]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
This patch rewrites the old VEC macro-based interface into a new one based on the...
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "bitmap.h"
34 #include "tree-flow.h"
35 #include "gimple.h"
36 #include "tree-inline.h"
37 #include "hashtab.h"
38 #include "tree-pass.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "diagnostic-core.h"
43
44
45 /* This file builds the SSA form for a function as described in:
46 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
47 Computing Static Single Assignment Form and the Control Dependence
48 Graph. ACM Transactions on Programming Languages and Systems,
49 13(4):451-490, October 1991. */
50
51 /* Structure to map a variable VAR to the set of blocks that contain
52 definitions for VAR. */
53 struct def_blocks_d
54 {
55 /* Blocks that contain definitions of VAR. Bit I will be set if the
56 Ith block contains a definition of VAR. */
57 bitmap def_blocks;
58
59 /* Blocks that contain a PHI node for VAR. */
60 bitmap phi_blocks;
61
62 /* Blocks where VAR is live-on-entry. Similar semantics as
63 DEF_BLOCKS. */
64 bitmap livein_blocks;
65 };
66
67 typedef struct def_blocks_d *def_blocks_p;
68
69
70 /* Stack of trees used to restore the global currdefs to its original
71 state after completing rewriting of a block and its dominator
72 children. Its elements have the following properties:
73
74 - An SSA_NAME (N) indicates that the current definition of the
75 underlying variable should be set to the given SSA_NAME. If the
76 symbol associated with the SSA_NAME is not a GIMPLE register, the
77 next slot in the stack must be a _DECL node (SYM). In this case,
78 the name N in the previous slot is the current reaching
79 definition for SYM.
80
81 - A _DECL node indicates that the underlying variable has no
82 current definition.
83
84 - A NULL node at the top entry is used to mark the last slot
85 associated with the current block. */
86 static vec<tree> block_defs_stack;
87
88
89 /* Set of existing SSA names being replaced by update_ssa. */
90 static sbitmap old_ssa_names;
91
92 /* Set of new SSA names being added by update_ssa. Note that both
93 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
94 the operations done on them are presence tests. */
95 static sbitmap new_ssa_names;
96
97 sbitmap interesting_blocks;
98
99 /* Set of SSA names that have been marked to be released after they
100 were registered in the replacement table. They will be finally
101 released after we finish updating the SSA web. */
102 static bitmap names_to_release;
103
104 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
105 the to basic block with index I. Allocated once per compilation, *not*
106 released between different functions. */
107 static vec<gimple_vec> phis_to_rewrite;
108
109 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
110 static bitmap blocks_with_phis_to_rewrite;
111
112 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
113 to grow as the callers to create_new_def_for will create new names on
114 the fly.
115 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
116 need to find a reasonable growth strategy. */
117 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
118
119
120 /* The function the SSA updating data structures have been initialized for.
121 NULL if they need to be initialized by create_new_def_for. */
122 static struct function *update_ssa_initialized_fn = NULL;
123
124 /* Global data to attach to the main dominator walk structure. */
125 struct mark_def_sites_global_data
126 {
127 /* This bitmap contains the variables which are set before they
128 are used in a basic block. */
129 bitmap kills;
130 };
131
132 /* Information stored for both SSA names and decls. */
133 struct common_info_d
134 {
135 /* This field indicates whether or not the variable may need PHI nodes.
136 See the enum's definition for more detailed information about the
137 states. */
138 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
139
140 /* The current reaching definition replacing this var. */
141 tree current_def;
142
143 /* Definitions for this var. */
144 struct def_blocks_d def_blocks;
145 };
146
147 /* The information associated with decls and SSA names. */
148 typedef struct common_info_d *common_info_p;
149
150 /* Information stored for decls. */
151 struct var_info_d
152 {
153 /* The variable. */
154 tree var;
155
156 /* Information stored for both SSA names and decls. */
157 struct common_info_d info;
158 };
159
160 /* The information associated with decls. */
161 typedef struct var_info_d *var_info_p;
162
163
164 /* Each entry in VAR_INFOS contains an element of type STRUCT
165 VAR_INFO_D. */
166 static htab_t var_infos;
167
168
169 /* Information stored for SSA names. */
170 struct ssa_name_info
171 {
172 /* Age of this record (so that info_for_ssa_name table can be cleared
173 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
174 are assumed to be null. */
175 unsigned age;
176
177 /* Replacement mappings, allocated from update_ssa_obstack. */
178 bitmap repl_set;
179
180 /* Information stored for both SSA names and decls. */
181 struct common_info_d info;
182 };
183
184 /* The information associated with names. */
185 typedef struct ssa_name_info *ssa_name_info_p;
186
187 static vec<ssa_name_info_p> info_for_ssa_name;
188 static unsigned current_info_for_ssa_name_age;
189
190 static bitmap_obstack update_ssa_obstack;
191
192 /* The set of blocks affected by update_ssa. */
193 static bitmap blocks_to_update;
194
195 /* The main entry point to the SSA renamer (rewrite_blocks) may be
196 called several times to do different, but related, tasks.
197 Initially, we need it to rename the whole program into SSA form.
198 At other times, we may need it to only rename into SSA newly
199 exposed symbols. Finally, we can also call it to incrementally fix
200 an already built SSA web. */
201 enum rewrite_mode {
202 /* Convert the whole function into SSA form. */
203 REWRITE_ALL,
204
205 /* Incrementally update the SSA web by replacing existing SSA
206 names with new ones. See update_ssa for details. */
207 REWRITE_UPDATE
208 };
209
210
211
212
213 /* Prototypes for debugging functions. */
214 extern void dump_tree_ssa (FILE *);
215 extern void debug_tree_ssa (void);
216 extern void debug_def_blocks (void);
217 extern void dump_tree_ssa_stats (FILE *);
218 extern void debug_tree_ssa_stats (void);
219 extern void dump_update_ssa (FILE *);
220 extern void debug_update_ssa (void);
221 extern void dump_names_replaced_by (FILE *, tree);
222 extern void debug_names_replaced_by (tree);
223 extern void dump_var_infos (FILE *);
224 extern void debug_var_infos (void);
225 extern void dump_defs_stack (FILE *, int);
226 extern void debug_defs_stack (int);
227 extern void dump_currdefs (FILE *);
228 extern void debug_currdefs (void);
229
230
231 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
232 static bitmap symbols_to_rename_set;
233 static vec<tree> symbols_to_rename;
234
235 /* Mark SYM for renaming. */
236
237 static void
238 mark_for_renaming (tree sym)
239 {
240 if (!symbols_to_rename_set)
241 symbols_to_rename_set = BITMAP_ALLOC (NULL);
242 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
243 symbols_to_rename.safe_push (sym);
244 }
245
246 /* Return true if SYM is marked for renaming. */
247
248 static bool
249 marked_for_renaming (tree sym)
250 {
251 if (!symbols_to_rename_set || sym == NULL_TREE)
252 return false;
253 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
254 }
255
256
257 /* Return true if STMT needs to be rewritten. When renaming a subset
258 of the variables, not all statements will be processed. This is
259 decided in mark_def_sites. */
260
261 static inline bool
262 rewrite_uses_p (gimple stmt)
263 {
264 return gimple_visited_p (stmt);
265 }
266
267
268 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
269
270 static inline void
271 set_rewrite_uses (gimple stmt, bool rewrite_p)
272 {
273 gimple_set_visited (stmt, rewrite_p);
274 }
275
276
277 /* Return true if the DEFs created by statement STMT should be
278 registered when marking new definition sites. This is slightly
279 different than rewrite_uses_p: it's used by update_ssa to
280 distinguish statements that need to have both uses and defs
281 processed from those that only need to have their defs processed.
282 Statements that define new SSA names only need to have their defs
283 registered, but they don't need to have their uses renamed. */
284
285 static inline bool
286 register_defs_p (gimple stmt)
287 {
288 return gimple_plf (stmt, GF_PLF_1) != 0;
289 }
290
291
292 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
293
294 static inline void
295 set_register_defs (gimple stmt, bool register_defs_p)
296 {
297 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
298 }
299
300
301 /* Get the information associated with NAME. */
302
303 static inline ssa_name_info_p
304 get_ssa_name_ann (tree name)
305 {
306 unsigned ver = SSA_NAME_VERSION (name);
307 unsigned len = info_for_ssa_name.length ();
308 struct ssa_name_info *info;
309
310 /* Re-allocate the vector at most once per update/into-SSA. */
311 if (ver >= len)
312 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
313
314 /* But allocate infos lazily. */
315 info = info_for_ssa_name[ver];
316 if (!info)
317 {
318 info = XCNEW (struct ssa_name_info);
319 info->age = current_info_for_ssa_name_age;
320 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
321 info_for_ssa_name[ver] = info;
322 }
323
324 if (info->age < current_info_for_ssa_name_age)
325 {
326 info->age = current_info_for_ssa_name_age;
327 info->repl_set = NULL;
328 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
329 info->info.current_def = NULL_TREE;
330 info->info.def_blocks.def_blocks = NULL;
331 info->info.def_blocks.phi_blocks = NULL;
332 info->info.def_blocks.livein_blocks = NULL;
333 }
334
335 return info;
336 }
337
338 /* Return and allocate the auxiliar information for DECL. */
339
340 static inline var_info_p
341 get_var_info (tree decl)
342 {
343 struct var_info_d vi;
344 void **slot;
345 vi.var = decl;
346 slot = htab_find_slot_with_hash (var_infos, &vi, DECL_UID (decl), INSERT);
347 if (*slot == NULL)
348 {
349 var_info_p v = XCNEW (struct var_info_d);
350 v->var = decl;
351 *slot = (void *)v;
352 return v;
353 }
354 return (var_info_p) *slot;
355 }
356
357
358 /* Clears info for SSA names. */
359
360 static void
361 clear_ssa_name_info (void)
362 {
363 current_info_for_ssa_name_age++;
364
365 /* If current_info_for_ssa_name_age wraps we use stale information.
366 Asser that this does not happen. */
367 gcc_assert (current_info_for_ssa_name_age != 0);
368 }
369
370
371 /* Get access to the auxiliar information stored per SSA name or decl. */
372
373 static inline common_info_p
374 get_common_info (tree var)
375 {
376 if (TREE_CODE (var) == SSA_NAME)
377 return &get_ssa_name_ann (var)->info;
378 else
379 return &get_var_info (var)->info;
380 }
381
382
383 /* Return the current definition for VAR. */
384
385 tree
386 get_current_def (tree var)
387 {
388 return get_common_info (var)->current_def;
389 }
390
391
392 /* Sets current definition of VAR to DEF. */
393
394 void
395 set_current_def (tree var, tree def)
396 {
397 get_common_info (var)->current_def = def;
398 }
399
400 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
401 all statements in basic block BB. */
402
403 static void
404 initialize_flags_in_bb (basic_block bb)
405 {
406 gimple stmt;
407 gimple_stmt_iterator gsi;
408
409 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
410 {
411 gimple phi = gsi_stmt (gsi);
412 set_rewrite_uses (phi, false);
413 set_register_defs (phi, false);
414 }
415
416 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
417 {
418 stmt = gsi_stmt (gsi);
419
420 /* We are going to use the operand cache API, such as
421 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
422 cache for each statement should be up-to-date. */
423 gcc_checking_assert (!gimple_modified_p (stmt));
424 set_rewrite_uses (stmt, false);
425 set_register_defs (stmt, false);
426 }
427 }
428
429 /* Mark block BB as interesting for update_ssa. */
430
431 static void
432 mark_block_for_update (basic_block bb)
433 {
434 gcc_checking_assert (blocks_to_update != NULL);
435 if (!bitmap_set_bit (blocks_to_update, bb->index))
436 return;
437 initialize_flags_in_bb (bb);
438 }
439
440 /* Return the set of blocks where variable VAR is defined and the blocks
441 where VAR is live on entry (livein). If no entry is found in
442 DEF_BLOCKS, a new one is created and returned. */
443
444 static inline struct def_blocks_d *
445 get_def_blocks_for (common_info_p info)
446 {
447 struct def_blocks_d *db_p = &info->def_blocks;
448 if (!db_p->def_blocks)
449 {
450 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
451 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
452 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
453 }
454
455 return db_p;
456 }
457
458
459 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
460 VAR is defined by a PHI node. */
461
462 static void
463 set_def_block (tree var, basic_block bb, bool phi_p)
464 {
465 struct def_blocks_d *db_p;
466 common_info_p info;
467
468 info = get_common_info (var);
469 db_p = get_def_blocks_for (info);
470
471 /* Set the bit corresponding to the block where VAR is defined. */
472 bitmap_set_bit (db_p->def_blocks, bb->index);
473 if (phi_p)
474 bitmap_set_bit (db_p->phi_blocks, bb->index);
475
476 /* Keep track of whether or not we may need to insert PHI nodes.
