defining statement has already been inserted in the IL.
3102
3103 For instance, given the following code:
3104
3105 1 L0:
3106 2 x_1 = PHI (0, x_5)
3107 3 if (x_1 < 10)
3108 4 if (x_1 > 7)
3109 5 y_2 = 0
3110 6 else
3111 7 y_3 = x_1 + x_7
3112 8 endif
3113 9 x_5 = x_1 + 1
3114 10 goto L0;
3115 11 endif
3116
3117 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3118
3119 1 L0:
3120 2 x_1 = PHI (0, x_5)
3121 3 if (x_1 < 10)
3122 4 x_10 = ...
3123 5 if (x_1 > 7)
3124 6 y_2 = 0
3125 7 else
3126 8 x_11 = ...
3127 9 y_3 = x_1 + x_7
3128 10 endif
3129 11 x_5 = x_1 + 1
3130 12 goto L0;
3131 13 endif
3132
3133 We want to replace all the uses of x_1 with the new definitions of
3134 x_10 and x_11. Note that the only uses that should be replaced are
3135 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3136 *not* be replaced (this is why we cannot just mark symbol 'x' for
3137 renaming).
3138
3139 Additionally, we may need to insert a PHI node at line 11 because
3140 that is a merge point for x_10 and x_11. So the use of x_1 at line
3141 11 will be replaced with the new PHI node. The insertion of PHI
3142 nodes is optional. They are not strictly necessary to preserve the
3143 SSA form, and depending on what the caller inserted, they may not
3144 even be useful for the optimizers. UPDATE_FLAGS controls various
3145 aspects of how update_ssa operates, see the documentation for
3146 TODO_update_ssa*. */
3147
3148 void
3149 update_ssa (unsigned update_flags)
3150 {
3151 basic_block bb, start_bb;
3152 bitmap_iterator bi;
3153 unsigned i = 0;
3154 bool insert_phi_p;
3155 sbitmap_iterator sbi;
3156 tree sym;
3157
3158 /* Only one update flag should be set. */
3159 gcc_assert (update_flags == TODO_update_ssa
3160 || update_flags == TODO_update_ssa_no_phi
3161 || update_flags == TODO_update_ssa_full_phi
3162 || update_flags == TODO_update_ssa_only_virtuals);
3163
3164 if (!need_ssa_update_p (cfun))
3165 return;
3166
3167 timevar_push (TV_TREE_SSA_INCREMENTAL);
3168
3169 if (dump_file && (dump_flags & TDF_DETAILS))
3170 fprintf (dump_file, "\nUpdating SSA:\n");
3171
3172 if (!update_ssa_initialized_fn)
3173 init_update_ssa (cfun);
3174 else if (update_flags == TODO_update_ssa_only_virtuals)
3175 {
3176 /* If we only need to update virtuals, remove all the mappings for
3177 real names before proceeding. The caller is responsible for
3178 having dealt with the name mappings before calling update_ssa. */
3179 bitmap_clear (old_ssa_names);
3180 bitmap_clear (new_ssa_names);
3181 }
3182
3183 gcc_assert (update_ssa_initialized_fn == cfun);
3184
3185 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3186 if (!phis_to_rewrite.exists ())
3187 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3188 blocks_to_update = BITMAP_ALLOC (NULL);
3189
3190 /* Ensure that the dominance information is up-to-date. */
3191 calculate_dominance_info (CDI_DOMINATORS);
3192
3193 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3194
3195 /* If there are names defined in the replacement table, prepare
3196 definition and use sites for all the names in NEW_SSA_NAMES and
3197 OLD_SSA_NAMES. */
3198 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3199 {
3200 prepare_names_to_update (insert_phi_p);
3201
3202 /* If all the names in NEW_SSA_NAMES had been marked for
3203 removal, and there are no symbols to rename, then there's
3204 nothing else to do. */
3205 if (bitmap_first_set_bit (new_ssa_names) < 0
3206 && !cfun->gimple_df->ssa_renaming_needed)
3207 goto done;
3208 }
3209
3210 /* Next, determine the block at which to start the renaming process. */
3211 if (cfun->gimple_df->ssa_renaming_needed)
3212 {
3213 /* If we rename bare symbols initialize the mapping to
3214 auxiliar info we need to keep track of. */
3215 var_infos.create (47);
3216
3217 /* If we have to rename some symbols from scratch, we need to
3218 start the process at the root of the CFG. FIXME, it should
3219 be possible to determine the nearest block that had a
3220 definition for each of the symbols that are marked for
3221 updating. For now this seems more work than it's worth. */
3222 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3223
3224 /* Traverse the CFG looking for existing definitions and uses of
3225 symbols in SSA operands. Mark interesting blocks and
3226 statements and set local live-in information for the PHI
3227 placement heuristics. */
