]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
re PR tree-optimization/56294 (BOOT_CFLAGS='-O2 -g -fno-ipa-sra' leads to bootstrap...
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "bitmap.h"
33 #include "tree-flow.h"
34 #include "gimple.h"
35 #include "tree-inline.h"
36 #include "hashtab.h"
37 #include "tree-pass.h"
38 #include "cfgloop.h"
39 #include "domwalk.h"
40 #include "params.h"
41 #include "diagnostic-core.h"
42
43
44 /* This file builds the SSA form for a function as described in:
45 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
46 Computing Static Single Assignment Form and the Control Dependence
47 Graph. ACM Transactions on Programming Languages and Systems,
48 13(4):451-490, October 1991. */
49
50 /* Structure to map a variable VAR to the set of blocks that contain
51 definitions for VAR. */
52 struct def_blocks_d
53 {
54 /* Blocks that contain definitions of VAR. Bit I will be set if the
55 Ith block contains a definition of VAR. */
56 bitmap def_blocks;
57
58 /* Blocks that contain a PHI node for VAR. */
59 bitmap phi_blocks;
60
61 /* Blocks where VAR is live-on-entry. Similar semantics as
62 DEF_BLOCKS. */
63 bitmap livein_blocks;
64 };
65
66 typedef struct def_blocks_d *def_blocks_p;
67
68
69 /* Stack of trees used to restore the global currdefs to its original
70 state after completing rewriting of a block and its dominator
71 children. Its elements have the following properties:
72
73 - An SSA_NAME (N) indicates that the current definition of the
74 underlying variable should be set to the given SSA_NAME. If the
75 symbol associated with the SSA_NAME is not a GIMPLE register, the
76 next slot in the stack must be a _DECL node (SYM). In this case,
77 the name N in the previous slot is the current reaching
78 definition for SYM.
79
80 - A _DECL node indicates that the underlying variable has no
81 current definition.
82
83 - A NULL node at the top entry is used to mark the last slot
84 associated with the current block. */
85 static vec<tree> block_defs_stack;
86
87
88 /* Set of existing SSA names being replaced by update_ssa. */
89 static sbitmap old_ssa_names;
90
91 /* Set of new SSA names being added by update_ssa. Note that both
92 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
93 the operations done on them are presence tests. */
94 static sbitmap new_ssa_names;
95
96 sbitmap interesting_blocks;
97
98 /* Set of SSA names that have been marked to be released after they
99 were registered in the replacement table. They will be finally
100 released after we finish updating the SSA web. */
101 static bitmap names_to_release;
102
103 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
104 the to basic block with index I. Allocated once per compilation, *not*
105 released between different functions. */
106 static vec<gimple_vec> phis_to_rewrite;
107
108 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
109 static bitmap blocks_with_phis_to_rewrite;
110
111 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
112 to grow as the callers to create_new_def_for will create new names on
113 the fly.
114 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
115 need to find a reasonable growth strategy. */
116 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
117
118
119 /* The function the SSA updating data structures have been initialized for.
120 NULL if they need to be initialized by create_new_def_for. */
121 static struct function *update_ssa_initialized_fn = NULL;
122
123 /* Global data to attach to the main dominator walk structure. */
124 struct mark_def_sites_global_data
125 {
126 /* This bitmap contains the variables which are set before they
127 are used in a basic block. */
128 bitmap kills;
129 };
130
131 /* Information stored for both SSA names and decls. */
132 struct common_info_d
133 {
134 /* This field indicates whether or not the variable may need PHI nodes.
135 See the enum's definition for more detailed information about the
136 states. */
137 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
138
139 /* The current reaching definition replacing this var. */
140 tree current_def;
141
142 /* Definitions for this var. */
143 struct def_blocks_d def_blocks;
144 };
145
146 /* The information associated with decls and SSA names. */
147 typedef struct common_info_d *common_info_p;
148
149 /* Information stored for decls. */
150 struct var_info_d
151 {
152 /* The variable. */
153 tree var;
154
155 /* Information stored for both SSA names and decls. */
156 struct common_info_d info;
157 };
158
159 /* The information associated with decls. */
160 typedef struct var_info_d *var_info_p;
161
162
163 /* Each entry in VAR_INFOS contains an element of type STRUCT
164 VAR_INFO_D. */
165 static htab_t var_infos;
166
167
168 /* Information stored for SSA names. */
169 struct ssa_name_info
170 {
171 /* Age of this record (so that info_for_ssa_name table can be cleared
172 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
173 are assumed to be null. */
174 unsigned age;
175
176 /* Replacement mappings, allocated from update_ssa_obstack. */
177 bitmap repl_set;
178
179 /* Information stored for both SSA names and decls. */
180 struct common_info_d info;
181 };
182
183 /* The information associated with names. */
184 typedef struct ssa_name_info *ssa_name_info_p;
185
186 static vec<ssa_name_info_p> info_for_ssa_name;
187 static unsigned current_info_for_ssa_name_age;
188
189 static bitmap_obstack update_ssa_obstack;
190
191 /* The set of blocks affected by update_ssa. */
192 static bitmap blocks_to_update;
193
194 /* The main entry point to the SSA renamer (rewrite_blocks) may be
195 called several times to do different, but related, tasks.
196 Initially, we need it to rename the whole program into SSA form.
197 At other times, we may need it to only rename into SSA newly
198 exposed symbols. Finally, we can also call it to incrementally fix
199 an already built SSA web. */
200 enum rewrite_mode {
201 /* Convert the whole function into SSA form. */
202 REWRITE_ALL,
203
204 /* Incrementally update the SSA web by replacing existing SSA
205 names with new ones. See update_ssa for details. */
206 REWRITE_UPDATE
207 };
208
209
210
211
212 /* Prototypes for debugging functions. */
213 extern void dump_tree_ssa (FILE *);
214 extern void debug_tree_ssa (void);
215 extern void debug_def_blocks (void);
216 extern void dump_tree_ssa_stats (FILE *);
217 extern void debug_tree_ssa_stats (void);
218 extern void dump_update_ssa (FILE *);
219 extern void debug_update_ssa (void);
220 extern void dump_names_replaced_by (FILE *, tree);
221 extern void debug_names_replaced_by (tree);
222 extern void dump_var_infos (FILE *);
223 extern void debug_var_infos (void);
224 extern void dump_defs_stack (FILE *, int);
225 extern void debug_defs_stack (int);
226 extern void dump_currdefs (FILE *);
227 extern void debug_currdefs (void);
228
229
230 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
231 static bitmap symbols_to_rename_set;
232 static vec<tree> symbols_to_rename;
233
234 /* Mark SYM for renaming. */
235
236 static void
237 mark_for_renaming (tree sym)
238 {
239 if (!symbols_to_rename_set)
240 symbols_to_rename_set = BITMAP_ALLOC (NULL);
241 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
242 symbols_to_rename.safe_push (sym);
243 }
244
245 /* Return true if SYM is marked for renaming. */
246
247 static bool
248 marked_for_renaming (tree sym)
249 {
250 if (!symbols_to_rename_set || sym == NULL_TREE)
251 return false;
252 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
253 }
254
255
256 /* Return true if STMT needs to be rewritten. When renaming a subset
257 of the variables, not all statements will be processed. This is
258 decided in mark_def_sites. */
259
260 static inline bool
261 rewrite_uses_p (gimple stmt)
262 {
263 return gimple_visited_p (stmt);
264 }
265
266
267 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
268
269 static inline void
270 set_rewrite_uses (gimple stmt, bool rewrite_p)
271 {
272 gimple_set_visited (stmt, rewrite_p);
273 }
274
275
276 /* Return true if the DEFs created by statement STMT should be
277 registered when marking new definition sites. This is slightly
278 different than rewrite_uses_p: it's used by update_ssa to
279 distinguish statements that need to have both uses and defs
280 processed from those that only need to have their defs processed.