477
478 If we are in the UNKNOWN state, then this is the first definition
479 of VAR. Additionally, we have not seen any uses of VAR yet, so
480 we do not need a PHI node for this variable at this time (i.e.,
481 transition to NEED_PHI_STATE_NO).
482
483 If we are in any other state, then we either have multiple definitions
484 of this variable occurring in different blocks or we saw a use of the
485 variable which was not dominated by the block containing the
486 definition(s). In this case we may need a PHI node, so enter
487 state NEED_PHI_STATE_MAYBE. */
488 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
489 info->need_phi_state = NEED_PHI_STATE_NO;
490 else
491 info->need_phi_state = NEED_PHI_STATE_MAYBE;
492 }
493
494
495 /* Mark block BB as having VAR live at the entry to BB. */
496
497 static void
498 set_livein_block (tree var, basic_block bb)
499 {
500 common_info_p info;
501 struct def_blocks_d *db_p;
502
503 info = get_common_info (var);
504 db_p = get_def_blocks_for (info);
505
506 /* Set the bit corresponding to the block where VAR is live in. */
507 bitmap_set_bit (db_p->livein_blocks, bb->index);
508
509 /* Keep track of whether or not we may need to insert PHI nodes.
510
511 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
512 by the single block containing the definition(s) of this variable. If
513 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
514 NEED_PHI_STATE_MAYBE. */
515 if (info->need_phi_state == NEED_PHI_STATE_NO)
516 {
517 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
518
519 if (def_block_index == -1
520 || ! dominated_by_p (CDI_DOMINATORS, bb,
521 BASIC_BLOCK (def_block_index)))
522 info->need_phi_state = NEED_PHI_STATE_MAYBE;
523 }
524 else
525 info->need_phi_state = NEED_PHI_STATE_MAYBE;
526 }
527
528
529 /* Return true if NAME is in OLD_SSA_NAMES. */
530
531 static inline bool
532 is_old_name (tree name)
533 {
534 unsigned ver = SSA_NAME_VERSION (name);
535 if (!new_ssa_names)
536 return false;
537 return (ver < SBITMAP_SIZE (new_ssa_names)
538 && bitmap_bit_p (old_ssa_names, ver));
539 }
540
541
542 /* Return true if NAME is in NEW_SSA_NAMES. */
543
544 static inline bool
545 is_new_name (tree name)
546 {
547 unsigned ver = SSA_NAME_VERSION (name);
548 if (!new_ssa_names)
549 return false;
550 return (ver < SBITMAP_SIZE (new_ssa_names)
551 && bitmap_bit_p (new_ssa_names, ver));
552 }
553
554
555 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
556
557 static inline bitmap
558 names_replaced_by (tree new_tree)
559 {
560 return get_ssa_name_ann (new_tree)->repl_set;
561 }
562
563
564 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
565
566 static inline void
567 add_to_repl_tbl (tree new_tree, tree old)
568 {
569 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
570 if (!*set)
571 *set = BITMAP_ALLOC (&update_ssa_obstack);
572 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
573 }
574
575
576 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
577 represents the set of names O_1 ... O_j replaced by N_i. This is
578 used by update_ssa and its helpers to introduce new SSA names in an
579 already formed SSA web. */
580
581 static void
582 add_new_name_mapping (tree new_tree, tree old)
583 {
584 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
585 gcc_checking_assert (new_tree != old
586 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
587
588 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
589 caller may have created new names since the set was created. */
590 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
591 {
592 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
593 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
594 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
595 }
596
597 /* Update the REPL_TBL table. */
598 add_to_repl_tbl (new_tree, old);
599
600 /* If OLD had already been registered as a new name, then all the
601 names that OLD replaces should also be replaced by NEW_TREE. */
602 if (is_new_name (old))
603 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
604
605 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
606 respectively. */
607 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
608 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
609 }
610
611
612 /* Call back for walk_dominator_tree used to collect definition sites
613 for every variable in the function. For every statement S in block
614 BB:
615
616 1- Variables defined by S in the DEFS of S are marked in the bitmap
617 KILLS.
618
619 2- If S uses a variable VAR and there is no preceding kill of VAR,
620 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
621
622 This information is used to determine which variables are live
623 across block boundaries to reduce the number of PHI nodes
624 we create. */
625
626 static void
627 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
628 {
629 tree def;
630 use_operand_p use_p;
631 ssa_op_iter iter;
632
633 /* Since this is the first time that we rewrite the program into SSA
634 form, force an operand scan on every statement. */
635 update_stmt (stmt);
636
637 gcc_checking_assert (blocks_to_update == NULL);
638 set_register_defs (stmt, false);
639 set_rewrite_uses (stmt, false);
640
641 if (is_gimple_debug (stmt))
642 {
643 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
644 {
645 tree sym = USE_FROM_PTR (use_p);
646 gcc_checking_assert (DECL_P (sym));
647 set_rewrite_uses (stmt, true);
648 }
649 if (rewrite_uses_p (stmt))
650 bitmap_set_bit (interesting_blocks, bb->index);
651 return;
652 }
653
654 /* If a variable is used before being set, then the variable is live
655 across a block boundary, so mark it live-on-entry to BB. */
656 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
657 {
658 tree sym = USE_FROM_PTR (use_p);
659 gcc_checking_assert (DECL_P (sym));
660 if (!bitmap_bit_p (kills, DECL_UID (sym)))
661 set_livein_block (sym, bb);
662 set_rewrite_uses (stmt, true);
663 }
664
665 /* Now process the defs. Mark BB as the definition block and add
666 each def to the set of killed symbols. */
667 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
668 {
669 gcc_checking_assert (DECL_P (def));
670 set_def_block (def, bb, false);
671 bitmap_set_bit (kills, DECL_UID (def));
672 set_register_defs (stmt, true);
673 }
674
675 /* If we found the statement interesting then also mark the block BB
676 as interesting. */
677 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
678 bitmap_set_bit (interesting_blocks, bb->index);
679 }
680
681 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
682 in the dfs numbering of the dominance tree. */
683
684 struct dom_dfsnum
685 {
686 /* Basic block whose index this entry corresponds to. */
687 unsigned bb_index;
688
689 /* The dfs number of this node. */
690 unsigned dfs_num;
691 };
692
693 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
694 for qsort. */
695
696 static int
697 cmp_dfsnum (const void *a, const void *b)
698 {
699 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
700 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
701
702 return (int) da->dfs_num - (int) db->dfs_num;
703 }
704
705 /* Among the intervals starting at the N points specified in DEFS, find
706 the one that contains S, and return its bb_index. */
707
708 static unsigned
709 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
710 {
711 unsigned f = 0, t = n, m;
712
713 while (t > f + 1)
714 {
715 m = (f + t) / 2;
716 if (defs[m].dfs_num <= s)
717 f = m;
718 else
719 t = m;
720 }
721
722 return defs[f].bb_index;
723 }
724
725 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
726 KILLS is a bitmap of blocks where the value is defined before any use. */
727
728 static void
729 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
730 {
731 vec<int> worklist;
732 bitmap_iterator bi;
733 unsigned i, b, p, u, top;
734 bitmap live_phis;
735 basic_block def_bb, use_bb;
736 edge e;
737 edge_iterator ei;
738 bitmap to_remove;
739 struct dom_dfsnum *defs;
740 unsigned n_defs, adef;
741
742 if (bitmap_empty_p (uses))
743 {
744 bitmap_clear (phis);
745 return;
746 }
747
748 /* The phi must dominate a use, or an argument of a live phi. Also, we
749 do not create any phi nodes in def blocks, unless they are also livein. */
750 to_remove = BITMAP_ALLOC (NULL);
751 bitmap_and_compl (to_remove, kills, uses);
752 bitmap_and_compl_into (phis, to_remove);
753 if (bitmap_empty_p (phis))
754 {
755 BITMAP_FREE (to_remove);
756 return;
757 }
758
759 /* We want to remove the unnecessary phi nodes, but we do not want to compute
760 liveness information, as that may be linear in the size of CFG, and if
761 there are lot of different variables to rewrite, this may lead to quadratic
762 behavior.
763
764 Instead, we basically emulate standard dce. We put all uses to worklist,
765 then for each of them find the nearest def that dominates them. If this
766 def is a phi node, we mark it live, and if it was not live before, we
767 add the predecessors of its basic block to the worklist.
768
769 To quickly locate the nearest def that dominates use, we use dfs numbering
770 of the dominance tree (that is already available in order to speed up
771 queries). For each def, we have the interval given by the dfs number on
772 entry to and on exit from the corresponding subtree in the dominance tree.
773 The nearest dominator for a given use is the smallest of these intervals
774 that contains entry and exit dfs numbers for the basic block with the use.
775 If we store the bounds for all the uses to an array and sort it, we can
776 locate the nearest dominating def in logarithmic time by binary search.*/
777 bitmap_ior (to_remove, kills, phis);
778 n_defs = bitmap_count_bits (to_remove);
779 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
780 defs[0].bb_index = 1;
781 defs[0].dfs_num = 0;
782 adef = 1;
783 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
784 {
785 def_bb = BASIC_BLOCK (i);
786 defs[adef].bb_index = i;
787 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
788 defs[adef + 1].bb_index = i;
789 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
790 adef += 2;
791 }
792 BITMAP_FREE (to_remove);
793 gcc_assert (adef == 2 * n_defs + 1);
794 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
795 gcc_assert (defs[0].bb_index == 1);
796
797 /* Now each DEFS entry contains the number of the basic block to that the
798 dfs number corresponds. Change them to the number of basic block that
799 corresponds to the interval following the dfs number. Also, for the
800 dfs_out numbers, increase the dfs number by one (so that it corresponds
801 to the start of the following interval, not to the end of the current
802 one). We use WORKLIST as a stack. */
803 worklist.create (n_defs + 1);
804 worklist.quick_push (1);
805 top = 1;
806 n_defs = 1;
807 for (i = 1; i < adef; i++)
808 {
809 b = defs[i].bb_index;
810 if (b == top)
811 {
812 /* This is a closing element. Interval corresponding to the top
813 of the stack after removing it follows. */
814 worklist.pop ();
815 top = worklist[worklist.length () - 1];
816 defs[n_defs].bb_index = top;
817 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
818 }
819 else
820 {
821 /* Opening element. Nothing to do, just push it to the stack and move
822 it to the correct position. */
823 defs[n_defs].bb_index = defs[i].bb_index;
824 defs[n_defs].dfs_num = defs[i].dfs_num;
825 worklist.quick_push (b);
826 top = b;
827 }
828
829 /* If this interval starts at the same point as the previous one, cancel
830 the previous one. */
831 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
832 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
833 else
834 n_defs++;
835 }
836 worklist.pop ();
837 gcc_assert (worklist.is_empty ());
838
839 /* Now process the uses. */
840 live_phis = BITMAP_ALLOC (NULL);
841 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
842 {
843 worklist.safe_push (i);
844 }
845
846 while (!worklist.is_empty ())
847 {
848 b = worklist.pop ();
849 if (b == ENTRY_BLOCK)
850 continue;
851
852 /* If there is a phi node in USE_BB, it is made live. Otherwise,
853 find the def that dominates the immediate dominator of USE_BB
854 (the kill in USE_BB does not dominate the use). */
855 if (bitmap_bit_p (phis, b))
856 p = b;
857 else
858 {
859 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
860 p = find_dfsnum_interval (defs, n_defs,
861 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
862 if (!bitmap_bit_p (phis, p))
863 continue;
864 }
865
866 /* If the phi node is already live, there is nothing to do. */
867 if (!bitmap_set_bit (live_phis, p))
868 continue;
869
870 /* Add the new uses to the worklist. */
871 def_bb = BASIC_BLOCK (p);
872 FOR_EACH_EDGE (e, ei, def_bb->preds)
873 {
874 u = e->src->index;
875 if (bitmap_bit_p (uses, u))
876 continue;
877
878 /* In case there is a kill directly in the use block, do not record
879 the use (this is also necessary for correctness, as we assume that
880 uses dominated by a def directly in their block have been filtered
881 out before). */
882 if (bitmap_bit_p (kills, u))
883 continue;
884
885 bitmap_set_bit (uses, u);
886 worklist.safe_push (u);
887 }
888 }
889
890 worklist.release ();
891 bitmap_copy (phis, live_phis);
892 BITMAP_FREE (live_phis);
893 free (defs);
894 }
895
896 /* Return the set of blocks where variable VAR is defined and the blocks
897 where VAR is live on entry (livein). Return NULL, if no entry is
898 found in DEF_BLOCKS. */
899
900 static inline struct def_blocks_d *
901 find_def_blocks_for (tree var)
902 {
903 def_blocks_p p = &get_common_info (var)->def_blocks;
904 if (!p->def_blocks)
905 return NULL;
906 return p;
907 }
908
909
910 /* Marks phi node PHI in basic block BB for rewrite. */
911
912 static void
913 mark_phi_for_rewrite (basic_block bb, gimple phi)
914 {
915 gimple_vec phis;
916 unsigned n, idx = bb->index;
917
918 if (rewrite_uses_p (phi))
919 return;
920
921 set_rewrite_uses (phi, true);
922
923 if (!blocks_with_phis_to_rewrite)
924 return;
925
926 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
927
928 n = (unsigned) last_basic_block + 1;
929 if (phis_to_rewrite.length () < n)
930 phis_to_rewrite.safe_grow_cleared (n);
931
932 phis = phis_to_rewrite[idx];
933 phis.reserve (10);
934
935 phis.safe_push (phi);
936 phis_to_rewrite[idx] = phis;
937 }
938
939 /* Insert PHI nodes for variable VAR using the iterated dominance
940 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
941 function assumes that the caller is incrementally updating the
942 existing SSA form, in which case VAR may be an SSA name instead of
943 a symbol.
