]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
dojump.h: New header file.
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "flags.h"
37 #include "tm_p.h"
38 #include "langhooks.h"
39 #include "predict.h"
40 #include "hard-reg-set.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "cfganal.h"
45 #include "basic-block.h"
46 #include "gimple-pretty-print.h"
47 #include "hash-table.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "gimple-expr.h"
51 #include "is-a.h"
52 #include "gimple.h"
53 #include "gimple-iterator.h"
54 #include "gimple-ssa.h"
55 #include "tree-cfg.h"
56 #include "tree-phinodes.h"
57 #include "ssa-iterators.h"
58 #include "stringpool.h"
59 #include "tree-ssanames.h"
60 #include "tree-into-ssa.h"
61 #include "hashtab.h"
62 #include "rtl.h"
63 #include "statistics.h"
64 #include "real.h"
65 #include "fixed-value.h"
66 #include "insn-config.h"
67 #include "expmed.h"
68 #include "dojump.h"
69 #include "explow.h"
70 #include "calls.h"
71 #include "emit-rtl.h"
72 #include "varasm.h"
73 #include "stmt.h"
74 #include "expr.h"
75 #include "tree-dfa.h"
76 #include "tree-ssa.h"
77 #include "tree-inline.h"
78 #include "tree-pass.h"
79 #include "cfgloop.h"
80 #include "domwalk.h"
81 #include "params.h"
82 #include "diagnostic-core.h"
83
84 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
85
86 /* This file builds the SSA form for a function as described in:
87 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
88 Computing Static Single Assignment Form and the Control Dependence
89 Graph. ACM Transactions on Programming Languages and Systems,
90 13(4):451-490, October 1991. */
91
92 /* Structure to map a variable VAR to the set of blocks that contain
93 definitions for VAR. */
94 struct def_blocks_d
95 {
96 /* Blocks that contain definitions of VAR. Bit I will be set if the
97 Ith block contains a definition of VAR. */
98 bitmap def_blocks;
99
100 /* Blocks that contain a PHI node for VAR. */
101 bitmap phi_blocks;
102
103 /* Blocks where VAR is live-on-entry. Similar semantics as
104 DEF_BLOCKS. */
105 bitmap livein_blocks;
106 };
107
108 typedef struct def_blocks_d *def_blocks_p;
109
110
111 /* Stack of trees used to restore the global currdefs to its original
112 state after completing rewriting of a block and its dominator
113 children. Its elements have the following properties:
114
115 - An SSA_NAME (N) indicates that the current definition of the
116 underlying variable should be set to the given SSA_NAME. If the
117 symbol associated with the SSA_NAME is not a GIMPLE register, the
118 next slot in the stack must be a _DECL node (SYM). In this case,
119 the name N in the previous slot is the current reaching
120 definition for SYM.
121
122 - A _DECL node indicates that the underlying variable has no
123 current definition.
124
125 - A NULL node at the top entry is used to mark the last slot
126 associated with the current block. */
127 static vec<tree> block_defs_stack;
128
129
130 /* Set of existing SSA names being replaced by update_ssa. */
131 static sbitmap old_ssa_names;
132
133 /* Set of new SSA names being added by update_ssa. Note that both
134 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
135 the operations done on them are presence tests. */
136 static sbitmap new_ssa_names;
137
138 static sbitmap interesting_blocks;
139
140 /* Set of SSA names that have been marked to be released after they
141 were registered in the replacement table. They will be finally
142 released after we finish updating the SSA web. */
143 static bitmap names_to_release;
144
145 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
146 the to basic block with index I. Allocated once per compilation, *not*
147 released between different functions. */
148 static vec< vec<gphi *> > phis_to_rewrite;
149
150 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
151 static bitmap blocks_with_phis_to_rewrite;
152
153 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
154 to grow as the callers to create_new_def_for will create new names on
155 the fly.
156 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
157 need to find a reasonable growth strategy. */
158 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
159
160
161 /* The function the SSA updating data structures have been initialized for.
162 NULL if they need to be initialized by create_new_def_for. */
163 static struct function *update_ssa_initialized_fn = NULL;
164
165 /* Global data to attach to the main dominator walk structure. */
166 struct mark_def_sites_global_data
167 {
168 /* This bitmap contains the variables which are set before they
169 are used in a basic block. */
170 bitmap kills;
171 };
172
173 /* It is advantageous to avoid things like life analysis for variables which
174 do not need PHI nodes. This enum describes whether or not a particular
175 variable may need a PHI node. */
176
177 enum need_phi_state {
178 /* This is the default. If we are still in this state after finding
179 all the definition and use sites, then we will assume the variable
180 needs PHI nodes. This is probably an overly conservative assumption. */
181 NEED_PHI_STATE_UNKNOWN,
182
183 /* This state indicates that we have seen one or more sets of the
184 variable in a single basic block and that the sets dominate all
185 uses seen so far. If after finding all definition and use sites
186 we are still in this state, then the variable does not need any
187 PHI nodes. */
188 NEED_PHI_STATE_NO,
189
190 /* This state indicates that we have either seen multiple definitions of
191 the variable in multiple blocks, or that we encountered a use in a
192 block that was not dominated by the block containing the set(s) of
193 this variable. This variable is assumed to need PHI nodes. */
194 NEED_PHI_STATE_MAYBE
195 };
196
197 /* Information stored for both SSA names and decls. */
198 struct common_info_d
199 {
200 /* This field indicates whether or not the variable may need PHI nodes.
201 See the enum's definition for more detailed information about the
202 states. */
203 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
204
205 /* The current reaching definition replacing this var. */
206 tree current_def;
207
208 /* Definitions for this var. */
209 struct def_blocks_d def_blocks;
210 };
211
212 /* The information associated with decls and SSA names. */
213 typedef struct common_info_d *common_info_p;
214
215 /* Information stored for decls. */
216 struct var_info_d
217 {
218 /* The variable. */
219 tree var;
220
221 /* Information stored for both SSA names and decls. */
222 struct common_info_d info;
223 };
224
225 /* The information associated with decls. */
226 typedef struct var_info_d *var_info_p;
227
228
229 /* VAR_INFOS hashtable helpers. */
230
231 struct var_info_hasher : typed_free_remove <var_info_d>
232 {
233 typedef var_info_d *value_type;
234 typedef var_info_d *compare_type;
235 typedef int store_values_directly;
236 static inline hashval_t hash (const value_type &);
237 static inline bool equal (const value_type &, const compare_type &);
238 };
239
240 inline hashval_t
241 var_info_hasher::hash (const value_type &p)
242 {
243 return DECL_UID (p->var);
244 }
245
246 inline bool
247 var_info_hasher::equal (const value_type &p1, const compare_type &p2)
248 {
249 return p1->var == p2->var;
250 }
251
252
253 /* Each entry in VAR_INFOS contains an element of type STRUCT
254 VAR_INFO_D. */
255 static hash_table<var_info_hasher> *var_infos;
256
257
258 /* Information stored for SSA names. */
259 struct ssa_name_info
260 {
261 /* Age of this record (so that info_for_ssa_name table can be cleared
262 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
263 are assumed to be null. */
264 unsigned age;
265
266 /* Replacement mappings, allocated from update_ssa_obstack. */
267 bitmap repl_set;
268
269 /* Information stored for both SSA names and decls. */
270 struct common_info_d info;
271 };
272
273 /* The information associated with names. */
274 typedef struct ssa_name_info *ssa_name_info_p;
275
276 static vec<ssa_name_info_p> info_for_ssa_name;
277 static unsigned current_info_for_ssa_name_age;
278
279 static bitmap_obstack update_ssa_obstack;
280
281 /* The set of blocks affected by update_ssa. */
282 static bitmap blocks_to_update;
283
284 /* The main entry point to the SSA renamer (rewrite_blocks) may be
285 called several times to do different, but related, tasks.
286 Initially, we need it to rename the whole program into SSA form.
287 At other times, we may need it to only rename into SSA newly
288 exposed symbols. Finally, we can also call it to incrementally fix
289 an already built SSA web. */
290 enum rewrite_mode {
291 /* Convert the whole function into SSA form. */
292 REWRITE_ALL,
293
294 /* Incrementally update the SSA web by replacing existing SSA
295 names with new ones. See update_ssa for details. */
296 REWRITE_UPDATE
297 };
298
299 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
300 static bitmap symbols_to_rename_set;
301 static vec<tree> symbols_to_rename;
302
303 /* Mark SYM for renaming. */
304
305 static void
306 mark_for_renaming (tree sym)
307 {
308 if (!symbols_to_rename_set)
309 symbols_to_rename_set = BITMAP_ALLOC (NULL);
310 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
311 symbols_to_rename.safe_push (sym);
312 }
313
314 /* Return true if SYM is marked for renaming. */
315
316 static bool
317 marked_for_renaming (tree sym)
318 {
319 if (!symbols_to_rename_set || sym == NULL_TREE)
320 return false;
321 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
322 }
323
324
325 /* Return true if STMT needs to be rewritten. When renaming a subset
326 of the variables, not all statements will be processed. This is
327 decided in mark_def_sites. */
328
329 static inline bool
330 rewrite_uses_p (gimple stmt)
331 {
332 return gimple_visited_p (stmt);
333 }
334
335
336 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
337
338 static inline void
339 set_rewrite_uses (gimple stmt, bool rewrite_p)
340 {
341 gimple_set_visited (stmt, rewrite_p);
342 }
343
344
345 /* Return true if the DEFs created by statement STMT should be
346 registered when marking new definition sites. This is slightly
347 different than rewrite_uses_p: it's used by update_ssa to
348 distinguish statements that need to have both uses and defs
349 processed from those that only need to have their defs processed.
350 Statements that define new SSA names only need to have their defs
351 registered, but they don't need to have their uses renamed. */
352
353 static inline bool
354 register_defs_p (gimple stmt)
355 {
356 return gimple_plf (stmt, GF_PLF_1) != 0;
357 }
358
359
360 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
361
362 static inline void
363 set_register_defs (gimple stmt, bool register_defs_p)
364 {
365 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
366 }
367
368
369 /* Get the information associated with NAME. */
370
371 static inline ssa_name_info_p
372 get_ssa_name_ann (tree name)
373 {
374 unsigned ver = SSA_NAME_VERSION (name);
375 unsigned len = info_for_ssa_name.length ();
376 struct ssa_name_info *info;
377
378 /* Re-allocate the vector at most once per update/into-SSA. */
379 if (ver >= len)
380 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
381
382 /* But allocate infos lazily. */
383 info = info_for_ssa_name[ver];
384 if (!info)
385 {
386 info = XCNEW (struct ssa_name_info);
387 info->age = current_info_for_ssa_name_age;
388 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
389 info_for_ssa_name[ver] = info;
390 }
391
392 if (info->age < current_info_for_ssa_name_age)
393 {
394 info->age = current_info_for_ssa_name_age;
395 info->repl_set = NULL;
396 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
397 info->info.current_def = NULL_TREE;
398 info->info.def_blocks.def_blocks = NULL;
399 info->info.def_blocks.phi_blocks = NULL;
400 info->info.def_blocks.livein_blocks = NULL;
401 }
402
403 return info;
404 }
405
406 /* Return and allocate the auxiliar information for DECL. */
407
408 static inline var_info_p
409 get_var_info (tree decl)
410 {
411 struct var_info_d vi;
412 var_info_d **slot;
413 vi.var = decl;
414 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
415 if (*slot == NULL)
416 {
417 var_info_p v = XCNEW (struct var_info_d);
418 v->var = decl;
419 *slot = v;
420 return v;
421 }
422 return *slot;
423 }
424
425
426 /* Clears info for SSA names. */
427
428 static void
429 clear_ssa_name_info (void)
430 {
431 current_info_for_ssa_name_age++;
432
433 /* If current_info_for_ssa_name_age wraps we use stale information.