281 Statements that define new SSA names only need to have their defs
282 registered, but they don't need to have their uses renamed. */
283
284 static inline bool
285 register_defs_p (gimple stmt)
286 {
287 return gimple_plf (stmt, GF_PLF_1) != 0;
288 }
289
290
291 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
292
293 static inline void
294 set_register_defs (gimple stmt, bool register_defs_p)
295 {
296 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
297 }
298
299
300 /* Get the information associated with NAME. */
301
302 static inline ssa_name_info_p
303 get_ssa_name_ann (tree name)
304 {
305 unsigned ver = SSA_NAME_VERSION (name);
306 unsigned len = info_for_ssa_name.length ();
307 struct ssa_name_info *info;
308
309 /* Re-allocate the vector at most once per update/into-SSA. */
310 if (ver >= len)
311 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
312
313 /* But allocate infos lazily. */
314 info = info_for_ssa_name[ver];
315 if (!info)
316 {
317 info = XCNEW (struct ssa_name_info);
318 info->age = current_info_for_ssa_name_age;
319 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
320 info_for_ssa_name[ver] = info;
321 }
322
323 if (info->age < current_info_for_ssa_name_age)
324 {
325 info->age = current_info_for_ssa_name_age;
326 info->repl_set = NULL;
327 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
328 info->info.current_def = NULL_TREE;
329 info->info.def_blocks.def_blocks = NULL;
330 info->info.def_blocks.phi_blocks = NULL;
331 info->info.def_blocks.livein_blocks = NULL;
332 }
333
334 return info;
335 }
336
337 /* Return and allocate the auxiliar information for DECL. */
338
339 static inline var_info_p
340 get_var_info (tree decl)
341 {
342 struct var_info_d vi;
343 void **slot;
344 vi.var = decl;
345 slot = htab_find_slot_with_hash (var_infos, &vi, DECL_UID (decl), INSERT);
346 if (*slot == NULL)
347 {
348 var_info_p v = XCNEW (struct var_info_d);
349 v->var = decl;
350 *slot = (void *)v;
351 return v;
352 }
353 return (var_info_p) *slot;
354 }
355
356
357 /* Clears info for SSA names. */
358
359 static void
360 clear_ssa_name_info (void)
361 {
362 current_info_for_ssa_name_age++;
363
364 /* If current_info_for_ssa_name_age wraps we use stale information.
365 Asser that this does not happen. */
366 gcc_assert (current_info_for_ssa_name_age != 0);
367 }
368
369
370 /* Get access to the auxiliar information stored per SSA name or decl. */
371
372 static inline common_info_p
373 get_common_info (tree var)
374 {
375 if (TREE_CODE (var) == SSA_NAME)
376 return &get_ssa_name_ann (var)->info;
377 else
378 return &get_var_info (var)->info;
379 }
380
381
382 /* Return the current definition for VAR. */
383
384 tree
385 get_current_def (tree var)
386 {
387 return get_common_info (var)->current_def;
388 }
389
390
391 /* Sets current definition of VAR to DEF. */
392
393 void
394 set_current_def (tree var, tree def)
395 {
396 get_common_info (var)->current_def = def;
397 }
398
399 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
400 all statements in basic block BB. */
401
402 static void
403 initialize_flags_in_bb (basic_block bb)
404 {
405 gimple stmt;
406 gimple_stmt_iterator gsi;
407
408 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
409 {
410 gimple phi = gsi_stmt (gsi);
411 set_rewrite_uses (phi, false);
412 set_register_defs (phi, false);
413 }
414
415 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 stmt = gsi_stmt (gsi);
418
419 /* We are going to use the operand cache API, such as
420 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
421 cache for each statement should be up-to-date. */
422 gcc_checking_assert (!gimple_modified_p (stmt));
423 set_rewrite_uses (stmt, false);
424 set_register_defs (stmt, false);
425 }
426 }
427
428 /* Mark block BB as interesting for update_ssa. */
429
430 static void
431 mark_block_for_update (basic_block bb)
432 {
433 gcc_checking_assert (blocks_to_update != NULL);
434 if (!bitmap_set_bit (blocks_to_update, bb->index))
435 return;
436 initialize_flags_in_bb (bb);
437 }
438
439 /* Return the set of blocks where variable VAR is defined and the blocks
440 where VAR is live on entry (livein). If no entry is found in
441 DEF_BLOCKS, a new one is created and returned. */
442
443 static inline struct def_blocks_d *
444 get_def_blocks_for (common_info_p info)
445 {
446 struct def_blocks_d *db_p = &info->def_blocks;
447 if (!db_p->def_blocks)
448 {
449 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
450 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
451 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
452 }
453
454 return db_p;
455 }
456
457
458 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
459 VAR is defined by a PHI node. */
460
461 static void
462 set_def_block (tree var, basic_block bb, bool phi_p)
463 {
464 struct def_blocks_d *db_p;
465 common_info_p info;
466
467 info = get_common_info (var);
468 db_p = get_def_blocks_for (info);
469
470 /* Set the bit corresponding to the block where VAR is defined. */
471 bitmap_set_bit (db_p->def_blocks, bb->index);
472 if (phi_p)
473 bitmap_set_bit (db_p->phi_blocks, bb->index);
474
475 /* Keep track of whether or not we may need to insert PHI nodes.
476
477 If we are in the UNKNOWN state, then this is the first definition
478 of VAR. Additionally, we have not seen any uses of VAR yet, so
479 we do not need a PHI node for this variable at this time (i.e.,
480 transition to NEED_PHI_STATE_NO).