944
945 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
946 PHI node for VAR. On exit, only the nodes that received a PHI node
947 for VAR will be present in PHI_INSERTION_POINTS. */
948
949 static void
950 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
951 {
952 unsigned bb_index;
953 edge e;
954 gimple phi;
955 basic_block bb;
956 bitmap_iterator bi;
957 struct def_blocks_d *def_map = find_def_blocks_for (var);
958
959 /* Remove the blocks where we already have PHI nodes for VAR. */
960 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
961
962 /* Remove obviously useless phi nodes. */
963 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
964 def_map->livein_blocks);
965
966 /* And insert the PHI nodes. */
967 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
968 {
969 bb = BASIC_BLOCK (bb_index);
970 if (update_p)
971 mark_block_for_update (bb);
972
973 phi = NULL;
974
975 if (TREE_CODE (var) == SSA_NAME)
976 {
977 /* If we are rewriting SSA names, create the LHS of the PHI
978 node by duplicating VAR. This is useful in the case of
979 pointers, to also duplicate pointer attributes (alias
980 information, in particular). */
981 edge_iterator ei;
982 tree new_lhs;
983
984 gcc_checking_assert (update_p);
985 new_lhs = duplicate_ssa_name (var, NULL);
986 phi = create_phi_node (new_lhs, bb);
987 add_new_name_mapping (new_lhs, var);
988
989 /* Add VAR to every argument slot of PHI. We need VAR in
990 every argument so that rewrite_update_phi_arguments knows
991 which name is this PHI node replacing. If VAR is a
992 symbol marked for renaming, this is not necessary, the
993 renamer will use the symbol on the LHS to get its
994 reaching definition. */
995 FOR_EACH_EDGE (e, ei, bb->preds)
996 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
997 }
998 else
999 {
1000 tree tracked_var;
1001
1002 gcc_checking_assert (DECL_P (var));
1003 phi = create_phi_node (var, bb);
1004
1005 tracked_var = target_for_debug_bind (var);
1006 if (tracked_var)
1007 {
1008 gimple note = gimple_build_debug_bind (tracked_var,
1009 PHI_RESULT (phi),
1010 phi);
1011 gimple_stmt_iterator si = gsi_after_labels (bb);
1012 gsi_insert_before (&si, note, GSI_SAME_STMT);
1013 }
1014 }
1015
1016 /* Mark this PHI node as interesting for update_ssa. */
1017 set_register_defs (phi, true);
1018 mark_phi_for_rewrite (bb, phi);
1019 }
1020 }
1021
1022 /* Sort var_infos after DECL_UID of their var. */
1023
1024 static int
1025 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1026 {
1027 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1028 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1029 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1030 return -1;
1031 else
1032 return 1;
1033 }
1034
1035 /* Insert PHI nodes at the dominance frontier of blocks with variable
1036 definitions. DFS contains the dominance frontier information for
1037 the flowgraph. */
1038
1039 static void
1040 insert_phi_nodes (bitmap_head *dfs)
1041 {
1042 htab_iterator hi;
1043 unsigned i;
1044 var_info_p info;
1045 vec<var_info_p> vars;
1046
1047 timevar_push (TV_TREE_INSERT_PHI_NODES);
1048
1049 vars.create (htab_elements (var_infos));
1050 FOR_EACH_HTAB_ELEMENT (var_infos, info, var_info_p, hi)
1051 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1052 vars.quick_push (info);
1053
1054 /* Do two stages to avoid code generation differences for UID
1055 differences but no UID ordering differences. */
1056 vars.qsort (insert_phi_nodes_compare_var_infos);
1057
1058 FOR_EACH_VEC_ELT (vars, i, info)
1059 {
1060 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1061 insert_phi_nodes_for (info->var, idf, false);
1062 BITMAP_FREE (idf);
1063 }
1064
1065 vars.release ();
1066
1067 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1068 }
1069
1070
1071 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1072 register DEF (an SSA_NAME) to be a new definition for SYM. */
1073
1074 static void
1075 register_new_def (tree def, tree sym)
1076 {
1077 common_info_p info = get_common_info (sym);
1078 tree currdef;
1079
1080 /* If this variable is set in a single basic block and all uses are
1081 dominated by the set(s) in that single basic block, then there is
1082 no reason to record anything for this variable in the block local
1083 definition stacks. Doing so just wastes time and memory.
1084
1085 This is the same test to prune the set of variables which may
1086 need PHI nodes. So we just use that information since it's already
1087 computed and available for us to use. */
1088 if (info->need_phi_state == NEED_PHI_STATE_NO)
1089 {
1090 info->current_def = def;
1091 return;
1092 }
1093
1094 currdef = info->current_def;
1095
1096 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1097 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1098 in the stack so that we know which symbol is being defined by
1099 this SSA name when we unwind the stack. */
1100 if (currdef && !is_gimple_reg (sym))
1101 block_defs_stack.safe_push (sym);
1102
1103 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1104 stack is later used by the dominator tree callbacks to restore
1105 the reaching definitions for all the variables defined in the
1106 block after a recursive visit to all its immediately dominated
1107 blocks. If there is no current reaching definition, then just
1108 record the underlying _DECL node. */
1109 block_defs_stack.safe_push (currdef ? currdef : sym);
1110
1111 /* Set the current reaching definition for SYM to be DEF. */
1112 info->current_def = def;
1113 }
1114
1115
1116 /* Perform a depth-first traversal of the dominator tree looking for
1117 variables to rename. BB is the block where to start searching.
1118 Renaming is a five step process:
1119
1120 1- Every definition made by PHI nodes at the start of the blocks is
1121 registered as the current definition for the corresponding variable.
1122
1123 2- Every statement in BB is rewritten. USE and VUSE operands are
1124 rewritten with their corresponding reaching definition. DEF and
1125 VDEF targets are registered as new definitions.
1126
1127 3- All the PHI nodes in successor blocks of BB are visited. The
1128 argument corresponding to BB is replaced with its current reaching
1129 definition.
1130
1131 4- Recursively rewrite every dominator child block of BB.
1132
1133 5- Restore (in reverse order) the current reaching definition for every
1134 new definition introduced in this block. This is done so that when
1135 we return from the recursive call, all the current reaching
1136 definitions are restored to the names that were valid in the
1137 dominator parent of BB. */
1138
1139 /* Return the current definition for variable VAR. If none is found,
1140 create a new SSA name to act as the zeroth definition for VAR. */
1141
1142 static tree
1143 get_reaching_def (tree var)
1144 {
1145 common_info_p info = get_common_info (var);
1146 tree currdef;
1147
1148 /* Lookup the current reaching definition for VAR. */
1149 currdef = info->current_def;
1150
1151 /* If there is no reaching definition for VAR, create and register a
1152 default definition for it (if needed). */
1153 if (currdef == NULL_TREE)
1154 {
1155 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1156 currdef = get_or_create_ssa_default_def (cfun, sym);
1157 }
1158
1159 /* Return the current reaching definition for VAR, or the default
1160 definition, if we had to create one. */
1161 return currdef;
1162 }
1163
1164
1165 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1166
1167 static void
1168 rewrite_debug_stmt_uses (gimple stmt)
1169 {
1170 use_operand_p use_p;
1171 ssa_op_iter iter;
1172 bool update = false;
1173
1174 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1175 {
1176 tree var = USE_FROM_PTR (use_p), def;
1177 common_info_p info = get_common_info (var);
1178 gcc_checking_assert (DECL_P (var));
1179 def = info->current_def;
1180 if (!def)
1181 {
1182 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1183 {
1184 gimple_stmt_iterator gsi
1185 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1186 int lim;
1187 /* Search a few source bind stmts at the start of first bb to
1188 see if a DEBUG_EXPR_DECL can't be reused. */
1189 for (lim = 32;
1190 !gsi_end_p (gsi) && lim > 0;
1191 gsi_next (&gsi), lim--)
1192 {
1193 gimple gstmt = gsi_stmt (gsi);
1194 if (!gimple_debug_source_bind_p (gstmt))
1195 break;
1196 if (gimple_debug_source_bind_get_value (gstmt) == var)
1197 {
1198 def = gimple_debug_source_bind_get_var (gstmt);
1199 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1200 break;
1201 else
1202 def = NULL_TREE;
1203 }
1204 }
1205 /* If not, add a new source bind stmt. */
1206 if (def == NULL_TREE)
1207 {
1208 gimple def_temp;
1209 def = make_node (DEBUG_EXPR_DECL);
1210 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1211 DECL_ARTIFICIAL (def) = 1;
1212 TREE_TYPE (def) = TREE_TYPE (var);
1213 DECL_MODE (def) = DECL_MODE (var);
1214 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1215 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1216 }
1217 update = true;
1218 }
1219 }
1220 else
1221 {
1222 /* Check if info->current_def can be trusted. */
1223 basic_block bb = gimple_bb (stmt);
1224 basic_block def_bb
1225 = SSA_NAME_IS_DEFAULT_DEF (def)
1226 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1227
1228 /* If definition is in current bb, it is fine. */
1229 if (bb == def_bb)
1230 ;
1231 /* If definition bb doesn't dominate the current bb,
1232 it can't be used. */
1233 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1234 def = NULL;
1235 /* If there is just one definition and dominates the current
1236 bb, it is fine. */
1237 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1238 ;
1239 else
1240 {
1241 struct def_blocks_d *db_p = get_def_blocks_for (info);
1242
1243 /* If there are some non-debug uses in the current bb,
1244 it is fine. */
1245 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1246 ;
1247 /* Otherwise give up for now. */
1248 else
1249 def = NULL;
1250 }
1251 }
1252 if (def == NULL)
1253 {
1254 gimple_debug_bind_reset_value (stmt);
1255 update_stmt (stmt);
1256 return;
1257 }
1258 SET_USE (use_p, def);
1259 }
1260 if (update)
1261 update_stmt (stmt);
1262 }
1263
1264 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1265 the block with its immediate reaching definitions. Update the current
1266 definition of a variable when a new real or virtual definition is found. */
1267
1268 static void
1269 rewrite_stmt (gimple_stmt_iterator *si)
1270 {
1271 use_operand_p use_p;
1272 def_operand_p def_p;
1273 ssa_op_iter iter;
1274 gimple stmt = gsi_stmt (*si);
1275
1276 /* If mark_def_sites decided that we don't need to rewrite this
1277 statement, ignore it. */
1278 gcc_assert (blocks_to_update == NULL);
1279 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1280 return;
1281
1282 if (dump_file && (dump_flags & TDF_DETAILS))
1283 {
1284 fprintf (dump_file, "Renaming statement ");
1285 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1286 fprintf (dump_file, "\n");
1287 }
1288
1289 /* Step 1. Rewrite USES in the statement. */
1290 if (rewrite_uses_p (stmt))
1291 {
1292 if (is_gimple_debug (stmt))
1293 rewrite_debug_stmt_uses (stmt);
1294 else
1295 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1296 {
1297 tree var = USE_FROM_PTR (use_p);
1298 gcc_checking_assert (DECL_P (var));
1299 SET_USE (use_p, get_reaching_def (var));
1300 }
1301 }
1302
1303 /* Step 2. Register the statement's DEF operands. */
1304 if (register_defs_p (stmt))
1305 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1306 {
1307 tree var = DEF_FROM_PTR (def_p);
1308 tree name;
1309 tree tracked_var;
1310
1311 gcc_checking_assert (DECL_P (var));
1312
1313 if (gimple_clobber_p (stmt)
1314 && is_gimple_reg (var))
1315 {
1316 /* If we rewrite a DECL into SSA form then drop its
1317 clobber stmts and replace uses with a new default def. */
1318 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1319 && !gimple_vdef (stmt));
1320 gsi_replace (si, gimple_build_nop (), true);
1321 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1322 break;
1323 }
1324
1325 name = make_ssa_name (var, stmt);
1326 SET_DEF (def_p, name);
1327 register_new_def (DEF_FROM_PTR (def_p), var);
1328
1329 tracked_var = target_for_debug_bind (var);
1330 if (tracked_var)
1331 {
1332 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1333 gsi_insert_after (si, note, GSI_SAME_STMT);
1334 }
1335 }
1336 }
1337
1338
1339 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1340 PHI nodes. For every PHI node found, add a new argument containing the
1341 current reaching definition for the variable and the edge through which
1342 that definition is reaching the PHI node. */
1343
1344 static void
1345 rewrite_add_phi_arguments (basic_block bb)
1346 {
1347 edge e;
1348 edge_iterator ei;
1349
1350 FOR_EACH_EDGE (e, ei, bb->succs)
1351 {
1352 gimple phi;
1353 gimple_stmt_iterator gsi;
1354
1355 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1356 gsi_next (&gsi))
1357 {
1358 tree currdef;
1359 gimple stmt;
1360
1361 phi = gsi_stmt (gsi);
1362 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1363 stmt = SSA_NAME_DEF_STMT (currdef);
1364 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1365 }
1366 }
1367 }
1368
1369 /* SSA Rewriting Step 1. Initialization, create a block local stack
1370 of reaching definitions for new SSA names produced in this block
1371 (BLOCK_DEFS). Register new definitions for every PHI node in the
1372 block. */
1373
1374 static void
1375 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1376 basic_block bb)
1377 {
1378 gimple_stmt_iterator gsi;
1379
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1382
1383 /* Mark the unwind point for this block. */
1384 block_defs_stack.safe_push (NULL_TREE);
1385
1386 /* Step 1. Register new definitions for every PHI node in the block.