434 Asser that this does not happen. */
435 gcc_assert (current_info_for_ssa_name_age != 0);
436 }
437
438
439 /* Get access to the auxiliar information stored per SSA name or decl. */
440
441 static inline common_info_p
442 get_common_info (tree var)
443 {
444 if (TREE_CODE (var) == SSA_NAME)
445 return &get_ssa_name_ann (var)->info;
446 else
447 return &get_var_info (var)->info;
448 }
449
450
451 /* Return the current definition for VAR. */
452
453 tree
454 get_current_def (tree var)
455 {
456 return get_common_info (var)->current_def;
457 }
458
459
460 /* Sets current definition of VAR to DEF. */
461
462 void
463 set_current_def (tree var, tree def)
464 {
465 get_common_info (var)->current_def = def;
466 }
467
468 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
469 all statements in basic block BB. */
470
471 static void
472 initialize_flags_in_bb (basic_block bb)
473 {
474 gimple stmt;
475 gimple_stmt_iterator gsi;
476
477 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
478 {
479 gimple phi = gsi_stmt (gsi);
480 set_rewrite_uses (phi, false);
481 set_register_defs (phi, false);
482 }
483
484 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
485 {
486 stmt = gsi_stmt (gsi);
487
488 /* We are going to use the operand cache API, such as
489 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
490 cache for each statement should be up-to-date. */
491 gcc_checking_assert (!gimple_modified_p (stmt));
492 set_rewrite_uses (stmt, false);
493 set_register_defs (stmt, false);
494 }
495 }
496
497 /* Mark block BB as interesting for update_ssa. */
498
499 static void
500 mark_block_for_update (basic_block bb)
501 {
502 gcc_checking_assert (blocks_to_update != NULL);
503 if (!bitmap_set_bit (blocks_to_update, bb->index))
504 return;
505 initialize_flags_in_bb (bb);
506 }
507
508 /* Return the set of blocks where variable VAR is defined and the blocks
509 where VAR is live on entry (livein). If no entry is found in
510 DEF_BLOCKS, a new one is created and returned. */
511
512 static inline struct def_blocks_d *
513 get_def_blocks_for (common_info_p info)
514 {
515 struct def_blocks_d *db_p = &info->def_blocks;
516 if (!db_p->def_blocks)
517 {
518 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
519 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
520 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
521 }
522
523 return db_p;
524 }
525
526
527 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
528 VAR is defined by a PHI node. */
529
530 static void
531 set_def_block (tree var, basic_block bb, bool phi_p)
532 {
533 struct def_blocks_d *db_p;
534 common_info_p info;
535
536 info = get_common_info (var);
537 db_p = get_def_blocks_for (info);
538
539 /* Set the bit corresponding to the block where VAR is defined. */
540 bitmap_set_bit (db_p->def_blocks, bb->index);
541 if (phi_p)
542 bitmap_set_bit (db_p->phi_blocks, bb->index);
543
544 /* Keep track of whether or not we may need to insert PHI nodes.
545
546 If we are in the UNKNOWN state, then this is the first definition
547 of VAR. Additionally, we have not seen any uses of VAR yet, so
548 we do not need a PHI node for this variable at this time (i.e.,
549 transition to NEED_PHI_STATE_NO).
550
551 If we are in any other state, then we either have multiple definitions
552 of this variable occurring in different blocks or we saw a use of the
553 variable which was not dominated by the block containing the
554 definition(s). In this case we may need a PHI node, so enter
555 state NEED_PHI_STATE_MAYBE. */
556 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
557 info->need_phi_state = NEED_PHI_STATE_NO;
558 else
559 info->need_phi_state = NEED_PHI_STATE_MAYBE;
560 }
561
562
563 /* Mark block BB as having VAR live at the entry to BB. */
564
565 static void
566 set_livein_block (tree var, basic_block bb)
567 {
568 common_info_p info;
569 struct def_blocks_d *db_p;
570
571 info = get_common_info (var);
572 db_p = get_def_blocks_for (info);
573
574 /* Set the bit corresponding to the block where VAR is live in. */
575 bitmap_set_bit (db_p->livein_blocks, bb->index);
576
577 /* Keep track of whether or not we may need to insert PHI nodes.
578
579 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
580 by the single block containing the definition(s) of this variable. If
581 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
582 NEED_PHI_STATE_MAYBE. */
583 if (info->need_phi_state == NEED_PHI_STATE_NO)
584 {
585 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
586
587 if (def_block_index == -1
588 || ! dominated_by_p (CDI_DOMINATORS, bb,
589 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
590 info->need_phi_state = NEED_PHI_STATE_MAYBE;
591 }
592 else
593 info->need_phi_state = NEED_PHI_STATE_MAYBE;
594 }
595
596
597 /* Return true if NAME is in OLD_SSA_NAMES. */
598
599 static inline bool
600 is_old_name (tree name)
601 {
602 unsigned ver = SSA_NAME_VERSION (name);
603 if (!old_ssa_names)
604 return false;
605 return (ver < SBITMAP_SIZE (old_ssa_names)
606 && bitmap_bit_p (old_ssa_names, ver));
607 }
608
609
610 /* Return true if NAME is in NEW_SSA_NAMES. */
611
612 static inline bool
613 is_new_name (tree name)
614 {
615 unsigned ver = SSA_NAME_VERSION (name);
616 if (!new_ssa_names)
617 return false;
618 return (ver < SBITMAP_SIZE (new_ssa_names)
619 && bitmap_bit_p (new_ssa_names, ver));
620 }
621
622
623 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
624
625 static inline bitmap
626 names_replaced_by (tree new_tree)
627 {
628 return get_ssa_name_ann (new_tree)->repl_set;
629 }
630
631
632 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
633
634 static inline void
635 add_to_repl_tbl (tree new_tree, tree old)
636 {
637 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
638 if (!*set)
639 *set = BITMAP_ALLOC (&update_ssa_obstack);
640 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
641 }
642
643
644 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
645 represents the set of names O_1 ... O_j replaced by N_i. This is
646 used by update_ssa and its helpers to introduce new SSA names in an
647 already formed SSA web. */
648
649 static void
650 add_new_name_mapping (tree new_tree, tree old)
651 {
652 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
653 gcc_checking_assert (new_tree != old
654 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
655
656 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
657 caller may have created new names since the set was created. */
658 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
659 {
660 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
661 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
662 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
663 }
664
665 /* Update the REPL_TBL table. */
666 add_to_repl_tbl (new_tree, old);
667
668 /* If OLD had already been registered as a new name, then all the
669 names that OLD replaces should also be replaced by NEW_TREE. */
670 if (is_new_name (old))
671 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
672
673 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
674 respectively. */
675 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
676 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
677 }
678
679
680 /* Call back for walk_dominator_tree used to collect definition sites
681 for every variable in the function. For every statement S in block
682 BB:
683
684 1- Variables defined by S in the DEFS of S are marked in the bitmap
685 KILLS.
686
687 2- If S uses a variable VAR and there is no preceding kill of VAR,
688 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
689
690 This information is used to determine which variables are live
691 across block boundaries to reduce the number of PHI nodes
692 we create. */
693
694 static void
695 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
696 {
697 tree def;
698 use_operand_p use_p;
699 ssa_op_iter iter;
700
701 /* Since this is the first time that we rewrite the program into SSA
702 form, force an operand scan on every statement. */
703 update_stmt (stmt);
704
705 gcc_checking_assert (blocks_to_update == NULL);
706 set_register_defs (stmt, false);
707 set_rewrite_uses (stmt, false);
708
709 if (is_gimple_debug (stmt))
710 {
711 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
712 {
713 tree sym = USE_FROM_PTR (use_p);
714 gcc_checking_assert (DECL_P (sym));
715 set_rewrite_uses (stmt, true);
716 }
717 if (rewrite_uses_p (stmt))
718 bitmap_set_bit (interesting_blocks, bb->index);
719 return;
720 }
721
722 /* If a variable is used before being set, then the variable is live
723 across a block boundary, so mark it live-on-entry to BB. */
724 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
725 {
726 tree sym = USE_FROM_PTR (use_p);
727 gcc_checking_assert (DECL_P (sym));
728 if (!bitmap_bit_p (kills, DECL_UID (sym)))
729 set_livein_block (sym, bb);
730 set_rewrite_uses (stmt, true);
731 }
732
733 /* Now process the defs. Mark BB as the definition block and add
734 each def to the set of killed symbols. */
735 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
736 {
737 gcc_checking_assert (DECL_P (def));
738 set_def_block (def, bb, false);
739 bitmap_set_bit (kills, DECL_UID (def));
740 set_register_defs (stmt, true);
741 }
742
743 /* If we found the statement interesting then also mark the block BB
744 as interesting. */
745 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
746 bitmap_set_bit (interesting_blocks, bb->index);
747 }
748
749 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
750 in the dfs numbering of the dominance tree. */
751
752 struct dom_dfsnum
753 {
754 /* Basic block whose index this entry corresponds to. */
755 unsigned bb_index;
756
757 /* The dfs number of this node. */
758 unsigned dfs_num;
759 };
760
761 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
762 for qsort. */
763
764 static int
765 cmp_dfsnum (const void *a, const void *b)
766 {
767 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
768 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
769
770 return (int) da->dfs_num - (int) db->dfs_num;
771 }
772
773 /* Among the intervals starting at the N points specified in DEFS, find
774 the one that contains S, and return its bb_index. */
775
776 static unsigned
777 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
778 {
779 unsigned f = 0, t = n, m;
780
781 while (t > f + 1)
782 {
783 m = (f + t) / 2;
784 if (defs[m].dfs_num <= s)
785 f = m;
786 else
787 t = m;
788 }
789
790 return defs[f].bb_index;
791 }
792
793 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
794 KILLS is a bitmap of blocks where the value is defined before any use. */
795
796 static void
797 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
798 {
799 bitmap_iterator bi;
800 unsigned i, b, p, u, top;
801 bitmap live_phis;
802 basic_block def_bb, use_bb;
803 edge e;
804 edge_iterator ei;
805 bitmap to_remove;
806 struct dom_dfsnum *defs;
807 unsigned n_defs, adef;
808
809 if (bitmap_empty_p (uses))
810 {
811 bitmap_clear (phis);
812 return;
813 }
814
815 /* The phi must dominate a use, or an argument of a live phi. Also, we
816 do not create any phi nodes in def blocks, unless they are also livein. */
817 to_remove = BITMAP_ALLOC (NULL);
818 bitmap_and_compl (to_remove, kills, uses);
819 bitmap_and_compl_into (phis, to_remove);
820 if (bitmap_empty_p (phis))
821 {
822 BITMAP_FREE (to_remove);
823 return;
824 }
825
826 /* We want to remove the unnecessary phi nodes, but we do not want to compute
827 liveness information, as that may be linear in the size of CFG, and if
828 there are lot of different variables to rewrite, this may lead to quadratic
829 behavior.
830
831 Instead, we basically emulate standard dce. We put all uses to worklist,
832 then for each of them find the nearest def that dominates them. If this
833 def is a phi node, we mark it live, and if it was not live before, we
834 add the predecessors of its basic block to the worklist.
835
836 To quickly locate the nearest def that dominates use, we use dfs numbering
837 of the dominance tree (that is already available in order to speed up
838 queries). For each def, we have the interval given by the dfs number on
839 entry to and on exit from the corresponding subtree in the dominance tree.
840 The nearest dominator for a given use is the smallest of these intervals
841 that contains entry and exit dfs numbers for the basic block with the use.
