]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
tree-ssa-loop-ch.c (copy_loop_headers): Remove redundant checking.
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "bitmap.h"
34 #include "tree-flow.h"
35 #include "gimple.h"
36 #include "tree-inline.h"
37 #include "hashtab.h"
38 #include "tree-pass.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "vecprim.h"
43 #include "diagnostic-core.h"
44
45
46 /* This file builds the SSA form for a function as described in:
47 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
48 Computing Static Single Assignment Form and the Control Dependence
49 Graph. ACM Transactions on Programming Languages and Systems,
50 13(4):451-490, October 1991. */
51
52 /* Structure to map a variable VAR to the set of blocks that contain
53 definitions for VAR. */
54 struct def_blocks_d
55 {
56 /* Blocks that contain definitions of VAR. Bit I will be set if the
57 Ith block contains a definition of VAR. */
58 bitmap def_blocks;
59
60 /* Blocks that contain a PHI node for VAR. */
61 bitmap phi_blocks;
62
63 /* Blocks where VAR is live-on-entry. Similar semantics as
64 DEF_BLOCKS. */
65 bitmap livein_blocks;
66 };
67
68 typedef struct def_blocks_d *def_blocks_p;
69
70
71 /* Stack of trees used to restore the global currdefs to its original
72 state after completing rewriting of a block and its dominator
73 children. Its elements have the following properties:
74
75 - An SSA_NAME (N) indicates that the current definition of the
76 underlying variable should be set to the given SSA_NAME. If the
77 symbol associated with the SSA_NAME is not a GIMPLE register, the
78 next slot in the stack must be a _DECL node (SYM). In this case,
79 the name N in the previous slot is the current reaching
80 definition for SYM.
81
82 - A _DECL node indicates that the underlying variable has no
83 current definition.
84
85 - A NULL node at the top entry is used to mark the last slot
86 associated with the current block. */
87 static VEC(tree,heap) *block_defs_stack;
88
89
90 /* Set of existing SSA names being replaced by update_ssa. */
91 static sbitmap old_ssa_names;
92
93 /* Set of new SSA names being added by update_ssa. Note that both
94 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
95 the operations done on them are presence tests. */
96 static sbitmap new_ssa_names;
97
98 sbitmap interesting_blocks;
99
100 /* Set of SSA names that have been marked to be released after they
101 were registered in the replacement table. They will be finally
102 released after we finish updating the SSA web. */
103 static bitmap names_to_release;
104
105 /* VEC of VECs of PHIs to rewrite in a basic block. Element I corresponds
106 the to basic block with index I. Allocated once per compilation, *not*
107 released between different functions. */
108 static VEC(gimple_vec, heap) *phis_to_rewrite;
109
110 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
111 static bitmap blocks_with_phis_to_rewrite;
112
113 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
114 to grow as the callers to create_new_def_for will create new names on
115 the fly.
116 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
117 need to find a reasonable growth strategy. */
118 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
119
120
121 /* The function the SSA updating data structures have been initialized for.
122 NULL if they need to be initialized by create_new_def_for. */
123 static struct function *update_ssa_initialized_fn = NULL;
124
125 /* Global data to attach to the main dominator walk structure. */
126 struct mark_def_sites_global_data
127 {
128 /* This bitmap contains the variables which are set before they
129 are used in a basic block. */
130 bitmap kills;
131 };
132
133 /* Information stored for both SSA names and decls. */
134 struct common_info_d
135 {
136 /* This field indicates whether or not the variable may need PHI nodes.
137 See the enum's definition for more detailed information about the
138 states. */
139 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
140
141 /* The current reaching definition replacing this var. */
142 tree current_def;
143
144 /* Definitions for this var. */
145 struct def_blocks_d def_blocks;
146 };
147
148 /* The information associated with decls and SSA names. */
149 typedef struct common_info_d *common_info_p;
150
151 /* Information stored for decls. */
152 struct var_info_d
153 {
154 /* The variable. */
155 tree var;
156
157 /* Information stored for both SSA names and decls. */
158 struct common_info_d info;
159 };
160
161 /* The information associated with decls. */
162 typedef struct var_info_d *var_info_p;
163
164 DEF_VEC_P(var_info_p);
165 DEF_VEC_ALLOC_P(var_info_p,heap);
166
167 /* Each entry in VAR_INFOS contains an element of type STRUCT
168 VAR_INFO_D. */
169 static htab_t var_infos;
170
171
172 /* Information stored for SSA names. */
173 struct ssa_name_info
174 {
175 /* Age of this record (so that info_for_ssa_name table can be cleared
176 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
177 are assumed to be null. */
178 unsigned age;
179
180 /* Replacement mappings, allocated from update_ssa_obstack. */
181 bitmap repl_set;
182
183 /* Information stored for both SSA names and decls. */
184 struct common_info_d info;
185 };
186
187 /* The information associated with names. */
188 typedef struct ssa_name_info *ssa_name_info_p;
189 DEF_VEC_P (ssa_name_info_p);
190 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
191
192 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
193 static unsigned current_info_for_ssa_name_age;
194
195 static bitmap_obstack update_ssa_obstack;
196
197 /* The set of blocks affected by update_ssa. */
198 static bitmap blocks_to_update;
199
200 /* The main entry point to the SSA renamer (rewrite_blocks) may be
201 called several times to do different, but related, tasks.
202 Initially, we need it to rename the whole program into SSA form.
203 At other times, we may need it to only rename into SSA newly
204 exposed symbols. Finally, we can also call it to incrementally fix
205 an already built SSA web. */
206 enum rewrite_mode {
207 /* Convert the whole function into SSA form. */
208 REWRITE_ALL,
209
210 /* Incrementally update the SSA web by replacing existing SSA
211 names with new ones. See update_ssa for details. */
212 REWRITE_UPDATE
213 };
214
215
216
217
218 /* Prototypes for debugging functions. */
219 extern void dump_tree_ssa (FILE *);
220 extern void debug_tree_ssa (void);
221 extern void debug_def_blocks (void);
222 extern void dump_tree_ssa_stats (FILE *);
223 extern void debug_tree_ssa_stats (void);
224 extern void dump_update_ssa (FILE *);
225 extern void debug_update_ssa (void);
226 extern void dump_names_replaced_by (FILE *, tree);
227 extern void debug_names_replaced_by (tree);
228 extern void dump_var_infos (FILE *);
229 extern void debug_var_infos (void);
230 extern void dump_defs_stack (FILE *, int);
231 extern void debug_defs_stack (int);
232 extern void dump_currdefs (FILE *);
233 extern void debug_currdefs (void);
234
235
236 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
237 static bitmap symbols_to_rename_set;
238 static VEC(tree,heap) *symbols_to_rename;
239
240 /* Mark SYM for renaming. */
241
242 static void
243 mark_for_renaming (tree sym)
244 {
245 if (!symbols_to_rename_set)
246 symbols_to_rename_set = BITMAP_ALLOC (NULL);
247 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
248 VEC_safe_push (tree, heap, symbols_to_rename, sym);
249 }
250
251 /* Return true if SYM is marked for renaming. */
252
253 static bool
254 marked_for_renaming (tree sym)
255 {
256 if (!symbols_to_rename_set || sym == NULL_TREE)
257 return false;
258 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
259 }
260
261
262 /* Return true if STMT needs to be rewritten. When renaming a subset
263 of the variables, not all statements will be processed. This is
264 decided in mark_def_sites. */
265
266 static inline bool
267 rewrite_uses_p (gimple stmt)
268 {
269 return gimple_visited_p (stmt);
270 }
271
272
273 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
274
275 static inline void
276 set_rewrite_uses (gimple stmt, bool rewrite_p)
277 {
278 gimple_set_visited (stmt, rewrite_p);
279 }
280
281
282 /* Return true if the DEFs created by statement STMT should be
283 registered when marking new definition sites. This is slightly
284 different than rewrite_uses_p: it's used by update_ssa to
285 distinguish statements that need to have both uses and defs
286 processed from those that only need to have their defs processed.
287 Statements that define new SSA names only need to have their defs
288 registered, but they don't need to have their uses renamed. */
289
290 static inline bool
291 register_defs_p (gimple stmt)
292 {
293 return gimple_plf (stmt, GF_PLF_1) != 0;
294 }
295
296
297 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
298
299 static inline void
300 set_register_defs (gimple stmt, bool register_defs_p)
301 {
302 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
303 }
304
305
306 /* Get the information associated with NAME. */
307
308 static inline ssa_name_info_p
309 get_ssa_name_ann (tree name)
310 {
311 unsigned ver = SSA_NAME_VERSION (name);
312 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
313 struct ssa_name_info *info;
314
315 /* Re-allocate the vector at most once per update/into-SSA. */
316 if (ver >= len)
317 VEC_safe_grow_cleared (ssa_name_info_p, heap,
318 info_for_ssa_name, num_ssa_names);
319
320 /* But allocate infos lazily. */
321 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
322 if (!info)
323 {
324 info = XCNEW (struct ssa_name_info);
325 info->age = current_info_for_ssa_name_age;
326 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
327 VEC_replace (ssa_name_info_p, info_for_ssa_name, ver, info);
328 }
329
330 if (info->age < current_info_for_ssa_name_age)
331 {
332 info->age = current_info_for_ssa_name_age;
333 info->repl_set = NULL;
334 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
335 info->info.current_def = NULL_TREE;
336 info->info.def_blocks.def_blocks = NULL;
337 info->info.def_blocks.phi_blocks = NULL;
338 info->info.def_blocks.livein_blocks = NULL;
339 }
340
341 return info;
342 }
343
344 /* Return and allocate the auxiliar information for DECL. */
345
346 static inline var_info_p
347 get_var_info (tree decl)
348 {
349 struct var_info_d vi;
350 void **slot;
351 vi.var = decl;
352 slot = htab_find_slot_with_hash (var_infos, &vi, DECL_UID (decl), INSERT);
353 if (*slot == NULL)
354 {
355 var_info_p v = XCNEW (struct var_info_d);
356 v->var = decl;
357 *slot = (void *)v;
358 return v;
359 }
360 return (var_info_p) *slot;
361 }
362
363
364 /* Clears info for SSA names. */
365
366 static void
367 clear_ssa_name_info (void)
368 {
369 current_info_for_ssa_name_age++;
370
371 /* If current_info_for_ssa_name_age wraps we use stale information.
372 Asser that this does not happen. */
373 gcc_assert (current_info_for_ssa_name_age != 0);
374 }
375
376
377 /* Get access to the auxiliar information stored per SSA name or decl. */
378
379 static inline common_info_p
380 get_common_info (tree var)
381 {
382 if (TREE_CODE (var) == SSA_NAME)
383 return &get_ssa_name_ann (var)->info;
384 else
385 return &get_var_info (var)->info;
386 }
387
388
389 /* Return the current definition for VAR. */
390
391 tree
392 get_current_def (tree var)
393 {
394 return get_common_info (var)->current_def;
395 }
396
397
398 /* Sets current definition of VAR to DEF. */
399
400 void
401 set_current_def (tree var, tree def)
402 {
403 get_common_info (var)->current_def = def;
404 }
405
406 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
407 all statements in basic block BB. */
408
409 static void
410 initialize_flags_in_bb (basic_block bb)
411 {
412 gimple stmt;
413 gimple_stmt_iterator gsi;
414
415 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 gimple phi = gsi_stmt (gsi);
418 set_rewrite_uses (phi, false);
419 set_register_defs (phi, false);
420 }
421
422 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
423 {
424 stmt = gsi_stmt (gsi);
425
426 /* We are going to use the operand cache API, such as
427 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
428 cache for each statement should be up-to-date. */
429 gcc_checking_assert (!gimple_modified_p (stmt));
430 set_rewrite_uses (stmt, false);
431 set_register_defs (stmt, false);
432 }
433 }
434
435 /* Mark block BB as interesting for update_ssa. */
436
437 static void
438 mark_block_for_update (basic_block bb)
439 {
440 gcc_checking_assert (blocks_to_update != NULL);
441 if (!bitmap_set_bit (blocks_to_update, bb->index))
442 return;
443 initialize_flags_in_bb (bb);
444 }
445
446 /* Return the set of blocks where variable VAR is defined and the blocks
447 where VAR is live on entry (livein). If no entry is found in
448 DEF_BLOCKS, a new one is created and returned. */
449
450 static inline struct def_blocks_d *
451 get_def_blocks_for (common_info_p info)
452 {
453 struct def_blocks_d *db_p = &info->def_blocks;
454 if (!db_p->def_blocks)
455 {
456 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
457 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
458 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
459 }
460
461 return db_p;
462 }
463
464
465 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
466 VAR is defined by a PHI node. */
467
468 static void
469 set_def_block (tree var, basic_block bb, bool phi_p)
470 {
471 struct def_blocks_d *db_p;
472 common_info_p info;
473
474 info = get_common_info (var);
475 db_p = get_def_blocks_for (info);
476
477 /* Set the bit corresponding to the block where VAR is defined. */
478 bitmap_set_bit (db_p->def_blocks, bb->index);
479 if (phi_p)
480 bitmap_set_bit (db_p->phi_blocks, bb->index);
481
482 /* Keep track of whether or not we may need to insert PHI nodes.