1387 Conceptually, all the PHI nodes are executed in parallel and each PHI
1388 node introduces a new version for the associated variable. */
1389 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1390 {
1391 tree result = gimple_phi_result (gsi_stmt (gsi));
1392 register_new_def (result, SSA_NAME_VAR (result));
1393 }
1394
1395 /* Step 2. Rewrite every variable used in each statement in the block
1396 with its immediate reaching definitions. Update the current definition
1397 of a variable when a new real or virtual definition is found. */
1398 if (bitmap_bit_p (interesting_blocks, bb->index))
1399 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1400 rewrite_stmt (&gsi);
1401
1402 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1403 For every PHI node found, add a new argument containing the current
1404 reaching definition for the variable and the edge through which that
1405 definition is reaching the PHI node. */
1406 rewrite_add_phi_arguments (bb);
1407 }
1408
1409
1410
1411 /* Called after visiting all the statements in basic block BB and all
1412 of its dominator children. Restore CURRDEFS to its original value. */
1413
1414 static void
1415 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1416 basic_block bb ATTRIBUTE_UNUSED)
1417 {
1418 /* Restore CURRDEFS to its original state. */
1419 while (block_defs_stack.length () > 0)
1420 {
1421 tree tmp = block_defs_stack.pop ();
1422 tree saved_def, var;
1423
1424 if (tmp == NULL_TREE)
1425 break;
1426
1427 if (TREE_CODE (tmp) == SSA_NAME)
1428 {
1429 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1430 current definition of its underlying variable. Note that
1431 if the SSA_NAME is not for a GIMPLE register, the symbol
1432 being defined is stored in the next slot in the stack.
1433 This mechanism is needed because an SSA name for a
1434 non-register symbol may be the definition for more than
1435 one symbol (e.g., SFTs, aliased variables, etc). */
1436 saved_def = tmp;
1437 var = SSA_NAME_VAR (saved_def);
1438 if (!is_gimple_reg (var))
1439 var = block_defs_stack.pop ();
1440 }
1441 else
1442 {
1443 /* If we recorded anything else, it must have been a _DECL
1444 node and its current reaching definition must have been
1445 NULL. */
1446 saved_def = NULL;
1447 var = tmp;
1448 }
1449
1450 get_common_info (var)->current_def = saved_def;
1451 }
1452 }
1453
1454
1455 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1456
1457 void
1458 dump_decl_set (FILE *file, bitmap set)
1459 {
1460 if (set)
1461 {
1462 bitmap_iterator bi;
1463 unsigned i;
1464
1465 fprintf (file, "{ ");
1466
1467 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1468 {
1469 fprintf (file, "D.%u", i);
1470 fprintf (file, " ");
1471 }
1472
1473 fprintf (file, "}");
1474 }
1475 else
1476 fprintf (file, "NIL");
1477 }
1478
1479
1480 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1481
1482 DEBUG_FUNCTION void
1483 debug_decl_set (bitmap set)
1484 {
1485 dump_decl_set (stderr, set);
1486 fprintf (stderr, "\n");
1487 }
1488
1489
1490 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1491 stack up to a maximum of N levels. If N is -1, the whole stack is
1492 dumped. New levels are created when the dominator tree traversal
1493 used for renaming enters a new sub-tree. */
1494
1495 void
1496 dump_defs_stack (FILE *file, int n)
1497 {
1498 int i, j;
1499
1500 fprintf (file, "\n\nRenaming stack");
1501 if (n > 0)
1502 fprintf (file, " (up to %d levels)", n);
1503 fprintf (file, "\n\n");
1504
1505 i = 1;
1506 fprintf (file, "Level %d (current level)\n", i);
1507 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1508 {
1509 tree name, var;
1510
1511 name = block_defs_stack[j];
1512 if (name == NULL_TREE)
1513 {
1514 i++;
1515 if (n > 0 && i > n)
1516 break;
1517 fprintf (file, "\nLevel %d\n", i);
1518 continue;
1519 }
1520
1521 if (DECL_P (name))
1522 {
1523 var = name;
1524 name = NULL_TREE;
1525 }
1526 else
1527 {
1528 var = SSA_NAME_VAR (name);
1529 if (!is_gimple_reg (var))
1530 {
1531 j--;
1532 var = block_defs_stack[j];
1533 }
1534 }
1535
1536 fprintf (file, " Previous CURRDEF (");
1537 print_generic_expr (file, var, 0);
1538 fprintf (file, ") = ");
1539 if (name)
1540 print_generic_expr (file, name, 0);
1541 else
1542 fprintf (file, "<NIL>");
1543 fprintf (file, "\n");
1544 }
1545 }
1546
1547
1548 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1549 stack up to a maximum of N levels. If N is -1, the whole stack is
1550 dumped. New levels are created when the dominator tree traversal
1551 used for renaming enters a new sub-tree. */
1552
1553 DEBUG_FUNCTION void
1554 debug_defs_stack (int n)
1555 {
1556 dump_defs_stack (stderr, n);
1557 }
1558
1559
1560 /* Dump the current reaching definition of every symbol to FILE. */
1561
1562 void
1563 dump_currdefs (FILE *file)
1564 {
1565 unsigned i;
1566 tree var;
1567
1568 if (symbols_to_rename.is_empty ())
1569 return;
1570
1571 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1572 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1573 {
1574 common_info_p info = get_common_info (var);
1575 fprintf (file, "CURRDEF (");
1576 print_generic_expr (file, var, 0);
1577 fprintf (file, ") = ");
1578 if (info->current_def)
1579 print_generic_expr (file, info->current_def, 0);
1580 else
1581 fprintf (file, "<NIL>");
1582 fprintf (file, "\n");
1583 }
1584 }
1585
1586
1587 /* Dump the current reaching definition of every symbol to stderr. */
1588
1589 DEBUG_FUNCTION void
1590 debug_currdefs (void)
1591 {
1592 dump_currdefs (stderr);
1593 }
1594
1595
1596 /* Dump SSA information to FILE. */
1597
1598 void
1599 dump_tree_ssa (FILE *file)
1600 {
1601 const char *funcname
1602 = lang_hooks.decl_printable_name (current_function_decl, 2);
1603
1604 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1605
1606 dump_var_infos (file);
1607 dump_defs_stack (file, -1);
1608 dump_currdefs (file);
1609 dump_tree_ssa_stats (file);
1610 }
1611
1612
1613 /* Dump SSA information to stderr. */
1614
1615 DEBUG_FUNCTION void
1616 debug_tree_ssa (void)
1617 {
1618 dump_tree_ssa (stderr);
1619 }
1620
1621
1622 /* Dump statistics for the hash table HTAB. */
1623
1624 static void
1625 htab_statistics (FILE *file, htab_t htab)
1626 {
1627 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1628 (long) htab_size (htab),
1629 (long) htab_elements (htab),
1630 htab_collisions (htab));
1631 }
1632
1633
1634 /* Dump SSA statistics on FILE. */
1635
1636 void
1637 dump_tree_ssa_stats (FILE *file)
1638 {
1639 if (var_infos)
1640 {
1641 fprintf (file, "\nHash table statistics:\n");
1642 fprintf (file, " var_infos: ");
1643 htab_statistics (file, var_infos);
1644 fprintf (file, "\n");
1645 }
1646 }
1647
1648
1649 /* Dump SSA statistics on stderr. */
1650
1651 DEBUG_FUNCTION void
1652 debug_tree_ssa_stats (void)
1653 {
1654 dump_tree_ssa_stats (stderr);
1655 }
1656
1657
1658 /* Hashing and equality functions for VAR_INFOS. */
1659
1660 static hashval_t
1661 var_info_hash (const void *p)
1662 {
1663 return DECL_UID (((const struct var_info_d *)p)->var);
1664 }
1665
1666 static int
1667 var_info_eq (const void *p1, const void *p2)
1668 {
1669 return ((const struct var_info_d *)p1)->var
1670 == ((const struct var_info_d *)p2)->var;
1671 }
1672
1673
1674 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1675
1676 static int
1677 debug_var_infos_r (void **slot, void *data)
1678 {
1679 FILE *file = (FILE *) data;
1680 struct var_info_d *info = (struct var_info_d *) *slot;
1681
1682 fprintf (file, "VAR: ");
1683 print_generic_expr (file, info->var, dump_flags);
1684 bitmap_print (file, info->info.def_blocks.def_blocks,
1685 ", DEF_BLOCKS: { ", "}");
1686 bitmap_print (file, info->info.def_blocks.livein_blocks,
1687 ", LIVEIN_BLOCKS: { ", "}");
1688 bitmap_print (file, info->info.def_blocks.phi_blocks,
1689 ", PHI_BLOCKS: { ", "}\n");
1690
1691 return 1;
1692 }
1693
1694
1695 /* Dump the VAR_INFOS hash table on FILE. */
1696
1697 void
1698 dump_var_infos (FILE *file)
1699 {
1700 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1701 if (var_infos)
1702 htab_traverse (var_infos, debug_var_infos_r, file);
1703 }
1704
1705
1706 /* Dump the VAR_INFOS hash table on stderr. */
1707
1708 DEBUG_FUNCTION void
1709 debug_var_infos (void)
1710 {
1711 dump_var_infos (stderr);
1712 }
1713
1714
1715 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1716
1717 static inline void
1718 register_new_update_single (tree new_name, tree old_name)
1719 {
1720 common_info_p info = get_common_info (old_name);
1721 tree currdef = info->current_def;
1722
1723 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1724 This stack is later used by the dominator tree callbacks to
1725 restore the reaching definitions for all the variables
1726 defined in the block after a recursive visit to all its
1727 immediately dominated blocks. */
1728 block_defs_stack.reserve (2);
1729 block_defs_stack.quick_push (currdef);
1730 block_defs_stack.quick_push (old_name);
1731
1732 /* Set the current reaching definition for OLD_NAME to be
1733 NEW_NAME. */
1734 info->current_def = new_name;
1735 }
1736
1737
1738 /* Register NEW_NAME to be the new reaching definition for all the
1739 names in OLD_NAMES. Used by the incremental SSA update routines to
1740 replace old SSA names with new ones. */
1741
1742 static inline void
1743 register_new_update_set (tree new_name, bitmap old_names)
1744 {
1745 bitmap_iterator bi;
1746 unsigned i;
1747
1748 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1749 register_new_update_single (new_name, ssa_name (i));
1750 }
1751
1752
1753
1754 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1755 it is a symbol marked for renaming, replace it with USE_P's current
1756 reaching definition. */
1757
1758 static inline void
1759 maybe_replace_use (use_operand_p use_p)
1760 {
1761 tree rdef = NULL_TREE;
1762 tree use = USE_FROM_PTR (use_p);
1763 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1764
1765 if (marked_for_renaming (sym))
1766 rdef = get_reaching_def (sym);
1767 else if (is_old_name (use))
1768 rdef = get_reaching_def (use);
1769
1770 if (rdef && rdef != use)
1771 SET_USE (use_p, rdef);
1772 }
1773
1774
1775 /* Same as maybe_replace_use, but without introducing default stmts,
1776 returning false to indicate a need to do so. */
1777
1778 static inline bool
1779 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1780 {
1781 tree rdef = NULL_TREE;
1782 tree use = USE_FROM_PTR (use_p);
1783 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1784
1785 if (marked_for_renaming (sym))
1786 rdef = get_var_info (sym)->info.current_def;
1787 else if (is_old_name (use))
1788 {
1789 rdef = get_ssa_name_ann (use)->info.current_def;
1790 /* We can't assume that, if there's no current definition, the
1791 default one should be used. It could be the case that we've