842 If we store the bounds for all the uses to an array and sort it, we can
843 locate the nearest dominating def in logarithmic time by binary search.*/
844 bitmap_ior (to_remove, kills, phis);
845 n_defs = bitmap_count_bits (to_remove);
846 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
847 defs[0].bb_index = 1;
848 defs[0].dfs_num = 0;
849 adef = 1;
850 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
851 {
852 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
853 defs[adef].bb_index = i;
854 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
855 defs[adef + 1].bb_index = i;
856 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
857 adef += 2;
858 }
859 BITMAP_FREE (to_remove);
860 gcc_assert (adef == 2 * n_defs + 1);
861 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
862 gcc_assert (defs[0].bb_index == 1);
863
864 /* Now each DEFS entry contains the number of the basic block to that the
865 dfs number corresponds. Change them to the number of basic block that
866 corresponds to the interval following the dfs number. Also, for the
867 dfs_out numbers, increase the dfs number by one (so that it corresponds
868 to the start of the following interval, not to the end of the current
869 one). We use WORKLIST as a stack. */
870 auto_vec<int> worklist (n_defs + 1);
871 worklist.quick_push (1);
872 top = 1;
873 n_defs = 1;
874 for (i = 1; i < adef; i++)
875 {
876 b = defs[i].bb_index;
877 if (b == top)
878 {
879 /* This is a closing element. Interval corresponding to the top
880 of the stack after removing it follows. */
881 worklist.pop ();
882 top = worklist[worklist.length () - 1];
883 defs[n_defs].bb_index = top;
884 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
885 }
886 else
887 {
888 /* Opening element. Nothing to do, just push it to the stack and move
889 it to the correct position. */
890 defs[n_defs].bb_index = defs[i].bb_index;
891 defs[n_defs].dfs_num = defs[i].dfs_num;
892 worklist.quick_push (b);
893 top = b;
894 }
895
896 /* If this interval starts at the same point as the previous one, cancel
897 the previous one. */
898 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
899 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
900 else
901 n_defs++;
902 }
903 worklist.pop ();
904 gcc_assert (worklist.is_empty ());
905
906 /* Now process the uses. */
907 live_phis = BITMAP_ALLOC (NULL);
908 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
909 {
910 worklist.safe_push (i);
911 }
912
913 while (!worklist.is_empty ())
914 {
915 b = worklist.pop ();
916 if (b == ENTRY_BLOCK)
917 continue;
918
919 /* If there is a phi node in USE_BB, it is made live. Otherwise,
920 find the def that dominates the immediate dominator of USE_BB
921 (the kill in USE_BB does not dominate the use). */
922 if (bitmap_bit_p (phis, b))
923 p = b;
924 else
925 {
926 use_bb = get_immediate_dominator (CDI_DOMINATORS,
927 BASIC_BLOCK_FOR_FN (cfun, b));
928 p = find_dfsnum_interval (defs, n_defs,
929 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
930 if (!bitmap_bit_p (phis, p))
931 continue;
932 }
933
934 /* If the phi node is already live, there is nothing to do. */
935 if (!bitmap_set_bit (live_phis, p))
936 continue;
937
938 /* Add the new uses to the worklist. */
939 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
940 FOR_EACH_EDGE (e, ei, def_bb->preds)
941 {
942 u = e->src->index;
943 if (bitmap_bit_p (uses, u))
944 continue;
945
946 /* In case there is a kill directly in the use block, do not record
947 the use (this is also necessary for correctness, as we assume that
948 uses dominated by a def directly in their block have been filtered
949 out before). */
950 if (bitmap_bit_p (kills, u))
951 continue;
952
953 bitmap_set_bit (uses, u);
954 worklist.safe_push (u);
955 }
956 }
957
958 bitmap_copy (phis, live_phis);
959 BITMAP_FREE (live_phis);
960 free (defs);
961 }
962
963 /* Return the set of blocks where variable VAR is defined and the blocks
964 where VAR is live on entry (livein). Return NULL, if no entry is
965 found in DEF_BLOCKS. */
966
967 static inline struct def_blocks_d *
968 find_def_blocks_for (tree var)
969 {
970 def_blocks_p p = &get_common_info (var)->def_blocks;
971 if (!p->def_blocks)
972 return NULL;
973 return p;
974 }
975
976
977 /* Marks phi node PHI in basic block BB for rewrite. */
978
979 static void
980 mark_phi_for_rewrite (basic_block bb, gphi *phi)
981 {
982 vec<gphi *> phis;
983 unsigned n, idx = bb->index;
984
985 if (rewrite_uses_p (phi))
986 return;
987
988 set_rewrite_uses (phi, true);
989
990 if (!blocks_with_phis_to_rewrite)
991 return;
992
993 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
994
995 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
996 if (phis_to_rewrite.length () < n)
997 phis_to_rewrite.safe_grow_cleared (n);
998
999 phis = phis_to_rewrite[idx];
1000 phis.reserve (10);
1001
1002 phis.safe_push (phi);
1003 phis_to_rewrite[idx] = phis;
1004 }
1005
1006 /* Insert PHI nodes for variable VAR using the iterated dominance
1007 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1008 function assumes that the caller is incrementally updating the
1009 existing SSA form, in which case VAR may be an SSA name instead of
1010 a symbol.
1011
1012 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1013 PHI node for VAR. On exit, only the nodes that received a PHI node
1014 for VAR will be present in PHI_INSERTION_POINTS. */
1015
1016 static void
1017 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1018 {
1019 unsigned bb_index;
1020 edge e;
1021 gphi *phi;
1022 basic_block bb;
1023 bitmap_iterator bi;
1024 struct def_blocks_d *def_map = find_def_blocks_for (var);
1025
1026 /* Remove the blocks where we already have PHI nodes for VAR. */
1027 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1028
1029 /* Remove obviously useless phi nodes. */
1030 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1031 def_map->livein_blocks);
1032
1033 /* And insert the PHI nodes. */
1034 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1035 {
1036 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1037 if (update_p)
1038 mark_block_for_update (bb);
1039
1040 if (dump_file && (dump_flags & TDF_DETAILS))
1041 {
1042 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1043 print_generic_expr (dump_file, var, TDF_SLIM);
1044 fprintf (dump_file, "\n");
1045 }
1046 phi = NULL;
1047
1048 if (TREE_CODE (var) == SSA_NAME)
1049 {
1050 /* If we are rewriting SSA names, create the LHS of the PHI
1051 node by duplicating VAR. This is useful in the case of
1052 pointers, to also duplicate pointer attributes (alias
1053 information, in particular). */
1054 edge_iterator ei;
1055 tree new_lhs;
1056
1057 gcc_checking_assert (update_p);
1058 new_lhs = duplicate_ssa_name (var, NULL);
1059 phi = create_phi_node (new_lhs, bb);
1060 add_new_name_mapping (new_lhs, var);
1061
1062 /* Add VAR to every argument slot of PHI. We need VAR in
1063 every argument so that rewrite_update_phi_arguments knows
1064 which name is this PHI node replacing. If VAR is a
1065 symbol marked for renaming, this is not necessary, the
1066 renamer will use the symbol on the LHS to get its
1067 reaching definition. */
1068 FOR_EACH_EDGE (e, ei, bb->preds)
1069 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1070 }
1071 else
1072 {
1073 tree tracked_var;
1074
1075 gcc_checking_assert (DECL_P (var));
1076 phi = create_phi_node (var, bb);
1077
1078 tracked_var = target_for_debug_bind (var);
1079 if (tracked_var)
1080 {
1081 gimple note = gimple_build_debug_bind (tracked_var,
1082 PHI_RESULT (phi),
1083 phi);
1084 gimple_stmt_iterator si = gsi_after_labels (bb);
1085 gsi_insert_before (&si, note, GSI_SAME_STMT);
1086 }
1087 }
1088
1089 /* Mark this PHI node as interesting for update_ssa. */
1090 set_register_defs (phi, true);
1091 mark_phi_for_rewrite (bb, phi);
1092 }
1093 }
1094
1095 /* Sort var_infos after DECL_UID of their var. */
1096
1097 static int
1098 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1099 {
1100 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1101 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1102 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1103 return -1;
1104 else
1105 return 1;
1106 }
1107
1108 /* Insert PHI nodes at the dominance frontier of blocks with variable
1109 definitions. DFS contains the dominance frontier information for
1110 the flowgraph. */
1111
1112 static void
1113 insert_phi_nodes (bitmap_head *dfs)
1114 {
1115 hash_table<var_info_hasher>::iterator hi;
1116 unsigned i;
1117 var_info_p info;
1118
1119 timevar_push (TV_TREE_INSERT_PHI_NODES);
1120
1121 auto_vec<var_info_p> vars (var_infos->elements ());
1122 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi)
1123 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1124 vars.quick_push (info);
1125
1126 /* Do two stages to avoid code generation differences for UID
1127 differences but no UID ordering differences. */
1128 vars.qsort (insert_phi_nodes_compare_var_infos);
1129
1130 FOR_EACH_VEC_ELT (vars, i, info)
1131 {
1132 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1133 insert_phi_nodes_for (info->var, idf, false);
1134 BITMAP_FREE (idf);
1135 }
1136
1137 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1138 }
1139
1140
1141 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1142 register DEF (an SSA_NAME) to be a new definition for SYM. */
1143
1144 static void
1145 register_new_def (tree def, tree sym)
1146 {
1147 common_info_p info = get_common_info (sym);
1148 tree currdef;
1149
1150 /* If this variable is set in a single basic block and all uses are
1151 dominated by the set(s) in that single basic block, then there is
1152 no reason to record anything for this variable in the block local
1153 definition stacks. Doing so just wastes time and memory.
1154
1155 This is the same test to prune the set of variables which may
1156 need PHI nodes. So we just use that information since it's already
1157 computed and available for us to use. */
1158 if (info->need_phi_state == NEED_PHI_STATE_NO)
1159 {
1160 info->current_def = def;
1161 return;
1162 }
1163
1164 currdef = info->current_def;
1165
1166 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1167 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1168 in the stack so that we know which symbol is being defined by
1169 this SSA name when we unwind the stack. */
1170 if (currdef && !is_gimple_reg (sym))
1171 block_defs_stack.safe_push (sym);
1172
1173 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1174 stack is later used by the dominator tree callbacks to restore
1175 the reaching definitions for all the variables defined in the
1176 block after a recursive visit to all its immediately dominated
1177 blocks. If there is no current reaching definition, then just
1178 record the underlying _DECL node. */
1179 block_defs_stack.safe_push (currdef ? currdef : sym);
1180
1181 /* Set the current reaching definition for SYM to be DEF. */
1182 info->current_def = def;
1183 }
1184
1185
1186 /* Perform a depth-first traversal of the dominator tree looking for
1187 variables to rename. BB is the block where to start searching.
1188 Renaming is a five step process:
1189
1190 1- Every definition made by PHI nodes at the start of the blocks is
1191 registered as the current definition for the corresponding variable.
1192
1193 2- Every statement in BB is rewritten. USE and VUSE operands are
1194 rewritten with their corresponding reaching definition. DEF and
1195 VDEF targets are registered as new definitions.
1196
1197 3- All the PHI nodes in successor blocks of BB are visited. The
1198 argument corresponding to BB is replaced with its current reaching
1199 definition.
1200
1201 4- Recursively rewrite every dominator child block of BB.
