]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
switch from gimple to gimple*
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "rtl.h"
28 #include "ssa.h"
29 #include "alias.h"
30 #include "fold-const.h"
31 #include "flags.h"
32 #include "tm_p.h"
33 #include "langhooks.h"
34 #include "cfganal.h"
35 #include "gimple-pretty-print.h"
36 #include "internal-fn.h"
37 #include "gimple-iterator.h"
38 #include "tree-cfg.h"
39 #include "tree-into-ssa.h"
40 #include "insn-config.h"
41 #include "expmed.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "calls.h"
45 #include "emit-rtl.h"
46 #include "varasm.h"
47 #include "stmt.h"
48 #include "expr.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "tree-inline.h"
52 #include "tree-pass.h"
53 #include "cfgloop.h"
54 #include "domwalk.h"
55 #include "params.h"
56 #include "diagnostic-core.h"
57
58 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
59
60 /* This file builds the SSA form for a function as described in:
61 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
62 Computing Static Single Assignment Form and the Control Dependence
63 Graph. ACM Transactions on Programming Languages and Systems,
64 13(4):451-490, October 1991. */
65
66 /* Structure to map a variable VAR to the set of blocks that contain
67 definitions for VAR. */
68 struct def_blocks_d
69 {
70 /* Blocks that contain definitions of VAR. Bit I will be set if the
71 Ith block contains a definition of VAR. */
72 bitmap def_blocks;
73
74 /* Blocks that contain a PHI node for VAR. */
75 bitmap phi_blocks;
76
77 /* Blocks where VAR is live-on-entry. Similar semantics as
78 DEF_BLOCKS. */
79 bitmap livein_blocks;
80 };
81
82 typedef struct def_blocks_d *def_blocks_p;
83
84
85 /* Stack of trees used to restore the global currdefs to its original
86 state after completing rewriting of a block and its dominator
87 children. Its elements have the following properties:
88
89 - An SSA_NAME (N) indicates that the current definition of the
90 underlying variable should be set to the given SSA_NAME. If the
91 symbol associated with the SSA_NAME is not a GIMPLE register, the
92 next slot in the stack must be a _DECL node (SYM). In this case,
93 the name N in the previous slot is the current reaching
94 definition for SYM.
95
96 - A _DECL node indicates that the underlying variable has no
97 current definition.
98
99 - A NULL node at the top entry is used to mark the last slot
100 associated with the current block. */
101 static vec<tree> block_defs_stack;
102
103
104 /* Set of existing SSA names being replaced by update_ssa. */
105 static sbitmap old_ssa_names;
106
107 /* Set of new SSA names being added by update_ssa. Note that both
108 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
109 the operations done on them are presence tests. */
110 static sbitmap new_ssa_names;
111
112 static sbitmap interesting_blocks;
113
114 /* Set of SSA names that have been marked to be released after they
115 were registered in the replacement table. They will be finally
116 released after we finish updating the SSA web. */
117 static bitmap names_to_release;
118
119 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
120 the to basic block with index I. Allocated once per compilation, *not*
121 released between different functions. */
122 static vec< vec<gphi *> > phis_to_rewrite;
123
124 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
125 static bitmap blocks_with_phis_to_rewrite;
126
127 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
128 to grow as the callers to create_new_def_for will create new names on
129 the fly.
130 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
131 need to find a reasonable growth strategy. */
132 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
133
134
135 /* The function the SSA updating data structures have been initialized for.
136 NULL if they need to be initialized by create_new_def_for. */
137 static struct function *update_ssa_initialized_fn = NULL;
138
139 /* Global data to attach to the main dominator walk structure. */
140 struct mark_def_sites_global_data
141 {
142 /* This bitmap contains the variables which are set before they
143 are used in a basic block. */
144 bitmap kills;
145 };
146
147 /* It is advantageous to avoid things like life analysis for variables which
148 do not need PHI nodes. This enum describes whether or not a particular
149 variable may need a PHI node. */
150
151 enum need_phi_state {
152 /* This is the default. If we are still in this state after finding
153 all the definition and use sites, then we will assume the variable
154 needs PHI nodes. This is probably an overly conservative assumption. */
155 NEED_PHI_STATE_UNKNOWN,
156
157 /* This state indicates that we have seen one or more sets of the
158 variable in a single basic block and that the sets dominate all
159 uses seen so far. If after finding all definition and use sites
160 we are still in this state, then the variable does not need any
161 PHI nodes. */
162 NEED_PHI_STATE_NO,
163
164 /* This state indicates that we have either seen multiple definitions of
165 the variable in multiple blocks, or that we encountered a use in a
166 block that was not dominated by the block containing the set(s) of
167 this variable. This variable is assumed to need PHI nodes. */
168 NEED_PHI_STATE_MAYBE
169 };
170
171 /* Information stored for both SSA names and decls. */
172 struct common_info_d
173 {
174 /* This field indicates whether or not the variable may need PHI nodes.
175 See the enum's definition for more detailed information about the
176 states. */
177 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
178
179 /* The current reaching definition replacing this var. */
180 tree current_def;
181
182 /* Definitions for this var. */
183 struct def_blocks_d def_blocks;
184 };
185
186 /* The information associated with decls and SSA names. */
187 typedef struct common_info_d *common_info_p;
188
189 /* Information stored for decls. */
190 struct var_info_d
191 {
192 /* The variable. */
193 tree var;
194
195 /* Information stored for both SSA names and decls. */
196 struct common_info_d info;
197 };
198
199 /* The information associated with decls. */
200 typedef struct var_info_d *var_info_p;
201
202
203 /* VAR_INFOS hashtable helpers. */
204
205 struct var_info_hasher : free_ptr_hash <var_info_d>
206 {
207 static inline hashval_t hash (const value_type &);
208 static inline bool equal (const value_type &, const compare_type &);
209 };
210
211 inline hashval_t
212 var_info_hasher::hash (const value_type &p)
213 {
214 return DECL_UID (p->var);
215 }
216
217 inline bool
218 var_info_hasher::equal (const value_type &p1, const compare_type &p2)
219 {
220 return p1->var == p2->var;
221 }
222
223
224 /* Each entry in VAR_INFOS contains an element of type STRUCT
225 VAR_INFO_D. */
226 static hash_table<var_info_hasher> *var_infos;
227
228
229 /* Information stored for SSA names. */
230 struct ssa_name_info
231 {
232 /* Age of this record (so that info_for_ssa_name table can be cleared
233 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
234 are assumed to be null. */
235 unsigned age;
236
237 /* Replacement mappings, allocated from update_ssa_obstack. */
238 bitmap repl_set;
239
240 /* Information stored for both SSA names and decls. */
241 struct common_info_d info;
242 };
243
244 /* The information associated with names. */
245 typedef struct ssa_name_info *ssa_name_info_p;
246
247 static vec<ssa_name_info_p> info_for_ssa_name;
248 static unsigned current_info_for_ssa_name_age;
249
250 static bitmap_obstack update_ssa_obstack;
251
252 /* The set of blocks affected by update_ssa. */
253 static bitmap blocks_to_update;
254
255 /* The main entry point to the SSA renamer (rewrite_blocks) may be
256 called several times to do different, but related, tasks.
257 Initially, we need it to rename the whole program into SSA form.
258 At other times, we may need it to only rename into SSA newly
259 exposed symbols. Finally, we can also call it to incrementally fix
260 an already built SSA web. */
261 enum rewrite_mode {
262 /* Convert the whole function into SSA form. */
263 REWRITE_ALL,
264
265 /* Incrementally update the SSA web by replacing existing SSA
266 names with new ones. See update_ssa for details. */
267 REWRITE_UPDATE
268 };
269
270 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
271 static bitmap symbols_to_rename_set;
272 static vec<tree> symbols_to_rename;
273
274 /* Mark SYM for renaming. */
275
276 static void
277 mark_for_renaming (tree sym)
278 {
279 if (!symbols_to_rename_set)
280 symbols_to_rename_set = BITMAP_ALLOC (NULL);
281 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
282 symbols_to_rename.safe_push (sym);
283 }
284
285 /* Return true if SYM is marked for renaming. */
286
287 static bool
288 marked_for_renaming (tree sym)
289 {
290 if (!symbols_to_rename_set || sym == NULL_TREE)
291 return false;
292 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
293 }
294
295
296 /* Return true if STMT needs to be rewritten. When renaming a subset
297 of the variables, not all statements will be processed. This is
298 decided in mark_def_sites. */
299
300 static inline bool
301 rewrite_uses_p (gimple *stmt)
302 {
303 return gimple_visited_p (stmt);
304 }
305
306
307 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
308
309 static inline void
310 set_rewrite_uses (gimple *stmt, bool rewrite_p)
311 {
312 gimple_set_visited (stmt, rewrite_p);
313 }
314
315
316 /* Return true if the DEFs created by statement STMT should be
317 registered when marking new definition sites. This is slightly
318 different than rewrite_uses_p: it's used by update_ssa to
319 distinguish statements that need to have both uses and defs
320 processed from those that only need to have their defs processed.
321 Statements that define new SSA names only need to have their defs
322 registered, but they don't need to have their uses renamed. */
323
324 static inline bool
325 register_defs_p (gimple *stmt)
326 {
327 return gimple_plf (stmt, GF_PLF_1) != 0;
328 }
329
330
331 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
332
333 static inline void
334 set_register_defs (gimple *stmt, bool register_defs_p)
335 {
336 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
337 }
338
339
340 /* Get the information associated with NAME. */
341
342 static inline ssa_name_info_p
343 get_ssa_name_ann (tree name)
344 {
345 unsigned ver = SSA_NAME_VERSION (name);
346 unsigned len = info_for_ssa_name.length ();
347 struct ssa_name_info *info;
348
349 /* Re-allocate the vector at most once per update/into-SSA. */
350 if (ver >= len)
351 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
352
353 /* But allocate infos lazily. */
354 info = info_for_ssa_name[ver];
355 if (!info)
356 {
357 info = XCNEW (struct ssa_name_info);
358 info->age = current_info_for_ssa_name_age;
359 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
360 info_for_ssa_name[ver] = info;
361 }
362
363 if (info->age < current_info_for_ssa_name_age)
364 {
365 info->age = current_info_for_ssa_name_age;
366 info->repl_set = NULL;
367 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
368 info->info.current_def = NULL_TREE;
369 info->info.def_blocks.def_blocks = NULL;
370 info->info.def_blocks.phi_blocks = NULL;
371 info->info.def_blocks.livein_blocks = NULL;
372 }
373
374 return info;
375 }
376
377 /* Return and allocate the auxiliar information for DECL. */
378
379 static inline var_info_p
380 get_var_info (tree decl)
381 {
382 struct var_info_d vi;
383 var_info_d **slot;
384 vi.var = decl;
385 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
386 if (*slot == NULL)
387 {
388 var_info_p v = XCNEW (struct var_info_d);
389 v->var = decl;
390 *slot = v;
391 return v;
392 }
393 return *slot;
394 }
395
396
397 /* Clears info for SSA names. */
398
399 static void
400 clear_ssa_name_info (void)
401 {
402 current_info_for_ssa_name_age++;
403
404 /* If current_info_for_ssa_name_age wraps we use stale information.
405 Asser that this does not happen. */
406 gcc_assert (current_info_for_ssa_name_age != 0);
407 }
408
409
410 /* Get access to the auxiliar information stored per SSA name or decl. */
411
412 static inline common_info_p
413 get_common_info (tree var)
414 {
415 if (TREE_CODE (var) == SSA_NAME)
416 return &get_ssa_name_ann (var)->info;
417 else
418 return &get_var_info (var)->info;
419 }
420
421
422 /* Return the current definition for VAR. */
423
424 tree
425 get_current_def (tree var)
426 {
427 return get_common_info (var)->current_def;
428 }
429
430
431 /* Sets current definition of VAR to DEF. */
432
433 void
434 set_current_def (tree var, tree def)
435 {
436 get_common_info (var)->current_def = def;
437 }
438
439 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
440 all statements in basic block BB. */
441
442 static void
443 initialize_flags_in_bb (basic_block bb)
444 {
445 gimple *stmt;
446 gimple_stmt_iterator gsi;
447
448 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
449 {
450 gimple *phi = gsi_stmt (gsi);
451 set_rewrite_uses (phi, false);
452 set_register_defs (phi, false);
453 }
454
455 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
456 {
457 stmt = gsi_stmt (gsi);
458
459 /* We are going to use the operand cache API, such as
460 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
461 cache for each statement should be up-to-date. */
462 gcc_checking_assert (!gimple_modified_p (stmt));
463 set_rewrite_uses (stmt, false);
464 set_register_defs (stmt, false);
465 }
466 }
467
468 /* Mark block BB as interesting for update_ssa. */
469
470 static void
471 mark_block_for_update (basic_block bb)
472 {
473 gcc_checking_assert (blocks_to_update != NULL);
474 if (!bitmap_set_bit (blocks_to_update, bb->index))
475 return;
476 initialize_flags_in_bb (bb);
477 }
478
479 /* Return the set of blocks where variable VAR is defined and the blocks
480 where VAR is live on entry (livein). If no entry is found in
481 DEF_BLOCKS, a new one is created and returned. */
482
483 static inline struct def_blocks_d *
484 get_def_blocks_for (common_info_p info)
485 {
486 struct def_blocks_d *db_p = &info->def_blocks;
487 if (!db_p->def_blocks)
488 {
489 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
490 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
491 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
492 }
493
494 return db_p;
495 }
496
497
498 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
499 VAR is defined by a PHI node. */
500
501 static void
502 set_def_block (tree var, basic_block bb, bool phi_p)
503 {
504 struct def_blocks_d *db_p;
505 common_info_p info;
506
507 info = get_common_info (var);
508 db_p = get_def_blocks_for (info);
509
510 /* Set the bit corresponding to the block where VAR is defined. */
511 bitmap_set_bit (db_p->def_blocks, bb->index);
512 if (phi_p)
513 bitmap_set_bit (db_p->phi_blocks, bb->index);
514
515 /* Keep track of whether or not we may need to insert PHI nodes.