3228 prepare_block_for_update (start_bb, insert_phi_p);
3229
3230 #ifdef ENABLE_CHECKING
3231 for (i = 1; i < num_ssa_names; ++i)
3232 {
3233 tree name = ssa_name (i);
3234 if (!name
3235 || virtual_operand_p (name))
3236 continue;
3237
3238 /* For all but virtual operands, which do not have SSA names
3239 with overlapping life ranges, ensure that symbols marked
3240 for renaming do not have existing SSA names associated with
3241 them as we do not re-write them out-of-SSA before going
3242 into SSA for the remaining symbol uses. */
3243 if (marked_for_renaming (SSA_NAME_VAR (name)))
3244 {
3245 fprintf (stderr, "Existing SSA name for symbol marked for "
3246 "renaming: ");
3247 print_generic_expr (stderr, name, TDF_SLIM);
3248 fprintf (stderr, "\n");
3249 internal_error ("SSA corruption");
3250 }
3251 }
3252 #endif
3253 }
3254 else
3255 {
3256 /* Otherwise, the entry block to the region is the nearest
3257 common dominator for the blocks in BLOCKS. */
3258 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3259 blocks_to_update);
3260 }
3261
3262 /* If requested, insert PHI nodes at the iterated dominance frontier
3263 of every block, creating new definitions for names in OLD_SSA_NAMES
3264 and for symbols found. */
3265 if (insert_phi_p)
3266 {
3267 bitmap_head *dfs;
3268
3269 /* If the caller requested PHI nodes to be added, compute
3270 dominance frontiers. */
3271 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3272 FOR_EACH_BB_FN (bb, cfun)
3273 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3274 compute_dominance_frontiers (dfs);
3275
3276 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3277 {
3278 sbitmap_iterator sbi;
3279
3280 /* insert_update_phi_nodes_for will call add_new_name_mapping
3281 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3282 will grow while we are traversing it (but it will not
3283 gain any new members). Copy OLD_SSA_NAMES to a temporary
3284 for traversal. */
3285 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3286 bitmap_copy (tmp, old_ssa_names);
3287 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3288 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3289 update_flags);
3290 sbitmap_free (tmp);
3291 }
3292
3293 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3294 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3295 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3296 update_flags);
3297
3298 FOR_EACH_BB_FN (bb, cfun)
3299 bitmap_clear (&dfs[bb->index]);
3300 free (dfs);
3301
3302 /* Insertion of PHI nodes may have added blocks to the region.
3303 We need to re-compute START_BB to include the newly added
3304 blocks. */
3305 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3306 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3307 blocks_to_update);
3308 }
3309
3310 /* Reset the current definition for name and symbol before renaming
3311 the sub-graph. */
3312 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3313 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3314
3315 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3316 get_var_info (sym)->info.current_def = NULL_TREE;
3317
3318 /* Now start the renaming process at START_BB. */
3319 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3320 bitmap_clear (interesting_blocks);
3321 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3322 bitmap_set_bit (interesting_blocks, i);
3323
3324 rewrite_blocks (start_bb, REWRITE_UPDATE);
3325
3326 sbitmap_free (interesting_blocks);
3327
3328 /* Debugging dumps. */
3329 if (dump_file)
3330 {
3331 int c;
3332 unsigned i;
3333
3334 dump_update_ssa (dump_file);
3335
3336 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3337 start_bb->index);
3338
3339 c = 0;
3340 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3341 c++;
3342 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3343 last_basic_block_for_fn (cfun));
3344 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3345 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3346
3347 if (dump_flags & TDF_DETAILS)
3348 {
3349 fprintf (dump_file, "Affected blocks:");
3350 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3351 fprintf (dump_file, " %u", i);
3352 fprintf (dump_file, "\n");
3353 }
3354
3355 fprintf (dump_file, "\n\n");
3356 }
3357
3358 /* Free allocated memory. */
3359 done:
3360 delete_update_ssa ();
3361
3362 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3363 }