1202
1203 5- Restore (in reverse order) the current reaching definition for every
1204 new definition introduced in this block. This is done so that when
1205 we return from the recursive call, all the current reaching
1206 definitions are restored to the names that were valid in the
1207 dominator parent of BB. */
1208
1209 /* Return the current definition for variable VAR. If none is found,
1210 create a new SSA name to act as the zeroth definition for VAR. */
1211
1212 static tree
1213 get_reaching_def (tree var)
1214 {
1215 common_info_p info = get_common_info (var);
1216 tree currdef;
1217
1218 /* Lookup the current reaching definition for VAR. */
1219 currdef = info->current_def;
1220
1221 /* If there is no reaching definition for VAR, create and register a
1222 default definition for it (if needed). */
1223 if (currdef == NULL_TREE)
1224 {
1225 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1226 currdef = get_or_create_ssa_default_def (cfun, sym);
1227 }
1228
1229 /* Return the current reaching definition for VAR, or the default
1230 definition, if we had to create one. */
1231 return currdef;
1232 }
1233
1234
1235 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1236
1237 static void
1238 rewrite_debug_stmt_uses (gimple stmt)
1239 {
1240 use_operand_p use_p;
1241 ssa_op_iter iter;
1242 bool update = false;
1243
1244 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1245 {
1246 tree var = USE_FROM_PTR (use_p), def;
1247 common_info_p info = get_common_info (var);
1248 gcc_checking_assert (DECL_P (var));
1249 def = info->current_def;
1250 if (!def)
1251 {
1252 if (TREE_CODE (var) == PARM_DECL
1253 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1254 {
1255 gimple_stmt_iterator gsi
1256 =
1257 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1258 int lim;
1259 /* Search a few source bind stmts at the start of first bb to
1260 see if a DEBUG_EXPR_DECL can't be reused. */
1261 for (lim = 32;
1262 !gsi_end_p (gsi) && lim > 0;
1263 gsi_next (&gsi), lim--)
1264 {
1265 gimple gstmt = gsi_stmt (gsi);
1266 if (!gimple_debug_source_bind_p (gstmt))
1267 break;
1268 if (gimple_debug_source_bind_get_value (gstmt) == var)
1269 {
1270 def = gimple_debug_source_bind_get_var (gstmt);
1271 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1272 break;
1273 else
1274 def = NULL_TREE;
1275 }
1276 }
1277 /* If not, add a new source bind stmt. */
1278 if (def == NULL_TREE)
1279 {
1280 gimple def_temp;
1281 def = make_node (DEBUG_EXPR_DECL);
1282 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1283 DECL_ARTIFICIAL (def) = 1;
1284 TREE_TYPE (def) = TREE_TYPE (var);
1285 DECL_MODE (def) = DECL_MODE (var);
1286 gsi =
1287 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1288 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1289 }
1290 update = true;
1291 }
1292 }
1293 else
1294 {
1295 /* Check if info->current_def can be trusted. */
1296 basic_block bb = gimple_bb (stmt);
1297 basic_block def_bb
1298 = SSA_NAME_IS_DEFAULT_DEF (def)
1299 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1300
1301 /* If definition is in current bb, it is fine. */
1302 if (bb == def_bb)
1303 ;
1304 /* If definition bb doesn't dominate the current bb,
1305 it can't be used. */
1306 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1307 def = NULL;
1308 /* If there is just one definition and dominates the current
1309 bb, it is fine. */
1310 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1311 ;
1312 else
1313 {
1314 struct def_blocks_d *db_p = get_def_blocks_for (info);
1315
1316 /* If there are some non-debug uses in the current bb,
1317 it is fine. */
1318 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1319 ;
1320 /* Otherwise give up for now. */
1321 else
1322 def = NULL;
1323 }
1324 }
1325 if (def == NULL)
1326 {
1327 gimple_debug_bind_reset_value (stmt);
1328 update_stmt (stmt);
1329 return;
1330 }
1331 SET_USE (use_p, def);
1332 }
1333 if (update)
1334 update_stmt (stmt);
1335 }
1336
1337 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1338 the block with its immediate reaching definitions. Update the current
1339 definition of a variable when a new real or virtual definition is found. */
1340
1341 static void
1342 rewrite_stmt (gimple_stmt_iterator *si)
1343 {
1344 use_operand_p use_p;
1345 def_operand_p def_p;
1346 ssa_op_iter iter;
1347 gimple stmt = gsi_stmt (*si);
1348
1349 /* If mark_def_sites decided that we don't need to rewrite this
1350 statement, ignore it. */
1351 gcc_assert (blocks_to_update == NULL);
1352 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1353 return;
1354
1355 if (dump_file && (dump_flags & TDF_DETAILS))
1356 {
1357 fprintf (dump_file, "Renaming statement ");
1358 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1359 fprintf (dump_file, "\n");
1360 }
1361
1362 /* Step 1. Rewrite USES in the statement. */
1363 if (rewrite_uses_p (stmt))
1364 {
1365 if (is_gimple_debug (stmt))
1366 rewrite_debug_stmt_uses (stmt);
1367 else
1368 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1369 {
1370 tree var = USE_FROM_PTR (use_p);
1371 gcc_checking_assert (DECL_P (var));
1372 SET_USE (use_p, get_reaching_def (var));
1373 }
1374 }
1375
1376 /* Step 2. Register the statement's DEF operands. */
1377 if (register_defs_p (stmt))
1378 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1379 {
1380 tree var = DEF_FROM_PTR (def_p);
1381 tree name;
1382 tree tracked_var;
1383
1384 gcc_checking_assert (DECL_P (var));
1385
1386 if (gimple_clobber_p (stmt)
1387 && is_gimple_reg (var))
1388 {
1389 /* If we rewrite a DECL into SSA form then drop its
1390 clobber stmts and replace uses with a new default def. */
1391 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1392 && !gimple_vdef (stmt));
1393 gsi_replace (si, gimple_build_nop (), true);
1394 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1395 break;
1396 }
1397
1398 name = make_ssa_name (var, stmt);
1399 SET_DEF (def_p, name);
1400 register_new_def (DEF_FROM_PTR (def_p), var);
1401
1402 tracked_var = target_for_debug_bind (var);
1403 if (tracked_var)
1404 {
1405 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1406 gsi_insert_after (si, note, GSI_SAME_STMT);
1407 }
1408 }
1409 }
1410
1411
1412 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1413 PHI nodes. For every PHI node found, add a new argument containing the
1414 current reaching definition for the variable and the edge through which
1415 that definition is reaching the PHI node. */
1416
1417 static void
1418 rewrite_add_phi_arguments (basic_block bb)
1419 {
1420 edge e;
1421 edge_iterator ei;
1422
1423 FOR_EACH_EDGE (e, ei, bb->succs)
1424 {
1425 gphi *phi;
1426 gphi_iterator gsi;
1427
1428 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1429 gsi_next (&gsi))
1430 {
1431 tree currdef, res;
1432 location_t loc;
1433
1434 phi = gsi.phi ();
1435 res = gimple_phi_result (phi);
1436 currdef = get_reaching_def (SSA_NAME_VAR (res));
1437 /* Virtual operand PHI args do not need a location. */
1438 if (virtual_operand_p (res))
1439 loc = UNKNOWN_LOCATION;
1440 else
1441 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1442 add_phi_arg (phi, currdef, e, loc);
1443 }
1444 }
1445 }
1446
1447 class rewrite_dom_walker : public dom_walker
1448 {
1449 public:
1450 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1451
1452 virtual void before_dom_children (basic_block);
1453 virtual void after_dom_children (basic_block);
1454 };
1455
1456 /* SSA Rewriting Step 1. Initialization, create a block local stack
1457 of reaching definitions for new SSA names produced in this block
1458 (BLOCK_DEFS). Register new definitions for every PHI node in the
1459 block. */
1460
1461 void
1462 rewrite_dom_walker::before_dom_children (basic_block bb)
1463 {
1464 if (dump_file && (dump_flags & TDF_DETAILS))
1465 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1466
1467 /* Mark the unwind point for this block. */
1468 block_defs_stack.safe_push (NULL_TREE);
1469
1470 /* Step 1. Register new definitions for every PHI node in the block.
1471 Conceptually, all the PHI nodes are executed in parallel and each PHI
1472 node introduces a new version for the associated variable. */
1473 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1474 gsi_next (&gsi))
1475 {
1476 tree result = gimple_phi_result (gsi_stmt (gsi));
1477 register_new_def (result, SSA_NAME_VAR (result));
1478 }
1479
1480 /* Step 2. Rewrite every variable used in each statement in the block
1481 with its immediate reaching definitions. Update the current definition
1482 of a variable when a new real or virtual definition is found. */
1483 if (bitmap_bit_p (interesting_blocks, bb->index))
1484 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1485 gsi_next (&gsi))
1486 rewrite_stmt (&gsi);
1487
1488 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1489 For every PHI node found, add a new argument containing the current
1490 reaching definition for the variable and the edge through which that
1491 definition is reaching the PHI node. */
1492 rewrite_add_phi_arguments (bb);
1493 }
1494
1495
1496
1497 /* Called after visiting all the statements in basic block BB and all
1498 of its dominator children. Restore CURRDEFS to its original value. */
1499
1500 void
1501 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1502 {
1503 /* Restore CURRDEFS to its original state. */
1504 while (block_defs_stack.length () > 0)
1505 {
1506 tree tmp = block_defs_stack.pop ();
1507 tree saved_def, var;
1508
1509 if (tmp == NULL_TREE)
1510 break;
1511
1512 if (TREE_CODE (tmp) == SSA_NAME)
1513 {
1514 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1515 current definition of its underlying variable. Note that
1516 if the SSA_NAME is not for a GIMPLE register, the symbol
1517 being defined is stored in the next slot in the stack.
1518 This mechanism is needed because an SSA name for a
1519 non-register symbol may be the definition for more than
1520 one symbol (e.g., SFTs, aliased variables, etc). */
1521 saved_def = tmp;
1522 var = SSA_NAME_VAR (saved_def);
1523 if (!is_gimple_reg (var))
1524 var = block_defs_stack.pop ();
1525 }
1526 else
1527 {
1528 /* If we recorded anything else, it must have been a _DECL
1529 node and its current reaching definition must have been
1530 NULL. */
1531 saved_def = NULL;
1532 var = tmp;
1533 }
1534
1535 get_common_info (var)->current_def = saved_def;
1536 }
1537 }
1538
1539
1540 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1541
1542 DEBUG_FUNCTION void
1543 debug_decl_set (bitmap set)
1544 {
1545 dump_decl_set (stderr, set);
1546 fprintf (stderr, "\n");
1547 }
1548
1549
1550 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1551 stack up to a maximum of N levels. If N is -1, the whole stack is
1552 dumped. New levels are created when the dominator tree traversal
1553 used for renaming enters a new sub-tree. */
1554
1555 void
1556 dump_defs_stack (FILE *file, int n)
1557 {
1558 int i, j;
1559
1560 fprintf (file, "\n\nRenaming stack");
1561 if (n > 0)
1562 fprintf (file, " (up to %d levels)", n);
1563 fprintf (file, "\n\n");
1564
1565 i = 1;
1566 fprintf (file, "Level %d (current level)\n", i);
1567 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1568 {
1569 tree name, var;
1570
1571 name = block_defs_stack[j];
1572 if (name == NULL_TREE)
1573 {
1574 i++;
1575 if (n > 0 && i > n)
1576 break;
1577 fprintf (file, "\nLevel %d\n", i);
1578 continue;
1579 }
1580
1581 if (DECL_P (name))
1582 {
1583 var = name;
1584 name = NULL_TREE;
1585 }
1586 else
1587 {
1588 var = SSA_NAME_VAR (name);
1589 if (!is_gimple_reg (var))
1590 {
1591 j--;
1592 var = block_defs_stack[j];
1593 }
1594 }
1595
1596 fprintf (file, " Previous CURRDEF (");
1597 print_generic_expr (file, var, 0);
1598 fprintf (file, ") = ");
1599 if (name)
1600 print_generic_expr (file, name, 0);
1601 else
1602 fprintf (file, "<NIL>");
1603 fprintf (file, "\n");
1604 }
1605 }
1606
1607
1608 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1609 stack up to a maximum of N levels. If N is -1, the whole stack is
1610 dumped. New levels are created when the dominator tree traversal
1611 used for renaming enters a new sub-tree. */
1612
1613 DEBUG_FUNCTION void
1614 debug_defs_stack (int n)
1615 {
1616 dump_defs_stack (stderr, n);
1617 }
1618
1619
1620 /* Dump the current reaching definition of every symbol to FILE. */
1621
1622 void
1623 dump_currdefs (FILE *file)
1624 {
1625 unsigned i;
1626 tree var;
1627
1628 if (symbols_to_rename.is_empty ())
1629 return;
1630
1631 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1632 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1633 {
1634 common_info_p info = get_common_info (var);
1635 fprintf (file, "CURRDEF (");
1636 print_generic_expr (file, var, 0);
1637 fprintf (file, ") = ");
1638 if (info->current_def)
1639 print_generic_expr (file, info->current_def, 0);
1640 else
1641 fprintf (file, "<NIL>");
1642 fprintf (file, "\n");
1643 }
1644 }
1645
1646
1647 /* Dump the current reaching definition of every symbol to stderr. */
1648
1649 DEBUG_FUNCTION void
1650 debug_currdefs (void)
1651 {
1652 dump_currdefs (stderr);
1653 }
1654
1655
1656 /* Dump SSA information to FILE. */
1657
1658 void
1659 dump_tree_ssa (FILE *file)
1660 {
1661 const char *funcname
1662 = lang_hooks.decl_printable_name (current_function_decl, 2);
1663
1664 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1665
1666 dump_var_infos (file);
1667 dump_defs_stack (file, -1);
1668 dump_currdefs (file);
1669 dump_tree_ssa_stats (file);
1670 }
1671
1672
1673 /* Dump SSA information to stderr. */
1674
1675 DEBUG_FUNCTION void
1676 debug_tree_ssa (void)
1677 {
1678 dump_tree_ssa (stderr);
1679 }
1680
1681
1682 /* Dump statistics for the hash table HTAB. */
1683
1684 static void
1685 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab)
1686 {
1687 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1688 (long) htab.size (),
1689 (long) htab.elements (),
1690 htab.collisions ());
1691 }
1692
1693
1694 /* Dump SSA statistics on FILE. */
1695
1696 void
1697 dump_tree_ssa_stats (FILE *file)
1698 {
1699 if (var_infos)
1700 {
1701 fprintf (file, "\nHash table statistics:\n");
1702 fprintf (file, " var_infos: ");
1703 htab_statistics (file, *var_infos);
1704 fprintf (file, "\n");
1705 }
1706 }
1707
1708
1709 /* Dump SSA statistics on stderr. */
1710
1711 DEBUG_FUNCTION void
1712 debug_tree_ssa_stats (void)
1713 {
1714 dump_tree_ssa_stats (stderr);
1715 }
1716
1717
1718 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1719
1720 int
1721 debug_var_infos_r (var_info_d **slot, FILE *file)
1722 {
1723 struct var_info_d *info = *slot;
1724
1725 fprintf (file, "VAR: ");
1726 print_generic_expr (file, info->var, dump_flags);
1727 bitmap_print (file, info->info.def_blocks.def_blocks,
1728 ", DEF_BLOCKS: { ", "}");
1729 bitmap_print (file, info->info.def_blocks.livein_blocks,
1730 ", LIVEIN_BLOCKS: { ", "}");
1731 bitmap_print (file, info->info.def_blocks.phi_blocks,