516
517 If we are in the UNKNOWN state, then this is the first definition
518 of VAR. Additionally, we have not seen any uses of VAR yet, so
519 we do not need a PHI node for this variable at this time (i.e.,
520 transition to NEED_PHI_STATE_NO).
521
522 If we are in any other state, then we either have multiple definitions
523 of this variable occurring in different blocks or we saw a use of the
524 variable which was not dominated by the block containing the
525 definition(s). In this case we may need a PHI node, so enter
526 state NEED_PHI_STATE_MAYBE. */
527 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
528 info->need_phi_state = NEED_PHI_STATE_NO;
529 else
530 info->need_phi_state = NEED_PHI_STATE_MAYBE;
531 }
532
533
534 /* Mark block BB as having VAR live at the entry to BB. */
535
536 static void
537 set_livein_block (tree var, basic_block bb)
538 {
539 common_info_p info;
540 struct def_blocks_d *db_p;
541
542 info = get_common_info (var);
543 db_p = get_def_blocks_for (info);
544
545 /* Set the bit corresponding to the block where VAR is live in. */
546 bitmap_set_bit (db_p->livein_blocks, bb->index);
547
548 /* Keep track of whether or not we may need to insert PHI nodes.
549
550 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
551 by the single block containing the definition(s) of this variable. If
552 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
553 NEED_PHI_STATE_MAYBE. */
554 if (info->need_phi_state == NEED_PHI_STATE_NO)
555 {
556 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
557
558 if (def_block_index == -1
559 || ! dominated_by_p (CDI_DOMINATORS, bb,
560 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
561 info->need_phi_state = NEED_PHI_STATE_MAYBE;
562 }
563 else
564 info->need_phi_state = NEED_PHI_STATE_MAYBE;
565 }
566
567
568 /* Return true if NAME is in OLD_SSA_NAMES. */
569
570 static inline bool
571 is_old_name (tree name)
572 {
573 unsigned ver = SSA_NAME_VERSION (name);
574 if (!old_ssa_names)
575 return false;
576 return (ver < SBITMAP_SIZE (old_ssa_names)
577 && bitmap_bit_p (old_ssa_names, ver));
578 }
579
580
581 /* Return true if NAME is in NEW_SSA_NAMES. */
582
583 static inline bool
584 is_new_name (tree name)
585 {
586 unsigned ver = SSA_NAME_VERSION (name);
587 if (!new_ssa_names)
588 return false;
589 return (ver < SBITMAP_SIZE (new_ssa_names)
590 && bitmap_bit_p (new_ssa_names, ver));
591 }
592
593
594 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
595
596 static inline bitmap
597 names_replaced_by (tree new_tree)
598 {
599 return get_ssa_name_ann (new_tree)->repl_set;
600 }
601
602
603 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
604
605 static inline void
606 add_to_repl_tbl (tree new_tree, tree old)
607 {
608 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
609 if (!*set)
610 *set = BITMAP_ALLOC (&update_ssa_obstack);
611 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
612 }
613
614
615 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
616 represents the set of names O_1 ... O_j replaced by N_i. This is
617 used by update_ssa and its helpers to introduce new SSA names in an
618 already formed SSA web. */
619
620 static void
621 add_new_name_mapping (tree new_tree, tree old)
622 {
623 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
624 gcc_checking_assert (new_tree != old
625 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
626
627 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
628 caller may have created new names since the set was created. */
629 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
630 {
631 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
632 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
633 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
634 }
635
636 /* Update the REPL_TBL table. */
637 add_to_repl_tbl (new_tree, old);
638
639 /* If OLD had already been registered as a new name, then all the
640 names that OLD replaces should also be replaced by NEW_TREE. */
641 if (is_new_name (old))
642 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
643
644 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
645 respectively. */
646 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
647 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
648 }
649
650
651 /* Call back for walk_dominator_tree used to collect definition sites
652 for every variable in the function. For every statement S in block
653 BB:
654
655 1- Variables defined by S in the DEFS of S are marked in the bitmap
656 KILLS.
657
658 2- If S uses a variable VAR and there is no preceding kill of VAR,
659 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
660
661 This information is used to determine which variables are live
662 across block boundaries to reduce the number of PHI nodes
663 we create. */
664
665 static void
666 mark_def_sites (basic_block bb, gimple *stmt, bitmap kills)
667 {
668 tree def;
669 use_operand_p use_p;
670 ssa_op_iter iter;
671
672 /* Since this is the first time that we rewrite the program into SSA
673 form, force an operand scan on every statement. */
674 update_stmt (stmt);
675
676 gcc_checking_assert (blocks_to_update == NULL);
677 set_register_defs (stmt, false);
678 set_rewrite_uses (stmt, false);
679
680 if (is_gimple_debug (stmt))
681 {
682 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
683 {
684 tree sym = USE_FROM_PTR (use_p);
685 gcc_checking_assert (DECL_P (sym));
686 set_rewrite_uses (stmt, true);
687 }
688 if (rewrite_uses_p (stmt))
689 bitmap_set_bit (interesting_blocks, bb->index);
690 return;
691 }
692
693 /* If a variable is used before being set, then the variable is live
694 across a block boundary, so mark it live-on-entry to BB. */
695 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
696 {
697 tree sym = USE_FROM_PTR (use_p);
698 gcc_checking_assert (DECL_P (sym));
699 if (!bitmap_bit_p (kills, DECL_UID (sym)))
700 set_livein_block (sym, bb);
701 set_rewrite_uses (stmt, true);
702 }
703
704 /* Now process the defs. Mark BB as the definition block and add
705 each def to the set of killed symbols. */
706 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
707 {
708 gcc_checking_assert (DECL_P (def));
709 set_def_block (def, bb, false);
710 bitmap_set_bit (kills, DECL_UID (def));
711 set_register_defs (stmt, true);
712 }
713
714 /* If we found the statement interesting then also mark the block BB
715 as interesting. */
716 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
717 bitmap_set_bit (interesting_blocks, bb->index);
718 }
719
720 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
721 in the dfs numbering of the dominance tree. */
722
723 struct dom_dfsnum
724 {
725 /* Basic block whose index this entry corresponds to. */
726 unsigned bb_index;
727
728 /* The dfs number of this node. */
729 unsigned dfs_num;
730 };
731
732 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
733 for qsort. */
734
735 static int
736 cmp_dfsnum (const void *a, const void *b)
737 {
738 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
739 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
740
741 return (int) da->dfs_num - (int) db->dfs_num;
742 }
743
744 /* Among the intervals starting at the N points specified in DEFS, find
745 the one that contains S, and return its bb_index. */
746
747 static unsigned
748 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
749 {
750 unsigned f = 0, t = n, m;
751
752 while (t > f + 1)
753 {
754 m = (f + t) / 2;
755 if (defs[m].dfs_num <= s)
756 f = m;
757 else
758 t = m;
759 }
760
761 return defs[f].bb_index;
762 }
763
764 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
765 KILLS is a bitmap of blocks where the value is defined before any use. */
766
767 static void
768 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
769 {
770 bitmap_iterator bi;
771 unsigned i, b, p, u, top;
772 bitmap live_phis;
773 basic_block def_bb, use_bb;
774 edge e;
775 edge_iterator ei;
776 bitmap to_remove;
777 struct dom_dfsnum *defs;
778 unsigned n_defs, adef;
779
780 if (bitmap_empty_p (uses))
781 {
782 bitmap_clear (phis);
783 return;
784 }
785
786 /* The phi must dominate a use, or an argument of a live phi. Also, we
787 do not create any phi nodes in def blocks, unless they are also livein. */
788 to_remove = BITMAP_ALLOC (NULL);
789 bitmap_and_compl (to_remove, kills, uses);
790 bitmap_and_compl_into (phis, to_remove);
791 if (bitmap_empty_p (phis))
792 {
793 BITMAP_FREE (to_remove);
794 return;
795 }
796
797 /* We want to remove the unnecessary phi nodes, but we do not want to compute
798 liveness information, as that may be linear in the size of CFG, and if
799 there are lot of different variables to rewrite, this may lead to quadratic
800 behavior.
801
802 Instead, we basically emulate standard dce. We put all uses to worklist,
803 then for each of them find the nearest def that dominates them. If this
804 def is a phi node, we mark it live, and if it was not live before, we
805 add the predecessors of its basic block to the worklist.
806
807 To quickly locate the nearest def that dominates use, we use dfs numbering
808 of the dominance tree (that is already available in order to speed up
809 queries). For each def, we have the interval given by the dfs number on
810 entry to and on exit from the corresponding subtree in the dominance tree.
811 The nearest dominator for a given use is the smallest of these intervals
812 that contains entry and exit dfs numbers for the basic block with the use.
813 If we store the bounds for all the uses to an array and sort it, we can
814 locate the nearest dominating def in logarithmic time by binary search.*/
815 bitmap_ior (to_remove, kills, phis);
816 n_defs = bitmap_count_bits (to_remove);
817 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
818 defs[0].bb_index = 1;
819 defs[0].dfs_num = 0;
820 adef = 1;
821 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
822 {
823 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
824 defs[adef].bb_index = i;
825 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
826 defs[adef + 1].bb_index = i;
827 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
828 adef += 2;
829 }
830 BITMAP_FREE (to_remove);
831 gcc_assert (adef == 2 * n_defs + 1);
832 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
833 gcc_assert (defs[0].bb_index == 1);
834
835 /* Now each DEFS entry contains the number of the basic block to that the
836 dfs number corresponds. Change them to the number of basic block that
837 corresponds to the interval following the dfs number. Also, for the
838 dfs_out numbers, increase the dfs number by one (so that it corresponds
839 to the start of the following interval, not to the end of the current
840 one). We use WORKLIST as a stack. */
841 auto_vec<int> worklist (n_defs + 1);
842 worklist.quick_push (1);
843 top = 1;
844 n_defs = 1;
845 for (i = 1; i < adef; i++)
846 {
847 b = defs[i].bb_index;
848 if (b == top)
849 {
850 /* This is a closing element. Interval corresponding to the top
851 of the stack after removing it follows. */
852 worklist.pop ();
853 top = worklist[worklist.length () - 1];
854 defs[n_defs].bb_index = top;
855 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
856 }
857 else
858 {
859 /* Opening element. Nothing to do, just push it to the stack and move
860 it to the correct position. */
861 defs[n_defs].bb_index = defs[i].bb_index;
862 defs[n_defs].dfs_num = defs[i].dfs_num;
863 worklist.quick_push (b);
864 top = b;
865 }
866
867 /* If this interval starts at the same point as the previous one, cancel
868 the previous one. */
869 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
870 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
871 else
872 n_defs++;
873 }
874 worklist.pop ();
875 gcc_assert (worklist.is_empty ());
876
877 /* Now process the uses. */
878 live_phis = BITMAP_ALLOC (NULL);
879 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
880 {
881 worklist.safe_push (i);
882 }
883
884 while (!worklist.is_empty ())
885 {
886 b = worklist.pop ();
887 if (b == ENTRY_BLOCK)
888 continue;
889
890 /* If there is a phi node in USE_BB, it is made live. Otherwise,
891 find the def that dominates the immediate dominator of USE_BB
892 (the kill in USE_BB does not dominate the use). */
893 if (bitmap_bit_p (phis, b))
894 p = b;
895 else
896 {
897 use_bb = get_immediate_dominator (CDI_DOMINATORS,
898 BASIC_BLOCK_FOR_FN (cfun, b));
899 p = find_dfsnum_interval (defs, n_defs,
900 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
901 if (!bitmap_bit_p (phis, p))
902 continue;
903 }
904
905 /* If the phi node is already live, there is nothing to do. */
906 if (!bitmap_set_bit (live_phis, p))
907 continue;
908
909 /* Add the new uses to the worklist. */
910 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
911 FOR_EACH_EDGE (e, ei, def_bb->preds)
912 {
913 u = e->src->index;
914 if (bitmap_bit_p (uses, u))
915 continue;
916
917 /* In case there is a kill directly in the use block, do not record
918 the use (this is also necessary for correctness, as we assume that
919 uses dominated by a def directly in their block have been filtered
920 out before). */
921 if (bitmap_bit_p (kills, u))
922 continue;
923
924 bitmap_set_bit (uses, u);
925 worklist.safe_push (u);
926 }
927 }
928
929 bitmap_copy (phis, live_phis);
930 BITMAP_FREE (live_phis);
931 free (defs);
932 }
933
934 /* Return the set of blocks where variable VAR is defined and the blocks
935 where VAR is live on entry (livein). Return NULL, if no entry is
936 found in DEF_BLOCKS. */
937
938 static inline struct def_blocks_d *
939 find_def_blocks_for (tree var)
940 {
941 def_blocks_p p = &get_common_info (var)->def_blocks;
942 if (!p->def_blocks)
943 return NULL;
944 return p;
945 }
946
947
948 /* Marks phi node PHI in basic block BB for rewrite. */
949
950 static void
951 mark_phi_for_rewrite (basic_block bb, gphi *phi)
952 {
953 vec<gphi *> phis;
954 unsigned n, idx = bb->index;
955
956 if (rewrite_uses_p (phi))
957 return;
958
959 set_rewrite_uses (phi, true);
960
961 if (!blocks_with_phis_to_rewrite)
962 return;
963
964 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
965
966 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
967 if (phis_to_rewrite.length () < n)
968 phis_to_rewrite.safe_grow_cleared (n);
969
970 phis = phis_to_rewrite[idx];
971 phis.reserve (10);
972
973 phis.safe_push (phi);
974 phis_to_rewrite[idx] = phis;
975 }
976
977 /* Insert PHI nodes for variable VAR using the iterated dominance
978 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
979 function assumes that the caller is incrementally updating the
980 existing SSA form, in which case VAR may be an SSA name instead of
981 a symbol.