483
484 If we are in the UNKNOWN state, then this is the first definition
485 of VAR. Additionally, we have not seen any uses of VAR yet, so
486 we do not need a PHI node for this variable at this time (i.e.,
487 transition to NEED_PHI_STATE_NO).
488
489 If we are in any other state, then we either have multiple definitions
490 of this variable occurring in different blocks or we saw a use of the
491 variable which was not dominated by the block containing the
492 definition(s). In this case we may need a PHI node, so enter
493 state NEED_PHI_STATE_MAYBE. */
494 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
495 info->need_phi_state = NEED_PHI_STATE_NO;
496 else
497 info->need_phi_state = NEED_PHI_STATE_MAYBE;
498 }
499
500
501 /* Mark block BB as having VAR live at the entry to BB. */
502
503 static void
504 set_livein_block (tree var, basic_block bb)
505 {
506 common_info_p info;
507 struct def_blocks_d *db_p;
508
509 info = get_common_info (var);
510 db_p = get_def_blocks_for (info);
511
512 /* Set the bit corresponding to the block where VAR is live in. */
513 bitmap_set_bit (db_p->livein_blocks, bb->index);
514
515 /* Keep track of whether or not we may need to insert PHI nodes.
516
517 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
518 by the single block containing the definition(s) of this variable. If
519 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
520 NEED_PHI_STATE_MAYBE. */
521 if (info->need_phi_state == NEED_PHI_STATE_NO)
522 {
523 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
524
525 if (def_block_index == -1
526 || ! dominated_by_p (CDI_DOMINATORS, bb,
527 BASIC_BLOCK (def_block_index)))
528 info->need_phi_state = NEED_PHI_STATE_MAYBE;
529 }
530 else
531 info->need_phi_state = NEED_PHI_STATE_MAYBE;
532 }
533
534
535 /* Return true if NAME is in OLD_SSA_NAMES. */
536
537 static inline bool
538 is_old_name (tree name)
539 {
540 unsigned ver = SSA_NAME_VERSION (name);
541 if (!new_ssa_names)
542 return false;
543 return (ver < SBITMAP_SIZE (new_ssa_names)
544 && TEST_BIT (old_ssa_names, ver));
545 }
546
547
548 /* Return true if NAME is in NEW_SSA_NAMES. */
549
550 static inline bool
551 is_new_name (tree name)
552 {
553 unsigned ver = SSA_NAME_VERSION (name);
554 if (!new_ssa_names)
555 return false;
556 return (ver < SBITMAP_SIZE (new_ssa_names)
557 && TEST_BIT (new_ssa_names, ver));
558 }
559
560
561 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
562
563 static inline bitmap
564 names_replaced_by (tree new_tree)
565 {
566 return get_ssa_name_ann (new_tree)->repl_set;
567 }
568
569
570 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
571
572 static inline void
573 add_to_repl_tbl (tree new_tree, tree old)
574 {
575 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
576 if (!*set)
577 *set = BITMAP_ALLOC (&update_ssa_obstack);
578 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
579 }
580
581
582 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
583 represents the set of names O_1 ... O_j replaced by N_i. This is
584 used by update_ssa and its helpers to introduce new SSA names in an
585 already formed SSA web. */
586
587 static void
588 add_new_name_mapping (tree new_tree, tree old)
589 {
590 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
591 gcc_checking_assert (new_tree != old
592 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
593
594 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
595 caller may have created new names since the set was created. */
596 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
597 {
598 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
599 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
600 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
601 }
602
603 /* Update the REPL_TBL table. */
604 add_to_repl_tbl (new_tree, old);
605
606 /* If OLD had already been registered as a new name, then all the
607 names that OLD replaces should also be replaced by NEW_TREE. */
608 if (is_new_name (old))
609 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
610
611 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
612 respectively. */
613 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
614 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
615 }
616
617
618 /* Call back for walk_dominator_tree used to collect definition sites
619 for every variable in the function. For every statement S in block
620 BB:
621
622 1- Variables defined by S in the DEFS of S are marked in the bitmap
623 KILLS.
624
625 2- If S uses a variable VAR and there is no preceding kill of VAR,
626 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
627
628 This information is used to determine which variables are live
629 across block boundaries to reduce the number of PHI nodes
630 we create. */
631
632 static void
633 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
634 {
635 tree def;
636 use_operand_p use_p;
637 ssa_op_iter iter;
638
639 /* Since this is the first time that we rewrite the program into SSA
640 form, force an operand scan on every statement. */
641 update_stmt (stmt);
642
643 gcc_checking_assert (blocks_to_update == NULL);
644 set_register_defs (stmt, false);
645 set_rewrite_uses (stmt, false);
646
647 if (is_gimple_debug (stmt))
648 {
649 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
650 {
651 tree sym = USE_FROM_PTR (use_p);
652 gcc_checking_assert (DECL_P (sym));
653 set_rewrite_uses (stmt, true);
654 }
655 if (rewrite_uses_p (stmt))
656 SET_BIT (interesting_blocks, bb->index);
657 return;
658 }
659
660 /* If a variable is used before being set, then the variable is live
661 across a block boundary, so mark it live-on-entry to BB. */
662 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
663 {
664 tree sym = USE_FROM_PTR (use_p);
665 gcc_checking_assert (DECL_P (sym));
666 if (!bitmap_bit_p (kills, DECL_UID (sym)))
667 set_livein_block (sym, bb);
668 set_rewrite_uses (stmt, true);
669 }
670
671 /* Now process the defs. Mark BB as the definition block and add
672 each def to the set of killed symbols. */
673 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
674 {
675 gcc_checking_assert (DECL_P (def));
676 set_def_block (def, bb, false);
677 bitmap_set_bit (kills, DECL_UID (def));
678 set_register_defs (stmt, true);
679 }
680
681 /* If we found the statement interesting then also mark the block BB
682 as interesting. */
683 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
684 SET_BIT (interesting_blocks, bb->index);
685 }
686
687 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
688 in the dfs numbering of the dominance tree. */
689
690 struct dom_dfsnum
691 {
692 /* Basic block whose index this entry corresponds to. */
693 unsigned bb_index;
694
695 /* The dfs number of this node. */
696 unsigned dfs_num;
697 };
698
699 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
700 for qsort. */
701
702 static int
703 cmp_dfsnum (const void *a, const void *b)
704 {
705 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
706 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
707
708 return (int) da->dfs_num - (int) db->dfs_num;
709 }
710
711 /* Among the intervals starting at the N points specified in DEFS, find
712 the one that contains S, and return its bb_index. */
713
714 static unsigned
715 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
716 {
717 unsigned f = 0, t = n, m;
718
719 while (t > f + 1)
720 {
721 m = (f + t) / 2;
722 if (defs[m].dfs_num <= s)
723 f = m;
724 else
725 t = m;
726 }
727
728 return defs[f].bb_index;
729 }
730
731 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
732 KILLS is a bitmap of blocks where the value is defined before any use. */
733
734 static void
735 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
736 {
737 VEC(int, heap) *worklist;
738 bitmap_iterator bi;
739 unsigned i, b, p, u, top;
740 bitmap live_phis;
741 basic_block def_bb, use_bb;
742 edge e;
743 edge_iterator ei;
744 bitmap to_remove;
745 struct dom_dfsnum *defs;
746 unsigned n_defs, adef;
747
748 if (bitmap_empty_p (uses))
749 {
750 bitmap_clear (phis);
751 return;
752 }
753
754 /* The phi must dominate a use, or an argument of a live phi. Also, we
755 do not create any phi nodes in def blocks, unless they are also livein. */
756 to_remove = BITMAP_ALLOC (NULL);
757 bitmap_and_compl (to_remove, kills, uses);
758 bitmap_and_compl_into (phis, to_remove);
759 if (bitmap_empty_p (phis))
760 {
761 BITMAP_FREE (to_remove);
762 return;
763 }
764
765 /* We want to remove the unnecessary phi nodes, but we do not want to compute
766 liveness information, as that may be linear in the size of CFG, and if
767 there are lot of different variables to rewrite, this may lead to quadratic
768 behavior.
769
770 Instead, we basically emulate standard dce. We put all uses to worklist,
771 then for each of them find the nearest def that dominates them. If this
772 def is a phi node, we mark it live, and if it was not live before, we
773 add the predecessors of its basic block to the worklist.
774
775 To quickly locate the nearest def that dominates use, we use dfs numbering
776 of the dominance tree (that is already available in order to speed up
777 queries). For each def, we have the interval given by the dfs number on
778 entry to and on exit from the corresponding subtree in the dominance tree.
779 The nearest dominator for a given use is the smallest of these intervals
780 that contains entry and exit dfs numbers for the basic block with the use.
781 If we store the bounds for all the uses to an array and sort it, we can
782 locate the nearest dominating def in logarithmic time by binary search.*/
783 bitmap_ior (to_remove, kills, phis);
784 n_defs = bitmap_count_bits (to_remove);
785 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
786 defs[0].bb_index = 1;
787 defs[0].dfs_num = 0;
788 adef = 1;
789 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
790 {
791 def_bb = BASIC_BLOCK (i);
792 defs[adef].bb_index = i;
793 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
794 defs[adef + 1].bb_index = i;
795 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
796 adef += 2;
797 }
798 BITMAP_FREE (to_remove);
799 gcc_assert (adef == 2 * n_defs + 1);
800 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
801 gcc_assert (defs[0].bb_index == 1);
802
803 /* Now each DEFS entry contains the number of the basic block to that the
804 dfs number corresponds. Change them to the number of basic block that
805 corresponds to the interval following the dfs number. Also, for the
806 dfs_out numbers, increase the dfs number by one (so that it corresponds
807 to the start of the following interval, not to the end of the current
808 one). We use WORKLIST as a stack. */
809 worklist = VEC_alloc (int, heap, n_defs + 1);
810 VEC_quick_push (int, worklist, 1);
811 top = 1;
812 n_defs = 1;
813 for (i = 1; i < adef; i++)
814 {
815 b = defs[i].bb_index;
816 if (b == top)
817 {
818 /* This is a closing element. Interval corresponding to the top
819 of the stack after removing it follows. */
820 VEC_pop (int, worklist);
821 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
822 defs[n_defs].bb_index = top;
823 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
824 }
825 else
826 {
827 /* Opening element. Nothing to do, just push it to the stack and move
828 it to the correct position. */
829 defs[n_defs].bb_index = defs[i].bb_index;
830 defs[n_defs].dfs_num = defs[i].dfs_num;
831 VEC_quick_push (int, worklist, b);
832 top = b;
833 }
834
835 /* If this interval starts at the same point as the previous one, cancel
836 the previous one. */
837 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
838 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
839 else
840 n_defs++;
841 }
842 VEC_pop (int, worklist);
843 gcc_assert (VEC_empty (int, worklist));
844
845 /* Now process the uses. */
846 live_phis = BITMAP_ALLOC (NULL);
847 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
848 {
849 VEC_safe_push (int, heap, worklist, i);
850 }
851
852 while (!VEC_empty (int, worklist))
853 {
854 b = VEC_pop (int, worklist);
855 if (b == ENTRY_BLOCK)
856 continue;
857
858 /* If there is a phi node in USE_BB, it is made live. Otherwise,
859 find the def that dominates the immediate dominator of USE_BB
860 (the kill in USE_BB does not dominate the use). */
861 if (bitmap_bit_p (phis, b))
862 p = b;
863 else
864 {
865 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
866 p = find_dfsnum_interval (defs, n_defs,
867 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
868 if (!bitmap_bit_p (phis, p))
869 continue;
870 }
871
872 /* If the phi node is already live, there is nothing to do. */
873 if (!bitmap_set_bit (live_phis, p))
874 continue;
875
876 /* Add the new uses to the worklist. */
877 def_bb = BASIC_BLOCK (p);
878 FOR_EACH_EDGE (e, ei, def_bb->preds)
879 {
880 u = e->src->index;
881 if (bitmap_bit_p (uses, u))
882 continue;
883
884 /* In case there is a kill directly in the use block, do not record
885 the use (this is also necessary for correctness, as we assume that
886 uses dominated by a def directly in their block have been filtered
887 out before). */
888 if (bitmap_bit_p (kills, u))
889 continue;
890
891 bitmap_set_bit (uses, u);
892 VEC_safe_push (int, heap, worklist, u);
893 }
894 }
895
896 VEC_free (int, heap, worklist);
897 bitmap_copy (phis, live_phis);
898 BITMAP_FREE (live_phis);
899 free (defs);
900 }
901
902 /* Return the set of blocks where variable VAR is defined and the blocks
903 where VAR is live on entry (livein). Return NULL, if no entry is
904 found in DEF_BLOCKS. */
905
906 static inline struct def_blocks_d *
907 find_def_blocks_for (tree var)
908 {
909 def_blocks_p p = &get_common_info (var)->def_blocks;
910 if (!p->def_blocks)
911 return NULL;
912 return p;
913 }
914
915
916 /* Marks phi node PHI in basic block BB for rewrite. */
917
918 static void
919 mark_phi_for_rewrite (basic_block bb, gimple phi)
920 {
921 gimple_vec phis;
922 unsigned n, idx = bb->index;
923
924 if (rewrite_uses_p (phi))
925 return;
926
927 set_rewrite_uses (phi, true);
928
929 if (!blocks_with_phis_to_rewrite)
930 return;
931
932 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
933
934 n = (unsigned) last_basic_block + 1;
935 if (VEC_length (gimple_vec, phis_to_rewrite) < n)
936 VEC_safe_grow_cleared (gimple_vec, heap, phis_to_rewrite, n);
937
938 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
939 if (!phis)
940 phis = VEC_alloc (gimple, heap, 10);
941
942 VEC_safe_push (gimple, heap, phis, phi);
943 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
944 }
945
946 /* Insert PHI nodes for variable VAR using the iterated dominance
947 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
948 function assumes that the caller is incrementally updating the
949 existing SSA form, in which case VAR may be an SSA name instead of
950 a symbol.