1732 ", PHI_BLOCKS: { ", "}\n");
1733
1734 return 1;
1735 }
1736
1737
1738 /* Dump the VAR_INFOS hash table on FILE. */
1739
1740 void
1741 dump_var_infos (FILE *file)
1742 {
1743 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1744 if (var_infos)
1745 var_infos->traverse <FILE *, debug_var_infos_r> (file);
1746 }
1747
1748
1749 /* Dump the VAR_INFOS hash table on stderr. */
1750
1751 DEBUG_FUNCTION void
1752 debug_var_infos (void)
1753 {
1754 dump_var_infos (stderr);
1755 }
1756
1757
1758 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1759
1760 static inline void
1761 register_new_update_single (tree new_name, tree old_name)
1762 {
1763 common_info_p info = get_common_info (old_name);
1764 tree currdef = info->current_def;
1765
1766 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1767 This stack is later used by the dominator tree callbacks to
1768 restore the reaching definitions for all the variables
1769 defined in the block after a recursive visit to all its
1770 immediately dominated blocks. */
1771 block_defs_stack.reserve (2);
1772 block_defs_stack.quick_push (currdef);
1773 block_defs_stack.quick_push (old_name);
1774
1775 /* Set the current reaching definition for OLD_NAME to be
1776 NEW_NAME. */
1777 info->current_def = new_name;
1778 }
1779
1780
1781 /* Register NEW_NAME to be the new reaching definition for all the
1782 names in OLD_NAMES. Used by the incremental SSA update routines to
1783 replace old SSA names with new ones. */
1784
1785 static inline void
1786 register_new_update_set (tree new_name, bitmap old_names)
1787 {
1788 bitmap_iterator bi;
1789 unsigned i;
1790
1791 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1792 register_new_update_single (new_name, ssa_name (i));
1793 }
1794
1795
1796
1797 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1798 it is a symbol marked for renaming, replace it with USE_P's current
1799 reaching definition. */
1800
1801 static inline void
1802 maybe_replace_use (use_operand_p use_p)
1803 {
1804 tree rdef = NULL_TREE;
1805 tree use = USE_FROM_PTR (use_p);
1806 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1807
1808 if (marked_for_renaming (sym))
1809 rdef = get_reaching_def (sym);
1810 else if (is_old_name (use))
1811 rdef = get_reaching_def (use);
1812
1813 if (rdef && rdef != use)
1814 SET_USE (use_p, rdef);
1815 }
1816
1817
1818 /* Same as maybe_replace_use, but without introducing default stmts,
1819 returning false to indicate a need to do so. */
1820
1821 static inline bool
1822 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1823 {
1824 tree rdef = NULL_TREE;
1825 tree use = USE_FROM_PTR (use_p);
1826 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1827
1828 if (marked_for_renaming (sym))
1829 rdef = get_var_info (sym)->info.current_def;
1830 else if (is_old_name (use))
1831 {
1832 rdef = get_ssa_name_ann (use)->info.current_def;
1833 /* We can't assume that, if there's no current definition, the
1834 default one should be used. It could be the case that we've
1835 rearranged blocks so that the earlier definition no longer
1836 dominates the use. */
1837 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1838 rdef = use;
1839 }
1840 else
1841 rdef = use;
1842
1843 if (rdef && rdef != use)
1844 SET_USE (use_p, rdef);
1845
1846 return rdef != NULL_TREE;
1847 }
1848
1849
1850 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1851 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1852 register it as the current definition for the names replaced by
1853 DEF_P. Returns whether the statement should be removed. */
1854
1855 static inline bool
1856 maybe_register_def (def_operand_p def_p, gimple stmt,
1857 gimple_stmt_iterator gsi)
1858 {
1859 tree def = DEF_FROM_PTR (def_p);
1860 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1861 bool to_delete = false;
1862
1863 /* If DEF is a naked symbol that needs renaming, create a new
1864 name for it. */
1865 if (marked_for_renaming (sym))
1866 {
1867 if (DECL_P (def))
1868 {
1869 if (gimple_clobber_p (stmt) && is_gimple_reg (sym))
1870 {
1871 gcc_checking_assert (TREE_CODE (sym) == VAR_DECL);
1872 /* Replace clobber stmts with a default def. This new use of a
1873 default definition may make it look like SSA_NAMEs have
1874 conflicting lifetimes, so we need special code to let them
1875 coalesce properly. */
1876 to_delete = true;
1877 def = get_or_create_ssa_default_def (cfun, sym);
1878 }
1879 else
1880 def = make_ssa_name (def, stmt);
1881 SET_DEF (def_p, def);
1882
1883 tree tracked_var = target_for_debug_bind (sym);
1884 if (tracked_var)
1885 {
1886 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1887 /* If stmt ends the bb, insert the debug stmt on the single
1888 non-EH edge from the stmt. */
1889 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1890 {
1891 basic_block bb = gsi_bb (gsi);
1892 edge_iterator ei;
1893 edge e, ef = NULL;
1894 FOR_EACH_EDGE (e, ei, bb->succs)
1895 if (!(e->flags & EDGE_EH))
1896 {
1897 gcc_checking_assert (!ef);
1898 ef = e;
1899 }
1900 /* If there are other predecessors to ef->dest, then
1901 there must be PHI nodes for the modified
1902 variable, and therefore there will be debug bind
1903 stmts after the PHI nodes. The debug bind notes
1904 we'd insert would force the creation of a new
1905 block (diverging codegen) and be redundant with
1906 the post-PHI bind stmts, so don't add them.
1907
1908 As for the exit edge, there wouldn't be redundant
1909 bind stmts, but there wouldn't be a PC to bind
1910 them to either, so avoid diverging the CFG. */
1911 if (ef && single_pred_p (ef->dest)
1912 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1913 {
1914 /* If there were PHI nodes in the node, we'd
1915 have to make sure the value we're binding
1916 doesn't need rewriting. But there shouldn't
1917 be PHI nodes in a single-predecessor block,
1918 so we just add the note. */
1919 gsi_insert_on_edge_immediate (ef, note);
1920 }
1921 }
1922 else
1923 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1924 }
1925 }
1926
1927 register_new_update_single (def, sym);
1928 }
1929 else
1930 {
1931 /* If DEF is a new name, register it as a new definition
1932 for all the names replaced by DEF. */
1933 if (is_new_name (def))
1934 register_new_update_set (def, names_replaced_by (def));
1935
1936 /* If DEF is an old name, register DEF as a new
1937 definition for itself. */
1938 if (is_old_name (def))
1939 register_new_update_single (def, def);
1940 }
1941
1942 return to_delete;
1943 }
1944
1945
1946 /* Update every variable used in the statement pointed-to by SI. The
1947 statement is assumed to be in SSA form already. Names in
1948 OLD_SSA_NAMES used by SI will be updated to their current reaching
1949 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1950 will be registered as a new definition for their corresponding name
1951 in OLD_SSA_NAMES. Returns whether STMT should be removed. */
1952
1953 static bool
1954 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1955 {
1956 use_operand_p use_p;
1957 def_operand_p def_p;
1958 ssa_op_iter iter;
1959
1960 /* Only update marked statements. */
1961 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1962 return false;
1963
1964 if (dump_file && (dump_flags & TDF_DETAILS))
1965 {
1966 fprintf (dump_file, "Updating SSA information for statement ");
1967 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1968 }
1969
1970 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1971 symbol is marked for renaming. */
1972 if (rewrite_uses_p (stmt))
1973 {
1974 if (is_gimple_debug (stmt))
1975 {
1976 bool failed = false;
1977
1978 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1979 if (!maybe_replace_use_in_debug_stmt (use_p))
1980 {
1981 failed = true;
1982 break;
1983 }
1984
1985 if (failed)
1986 {
1987 /* DOM sometimes threads jumps in such a way that a
1988 debug stmt ends up referencing a SSA variable that no
1989 longer dominates the debug stmt, but such that all
1990 incoming definitions refer to the same definition in
1991 an earlier dominator. We could try to recover that
1992 definition somehow, but this will have to do for now.
1993
1994 Introducing a default definition, which is what
1995 maybe_replace_use() would do in such cases, may
1996 modify code generation, for the otherwise-unused
1997 default definition would never go away, modifying SSA
1998 version numbers all over. */
1999 gimple_debug_bind_reset_value (stmt);
2000 update_stmt (stmt);
2001 }
2002 }
2003 else
2004 {
2005 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
2006 maybe_replace_use (use_p);
2007 }
2008 }
2009
2010 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
2011 Also register definitions for names whose underlying symbol is
2012 marked for renaming. */
2013 bool to_delete = false;
2014 if (register_defs_p (stmt))
2015 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2016 to_delete |= maybe_register_def (def_p, stmt, gsi);
2017
2018 return to_delete;
2019 }
2020
2021
2022 /* Visit all the successor blocks of BB looking for PHI nodes. For
2023 every PHI node found, check if any of its arguments is in
2024 OLD_SSA_NAMES. If so, and if the argument has a current reaching
2025 definition, replace it. */
2026
2027 static void
2028 rewrite_update_phi_arguments (basic_block bb)
2029 {
2030 edge e;
2031 edge_iterator ei;
2032 unsigned i;
2033
2034 FOR_EACH_EDGE (e, ei, bb->succs)
2035 {
2036 gphi *phi;
2037 vec<gphi *> phis;
2038
2039 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2040 continue;
2041
2042 phis = phis_to_rewrite[e->dest->index];
2043 FOR_EACH_VEC_ELT (phis, i, phi)
2044 {
2045 tree arg, lhs_sym, reaching_def = NULL;
2046 use_operand_p arg_p;
2047
2048 gcc_checking_assert (rewrite_uses_p (phi));
2049
2050 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2051 arg = USE_FROM_PTR (arg_p);
2052
2053 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2054 continue;
2055
2056 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2057
2058 if (arg == NULL_TREE)
2059 {
2060 /* When updating a PHI node for a recently introduced
2061 symbol we may find NULL arguments. That's why we
2062 take the symbol from the LHS of the PHI node. */
2063 reaching_def = get_reaching_def (lhs_sym);
2064
2065 }
2066 else
2067 {
2068 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2069
2070 if (marked_for_renaming (sym))
2071 reaching_def = get_reaching_def (sym);
2072 else if (is_old_name (arg))
2073 reaching_def = get_reaching_def (arg);
2074 }
2075
2076 /* Update the argument if there is a reaching def. */
2077 if (reaching_def)
2078 {
2079 source_location locus;
2080 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2081
2082 SET_USE (arg_p, reaching_def);
2083
2084 /* Virtual operands do not need a location. */
2085 if (virtual_operand_p (reaching_def))
2086 locus = UNKNOWN_LOCATION;
2087 else
2088 {
2089 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2090 gphi *other_phi = dyn_cast <gphi *> (stmt);
2091
2092 /* Single element PHI nodes behave like copies, so get the
2093 location from the phi argument. */
2094 if (other_phi
2095 && gimple_phi_num_args (other_phi) == 1)
2096 locus = gimple_phi_arg_location (other_phi, 0);
2097 else
2098 locus = gimple_location (stmt);
2099 }
2100
2101 gimple_phi_arg_set_location (phi, arg_i, locus);
2102 }
2103
2104
2105 if (e->flags & EDGE_ABNORMAL)
2106 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2107 }
2108 }
2109 }
2110
2111 class rewrite_update_dom_walker : public dom_walker
2112 {
2113 public:
2114 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2115
2116 virtual void before_dom_children (basic_block);
2117 virtual void after_dom_children (basic_block);
2118 };
2119
2120 /* Initialization of block data structures for the incremental SSA
2121 update pass. Create a block local stack of reaching definitions
2122 for new SSA names produced in this block (BLOCK_DEFS). Register
2123 new definitions for every PHI node in the block. */
2124
2125 void
2126 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2127 {
2128 bool is_abnormal_phi;
2129
2130 if (dump_file && (dump_flags & TDF_DETAILS))
2131 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2132 bb->index);
2133
2134 /* Mark the unwind point for this block. */
2135 block_defs_stack.safe_push (NULL_TREE);
2136
2137 if (!bitmap_bit_p (blocks_to_update, bb->index))
2138 return;
2139
2140 /* Mark the LHS if any of the arguments flows through an abnormal
2141 edge. */
2142 is_abnormal_phi = bb_has_abnormal_pred (bb);
2143
2144 /* If any of the PHI nodes is a replacement for a name in
2145 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2146 register it as a new definition for its corresponding name. Also
2147 register definitions for names whose underlying symbols are
2148 marked for renaming. */
2149 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2150 gsi_next (&gsi))
2151 {
2152 tree lhs, lhs_sym;
2153 gphi *phi = gsi.phi ();
2154
2155 if (!register_defs_p (phi))
2156 continue;
2157
2158 lhs = gimple_phi_result (phi);
2159 lhs_sym = SSA_NAME_VAR (lhs);
2160
2161 if (marked_for_renaming (lhs_sym))
2162 register_new_update_single (lhs, lhs_sym);
2163 else
2164 {
2165
2166 /* If LHS is a new name, register a new definition for all
2167 the names replaced by LHS. */
2168 if (is_new_name (lhs))
2169 register_new_update_set (lhs, names_replaced_by (lhs));
2170
2171 /* If LHS is an OLD name, register it as a new definition
2172 for itself. */
2173 if (is_old_name (lhs))
2174 register_new_update_single (lhs, lhs);
2175 }
2176
2177 if (is_abnormal_phi)
2178 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2179 }
2180
2181 /* Step 2. Rewrite every variable used in each statement in the block. */
2182 if (bitmap_bit_p (interesting_blocks, bb->index))
2183 {
2184 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2185 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2186 if (rewrite_update_stmt (gsi_stmt (gsi), gsi))
2187 gsi_remove (&gsi, true);
2188 else
2189 gsi_next (&gsi);
2190 }
2191
2192 /* Step 3. Update PHI nodes. */
2193 rewrite_update_phi_arguments (bb);
2194 }
2195
2196 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2197 the current reaching definition of every name re-written in BB to
2198 the original reaching definition before visiting BB. This
2199 unwinding must be done in the opposite order to what is done in
2200 register_new_update_set. */
2201
2202 void
2203 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2204 {
2205 while (block_defs_stack.length () > 0)
2206 {
2207 tree var = block_defs_stack.pop ();
2208 tree saved_def;
2209
2210 /* NULL indicates the unwind stop point for this block (see
2211 rewrite_update_enter_block). */
2212 if (var == NULL)
2213 return;
2214
2215 saved_def = block_defs_stack.pop ();
2216 get_common_info (var)->current_def = saved_def;
2217 }
2218 }
2219
2220
2221 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2222 form.