982
983 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
984 PHI node for VAR. On exit, only the nodes that received a PHI node
985 for VAR will be present in PHI_INSERTION_POINTS. */
986
987 static void
988 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
989 {
990 unsigned bb_index;
991 edge e;
992 gphi *phi;
993 basic_block bb;
994 bitmap_iterator bi;
995 struct def_blocks_d *def_map = find_def_blocks_for (var);
996
997 /* Remove the blocks where we already have PHI nodes for VAR. */
998 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
999
1000 /* Remove obviously useless phi nodes. */
1001 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1002 def_map->livein_blocks);
1003
1004 /* And insert the PHI nodes. */
1005 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1006 {
1007 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1008 if (update_p)
1009 mark_block_for_update (bb);
1010
1011 if (dump_file && (dump_flags & TDF_DETAILS))
1012 {
1013 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1014 print_generic_expr (dump_file, var, TDF_SLIM);
1015 fprintf (dump_file, "\n");
1016 }
1017 phi = NULL;
1018
1019 if (TREE_CODE (var) == SSA_NAME)
1020 {
1021 /* If we are rewriting SSA names, create the LHS of the PHI
1022 node by duplicating VAR. This is useful in the case of
1023 pointers, to also duplicate pointer attributes (alias
1024 information, in particular). */
1025 edge_iterator ei;
1026 tree new_lhs;
1027
1028 gcc_checking_assert (update_p);
1029 new_lhs = duplicate_ssa_name (var, NULL);
1030 phi = create_phi_node (new_lhs, bb);
1031 add_new_name_mapping (new_lhs, var);
1032
1033 /* Add VAR to every argument slot of PHI. We need VAR in
1034 every argument so that rewrite_update_phi_arguments knows
1035 which name is this PHI node replacing. If VAR is a
1036 symbol marked for renaming, this is not necessary, the
1037 renamer will use the symbol on the LHS to get its
1038 reaching definition. */
1039 FOR_EACH_EDGE (e, ei, bb->preds)
1040 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1041 }
1042 else
1043 {
1044 tree tracked_var;
1045
1046 gcc_checking_assert (DECL_P (var));
1047 phi = create_phi_node (var, bb);
1048
1049 tracked_var = target_for_debug_bind (var);
1050 if (tracked_var)
1051 {
1052 gimple *note = gimple_build_debug_bind (tracked_var,
1053 PHI_RESULT (phi),
1054 phi);
1055 gimple_stmt_iterator si = gsi_after_labels (bb);
1056 gsi_insert_before (&si, note, GSI_SAME_STMT);
1057 }
1058 }
1059
1060 /* Mark this PHI node as interesting for update_ssa. */
1061 set_register_defs (phi, true);
1062 mark_phi_for_rewrite (bb, phi);
1063 }
1064 }
1065
1066 /* Sort var_infos after DECL_UID of their var. */
1067
1068 static int
1069 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1070 {
1071 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1072 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1073 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1074 return -1;
1075 else
1076 return 1;
1077 }
1078
1079 /* Insert PHI nodes at the dominance frontier of blocks with variable
1080 definitions. DFS contains the dominance frontier information for
1081 the flowgraph. */
1082
1083 static void
1084 insert_phi_nodes (bitmap_head *dfs)
1085 {
1086 hash_table<var_info_hasher>::iterator hi;
1087 unsigned i;
1088 var_info_p info;
1089
1090 timevar_push (TV_TREE_INSERT_PHI_NODES);
1091
1092 auto_vec<var_info_p> vars (var_infos->elements ());
1093 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi)
1094 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1095 vars.quick_push (info);
1096
1097 /* Do two stages to avoid code generation differences for UID
1098 differences but no UID ordering differences. */
1099 vars.qsort (insert_phi_nodes_compare_var_infos);
1100
1101 FOR_EACH_VEC_ELT (vars, i, info)
1102 {
1103 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1104 insert_phi_nodes_for (info->var, idf, false);
1105 BITMAP_FREE (idf);
1106 }
1107
1108 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1109 }
1110
1111
1112 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1113 register DEF (an SSA_NAME) to be a new definition for SYM. */
1114
1115 static void
1116 register_new_def (tree def, tree sym)
1117 {
1118 common_info_p info = get_common_info (sym);
1119 tree currdef;
1120
1121 /* If this variable is set in a single basic block and all uses are
1122 dominated by the set(s) in that single basic block, then there is
1123 no reason to record anything for this variable in the block local
1124 definition stacks. Doing so just wastes time and memory.
1125
1126 This is the same test to prune the set of variables which may
1127 need PHI nodes. So we just use that information since it's already
1128 computed and available for us to use. */
1129 if (info->need_phi_state == NEED_PHI_STATE_NO)
1130 {
1131 info->current_def = def;
1132 return;
1133 }
1134
1135 currdef = info->current_def;
1136
1137 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1138 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1139 in the stack so that we know which symbol is being defined by
1140 this SSA name when we unwind the stack. */
1141 if (currdef && !is_gimple_reg (sym))
1142 block_defs_stack.safe_push (sym);
1143
1144 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1145 stack is later used by the dominator tree callbacks to restore
1146 the reaching definitions for all the variables defined in the
1147 block after a recursive visit to all its immediately dominated
1148 blocks. If there is no current reaching definition, then just
1149 record the underlying _DECL node. */
1150 block_defs_stack.safe_push (currdef ? currdef : sym);
1151
1152 /* Set the current reaching definition for SYM to be DEF. */
1153 info->current_def = def;
1154 }
1155
1156
1157 /* Perform a depth-first traversal of the dominator tree looking for
1158 variables to rename. BB is the block where to start searching.
1159 Renaming is a five step process:
1160
1161 1- Every definition made by PHI nodes at the start of the blocks is
1162 registered as the current definition for the corresponding variable.
1163
1164 2- Every statement in BB is rewritten. USE and VUSE operands are
1165 rewritten with their corresponding reaching definition. DEF and
1166 VDEF targets are registered as new definitions.
1167
1168 3- All the PHI nodes in successor blocks of BB are visited. The
1169 argument corresponding to BB is replaced with its current reaching
1170 definition.
1171
1172 4- Recursively rewrite every dominator child block of BB.
1173
1174 5- Restore (in reverse order) the current reaching definition for every
1175 new definition introduced in this block. This is done so that when
1176 we return from the recursive call, all the current reaching
1177 definitions are restored to the names that were valid in the
1178 dominator parent of BB. */
1179
1180 /* Return the current definition for variable VAR. If none is found,
1181 create a new SSA name to act as the zeroth definition for VAR. */
1182
1183 static tree
1184 get_reaching_def (tree var)
1185 {
1186 common_info_p info = get_common_info (var);
1187 tree currdef;
1188
1189 /* Lookup the current reaching definition for VAR. */
1190 currdef = info->current_def;
1191
1192 /* If there is no reaching definition for VAR, create and register a
1193 default definition for it (if needed). */
1194 if (currdef == NULL_TREE)
1195 {
1196 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1197 currdef = get_or_create_ssa_default_def (cfun, sym);
1198 }
1199
1200 /* Return the current reaching definition for VAR, or the default
1201 definition, if we had to create one. */
1202 return currdef;
1203 }
1204
1205
1206 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1207
1208 static void
1209 rewrite_debug_stmt_uses (gimple *stmt)
1210 {
1211 use_operand_p use_p;
1212 ssa_op_iter iter;
1213 bool update = false;
1214
1215 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1216 {
1217 tree var = USE_FROM_PTR (use_p), def;
1218 common_info_p info = get_common_info (var);
1219 gcc_checking_assert (DECL_P (var));
1220 def = info->current_def;
1221 if (!def)
1222 {
1223 if (TREE_CODE (var) == PARM_DECL
1224 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1225 {
1226 gimple_stmt_iterator gsi
1227 =
1228 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1229 int lim;
1230 /* Search a few source bind stmts at the start of first bb to
1231 see if a DEBUG_EXPR_DECL can't be reused. */
1232 for (lim = 32;
1233 !gsi_end_p (gsi) && lim > 0;
1234 gsi_next (&gsi), lim--)
1235 {
1236 gimple *gstmt = gsi_stmt (gsi);
1237 if (!gimple_debug_source_bind_p (gstmt))
1238 break;
1239 if (gimple_debug_source_bind_get_value (gstmt) == var)
1240 {
1241 def = gimple_debug_source_bind_get_var (gstmt);
1242 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1243 break;
1244 else
1245 def = NULL_TREE;
1246 }
1247 }
1248 /* If not, add a new source bind stmt. */
1249 if (def == NULL_TREE)
1250 {
1251 gimple *def_temp;
1252 def = make_node (DEBUG_EXPR_DECL);
1253 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1254 DECL_ARTIFICIAL (def) = 1;
1255 TREE_TYPE (def) = TREE_TYPE (var);
1256 DECL_MODE (def) = DECL_MODE (var);
1257 gsi =
1258 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1259 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1260 }
1261 update = true;
1262 }
1263 }
1264 else
1265 {
1266 /* Check if info->current_def can be trusted. */
1267 basic_block bb = gimple_bb (stmt);
1268 basic_block def_bb
1269 = SSA_NAME_IS_DEFAULT_DEF (def)
1270 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1271
1272 /* If definition is in current bb, it is fine. */
1273 if (bb == def_bb)
1274 ;
1275 /* If definition bb doesn't dominate the current bb,
1276 it can't be used. */
1277 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1278 def = NULL;
1279 /* If there is just one definition and dominates the current
1280 bb, it is fine. */
1281 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1282 ;
1283 else
1284 {
1285 struct def_blocks_d *db_p = get_def_blocks_for (info);
1286
1287 /* If there are some non-debug uses in the current bb,
1288 it is fine. */
1289 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1290 ;
1291 /* Otherwise give up for now. */
1292 else
1293 def = NULL;
1294 }
1295 }
1296 if (def == NULL)
1297 {
1298 gimple_debug_bind_reset_value (stmt);
1299 update_stmt (stmt);
1300 return;
1301 }
1302 SET_USE (use_p, def);
1303 }
1304 if (update)
1305 update_stmt (stmt);
1306 }
1307
1308 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1309 the block with its immediate reaching definitions. Update the current
1310 definition of a variable when a new real or virtual definition is found. */
1311
1312 static void
1313 rewrite_stmt (gimple_stmt_iterator *si)
1314 {
1315 use_operand_p use_p;
1316 def_operand_p def_p;
1317 ssa_op_iter iter;
1318 gimple *stmt = gsi_stmt (*si);
1319
1320 /* If mark_def_sites decided that we don't need to rewrite this
1321 statement, ignore it. */
1322 gcc_assert (blocks_to_update == NULL);
1323 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1324 return;
1325
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1327 {
1328 fprintf (dump_file, "Renaming statement ");
1329 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1330 fprintf (dump_file, "\n");
1331 }
1332
1333 /* Step 1. Rewrite USES in the statement. */
1334 if (rewrite_uses_p (stmt))
1335 {
1336 if (is_gimple_debug (stmt))
1337 rewrite_debug_stmt_uses (stmt);
1338 else
1339 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1340 {
1341 tree var = USE_FROM_PTR (use_p);
1342 gcc_checking_assert (DECL_P (var));
1343 SET_USE (use_p, get_reaching_def (var));
1344 }
1345 }
1346
1347 /* Step 2. Register the statement's DEF operands. */
1348 if (register_defs_p (stmt))
1349 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1350 {
1351 tree var = DEF_FROM_PTR (def_p);
1352 tree name;
1353 tree tracked_var;
1354
1355 gcc_checking_assert (DECL_P (var));
1356
1357 if (gimple_clobber_p (stmt)
1358 && is_gimple_reg (var))
1359 {
1360 /* If we rewrite a DECL into SSA form then drop its