951
952 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
953 PHI node for VAR. On exit, only the nodes that received a PHI node
954 for VAR will be present in PHI_INSERTION_POINTS. */
955
956 static void
957 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
958 {
959 unsigned bb_index;
960 edge e;
961 gimple phi;
962 basic_block bb;
963 bitmap_iterator bi;
964 struct def_blocks_d *def_map = find_def_blocks_for (var);
965
966 /* Remove the blocks where we already have PHI nodes for VAR. */
967 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
968
969 /* Remove obviously useless phi nodes. */
970 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
971 def_map->livein_blocks);
972
973 /* And insert the PHI nodes. */
974 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
975 {
976 bb = BASIC_BLOCK (bb_index);
977 if (update_p)
978 mark_block_for_update (bb);
979
980 phi = NULL;
981
982 if (TREE_CODE (var) == SSA_NAME)
983 {
984 /* If we are rewriting SSA names, create the LHS of the PHI
985 node by duplicating VAR. This is useful in the case of
986 pointers, to also duplicate pointer attributes (alias
987 information, in particular). */
988 edge_iterator ei;
989 tree new_lhs;
990
991 gcc_checking_assert (update_p);
992 new_lhs = duplicate_ssa_name (var, NULL);
993 phi = create_phi_node (new_lhs, bb);
994 add_new_name_mapping (new_lhs, var);
995
996 /* Add VAR to every argument slot of PHI. We need VAR in
997 every argument so that rewrite_update_phi_arguments knows
998 which name is this PHI node replacing. If VAR is a
999 symbol marked for renaming, this is not necessary, the
1000 renamer will use the symbol on the LHS to get its
1001 reaching definition. */
1002 FOR_EACH_EDGE (e, ei, bb->preds)
1003 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1004 }
1005 else
1006 {
1007 tree tracked_var;
1008
1009 gcc_checking_assert (DECL_P (var));
1010 phi = create_phi_node (var, bb);
1011
1012 tracked_var = target_for_debug_bind (var);
1013 if (tracked_var)
1014 {
1015 gimple note = gimple_build_debug_bind (tracked_var,
1016 PHI_RESULT (phi),
1017 phi);
1018 gimple_stmt_iterator si = gsi_after_labels (bb);
1019 gsi_insert_before (&si, note, GSI_SAME_STMT);
1020 }
1021 }
1022
1023 /* Mark this PHI node as interesting for update_ssa. */
1024 set_register_defs (phi, true);
1025 mark_phi_for_rewrite (bb, phi);
1026 }
1027 }
1028
1029 /* Sort var_infos after DECL_UID of their var. */
1030
1031 static int
1032 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1033 {
1034 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1035 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1036 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1037 return -1;
1038 else
1039 return 1;
1040 }
1041
1042 /* Insert PHI nodes at the dominance frontier of blocks with variable
1043 definitions. DFS contains the dominance frontier information for
1044 the flowgraph. */
1045
1046 static void
1047 insert_phi_nodes (bitmap_head *dfs)
1048 {
1049 htab_iterator hi;
1050 unsigned i;
1051 var_info_p info;
1052 VEC(var_info_p,heap) *vars;
1053
1054 timevar_push (TV_TREE_INSERT_PHI_NODES);
1055
1056 vars = VEC_alloc (var_info_p, heap, htab_elements (var_infos));
1057 FOR_EACH_HTAB_ELEMENT (var_infos, info, var_info_p, hi)
1058 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1059 VEC_quick_push (var_info_p, vars, info);
1060
1061 /* Do two stages to avoid code generation differences for UID
1062 differences but no UID ordering differences. */
1063 VEC_qsort (var_info_p, vars, insert_phi_nodes_compare_var_infos);
1064
1065 FOR_EACH_VEC_ELT (var_info_p, vars, i, info)
1066 {
1067 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1068 insert_phi_nodes_for (info->var, idf, false);
1069 BITMAP_FREE (idf);
1070 }
1071
1072 VEC_free(var_info_p, heap, vars);
1073
1074 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1075 }
1076
1077
1078 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1079 register DEF (an SSA_NAME) to be a new definition for SYM. */
1080
1081 static void
1082 register_new_def (tree def, tree sym)
1083 {
1084 common_info_p info = get_common_info (sym);
1085 tree currdef;
1086
1087 /* If this variable is set in a single basic block and all uses are
1088 dominated by the set(s) in that single basic block, then there is
1089 no reason to record anything for this variable in the block local
1090 definition stacks. Doing so just wastes time and memory.
1091
1092 This is the same test to prune the set of variables which may
1093 need PHI nodes. So we just use that information since it's already
1094 computed and available for us to use. */
1095 if (info->need_phi_state == NEED_PHI_STATE_NO)
1096 {
1097 info->current_def = def;
1098 return;
1099 }
1100
1101 currdef = info->current_def;
1102
1103 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1104 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1105 in the stack so that we know which symbol is being defined by
1106 this SSA name when we unwind the stack. */
1107 if (currdef && !is_gimple_reg (sym))
1108 VEC_safe_push (tree, heap, block_defs_stack, sym);
1109
1110 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1111 stack is later used by the dominator tree callbacks to restore
1112 the reaching definitions for all the variables defined in the
1113 block after a recursive visit to all its immediately dominated
1114 blocks. If there is no current reaching definition, then just
1115 record the underlying _DECL node. */
1116 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1117
1118 /* Set the current reaching definition for SYM to be DEF. */
1119 info->current_def = def;
1120 }
1121
1122
1123 /* Perform a depth-first traversal of the dominator tree looking for
1124 variables to rename. BB is the block where to start searching.
1125 Renaming is a five step process:
1126
1127 1- Every definition made by PHI nodes at the start of the blocks is
1128 registered as the current definition for the corresponding variable.
1129
1130 2- Every statement in BB is rewritten. USE and VUSE operands are
1131 rewritten with their corresponding reaching definition. DEF and
1132 VDEF targets are registered as new definitions.
1133
1134 3- All the PHI nodes in successor blocks of BB are visited. The
1135 argument corresponding to BB is replaced with its current reaching
1136 definition.
1137
1138 4- Recursively rewrite every dominator child block of BB.
1139
1140 5- Restore (in reverse order) the current reaching definition for every
1141 new definition introduced in this block. This is done so that when
1142 we return from the recursive call, all the current reaching
1143 definitions are restored to the names that were valid in the
1144 dominator parent of BB. */
1145
1146 /* Return the current definition for variable VAR. If none is found,
1147 create a new SSA name to act as the zeroth definition for VAR. */
1148
1149 static tree
1150 get_reaching_def (tree var)
1151 {
1152 common_info_p info = get_common_info (var);
1153 tree currdef;
1154
1155 /* Lookup the current reaching definition for VAR. */
1156 currdef = info->current_def;
1157
1158 /* If there is no reaching definition for VAR, create and register a
1159 default definition for it (if needed). */
1160 if (currdef == NULL_TREE)
1161 {
1162 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1163 currdef = get_or_create_ssa_default_def (cfun, sym);
1164 }
1165
1166 /* Return the current reaching definition for VAR, or the default
1167 definition, if we had to create one. */
1168 return currdef;
1169 }
1170
1171
1172 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1173
1174 static void
1175 rewrite_debug_stmt_uses (gimple stmt)
1176 {
1177 use_operand_p use_p;
1178 ssa_op_iter iter;
1179 bool update = false;
1180
1181 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1182 {
1183 tree var = USE_FROM_PTR (use_p), def;
1184 common_info_p info = get_common_info (var);
1185 gcc_checking_assert (DECL_P (var));
1186 def = info->current_def;
1187 if (!def)
1188 {
1189 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1190 {
1191 gimple_stmt_iterator gsi
1192 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1193 int lim;
1194 /* Search a few source bind stmts at the start of first bb to
1195 see if a DEBUG_EXPR_DECL can't be reused. */
1196 for (lim = 32;
1197 !gsi_end_p (gsi) && lim > 0;
1198 gsi_next (&gsi), lim--)
1199 {
1200 gimple gstmt = gsi_stmt (gsi);
1201 if (!gimple_debug_source_bind_p (gstmt))
1202 break;
1203 if (gimple_debug_source_bind_get_value (gstmt) == var)
1204 {
1205 def = gimple_debug_source_bind_get_var (gstmt);
1206 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1207 break;
1208 else
1209 def = NULL_TREE;
1210 }
1211 }
1212 /* If not, add a new source bind stmt. */
1213 if (def == NULL_TREE)
1214 {
1215 gimple def_temp;
1216 def = make_node (DEBUG_EXPR_DECL);
1217 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1218 DECL_ARTIFICIAL (def) = 1;
1219 TREE_TYPE (def) = TREE_TYPE (var);
1220 DECL_MODE (def) = DECL_MODE (var);
1221 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1222 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1223 }
1224 update = true;
1225 }
1226 }
1227 else
1228 {
1229 /* Check if info->current_def can be trusted. */
1230 basic_block bb = gimple_bb (stmt);
1231 basic_block def_bb
1232 = SSA_NAME_IS_DEFAULT_DEF (def)
1233 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1234
1235 /* If definition is in current bb, it is fine. */
1236 if (bb == def_bb)
1237 ;
1238 /* If definition bb doesn't dominate the current bb,
1239 it can't be used. */
1240 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1241 def = NULL;
1242 /* If there is just one definition and dominates the current
1243 bb, it is fine. */
1244 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1245 ;
1246 else
1247 {
1248 struct def_blocks_d *db_p = get_def_blocks_for (info);
1249
1250 /* If there are some non-debug uses in the current bb,
1251 it is fine. */
1252 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1253 ;
1254 /* Otherwise give up for now. */
1255 else
1256 def = NULL;
1257 }
1258 }
1259 if (def == NULL)
1260 {
1261 gimple_debug_bind_reset_value (stmt);
1262 update_stmt (stmt);
1263 return;
1264 }
1265 SET_USE (use_p, def);
1266 }
1267 if (update)
1268 update_stmt (stmt);
1269 }
1270
1271 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1272 the block with its immediate reaching definitions. Update the current
1273 definition of a variable when a new real or virtual definition is found. */
1274
1275 static void
1276 rewrite_stmt (gimple_stmt_iterator *si)
1277 {
1278 use_operand_p use_p;
1279 def_operand_p def_p;
1280 ssa_op_iter iter;
1281 gimple stmt = gsi_stmt (*si);
1282
1283 /* If mark_def_sites decided that we don't need to rewrite this
1284 statement, ignore it. */
1285 gcc_assert (blocks_to_update == NULL);
1286 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1287 return;
1288
1289 if (dump_file && (dump_flags & TDF_DETAILS))
1290 {
1291 fprintf (dump_file, "Renaming statement ");
1292 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1293 fprintf (dump_file, "\n");
1294 }
1295
1296 /* Step 1. Rewrite USES in the statement. */
1297 if (rewrite_uses_p (stmt))
1298 {
1299 if (is_gimple_debug (stmt))
1300 rewrite_debug_stmt_uses (stmt);
1301 else
1302 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1303 {
1304 tree var = USE_FROM_PTR (use_p);
1305 gcc_checking_assert (DECL_P (var));
1306 SET_USE (use_p, get_reaching_def (var));
1307 }
1308 }
1309
1310 /* Step 2. Register the statement's DEF operands. */
1311 if (register_defs_p (stmt))
1312 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1313 {
1314 tree var = DEF_FROM_PTR (def_p);
1315 tree name;
1316 tree tracked_var;
1317
1318 gcc_checking_assert (DECL_P (var));
1319
1320 if (gimple_clobber_p (stmt)
1321 && is_gimple_reg (var))
1322 {
1323 /* If we rewrite a DECL into SSA form then drop its
1324 clobber stmts and replace uses with a new default def. */
1325 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1326 && !gimple_vdef (stmt));
1327 gsi_replace (si, gimple_build_nop (), true);
1328 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1329 break;
1330 }
1331
1332 name = make_ssa_name (var, stmt);
1333 SET_DEF (def_p, name);
1334 register_new_def (DEF_FROM_PTR (def_p), var);
1335
1336 tracked_var = target_for_debug_bind (var);
1337 if (tracked_var)
1338 {
1339 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1340 gsi_insert_after (si, note, GSI_SAME_STMT);
1341 }
1342 }
1343 }
1344
1345
1346 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1347 PHI nodes. For every PHI node found, add a new argument containing the
1348 current reaching definition for the variable and the edge through which
1349 that definition is reaching the PHI node. */
1350
1351 static void
1352 rewrite_add_phi_arguments (basic_block bb)
1353 {
1354 edge e;
1355 edge_iterator ei;
1356
1357 FOR_EACH_EDGE (e, ei, bb->succs)
1358 {
1359 gimple phi;
1360 gimple_stmt_iterator gsi;
1361
1362 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1363 gsi_next (&gsi))
1364 {
1365 tree currdef;
1366 gimple stmt;
1367
1368 phi = gsi_stmt (gsi);
1369 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1370 stmt = SSA_NAME_DEF_STMT (currdef);
1371 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1372 }
1373 }
1374 }
1375
1376 /* SSA Rewriting Step 1. Initialization, create a block local stack
1377 of reaching definitions for new SSA names produced in this block
1378 (BLOCK_DEFS). Register new definitions for every PHI node in the
1379 block. */
1380
1381 static void
1382 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1383 basic_block bb)
1384 {
1385 gimple_stmt_iterator gsi;
1386
1387 if (dump_file && (dump_flags & TDF_DETAILS))
1388 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1389
1390 /* Mark the unwind point for this block. */
1391 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1392
1393 /* Step 1. Register new definitions for every PHI node in the block.