2223
2224 ENTRY indicates the block where to start. Every block dominated by
2225 ENTRY will be rewritten.
2226
2227 WHAT indicates what actions will be taken by the renamer (see enum
2228 rewrite_mode).
2229
2230 BLOCKS are the set of interesting blocks for the dominator walker
2231 to process. If this set is NULL, then all the nodes dominated
2232 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2233 are not present in BLOCKS are ignored. */
2234
2235 static void
2236 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2237 {
2238 /* Rewrite all the basic blocks in the program. */
2239 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2240
2241 block_defs_stack.create (10);
2242
2243 /* Recursively walk the dominator tree rewriting each statement in
2244 each basic block. */
2245 if (what == REWRITE_ALL)
2246 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2247 else if (what == REWRITE_UPDATE)
2248 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2249 else
2250 gcc_unreachable ();
2251
2252 /* Debugging dumps. */
2253 if (dump_file && (dump_flags & TDF_STATS))
2254 {
2255 dump_dfa_stats (dump_file);
2256 if (var_infos)
2257 dump_tree_ssa_stats (dump_file);
2258 }
2259
2260 block_defs_stack.release ();
2261
2262 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2263 }
2264
2265 class mark_def_dom_walker : public dom_walker
2266 {
2267 public:
2268 mark_def_dom_walker (cdi_direction direction);
2269 ~mark_def_dom_walker ();
2270
2271 virtual void before_dom_children (basic_block);
2272
2273 private:
2274 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2275 large enough to accommodate all the variables referenced in the
2276 function, not just the ones we are renaming. */
2277 bitmap m_kills;
2278 };
2279
2280 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2281 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2282 {
2283 }
2284
2285 mark_def_dom_walker::~mark_def_dom_walker ()
2286 {
2287 BITMAP_FREE (m_kills);
2288 }
2289
2290 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2291 at the start of each block, and call mark_def_sites for each statement. */
2292
2293 void
2294 mark_def_dom_walker::before_dom_children (basic_block bb)
2295 {
2296 gimple_stmt_iterator gsi;
2297
2298 bitmap_clear (m_kills);
2299 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2300 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2301 }
2302
2303 /* Initialize internal data needed during renaming. */
2304
2305 static void
2306 init_ssa_renamer (void)
2307 {
2308 cfun->gimple_df->in_ssa_p = false;
2309
2310 /* Allocate memory for the DEF_BLOCKS hash table. */
2311 gcc_assert (!var_infos);
2312 var_infos = new hash_table<var_info_hasher>
2313 (vec_safe_length (cfun->local_decls));
2314
2315 bitmap_obstack_initialize (&update_ssa_obstack);
2316 }
2317
2318
2319 /* Deallocate internal data structures used by the renamer. */
2320
2321 static void
2322 fini_ssa_renamer (void)
2323 {
2324 delete var_infos;
2325 var_infos = NULL;
2326
2327 bitmap_obstack_release (&update_ssa_obstack);
2328
2329 cfun->gimple_df->ssa_renaming_needed = 0;
2330 cfun->gimple_df->rename_vops = 0;
2331 cfun->gimple_df->in_ssa_p = true;
2332 }
2333
2334 /* Main entry point into the SSA builder. The renaming process
2335 proceeds in four main phases:
2336
2337 1- Compute dominance frontier and immediate dominators, needed to
2338 insert PHI nodes and rename the function in dominator tree
2339 order.
2340
2341 2- Find and mark all the blocks that define variables.
2342
2343 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2344
2345 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2346
2347 Steps 3 and 4 are done using the dominator tree walker
2348 (walk_dominator_tree). */
2349
2350 namespace {
2351
2352 const pass_data pass_data_build_ssa =
2353 {
2354 GIMPLE_PASS, /* type */
2355 "ssa", /* name */
2356 OPTGROUP_NONE, /* optinfo_flags */
2357 TV_TREE_SSA_OTHER, /* tv_id */
2358 PROP_cfg, /* properties_required */
2359 PROP_ssa, /* properties_provided */
2360 0, /* properties_destroyed */
2361 0, /* todo_flags_start */
2362 TODO_remove_unused_locals, /* todo_flags_finish */
2363 };
2364
2365 class pass_build_ssa : public gimple_opt_pass
2366 {
2367 public:
2368 pass_build_ssa (gcc::context *ctxt)
2369 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2370 {}
2371
2372 /* opt_pass methods: */
2373 virtual bool gate (function *fun)
2374 {
2375 /* Do nothing for funcions that was produced already in SSA form. */
2376 return !(fun->curr_properties & PROP_ssa);
2377 }
2378
2379 virtual unsigned int execute (function *);
2380
2381 }; // class pass_build_ssa
2382
2383 unsigned int
2384 pass_build_ssa::execute (function *fun)
2385 {
2386 bitmap_head *dfs;
2387 basic_block bb;
2388 unsigned i;
2389
2390 /* Initialize operand data structures. */
2391 init_ssa_operands (fun);
2392
2393 /* Initialize internal data needed by the renamer. */
2394 init_ssa_renamer ();
2395
2396 /* Initialize the set of interesting blocks. The callback
2397 mark_def_sites will add to this set those blocks that the renamer
2398 should process. */
2399 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun));
2400 bitmap_clear (interesting_blocks);
2401
2402 /* Initialize dominance frontier. */
2403 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun));
2404 FOR_EACH_BB_FN (bb, fun)
2405 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2406
2407 /* 1- Compute dominance frontiers. */
2408 calculate_dominance_info (CDI_DOMINATORS);
2409 compute_dominance_frontiers (dfs);
2410
2411 /* 2- Find and mark definition sites. */
2412 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
2413
2414 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2415 insert_phi_nodes (dfs);
2416
2417 /* 4- Rename all the blocks. */
2418 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL);
2419
2420 /* Free allocated memory. */
2421 FOR_EACH_BB_FN (bb, fun)
2422 bitmap_clear (&dfs[bb->index]);
2423 free (dfs);
2424
2425 sbitmap_free (interesting_blocks);
2426
2427 fini_ssa_renamer ();
2428
2429 /* Try to get rid of all gimplifier generated temporaries by making
2430 its SSA names anonymous. This way we can garbage collect them
2431 all after removing unused locals which we do in our TODO. */
2432 for (i = 1; i < num_ssa_names; ++i)
2433 {
2434 tree decl, name = ssa_name (i);
2435 if (!name
2436 || SSA_NAME_IS_DEFAULT_DEF (name))
2437 continue;
2438 decl = SSA_NAME_VAR (name);
2439 if (decl
2440 && TREE_CODE (decl) == VAR_DECL
2441 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2442 && DECL_IGNORED_P (decl))
2443 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2444 }
2445
2446 return 0;
2447 }
2448
2449 } // anon namespace
2450
2451 gimple_opt_pass *
2452 make_pass_build_ssa (gcc::context *ctxt)
2453 {
2454 return new pass_build_ssa (ctxt);
2455 }
2456
2457
2458 /* Mark the definition of VAR at STMT and BB as interesting for the
2459 renamer. BLOCKS is the set of blocks that need updating. */
2460
2461 static void
2462 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2463 {
2464 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2465 set_register_defs (stmt, true);
2466
2467 if (insert_phi_p)
2468 {
2469 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2470
2471 set_def_block (var, bb, is_phi_p);
2472
2473 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2474 site for both itself and all the old names replaced by it. */
2475 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2476 {
2477 bitmap_iterator bi;
2478 unsigned i;
2479 bitmap set = names_replaced_by (var);
2480 if (set)
2481 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2482 set_def_block (ssa_name (i), bb, is_phi_p);
2483 }
2484 }
2485 }
2486
2487
2488 /* Mark the use of VAR at STMT and BB as interesting for the
2489 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2490 nodes. */
2491
2492 static inline void
2493 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2494 {
2495 basic_block def_bb = gimple_bb (stmt);
2496
2497 mark_block_for_update (def_bb);
2498 mark_block_for_update (bb);
2499
2500 if (gimple_code (stmt) == GIMPLE_PHI)
2501 mark_phi_for_rewrite (def_bb, as_a <gphi *> (stmt));
2502 else
2503 {
2504 set_rewrite_uses (stmt, true);
2505
2506 if (is_gimple_debug (stmt))
2507 return;
2508 }
2509
2510 /* If VAR has not been defined in BB, then it is live-on-entry
2511 to BB. Note that we cannot just use the block holding VAR's
2512 definition because if VAR is one of the names in OLD_SSA_NAMES,
2513 it will have several definitions (itself and all the names that
2514 replace it). */
2515 if (insert_phi_p)
2516 {
2517 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2518 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2519 set_livein_block (var, bb);
2520 }
2521 }
2522
2523
2524 /* Do a dominator walk starting at BB processing statements that
2525 reference symbols in SSA operands. This is very similar to
2526 mark_def_sites, but the scan handles statements whose operands may
2527 already be SSA names.
2528
2529 If INSERT_PHI_P is true, mark those uses as live in the
2530 corresponding block. This is later used by the PHI placement
2531 algorithm to make PHI pruning decisions.