1361 clobber stmts and replace uses with a new default def. */
1362 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1363 && !gimple_vdef (stmt));
1364 gsi_replace (si, gimple_build_nop (), true);
1365 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1366 break;
1367 }
1368
1369 name = make_ssa_name (var, stmt);
1370 SET_DEF (def_p, name);
1371 register_new_def (DEF_FROM_PTR (def_p), var);
1372
1373 tracked_var = target_for_debug_bind (var);
1374 if (tracked_var)
1375 {
1376 gimple *note = gimple_build_debug_bind (tracked_var, name, stmt);
1377 gsi_insert_after (si, note, GSI_SAME_STMT);
1378 }
1379 }
1380 }
1381
1382
1383 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1384 PHI nodes. For every PHI node found, add a new argument containing the
1385 current reaching definition for the variable and the edge through which
1386 that definition is reaching the PHI node. */
1387
1388 static void
1389 rewrite_add_phi_arguments (basic_block bb)
1390 {
1391 edge e;
1392 edge_iterator ei;
1393
1394 FOR_EACH_EDGE (e, ei, bb->succs)
1395 {
1396 gphi *phi;
1397 gphi_iterator gsi;
1398
1399 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1400 gsi_next (&gsi))
1401 {
1402 tree currdef, res;
1403 location_t loc;
1404
1405 phi = gsi.phi ();
1406 res = gimple_phi_result (phi);
1407 currdef = get_reaching_def (SSA_NAME_VAR (res));
1408 /* Virtual operand PHI args do not need a location. */
1409 if (virtual_operand_p (res))
1410 loc = UNKNOWN_LOCATION;
1411 else
1412 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1413 add_phi_arg (phi, currdef, e, loc);
1414 }
1415 }
1416 }
1417
1418 class rewrite_dom_walker : public dom_walker
1419 {
1420 public:
1421 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1422
1423 virtual void before_dom_children (basic_block);
1424 virtual void after_dom_children (basic_block);
1425 };
1426
1427 /* SSA Rewriting Step 1. Initialization, create a block local stack
1428 of reaching definitions for new SSA names produced in this block
1429 (BLOCK_DEFS). Register new definitions for every PHI node in the
1430 block. */
1431
1432 void
1433 rewrite_dom_walker::before_dom_children (basic_block bb)
1434 {
1435 if (dump_file && (dump_flags & TDF_DETAILS))
1436 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1437
1438 /* Mark the unwind point for this block. */
1439 block_defs_stack.safe_push (NULL_TREE);
1440
1441 /* Step 1. Register new definitions for every PHI node in the block.
1442 Conceptually, all the PHI nodes are executed in parallel and each PHI
1443 node introduces a new version for the associated variable. */
1444 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1445 gsi_next (&gsi))
1446 {
1447 tree result = gimple_phi_result (gsi_stmt (gsi));
1448 register_new_def (result, SSA_NAME_VAR (result));
1449 }
1450
1451 /* Step 2. Rewrite every variable used in each statement in the block
1452 with its immediate reaching definitions. Update the current definition
1453 of a variable when a new real or virtual definition is found. */
1454 if (bitmap_bit_p (interesting_blocks, bb->index))
1455 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1456 gsi_next (&gsi))
1457 rewrite_stmt (&gsi);
1458
1459 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1460 For every PHI node found, add a new argument containing the current
1461 reaching definition for the variable and the edge through which that
1462 definition is reaching the PHI node. */
1463 rewrite_add_phi_arguments (bb);
1464 }
1465
1466
1467
1468 /* Called after visiting all the statements in basic block BB and all
1469 of its dominator children. Restore CURRDEFS to its original value. */
1470
1471 void
1472 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1473 {
1474 /* Restore CURRDEFS to its original state. */
1475 while (block_defs_stack.length () > 0)
1476 {
1477 tree tmp = block_defs_stack.pop ();
1478 tree saved_def, var;
1479
1480 if (tmp == NULL_TREE)
1481 break;
1482
1483 if (TREE_CODE (tmp) == SSA_NAME)
1484 {
1485 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1486 current definition of its underlying variable. Note that
1487 if the SSA_NAME is not for a GIMPLE register, the symbol
1488 being defined is stored in the next slot in the stack.
1489 This mechanism is needed because an SSA name for a
1490 non-register symbol may be the definition for more than
1491 one symbol (e.g., SFTs, aliased variables, etc). */
1492 saved_def = tmp;
1493 var = SSA_NAME_VAR (saved_def);
1494 if (!is_gimple_reg (var))
1495 var = block_defs_stack.pop ();
1496 }
1497 else
1498 {
1499 /* If we recorded anything else, it must have been a _DECL
1500 node and its current reaching definition must have been
1501 NULL. */
1502 saved_def = NULL;
1503 var = tmp;
1504 }
1505
1506 get_common_info (var)->current_def = saved_def;
1507 }
1508 }
1509
1510
1511 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1512
1513 DEBUG_FUNCTION void
1514 debug_decl_set (bitmap set)
1515 {
1516 dump_decl_set (stderr, set);
1517 fprintf (stderr, "\n");
1518 }
1519
1520
1521 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1522 stack up to a maximum of N levels. If N is -1, the whole stack is
1523 dumped. New levels are created when the dominator tree traversal
1524 used for renaming enters a new sub-tree. */
1525
1526 void
1527 dump_defs_stack (FILE *file, int n)
1528 {
1529 int i, j;
1530
1531 fprintf (file, "\n\nRenaming stack");
1532 if (n > 0)
1533 fprintf (file, " (up to %d levels)", n);
1534 fprintf (file, "\n\n");
1535
1536 i = 1;
1537 fprintf (file, "Level %d (current level)\n", i);
1538 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1539 {
1540 tree name, var;
1541
1542 name = block_defs_stack[j];
1543 if (name == NULL_TREE)
1544 {
1545 i++;
1546 if (n > 0 && i > n)
1547 break;
1548 fprintf (file, "\nLevel %d\n", i);
1549 continue;
1550 }
1551
1552 if (DECL_P (name))
1553 {
1554 var = name;
1555 name = NULL_TREE;
1556 }
1557 else
1558 {
1559 var = SSA_NAME_VAR (name);
1560 if (!is_gimple_reg (var))
1561 {
1562 j--;
1563 var = block_defs_stack[j];
1564 }
1565 }
1566
1567 fprintf (file, " Previous CURRDEF (");
1568 print_generic_expr (file, var, 0);
1569 fprintf (file, ") = ");
1570 if (name)
1571 print_generic_expr (file, name, 0);
1572 else
1573 fprintf (file, "<NIL>");
1574 fprintf (file, "\n");
1575 }
1576 }
1577
1578
1579 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1580 stack up to a maximum of N levels. If N is -1, the whole stack is
1581 dumped. New levels are created when the dominator tree traversal
1582 used for renaming enters a new sub-tree. */
1583
1584 DEBUG_FUNCTION void
1585 debug_defs_stack (int n)
1586 {
1587 dump_defs_stack (stderr, n);
1588 }
1589
1590
1591 /* Dump the current reaching definition of every symbol to FILE. */
1592
1593 void
1594 dump_currdefs (FILE *file)
1595 {
1596 unsigned i;
1597 tree var;
1598
1599 if (symbols_to_rename.is_empty ())
1600 return;
1601
1602 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1603 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1604 {
1605 common_info_p info = get_common_info (var);
1606 fprintf (file, "CURRDEF (");
1607 print_generic_expr (file, var, 0);
1608 fprintf (file, ") = ");
1609 if (info->current_def)
1610 print_generic_expr (file, info->current_def, 0);
1611 else
1612 fprintf (file, "<NIL>");
1613 fprintf (file, "\n");
1614 }
1615 }
1616
1617
1618 /* Dump the current reaching definition of every symbol to stderr. */
1619
1620 DEBUG_FUNCTION void
1621 debug_currdefs (void)
1622 {
1623 dump_currdefs (stderr);
1624 }
1625
1626
1627 /* Dump SSA information to FILE. */
1628
1629 void
1630 dump_tree_ssa (FILE *file)
1631 {
1632 const char *funcname
1633 = lang_hooks.decl_printable_name (current_function_decl, 2);
1634
1635 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1636
1637 dump_var_infos (file);
1638 dump_defs_stack (file, -1);
1639 dump_currdefs (file);
1640 dump_tree_ssa_stats (file);
1641 }
1642
1643
1644 /* Dump SSA information to stderr. */
1645
1646 DEBUG_FUNCTION void
1647 debug_tree_ssa (void)
1648 {
1649 dump_tree_ssa (stderr);
1650 }
1651
1652
1653 /* Dump statistics for the hash table HTAB. */
1654
1655 static void
1656 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab)
1657 {
1658 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1659 (long) htab.size (),
1660 (long) htab.elements (),
1661 htab.collisions ());
1662 }
1663
1664
1665 /* Dump SSA statistics on FILE. */
1666
1667 void
1668 dump_tree_ssa_stats (FILE *file)
1669 {
1670 if (var_infos)
1671 {
1672 fprintf (file, "\nHash table statistics:\n");
1673 fprintf (file, " var_infos: ");
1674 htab_statistics (file, *var_infos);
1675 fprintf (file, "\n");
1676 }
1677 }
1678
1679
1680 /* Dump SSA statistics on stderr. */
1681
1682 DEBUG_FUNCTION void
1683 debug_tree_ssa_stats (void)
1684 {
1685 dump_tree_ssa_stats (stderr);
1686 }
1687
1688
1689 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1690
1691 int
1692 debug_var_infos_r (var_info_d **slot, FILE *file)
1693 {
1694 struct var_info_d *info = *slot;
1695
1696 fprintf (file, "VAR: ");
1697 print_generic_expr (file, info->var, dump_flags);
1698 bitmap_print (file, info->info.def_blocks.def_blocks,
1699 ", DEF_BLOCKS: { ", "}");
1700 bitmap_print (file, info->info.def_blocks.livein_blocks,
1701 ", LIVEIN_BLOCKS: { ", "}");
1702 bitmap_print (file, info->info.def_blocks.phi_blocks,
1703 ", PHI_BLOCKS: { ", "}\n");
1704
1705 return 1;
1706 }
1707
1708
1709 /* Dump the VAR_INFOS hash table on FILE. */
1710
1711 void
1712 dump_var_infos (FILE *file)
1713 {
1714 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1715 if (var_infos)
1716 var_infos->traverse <FILE *, debug_var_infos_r> (file);
1717 }
1718
1719
1720 /* Dump the VAR_INFOS hash table on stderr. */
1721
1722 DEBUG_FUNCTION void
1723 debug_var_infos (void)
1724 {
1725 dump_var_infos (stderr);
1726 }
1727
1728
1729 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1730
1731 static inline void
1732 register_new_update_single (tree new_name, tree old_name)
1733 {
1734 common_info_p info = get_common_info (old_name);
1735 tree currdef = info->current_def;
1736
1737 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1738 This stack is later used by the dominator tree callbacks to
1739 restore the reaching definitions for all the variables
1740 defined in the block after a recursive visit to all its
1741 immediately dominated blocks. */
1742 block_defs_stack.reserve (2);
1743 block_defs_stack.quick_push (currdef);
1744 block_defs_stack.quick_push (old_name);
1745
1746 /* Set the current reaching definition for OLD_NAME to be
1747 NEW_NAME. */
1748 info->current_def = new_name;
1749 }
1750
1751
1752 /* Register NEW_NAME to be the new reaching definition for all the
1753 names in OLD_NAMES. Used by the incremental SSA update routines to
1754 replace old SSA names with new ones. */
1755
1756 static inline void
1757 register_new_update_set (tree new_name, bitmap old_names)
1758 {
1759 bitmap_iterator bi;
1760 unsigned i;
1761
1762 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1763 register_new_update_single (new_name, ssa_name (i));
1764 }
1765
1766
1767
1768 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1769 it is a symbol marked for renaming, replace it with USE_P's current
1770 reaching definition. */
1771
1772 static inline void
1773 maybe_replace_use (use_operand_p use_p)
1774 {
1775 tree rdef = NULL_TREE;
1776 tree use = USE_FROM_PTR (use_p);
1777 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1778
1779 if (marked_for_renaming (sym))
1780 rdef = get_reaching_def (sym);
1781 else if (is_old_name (use))
1782 rdef = get_reaching_def (use);
1783
1784 if (rdef && rdef != use)
1785 SET_USE (use_p, rdef);
1786 }
1787
1788
1789 /* Same as maybe_replace_use, but without introducing default stmts,
1790 returning false to indicate a need to do so. */
1791
1792 static inline bool
1793 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1794 {
1795 tree rdef = NULL_TREE;
1796 tree use = USE_FROM_PTR (use_p);
1797 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1798
1799 if (marked_for_renaming (sym))
1800 rdef = get_var_info (sym)->info.current_def;