1792 rearranged blocks so that the earlier definition no longer
1793 dominates the use. */
1794 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1795 rdef = use;
1796 }
1797 else
1798 rdef = use;
1799
1800 if (rdef && rdef != use)
1801 SET_USE (use_p, rdef);
1802
1803 return rdef != NULL_TREE;
1804 }
1805
1806
1807 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1808 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1809 register it as the current definition for the names replaced by
1810 DEF_P. */
1811
1812 static inline void
1813 maybe_register_def (def_operand_p def_p, gimple stmt,
1814 gimple_stmt_iterator gsi)
1815 {
1816 tree def = DEF_FROM_PTR (def_p);
1817 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1818
1819 /* If DEF is a naked symbol that needs renaming, create a new
1820 name for it. */
1821 if (marked_for_renaming (sym))
1822 {
1823 if (DECL_P (def))
1824 {
1825 tree tracked_var;
1826
1827 def = make_ssa_name (def, stmt);
1828 SET_DEF (def_p, def);
1829
1830 tracked_var = target_for_debug_bind (sym);
1831 if (tracked_var)
1832 {
1833 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1834 /* If stmt ends the bb, insert the debug stmt on the single
1835 non-EH edge from the stmt. */
1836 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1837 {
1838 basic_block bb = gsi_bb (gsi);
1839 edge_iterator ei;
1840 edge e, ef = NULL;
1841 FOR_EACH_EDGE (e, ei, bb->succs)
1842 if (!(e->flags & EDGE_EH))
1843 {
1844 gcc_checking_assert (!ef);
1845 ef = e;
1846 }
1847 /* If there are other predecessors to ef->dest, then
1848 there must be PHI nodes for the modified
1849 variable, and therefore there will be debug bind
1850 stmts after the PHI nodes. The debug bind notes
1851 we'd insert would force the creation of a new
1852 block (diverging codegen) and be redundant with
1853 the post-PHI bind stmts, so don't add them.
1854
1855 As for the exit edge, there wouldn't be redundant
1856 bind stmts, but there wouldn't be a PC to bind
1857 them to either, so avoid diverging the CFG. */
1858 if (ef && single_pred_p (ef->dest)
1859 && ef->dest != EXIT_BLOCK_PTR)
1860 {
1861 /* If there were PHI nodes in the node, we'd
1862 have to make sure the value we're binding
1863 doesn't need rewriting. But there shouldn't
1864 be PHI nodes in a single-predecessor block,
1865 so we just add the note. */
1866 gsi_insert_on_edge_immediate (ef, note);
1867 }
1868 }
1869 else
1870 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1871 }
1872 }
1873
1874 register_new_update_single (def, sym);
1875 }
1876 else
1877 {
1878 /* If DEF is a new name, register it as a new definition
1879 for all the names replaced by DEF. */
1880 if (is_new_name (def))
1881 register_new_update_set (def, names_replaced_by (def));
1882
1883 /* If DEF is an old name, register DEF as a new
1884 definition for itself. */
1885 if (is_old_name (def))
1886 register_new_update_single (def, def);
1887 }
1888 }
1889
1890
1891 /* Update every variable used in the statement pointed-to by SI. The
1892 statement is assumed to be in SSA form already. Names in
1893 OLD_SSA_NAMES used by SI will be updated to their current reaching
1894 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1895 will be registered as a new definition for their corresponding name
1896 in OLD_SSA_NAMES. */
1897
1898 static void
1899 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1900 {
1901 use_operand_p use_p;
1902 def_operand_p def_p;
1903 ssa_op_iter iter;
1904
1905 /* Only update marked statements. */
1906 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1907 return;
1908
1909 if (dump_file && (dump_flags & TDF_DETAILS))
1910 {
1911 fprintf (dump_file, "Updating SSA information for statement ");
1912 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1913 }
1914
1915 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1916 symbol is marked for renaming. */
1917 if (rewrite_uses_p (stmt))
1918 {
1919 if (is_gimple_debug (stmt))
1920 {
1921 bool failed = false;
1922
1923 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1924 if (!maybe_replace_use_in_debug_stmt (use_p))
1925 {
1926 failed = true;
1927 break;
1928 }
1929
1930 if (failed)
1931 {
1932 /* DOM sometimes threads jumps in such a way that a
1933 debug stmt ends up referencing a SSA variable that no
1934 longer dominates the debug stmt, but such that all
1935 incoming definitions refer to the same definition in
1936 an earlier dominator. We could try to recover that
1937 definition somehow, but this will have to do for now.
1938
1939 Introducing a default definition, which is what
1940 maybe_replace_use() would do in such cases, may
1941 modify code generation, for the otherwise-unused
1942 default definition would never go away, modifying SSA
1943 version numbers all over. */
1944 gimple_debug_bind_reset_value (stmt);
1945 update_stmt (stmt);
1946 }
1947 }
1948 else
1949 {
1950 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1951 maybe_replace_use (use_p);
1952 }
1953 }
1954
1955 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1956 Also register definitions for names whose underlying symbol is
1957 marked for renaming. */
1958 if (register_defs_p (stmt))
1959 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1960 maybe_register_def (def_p, stmt, gsi);
1961 }
1962
1963
1964 /* Visit all the successor blocks of BB looking for PHI nodes. For
1965 every PHI node found, check if any of its arguments is in
1966 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1967 definition, replace it. */
1968
1969 static void
1970 rewrite_update_phi_arguments (basic_block bb)
1971 {
1972 edge e;
1973 edge_iterator ei;
1974 unsigned i;
1975
1976 FOR_EACH_EDGE (e, ei, bb->succs)
1977 {
1978 gimple phi;
1979 gimple_vec phis;
1980
1981 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1982 continue;
1983
1984 phis = phis_to_rewrite[e->dest->index];
1985 FOR_EACH_VEC_ELT (phis, i, phi)
1986 {
1987 tree arg, lhs_sym, reaching_def = NULL;
1988 use_operand_p arg_p;
1989
1990 gcc_checking_assert (rewrite_uses_p (phi));
1991
1992 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1993 arg = USE_FROM_PTR (arg_p);
1994
1995 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1996 continue;
1997
1998 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
1999
2000 if (arg == NULL_TREE)
2001 {
2002 /* When updating a PHI node for a recently introduced
2003 symbol we may find NULL arguments. That's why we
2004 take the symbol from the LHS of the PHI node. */
2005 reaching_def = get_reaching_def (lhs_sym);
2006
2007 }
2008 else
2009 {
2010 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2011
2012 if (marked_for_renaming (sym))
2013 reaching_def = get_reaching_def (sym);
2014 else if (is_old_name (arg))
2015 reaching_def = get_reaching_def (arg);
2016 }
2017
2018 /* Update the argument if there is a reaching def. */
2019 if (reaching_def)
2020 {
2021 gimple stmt;
2022 source_location locus;
2023 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2024
2025 SET_USE (arg_p, reaching_def);
2026 stmt = SSA_NAME_DEF_STMT (reaching_def);
2027
2028 /* Single element PHI nodes behave like copies, so get the
2029 location from the phi argument. */
2030 if (gimple_code (stmt) == GIMPLE_PHI &&
2031 gimple_phi_num_args (stmt) == 1)
2032 locus = gimple_phi_arg_location (stmt, 0);
2033 else
2034 locus = gimple_location (stmt);
2035
2036 gimple_phi_arg_set_location (phi, arg_i, locus);
2037 }
2038
2039
2040 if (e->flags & EDGE_ABNORMAL)
2041 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2042 }
2043 }
2044 }
2045
2046
2047 /* Initialization of block data structures for the incremental SSA
2048 update pass. Create a block local stack of reaching definitions
2049 for new SSA names produced in this block (BLOCK_DEFS). Register
2050 new definitions for every PHI node in the block. */
2051
2052 static void
2053 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2054 basic_block bb)
2055 {
2056 bool is_abnormal_phi;
2057 gimple_stmt_iterator gsi;
2058
2059 if (dump_file && (dump_flags & TDF_DETAILS))
2060 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2061 bb->index);
2062
2063 /* Mark the unwind point for this block. */
2064 block_defs_stack.safe_push (NULL_TREE);
2065
2066 if (!bitmap_bit_p (blocks_to_update, bb->index))
2067 return;
2068
2069 /* Mark the LHS if any of the arguments flows through an abnormal
2070 edge. */
2071 is_abnormal_phi = bb_has_abnormal_pred (bb);
2072
2073 /* If any of the PHI nodes is a replacement for a name in
2074 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2075 register it as a new definition for its corresponding name. Also
2076 register definitions for names whose underlying symbols are
2077 marked for renaming. */
2078 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2079 {
2080 tree lhs, lhs_sym;
2081 gimple phi = gsi_stmt (gsi);
2082
2083 if (!register_defs_p (phi))
2084 continue;
2085
2086 lhs = gimple_phi_result (phi);
2087 lhs_sym = SSA_NAME_VAR (lhs);
2088
2089 if (marked_for_renaming (lhs_sym))
2090 register_new_update_single (lhs, lhs_sym);
2091 else
2092 {
2093
2094 /* If LHS is a new name, register a new definition for all
2095 the names replaced by LHS. */
2096 if (is_new_name (lhs))
2097 register_new_update_set (lhs, names_replaced_by (lhs));
2098
2099 /* If LHS is an OLD name, register it as a new definition
2100 for itself. */
2101 if (is_old_name (lhs))
2102 register_new_update_single (lhs, lhs);
2103 }
2104
2105 if (is_abnormal_phi)
2106 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2107 }
2108
2109 /* Step 2. Rewrite every variable used in each statement in the block. */
2110 if (bitmap_bit_p (interesting_blocks, bb->index))
2111 {
2112 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2113 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2114 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2115 }
2116
2117 /* Step 3. Update PHI nodes. */
2118 rewrite_update_phi_arguments (bb);
2119 }
2120
2121 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2122 the current reaching definition of every name re-written in BB to
2123 the original reaching definition before visiting BB. This
2124 unwinding must be done in the opposite order to what is done in
2125 register_new_update_set. */
2126
2127 static void
2128 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2129 basic_block bb ATTRIBUTE_UNUSED)
2130 {
2131 while (block_defs_stack.length () > 0)
2132 {
2133 tree var = block_defs_stack.pop ();
2134 tree saved_def;
2135
2136 /* NULL indicates the unwind stop point for this block (see
2137 rewrite_update_enter_block). */
2138 if (var == NULL)
2139 return;
2140
2141 saved_def = block_defs_stack.pop ();
2142 get_common_info (var)->current_def = saved_def;
2143 }
2144 }
2145
2146
2147 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2148 form.