2532
2533 FIXME. Most of this would be unnecessary if we could associate a
2534 symbol to all the SSA names that reference it. But that
2535 sounds like it would be expensive to maintain. Still, it
2536 would be interesting to see if it makes better sense to do
2537 that. */
2538
2539 static void
2540 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2541 {
2542 basic_block son;
2543 edge e;
2544 edge_iterator ei;
2545
2546 mark_block_for_update (bb);
2547
2548 /* Process PHI nodes marking interesting those that define or use
2549 the symbols that we are interested in. */
2550 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
2551 gsi_next (&si))
2552 {
2553 gphi *phi = si.phi ();
2554 tree lhs_sym, lhs = gimple_phi_result (phi);
2555
2556 if (TREE_CODE (lhs) == SSA_NAME
2557 && (! virtual_operand_p (lhs)
2558 || ! cfun->gimple_df->rename_vops))
2559 continue;
2560
2561 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2562 mark_for_renaming (lhs_sym);
2563 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2564
2565 /* Mark the uses in phi nodes as interesting. It would be more correct
2566 to process the arguments of the phi nodes of the successor edges of
2567 BB at the end of prepare_block_for_update, however, that turns out
2568 to be significantly more expensive. Doing it here is conservatively
2569 correct -- it may only cause us to believe a value to be live in a
2570 block that also contains its definition, and thus insert a few more
2571 phi nodes for it. */
2572 FOR_EACH_EDGE (e, ei, bb->preds)
2573 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2574 }
2575
2576 /* Process the statements. */
2577 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
2578 gsi_next (&si))
2579 {
2580 gimple stmt;
2581 ssa_op_iter i;
2582 use_operand_p use_p;
2583 def_operand_p def_p;
2584
2585 stmt = gsi_stmt (si);
2586
2587 if (cfun->gimple_df->rename_vops
2588 && gimple_vuse (stmt))
2589 {
2590 tree use = gimple_vuse (stmt);
2591 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2592 mark_for_renaming (sym);
2593 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2594 }
2595
2596 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2597 {
2598 tree use = USE_FROM_PTR (use_p);
2599 if (!DECL_P (use))
2600 continue;
2601 mark_for_renaming (use);
2602 mark_use_interesting (use, stmt, bb, insert_phi_p);
2603 }
2604
2605 if (cfun->gimple_df->rename_vops
2606 && gimple_vdef (stmt))
2607 {
2608 tree def = gimple_vdef (stmt);
2609 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2610 mark_for_renaming (sym);
2611 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2612 }
2613
2614 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2615 {
2616 tree def = DEF_FROM_PTR (def_p);
2617 if (!DECL_P (def))
2618 continue;
2619 mark_for_renaming (def);
2620 mark_def_interesting (def, stmt, bb, insert_phi_p);
2621 }
2622 }
2623
2624 /* Now visit all the blocks dominated by BB. */
2625 for (son = first_dom_son (CDI_DOMINATORS, bb);
2626 son;
2627 son = next_dom_son (CDI_DOMINATORS, son))
2628 prepare_block_for_update (son, insert_phi_p);
2629 }
2630
2631
2632 /* Helper for prepare_names_to_update. Mark all the use sites for
2633 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2634 prepare_names_to_update. */
2635
2636 static void
2637 prepare_use_sites_for (tree name, bool insert_phi_p)
2638 {
2639 use_operand_p use_p;
2640 imm_use_iterator iter;
2641
2642 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2643 {
2644 gimple stmt = USE_STMT (use_p);
2645 basic_block bb = gimple_bb (stmt);
2646
2647 if (gimple_code (stmt) == GIMPLE_PHI)
2648 {
2649 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2650 edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), ix);
2651 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2652 }
2653 else
2654 {
2655 /* For regular statements, mark this as an interesting use
2656 for NAME. */
2657 mark_use_interesting (name, stmt, bb, insert_phi_p);
2658 }
2659 }
2660 }
2661
2662
2663 /* Helper for prepare_names_to_update. Mark the definition site for
2664 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2665 prepare_names_to_update. */
2666
2667 static void
2668 prepare_def_site_for (tree name, bool insert_phi_p)
2669 {
2670 gimple stmt;
2671 basic_block bb;
2672
2673 gcc_checking_assert (names_to_release == NULL
2674 || !bitmap_bit_p (names_to_release,
2675 SSA_NAME_VERSION (name)));
2676
2677 stmt = SSA_NAME_DEF_STMT (name);
2678 bb = gimple_bb (stmt);
2679 if (bb)
2680 {
2681 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2682 mark_block_for_update (bb);
2683 mark_def_interesting (name, stmt, bb, insert_phi_p);
2684 }
2685 }
2686
2687
2688 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2689 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2690 PHI nodes for newly created names. */
2691
2692 static void
2693 prepare_names_to_update (bool insert_phi_p)
2694 {
2695 unsigned i = 0;
2696 bitmap_iterator bi;
2697 sbitmap_iterator sbi;
2698
2699 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2700 remove it from NEW_SSA_NAMES so that we don't try to visit its
2701 defining basic block (which most likely doesn't exist). Notice
2702 that we cannot do the same with names in OLD_SSA_NAMES because we
2703 want to replace existing instances. */
2704 if (names_to_release)
2705 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2706 bitmap_clear_bit (new_ssa_names, i);
2707
2708 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2709 names may be considered to be live-in on blocks that contain
2710 definitions for their replacements. */
2711 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2712 prepare_def_site_for (ssa_name (i), insert_phi_p);
2713
2714 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2715 OLD_SSA_NAMES, but we have to ignore its definition site. */
2716 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2717 {
2718 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2719 prepare_def_site_for (ssa_name (i), insert_phi_p);
2720 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2721 }
2722 }
2723
2724
2725 /* Dump all the names replaced by NAME to FILE. */
2726
2727 void
2728 dump_names_replaced_by (FILE *file, tree name)
2729 {
2730 unsigned i;
2731 bitmap old_set;
2732 bitmap_iterator bi;
2733
2734 print_generic_expr (file, name, 0);
2735 fprintf (file, " -> { ");
2736
2737 old_set = names_replaced_by (name);
2738 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2739 {
2740 print_generic_expr (file, ssa_name (i), 0);
2741 fprintf (file, " ");
2742 }
2743
2744 fprintf (file, "}\n");
2745 }
2746
2747
2748 /* Dump all the names replaced by NAME to stderr. */
2749
2750 DEBUG_FUNCTION void
2751 debug_names_replaced_by (tree name)
2752 {
2753 dump_names_replaced_by (stderr, name);
2754 }
2755
2756
2757 /* Dump SSA update information to FILE. */
2758
2759 void
2760 dump_update_ssa (FILE *file)
2761 {
2762 unsigned i = 0;
2763 bitmap_iterator bi;
2764
2765 if (!need_ssa_update_p (cfun))
2766 return;
2767
2768 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2769 {
2770 sbitmap_iterator sbi;
2771
2772 fprintf (file, "\nSSA replacement table\n");
2773 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2774 "O_1, ..., O_j\n\n");
2775
2776 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2777 dump_names_replaced_by (file, ssa_name (i));
2778 }
2779
2780 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2781 {
2782 fprintf (file, "\nSymbols to be put in SSA form\n");
2783 dump_decl_set (file, symbols_to_rename_set);
2784 fprintf (file, "\n");
2785 }
2786
2787 if (names_to_release && !bitmap_empty_p (names_to_release))
2788 {
2789 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2790 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2791 {
2792 print_generic_expr (file, ssa_name (i), 0);
2793 fprintf (file, " ");
2794 }
2795 fprintf (file, "\n");
2796 }
2797 }
2798
2799
2800 /* Dump SSA update information to stderr. */
2801
2802 DEBUG_FUNCTION void
2803 debug_update_ssa (void)
2804 {
2805 dump_update_ssa (stderr);
2806 }
2807
2808
2809 /* Initialize data structures used for incremental SSA updates. */
2810
2811 static void
2812 init_update_ssa (struct function *fn)
2813 {
2814 /* Reserve more space than the current number of names. The calls to
2815 add_new_name_mapping are typically done after creating new SSA
2816 names, so we'll need to reallocate these arrays. */
2817 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2818 bitmap_clear (old_ssa_names);
2819
2820 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2821 bitmap_clear (new_ssa_names);
2822
2823 bitmap_obstack_initialize (&update_ssa_obstack);
2824
2825 names_to_release = NULL;
2826 update_ssa_initialized_fn = fn;
2827 }
2828
2829
2830 /* Deallocate data structures used for incremental SSA updates. */
2831
2832 void
2833 delete_update_ssa (void)
2834 {
2835 unsigned i;
2836 bitmap_iterator bi;
2837
2838 sbitmap_free (old_ssa_names);
2839 old_ssa_names = NULL;
2840
2841 sbitmap_free (new_ssa_names);
2842 new_ssa_names = NULL;
2843
2844 BITMAP_FREE (symbols_to_rename_set);
2845 symbols_to_rename_set = NULL;
2846 symbols_to_rename.release ();
2847
2848 if (names_to_release)
2849 {
2850 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2851 release_ssa_name (ssa_name (i));
2852 BITMAP_FREE (names_to_release);
2853 }
2854
2855 clear_ssa_name_info ();
2856
2857 fini_ssa_renamer ();
2858
2859 if (blocks_with_phis_to_rewrite)
2860 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2861 {
2862 vec<gphi *> phis = phis_to_rewrite[i];
2863 phis.release ();
2864 phis_to_rewrite[i].create (0);
2865 }
2866
2867 BITMAP_FREE (blocks_with_phis_to_rewrite);
2868 BITMAP_FREE (blocks_to_update);
2869
2870 update_ssa_initialized_fn = NULL;
2871 }
2872
2873
2874 /* Create a new name for OLD_NAME in statement STMT and replace the
2875 operand pointed to by DEF_P with the newly created name. If DEF_P
2876 is NULL then STMT should be a GIMPLE assignment.
2877 Return the new name and register the replacement mapping <NEW, OLD> in
2878 update_ssa's tables. */
2879
2880 tree
2881 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2882 {
2883 tree new_name;
2884
2885 timevar_push (TV_TREE_SSA_INCREMENTAL);
2886
2887 if (!update_ssa_initialized_fn)
2888 init_update_ssa (cfun);
2889
2890 gcc_assert (update_ssa_initialized_fn == cfun);
2891
2892 new_name = duplicate_ssa_name (old_name, stmt);
2893 if (def)
2894 SET_DEF (def, new_name);
2895 else
2896 gimple_assign_set_lhs (stmt, new_name);
2897
2898 if (gimple_code (stmt) == GIMPLE_PHI)
2899 {
2900 basic_block bb = gimple_bb (stmt);
2901
2902 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2903 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2904 }
2905
2906 add_new_name_mapping (new_name, old_name);
2907
2908 /* For the benefit of passes that will be updating the SSA form on
2909 their own, set the current reaching definition of OLD_NAME to be
2910 NEW_NAME. */
2911 get_ssa_name_ann (old_name)->info.current_def = new_name;
2912
2913 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2914
2915 return new_name;
2916 }
2917
2918
2919 /* Mark virtual operands of FN for renaming by update_ssa. */
2920
2921 void
2922 mark_virtual_operands_for_renaming (struct function *fn)
2923 {
2924 fn->gimple_df->ssa_renaming_needed = 1;
2925 fn->gimple_df->rename_vops = 1;
2926 }
2927
2928 /* Replace all uses of NAME by underlying variable and mark it
2929 for renaming. This assumes the defining statement of NAME is
2930 going to be removed. */
2931
2932 void
2933 mark_virtual_operand_for_renaming (tree name)
2934 {
2935 tree name_var = SSA_NAME_VAR (name);
2936 bool used = false;
2937 imm_use_iterator iter;
2938 use_operand_p use_p;
2939 gimple stmt;
2940
2941 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2942 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2943 {
2944 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2945 SET_USE (use_p, name_var);
2946 used = true;
2947 }
2948 if (used)
2949 mark_virtual_operands_for_renaming (cfun);
2950 }
2951
2952 /* Replace all uses of the virtual PHI result by its underlying variable
2953 and mark it for renaming. This assumes the PHI node is going to be
2954 removed. */
2955
2956 void
2957 mark_virtual_phi_result_for_renaming (gphi *phi)
2958 {
2959 if (dump_file && (dump_flags & TDF_DETAILS))
2960 {
2961 fprintf (dump_file, "Marking result for renaming : ");
2962 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2963 fprintf (dump_file, "\n");
2964 }
2965
2966 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2967 }
2968
2969 /* Return true if there is any work to be done by update_ssa
2970 for function FN. */
2971
2972 bool
2973 need_ssa_update_p (struct function *fn)
2974 {
2975 gcc_assert (fn != NULL);
2976 return (update_ssa_initialized_fn == fn
2977 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2978 }
2979
2980 /* Return true if name N has been registered in the replacement table. */
2981
2982 bool
2983 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2984 {
2985 if (!update_ssa_initialized_fn)
2986 return false;
2987
2988 gcc_assert (update_ssa_initialized_fn == cfun);
2989
2990 return is_new_name (n) || is_old_name (n);
2991 }
2992
2993
2994 /* Mark NAME to be released after update_ssa has finished. */
2995
2996 void
2997 release_ssa_name_after_update_ssa (tree name)
2998 {
2999 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
3000
3001 if (names_to_release == NULL)
3002 names_to_release = BITMAP_ALLOC (NULL);
3003
3004 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
3005 }
3006
3007
3008 /* Insert new PHI nodes to replace VAR. DFS contains dominance
3009 frontier information. BLOCKS is the set of blocks to be updated.
3010
3011 This is slightly different than the regular PHI insertion
3012 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
3013 real names (i.e., GIMPLE registers) are inserted:
3014
3015 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
3016 nodes inside the region affected by the block that defines VAR
3017 and the blocks that define all its replacements. All these
3018 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3019
3020 First, we compute the entry point to the region (ENTRY). This is
3021 given by the nearest common dominator to all the definition
3022 blocks. When computing the iterated dominance frontier (IDF), any
3023 block not strictly dominated by ENTRY is ignored.