1801 else if (is_old_name (use))
1802 {
1803 rdef = get_ssa_name_ann (use)->info.current_def;
1804 /* We can't assume that, if there's no current definition, the
1805 default one should be used. It could be the case that we've
1806 rearranged blocks so that the earlier definition no longer
1807 dominates the use. */
1808 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1809 rdef = use;
1810 }
1811 else
1812 rdef = use;
1813
1814 if (rdef && rdef != use)
1815 SET_USE (use_p, rdef);
1816
1817 return rdef != NULL_TREE;
1818 }
1819
1820
1821 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1822 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1823 register it as the current definition for the names replaced by
1824 DEF_P. Returns whether the statement should be removed. */
1825
1826 static inline bool
1827 maybe_register_def (def_operand_p def_p, gimple *stmt,
1828 gimple_stmt_iterator gsi)
1829 {
1830 tree def = DEF_FROM_PTR (def_p);
1831 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1832 bool to_delete = false;
1833
1834 /* If DEF is a naked symbol that needs renaming, create a new
1835 name for it. */
1836 if (marked_for_renaming (sym))
1837 {
1838 if (DECL_P (def))
1839 {
1840 if (gimple_clobber_p (stmt) && is_gimple_reg (sym))
1841 {
1842 gcc_checking_assert (TREE_CODE (sym) == VAR_DECL);
1843 /* Replace clobber stmts with a default def. This new use of a
1844 default definition may make it look like SSA_NAMEs have
1845 conflicting lifetimes, so we need special code to let them
1846 coalesce properly. */
1847 to_delete = true;
1848 def = get_or_create_ssa_default_def (cfun, sym);
1849 }
1850 else
1851 def = make_ssa_name (def, stmt);
1852 SET_DEF (def_p, def);
1853
1854 tree tracked_var = target_for_debug_bind (sym);
1855 if (tracked_var)
1856 {
1857 gimple *note = gimple_build_debug_bind (tracked_var, def, stmt);
1858 /* If stmt ends the bb, insert the debug stmt on the single
1859 non-EH edge from the stmt. */
1860 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1861 {
1862 basic_block bb = gsi_bb (gsi);
1863 edge_iterator ei;
1864 edge e, ef = NULL;
1865 FOR_EACH_EDGE (e, ei, bb->succs)
1866 if (!(e->flags & EDGE_EH))
1867 {
1868 gcc_checking_assert (!ef);
1869 ef = e;
1870 }
1871 /* If there are other predecessors to ef->dest, then
1872 there must be PHI nodes for the modified
1873 variable, and therefore there will be debug bind
1874 stmts after the PHI nodes. The debug bind notes
1875 we'd insert would force the creation of a new
1876 block (diverging codegen) and be redundant with
1877 the post-PHI bind stmts, so don't add them.
1878
1879 As for the exit edge, there wouldn't be redundant
1880 bind stmts, but there wouldn't be a PC to bind
1881 them to either, so avoid diverging the CFG. */
1882 if (ef && single_pred_p (ef->dest)
1883 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1884 {
1885 /* If there were PHI nodes in the node, we'd
1886 have to make sure the value we're binding
1887 doesn't need rewriting. But there shouldn't
1888 be PHI nodes in a single-predecessor block,
1889 so we just add the note. */
1890 gsi_insert_on_edge_immediate (ef, note);
1891 }
1892 }
1893 else
1894 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1895 }
1896 }
1897
1898 register_new_update_single (def, sym);
1899 }
1900 else
1901 {
1902 /* If DEF is a new name, register it as a new definition
1903 for all the names replaced by DEF. */
1904 if (is_new_name (def))
1905 register_new_update_set (def, names_replaced_by (def));
1906
1907 /* If DEF is an old name, register DEF as a new
1908 definition for itself. */
1909 if (is_old_name (def))
1910 register_new_update_single (def, def);
1911 }
1912
1913 return to_delete;
1914 }
1915
1916
1917 /* Update every variable used in the statement pointed-to by SI. The
1918 statement is assumed to be in SSA form already. Names in
1919 OLD_SSA_NAMES used by SI will be updated to their current reaching
1920 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1921 will be registered as a new definition for their corresponding name
1922 in OLD_SSA_NAMES. Returns whether STMT should be removed. */
1923
1924 static bool
1925 rewrite_update_stmt (gimple *stmt, gimple_stmt_iterator gsi)
1926 {
1927 use_operand_p use_p;
1928 def_operand_p def_p;
1929 ssa_op_iter iter;
1930
1931 /* Only update marked statements. */
1932 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1933 return false;
1934
1935 if (dump_file && (dump_flags & TDF_DETAILS))
1936 {
1937 fprintf (dump_file, "Updating SSA information for statement ");
1938 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1939 }
1940
1941 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1942 symbol is marked for renaming. */
1943 if (rewrite_uses_p (stmt))
1944 {
1945 if (is_gimple_debug (stmt))
1946 {
1947 bool failed = false;
1948
1949 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1950 if (!maybe_replace_use_in_debug_stmt (use_p))
1951 {
1952 failed = true;
1953 break;
1954 }
1955
1956 if (failed)
1957 {
1958 /* DOM sometimes threads jumps in such a way that a
1959 debug stmt ends up referencing a SSA variable that no
1960 longer dominates the debug stmt, but such that all
1961 incoming definitions refer to the same definition in
1962 an earlier dominator. We could try to recover that
1963 definition somehow, but this will have to do for now.
1964
1965 Introducing a default definition, which is what
1966 maybe_replace_use() would do in such cases, may
1967 modify code generation, for the otherwise-unused
1968 default definition would never go away, modifying SSA
1969 version numbers all over. */
1970 gimple_debug_bind_reset_value (stmt);
1971 update_stmt (stmt);
1972 }
1973 }
1974 else
1975 {
1976 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1977 maybe_replace_use (use_p);
1978 }
1979 }
1980
1981 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1982 Also register definitions for names whose underlying symbol is
1983 marked for renaming. */
1984 bool to_delete = false;
1985 if (register_defs_p (stmt))
1986 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1987 to_delete |= maybe_register_def (def_p, stmt, gsi);
1988
1989 return to_delete;
1990 }
1991
1992
1993 /* Visit all the successor blocks of BB looking for PHI nodes. For
1994 every PHI node found, check if any of its arguments is in
1995 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1996 definition, replace it. */
1997
1998 static void
1999 rewrite_update_phi_arguments (basic_block bb)
2000 {
2001 edge e;
2002 edge_iterator ei;
2003 unsigned i;
2004
2005 FOR_EACH_EDGE (e, ei, bb->succs)
2006 {
2007 gphi *phi;
2008 vec<gphi *> phis;
2009
2010 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2011 continue;
2012
2013 phis = phis_to_rewrite[e->dest->index];
2014 FOR_EACH_VEC_ELT (phis, i, phi)
2015 {
2016 tree arg, lhs_sym, reaching_def = NULL;
2017 use_operand_p arg_p;
2018
2019 gcc_checking_assert (rewrite_uses_p (phi));
2020
2021 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2022 arg = USE_FROM_PTR (arg_p);
2023
2024 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2025 continue;
2026
2027 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2028
2029 if (arg == NULL_TREE)
2030 {
2031 /* When updating a PHI node for a recently introduced
2032 symbol we may find NULL arguments. That's why we
2033 take the symbol from the LHS of the PHI node. */
2034 reaching_def = get_reaching_def (lhs_sym);
2035
2036 }
2037 else
2038 {
2039 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2040
2041 if (marked_for_renaming (sym))
2042 reaching_def = get_reaching_def (sym);
2043 else if (is_old_name (arg))
2044 reaching_def = get_reaching_def (arg);
2045 }
2046
2047 /* Update the argument if there is a reaching def. */
2048 if (reaching_def)
2049 {
2050 source_location locus;
2051 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2052
2053 SET_USE (arg_p, reaching_def);
2054
2055 /* Virtual operands do not need a location. */
2056 if (virtual_operand_p (reaching_def))
2057 locus = UNKNOWN_LOCATION;
2058 else
2059 {
2060 gimple *stmt = SSA_NAME_DEF_STMT (reaching_def);
2061 gphi *other_phi = dyn_cast <gphi *> (stmt);
2062
2063 /* Single element PHI nodes behave like copies, so get the
2064 location from the phi argument. */
2065 if (other_phi
2066 && gimple_phi_num_args (other_phi) == 1)
2067 locus = gimple_phi_arg_location (other_phi, 0);
2068 else
2069 locus = gimple_location (stmt);
2070 }
2071
2072 gimple_phi_arg_set_location (phi, arg_i, locus);
2073 }
2074
2075
2076 if (e->flags & EDGE_ABNORMAL)
2077 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2078 }
2079 }
2080 }
2081
2082 class rewrite_update_dom_walker : public dom_walker
2083 {
2084 public:
2085 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2086
2087 virtual void before_dom_children (basic_block);
2088 virtual void after_dom_children (basic_block);
2089 };
2090
2091 /* Initialization of block data structures for the incremental SSA
2092 update pass. Create a block local stack of reaching definitions
2093 for new SSA names produced in this block (BLOCK_DEFS). Register
2094 new definitions for every PHI node in the block. */
2095
2096 void
2097 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2098 {
2099 bool is_abnormal_phi;
2100
2101 if (dump_file && (dump_flags & TDF_DETAILS))
2102 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2103 bb->index);
2104
2105 /* Mark the unwind point for this block. */
2106 block_defs_stack.safe_push (NULL_TREE);
2107
2108 if (!bitmap_bit_p (blocks_to_update, bb->index))
2109 return;
2110
2111 /* Mark the LHS if any of the arguments flows through an abnormal
2112 edge. */
2113 is_abnormal_phi = bb_has_abnormal_pred (bb);
2114
2115 /* If any of the PHI nodes is a replacement for a name in
2116 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2117 register it as a new definition for its corresponding name. Also
2118 register definitions for names whose underlying symbols are
2119 marked for renaming. */
2120 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2121 gsi_next (&gsi))
2122 {
2123 tree lhs, lhs_sym;
2124 gphi *phi = gsi.phi ();
2125
2126 if (!register_defs_p (phi))
2127 continue;
2128
2129 lhs = gimple_phi_result (phi);
2130 lhs_sym = SSA_NAME_VAR (lhs);
2131
2132 if (marked_for_renaming (lhs_sym))
2133 register_new_update_single (lhs, lhs_sym);
2134 else
2135 {
2136
2137 /* If LHS is a new name, register a new definition for all
2138 the names replaced by LHS. */
2139 if (is_new_name (lhs))
2140 register_new_update_set (lhs, names_replaced_by (lhs));
2141
2142 /* If LHS is an OLD name, register it as a new definition
2143 for itself. */
2144 if (is_old_name (lhs))
2145 register_new_update_single (lhs, lhs);
2146 }
2147
2148 if (is_abnormal_phi)
2149 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2150 }
2151
2152 /* Step 2. Rewrite every variable used in each statement in the block. */
2153 if (bitmap_bit_p (interesting_blocks, bb->index))
2154 {
2155 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2156 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2157 if (rewrite_update_stmt (gsi_stmt (gsi), gsi))
2158 gsi_remove (&gsi, true);
2159 else
2160 gsi_next (&gsi);
2161 }
2162
2163 /* Step 3. Update PHI nodes. */
2164 rewrite_update_phi_arguments (bb);
2165 }
2166
2167 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2168 the current reaching definition of every name re-written in BB to
2169 the original reaching definition before visiting BB. This
2170 unwinding must be done in the opposite order to what is done in
2171 register_new_update_set. */
2172
2173 void
2174 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2175 {
2176 while (block_defs_stack.length () > 0)
2177 {
2178 tree var = block_defs_stack.pop ();
2179 tree saved_def;
2180
2181 /* NULL indicates the unwind stop point for this block (see
2182 rewrite_update_enter_block). */
2183 if (var == NULL)
2184 return;
2185
2186 saved_def = block_defs_stack.pop ();
2187 get_common_info (var)->current_def = saved_def;
2188 }
2189 }
2190
2191
2192 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2193 form.