1394 Conceptually, all the PHI nodes are executed in parallel and each PHI
1395 node introduces a new version for the associated variable. */
1396 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1397 {
1398 tree result = gimple_phi_result (gsi_stmt (gsi));
1399 register_new_def (result, SSA_NAME_VAR (result));
1400 }
1401
1402 /* Step 2. Rewrite every variable used in each statement in the block
1403 with its immediate reaching definitions. Update the current definition
1404 of a variable when a new real or virtual definition is found. */
1405 if (TEST_BIT (interesting_blocks, bb->index))
1406 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1407 rewrite_stmt (&gsi);
1408
1409 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1410 For every PHI node found, add a new argument containing the current
1411 reaching definition for the variable and the edge through which that
1412 definition is reaching the PHI node. */
1413 rewrite_add_phi_arguments (bb);
1414 }
1415
1416
1417
1418 /* Called after visiting all the statements in basic block BB and all
1419 of its dominator children. Restore CURRDEFS to its original value. */
1420
1421 static void
1422 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1423 basic_block bb ATTRIBUTE_UNUSED)
1424 {
1425 /* Restore CURRDEFS to its original state. */
1426 while (VEC_length (tree, block_defs_stack) > 0)
1427 {
1428 tree tmp = VEC_pop (tree, block_defs_stack);
1429 tree saved_def, var;
1430
1431 if (tmp == NULL_TREE)
1432 break;
1433
1434 if (TREE_CODE (tmp) == SSA_NAME)
1435 {
1436 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1437 current definition of its underlying variable. Note that
1438 if the SSA_NAME is not for a GIMPLE register, the symbol
1439 being defined is stored in the next slot in the stack.
1440 This mechanism is needed because an SSA name for a
1441 non-register symbol may be the definition for more than
1442 one symbol (e.g., SFTs, aliased variables, etc). */
1443 saved_def = tmp;
1444 var = SSA_NAME_VAR (saved_def);
1445 if (!is_gimple_reg (var))
1446 var = VEC_pop (tree, block_defs_stack);
1447 }
1448 else
1449 {
1450 /* If we recorded anything else, it must have been a _DECL
1451 node and its current reaching definition must have been
1452 NULL. */
1453 saved_def = NULL;
1454 var = tmp;
1455 }
1456
1457 get_common_info (var)->current_def = saved_def;
1458 }
1459 }
1460
1461
1462 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1463
1464 void
1465 dump_decl_set (FILE *file, bitmap set)
1466 {
1467 if (set)
1468 {
1469 bitmap_iterator bi;
1470 unsigned i;
1471
1472 fprintf (file, "{ ");
1473
1474 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1475 {
1476 fprintf (file, "D.%u", i);
1477 fprintf (file, " ");
1478 }
1479
1480 fprintf (file, "}");
1481 }
1482 else
1483 fprintf (file, "NIL");
1484 }
1485
1486
1487 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1488
1489 DEBUG_FUNCTION void
1490 debug_decl_set (bitmap set)
1491 {
1492 dump_decl_set (stderr, set);
1493 fprintf (stderr, "\n");
1494 }
1495
1496
1497 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1498 stack up to a maximum of N levels. If N is -1, the whole stack is
1499 dumped. New levels are created when the dominator tree traversal
1500 used for renaming enters a new sub-tree. */
1501
1502 void
1503 dump_defs_stack (FILE *file, int n)
1504 {
1505 int i, j;
1506
1507 fprintf (file, "\n\nRenaming stack");
1508 if (n > 0)
1509 fprintf (file, " (up to %d levels)", n);
1510 fprintf (file, "\n\n");
1511
1512 i = 1;
1513 fprintf (file, "Level %d (current level)\n", i);
1514 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1515 {
1516 tree name, var;
1517
1518 name = VEC_index (tree, block_defs_stack, j);
1519 if (name == NULL_TREE)
1520 {
1521 i++;
1522 if (n > 0 && i > n)
1523 break;
1524 fprintf (file, "\nLevel %d\n", i);
1525 continue;
1526 }
1527
1528 if (DECL_P (name))
1529 {
1530 var = name;
1531 name = NULL_TREE;
1532 }
1533 else
1534 {
1535 var = SSA_NAME_VAR (name);
1536 if (!is_gimple_reg (var))
1537 {
1538 j--;
1539 var = VEC_index (tree, block_defs_stack, j);
1540 }
1541 }
1542
1543 fprintf (file, " Previous CURRDEF (");
1544 print_generic_expr (file, var, 0);
1545 fprintf (file, ") = ");
1546 if (name)
1547 print_generic_expr (file, name, 0);
1548 else
1549 fprintf (file, "<NIL>");
1550 fprintf (file, "\n");
1551 }
1552 }
1553
1554
1555 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1556 stack up to a maximum of N levels. If N is -1, the whole stack is
1557 dumped. New levels are created when the dominator tree traversal
1558 used for renaming enters a new sub-tree. */
1559
1560 DEBUG_FUNCTION void
1561 debug_defs_stack (int n)
1562 {
1563 dump_defs_stack (stderr, n);
1564 }
1565
1566
1567 /* Dump the current reaching definition of every symbol to FILE. */
1568
1569 void
1570 dump_currdefs (FILE *file)
1571 {
1572 unsigned i;
1573 tree var;
1574
1575 if (VEC_empty (tree, symbols_to_rename))
1576 return;
1577
1578 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1579 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, var)
1580 {
1581 common_info_p info = get_common_info (var);
1582 fprintf (file, "CURRDEF (");
1583 print_generic_expr (file, var, 0);
1584 fprintf (file, ") = ");
1585 if (info->current_def)
1586 print_generic_expr (file, info->current_def, 0);
1587 else
1588 fprintf (file, "<NIL>");
1589 fprintf (file, "\n");
1590 }
1591 }
1592
1593
1594 /* Dump the current reaching definition of every symbol to stderr. */
1595
1596 DEBUG_FUNCTION void
1597 debug_currdefs (void)
1598 {
1599 dump_currdefs (stderr);
1600 }
1601
1602
1603 /* Dump SSA information to FILE. */
1604
1605 void
1606 dump_tree_ssa (FILE *file)
1607 {
1608 const char *funcname
1609 = lang_hooks.decl_printable_name (current_function_decl, 2);
1610
1611 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1612
1613 dump_var_infos (file);
1614 dump_defs_stack (file, -1);
1615 dump_currdefs (file);
1616 dump_tree_ssa_stats (file);
1617 }
1618
1619
1620 /* Dump SSA information to stderr. */
1621
1622 DEBUG_FUNCTION void
1623 debug_tree_ssa (void)
1624 {
1625 dump_tree_ssa (stderr);
1626 }
1627
1628
1629 /* Dump statistics for the hash table HTAB. */
1630
1631 static void
1632 htab_statistics (FILE *file, htab_t htab)
1633 {
1634 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1635 (long) htab_size (htab),
1636 (long) htab_elements (htab),
1637 htab_collisions (htab));
1638 }
1639
1640
1641 /* Dump SSA statistics on FILE. */
1642
1643 void
1644 dump_tree_ssa_stats (FILE *file)
1645 {
1646 if (var_infos)
1647 {
1648 fprintf (file, "\nHash table statistics:\n");
1649 fprintf (file, " var_infos: ");
1650 htab_statistics (file, var_infos);
1651 fprintf (file, "\n");
1652 }
1653 }
1654
1655
1656 /* Dump SSA statistics on stderr. */
1657
1658 DEBUG_FUNCTION void
1659 debug_tree_ssa_stats (void)
1660 {
1661 dump_tree_ssa_stats (stderr);
1662 }
1663
1664
1665 /* Hashing and equality functions for VAR_INFOS. */
1666
1667 static hashval_t
1668 var_info_hash (const void *p)
1669 {
1670 return DECL_UID (((const struct var_info_d *)p)->var);
1671 }
1672
1673 static int
1674 var_info_eq (const void *p1, const void *p2)
1675 {
1676 return ((const struct var_info_d *)p1)->var
1677 == ((const struct var_info_d *)p2)->var;
1678 }
1679
1680
1681 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1682
1683 static int
1684 debug_var_infos_r (void **slot, void *data)
1685 {
1686 FILE *file = (FILE *) data;
1687 struct var_info_d *info = (struct var_info_d *) *slot;
1688
1689 fprintf (file, "VAR: ");
1690 print_generic_expr (file, info->var, dump_flags);
1691 bitmap_print (file, info->info.def_blocks.def_blocks,
1692 ", DEF_BLOCKS: { ", "}");
1693 bitmap_print (file, info->info.def_blocks.livein_blocks,
1694 ", LIVEIN_BLOCKS: { ", "}");
1695 bitmap_print (file, info->info.def_blocks.phi_blocks,
1696 ", PHI_BLOCKS: { ", "}\n");
1697
1698 return 1;
1699 }
1700
1701
1702 /* Dump the VAR_INFOS hash table on FILE. */
1703
1704 void
1705 dump_var_infos (FILE *file)
1706 {
1707 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1708 if (var_infos)
1709 htab_traverse (var_infos, debug_var_infos_r, file);
1710 }
1711
1712
1713 /* Dump the VAR_INFOS hash table on stderr. */
1714
1715 DEBUG_FUNCTION void
1716 debug_var_infos (void)
1717 {
1718 dump_var_infos (stderr);
1719 }
1720
1721
1722 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1723
1724 static inline void
1725 register_new_update_single (tree new_name, tree old_name)
1726 {
1727 common_info_p info = get_common_info (old_name);
1728 tree currdef = info->current_def;
1729
1730 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1731 This stack is later used by the dominator tree callbacks to
1732 restore the reaching definitions for all the variables
1733 defined in the block after a recursive visit to all its
1734 immediately dominated blocks. */
1735 VEC_reserve (tree, heap, block_defs_stack, 2);
1736 VEC_quick_push (tree, block_defs_stack, currdef);
1737 VEC_quick_push (tree, block_defs_stack, old_name);
1738
1739 /* Set the current reaching definition for OLD_NAME to be
1740 NEW_NAME. */
1741 info->current_def = new_name;
1742 }
1743
1744
1745 /* Register NEW_NAME to be the new reaching definition for all the
1746 names in OLD_NAMES. Used by the incremental SSA update routines to
1747 replace old SSA names with new ones. */
1748
1749 static inline void
1750 register_new_update_set (tree new_name, bitmap old_names)
1751 {
1752 bitmap_iterator bi;
1753 unsigned i;
1754
1755 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1756 register_new_update_single (new_name, ssa_name (i));
1757 }
1758
1759
1760
1761 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1762 it is a symbol marked for renaming, replace it with USE_P's current
1763 reaching definition. */
1764
1765 static inline void
1766 maybe_replace_use (use_operand_p use_p)
1767 {
1768 tree rdef = NULL_TREE;
1769 tree use = USE_FROM_PTR (use_p);
1770 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1771
1772 if (marked_for_renaming (sym))
1773 rdef = get_reaching_def (sym);
1774 else if (is_old_name (use))
1775 rdef = get_reaching_def (use);
1776
1777 if (rdef && rdef != use)
1778 SET_USE (use_p, rdef);
1779 }
1780
1781
1782 /* Same as maybe_replace_use, but without introducing default stmts,
1783 returning false to indicate a need to do so. */
1784
1785 static inline bool
1786 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1787 {
1788 tree rdef = NULL_TREE;
1789 tree use = USE_FROM_PTR (use_p);
1790 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1791
1792 if (marked_for_renaming (sym))
1793 rdef = get_var_info (sym)->info.current_def;
1794 else if (is_old_name (use))
1795 {
1796 rdef = get_ssa_name_ann (use)->info.current_def;
1797 /* We can't assume that, if there's no current definition, the
1798 default one should be used. It could be the case that we've