481
482 If we are in any other state, then we either have multiple definitions
483 of this variable occurring in different blocks or we saw a use of the
484 variable which was not dominated by the block containing the
485 definition(s). In this case we may need a PHI node, so enter
486 state NEED_PHI_STATE_MAYBE. */
487 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
488 info->need_phi_state = NEED_PHI_STATE_NO;
489 else
490 info->need_phi_state = NEED_PHI_STATE_MAYBE;
491 }
492
493
494 /* Mark block BB as having VAR live at the entry to BB. */
495
496 static void
497 set_livein_block (tree var, basic_block bb)
498 {
499 common_info_p info;
500 struct def_blocks_d *db_p;
501
502 info = get_common_info (var);
503 db_p = get_def_blocks_for (info);
504
505 /* Set the bit corresponding to the block where VAR is live in. */
506 bitmap_set_bit (db_p->livein_blocks, bb->index);
507
508 /* Keep track of whether or not we may need to insert PHI nodes.
509
510 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
511 by the single block containing the definition(s) of this variable. If
512 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
513 NEED_PHI_STATE_MAYBE. */
514 if (info->need_phi_state == NEED_PHI_STATE_NO)
515 {
516 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
517
518 if (def_block_index == -1
519 || ! dominated_by_p (CDI_DOMINATORS, bb,
520 BASIC_BLOCK (def_block_index)))
521 info->need_phi_state = NEED_PHI_STATE_MAYBE;
522 }
523 else
524 info->need_phi_state = NEED_PHI_STATE_MAYBE;
525 }
526
527
528 /* Return true if NAME is in OLD_SSA_NAMES. */
529
530 static inline bool
531 is_old_name (tree name)
532 {
533 unsigned ver = SSA_NAME_VERSION (name);
534 if (!new_ssa_names)
535 return false;
536 return (ver < SBITMAP_SIZE (new_ssa_names)
537 && bitmap_bit_p (old_ssa_names, ver));
538 }
539
540
541 /* Return true if NAME is in NEW_SSA_NAMES. */
542
543 static inline bool
544 is_new_name (tree name)
545 {
546 unsigned ver = SSA_NAME_VERSION (name);
547 if (!new_ssa_names)
548 return false;
549 return (ver < SBITMAP_SIZE (new_ssa_names)
550 && bitmap_bit_p (new_ssa_names, ver));
551 }
552
553
554 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
555
556 static inline bitmap
557 names_replaced_by (tree new_tree)
558 {
559 return get_ssa_name_ann (new_tree)->repl_set;
560 }
561
562
563 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
564
565 static inline void
566 add_to_repl_tbl (tree new_tree, tree old)
567 {
568 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
569 if (!*set)
570 *set = BITMAP_ALLOC (&update_ssa_obstack);
571 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
572 }
573
574
575 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
576 represents the set of names O_1 ... O_j replaced by N_i. This is
577 used by update_ssa and its helpers to introduce new SSA names in an
578 already formed SSA web. */
579
580 static void
581 add_new_name_mapping (tree new_tree, tree old)
582 {
583 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
584 gcc_checking_assert (new_tree != old
585 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
586
587 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
588 caller may have created new names since the set was created. */
589 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
590 {
591 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
592 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
593 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
594 }
595
596 /* Update the REPL_TBL table. */
597 add_to_repl_tbl (new_tree, old);
598
599 /* If OLD had already been registered as a new name, then all the
600 names that OLD replaces should also be replaced by NEW_TREE. */
601 if (is_new_name (old))
602 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
603
604 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
605 respectively. */
606 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
607 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
608 }
609
610
611 /* Call back for walk_dominator_tree used to collect definition sites
612 for every variable in the function. For every statement S in block
613 BB:
614
615 1- Variables defined by S in the DEFS of S are marked in the bitmap
616 KILLS.
617
618 2- If S uses a variable VAR and there is no preceding kill of VAR,
619 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
620
621 This information is used to determine which variables are live
622 across block boundaries to reduce the number of PHI nodes
623 we create. */
624
625 static void
626 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
627 {
628 tree def;
629 use_operand_p use_p;
630 ssa_op_iter iter;
631
632 /* Since this is the first time that we rewrite the program into SSA
633 form, force an operand scan on every statement. */
634 update_stmt (stmt);
635
636 gcc_checking_assert (blocks_to_update == NULL);
637 set_register_defs (stmt, false);
638 set_rewrite_uses (stmt, false);
639
640 if (is_gimple_debug (stmt))
641 {
642 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
643 {
644 tree sym = USE_FROM_PTR (use_p);
645 gcc_checking_assert (DECL_P (sym));
646 set_rewrite_uses (stmt, true);
647 }
648 if (rewrite_uses_p (stmt))
649 bitmap_set_bit (interesting_blocks, bb->index);
650 return;
651 }
652
653 /* If a variable is used before being set, then the variable is live
654 across a block boundary, so mark it live-on-entry to BB. */
655 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
656 {
657 tree sym = USE_FROM_PTR (use_p);
658 gcc_checking_assert (DECL_P (sym));
659 if (!bitmap_bit_p (kills, DECL_UID (sym)))
660 set_livein_block (sym, bb);
661 set_rewrite_uses (stmt, true);
662 }
663
664 /* Now process the defs. Mark BB as the definition block and add
665 each def to the set of killed symbols. */
666 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
667 {
668 gcc_checking_assert (DECL_P (def));
669 set_def_block (def, bb, false);
670 bitmap_set_bit (kills, DECL_UID (def));
671 set_register_defs (stmt, true);
672 }
673
674 /* If we found the statement interesting then also mark the block BB
675 as interesting. */
676 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
677 bitmap_set_bit (interesting_blocks, bb->index);
678 }
679
680 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
681 in the dfs numbering of the dominance tree. */
682
683 struct dom_dfsnum
684 {
685 /* Basic block whose index this entry corresponds to. */
686 unsigned bb_index;
687
688 /* The dfs number of this node. */
689 unsigned dfs_num;
690 };
691
692 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
693 for qsort. */
694
695 static int
696 cmp_dfsnum (const void *a, const void *b)
697 {
698 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
699 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
700
701 return (int) da->dfs_num - (int) db->dfs_num;
702 }
703
704 /* Among the intervals starting at the N points specified in DEFS, find
705 the one that contains S, and return its bb_index. */
706
707 static unsigned
708 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
709 {
710 unsigned f = 0, t = n, m;
711
712 while (t > f + 1)
713 {
714 m = (f + t) / 2;
715 if (defs[m].dfs_num <= s)
716 f = m;
717 else
718 t = m;
719 }
720
721 return defs[f].bb_index;
722 }
723
724 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
725 KILLS is a bitmap of blocks where the value is defined before any use. */
726
727 static void
728 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
729 {
730 vec<int> worklist;
731 bitmap_iterator bi;
732 unsigned i, b, p, u, top;
733 bitmap live_phis;
734 basic_block def_bb, use_bb;
735 edge e;
736 edge_iterator ei;
737 bitmap to_remove;
738 struct dom_dfsnum *defs;
739 unsigned n_defs, adef;
740
741 if (bitmap_empty_p (uses))
742 {
743 bitmap_clear (phis);
744 return;
745 }
746
747 /* The phi must dominate a use, or an argument of a live phi. Also, we
748 do not create any phi nodes in def blocks, unless they are also livein. */
749 to_remove = BITMAP_ALLOC (NULL);
750 bitmap_and_compl (to_remove, kills, uses);
751 bitmap_and_compl_into (phis, to_remove);
752 if (bitmap_empty_p (phis))
753 {
754 BITMAP_FREE (to_remove);
755 return;
756 }
757
758 /* We want to remove the unnecessary phi nodes, but we do not want to compute
759 liveness information, as that may be linear in the size of CFG, and if
760 there are lot of different variables to rewrite, this may lead to quadratic
761 behavior.