3024
3025 We then call the standard PHI insertion algorithm with the pruned
3026 IDF.
3027
3028 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3029 names is not pruned. PHI nodes are inserted at every IDF block. */
3030
3031 static void
3032 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3033 unsigned update_flags)
3034 {
3035 basic_block entry;
3036 struct def_blocks_d *db;
3037 bitmap idf, pruned_idf;
3038 bitmap_iterator bi;
3039 unsigned i;
3040
3041 if (TREE_CODE (var) == SSA_NAME)
3042 gcc_checking_assert (is_old_name (var));
3043 else
3044 gcc_checking_assert (marked_for_renaming (var));
3045
3046 /* Get all the definition sites for VAR. */
3047 db = find_def_blocks_for (var);
3048
3049 /* No need to do anything if there were no definitions to VAR. */
3050 if (db == NULL || bitmap_empty_p (db->def_blocks))
3051 return;
3052
3053 /* Compute the initial iterated dominance frontier. */
3054 idf = compute_idf (db->def_blocks, dfs);
3055 pruned_idf = BITMAP_ALLOC (NULL);
3056
3057 if (TREE_CODE (var) == SSA_NAME)
3058 {
3059 if (update_flags == TODO_update_ssa)
3060 {
3061 /* If doing regular SSA updates for GIMPLE registers, we are
3062 only interested in IDF blocks dominated by the nearest
3063 common dominator of all the definition blocks. */
3064 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3065 db->def_blocks);
3066 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3067 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3068 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3069 && dominated_by_p (CDI_DOMINATORS,
3070 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3071 bitmap_set_bit (pruned_idf, i);
3072 }
3073 else
3074 {
3075 /* Otherwise, do not prune the IDF for VAR. */
3076 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3077 bitmap_copy (pruned_idf, idf);
3078 }
3079 }
3080 else
3081 {
3082 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3083 for the first time, so we need to compute the full IDF for
3084 it. */
3085 bitmap_copy (pruned_idf, idf);
3086 }
3087
3088 if (!bitmap_empty_p (pruned_idf))
3089 {
3090 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3091 are included in the region to be updated. The feeding blocks
3092 are important to guarantee that the PHI arguments are renamed
3093 properly. */
3094
3095 /* FIXME, this is not needed if we are updating symbols. We are
3096 already starting at the ENTRY block anyway. */
3097 bitmap_ior_into (blocks, pruned_idf);
3098 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3099 {
3100 edge e;
3101 edge_iterator ei;
3102 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3103
3104 FOR_EACH_EDGE (e, ei, bb->preds)
3105 if (e->src->index >= 0)
3106 bitmap_set_bit (blocks, e->src->index);
3107 }
3108
3109 insert_phi_nodes_for (var, pruned_idf, true);
3110 }
3111
3112 BITMAP_FREE (pruned_idf);
3113 BITMAP_FREE (idf);
3114 }
3115
3116 /* Sort symbols_to_rename after their DECL_UID. */
3117
3118 static int
3119 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3120 {
3121 const_tree syma = *(const const_tree *)a;
3122 const_tree symb = *(const const_tree *)b;
3123 if (DECL_UID (syma) == DECL_UID (symb))
3124 return 0;
3125 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3126 }
3127
3128 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3129 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3130
3131 1- The names in OLD_SSA_NAMES dominated by the definitions of
3132 NEW_SSA_NAMES are all re-written to be reached by the
3133 appropriate definition from NEW_SSA_NAMES.
3134
3135 2- If needed, new PHI nodes are added to the iterated dominance
3136 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3137
3138 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3139 calling create_new_def_for to create new defs for names that the
3140 caller wants to replace.
3141
3142 The caller cretaes the new names to be inserted and the names that need
3143 to be replaced by calling create_new_def_for for each old definition
3144 to be replaced. Note that the function assumes that the
3145 new defining statement has already been inserted in the IL.
3146
3147 For instance, given the following code:
3148
3149 1 L0:
3150 2 x_1 = PHI (0, x_5)
3151 3 if (x_1 < 10)
3152 4 if (x_1 > 7)
3153 5 y_2 = 0
3154 6 else
3155 7 y_3 = x_1 + x_7
3156 8 endif
3157 9 x_5 = x_1 + 1
3158 10 goto L0;
3159 11 endif
3160
3161 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3162
3163 1 L0:
3164 2 x_1 = PHI (0, x_5)
3165 3 if (x_1 < 10)
3166 4 x_10 = ...
3167 5 if (x_1 > 7)
3168 6 y_2 = 0
3169 7 else
3170 8 x_11 = ...
3171 9 y_3 = x_1 + x_7
3172 10 endif
3173 11 x_5 = x_1 + 1
3174 12 goto L0;
3175 13 endif
3176
3177 We want to replace all the uses of x_1 with the new definitions of
3178 x_10 and x_11. Note that the only uses that should be replaced are
3179 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3180 *not* be replaced (this is why we cannot just mark symbol 'x' for
3181 renaming).
3182
3183 Additionally, we may need to insert a PHI node at line 11 because
3184 that is a merge point for x_10 and x_11. So the use of x_1 at line
3185 11 will be replaced with the new PHI node. The insertion of PHI
3186 nodes is optional. They are not strictly necessary to preserve the
3187 SSA form, and depending on what the caller inserted, they may not
3188 even be useful for the optimizers. UPDATE_FLAGS controls various
3189 aspects of how update_ssa operates, see the documentation for
3190 TODO_update_ssa*. */
3191
3192 void
3193 update_ssa (unsigned update_flags)
3194 {
3195 basic_block bb, start_bb;
3196 bitmap_iterator bi;
3197 unsigned i = 0;
3198 bool insert_phi_p;
3199 sbitmap_iterator sbi;
3200 tree sym;
3201
3202 /* Only one update flag should be set. */
3203 gcc_assert (update_flags == TODO_update_ssa
3204 || update_flags == TODO_update_ssa_no_phi
3205 || update_flags == TODO_update_ssa_full_phi
3206 || update_flags == TODO_update_ssa_only_virtuals);
3207
3208 if (!need_ssa_update_p (cfun))
3209 return;
3210
3211 #ifdef ENABLE_CHECKING
3212 timevar_push (TV_TREE_STMT_VERIFY);
3213
3214 bool err = false;
3215
3216 FOR_EACH_BB_FN (bb, cfun)
3217 {
3218 gimple_stmt_iterator gsi;
3219 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3220 {
3221 gimple stmt = gsi_stmt (gsi);
3222
3223 ssa_op_iter i;
3224 use_operand_p use_p;
3225 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
3226 {
3227 tree use = USE_FROM_PTR (use_p);
3228 if (TREE_CODE (use) != SSA_NAME)
3229 continue;
3230
3231 if (SSA_NAME_IN_FREE_LIST (use))
3232 {
3233 error ("statement uses released SSA name:");
3234 debug_gimple_stmt (stmt);
3235 fprintf (stderr, "The use of ");
3236 print_generic_expr (stderr, use, 0);
3237 fprintf (stderr," should have been replaced\n");
3238 err = true;
3239 }
3240 }
3241 }
3242 }
3243
3244 if (err)
3245 internal_error ("cannot update SSA form");
3246
3247 timevar_pop (TV_TREE_STMT_VERIFY);
3248 #endif
3249
3250 timevar_push (TV_TREE_SSA_INCREMENTAL);
3251
3252 if (dump_file && (dump_flags & TDF_DETAILS))
3253 fprintf (dump_file, "\nUpdating SSA:\n");
3254
3255 if (!update_ssa_initialized_fn)
3256 init_update_ssa (cfun);
3257 else if (update_flags == TODO_update_ssa_only_virtuals)
3258 {
3259 /* If we only need to update virtuals, remove all the mappings for
3260 real names before proceeding. The caller is responsible for
3261 having dealt with the name mappings before calling update_ssa. */
3262 bitmap_clear (old_ssa_names);
3263 bitmap_clear (new_ssa_names);
3264 }
3265
3266 gcc_assert (update_ssa_initialized_fn == cfun);
3267
3268 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3269 if (!phis_to_rewrite.exists ())
3270 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3271 blocks_to_update = BITMAP_ALLOC (NULL);
3272
3273 /* Ensure that the dominance information is up-to-date. */
3274 calculate_dominance_info (CDI_DOMINATORS);
3275
3276 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3277
3278 /* If there are names defined in the replacement table, prepare
3279 definition and use sites for all the names in NEW_SSA_NAMES and
3280 OLD_SSA_NAMES. */
3281 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3282 {
3283 prepare_names_to_update (insert_phi_p);
3284
3285 /* If all the names in NEW_SSA_NAMES had been marked for
3286 removal, and there are no symbols to rename, then there's
3287 nothing else to do. */
3288 if (bitmap_first_set_bit (new_ssa_names) < 0
3289 && !cfun->gimple_df->ssa_renaming_needed)
3290 goto done;
3291 }
3292
3293 /* Next, determine the block at which to start the renaming process. */
3294 if (cfun->gimple_df->ssa_renaming_needed)
3295 {
3296 /* If we rename bare symbols initialize the mapping to
3297 auxiliar info we need to keep track of. */
3298 var_infos = new hash_table<var_info_hasher> (47);
3299
3300 /* If we have to rename some symbols from scratch, we need to
3301 start the process at the root of the CFG. FIXME, it should
3302 be possible to determine the nearest block that had a
3303 definition for each of the symbols that are marked for
3304 updating. For now this seems more work than it's worth. */
3305 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3306
3307 /* Traverse the CFG looking for existing definitions and uses of
3308 symbols in SSA operands. Mark interesting blocks and
3309 statements and set local live-in information for the PHI
3310 placement heuristics. */
3311 prepare_block_for_update (start_bb, insert_phi_p);
3312
3313 #ifdef ENABLE_CHECKING
3314 for (i = 1; i < num_ssa_names; ++i)
3315 {
3316 tree name = ssa_name (i);
3317 if (!name
3318 || virtual_operand_p (name))
3319 continue;
3320
3321 /* For all but virtual operands, which do not have SSA names
3322 with overlapping life ranges, ensure that symbols marked
3323 for renaming do not have existing SSA names associated with
3324 them as we do not re-write them out-of-SSA before going
3325 into SSA for the remaining symbol uses. */
3326 if (marked_for_renaming (SSA_NAME_VAR (name)))
3327 {
3328 fprintf (stderr, "Existing SSA name for symbol marked for "
3329 "renaming: ");
3330 print_generic_expr (stderr, name, TDF_SLIM);
3331 fprintf (stderr, "\n");
3332 internal_error ("SSA corruption");
3333 }
3334 }
3335 #endif
3336 }
3337 else
3338 {
3339 /* Otherwise, the entry block to the region is the nearest
3340 common dominator for the blocks in BLOCKS. */
3341 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3342 blocks_to_update);
3343 }
3344
3345 /* If requested, insert PHI nodes at the iterated dominance frontier
3346 of every block, creating new definitions for names in OLD_SSA_NAMES
3347 and for symbols found. */
3348 if (insert_phi_p)
3349 {
3350 bitmap_head *dfs;
3351
3352 /* If the caller requested PHI nodes to be added, compute
3353 dominance frontiers. */
3354 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3355 FOR_EACH_BB_FN (bb, cfun)
3356 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3357 compute_dominance_frontiers (dfs);
3358
3359 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3360 {
3361 sbitmap_iterator sbi;
3362
3363 /* insert_update_phi_nodes_for will call add_new_name_mapping
3364 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3365 will grow while we are traversing it (but it will not
3366 gain any new members). Copy OLD_SSA_NAMES to a temporary
3367 for traversal. */
3368 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3369 bitmap_copy (tmp, old_ssa_names);
3370 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3371 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3372 update_flags);
3373 sbitmap_free (tmp);
3374 }
3375
3376 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3377 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3378 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3379 update_flags);
3380
3381 FOR_EACH_BB_FN (bb, cfun)
3382 bitmap_clear (&dfs[bb->index]);
3383 free (dfs);
3384
3385 /* Insertion of PHI nodes may have added blocks to the region.
3386 We need to re-compute START_BB to include the newly added
3387 blocks. */
3388 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3389 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3390 blocks_to_update);
3391 }
3392
3393 /* Reset the current definition for name and symbol before renaming
3394 the sub-graph. */
3395 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3396 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3397
3398 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3399 get_var_info (sym)->info.current_def = NULL_TREE;
3400
3401 /* Now start the renaming process at START_BB. */
3402 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3403 bitmap_clear (interesting_blocks);
3404 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3405 bitmap_set_bit (interesting_blocks, i);
3406
3407 rewrite_blocks (start_bb, REWRITE_UPDATE);
3408
3409 sbitmap_free (interesting_blocks);
3410
3411 /* Debugging dumps. */
3412 if (dump_file)
3413 {
3414 int c;
3415 unsigned i;
3416
3417 dump_update_ssa (dump_file);
3418
3419 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3420 start_bb->index);
3421
3422 c = 0;
3423 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3424 c++;
3425 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3426 last_basic_block_for_fn (cfun));
3427 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3428 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3429
3430 if (dump_flags & TDF_DETAILS)
3431 {
3432 fprintf (dump_file, "Affected blocks:");
3433 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3434 fprintf (dump_file, " %u", i);
3435 fprintf (dump_file, "\n");
3436 }
3437
3438 fprintf (dump_file, "\n\n");
3439 }
3440
3441 /* Free allocated memory. */
3442 done:
3443 delete_update_ssa ();
3444
3445 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3446 }