2149
2150 ENTRY indicates the block where to start. Every block dominated by
2151 ENTRY will be rewritten.
2152
2153 WHAT indicates what actions will be taken by the renamer (see enum
2154 rewrite_mode).
2155
2156 BLOCKS are the set of interesting blocks for the dominator walker
2157 to process. If this set is NULL, then all the nodes dominated
2158 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2159 are not present in BLOCKS are ignored. */
2160
2161 static void
2162 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2163 {
2164 struct dom_walk_data walk_data;
2165
2166 /* Rewrite all the basic blocks in the program. */
2167 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2168
2169 /* Setup callbacks for the generic dominator tree walker. */
2170 memset (&walk_data, 0, sizeof (walk_data));
2171
2172 walk_data.dom_direction = CDI_DOMINATORS;
2173
2174 if (what == REWRITE_ALL)
2175 {
2176 walk_data.before_dom_children = rewrite_enter_block;
2177 walk_data.after_dom_children = rewrite_leave_block;
2178 }
2179 else if (what == REWRITE_UPDATE)
2180 {
2181 walk_data.before_dom_children = rewrite_update_enter_block;
2182 walk_data.after_dom_children = rewrite_update_leave_block;
2183 }
2184 else
2185 gcc_unreachable ();
2186
2187 block_defs_stack.create (10);
2188
2189 /* Initialize the dominator walker. */
2190 init_walk_dominator_tree (&walk_data);
2191
2192 /* Recursively walk the dominator tree rewriting each statement in
2193 each basic block. */
2194 walk_dominator_tree (&walk_data, entry);
2195
2196 /* Finalize the dominator walker. */
2197 fini_walk_dominator_tree (&walk_data);
2198
2199 /* Debugging dumps. */
2200 if (dump_file && (dump_flags & TDF_STATS))
2201 {
2202 dump_dfa_stats (dump_file);
2203 if (var_infos)
2204 dump_tree_ssa_stats (dump_file);
2205 }
2206
2207 block_defs_stack.release ();
2208
2209 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2210 }
2211
2212
2213 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2214 at the start of each block, and call mark_def_sites for each statement. */
2215
2216 static void
2217 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2218 {
2219 struct mark_def_sites_global_data *gd;
2220 bitmap kills;
2221 gimple_stmt_iterator gsi;
2222
2223 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2224 kills = gd->kills;
2225
2226 bitmap_clear (kills);
2227 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2228 mark_def_sites (bb, gsi_stmt (gsi), kills);
2229 }
2230
2231
2232 /* Mark the definition site blocks for each variable, so that we know
2233 where the variable is actually live.
2234
2235 The INTERESTING_BLOCKS global will be filled in with all the blocks
2236 that should be processed by the renamer. It is assumed that the
2237 caller has already initialized and zeroed it. */
2238
2239 static void
2240 mark_def_site_blocks (void)
2241 {
2242 struct dom_walk_data walk_data;
2243 struct mark_def_sites_global_data mark_def_sites_global_data;
2244
2245 /* Setup callbacks for the generic dominator tree walker to find and
2246 mark definition sites. */
2247 walk_data.dom_direction = CDI_DOMINATORS;
2248 walk_data.initialize_block_local_data = NULL;
2249 walk_data.before_dom_children = mark_def_sites_block;
2250 walk_data.after_dom_children = NULL;
2251
2252 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2253 large enough to accommodate all the variables referenced in the
2254 function, not just the ones we are renaming. */
2255 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2256 walk_data.global_data = &mark_def_sites_global_data;
2257
2258 /* We do not have any local data. */
2259 walk_data.block_local_data_size = 0;
2260
2261 /* Initialize the dominator walker. */
2262 init_walk_dominator_tree (&walk_data);
2263
2264 /* Recursively walk the dominator tree. */
2265 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2266
2267 /* Finalize the dominator walker. */
2268 fini_walk_dominator_tree (&walk_data);
2269
2270 /* We no longer need this bitmap, clear and free it. */
2271 BITMAP_FREE (mark_def_sites_global_data.kills);
2272 }
2273
2274
2275 /* Initialize internal data needed during renaming. */
2276
2277 static void
2278 init_ssa_renamer (void)
2279 {
2280 cfun->gimple_df->in_ssa_p = false;
2281
2282 /* Allocate memory for the DEF_BLOCKS hash table. */
2283 gcc_assert (var_infos == NULL);
2284 var_infos = htab_create (vec_safe_length (cfun->local_decls),
2285 var_info_hash, var_info_eq, free);
2286
2287 bitmap_obstack_initialize (&update_ssa_obstack);
2288 }
2289
2290
2291 /* Deallocate internal data structures used by the renamer. */
2292
2293 static void
2294 fini_ssa_renamer (void)
2295 {
2296 if (var_infos)
2297 {
2298 htab_delete (var_infos);
2299 var_infos = NULL;
2300 }
2301
2302 bitmap_obstack_release (&update_ssa_obstack);
2303
2304 cfun->gimple_df->ssa_renaming_needed = 0;
2305 cfun->gimple_df->rename_vops = 0;
2306 cfun->gimple_df->in_ssa_p = true;
2307 }
2308
2309 /* Main entry point into the SSA builder. The renaming process
2310 proceeds in four main phases:
2311
2312 1- Compute dominance frontier and immediate dominators, needed to
2313 insert PHI nodes and rename the function in dominator tree
2314 order.
2315
2316 2- Find and mark all the blocks that define variables
2317 (mark_def_site_blocks).
2318
2319 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2320
2321 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2322
2323 Steps 3 and 4 are done using the dominator tree walker
2324 (walk_dominator_tree). */
2325
2326 static unsigned int
2327 rewrite_into_ssa (void)
2328 {
2329 bitmap_head *dfs;
2330 basic_block bb;
2331 unsigned i;
2332
2333 /* Initialize operand data structures. */
2334 init_ssa_operands (cfun);
2335
2336 /* Initialize internal data needed by the renamer. */
2337 init_ssa_renamer ();
2338
2339 /* Initialize the set of interesting blocks. The callback
2340 mark_def_sites will add to this set those blocks that the renamer
2341 should process. */
2342 interesting_blocks = sbitmap_alloc (last_basic_block);
2343 bitmap_clear (interesting_blocks);
2344
2345 /* Initialize dominance frontier. */
2346 dfs = XNEWVEC (bitmap_head, last_basic_block);
2347 FOR_EACH_BB (bb)
2348 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2349
2350 /* 1- Compute dominance frontiers. */
2351 calculate_dominance_info (CDI_DOMINATORS);
2352 compute_dominance_frontiers (dfs);
2353
2354 /* 2- Find and mark definition sites. */
2355 mark_def_site_blocks ();
2356
2357 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2358 insert_phi_nodes (dfs);
2359
2360 /* 4- Rename all the blocks. */
2361 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2362
2363 /* Free allocated memory. */
2364 FOR_EACH_BB (bb)
2365 bitmap_clear (&dfs[bb->index]);
2366 free (dfs);
2367
2368 sbitmap_free (interesting_blocks);
2369
2370 fini_ssa_renamer ();
2371
2372 /* Try to get rid of all gimplifier generated temporaries by making
2373 its SSA names anonymous. This way we can garbage collect them
2374 all after removing unused locals which we do in our TODO. */
2375 for (i = 1; i < num_ssa_names; ++i)
2376 {
2377 tree decl, name = ssa_name (i);
2378 if (!name
2379 || SSA_NAME_IS_DEFAULT_DEF (name))
2380 continue;
2381 decl = SSA_NAME_VAR (name);
2382 if (decl
2383 && TREE_CODE (decl) == VAR_DECL
2384 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2385 && DECL_ARTIFICIAL (decl)
2386 && DECL_IGNORED_P (decl)
2387 && !DECL_NAME (decl))
2388 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, NULL_TREE);
2389 }
2390
2391 return 0;
2392 }
2393
2394
2395 struct gimple_opt_pass pass_build_ssa =
2396 {
2397 {
2398 GIMPLE_PASS,
2399 "ssa", /* name */
2400 OPTGROUP_NONE, /* optinfo_flags */
2401 NULL, /* gate */
2402 rewrite_into_ssa, /* execute */
2403 NULL, /* sub */
2404 NULL, /* next */
2405 0, /* static_pass_number */
2406 TV_TREE_SSA_OTHER, /* tv_id */
2407 PROP_cfg, /* properties_required */
2408 PROP_ssa, /* properties_provided */
2409 0, /* properties_destroyed */
2410 0, /* todo_flags_start */
2411 TODO_verify_ssa
2412 | TODO_remove_unused_locals /* todo_flags_finish */
2413 }
2414 };
2415
2416
2417 /* Mark the definition of VAR at STMT and BB as interesting for the
2418 renamer. BLOCKS is the set of blocks that need updating. */
2419
2420 static void
2421 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2422 {
2423 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2424 set_register_defs (stmt, true);
2425
2426 if (insert_phi_p)
2427 {
2428 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2429
2430 set_def_block (var, bb, is_phi_p);
2431
2432 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2433 site for both itself and all the old names replaced by it. */
2434 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2435 {
2436 bitmap_iterator bi;
2437 unsigned i;
2438 bitmap set = names_replaced_by (var);
2439 if (set)
2440 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2441 set_def_block (ssa_name (i), bb, is_phi_p);
2442 }
2443 }
2444 }
2445
2446
2447 /* Mark the use of VAR at STMT and BB as interesting for the
2448 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2449 nodes. */
2450
2451 static inline void
2452 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2453 {
2454 basic_block def_bb = gimple_bb (stmt);
2455
2456 mark_block_for_update (def_bb);
2457 mark_block_for_update (bb);
2458
2459 if (gimple_code (stmt) == GIMPLE_PHI)
2460 mark_phi_for_rewrite (def_bb, stmt);
2461 else
2462 {
2463 set_rewrite_uses (stmt, true);
2464
2465 if (is_gimple_debug (stmt))
2466 return;
2467 }
2468
2469 /* If VAR has not been defined in BB, then it is live-on-entry
2470 to BB. Note that we cannot just use the block holding VAR's
2471 definition because if VAR is one of the names in OLD_SSA_NAMES,
2472 it will have several definitions (itself and all the names that
2473 replace it). */
2474 if (insert_phi_p)
2475 {
2476 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2477 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2478 set_livein_block (var, bb);
2479 }
2480 }
2481
2482
2483 /* Do a dominator walk starting at BB processing statements that
2484 reference symbols in SSA operands. This is very similar to
2485 mark_def_sites, but the scan handles statements whose operands may
2486 already be SSA names.
2487
2488 If INSERT_PHI_P is true, mark those uses as live in the
2489 corresponding block. This is later used by the PHI placement
2490 algorithm to make PHI pruning decisions.