762
763 Instead, we basically emulate standard dce. We put all uses to worklist,
764 then for each of them find the nearest def that dominates them. If this
765 def is a phi node, we mark it live, and if it was not live before, we
766 add the predecessors of its basic block to the worklist.
767
768 To quickly locate the nearest def that dominates use, we use dfs numbering
769 of the dominance tree (that is already available in order to speed up
770 queries). For each def, we have the interval given by the dfs number on
771 entry to and on exit from the corresponding subtree in the dominance tree.
772 The nearest dominator for a given use is the smallest of these intervals
773 that contains entry and exit dfs numbers for the basic block with the use.
774 If we store the bounds for all the uses to an array and sort it, we can
775 locate the nearest dominating def in logarithmic time by binary search.*/
776 bitmap_ior (to_remove, kills, phis);
777 n_defs = bitmap_count_bits (to_remove);
778 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
779 defs[0].bb_index = 1;
780 defs[0].dfs_num = 0;
781 adef = 1;
782 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
783 {
784 def_bb = BASIC_BLOCK (i);
785 defs[adef].bb_index = i;
786 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
787 defs[adef + 1].bb_index = i;
788 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
789 adef += 2;
790 }
791 BITMAP_FREE (to_remove);
792 gcc_assert (adef == 2 * n_defs + 1);
793 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
794 gcc_assert (defs[0].bb_index == 1);
795
796 /* Now each DEFS entry contains the number of the basic block to that the
797 dfs number corresponds. Change them to the number of basic block that
798 corresponds to the interval following the dfs number. Also, for the
799 dfs_out numbers, increase the dfs number by one (so that it corresponds
800 to the start of the following interval, not to the end of the current
801 one). We use WORKLIST as a stack. */
802 worklist.create (n_defs + 1);
803 worklist.quick_push (1);
804 top = 1;
805 n_defs = 1;
806 for (i = 1; i < adef; i++)
807 {
808 b = defs[i].bb_index;
809 if (b == top)
810 {
811 /* This is a closing element. Interval corresponding to the top
812 of the stack after removing it follows. */
813 worklist.pop ();
814 top = worklist[worklist.length () - 1];
815 defs[n_defs].bb_index = top;
816 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
817 }
818 else
819 {
820 /* Opening element. Nothing to do, just push it to the stack and move
821 it to the correct position. */
822 defs[n_defs].bb_index = defs[i].bb_index;
823 defs[n_defs].dfs_num = defs[i].dfs_num;
824 worklist.quick_push (b);
825 top = b;
826 }
827
828 /* If this interval starts at the same point as the previous one, cancel
829 the previous one. */
830 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
831 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
832 else
833 n_defs++;
834 }
835 worklist.pop ();
836 gcc_assert (worklist.is_empty ());
837
838 /* Now process the uses. */
839 live_phis = BITMAP_ALLOC (NULL);
840 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
841 {
842 worklist.safe_push (i);
843 }
844
845 while (!worklist.is_empty ())
846 {
847 b = worklist.pop ();
848 if (b == ENTRY_BLOCK)
849 continue;
850
851 /* If there is a phi node in USE_BB, it is made live. Otherwise,
852 find the def that dominates the immediate dominator of USE_BB
853 (the kill in USE_BB does not dominate the use). */
854 if (bitmap_bit_p (phis, b))
855 p = b;
856 else
857 {
858 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
859 p = find_dfsnum_interval (defs, n_defs,
860 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
861 if (!bitmap_bit_p (phis, p))
862 continue;
863 }
864
865 /* If the phi node is already live, there is nothing to do. */
866 if (!bitmap_set_bit (live_phis, p))
867 continue;
868
869 /* Add the new uses to the worklist. */
870 def_bb = BASIC_BLOCK (p);
871 FOR_EACH_EDGE (e, ei, def_bb->preds)
872 {
873 u = e->src->index;
874 if (bitmap_bit_p (uses, u))
875 continue;
876
877 /* In case there is a kill directly in the use block, do not record
878 the use (this is also necessary for correctness, as we assume that
879 uses dominated by a def directly in their block have been filtered
880 out before). */
881 if (bitmap_bit_p (kills, u))
882 continue;
883
884 bitmap_set_bit (uses, u);
885 worklist.safe_push (u);
886 }
887 }
888
889 worklist.release ();
890 bitmap_copy (phis, live_phis);
891 BITMAP_FREE (live_phis);
892 free (defs);
893 }
894
895 /* Return the set of blocks where variable VAR is defined and the blocks
896 where VAR is live on entry (livein). Return NULL, if no entry is
897 found in DEF_BLOCKS. */
898
899 static inline struct def_blocks_d *
900 find_def_blocks_for (tree var)
901 {
902 def_blocks_p p = &get_common_info (var)->def_blocks;
903 if (!p->def_blocks)
904 return NULL;
905 return p;
906 }
907
908
909 /* Marks phi node PHI in basic block BB for rewrite. */
910
911 static void
912 mark_phi_for_rewrite (basic_block bb, gimple phi)
913 {
914 gimple_vec phis;
915 unsigned n, idx = bb->index;
916
917 if (rewrite_uses_p (phi))
918 return;
919
920 set_rewrite_uses (phi, true);
921
922 if (!blocks_with_phis_to_rewrite)
923 return;
924
925 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
926
927 n = (unsigned) last_basic_block + 1;
928 if (phis_to_rewrite.length () < n)
929 phis_to_rewrite.safe_grow_cleared (n);
930
931 phis = phis_to_rewrite[idx];
932 phis.reserve (10);
933
934 phis.safe_push (phi);
935 phis_to_rewrite[idx] = phis;
936 }
937
938 /* Insert PHI nodes for variable VAR using the iterated dominance
939 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
940 function assumes that the caller is incrementally updating the
941 existing SSA form, in which case VAR may be an SSA name instead of
942 a symbol.