1799 rearranged blocks so that the earlier definition no longer
1800 dominates the use. */
1801 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1802 rdef = use;
1803 }
1804 else
1805 rdef = use;
1806
1807 if (rdef && rdef != use)
1808 SET_USE (use_p, rdef);
1809
1810 return rdef != NULL_TREE;
1811 }
1812
1813
1814 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1815 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1816 register it as the current definition for the names replaced by
1817 DEF_P. */
1818
1819 static inline void
1820 maybe_register_def (def_operand_p def_p, gimple stmt,
1821 gimple_stmt_iterator gsi)
1822 {
1823 tree def = DEF_FROM_PTR (def_p);
1824 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1825
1826 /* If DEF is a naked symbol that needs renaming, create a new
1827 name for it. */
1828 if (marked_for_renaming (sym))
1829 {
1830 if (DECL_P (def))
1831 {
1832 tree tracked_var;
1833
1834 def = make_ssa_name (def, stmt);
1835 SET_DEF (def_p, def);
1836
1837 tracked_var = target_for_debug_bind (sym);
1838 if (tracked_var)
1839 {
1840 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1841 /* If stmt ends the bb, insert the debug stmt on the single
1842 non-EH edge from the stmt. */
1843 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1844 {
1845 basic_block bb = gsi_bb (gsi);
1846 edge_iterator ei;
1847 edge e, ef = NULL;
1848 FOR_EACH_EDGE (e, ei, bb->succs)
1849 if (!(e->flags & EDGE_EH))
1850 {
1851 gcc_checking_assert (!ef);
1852 ef = e;
1853 }
1854 /* If there are other predecessors to ef->dest, then
1855 there must be PHI nodes for the modified
1856 variable, and therefore there will be debug bind
1857 stmts after the PHI nodes. The debug bind notes
1858 we'd insert would force the creation of a new
1859 block (diverging codegen) and be redundant with
1860 the post-PHI bind stmts, so don't add them.
1861
1862 As for the exit edge, there wouldn't be redundant
1863 bind stmts, but there wouldn't be a PC to bind
1864 them to either, so avoid diverging the CFG. */
1865 if (ef && single_pred_p (ef->dest)
1866 && ef->dest != EXIT_BLOCK_PTR)
1867 {
1868 /* If there were PHI nodes in the node, we'd
1869 have to make sure the value we're binding
1870 doesn't need rewriting. But there shouldn't
1871 be PHI nodes in a single-predecessor block,
1872 so we just add the note. */
1873 gsi_insert_on_edge_immediate (ef, note);
1874 }
1875 }
1876 else
1877 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1878 }
1879 }
1880
1881 register_new_update_single (def, sym);
1882 }
1883 else
1884 {
1885 /* If DEF is a new name, register it as a new definition
1886 for all the names replaced by DEF. */
1887 if (is_new_name (def))
1888 register_new_update_set (def, names_replaced_by (def));
1889
1890 /* If DEF is an old name, register DEF as a new
1891 definition for itself. */
1892 if (is_old_name (def))
1893 register_new_update_single (def, def);
1894 }
1895 }
1896
1897
1898 /* Update every variable used in the statement pointed-to by SI. The
1899 statement is assumed to be in SSA form already. Names in
1900 OLD_SSA_NAMES used by SI will be updated to their current reaching
1901 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1902 will be registered as a new definition for their corresponding name
1903 in OLD_SSA_NAMES. */
1904
1905 static void
1906 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1907 {
1908 use_operand_p use_p;
1909 def_operand_p def_p;
1910 ssa_op_iter iter;
1911
1912 /* Only update marked statements. */
1913 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1914 return;
1915
1916 if (dump_file && (dump_flags & TDF_DETAILS))
1917 {
1918 fprintf (dump_file, "Updating SSA information for statement ");
1919 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1920 }
1921
1922 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1923 symbol is marked for renaming. */
1924 if (rewrite_uses_p (stmt))
1925 {
1926 if (is_gimple_debug (stmt))
1927 {
1928 bool failed = false;
1929
1930 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1931 if (!maybe_replace_use_in_debug_stmt (use_p))
1932 {
1933 failed = true;
1934 break;
1935 }
1936
1937 if (failed)
1938 {
1939 /* DOM sometimes threads jumps in such a way that a
1940 debug stmt ends up referencing a SSA variable that no
1941 longer dominates the debug stmt, but such that all
1942 incoming definitions refer to the same definition in
1943 an earlier dominator. We could try to recover that
1944 definition somehow, but this will have to do for now.
1945
1946 Introducing a default definition, which is what
1947 maybe_replace_use() would do in such cases, may
1948 modify code generation, for the otherwise-unused
1949 default definition would never go away, modifying SSA
1950 version numbers all over. */
1951 gimple_debug_bind_reset_value (stmt);
1952 update_stmt (stmt);
1953 }
1954 }
1955 else
1956 {
1957 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1958 maybe_replace_use (use_p);
1959 }
1960 }
1961
1962 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1963 Also register definitions for names whose underlying symbol is
1964 marked for renaming. */
1965 if (register_defs_p (stmt))
1966 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1967 maybe_register_def (def_p, stmt, gsi);
1968 }
1969
1970
1971 /* Visit all the successor blocks of BB looking for PHI nodes. For
1972 every PHI node found, check if any of its arguments is in
1973 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1974 definition, replace it. */
1975
1976 static void
1977 rewrite_update_phi_arguments (basic_block bb)
1978 {
1979 edge e;
1980 edge_iterator ei;
1981 unsigned i;
1982
1983 FOR_EACH_EDGE (e, ei, bb->succs)
1984 {
1985 gimple phi;
1986 gimple_vec phis;
1987
1988 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1989 continue;
1990
1991 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1992 FOR_EACH_VEC_ELT (gimple, phis, i, phi)
1993 {
1994 tree arg, lhs_sym, reaching_def = NULL;
1995 use_operand_p arg_p;
1996
1997 gcc_checking_assert (rewrite_uses_p (phi));
1998
1999 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2000 arg = USE_FROM_PTR (arg_p);
2001
2002 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2003 continue;
2004
2005 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2006
2007 if (arg == NULL_TREE)
2008 {
2009 /* When updating a PHI node for a recently introduced
2010 symbol we may find NULL arguments. That's why we
2011 take the symbol from the LHS of the PHI node. */
2012 reaching_def = get_reaching_def (lhs_sym);
2013
2014 }
2015 else
2016 {
2017 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2018
2019 if (marked_for_renaming (sym))
2020 reaching_def = get_reaching_def (sym);
2021 else if (is_old_name (arg))
2022 reaching_def = get_reaching_def (arg);
2023 }
2024
2025 /* Update the argument if there is a reaching def. */
2026 if (reaching_def)
2027 {
2028 gimple stmt;
2029 source_location locus;
2030 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2031
2032 SET_USE (arg_p, reaching_def);
2033 stmt = SSA_NAME_DEF_STMT (reaching_def);
2034
2035 /* Single element PHI nodes behave like copies, so get the
2036 location from the phi argument. */
2037 if (gimple_code (stmt) == GIMPLE_PHI &&
2038 gimple_phi_num_args (stmt) == 1)
2039 locus = gimple_phi_arg_location (stmt, 0);
2040 else
2041 locus = gimple_location (stmt);
2042
2043 gimple_phi_arg_set_location (phi, arg_i, locus);
2044 }
2045
2046
2047 if (e->flags & EDGE_ABNORMAL)
2048 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2049 }
2050 }
2051 }
2052
2053
2054 /* Initialization of block data structures for the incremental SSA
2055 update pass. Create a block local stack of reaching definitions
2056 for new SSA names produced in this block (BLOCK_DEFS). Register
2057 new definitions for every PHI node in the block. */
2058
2059 static void
2060 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2061 basic_block bb)
2062 {
2063 bool is_abnormal_phi;
2064 gimple_stmt_iterator gsi;
2065
2066 if (dump_file && (dump_flags & TDF_DETAILS))
2067 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2068 bb->index);
2069
2070 /* Mark the unwind point for this block. */
2071 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2072
2073 if (!bitmap_bit_p (blocks_to_update, bb->index))
2074 return;
2075
2076 /* Mark the LHS if any of the arguments flows through an abnormal
2077 edge. */
2078 is_abnormal_phi = bb_has_abnormal_pred (bb);
2079
2080 /* If any of the PHI nodes is a replacement for a name in
2081 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2082 register it as a new definition for its corresponding name. Also
2083 register definitions for names whose underlying symbols are
2084 marked for renaming. */
2085 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2086 {
2087 tree lhs, lhs_sym;
2088 gimple phi = gsi_stmt (gsi);
2089
2090 if (!register_defs_p (phi))
2091 continue;
2092
2093 lhs = gimple_phi_result (phi);
2094 lhs_sym = SSA_NAME_VAR (lhs);
2095
2096 if (marked_for_renaming (lhs_sym))
2097 register_new_update_single (lhs, lhs_sym);
2098 else
2099 {
2100
2101 /* If LHS is a new name, register a new definition for all
2102 the names replaced by LHS. */
2103 if (is_new_name (lhs))
2104 register_new_update_set (lhs, names_replaced_by (lhs));
2105
2106 /* If LHS is an OLD name, register it as a new definition
2107 for itself. */
2108 if (is_old_name (lhs))
2109 register_new_update_single (lhs, lhs);
2110 }
2111
2112 if (is_abnormal_phi)
2113 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2114 }
2115
2116 /* Step 2. Rewrite every variable used in each statement in the block. */
2117 if (TEST_BIT (interesting_blocks, bb->index))
2118 {
2119 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2120 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2121 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2122 }
2123
2124 /* Step 3. Update PHI nodes. */
2125 rewrite_update_phi_arguments (bb);
2126 }
2127
2128 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2129 the current reaching definition of every name re-written in BB to
2130 the original reaching definition before visiting BB. This
2131 unwinding must be done in the opposite order to what is done in
2132 register_new_update_set. */
2133
2134 static void
2135 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2136 basic_block bb ATTRIBUTE_UNUSED)
2137 {
2138 while (VEC_length (tree, block_defs_stack) > 0)
2139 {
2140 tree var = VEC_pop (tree, block_defs_stack);
2141 tree saved_def;
2142
2143 /* NULL indicates the unwind stop point for this block (see
2144 rewrite_update_enter_block). */
2145 if (var == NULL)
2146 return;
2147
2148 saved_def = VEC_pop (tree, block_defs_stack);
2149 get_common_info (var)->current_def = saved_def;
2150 }
2151 }
2152
2153
2154 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2155 form.