2194
2195 ENTRY indicates the block where to start. Every block dominated by
2196 ENTRY will be rewritten.
2197
2198 WHAT indicates what actions will be taken by the renamer (see enum
2199 rewrite_mode).
2200
2201 BLOCKS are the set of interesting blocks for the dominator walker
2202 to process. If this set is NULL, then all the nodes dominated
2203 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2204 are not present in BLOCKS are ignored. */
2205
2206 static void
2207 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2208 {
2209 /* Rewrite all the basic blocks in the program. */
2210 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2211
2212 block_defs_stack.create (10);
2213
2214 /* Recursively walk the dominator tree rewriting each statement in
2215 each basic block. */
2216 if (what == REWRITE_ALL)
2217 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2218 else if (what == REWRITE_UPDATE)
2219 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2220 else
2221 gcc_unreachable ();
2222
2223 /* Debugging dumps. */
2224 if (dump_file && (dump_flags & TDF_STATS))
2225 {
2226 dump_dfa_stats (dump_file);
2227 if (var_infos)
2228 dump_tree_ssa_stats (dump_file);
2229 }
2230
2231 block_defs_stack.release ();
2232
2233 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2234 }
2235
2236 class mark_def_dom_walker : public dom_walker
2237 {
2238 public:
2239 mark_def_dom_walker (cdi_direction direction);
2240 ~mark_def_dom_walker ();
2241
2242 virtual void before_dom_children (basic_block);
2243
2244 private:
2245 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2246 large enough to accommodate all the variables referenced in the
2247 function, not just the ones we are renaming. */
2248 bitmap m_kills;
2249 };
2250
2251 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2252 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2253 {
2254 }
2255
2256 mark_def_dom_walker::~mark_def_dom_walker ()
2257 {
2258 BITMAP_FREE (m_kills);
2259 }
2260
2261 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2262 at the start of each block, and call mark_def_sites for each statement. */
2263
2264 void
2265 mark_def_dom_walker::before_dom_children (basic_block bb)
2266 {
2267 gimple_stmt_iterator gsi;
2268
2269 bitmap_clear (m_kills);
2270 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2271 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2272 }
2273
2274 /* Initialize internal data needed during renaming. */
2275
2276 static void
2277 init_ssa_renamer (void)
2278 {
2279 cfun->gimple_df->in_ssa_p = false;
2280
2281 /* Allocate memory for the DEF_BLOCKS hash table. */
2282 gcc_assert (!var_infos);
2283 var_infos = new hash_table<var_info_hasher>
2284 (vec_safe_length (cfun->local_decls));
2285
2286 bitmap_obstack_initialize (&update_ssa_obstack);
2287 }
2288
2289
2290 /* Deallocate internal data structures used by the renamer. */
2291
2292 static void
2293 fini_ssa_renamer (void)
2294 {
2295 delete var_infos;
2296 var_infos = NULL;
2297
2298 bitmap_obstack_release (&update_ssa_obstack);
2299
2300 cfun->gimple_df->ssa_renaming_needed = 0;
2301 cfun->gimple_df->rename_vops = 0;
2302 cfun->gimple_df->in_ssa_p = true;
2303 }
2304
2305 /* Main entry point into the SSA builder. The renaming process
2306 proceeds in four main phases:
2307
2308 1- Compute dominance frontier and immediate dominators, needed to
2309 insert PHI nodes and rename the function in dominator tree
2310 order.
2311
2312 2- Find and mark all the blocks that define variables.
2313
2314 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2315
2316 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2317
2318 Steps 3 and 4 are done using the dominator tree walker
2319 (walk_dominator_tree). */
2320
2321 namespace {
2322
2323 const pass_data pass_data_build_ssa =
2324 {
2325 GIMPLE_PASS, /* type */
2326 "ssa", /* name */
2327 OPTGROUP_NONE, /* optinfo_flags */
2328 TV_TREE_SSA_OTHER, /* tv_id */
2329 PROP_cfg, /* properties_required */
2330 PROP_ssa, /* properties_provided */
2331 0, /* properties_destroyed */
2332 0, /* todo_flags_start */
2333 TODO_remove_unused_locals, /* todo_flags_finish */
2334 };
2335
2336 class pass_build_ssa : public gimple_opt_pass
2337 {
2338 public:
2339 pass_build_ssa (gcc::context *ctxt)
2340 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2341 {}
2342
2343 /* opt_pass methods: */
2344 virtual bool gate (function *fun)
2345 {
2346 /* Do nothing for funcions that was produced already in SSA form. */
2347 return !(fun->curr_properties & PROP_ssa);
2348 }
2349
2350 virtual unsigned int execute (function *);
2351
2352 }; // class pass_build_ssa
2353
2354 unsigned int
2355 pass_build_ssa::execute (function *fun)
2356 {
2357 bitmap_head *dfs;
2358 basic_block bb;
2359 unsigned i;
2360
2361 /* Initialize operand data structures. */
2362 init_ssa_operands (fun);
2363
2364 /* Initialize internal data needed by the renamer. */
2365 init_ssa_renamer ();
2366
2367 /* Initialize the set of interesting blocks. The callback
2368 mark_def_sites will add to this set those blocks that the renamer
2369 should process. */
2370 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun));
2371 bitmap_clear (interesting_blocks);
2372
2373 /* Initialize dominance frontier. */
2374 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun));
2375 FOR_EACH_BB_FN (bb, fun)
2376 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2377
2378 /* 1- Compute dominance frontiers. */
2379 calculate_dominance_info (CDI_DOMINATORS);
2380 compute_dominance_frontiers (dfs);
2381
2382 /* 2- Find and mark definition sites. */
2383 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
2384
2385 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2386 insert_phi_nodes (dfs);
2387
2388 /* 4- Rename all the blocks. */
2389 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL);
2390
2391 /* Free allocated memory. */
2392 FOR_EACH_BB_FN (bb, fun)
2393 bitmap_clear (&dfs[bb->index]);
2394 free (dfs);
2395
2396 sbitmap_free (interesting_blocks);
2397
2398 fini_ssa_renamer ();
2399
2400 /* Try to get rid of all gimplifier generated temporaries by making
2401 its SSA names anonymous. This way we can garbage collect them
2402 all after removing unused locals which we do in our TODO. */
2403 for (i = 1; i < num_ssa_names; ++i)
2404 {
2405 tree decl, name = ssa_name (i);
2406 if (!name
2407 || SSA_NAME_IS_DEFAULT_DEF (name))
2408 continue;
2409 decl = SSA_NAME_VAR (name);
2410 if (decl
2411 && TREE_CODE (decl) == VAR_DECL
2412 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2413 && DECL_IGNORED_P (decl))
2414 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2415 }
2416
2417 return 0;
2418 }
2419
2420 } // anon namespace
2421
2422 gimple_opt_pass *
2423 make_pass_build_ssa (gcc::context *ctxt)
2424 {
2425 return new pass_build_ssa (ctxt);
2426 }
2427
2428
2429 /* Mark the definition of VAR at STMT and BB as interesting for the
2430 renamer. BLOCKS is the set of blocks that need updating. */
2431
2432 static void
2433 mark_def_interesting (tree var, gimple *stmt, basic_block bb,
2434 bool insert_phi_p)
2435 {
2436 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2437 set_register_defs (stmt, true);
2438
2439 if (insert_phi_p)
2440 {
2441 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2442
2443 set_def_block (var, bb, is_phi_p);
2444
2445 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2446 site for both itself and all the old names replaced by it. */
2447 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2448 {
2449 bitmap_iterator bi;
2450 unsigned i;
2451 bitmap set = names_replaced_by (var);
2452 if (set)
2453 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2454 set_def_block (ssa_name (i), bb, is_phi_p);
2455 }
2456 }
2457 }
2458
2459
2460 /* Mark the use of VAR at STMT and BB as interesting for the
2461 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2462 nodes. */
2463
2464 static inline void
2465 mark_use_interesting (tree var, gimple *stmt, basic_block bb,
2466 bool insert_phi_p)
2467 {
2468 basic_block def_bb = gimple_bb (stmt);
2469
2470 mark_block_for_update (def_bb);
2471 mark_block_for_update (bb);
2472
2473 if (gimple_code (stmt) == GIMPLE_PHI)
2474 mark_phi_for_rewrite (def_bb, as_a <gphi *> (stmt));
2475 else
2476 {
2477 set_rewrite_uses (stmt, true);
2478
2479 if (is_gimple_debug (stmt))
2480 return;
2481 }
2482
2483 /* If VAR has not been defined in BB, then it is live-on-entry
2484 to BB. Note that we cannot just use the block holding VAR's
2485 definition because if VAR is one of the names in OLD_SSA_NAMES,
2486 it will have several definitions (itself and all the names that
2487 replace it). */
2488 if (insert_phi_p)
2489 {
2490 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2491 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2492 set_livein_block (var, bb);
2493 }
2494 }
2495
2496
2497 /* Do a dominator walk starting at BB processing statements that
2498 reference symbols in SSA operands. This is very similar to
2499 mark_def_sites, but the scan handles statements whose operands may
2500 already be SSA names.
2501
2502 If INSERT_PHI_P is true, mark those uses as live in the
2503 corresponding block. This is later used by the PHI placement
2504 algorithm to make PHI pruning decisions.