943
944 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
945 PHI node for VAR. On exit, only the nodes that received a PHI node
946 for VAR will be present in PHI_INSERTION_POINTS. */
947
948 static void
949 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
950 {
951 unsigned bb_index;
952 edge e;
953 gimple phi;
954 basic_block bb;
955 bitmap_iterator bi;
956 struct def_blocks_d *def_map = find_def_blocks_for (var);
957
958 /* Remove the blocks where we already have PHI nodes for VAR. */
959 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
960
961 /* Remove obviously useless phi nodes. */
962 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
963 def_map->livein_blocks);
964
965 /* And insert the PHI nodes. */
966 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
967 {
968 bb = BASIC_BLOCK (bb_index);
969 if (update_p)
970 mark_block_for_update (bb);
971
972 if (dump_file && (dump_flags & TDF_DETAILS))
973 {
974 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
975 print_generic_expr (dump_file, var, TDF_SLIM);
976 fprintf (dump_file, "\n");
977 }
978 phi = NULL;
979
980 if (TREE_CODE (var) == SSA_NAME)
981 {
982 /* If we are rewriting SSA names, create the LHS of the PHI
983 node by duplicating VAR. This is useful in the case of
984 pointers, to also duplicate pointer attributes (alias
985 information, in particular). */
986 edge_iterator ei;
987 tree new_lhs;
988
989 gcc_checking_assert (update_p);
990 new_lhs = duplicate_ssa_name (var, NULL);
991 phi = create_phi_node (new_lhs, bb);
992 add_new_name_mapping (new_lhs, var);
993
994 /* Add VAR to every argument slot of PHI. We need VAR in
995 every argument so that rewrite_update_phi_arguments knows
996 which name is this PHI node replacing. If VAR is a
997 symbol marked for renaming, this is not necessary, the
998 renamer will use the symbol on the LHS to get its
999 reaching definition. */
1000 FOR_EACH_EDGE (e, ei, bb->preds)
1001 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1002 }
1003 else
1004 {
1005 tree tracked_var;
1006
1007 gcc_checking_assert (DECL_P (var));
1008 phi = create_phi_node (var, bb);
1009
1010 tracked_var = target_for_debug_bind (var);
1011 if (tracked_var)
1012 {
1013 gimple note = gimple_build_debug_bind (tracked_var,
1014 PHI_RESULT (phi),
1015 phi);
1016 gimple_stmt_iterator si = gsi_after_labels (bb);
1017 gsi_insert_before (&si, note, GSI_SAME_STMT);
1018 }
1019 }
1020
1021 /* Mark this PHI node as interesting for update_ssa. */
1022 set_register_defs (phi, true);
1023 mark_phi_for_rewrite (bb, phi);
1024 }
1025 }
1026
1027 /* Sort var_infos after DECL_UID of their var. */
1028
1029 static int
1030 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1031 {
1032 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1033 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1034 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1035 return -1;
1036 else
1037 return 1;
1038 }
1039
1040 /* Insert PHI nodes at the dominance frontier of blocks with variable
1041 definitions. DFS contains the dominance frontier information for
1042 the flowgraph. */
1043
1044 static void
1045 insert_phi_nodes (bitmap_head *dfs)
1046 {
1047 htab_iterator hi;
1048 unsigned i;
1049 var_info_p info;
1050 vec<var_info_p> vars;
1051
1052 timevar_push (TV_TREE_INSERT_PHI_NODES);
1053
1054 vars.create (htab_elements (var_infos));
1055 FOR_EACH_HTAB_ELEMENT (var_infos, info, var_info_p, hi)
1056 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1057 vars.quick_push (info);
1058
1059 /* Do two stages to avoid code generation differences for UID
1060 differences but no UID ordering differences. */
1061 vars.qsort (insert_phi_nodes_compare_var_infos);
1062
1063 FOR_EACH_VEC_ELT (vars, i, info)
1064 {
1065 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1066 insert_phi_nodes_for (info->var, idf, false);
1067 BITMAP_FREE (idf);
1068 }
1069
1070 vars.release ();
1071
1072 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1073 }
1074
1075
1076 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1077 register DEF (an SSA_NAME) to be a new definition for SYM. */
1078
1079 static void
1080 register_new_def (tree def, tree sym)
1081 {
1082 common_info_p info = get_common_info (sym);
1083 tree currdef;
1084
1085 /* If this variable is set in a single basic block and all uses are
1086 dominated by the set(s) in that single basic block, then there is
1087 no reason to record anything for this variable in the block local
1088 definition stacks. Doing so just wastes time and memory.
1089
1090 This is the same test to prune the set of variables which may
1091 need PHI nodes. So we just use that information since it's already
1092 computed and available for us to use. */
1093 if (info->need_phi_state == NEED_PHI_STATE_NO)
1094 {
1095 info->current_def = def;
1096 return;
1097 }
1098
1099 currdef = info->current_def;
1100
1101 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1102 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1103 in the stack so that we know which symbol is being defined by
1104 this SSA name when we unwind the stack. */
1105 if (currdef && !is_gimple_reg (sym))
1106 block_defs_stack.safe_push (sym);
1107
1108 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1109 stack is later used by the dominator tree callbacks to restore
1110 the reaching definitions for all the variables defined in the
1111 block after a recursive visit to all its immediately dominated
1112 blocks. If there is no current reaching definition, then just
1113 record the underlying _DECL node. */
1114 block_defs_stack.safe_push (currdef ? currdef : sym);
1115
1116 /* Set the current reaching definition for SYM to be DEF. */
1117 info->current_def = def;
1118 }
1119
1120
1121 /* Perform a depth-first traversal of the dominator tree looking for
1122 variables to rename. BB is the block where to start searching.
1123 Renaming is a five step process:
1124
1125 1- Every definition made by PHI nodes at the start of the blocks is
1126 registered as the current definition for the corresponding variable.
1127
1128 2- Every statement in BB is rewritten. USE and VUSE operands are
1129 rewritten with their corresponding reaching definition. DEF and
1130 VDEF targets are registered as new definitions.
1131
1132 3- All the PHI nodes in successor blocks of BB are visited. The
1133 argument corresponding to BB is replaced with its current reaching
1134 definition.
1135
1136 4- Recursively rewrite every dominator child block of BB.