2156
2157 ENTRY indicates the block where to start. Every block dominated by
2158 ENTRY will be rewritten.
2159
2160 WHAT indicates what actions will be taken by the renamer (see enum
2161 rewrite_mode).
2162
2163 BLOCKS are the set of interesting blocks for the dominator walker
2164 to process. If this set is NULL, then all the nodes dominated
2165 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2166 are not present in BLOCKS are ignored. */
2167
2168 static void
2169 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2170 {
2171 struct dom_walk_data walk_data;
2172
2173 /* Rewrite all the basic blocks in the program. */
2174 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2175
2176 /* Setup callbacks for the generic dominator tree walker. */
2177 memset (&walk_data, 0, sizeof (walk_data));
2178
2179 walk_data.dom_direction = CDI_DOMINATORS;
2180
2181 if (what == REWRITE_ALL)
2182 {
2183 walk_data.before_dom_children = rewrite_enter_block;
2184 walk_data.after_dom_children = rewrite_leave_block;
2185 }
2186 else if (what == REWRITE_UPDATE)
2187 {
2188 walk_data.before_dom_children = rewrite_update_enter_block;
2189 walk_data.after_dom_children = rewrite_update_leave_block;
2190 }
2191 else
2192 gcc_unreachable ();
2193
2194 block_defs_stack = VEC_alloc (tree, heap, 10);
2195
2196 /* Initialize the dominator walker. */
2197 init_walk_dominator_tree (&walk_data);
2198
2199 /* Recursively walk the dominator tree rewriting each statement in
2200 each basic block. */
2201 walk_dominator_tree (&walk_data, entry);
2202
2203 /* Finalize the dominator walker. */
2204 fini_walk_dominator_tree (&walk_data);
2205
2206 /* Debugging dumps. */
2207 if (dump_file && (dump_flags & TDF_STATS))
2208 {
2209 dump_dfa_stats (dump_file);
2210 if (var_infos)
2211 dump_tree_ssa_stats (dump_file);
2212 }
2213
2214 VEC_free (tree, heap, block_defs_stack);
2215
2216 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2217 }
2218
2219
2220 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2221 at the start of each block, and call mark_def_sites for each statement. */
2222
2223 static void
2224 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2225 {
2226 struct mark_def_sites_global_data *gd;
2227 bitmap kills;
2228 gimple_stmt_iterator gsi;
2229
2230 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2231 kills = gd->kills;
2232
2233 bitmap_clear (kills);
2234 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2235 mark_def_sites (bb, gsi_stmt (gsi), kills);
2236 }
2237
2238
2239 /* Mark the definition site blocks for each variable, so that we know
2240 where the variable is actually live.
2241
2242 The INTERESTING_BLOCKS global will be filled in with all the blocks
2243 that should be processed by the renamer. It is assumed that the
2244 caller has already initialized and zeroed it. */
2245
2246 static void
2247 mark_def_site_blocks (void)
2248 {
2249 struct dom_walk_data walk_data;
2250 struct mark_def_sites_global_data mark_def_sites_global_data;
2251
2252 /* Setup callbacks for the generic dominator tree walker to find and
2253 mark definition sites. */
2254 walk_data.dom_direction = CDI_DOMINATORS;
2255 walk_data.initialize_block_local_data = NULL;
2256 walk_data.before_dom_children = mark_def_sites_block;
2257 walk_data.after_dom_children = NULL;
2258
2259 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2260 large enough to accommodate all the variables referenced in the
2261 function, not just the ones we are renaming. */
2262 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2263 walk_data.global_data = &mark_def_sites_global_data;
2264
2265 /* We do not have any local data. */
2266 walk_data.block_local_data_size = 0;
2267
2268 /* Initialize the dominator walker. */
2269 init_walk_dominator_tree (&walk_data);
2270
2271 /* Recursively walk the dominator tree. */
2272 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2273
2274 /* Finalize the dominator walker. */
2275 fini_walk_dominator_tree (&walk_data);
2276
2277 /* We no longer need this bitmap, clear and free it. */
2278 BITMAP_FREE (mark_def_sites_global_data.kills);
2279 }
2280
2281
2282 /* Initialize internal data needed during renaming. */
2283
2284 static void
2285 init_ssa_renamer (void)
2286 {
2287 cfun->gimple_df->in_ssa_p = false;
2288
2289 /* Allocate memory for the DEF_BLOCKS hash table. */
2290 gcc_assert (var_infos == NULL);
2291 var_infos = htab_create (VEC_length (tree, cfun->local_decls),
2292 var_info_hash, var_info_eq, free);
2293
2294 bitmap_obstack_initialize (&update_ssa_obstack);
2295 }
2296
2297
2298 /* Deallocate internal data structures used by the renamer. */
2299
2300 static void
2301 fini_ssa_renamer (void)
2302 {
2303 if (var_infos)
2304 {
2305 htab_delete (var_infos);
2306 var_infos = NULL;
2307 }
2308
2309 bitmap_obstack_release (&update_ssa_obstack);
2310
2311 cfun->gimple_df->ssa_renaming_needed = 0;
2312 cfun->gimple_df->rename_vops = 0;
2313 cfun->gimple_df->in_ssa_p = true;
2314 }
2315
2316 /* Main entry point into the SSA builder. The renaming process
2317 proceeds in four main phases:
2318
2319 1- Compute dominance frontier and immediate dominators, needed to
2320 insert PHI nodes and rename the function in dominator tree
2321 order.
2322
2323 2- Find and mark all the blocks that define variables
2324 (mark_def_site_blocks).
2325
2326 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2327
2328 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2329
2330 Steps 3 and 4 are done using the dominator tree walker
2331 (walk_dominator_tree). */
2332
2333 static unsigned int
2334 rewrite_into_ssa (void)
2335 {
2336 bitmap_head *dfs;
2337 basic_block bb;
2338 unsigned i;
2339
2340 /* Initialize operand data structures. */
2341 init_ssa_operands (cfun);
2342
2343 /* Initialize internal data needed by the renamer. */
2344 init_ssa_renamer ();
2345
2346 /* Initialize the set of interesting blocks. The callback
2347 mark_def_sites will add to this set those blocks that the renamer
2348 should process. */
2349 interesting_blocks = sbitmap_alloc (last_basic_block);
2350 sbitmap_zero (interesting_blocks);
2351
2352 /* Initialize dominance frontier. */
2353 dfs = XNEWVEC (bitmap_head, last_basic_block);
2354 FOR_EACH_BB (bb)
2355 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2356
2357 /* 1- Compute dominance frontiers. */
2358 calculate_dominance_info (CDI_DOMINATORS);
2359 compute_dominance_frontiers (dfs);
2360
2361 /* 2- Find and mark definition sites. */
2362 mark_def_site_blocks ();
2363
2364 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2365 insert_phi_nodes (dfs);
2366
2367 /* 4- Rename all the blocks. */
2368 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2369
2370 /* Free allocated memory. */
2371 FOR_EACH_BB (bb)
2372 bitmap_clear (&dfs[bb->index]);
2373 free (dfs);
2374
2375 sbitmap_free (interesting_blocks);
2376
2377 fini_ssa_renamer ();
2378
2379 /* Try to get rid of all gimplifier generated temporaries by making
2380 its SSA names anonymous. This way we can garbage collect them
2381 all after removing unused locals which we do in our TODO. */
2382 for (i = 1; i < num_ssa_names; ++i)
2383 {
2384 tree decl, name = ssa_name (i);
2385 if (!name
2386 || SSA_NAME_IS_DEFAULT_DEF (name))
2387 continue;
2388 decl = SSA_NAME_VAR (name);
2389 if (decl
2390 && TREE_CODE (decl) == VAR_DECL
2391 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2392 && DECL_ARTIFICIAL (decl)
2393 && DECL_IGNORED_P (decl)
2394 && !DECL_NAME (decl))
2395 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, NULL_TREE);
2396 }
2397
2398 return 0;
2399 }
2400
2401
2402 struct gimple_opt_pass pass_build_ssa =
2403 {
2404 {
2405 GIMPLE_PASS,
2406 "ssa", /* name */
2407 NULL, /* gate */
2408 rewrite_into_ssa, /* execute */
2409 NULL, /* sub */
2410 NULL, /* next */
2411 0, /* static_pass_number */
2412 TV_TREE_SSA_OTHER, /* tv_id */
2413 PROP_cfg, /* properties_required */
2414 PROP_ssa, /* properties_provided */
2415 0, /* properties_destroyed */
2416 0, /* todo_flags_start */
2417 TODO_verify_ssa
2418 | TODO_remove_unused_locals /* todo_flags_finish */
2419 }
2420 };
2421
2422
2423 /* Mark the definition of VAR at STMT and BB as interesting for the
2424 renamer. BLOCKS is the set of blocks that need updating. */
2425
2426 static void
2427 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2428 {
2429 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2430 set_register_defs (stmt, true);
2431
2432 if (insert_phi_p)
2433 {
2434 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2435
2436 set_def_block (var, bb, is_phi_p);
2437
2438 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2439 site for both itself and all the old names replaced by it. */
2440 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2441 {
2442 bitmap_iterator bi;
2443 unsigned i;
2444 bitmap set = names_replaced_by (var);
2445 if (set)
2446 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2447 set_def_block (ssa_name (i), bb, is_phi_p);
2448 }
2449 }
2450 }
2451
2452
2453 /* Mark the use of VAR at STMT and BB as interesting for the
2454 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2455 nodes. */
2456
2457 static inline void
2458 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2459 {
2460 basic_block def_bb = gimple_bb (stmt);
2461
2462 mark_block_for_update (def_bb);
2463 mark_block_for_update (bb);
2464
2465 if (gimple_code (stmt) == GIMPLE_PHI)
2466 mark_phi_for_rewrite (def_bb, stmt);
2467 else
2468 {
2469 set_rewrite_uses (stmt, true);
2470
2471 if (is_gimple_debug (stmt))
2472 return;
2473 }
2474
2475 /* If VAR has not been defined in BB, then it is live-on-entry
2476 to BB. Note that we cannot just use the block holding VAR's
2477 definition because if VAR is one of the names in OLD_SSA_NAMES,
2478 it will have several definitions (itself and all the names that
2479 replace it). */
2480 if (insert_phi_p)
2481 {
2482 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2483 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2484 set_livein_block (var, bb);
2485 }
2486 }
2487
2488
2489 /* Do a dominator walk starting at BB processing statements that
2490 reference symbols in SSA operands. This is very similar to
2491 mark_def_sites, but the scan handles statements whose operands may
2492 already be SSA names.
2493
2494 If INSERT_PHI_P is true, mark those uses as live in the
2495 corresponding block. This is later used by the PHI placement
2496 algorithm to make PHI pruning decisions.