2491
2492 FIXME. Most of this would be unnecessary if we could associate a
2493 symbol to all the SSA names that reference it. But that
2494 sounds like it would be expensive to maintain. Still, it
2495 would be interesting to see if it makes better sense to do
2496 that. */
2497
2498 static void
2499 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2500 {
2501 basic_block son;
2502 gimple_stmt_iterator si;
2503 edge e;
2504 edge_iterator ei;
2505
2506 mark_block_for_update (bb);
2507
2508 /* Process PHI nodes marking interesting those that define or use
2509 the symbols that we are interested in. */
2510 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2511 {
2512 gimple phi = gsi_stmt (si);
2513 tree lhs_sym, lhs = gimple_phi_result (phi);
2514
2515 if (TREE_CODE (lhs) == SSA_NAME
2516 && (! virtual_operand_p (lhs)
2517 || ! cfun->gimple_df->rename_vops))
2518 continue;
2519
2520 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2521 mark_for_renaming (lhs_sym);
2522 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2523
2524 /* Mark the uses in phi nodes as interesting. It would be more correct
2525 to process the arguments of the phi nodes of the successor edges of
2526 BB at the end of prepare_block_for_update, however, that turns out
2527 to be significantly more expensive. Doing it here is conservatively
2528 correct -- it may only cause us to believe a value to be live in a
2529 block that also contains its definition, and thus insert a few more
2530 phi nodes for it. */
2531 FOR_EACH_EDGE (e, ei, bb->preds)
2532 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2533 }
2534
2535 /* Process the statements. */
2536 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2537 {
2538 gimple stmt;
2539 ssa_op_iter i;
2540 use_operand_p use_p;
2541 def_operand_p def_p;
2542
2543 stmt = gsi_stmt (si);
2544
2545 if (cfun->gimple_df->rename_vops
2546 && gimple_vuse (stmt))
2547 {
2548 tree use = gimple_vuse (stmt);
2549 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2550 mark_for_renaming (sym);
2551 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2552 }
2553
2554 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2555 {
2556 tree use = USE_FROM_PTR (use_p);
2557 if (!DECL_P (use))
2558 continue;
2559 mark_for_renaming (use);
2560 mark_use_interesting (use, stmt, bb, insert_phi_p);
2561 }
2562
2563 if (cfun->gimple_df->rename_vops
2564 && gimple_vdef (stmt))
2565 {
2566 tree def = gimple_vdef (stmt);
2567 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2568 mark_for_renaming (sym);
2569 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2570 }
2571
2572 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2573 {
2574 tree def = DEF_FROM_PTR (def_p);
2575 if (!DECL_P (def))
2576 continue;
2577 mark_for_renaming (def);
2578 mark_def_interesting (def, stmt, bb, insert_phi_p);
2579 }
2580 }
2581
2582 /* Now visit all the blocks dominated by BB. */
2583 for (son = first_dom_son (CDI_DOMINATORS, bb);
2584 son;
2585 son = next_dom_son (CDI_DOMINATORS, son))
2586 prepare_block_for_update (son, insert_phi_p);
2587 }
2588
2589
2590 /* Helper for prepare_names_to_update. Mark all the use sites for
2591 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2592 prepare_names_to_update. */
2593
2594 static void
2595 prepare_use_sites_for (tree name, bool insert_phi_p)
2596 {
2597 use_operand_p use_p;
2598 imm_use_iterator iter;
2599
2600 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2601 {
2602 gimple stmt = USE_STMT (use_p);
2603 basic_block bb = gimple_bb (stmt);
2604
2605 if (gimple_code (stmt) == GIMPLE_PHI)
2606 {
2607 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2608 edge e = gimple_phi_arg_edge (stmt, ix);
2609 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2610 }
2611 else
2612 {
2613 /* For regular statements, mark this as an interesting use
2614 for NAME. */
2615 mark_use_interesting (name, stmt, bb, insert_phi_p);
2616 }
2617 }
2618 }
2619
2620
2621 /* Helper for prepare_names_to_update. Mark the definition site for
2622 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2623 prepare_names_to_update. */
2624
2625 static void
2626 prepare_def_site_for (tree name, bool insert_phi_p)
2627 {
2628 gimple stmt;
2629 basic_block bb;
2630
2631 gcc_checking_assert (names_to_release == NULL
2632 || !bitmap_bit_p (names_to_release,
2633 SSA_NAME_VERSION (name)));
2634
2635 stmt = SSA_NAME_DEF_STMT (name);
2636 bb = gimple_bb (stmt);
2637 if (bb)
2638 {
2639 gcc_checking_assert (bb->index < last_basic_block);
2640 mark_block_for_update (bb);
2641 mark_def_interesting (name, stmt, bb, insert_phi_p);
2642 }
2643 }
2644
2645
2646 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2647 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2648 PHI nodes for newly created names. */
2649
2650 static void
2651 prepare_names_to_update (bool insert_phi_p)
2652 {
2653 unsigned i = 0;
2654 bitmap_iterator bi;
2655 sbitmap_iterator sbi;
2656
2657 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2658 remove it from NEW_SSA_NAMES so that we don't try to visit its
2659 defining basic block (which most likely doesn't exist). Notice
2660 that we cannot do the same with names in OLD_SSA_NAMES because we
2661 want to replace existing instances. */
2662 if (names_to_release)
2663 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2664 bitmap_clear_bit (new_ssa_names, i);
2665
2666 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2667 names may be considered to be live-in on blocks that contain
2668 definitions for their replacements. */
2669 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2670 prepare_def_site_for (ssa_name (i), insert_phi_p);
2671
2672 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2673 OLD_SSA_NAMES, but we have to ignore its definition site. */
2674 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2675 {
2676 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2677 prepare_def_site_for (ssa_name (i), insert_phi_p);
2678 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2679 }
2680 }
2681
2682
2683 /* Dump all the names replaced by NAME to FILE. */
2684
2685 void
2686 dump_names_replaced_by (FILE *file, tree name)
2687 {
2688 unsigned i;
2689 bitmap old_set;
2690 bitmap_iterator bi;
2691
2692 print_generic_expr (file, name, 0);
2693 fprintf (file, " -> { ");
2694
2695 old_set = names_replaced_by (name);
2696 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2697 {
2698 print_generic_expr (file, ssa_name (i), 0);
2699 fprintf (file, " ");
2700 }
2701
2702 fprintf (file, "}\n");
2703 }
2704
2705
2706 /* Dump all the names replaced by NAME to stderr. */
2707
2708 DEBUG_FUNCTION void
2709 debug_names_replaced_by (tree name)
2710 {
2711 dump_names_replaced_by (stderr, name);
2712 }
2713
2714
2715 /* Dump SSA update information to FILE. */
2716
2717 void
2718 dump_update_ssa (FILE *file)
2719 {
2720 unsigned i = 0;
2721 bitmap_iterator bi;
2722
2723 if (!need_ssa_update_p (cfun))
2724 return;
2725
2726 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2727 {
2728 sbitmap_iterator sbi;
2729
2730 fprintf (file, "\nSSA replacement table\n");
2731 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2732 "O_1, ..., O_j\n\n");
2733
2734 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2735 dump_names_replaced_by (file, ssa_name (i));
2736 }
2737
2738 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2739 {
2740 fprintf (file, "\nSymbols to be put in SSA form\n");
2741 dump_decl_set (file, symbols_to_rename_set);
2742 fprintf (file, "\n");
2743 }
2744
2745 if (names_to_release && !bitmap_empty_p (names_to_release))
2746 {
2747 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2748 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2749 {
2750 print_generic_expr (file, ssa_name (i), 0);
2751 fprintf (file, " ");
2752 }
2753 fprintf (file, "\n");
2754 }
2755 }
2756
2757
2758 /* Dump SSA update information to stderr. */
2759
2760 DEBUG_FUNCTION void
2761 debug_update_ssa (void)
2762 {
2763 dump_update_ssa (stderr);
2764 }
2765
2766
2767 /* Initialize data structures used for incremental SSA updates. */
2768
2769 static void
2770 init_update_ssa (struct function *fn)
2771 {
2772 /* Reserve more space than the current number of names. The calls to
2773 add_new_name_mapping are typically done after creating new SSA
2774 names, so we'll need to reallocate these arrays. */
2775 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2776 bitmap_clear (old_ssa_names);
2777
2778 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2779 bitmap_clear (new_ssa_names);
2780
2781 bitmap_obstack_initialize (&update_ssa_obstack);
2782
2783 names_to_release = NULL;
2784 update_ssa_initialized_fn = fn;
2785 }
2786
2787
2788 /* Deallocate data structures used for incremental SSA updates. */
2789
2790 void
2791 delete_update_ssa (void)
2792 {
2793 unsigned i;
2794 bitmap_iterator bi;
2795
2796 sbitmap_free (old_ssa_names);
2797 old_ssa_names = NULL;
2798
2799 sbitmap_free (new_ssa_names);
2800 new_ssa_names = NULL;
2801
2802 BITMAP_FREE (symbols_to_rename_set);
2803 symbols_to_rename_set = NULL;
2804 symbols_to_rename.release ();
2805
2806 if (names_to_release)
2807 {
2808 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2809 release_ssa_name (ssa_name (i));
2810 BITMAP_FREE (names_to_release);
2811 }
2812
2813 clear_ssa_name_info ();
2814
2815 fini_ssa_renamer ();
2816
2817 if (blocks_with_phis_to_rewrite)
2818 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2819 {
2820 gimple_vec phis = phis_to_rewrite[i];
2821 phis.release ();
2822 phis_to_rewrite[i].create (0);
2823 }
2824
2825 BITMAP_FREE (blocks_with_phis_to_rewrite);
2826 BITMAP_FREE (blocks_to_update);
2827
2828 update_ssa_initialized_fn = NULL;
2829 }
2830
2831
2832 /* Create a new name for OLD_NAME in statement STMT and replace the
2833 operand pointed to by DEF_P with the newly created name. If DEF_P
2834 is NULL then STMT should be a GIMPLE assignment.
2835 Return the new name and register the replacement mapping <NEW, OLD> in
2836 update_ssa's tables. */
2837
2838 tree
2839 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2840 {
2841 tree new_name;
2842
2843 timevar_push (TV_TREE_SSA_INCREMENTAL);
2844
2845 if (!update_ssa_initialized_fn)
2846 init_update_ssa (cfun);
2847
2848 gcc_assert (update_ssa_initialized_fn == cfun);
2849
2850 new_name = duplicate_ssa_name (old_name, stmt);
2851 if (def)
2852 SET_DEF (def, new_name);
2853 else
2854 gimple_assign_set_lhs (stmt, new_name);
2855
2856 if (gimple_code (stmt) == GIMPLE_PHI)
2857 {
2858 basic_block bb = gimple_bb (stmt);
2859
2860 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2861 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2862 }
2863
2864 add_new_name_mapping (new_name, old_name);
2865
2866 /* For the benefit of passes that will be updating the SSA form on
2867 their own, set the current reaching definition of OLD_NAME to be
2868 NEW_NAME. */
2869 get_ssa_name_ann (old_name)->info.current_def = new_name;
2870
2871 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2872
2873 return new_name;
2874 }
2875
2876
2877 /* Mark virtual operands of FN for renaming by update_ssa. */
2878
2879 void
2880 mark_virtual_operands_for_renaming (struct function *fn)
2881 {
2882 fn->gimple_df->ssa_renaming_needed = 1;
2883 fn->gimple_df->rename_vops = 1;
2884 }
2885
2886
2887 /* Return true if there is any work to be done by update_ssa
2888 for function FN. */
2889
2890 bool
2891 need_ssa_update_p (struct function *fn)
2892 {
2893 gcc_assert (fn != NULL);
2894 return (update_ssa_initialized_fn == fn
2895 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2896 }
2897
2898 /* Return true if name N has been registered in the replacement table. */
2899
2900 bool
2901 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2902 {
2903 if (!update_ssa_initialized_fn)
2904 return false;
2905
2906 gcc_assert (update_ssa_initialized_fn == cfun);
2907
2908 return is_new_name (n) || is_old_name (n);
2909 }
2910
2911
2912 /* Mark NAME to be released after update_ssa has finished. */
2913
2914 void
2915 release_ssa_name_after_update_ssa (tree name)
2916 {
2917 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2918
2919 if (names_to_release == NULL)
2920 names_to_release = BITMAP_ALLOC (NULL);
2921
2922 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2923 }
2924
2925
2926 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2927 frontier information. BLOCKS is the set of blocks to be updated.
2928
2929 This is slightly different than the regular PHI insertion
2930 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2931 real names (i.e., GIMPLE registers) are inserted:
2932
2933 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2934 nodes inside the region affected by the block that defines VAR
2935 and the blocks that define all its replacements. All these
2936 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2937
2938 First, we compute the entry point to the region (ENTRY). This is
2939 given by the nearest common dominator to all the definition
2940 blocks. When computing the iterated dominance frontier (IDF), any
2941 block not strictly dominated by ENTRY is ignored.