2505
2506 FIXME. Most of this would be unnecessary if we could associate a
2507 symbol to all the SSA names that reference it. But that
2508 sounds like it would be expensive to maintain. Still, it
2509 would be interesting to see if it makes better sense to do
2510 that. */
2511
2512 static void
2513 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2514 {
2515 basic_block son;
2516 edge e;
2517 edge_iterator ei;
2518
2519 mark_block_for_update (bb);
2520
2521 /* Process PHI nodes marking interesting those that define or use
2522 the symbols that we are interested in. */
2523 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
2524 gsi_next (&si))
2525 {
2526 gphi *phi = si.phi ();
2527 tree lhs_sym, lhs = gimple_phi_result (phi);
2528
2529 if (TREE_CODE (lhs) == SSA_NAME
2530 && (! virtual_operand_p (lhs)
2531 || ! cfun->gimple_df->rename_vops))
2532 continue;
2533
2534 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2535 mark_for_renaming (lhs_sym);
2536 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2537
2538 /* Mark the uses in phi nodes as interesting. It would be more correct
2539 to process the arguments of the phi nodes of the successor edges of
2540 BB at the end of prepare_block_for_update, however, that turns out
2541 to be significantly more expensive. Doing it here is conservatively
2542 correct -- it may only cause us to believe a value to be live in a
2543 block that also contains its definition, and thus insert a few more
2544 phi nodes for it. */
2545 FOR_EACH_EDGE (e, ei, bb->preds)
2546 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2547 }
2548
2549 /* Process the statements. */
2550 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
2551 gsi_next (&si))
2552 {
2553 gimple *stmt;
2554 ssa_op_iter i;
2555 use_operand_p use_p;
2556 def_operand_p def_p;
2557
2558 stmt = gsi_stmt (si);
2559
2560 if (cfun->gimple_df->rename_vops
2561 && gimple_vuse (stmt))
2562 {
2563 tree use = gimple_vuse (stmt);
2564 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2565 mark_for_renaming (sym);
2566 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2567 }
2568
2569 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2570 {
2571 tree use = USE_FROM_PTR (use_p);
2572 if (!DECL_P (use))
2573 continue;
2574 mark_for_renaming (use);
2575 mark_use_interesting (use, stmt, bb, insert_phi_p);
2576 }
2577
2578 if (cfun->gimple_df->rename_vops
2579 && gimple_vdef (stmt))
2580 {
2581 tree def = gimple_vdef (stmt);
2582 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2583 mark_for_renaming (sym);
2584 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2585 }
2586
2587 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2588 {
2589 tree def = DEF_FROM_PTR (def_p);
2590 if (!DECL_P (def))
2591 continue;
2592 mark_for_renaming (def);
2593 mark_def_interesting (def, stmt, bb, insert_phi_p);
2594 }
2595 }
2596
2597 /* Now visit all the blocks dominated by BB. */
2598 for (son = first_dom_son (CDI_DOMINATORS, bb);
2599 son;
2600 son = next_dom_son (CDI_DOMINATORS, son))
2601 prepare_block_for_update (son, insert_phi_p);
2602 }
2603
2604
2605 /* Helper for prepare_names_to_update. Mark all the use sites for
2606 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2607 prepare_names_to_update. */
2608
2609 static void
2610 prepare_use_sites_for (tree name, bool insert_phi_p)
2611 {
2612 use_operand_p use_p;
2613 imm_use_iterator iter;
2614
2615 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2616 {
2617 gimple *stmt = USE_STMT (use_p);
2618 basic_block bb = gimple_bb (stmt);
2619
2620 if (gimple_code (stmt) == GIMPLE_PHI)
2621 {
2622 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2623 edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), ix);
2624 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2625 }
2626 else
2627 {
2628 /* For regular statements, mark this as an interesting use
2629 for NAME. */
2630 mark_use_interesting (name, stmt, bb, insert_phi_p);
2631 }
2632 }
2633 }
2634
2635
2636 /* Helper for prepare_names_to_update. Mark the definition site for
2637 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2638 prepare_names_to_update. */
2639
2640 static void
2641 prepare_def_site_for (tree name, bool insert_phi_p)
2642 {
2643 gimple *stmt;
2644 basic_block bb;
2645
2646 gcc_checking_assert (names_to_release == NULL
2647 || !bitmap_bit_p (names_to_release,
2648 SSA_NAME_VERSION (name)));
2649
2650 stmt = SSA_NAME_DEF_STMT (name);
2651 bb = gimple_bb (stmt);
2652 if (bb)
2653 {
2654 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2655 mark_block_for_update (bb);
2656 mark_def_interesting (name, stmt, bb, insert_phi_p);
2657 }
2658 }
2659
2660
2661 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2662 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2663 PHI nodes for newly created names. */
2664
2665 static void
2666 prepare_names_to_update (bool insert_phi_p)
2667 {
2668 unsigned i = 0;
2669 bitmap_iterator bi;
2670 sbitmap_iterator sbi;
2671
2672 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2673 remove it from NEW_SSA_NAMES so that we don't try to visit its
2674 defining basic block (which most likely doesn't exist). Notice
2675 that we cannot do the same with names in OLD_SSA_NAMES because we
2676 want to replace existing instances. */
2677 if (names_to_release)
2678 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2679 bitmap_clear_bit (new_ssa_names, i);
2680
2681 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2682 names may be considered to be live-in on blocks that contain
2683 definitions for their replacements. */
2684 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2685 prepare_def_site_for (ssa_name (i), insert_phi_p);
2686
2687 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2688 OLD_SSA_NAMES, but we have to ignore its definition site. */
2689 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2690 {
2691 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2692 prepare_def_site_for (ssa_name (i), insert_phi_p);
2693 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2694 }
2695 }
2696
2697
2698 /* Dump all the names replaced by NAME to FILE. */
2699
2700 void
2701 dump_names_replaced_by (FILE *file, tree name)
2702 {
2703 unsigned i;
2704 bitmap old_set;
2705 bitmap_iterator bi;
2706
2707 print_generic_expr (file, name, 0);
2708 fprintf (file, " -> { ");
2709
2710 old_set = names_replaced_by (name);
2711 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2712 {
2713 print_generic_expr (file, ssa_name (i), 0);
2714 fprintf (file, " ");
2715 }
2716
2717 fprintf (file, "}\n");
2718 }
2719
2720
2721 /* Dump all the names replaced by NAME to stderr. */
2722
2723 DEBUG_FUNCTION void
2724 debug_names_replaced_by (tree name)
2725 {
2726 dump_names_replaced_by (stderr, name);
2727 }
2728
2729
2730 /* Dump SSA update information to FILE. */
2731
2732 void
2733 dump_update_ssa (FILE *file)
2734 {
2735 unsigned i = 0;
2736 bitmap_iterator bi;
2737
2738 if (!need_ssa_update_p (cfun))
2739 return;
2740
2741 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2742 {
2743 sbitmap_iterator sbi;
2744
2745 fprintf (file, "\nSSA replacement table\n");
2746 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2747 "O_1, ..., O_j\n\n");
2748
2749 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2750 dump_names_replaced_by (file, ssa_name (i));
2751 }
2752
2753 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2754 {
2755 fprintf (file, "\nSymbols to be put in SSA form\n");
2756 dump_decl_set (file, symbols_to_rename_set);
2757 fprintf (file, "\n");
2758 }
2759
2760 if (names_to_release && !bitmap_empty_p (names_to_release))
2761 {
2762 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2763 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2764 {
2765 print_generic_expr (file, ssa_name (i), 0);
2766 fprintf (file, " ");
2767 }
2768 fprintf (file, "\n");
2769 }
2770 }
2771
2772
2773 /* Dump SSA update information to stderr. */
2774
2775 DEBUG_FUNCTION void
2776 debug_update_ssa (void)
2777 {
2778 dump_update_ssa (stderr);
2779 }
2780
2781
2782 /* Initialize data structures used for incremental SSA updates. */
2783
2784 static void
2785 init_update_ssa (struct function *fn)
2786 {
2787 /* Reserve more space than the current number of names. The calls to
2788 add_new_name_mapping are typically done after creating new SSA
2789 names, so we'll need to reallocate these arrays. */
2790 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2791 bitmap_clear (old_ssa_names);
2792
2793 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2794 bitmap_clear (new_ssa_names);
2795
2796 bitmap_obstack_initialize (&update_ssa_obstack);
2797
2798 names_to_release = NULL;
2799 update_ssa_initialized_fn = fn;
2800 }
2801
2802
2803 /* Deallocate data structures used for incremental SSA updates. */
2804
2805 void
2806 delete_update_ssa (void)
2807 {
2808 unsigned i;
2809 bitmap_iterator bi;
2810
2811 sbitmap_free (old_ssa_names);
2812 old_ssa_names = NULL;
2813
2814 sbitmap_free (new_ssa_names);
2815 new_ssa_names = NULL;
2816
2817 BITMAP_FREE (symbols_to_rename_set);
2818 symbols_to_rename_set = NULL;
2819 symbols_to_rename.release ();
2820
2821 if (names_to_release)
2822 {
2823 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2824 release_ssa_name (ssa_name (i));
2825 BITMAP_FREE (names_to_release);
2826 }
2827
2828 clear_ssa_name_info ();
2829
2830 fini_ssa_renamer ();
2831
2832 if (blocks_with_phis_to_rewrite)
2833 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2834 {
2835 vec<gphi *> phis = phis_to_rewrite[i];
2836 phis.release ();
2837 phis_to_rewrite[i].create (0);
2838 }
2839
2840 BITMAP_FREE (blocks_with_phis_to_rewrite);
2841 BITMAP_FREE (blocks_to_update);
2842
2843 update_ssa_initialized_fn = NULL;
2844 }
2845
2846
2847 /* Create a new name for OLD_NAME in statement STMT and replace the
2848 operand pointed to by DEF_P with the newly created name. If DEF_P
2849 is NULL then STMT should be a GIMPLE assignment.
2850 Return the new name and register the replacement mapping <NEW, OLD> in
2851 update_ssa's tables. */
2852
2853 tree
2854 create_new_def_for (tree old_name, gimple *stmt, def_operand_p def)
2855 {
2856 tree new_name;
2857
2858 timevar_push (TV_TREE_SSA_INCREMENTAL);
2859
2860 if (!update_ssa_initialized_fn)
2861 init_update_ssa (cfun);
2862
2863 gcc_assert (update_ssa_initialized_fn == cfun);
2864
2865 new_name = duplicate_ssa_name (old_name, stmt);
2866 if (def)
2867 SET_DEF (def, new_name);
2868 else
2869 gimple_assign_set_lhs (stmt, new_name);
2870
2871 if (gimple_code (stmt) == GIMPLE_PHI)
2872 {
2873 basic_block bb = gimple_bb (stmt);
2874
2875 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2876 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2877 }
2878
2879 add_new_name_mapping (new_name, old_name);
2880
2881 /* For the benefit of passes that will be updating the SSA form on
2882 their own, set the current reaching definition of OLD_NAME to be
2883 NEW_NAME. */
2884 get_ssa_name_ann (old_name)->info.current_def = new_name;
2885
2886 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2887
2888 return new_name;
2889 }
2890
2891
2892 /* Mark virtual operands of FN for renaming by update_ssa. */
2893
2894 void
2895 mark_virtual_operands_for_renaming (struct function *fn)
2896 {
2897 fn->gimple_df->ssa_renaming_needed = 1;
2898 fn->gimple_df->rename_vops = 1;
2899 }
2900
2901 /* Replace all uses of NAME by underlying variable and mark it
2902 for renaming. This assumes the defining statement of NAME is
2903 going to be removed. */
2904
2905 void
2906 mark_virtual_operand_for_renaming (tree name)
2907 {
2908 tree name_var = SSA_NAME_VAR (name);
2909 bool used = false;
2910 imm_use_iterator iter;
2911 use_operand_p use_p;
2912 gimple *stmt;
2913
2914 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2915 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2916 {
2917 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2918 SET_USE (use_p, name_var);
2919 used = true;
2920 }
2921 if (used)
2922 mark_virtual_operands_for_renaming (cfun);
2923 }
2924
2925 /* Replace all uses of the virtual PHI result by its underlying variable
2926 and mark it for renaming. This assumes the PHI node is going to be
2927 removed. */
2928
2929 void
2930 mark_virtual_phi_result_for_renaming (gphi *phi)
2931 {
2932 if (dump_file && (dump_flags & TDF_DETAILS))
2933 {
2934 fprintf (dump_file, "Marking result for renaming : ");
2935 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2936 fprintf (dump_file, "\n");
2937 }
2938
2939 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2940 }
2941
2942 /* Return true if there is any work to be done by update_ssa
2943 for function FN. */
2944
2945 bool
2946 need_ssa_update_p (struct function *fn)
2947 {
2948 gcc_assert (fn != NULL);
2949 return (update_ssa_initialized_fn == fn
2950 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2951 }
2952
2953 /* Return true if name N has been registered in the replacement table. */
2954
2955 bool
2956 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2957 {
2958 if (!update_ssa_initialized_fn)
2959 return false;
2960
2961 gcc_assert (update_ssa_initialized_fn == cfun);
2962
2963 return is_new_name (n) || is_old_name (n);
2964 }
2965
2966
2967 /* Mark NAME to be released after update_ssa has finished. */
2968
2969 void
2970 release_ssa_name_after_update_ssa (tree name)
2971 {
2972 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2973
2974 if (names_to_release == NULL)
2975 names_to_release = BITMAP_ALLOC (NULL);
2976
2977 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2978 }
2979
2980
2981 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2982 frontier information. BLOCKS is the set of blocks to be updated.
2983
2984 This is slightly different than the regular PHI insertion
2985 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2986 real names (i.e., GIMPLE registers) are inserted:
2987
2988 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2989 nodes inside the region affected by the block that defines VAR
2990 and the blocks that define all its replacements. All these
2991 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2992
2993 First, we compute the entry point to the region (ENTRY). This is
2994 given by the nearest common dominator to all the definition
2995 blocks. When computing the iterated dominance frontier (IDF), any
2996 block not strictly dominated by ENTRY is ignored.