2497
2498 FIXME. Most of this would be unnecessary if we could associate a
2499 symbol to all the SSA names that reference it. But that
2500 sounds like it would be expensive to maintain. Still, it
2501 would be interesting to see if it makes better sense to do
2502 that. */
2503
2504 static void
2505 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2506 {
2507 basic_block son;
2508 gimple_stmt_iterator si;
2509 edge e;
2510 edge_iterator ei;
2511
2512 mark_block_for_update (bb);
2513
2514 /* Process PHI nodes marking interesting those that define or use
2515 the symbols that we are interested in. */
2516 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2517 {
2518 gimple phi = gsi_stmt (si);
2519 tree lhs_sym, lhs = gimple_phi_result (phi);
2520
2521 if (TREE_CODE (lhs) == SSA_NAME
2522 && (! virtual_operand_p (lhs)
2523 || ! cfun->gimple_df->rename_vops))
2524 continue;
2525
2526 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2527 mark_for_renaming (lhs_sym);
2528 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2529
2530 /* Mark the uses in phi nodes as interesting. It would be more correct
2531 to process the arguments of the phi nodes of the successor edges of
2532 BB at the end of prepare_block_for_update, however, that turns out
2533 to be significantly more expensive. Doing it here is conservatively
2534 correct -- it may only cause us to believe a value to be live in a
2535 block that also contains its definition, and thus insert a few more
2536 phi nodes for it. */
2537 FOR_EACH_EDGE (e, ei, bb->preds)
2538 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2539 }
2540
2541 /* Process the statements. */
2542 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2543 {
2544 gimple stmt;
2545 ssa_op_iter i;
2546 use_operand_p use_p;
2547 def_operand_p def_p;
2548
2549 stmt = gsi_stmt (si);
2550
2551 if (cfun->gimple_df->rename_vops
2552 && gimple_vuse (stmt))
2553 {
2554 tree use = gimple_vuse (stmt);
2555 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2556 mark_for_renaming (sym);
2557 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2558 }
2559
2560 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2561 {
2562 tree use = USE_FROM_PTR (use_p);
2563 if (!DECL_P (use))
2564 continue;
2565 mark_for_renaming (use);
2566 mark_use_interesting (use, stmt, bb, insert_phi_p);
2567 }
2568
2569 if (cfun->gimple_df->rename_vops
2570 && gimple_vdef (stmt))
2571 {
2572 tree def = gimple_vdef (stmt);
2573 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2574 mark_for_renaming (sym);
2575 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2576 }
2577
2578 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2579 {
2580 tree def = DEF_FROM_PTR (def_p);
2581 if (!DECL_P (def))
2582 continue;
2583 mark_for_renaming (def);
2584 mark_def_interesting (def, stmt, bb, insert_phi_p);
2585 }
2586 }
2587
2588 /* Now visit all the blocks dominated by BB. */
2589 for (son = first_dom_son (CDI_DOMINATORS, bb);
2590 son;
2591 son = next_dom_son (CDI_DOMINATORS, son))
2592 prepare_block_for_update (son, insert_phi_p);
2593 }
2594
2595
2596 /* Helper for prepare_names_to_update. Mark all the use sites for
2597 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2598 prepare_names_to_update. */
2599
2600 static void
2601 prepare_use_sites_for (tree name, bool insert_phi_p)
2602 {
2603 use_operand_p use_p;
2604 imm_use_iterator iter;
2605
2606 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2607 {
2608 gimple stmt = USE_STMT (use_p);
2609 basic_block bb = gimple_bb (stmt);
2610
2611 if (gimple_code (stmt) == GIMPLE_PHI)
2612 {
2613 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2614 edge e = gimple_phi_arg_edge (stmt, ix);
2615 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2616 }
2617 else
2618 {
2619 /* For regular statements, mark this as an interesting use
2620 for NAME. */
2621 mark_use_interesting (name, stmt, bb, insert_phi_p);
2622 }
2623 }
2624 }
2625
2626
2627 /* Helper for prepare_names_to_update. Mark the definition site for
2628 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2629 prepare_names_to_update. */
2630
2631 static void
2632 prepare_def_site_for (tree name, bool insert_phi_p)
2633 {
2634 gimple stmt;
2635 basic_block bb;
2636
2637 gcc_checking_assert (names_to_release == NULL
2638 || !bitmap_bit_p (names_to_release,
2639 SSA_NAME_VERSION (name)));
2640
2641 stmt = SSA_NAME_DEF_STMT (name);
2642 bb = gimple_bb (stmt);
2643 if (bb)
2644 {
2645 gcc_checking_assert (bb->index < last_basic_block);
2646 mark_block_for_update (bb);
2647 mark_def_interesting (name, stmt, bb, insert_phi_p);
2648 }
2649 }
2650
2651
2652 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2653 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2654 PHI nodes for newly created names. */
2655
2656 static void
2657 prepare_names_to_update (bool insert_phi_p)
2658 {
2659 unsigned i = 0;
2660 bitmap_iterator bi;
2661 sbitmap_iterator sbi;
2662
2663 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2664 remove it from NEW_SSA_NAMES so that we don't try to visit its
2665 defining basic block (which most likely doesn't exist). Notice
2666 that we cannot do the same with names in OLD_SSA_NAMES because we
2667 want to replace existing instances. */
2668 if (names_to_release)
2669 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2670 RESET_BIT (new_ssa_names, i);
2671
2672 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2673 names may be considered to be live-in on blocks that contain
2674 definitions for their replacements. */
2675 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2676 prepare_def_site_for (ssa_name (i), insert_phi_p);
2677
2678 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2679 OLD_SSA_NAMES, but we have to ignore its definition site. */
2680 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2681 {
2682 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2683 prepare_def_site_for (ssa_name (i), insert_phi_p);
2684 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2685 }
2686 }
2687
2688
2689 /* Dump all the names replaced by NAME to FILE. */
2690
2691 void
2692 dump_names_replaced_by (FILE *file, tree name)
2693 {
2694 unsigned i;
2695 bitmap old_set;
2696 bitmap_iterator bi;
2697
2698 print_generic_expr (file, name, 0);
2699 fprintf (file, " -> { ");
2700
2701 old_set = names_replaced_by (name);
2702 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2703 {
2704 print_generic_expr (file, ssa_name (i), 0);
2705 fprintf (file, " ");
2706 }
2707
2708 fprintf (file, "}\n");
2709 }
2710
2711
2712 /* Dump all the names replaced by NAME to stderr. */
2713
2714 DEBUG_FUNCTION void
2715 debug_names_replaced_by (tree name)
2716 {
2717 dump_names_replaced_by (stderr, name);
2718 }
2719
2720
2721 /* Dump SSA update information to FILE. */
2722
2723 void
2724 dump_update_ssa (FILE *file)
2725 {
2726 unsigned i = 0;
2727 bitmap_iterator bi;
2728
2729 if (!need_ssa_update_p (cfun))
2730 return;
2731
2732 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2733 {
2734 sbitmap_iterator sbi;
2735
2736 fprintf (file, "\nSSA replacement table\n");
2737 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2738 "O_1, ..., O_j\n\n");
2739
2740 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2741 dump_names_replaced_by (file, ssa_name (i));
2742 }
2743
2744 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2745 {
2746 fprintf (file, "\nSymbols to be put in SSA form\n");
2747 dump_decl_set (file, symbols_to_rename_set);
2748 fprintf (file, "\n");
2749 }
2750
2751 if (names_to_release && !bitmap_empty_p (names_to_release))
2752 {
2753 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2754 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2755 {
2756 print_generic_expr (file, ssa_name (i), 0);
2757 fprintf (file, " ");
2758 }
2759 fprintf (file, "\n");
2760 }
2761 }
2762
2763
2764 /* Dump SSA update information to stderr. */
2765
2766 DEBUG_FUNCTION void
2767 debug_update_ssa (void)
2768 {
2769 dump_update_ssa (stderr);
2770 }
2771
2772
2773 /* Initialize data structures used for incremental SSA updates. */
2774
2775 static void
2776 init_update_ssa (struct function *fn)
2777 {
2778 /* Reserve more space than the current number of names. The calls to
2779 add_new_name_mapping are typically done after creating new SSA
2780 names, so we'll need to reallocate these arrays. */
2781 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2782 sbitmap_zero (old_ssa_names);
2783
2784 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2785 sbitmap_zero (new_ssa_names);
2786
2787 bitmap_obstack_initialize (&update_ssa_obstack);
2788
2789 names_to_release = NULL;
2790 update_ssa_initialized_fn = fn;
2791 }
2792
2793
2794 /* Deallocate data structures used for incremental SSA updates. */
2795
2796 void
2797 delete_update_ssa (void)
2798 {
2799 unsigned i;
2800 bitmap_iterator bi;
2801
2802 sbitmap_free (old_ssa_names);
2803 old_ssa_names = NULL;
2804
2805 sbitmap_free (new_ssa_names);
2806 new_ssa_names = NULL;
2807
2808 BITMAP_FREE (symbols_to_rename_set);
2809 symbols_to_rename_set = NULL;
2810 VEC_free (tree, heap, symbols_to_rename);
2811
2812 if (names_to_release)
2813 {
2814 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2815 release_ssa_name (ssa_name (i));
2816 BITMAP_FREE (names_to_release);
2817 }
2818
2819 clear_ssa_name_info ();
2820
2821 fini_ssa_renamer ();
2822
2823 if (blocks_with_phis_to_rewrite)
2824 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2825 {
2826 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2827
2828 VEC_free (gimple, heap, phis);
2829 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2830 }
2831
2832 BITMAP_FREE (blocks_with_phis_to_rewrite);
2833 BITMAP_FREE (blocks_to_update);
2834
2835 update_ssa_initialized_fn = NULL;
2836 }
2837
2838
2839 /* Create a new name for OLD_NAME in statement STMT and replace the
2840 operand pointed to by DEF_P with the newly created name. If DEF_P
2841 is NULL then STMT should be a GIMPLE assignment.
2842 Return the new name and register the replacement mapping <NEW, OLD> in
2843 update_ssa's tables. */
2844
2845 tree
2846 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2847 {
2848 tree new_name;
2849
2850 timevar_push (TV_TREE_SSA_INCREMENTAL);
2851
2852 if (!update_ssa_initialized_fn)
2853 init_update_ssa (cfun);
2854
2855 gcc_assert (update_ssa_initialized_fn == cfun);
2856
2857 new_name = duplicate_ssa_name (old_name, stmt);
2858 if (def)
2859 SET_DEF (def, new_name);
2860 else
2861 gimple_assign_set_lhs (stmt, new_name);
2862
2863 if (gimple_code (stmt) == GIMPLE_PHI)
2864 {
2865 basic_block bb = gimple_bb (stmt);
2866
2867 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2868 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2869 }
2870
2871 add_new_name_mapping (new_name, old_name);
2872
2873 /* For the benefit of passes that will be updating the SSA form on
2874 their own, set the current reaching definition of OLD_NAME to be
2875 NEW_NAME. */
2876 get_ssa_name_ann (old_name)->info.current_def = new_name;
2877
2878 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2879
2880 return new_name;
2881 }
2882
2883
2884 /* Mark virtual operands of FN for renaming by update_ssa. */
2885
2886 void
2887 mark_virtual_operands_for_renaming (struct function *fn)
2888 {
2889 fn->gimple_df->ssa_renaming_needed = 1;
2890 fn->gimple_df->rename_vops = 1;
2891 }
2892
2893
2894 /* Return true if there is any work to be done by update_ssa
2895 for function FN. */
2896
2897 bool
2898 need_ssa_update_p (struct function *fn)
2899 {
2900 gcc_assert (fn != NULL);
2901 return (update_ssa_initialized_fn == fn
2902 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2903 }
2904
2905 /* Return true if name N has been registered in the replacement table. */
2906
2907 bool
2908 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2909 {
2910 if (!update_ssa_initialized_fn)
2911 return false;
2912
2913 gcc_assert (update_ssa_initialized_fn == cfun);
2914
2915 return is_new_name (n) || is_old_name (n);
2916 }
2917
2918
2919 /* Mark NAME to be released after update_ssa has finished. */
2920
2921 void
2922 release_ssa_name_after_update_ssa (tree name)
2923 {
2924 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2925
2926 if (names_to_release == NULL)
2927 names_to_release = BITMAP_ALLOC (NULL);
2928
2929 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2930 }
2931
2932
2933 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2934 frontier information. BLOCKS is the set of blocks to be updated.
2935
2936 This is slightly different than the regular PHI insertion
2937 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2938 real names (i.e., GIMPLE registers) are inserted:
2939
2940 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2941 nodes inside the region affected by the block that defines VAR
2942 and the blocks that define all its replacements. All these
2943 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2944
2945 First, we compute the entry point to the region (ENTRY). This is
2946 given by the nearest common dominator to all the definition
2947 blocks. When computing the iterated dominance frontier (IDF), any
2948 block not strictly dominated by ENTRY is ignored.