1137
1138 5- Restore (in reverse order) the current reaching definition for every
1139 new definition introduced in this block. This is done so that when
1140 we return from the recursive call, all the current reaching
1141 definitions are restored to the names that were valid in the
1142 dominator parent of BB. */
1143
1144 /* Return the current definition for variable VAR. If none is found,
1145 create a new SSA name to act as the zeroth definition for VAR. */
1146
1147 static tree
1148 get_reaching_def (tree var)
1149 {
1150 common_info_p info = get_common_info (var);
1151 tree currdef;
1152
1153 /* Lookup the current reaching definition for VAR. */
1154 currdef = info->current_def;
1155
1156 /* If there is no reaching definition for VAR, create and register a
1157 default definition for it (if needed). */
1158 if (currdef == NULL_TREE)
1159 {
1160 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1161 currdef = get_or_create_ssa_default_def (cfun, sym);
1162 }
1163
1164 /* Return the current reaching definition for VAR, or the default
1165 definition, if we had to create one. */
1166 return currdef;
1167 }
1168
1169
1170 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1171
1172 static void
1173 rewrite_debug_stmt_uses (gimple stmt)
1174 {
1175 use_operand_p use_p;
1176 ssa_op_iter iter;
1177 bool update = false;
1178
1179 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1180 {
1181 tree var = USE_FROM_PTR (use_p), def;
1182 common_info_p info = get_common_info (var);
1183 gcc_checking_assert (DECL_P (var));
1184 def = info->current_def;
1185 if (!def)
1186 {
1187 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1188 {
1189 gimple_stmt_iterator gsi
1190 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1191 int lim;
1192 /* Search a few source bind stmts at the start of first bb to
1193 see if a DEBUG_EXPR_DECL can't be reused. */
1194 for (lim = 32;
1195 !gsi_end_p (gsi) && lim > 0;
1196 gsi_next (&gsi), lim--)
1197 {
1198 gimple gstmt = gsi_stmt (gsi);
1199 if (!gimple_debug_source_bind_p (gstmt))
1200 break;
1201 if (gimple_debug_source_bind_get_value (gstmt) == var)
1202 {
1203 def = gimple_debug_source_bind_get_var (gstmt);
1204 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1205 break;
1206 else
1207 def = NULL_TREE;
1208 }
1209 }
1210 /* If not, add a new source bind stmt. */
1211 if (def == NULL_TREE)
1212 {
1213 gimple def_temp;
1214 def = make_node (DEBUG_EXPR_DECL);
1215 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1216 DECL_ARTIFICIAL (def) = 1;
1217 TREE_TYPE (def) = TREE_TYPE (var);
1218 DECL_MODE (def) = DECL_MODE (var);
1219 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1220 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1221 }
1222 update = true;
1223 }
1224 }
1225 else
1226 {
1227 /* Check if info->current_def can be trusted. */
1228 basic_block bb = gimple_bb (stmt);
1229 basic_block def_bb
1230 = SSA_NAME_IS_DEFAULT_DEF (def)
1231 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1232
1233 /* If definition is in current bb, it is fine. */
1234 if (bb == def_bb)
1235 ;
1236 /* If definition bb doesn't dominate the current bb,
1237 it can't be used. */
1238 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1239 def = NULL;
1240 /* If there is just one definition and dominates the current
1241 bb, it is fine. */
1242 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1243 ;
1244 else
1245 {
1246 struct def_blocks_d *db_p = get_def_blocks_for (info);
1247
1248 /* If there are some non-debug uses in the current bb,
1249 it is fine. */
1250 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1251 ;
1252 /* Otherwise give up for now. */
1253 else
1254 def = NULL;
1255 }
1256 }
1257 if (def == NULL)
1258 {
1259 gimple_debug_bind_reset_value (stmt);
1260 update_stmt (stmt);
1261 return;
1262 }
1263 SET_USE (use_p, def);
1264 }
1265 if (update)
1266 update_stmt (stmt);
1267 }
1268
1269 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1270 the block with its immediate reaching definitions. Update the current
1271 definition of a variable when a new real or virtual definition is found. */
1272
1273 static void
1274 rewrite_stmt (gimple_stmt_iterator *si)
1275 {
1276 use_operand_p use_p;
1277 def_operand_p def_p;
1278 ssa_op_iter iter;
1279 gimple stmt = gsi_stmt (*si);
1280
1281 /* If mark_def_sites decided that we don't need to rewrite this
1282 statement, ignore it. */
1283 gcc_assert (blocks_to_update == NULL);
1284 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1285 return;
1286
1287 if (dump_file && (dump_flags & TDF_DETAILS))
1288 {
1289 fprintf (dump_file, "Renaming statement ");
1290 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1291 fprintf (dump_file, "\n");
1292 }
1293
1294 /* Step 1. Rewrite USES in the statement. */
1295 if (rewrite_uses_p (stmt))
1296 {
1297 if (is_gimple_debug (stmt))
1298 rewrite_debug_stmt_uses (stmt);
1299 else
1300 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1301 {
1302 tree var = USE_FROM_PTR (use_p);
1303 gcc_checking_assert (DECL_P (var));
1304 SET_USE (use_p, get_reaching_def (var));
1305 }
1306 }
1307
1308 /* Step 2. Register the statement's DEF operands. */
1309 if (register_defs_p (stmt))
1310 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1311 {
1312 tree var = DEF_FROM_PTR (def_p);
1313 tree name;
1314 tree tracked_var;
1315
1316 gcc_checking_assert (DECL_P (var));
1317
1318 if (gimple_clobber_p (stmt)
1319 && is_gimple_reg (var))
1320 {
1321 /* If we rewrite a DECL into SSA form then drop its
1322 clobber stmts and replace uses with a new default def. */
1323 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1324 && !gimple_vdef (stmt));
1325 gsi_replace (si, gimple_build_nop (), true);
1326 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1327 break;
1328 }
1329
1330 name = make_ssa_name (var, stmt);
1331 SET_DEF (def_p, name);
1332 register_new_def (DEF_FROM_PTR (def_p), var);
1333
1334 tracked_var = target_for_debug_bind (var);
1335 if (tracked_var)
1336 {
1337 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1338 gsi_insert_after (si, note, GSI_SAME_STMT);
1339 }
1340 }
1341 }
1342
1343
1344 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1345 PHI nodes. For every PHI node found, add a new argument containing the
1346 current reaching definition for the variable and the edge through which
1347 that definition is reaching the PHI node. */
1348
1349 static void
1350 rewrite_add_phi_arguments (basic_block bb)
1351 {
1352 edge e;
1353 edge_iterator ei;
1354
1355 FOR_EACH_EDGE (e, ei, bb->succs)
1356 {
1357 gimple phi;
1358 gimple_stmt_iterator gsi;
1359
1360 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1361 gsi_next (&gsi))
1362 {
1363 tree currdef, res;
1364 location_t loc;
1365
1366 phi = gsi_stmt (gsi);
1367 res = gimple_phi_result (phi);
1368 currdef = get_reaching_def (SSA_NAME_VAR (res));
1369 /* Virtual operand PHI args do not need a location. */
1370 if (virtual_operand_p (res))
1371 loc = UNKNOWN_LOCATION;
1372 else
1373 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1374 add_phi_arg (phi, currdef, e, loc);
1375 }
1376 }
1377 }
1378
1379 /* SSA Rewriting Step 1. Initialization, create a block local stack
1380 of reaching definitions for new SSA names produced in this block
1381 (BLOCK_DEFS). Register new definitions for every PHI node in the
1382 block. */
1383
1384 static void
1385 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1386 basic_block bb)
1387 {
1388 gimple_stmt_iterator gsi;
1389
1390 if (dump_file && (dump_flags & TDF_DETAILS))
1391 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1392
1393 /* Mark the unwind point for this block. */
1394 block_defs_stack.safe_push (NULL_TREE);
1395
1396 /* Step 1. Register new definitions for every PHI node in the block.