2997
2998 We then call the standard PHI insertion algorithm with the pruned
2999 IDF.
3000
3001 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3002 names is not pruned. PHI nodes are inserted at every IDF block. */
3003
3004 static void
3005 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3006 unsigned update_flags)
3007 {
3008 basic_block entry;
3009 struct def_blocks_d *db;
3010 bitmap idf, pruned_idf;
3011 bitmap_iterator bi;
3012 unsigned i;
3013
3014 if (TREE_CODE (var) == SSA_NAME)
3015 gcc_checking_assert (is_old_name (var));
3016 else
3017 gcc_checking_assert (marked_for_renaming (var));
3018
3019 /* Get all the definition sites for VAR. */
3020 db = find_def_blocks_for (var);
3021
3022 /* No need to do anything if there were no definitions to VAR. */
3023 if (db == NULL || bitmap_empty_p (db->def_blocks))
3024 return;
3025
3026 /* Compute the initial iterated dominance frontier. */
3027 idf = compute_idf (db->def_blocks, dfs);
3028 pruned_idf = BITMAP_ALLOC (NULL);
3029
3030 if (TREE_CODE (var) == SSA_NAME)
3031 {
3032 if (update_flags == TODO_update_ssa)
3033 {
3034 /* If doing regular SSA updates for GIMPLE registers, we are
3035 only interested in IDF blocks dominated by the nearest
3036 common dominator of all the definition blocks. */
3037 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3038 db->def_blocks);
3039 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3040 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3041 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3042 && dominated_by_p (CDI_DOMINATORS,
3043 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3044 bitmap_set_bit (pruned_idf, i);
3045 }
3046 else
3047 {
3048 /* Otherwise, do not prune the IDF for VAR. */
3049 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3050 bitmap_copy (pruned_idf, idf);
3051 }
3052 }
3053 else
3054 {
3055 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3056 for the first time, so we need to compute the full IDF for
3057 it. */
3058 bitmap_copy (pruned_idf, idf);
3059 }
3060
3061 if (!bitmap_empty_p (pruned_idf))
3062 {
3063 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3064 are included in the region to be updated. The feeding blocks
3065 are important to guarantee that the PHI arguments are renamed
3066 properly. */
3067
3068 /* FIXME, this is not needed if we are updating symbols. We are
3069 already starting at the ENTRY block anyway. */
3070 bitmap_ior_into (blocks, pruned_idf);
3071 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3072 {
3073 edge e;
3074 edge_iterator ei;
3075 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3076
3077 FOR_EACH_EDGE (e, ei, bb->preds)
3078 if (e->src->index >= 0)
3079 bitmap_set_bit (blocks, e->src->index);
3080 }
3081
3082 insert_phi_nodes_for (var, pruned_idf, true);
3083 }
3084
3085 BITMAP_FREE (pruned_idf);
3086 BITMAP_FREE (idf);
3087 }
3088
3089 /* Sort symbols_to_rename after their DECL_UID. */
3090
3091 static int
3092 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3093 {
3094 const_tree syma = *(const const_tree *)a;
3095 const_tree symb = *(const const_tree *)b;
3096 if (DECL_UID (syma) == DECL_UID (symb))
3097 return 0;
3098 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3099 }
3100
3101 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3102 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3103
3104 1- The names in OLD_SSA_NAMES dominated by the definitions of
3105 NEW_SSA_NAMES are all re-written to be reached by the
3106 appropriate definition from NEW_SSA_NAMES.
3107
3108 2- If needed, new PHI nodes are added to the iterated dominance
3109 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3110
3111 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3112 calling create_new_def_for to create new defs for names that the
3113 caller wants to replace.
3114
3115 The caller cretaes the new names to be inserted and the names that need
3116 to be replaced by calling create_new_def_for for each old definition
3117 to be replaced. Note that the function assumes that the
3118 new defining statement has already been inserted in the IL.
3119
3120 For instance, given the following code:
3121
3122 1 L0:
3123 2 x_1 = PHI (0, x_5)
3124 3 if (x_1 < 10)
3125 4 if (x_1 > 7)
3126 5 y_2 = 0
3127 6 else
3128 7 y_3 = x_1 + x_7
3129 8 endif
3130 9 x_5 = x_1 + 1
3131 10 goto L0;
3132 11 endif
3133
3134 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3135
3136 1 L0:
3137 2 x_1 = PHI (0, x_5)
3138 3 if (x_1 < 10)
3139 4 x_10 = ...
3140 5 if (x_1 > 7)
3141 6 y_2 = 0
3142 7 else
3143 8 x_11 = ...
3144 9 y_3 = x_1 + x_7
3145 10 endif
3146 11 x_5 = x_1 + 1
3147 12 goto L0;
3148 13 endif
3149
3150 We want to replace all the uses of x_1 with the new definitions of
3151 x_10 and x_11. Note that the only uses that should be replaced are
3152 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3153 *not* be replaced (this is why we cannot just mark symbol 'x' for
3154 renaming).
3155
3156 Additionally, we may need to insert a PHI node at line 11 because
3157 that is a merge point for x_10 and x_11. So the use of x_1 at line
3158 11 will be replaced with the new PHI node. The insertion of PHI
3159 nodes is optional. They are not strictly necessary to preserve the
3160 SSA form, and depending on what the caller inserted, they may not
3161 even be useful for the optimizers. UPDATE_FLAGS controls various
3162 aspects of how update_ssa operates, see the documentation for
3163 TODO_update_ssa*. */
3164
3165 void
3166 update_ssa (unsigned update_flags)
3167 {
3168 basic_block bb, start_bb;
3169 bitmap_iterator bi;
3170 unsigned i = 0;
3171 bool insert_phi_p;
3172 sbitmap_iterator sbi;
3173 tree sym;
3174
3175 /* Only one update flag should be set. */
3176 gcc_assert (update_flags == TODO_update_ssa
3177 || update_flags == TODO_update_ssa_no_phi
3178 || update_flags == TODO_update_ssa_full_phi
3179 || update_flags == TODO_update_ssa_only_virtuals);
3180
3181 if (!need_ssa_update_p (cfun))
3182 return;
3183
3184 #ifdef ENABLE_CHECKING
3185 timevar_push (TV_TREE_STMT_VERIFY);
3186
3187 bool err = false;
3188
3189 FOR_EACH_BB_FN (bb, cfun)
3190 {
3191 gimple_stmt_iterator gsi;
3192 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3193 {
3194 gimple *stmt = gsi_stmt (gsi);
3195
3196 ssa_op_iter i;
3197 use_operand_p use_p;
3198 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
3199 {
3200 tree use = USE_FROM_PTR (use_p);
3201 if (TREE_CODE (use) != SSA_NAME)
3202 continue;
3203
3204 if (SSA_NAME_IN_FREE_LIST (use))
3205 {
3206 error ("statement uses released SSA name:");
3207 debug_gimple_stmt (stmt);
3208 fprintf (stderr, "The use of ");
3209 print_generic_expr (stderr, use, 0);
3210 fprintf (stderr," should have been replaced\n");
3211 err = true;
3212 }
3213 }
3214 }
3215 }
3216
3217 if (err)
3218 internal_error ("cannot update SSA form");
3219
3220 timevar_pop (TV_TREE_STMT_VERIFY);
3221 #endif
3222
3223 timevar_push (TV_TREE_SSA_INCREMENTAL);
3224
3225 if (dump_file && (dump_flags & TDF_DETAILS))
3226 fprintf (dump_file, "\nUpdating SSA:\n");
3227
3228 if (!update_ssa_initialized_fn)
3229 init_update_ssa (cfun);
3230 else if (update_flags == TODO_update_ssa_only_virtuals)
3231 {
3232 /* If we only need to update virtuals, remove all the mappings for
3233 real names before proceeding. The caller is responsible for
3234 having dealt with the name mappings before calling update_ssa. */
3235 bitmap_clear (old_ssa_names);
3236 bitmap_clear (new_ssa_names);
3237 }
3238
3239 gcc_assert (update_ssa_initialized_fn == cfun);
3240
3241 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3242 if (!phis_to_rewrite.exists ())
3243 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3244 blocks_to_update = BITMAP_ALLOC (NULL);
3245
3246 /* Ensure that the dominance information is up-to-date. */
3247 calculate_dominance_info (CDI_DOMINATORS);
3248
3249 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3250
3251 /* If there are names defined in the replacement table, prepare
3252 definition and use sites for all the names in NEW_SSA_NAMES and
3253 OLD_SSA_NAMES. */
3254 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3255 {
3256 prepare_names_to_update (insert_phi_p);
3257
3258 /* If all the names in NEW_SSA_NAMES had been marked for
3259 removal, and there are no symbols to rename, then there's
3260 nothing else to do. */
3261 if (bitmap_first_set_bit (new_ssa_names) < 0
3262 && !cfun->gimple_df->ssa_renaming_needed)
3263 goto done;
3264 }
3265
3266 /* Next, determine the block at which to start the renaming process. */
3267 if (cfun->gimple_df->ssa_renaming_needed)
3268 {
3269 /* If we rename bare symbols initialize the mapping to
3270 auxiliar info we need to keep track of. */
3271 var_infos = new hash_table<var_info_hasher> (47);
3272
3273 /* If we have to rename some symbols from scratch, we need to
3274 start the process at the root of the CFG. FIXME, it should
3275 be possible to determine the nearest block that had a
3276 definition for each of the symbols that are marked for
3277 updating. For now this seems more work than it's worth. */
3278 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3279
3280 /* Traverse the CFG looking for existing definitions and uses of
3281 symbols in SSA operands. Mark interesting blocks and
3282 statements and set local live-in information for the PHI
3283 placement heuristics. */
3284 prepare_block_for_update (start_bb, insert_phi_p);
3285
3286 #ifdef ENABLE_CHECKING
3287 for (i = 1; i < num_ssa_names; ++i)
3288 {
3289 tree name = ssa_name (i);
3290 if (!name
3291 || virtual_operand_p (name))
3292 continue;
3293
3294 /* For all but virtual operands, which do not have SSA names
3295 with overlapping life ranges, ensure that symbols marked
3296 for renaming do not have existing SSA names associated with
3297 them as we do not re-write them out-of-SSA before going
3298 into SSA for the remaining symbol uses. */
3299 if (marked_for_renaming (SSA_NAME_VAR (name)))
3300 {
3301 fprintf (stderr, "Existing SSA name for symbol marked for "
3302 "renaming: ");
3303 print_generic_expr (stderr, name, TDF_SLIM);
3304 fprintf (stderr, "\n");
3305 internal_error ("SSA corruption");
3306 }
3307 }
3308 #endif
3309 }
3310 else
3311 {
3312 /* Otherwise, the entry block to the region is the nearest
3313 common dominator for the blocks in BLOCKS. */
3314 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3315 blocks_to_update);
3316 }
3317
3318 /* If requested, insert PHI nodes at the iterated dominance frontier
3319 of every block, creating new definitions for names in OLD_SSA_NAMES
3320 and for symbols found. */
3321 if (insert_phi_p)
3322 {
3323 bitmap_head *dfs;
3324
3325 /* If the caller requested PHI nodes to be added, compute
3326 dominance frontiers. */
3327 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3328 FOR_EACH_BB_FN (bb, cfun)
3329 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3330 compute_dominance_frontiers (dfs);
3331
3332 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3333 {
3334 sbitmap_iterator sbi;
3335
3336 /* insert_update_phi_nodes_for will call add_new_name_mapping
3337 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3338 will grow while we are traversing it (but it will not
3339 gain any new members). Copy OLD_SSA_NAMES to a temporary
3340 for traversal. */
3341 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3342 bitmap_copy (tmp, old_ssa_names);
3343 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3344 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3345 update_flags);
3346 sbitmap_free (tmp);
3347 }
3348
3349 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3350 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3351 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3352 update_flags);
3353
3354 FOR_EACH_BB_FN (bb, cfun)
3355 bitmap_clear (&dfs[bb->index]);
3356 free (dfs);
3357
3358 /* Insertion of PHI nodes may have added blocks to the region.
3359 We need to re-compute START_BB to include the newly added
3360 blocks. */
3361 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3362 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3363 blocks_to_update);
3364 }
3365
3366 /* Reset the current definition for name and symbol before renaming
3367 the sub-graph. */
3368 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3369 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3370
3371 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3372 get_var_info (sym)->info.current_def = NULL_TREE;
3373
3374 /* Now start the renaming process at START_BB. */
3375 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3376 bitmap_clear (interesting_blocks);
3377 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3378 bitmap_set_bit (interesting_blocks, i);
3379
3380 rewrite_blocks (start_bb, REWRITE_UPDATE);
3381
3382 sbitmap_free (interesting_blocks);
3383
3384 /* Debugging dumps. */
3385 if (dump_file)
3386 {
3387 int c;
3388 unsigned i;
3389
3390 dump_update_ssa (dump_file);
3391
3392 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3393 start_bb->index);
3394
3395 c = 0;
3396 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3397 c++;
3398 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3399 last_basic_block_for_fn (cfun));
3400 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3401 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3402
3403 if (dump_flags & TDF_DETAILS)
3404 {
3405 fprintf (dump_file, "Affected blocks:");
3406 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3407 fprintf (dump_file, " %u", i);
3408 fprintf (dump_file, "\n");
3409 }
3410
3411 fprintf (dump_file, "\n\n");
3412 }
3413
3414 /* Free allocated memory. */
3415 done:
3416 delete_update_ssa ();
3417
3418 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3419 }