2942
2943 We then call the standard PHI insertion algorithm with the pruned
2944 IDF.
2945
2946 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2947 names is not pruned. PHI nodes are inserted at every IDF block. */
2948
2949 static void
2950 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2951 unsigned update_flags)
2952 {
2953 basic_block entry;
2954 struct def_blocks_d *db;
2955 bitmap idf, pruned_idf;
2956 bitmap_iterator bi;
2957 unsigned i;
2958
2959 if (TREE_CODE (var) == SSA_NAME)
2960 gcc_checking_assert (is_old_name (var));
2961 else
2962 gcc_checking_assert (marked_for_renaming (var));
2963
2964 /* Get all the definition sites for VAR. */
2965 db = find_def_blocks_for (var);
2966
2967 /* No need to do anything if there were no definitions to VAR. */
2968 if (db == NULL || bitmap_empty_p (db->def_blocks))
2969 return;
2970
2971 /* Compute the initial iterated dominance frontier. */
2972 idf = compute_idf (db->def_blocks, dfs);
2973 pruned_idf = BITMAP_ALLOC (NULL);
2974
2975 if (TREE_CODE (var) == SSA_NAME)
2976 {
2977 if (update_flags == TODO_update_ssa)
2978 {
2979 /* If doing regular SSA updates for GIMPLE registers, we are
2980 only interested in IDF blocks dominated by the nearest
2981 common dominator of all the definition blocks. */
2982 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2983 db->def_blocks);
2984 if (entry != ENTRY_BLOCK_PTR)
2985 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2986 if (BASIC_BLOCK (i) != entry
2987 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2988 bitmap_set_bit (pruned_idf, i);
2989 }
2990 else
2991 {
2992 /* Otherwise, do not prune the IDF for VAR. */
2993 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
2994 bitmap_copy (pruned_idf, idf);
2995 }
2996 }
2997 else
2998 {
2999 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3000 for the first time, so we need to compute the full IDF for
3001 it. */
3002 bitmap_copy (pruned_idf, idf);
3003 }
3004
3005 if (!bitmap_empty_p (pruned_idf))
3006 {
3007 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3008 are included in the region to be updated. The feeding blocks
3009 are important to guarantee that the PHI arguments are renamed
3010 properly. */
3011
3012 /* FIXME, this is not needed if we are updating symbols. We are
3013 already starting at the ENTRY block anyway. */
3014 bitmap_ior_into (blocks, pruned_idf);
3015 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3016 {
3017 edge e;
3018 edge_iterator ei;
3019 basic_block bb = BASIC_BLOCK (i);
3020
3021 FOR_EACH_EDGE (e, ei, bb->preds)
3022 if (e->src->index >= 0)
3023 bitmap_set_bit (blocks, e->src->index);
3024 }
3025
3026 insert_phi_nodes_for (var, pruned_idf, true);
3027 }
3028
3029 BITMAP_FREE (pruned_idf);
3030 BITMAP_FREE (idf);
3031 }
3032
3033
3034 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3035 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3036
3037 1- The names in OLD_SSA_NAMES dominated by the definitions of
3038 NEW_SSA_NAMES are all re-written to be reached by the
3039 appropriate definition from NEW_SSA_NAMES.
3040
3041 2- If needed, new PHI nodes are added to the iterated dominance
3042 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3043
3044 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3045 calling create_new_def_for to create new defs for names that the
3046 caller wants to replace.
3047
3048 The caller cretaes the new names to be inserted and the names that need
3049 to be replaced by calling create_new_def_for for each old definition
3050 to be replaced. Note that the function assumes that the
3051 new defining statement has already been inserted in the IL.
3052
3053 For instance, given the following code:
3054
3055 1 L0:
3056 2 x_1 = PHI (0, x_5)
3057 3 if (x_1 < 10)
3058 4 if (x_1 > 7)
3059 5 y_2 = 0
3060 6 else
3061 7 y_3 = x_1 + x_7
3062 8 endif
3063 9 x_5 = x_1 + 1
3064 10 goto L0;
3065 11 endif
3066
3067 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3068
3069 1 L0:
3070 2 x_1 = PHI (0, x_5)
3071 3 if (x_1 < 10)
3072 4 x_10 = ...
3073 5 if (x_1 > 7)
3074 6 y_2 = 0
3075 7 else
3076 8 x_11 = ...
3077 9 y_3 = x_1 + x_7
3078 10 endif
3079 11 x_5 = x_1 + 1
3080 12 goto L0;
3081 13 endif
3082
3083 We want to replace all the uses of x_1 with the new definitions of
3084 x_10 and x_11. Note that the only uses that should be replaced are
3085 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3086 *not* be replaced (this is why we cannot just mark symbol 'x' for
3087 renaming).
3088
3089 Additionally, we may need to insert a PHI node at line 11 because
3090 that is a merge point for x_10 and x_11. So the use of x_1 at line
3091 11 will be replaced with the new PHI node. The insertion of PHI
3092 nodes is optional. They are not strictly necessary to preserve the
3093 SSA form, and depending on what the caller inserted, they may not
3094 even be useful for the optimizers. UPDATE_FLAGS controls various
3095 aspects of how update_ssa operates, see the documentation for
3096 TODO_update_ssa*. */
3097
3098 void
3099 update_ssa (unsigned update_flags)
3100 {
3101 basic_block bb, start_bb;
3102 bitmap_iterator bi;
3103 unsigned i = 0;
3104 bool insert_phi_p;
3105 sbitmap_iterator sbi;
3106 tree sym;
3107
3108 /* Only one update flag should be set. */
3109 gcc_assert (update_flags == TODO_update_ssa
3110 || update_flags == TODO_update_ssa_no_phi
3111 || update_flags == TODO_update_ssa_full_phi
3112 || update_flags == TODO_update_ssa_only_virtuals);
3113
3114 if (!need_ssa_update_p (cfun))
3115 return;
3116
3117 timevar_push (TV_TREE_SSA_INCREMENTAL);
3118
3119 if (dump_file && (dump_flags & TDF_DETAILS))
3120 fprintf (dump_file, "\nUpdating SSA:\n");
3121
3122 if (!update_ssa_initialized_fn)
3123 init_update_ssa (cfun);
3124 else if (update_flags == TODO_update_ssa_only_virtuals)
3125 {
3126 /* If we only need to update virtuals, remove all the mappings for
3127 real names before proceeding. The caller is responsible for
3128 having dealt with the name mappings before calling update_ssa. */
3129 bitmap_clear (old_ssa_names);
3130 bitmap_clear (new_ssa_names);
3131 }
3132
3133 gcc_assert (update_ssa_initialized_fn == cfun);
3134
3135 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3136 if (!phis_to_rewrite.exists ())
3137 phis_to_rewrite.create (last_basic_block + 1);
3138 blocks_to_update = BITMAP_ALLOC (NULL);
3139
3140 /* Ensure that the dominance information is up-to-date. */
3141 calculate_dominance_info (CDI_DOMINATORS);
3142
3143 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3144
3145 /* If there are names defined in the replacement table, prepare
3146 definition and use sites for all the names in NEW_SSA_NAMES and
3147 OLD_SSA_NAMES. */
3148 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3149 {
3150 prepare_names_to_update (insert_phi_p);
3151
3152 /* If all the names in NEW_SSA_NAMES had been marked for
3153 removal, and there are no symbols to rename, then there's
3154 nothing else to do. */
3155 if (bitmap_first_set_bit (new_ssa_names) < 0
3156 && !cfun->gimple_df->ssa_renaming_needed)
3157 goto done;
3158 }
3159
3160 /* Next, determine the block at which to start the renaming process. */
3161 if (cfun->gimple_df->ssa_renaming_needed)
3162 {
3163 /* If we rename bare symbols initialize the mapping to
3164 auxiliar info we need to keep track of. */
3165 var_infos = htab_create (47, var_info_hash, var_info_eq, free);
3166
3167 /* If we have to rename some symbols from scratch, we need to
3168 start the process at the root of the CFG. FIXME, it should
3169 be possible to determine the nearest block that had a
3170 definition for each of the symbols that are marked for
3171 updating. For now this seems more work than it's worth. */
3172 start_bb = ENTRY_BLOCK_PTR;
3173
3174 /* Traverse the CFG looking for existing definitions and uses of
3175 symbols in SSA operands. Mark interesting blocks and
3176 statements and set local live-in information for the PHI
3177 placement heuristics. */
3178 prepare_block_for_update (start_bb, insert_phi_p);
3179
3180 #ifdef ENABLE_CHECKING
3181 for (i = 1; i < num_ssa_names; ++i)
3182 {
3183 tree name = ssa_name (i);
3184 if (!name
3185 || virtual_operand_p (name))
3186 continue;
3187
3188 /* For all but virtual operands, which do not have SSA names
3189 with overlapping life ranges, ensure that symbols marked
3190 for renaming do not have existing SSA names associated with
3191 them as we do not re-write them out-of-SSA before going
3192 into SSA for the remaining symbol uses. */
3193 if (marked_for_renaming (SSA_NAME_VAR (name)))
3194 {
3195 fprintf (stderr, "Existing SSA name for symbol marked for "
3196 "renaming: ");
3197 print_generic_expr (stderr, name, TDF_SLIM);
3198 fprintf (stderr, "\n");
3199 internal_error ("SSA corruption");
3200 }
3201 }
3202 #endif
3203 }
3204 else
3205 {
3206 /* Otherwise, the entry block to the region is the nearest
3207 common dominator for the blocks in BLOCKS. */
3208 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3209 blocks_to_update);
3210 }
3211
3212 /* If requested, insert PHI nodes at the iterated dominance frontier
3213 of every block, creating new definitions for names in OLD_SSA_NAMES
3214 and for symbols found. */
3215 if (insert_phi_p)
3216 {
3217 bitmap_head *dfs;
3218
3219 /* If the caller requested PHI nodes to be added, compute
3220 dominance frontiers. */
3221 dfs = XNEWVEC (bitmap_head, last_basic_block);
3222 FOR_EACH_BB (bb)
3223 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3224 compute_dominance_frontiers (dfs);
3225
3226 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3227 {
3228 sbitmap_iterator sbi;
3229
3230 /* insert_update_phi_nodes_for will call add_new_name_mapping
3231 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3232 will grow while we are traversing it (but it will not
3233 gain any new members). Copy OLD_SSA_NAMES to a temporary
3234 for traversal. */
3235 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3236 bitmap_copy (tmp, old_ssa_names);
3237 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3238 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3239 update_flags);
3240 sbitmap_free (tmp);
3241 }
3242
3243 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3244 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3245 update_flags);
3246
3247 FOR_EACH_BB (bb)
3248 bitmap_clear (&dfs[bb->index]);
3249 free (dfs);
3250
3251 /* Insertion of PHI nodes may have added blocks to the region.
3252 We need to re-compute START_BB to include the newly added
3253 blocks. */
3254 if (start_bb != ENTRY_BLOCK_PTR)
3255 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3256 blocks_to_update);
3257 }
3258
3259 /* Reset the current definition for name and symbol before renaming
3260 the sub-graph. */
3261 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3262 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3263
3264 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3265 get_var_info (sym)->info.current_def = NULL_TREE;
3266
3267 /* Now start the renaming process at START_BB. */
3268 interesting_blocks = sbitmap_alloc (last_basic_block);
3269 bitmap_clear (interesting_blocks);
3270 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3271 bitmap_set_bit (interesting_blocks, i);
3272
3273 rewrite_blocks (start_bb, REWRITE_UPDATE);
3274
3275 sbitmap_free (interesting_blocks);
3276
3277 /* Debugging dumps. */
3278 if (dump_file)
3279 {
3280 int c;
3281 unsigned i;
3282
3283 dump_update_ssa (dump_file);
3284
3285 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3286 start_bb->index);
3287
3288 c = 0;
3289 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3290 c++;
3291 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3292 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3293 c, PERCENT (c, last_basic_block));
3294
3295 if (dump_flags & TDF_DETAILS)
3296 {
3297 fprintf (dump_file, "Affected blocks:");
3298 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3299 fprintf (dump_file, " %u", i);
3300 fprintf (dump_file, "\n");
3301 }
3302
3303 fprintf (dump_file, "\n\n");
3304 }
3305
3306 /* Free allocated memory. */
3307 done:
3308 delete_update_ssa ();
3309
3310 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3311 }