1397 Conceptually, all the PHI nodes are executed in parallel and each PHI
1398 node introduces a new version for the associated variable. */
1399 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1400 {
1401 tree result = gimple_phi_result (gsi_stmt (gsi));
1402 register_new_def (result, SSA_NAME_VAR (result));
1403 }
1404
1405 /* Step 2. Rewrite every variable used in each statement in the block
1406 with its immediate reaching definitions. Update the current definition
1407 of a variable when a new real or virtual definition is found. */
1408 if (bitmap_bit_p (interesting_blocks, bb->index))
1409 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1410 rewrite_stmt (&gsi);
1411
1412 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1413 For every PHI node found, add a new argument containing the current
1414 reaching definition for the variable and the edge through which that
1415 definition is reaching the PHI node. */
1416 rewrite_add_phi_arguments (bb);
1417 }
1418
1419
1420
1421 /* Called after visiting all the statements in basic block BB and all
1422 of its dominator children. Restore CURRDEFS to its original value. */
1423
1424 static void
1425 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1426 basic_block bb ATTRIBUTE_UNUSED)
1427 {
1428 /* Restore CURRDEFS to its original state. */
1429 while (block_defs_stack.length () > 0)
1430 {
1431 tree tmp = block_defs_stack.pop ();
1432 tree saved_def, var;
1433
1434 if (tmp == NULL_TREE)
1435 break;
1436
1437 if (TREE_CODE (tmp) == SSA_NAME)
1438 {
1439 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1440 current definition of its underlying variable. Note that
1441 if the SSA_NAME is not for a GIMPLE register, the symbol
1442 being defined is stored in the next slot in the stack.
1443 This mechanism is needed because an SSA name for a
1444 non-register symbol may be the definition for more than
1445 one symbol (e.g., SFTs, aliased variables, etc). */
1446 saved_def = tmp;
1447 var = SSA_NAME_VAR (saved_def);
1448 if (!is_gimple_reg (var))
1449 var = block_defs_stack.pop ();
1450 }
1451 else
1452 {
1453 /* If we recorded anything else, it must have been a _DECL
1454 node and its current reaching definition must have been
1455 NULL. */
1456 saved_def = NULL;
1457 var = tmp;
1458 }
1459
1460 get_common_info (var)->current_def = saved_def;
1461 }
1462 }
1463
1464
1465 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1466
1467 void
1468 dump_decl_set (FILE *file, bitmap set)
1469 {
1470 if (set)
1471 {
1472 bitmap_iterator bi;
1473 unsigned i;
1474
1475 fprintf (file, "{ ");
1476
1477 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1478 {
1479 fprintf (file, "D.%u", i);
1480 fprintf (file, " ");
1481 }
1482
1483 fprintf (file, "}");
1484 }
1485 else
1486 fprintf (file, "NIL");
1487 }
1488
1489
1490 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1491
1492 DEBUG_FUNCTION void
1493 debug_decl_set (bitmap set)
1494 {
1495 dump_decl_set (stderr, set);
1496 fprintf (stderr, "\n");
1497 }
1498
1499
1500 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1501 stack up to a maximum of N levels. If N is -1, the whole stack is
1502 dumped. New levels are created when the dominator tree traversal
1503 used for renaming enters a new sub-tree. */
1504
1505 void
1506 dump_defs_stack (FILE *file, int n)
1507 {
1508 int i, j;
1509
1510 fprintf (file, "\n\nRenaming stack");
1511 if (n > 0)
1512 fprintf (file, " (up to %d levels)", n);
1513 fprintf (file, "\n\n");
1514
1515 i = 1;
1516 fprintf (file, "Level %d (current level)\n", i);
1517 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1518 {
1519 tree name, var;
1520
1521 name = block_defs_stack[j];
1522 if (name == NULL_TREE)
1523 {
1524 i++;
1525 if (n > 0 && i > n)
1526 break;
1527 fprintf (file, "\nLevel %d\n", i);
1528 continue;
1529 }
1530
1531 if (DECL_P (name))
1532 {
1533 var = name;
1534 name = NULL_TREE;
1535 }
1536 else
1537 {
1538 var = SSA_NAME_VAR (name);
1539 if (!is_gimple_reg (var))
1540 {
1541 j--;
1542 var = block_defs_stack[j];
1543 }
1544 }
1545
1546 fprintf (file, " Previous CURRDEF (");
1547 print_generic_expr (file, var, 0);
1548 fprintf (file, ") = ");
1549 if (name)
1550 print_generic_expr (file, name, 0);
1551 else
1552 fprintf (file, "<NIL>");
1553 fprintf (file, "\n");
1554 }
1555 }
1556
1557
1558 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1559 stack up to a maximum of N levels. If N is -1, the whole stack is
1560 dumped. New levels are created when the dominator tree traversal
1561 used for renaming enters a new sub-tree. */
1562
1563 DEBUG_FUNCTION void
1564 debug_defs_stack (int n)
1565 {
1566 dump_defs_stack (stderr, n);
1567 }
1568
1569
1570 /* Dump the current reaching definition of every symbol to FILE. */
1571
1572 void
1573 dump_currdefs (FILE *file)
1574 {
1575 unsigned i;
1576 tree var;
1577
1578 if (symbols_to_rename.is_empty ())
1579 return;
1580
1581 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1582 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1583 {
1584 common_info_p info = get_common_info (var);
1585 fprintf (file, "CURRDEF (");
1586 print_generic_expr (file, var, 0);
1587 fprintf (file, ") = ");
1588 if (info->current_def)
1589 print_generic_expr (file, info->current_def, 0);
1590 else
1591 fprintf (file, "<NIL>");
1592 fprintf (file, "\n");
1593 }
1594 }
1595
1596
1597 /* Dump the current reaching definition of every symbol to stderr. */
1598
1599 DEBUG_FUNCTION void
1600 debug_currdefs (void)
1601 {
1602 dump_currdefs (stderr);
1603 }
1604
1605
1606 /* Dump SSA information to FILE. */
1607
1608 void
1609 dump_tree_ssa (FILE *file)
1610 {
1611 const char *funcname
1612 = lang_hooks.decl_printable_name (current_function_decl, 2);
1613
1614 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1615
1616 dump_var_infos (file);
1617 dump_defs_stack (file, -1);
1618 dump_currdefs (file);
1619 dump_tree_ssa_stats (file);
1620 }
1621
1622
1623 /* Dump SSA information to stderr. */
1624