2949
2950 We then call the standard PHI insertion algorithm with the pruned
2951 IDF.
2952
2953 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2954 names is not pruned. PHI nodes are inserted at every IDF block. */
2955
2956 static void
2957 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2958 unsigned update_flags)
2959 {
2960 basic_block entry;
2961 struct def_blocks_d *db;
2962 bitmap idf, pruned_idf;
2963 bitmap_iterator bi;
2964 unsigned i;
2965
2966 if (TREE_CODE (var) == SSA_NAME)
2967 gcc_checking_assert (is_old_name (var));
2968 else
2969 gcc_checking_assert (marked_for_renaming (var));
2970
2971 /* Get all the definition sites for VAR. */
2972 db = find_def_blocks_for (var);
2973
2974 /* No need to do anything if there were no definitions to VAR. */
2975 if (db == NULL || bitmap_empty_p (db->def_blocks))
2976 return;
2977
2978 /* Compute the initial iterated dominance frontier. */
2979 idf = compute_idf (db->def_blocks, dfs);
2980 pruned_idf = BITMAP_ALLOC (NULL);
2981
2982 if (TREE_CODE (var) == SSA_NAME)
2983 {
2984 if (update_flags == TODO_update_ssa)
2985 {
2986 /* If doing regular SSA updates for GIMPLE registers, we are
2987 only interested in IDF blocks dominated by the nearest
2988 common dominator of all the definition blocks. */
2989 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2990 db->def_blocks);
2991 if (entry != ENTRY_BLOCK_PTR)
2992 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2993 if (BASIC_BLOCK (i) != entry
2994 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2995 bitmap_set_bit (pruned_idf, i);
2996 }
2997 else
2998 {
2999 /* Otherwise, do not prune the IDF for VAR. */
3000 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3001 bitmap_copy (pruned_idf, idf);
3002 }
3003 }
3004 else
3005 {
3006 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3007 for the first time, so we need to compute the full IDF for
3008 it. */
3009 bitmap_copy (pruned_idf, idf);
3010 }
3011
3012 if (!bitmap_empty_p (pruned_idf))
3013 {
3014 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3015 are included in the region to be updated. The feeding blocks
3016 are important to guarantee that the PHI arguments are renamed
3017 properly. */
3018
3019 /* FIXME, this is not needed if we are updating symbols. We are
3020 already starting at the ENTRY block anyway. */
3021 bitmap_ior_into (blocks, pruned_idf);
3022 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3023 {
3024 edge e;
3025 edge_iterator ei;
3026 basic_block bb = BASIC_BLOCK (i);
3027
3028 FOR_EACH_EDGE (e, ei, bb->preds)
3029 if (e->src->index >= 0)
3030 bitmap_set_bit (blocks, e->src->index);
3031 }
3032
3033 insert_phi_nodes_for (var, pruned_idf, true);
3034 }
3035
3036 BITMAP_FREE (pruned_idf);
3037 BITMAP_FREE (idf);
3038 }
3039
3040
3041 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3042 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3043
3044 1- The names in OLD_SSA_NAMES dominated by the definitions of
3045 NEW_SSA_NAMES are all re-written to be reached by the
3046 appropriate definition from NEW_SSA_NAMES.
3047
3048 2- If needed, new PHI nodes are added to the iterated dominance
3049 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3050
3051 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3052 calling create_new_def_for to create new defs for names that the
3053 caller wants to replace.
3054
3055 The caller cretaes the new names to be inserted and the names that need
3056 to be replaced by calling create_new_def_for for each old definition
3057 to be replaced. Note that the function assumes that the
3058 new defining statement has already been inserted in the IL.
3059
3060 For instance, given the following code:
3061
3062 1 L0:
3063 2 x_1 = PHI (0, x_5)
3064 3 if (x_1 < 10)
3065 4 if (x_1 > 7)
3066 5 y_2 = 0
3067 6 else
3068 7 y_3 = x_1 + x_7
3069 8 endif
3070 9 x_5 = x_1 + 1
3071 10 goto L0;
3072 11 endif
3073
3074 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3075
3076 1 L0:
3077 2 x_1 = PHI (0, x_5)
3078 3 if (x_1 < 10)
3079 4 x_10 = ...
3080 5 if (x_1 > 7)
3081 6 y_2 = 0
3082 7 else
3083 8 x_11 = ...
3084 9 y_3 = x_1 + x_7
3085 10 endif
3086 11 x_5 = x_1 + 1
3087 12 goto L0;
3088 13 endif
3089
3090 We want to replace all the uses of x_1 with the new definitions of
3091 x_10 and x_11. Note that the only uses that should be replaced are
3092 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3093 *not* be replaced (this is why we cannot just mark symbol 'x' for
3094 renaming).
3095
3096 Additionally, we may need to insert a PHI node at line 11 because
3097 that is a merge point for x_10 and x_11. So the use of x_1 at line
3098 11 will be replaced with the new PHI node. The insertion of PHI
3099 nodes is optional. They are not strictly necessary to preserve the
3100 SSA form, and depending on what the caller inserted, they may not
3101 even be useful for the optimizers. UPDATE_FLAGS controls various
3102 aspects of how update_ssa operates, see the documentation for
3103 TODO_update_ssa*. */
3104
3105 void
3106 update_ssa (unsigned update_flags)
3107 {
3108 basic_block bb, start_bb;
3109 bitmap_iterator bi;
3110 unsigned i = 0;
3111 bool insert_phi_p;
3112 sbitmap_iterator sbi;
3113 tree sym;
3114
3115 /* Only one update flag should be set. */
3116 gcc_assert (update_flags == TODO_update_ssa
3117 || update_flags == TODO_update_ssa_no_phi
3118 || update_flags == TODO_update_ssa_full_phi
3119 || update_flags == TODO_update_ssa_only_virtuals);
3120
3121 if (!need_ssa_update_p (cfun))
3122 return;
3123
3124 timevar_push (TV_TREE_SSA_INCREMENTAL);
3125
3126 if (dump_file && (dump_flags & TDF_DETAILS))
3127 fprintf (dump_file, "\nUpdating SSA:\n");
3128
3129 if (!update_ssa_initialized_fn)
3130 init_update_ssa (cfun);
3131 else if (update_flags == TODO_update_ssa_only_virtuals)
3132 {
3133 /* If we only need to update virtuals, remove all the mappings for
3134 real names before proceeding. The caller is responsible for
3135 having dealt with the name mappings before calling update_ssa. */
3136 sbitmap_zero (old_ssa_names);
3137 sbitmap_zero (new_ssa_names);
3138 }
3139
3140 gcc_assert (update_ssa_initialized_fn == cfun);
3141
3142 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3143 if (!phis_to_rewrite)
3144 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block + 1);
3145 blocks_to_update = BITMAP_ALLOC (NULL);
3146
3147 /* Ensure that the dominance information is up-to-date. */
3148 calculate_dominance_info (CDI_DOMINATORS);
3149
3150 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3151
3152 /* If there are names defined in the replacement table, prepare
3153 definition and use sites for all the names in NEW_SSA_NAMES and
3154 OLD_SSA_NAMES. */
3155 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3156 {
3157 prepare_names_to_update (insert_phi_p);
3158
3159 /* If all the names in NEW_SSA_NAMES had been marked for
3160 removal, and there are no symbols to rename, then there's
3161 nothing else to do. */
3162 if (sbitmap_first_set_bit (new_ssa_names) < 0
3163 && !cfun->gimple_df->ssa_renaming_needed)
3164 goto done;
3165 }
3166
3167 /* Next, determine the block at which to start the renaming process. */
3168 if (cfun->gimple_df->ssa_renaming_needed)
3169 {
3170 /* If we rename bare symbols initialize the mapping to
3171 auxiliar info we need to keep track of. */
3172 var_infos = htab_create (47, var_info_hash, var_info_eq, free);
3173
3174 /* If we have to rename some symbols from scratch, we need to
3175 start the process at the root of the CFG. FIXME, it should
3176 be possible to determine the nearest block that had a
3177 definition for each of the symbols that are marked for
3178 updating. For now this seems more work than it's worth. */
3179 start_bb = ENTRY_BLOCK_PTR;
3180
3181 /* Traverse the CFG looking for existing definitions and uses of
3182 symbols in SSA operands. Mark interesting blocks and
3183 statements and set local live-in information for the PHI
3184 placement heuristics. */
3185 prepare_block_for_update (start_bb, insert_phi_p);
3186
3187 #ifdef ENABLE_CHECKING
3188 for (i = 1; i < num_ssa_names; ++i)
3189 {
3190 tree name = ssa_name (i);
3191 if (!name
3192 || virtual_operand_p (name))
3193 continue;
3194
3195 /* For all but virtual operands, which do not have SSA names
3196 with overlapping life ranges, ensure that symbols marked
3197 for renaming do not have existing SSA names associated with
3198 them as we do not re-write them out-of-SSA before going
3199 into SSA for the remaining symbol uses. */
3200 if (marked_for_renaming (SSA_NAME_VAR (name)))
3201 {
3202 fprintf (stderr, "Existing SSA name for symbol marked for "
3203 "renaming: ");
3204 print_generic_expr (stderr, name, TDF_SLIM);
3205 fprintf (stderr, "\n");
3206 internal_error ("SSA corruption");
3207 }
3208 }
3209 #endif
3210 }
3211 else
3212 {
3213 /* Otherwise, the entry block to the region is the nearest
3214 common dominator for the blocks in BLOCKS. */
3215 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3216 blocks_to_update);
3217 }
3218
3219 /* If requested, insert PHI nodes at the iterated dominance frontier
3220 of every block, creating new definitions for names in OLD_SSA_NAMES
3221 and for symbols found. */
3222 if (insert_phi_p)
3223 {
3224 bitmap_head *dfs;
3225
3226 /* If the caller requested PHI nodes to be added, compute
3227 dominance frontiers. */
3228 dfs = XNEWVEC (bitmap_head, last_basic_block);
3229 FOR_EACH_BB (bb)
3230 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3231 compute_dominance_frontiers (dfs);
3232
3233 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3234 {
3235 sbitmap_iterator sbi;
3236
3237 /* insert_update_phi_nodes_for will call add_new_name_mapping
3238 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3239 will grow while we are traversing it (but it will not
3240 gain any new members). Copy OLD_SSA_NAMES to a temporary
3241 for traversal. */
3242 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3243 sbitmap_copy (tmp, old_ssa_names);
3244 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3245 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3246 update_flags);
3247 sbitmap_free (tmp);
3248 }
3249
3250 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, sym)
3251 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3252 update_flags);
3253
3254 FOR_EACH_BB (bb)
3255 bitmap_clear (&dfs[bb->index]);
3256 free (dfs);
3257
3258 /* Insertion of PHI nodes may have added blocks to the region.
3259 We need to re-compute START_BB to include the newly added
3260 blocks. */
3261 if (start_bb != ENTRY_BLOCK_PTR)
3262 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3263 blocks_to_update);
3264 }
3265
3266 /* Reset the current definition for name and symbol before renaming
3267 the sub-graph. */
3268 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3269 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3270
3271 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, sym)
3272 get_var_info (sym)->info.current_def = NULL_TREE;
3273
3274 /* Now start the renaming process at START_BB. */
3275 interesting_blocks = sbitmap_alloc (last_basic_block);
3276 sbitmap_zero (interesting_blocks);
3277 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3278 SET_BIT (interesting_blocks, i);
3279
3280 rewrite_blocks (start_bb, REWRITE_UPDATE);
3281
3282 sbitmap_free (interesting_blocks);
3283
3284 /* Debugging dumps. */
3285 if (dump_file)
3286 {
3287 int c;
3288 unsigned i;
3289
3290 dump_update_ssa (dump_file);
3291
3292 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3293 start_bb->index);
3294
3295 c = 0;
3296 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3297 c++;
3298 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3299 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3300 c, PERCENT (c, last_basic_block));
3301
3302 if (dump_flags & TDF_DETAILS)
3303 {
3304 fprintf (dump_file, "Affected blocks:");
3305 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3306 fprintf (dump_file, " %u", i);
3307 fprintf (dump_file, "\n");
3308 }
3309
3310 fprintf (dump_file, "\n\n");
3311 }
3312
3313 /* Free allocated memory. */
3314 done:
3315 delete_update_ssa ();
3316
3317 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3318 }