1625 DEBUG_FUNCTION void
1626 debug_tree_ssa (void)
1627 {
1628 dump_tree_ssa (stderr);
1629 }
1630
1631
1632 /* Dump statistics for the hash table HTAB. */
1633
1634 static void
1635 htab_statistics (FILE *file, htab_t htab)
1636 {
1637 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1638 (long) htab_size (htab),
1639 (long) htab_elements (htab),
1640 htab_collisions (htab));
1641 }
1642
1643
1644 /* Dump SSA statistics on FILE. */
1645
1646 void
1647 dump_tree_ssa_stats (FILE *file)
1648 {
1649 if (var_infos)
1650 {
1651 fprintf (file, "\nHash table statistics:\n");
1652 fprintf (file, " var_infos: ");
1653 htab_statistics (file, var_infos);
1654 fprintf (file, "\n");
1655 }
1656 }
1657
1658
1659 /* Dump SSA statistics on stderr. */
1660
1661 DEBUG_FUNCTION void
1662 debug_tree_ssa_stats (void)
1663 {
1664 dump_tree_ssa_stats (stderr);
1665 }
1666
1667
1668 /* Hashing and equality functions for VAR_INFOS. */
1669
1670 static hashval_t
1671 var_info_hash (const void *p)
1672 {
1673 return DECL_UID (((const struct var_info_d *)p)->var);
1674 }
1675
1676 static int
1677 var_info_eq (const void *p1, const void *p2)
1678 {
1679 return ((const struct var_info_d *)p1)->var
1680 == ((const struct var_info_d *)p2)->var;
1681 }
1682
1683
1684 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1685
1686 static int
1687 debug_var_infos_r (void **slot, void *data)
1688 {
1689 FILE *file = (FILE *) data;
1690 struct var_info_d *info = (struct var_info_d *) *slot;
1691
1692 fprintf (file, "VAR: ");
1693 print_generic_expr (file, info->var, dump_flags);
1694 bitmap_print (file, info->info.def_blocks.def_blocks,
1695 ", DEF_BLOCKS: { ", "}");
1696 bitmap_print (file, info->info.def_blocks.livein_blocks,
1697 ", LIVEIN_BLOCKS: { ", "}");
1698 bitmap_print (file, info->info.def_blocks.phi_blocks,
1699 ", PHI_BLOCKS: { ", "}\n");
1700
1701 return 1;
1702 }
1703
1704
1705 /* Dump the VAR_INFOS hash table on FILE. */
1706
1707 void
1708 dump_var_infos (FILE *file)
1709 {
1710 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1711 if (var_infos)
1712 htab_traverse (var_infos, debug_var_infos_r, file);
1713 }
1714
1715
1716 /* Dump the VAR_INFOS hash table on stderr. */
1717
1718 DEBUG_FUNCTION void
1719 debug_var_infos (void)
1720 {
1721 dump_var_infos (stderr);
1722 }
1723
1724
1725 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1726
1727 static inline void
1728 register_new_update_single (tree new_name, tree old_name)
1729 {
1730 common_info_p info = get_common_info (old_name);
1731 tree currdef = info->current_def;
1732
1733 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1734 This stack is later used by the dominator tree callbacks to
1735 restore the reaching definitions for all the variables
1736 defined in the block after a recursive visit to all its
1737 immediately dominated blocks. */
1738 block_defs_stack.reserve (2);
1739 block_defs_stack.quick_push (currdef);
1740 block_defs_stack.quick_push (old_name);
1741
1742 /* Set the current reaching definition for OLD_NAME to be
1743 NEW_NAME. */
1744 info->current_def = new_name;
1745 }
1746
1747
1748 /* Register NEW_NAME to be the new reaching definition for all the
1749 names in OLD_NAMES. Used by the incremental SSA update routines to
1750 replace old SSA names with new ones. */
1751
1752 static inline void
1753 register_new_update_set (tree new_name, bitmap old_names)
1754 {
1755 bitmap_iterator bi;
1756 unsigned i;
1757
1758 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1759 register_new_update_single (new_name, ssa_name (i));
1760 }
1761
1762
1763
1764 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1765 it is a symbol marked for renaming, replace it with USE_P's current
1766 reaching definition. */
1767
1768 static inline void
1769 maybe_replace_use (use_operand_p use_p)
1770 {
1771 tree rdef = NULL_TREE;
1772 tree use = USE_FROM_PTR (use_p);
1773 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1774
1775 if (marked_for_renaming (sym))
1776 rdef = get_reaching_def (sym);
1777 else if (is_old_name (use))
1778 rdef = get_reaching_def (use);
1779
1780 if (rdef && rdef != use)
1781 SET_USE (use_p, rdef);
1782 }
1783
1784
1785 /* Same as maybe_replace_use, but without introducing default stmts,
1786 returning false to indicate a need to do so. */
1787
1788 static inline bool
1789 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1790 {
1791 tree rdef = NULL_TREE;
1792 tree use = USE_FROM_PTR (use_p);
1793 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1794
1795 if (marked_for_renaming (sym))
1796 rdef = get_var_info (sym)->info.current_def;
1797 else if (is_old_name (use))
1798 {
1799 rdef = get_ssa_name_ann (use)->info.current_def;
1800 /* We can't assume that, if there's no current definition, the
1801 default one should be used. It could be the case that we've
1802 rearranged blocks so that the earlier definition no longer
1803 dominates the use. */
1804 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1805 rdef = use;
1806 }
1807 else
1808 rdef = use;
1809
1810 if (rdef && rdef != use)
1811 SET_USE (use_p, rdef);
1812
1813 return rdef != NULL_TREE;
1814 }
1815
1816
1817 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1818 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1819 register it as the current definition for the names replaced by
1820 DEF_P. */
1821
1822 static inline void
1823 maybe_register_def (def_operand_p def_p, gimple stmt,
1824 gimple_stmt_iterator gsi)
1825 {
1826 tree def = DEF_FROM_PTR (def_p);
1827 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1828
1829 /* If DEF is a naked symbol that needs renaming, create a new
1830 name for it. */
1831 if (marked_for_renaming (sym))
1832 {
1833 if (DECL_P (def))
1834 {
1835 tree tracked_var;
1836
1837 def = make_ssa_name (def, stmt);
1838 SET_DEF (def_p, def);
1839
1840 tracked_var = target_for_debug_bind (sym);
1841 if (tracked_var)
1842 {
1843 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1844 /* If stmt ends the bb, insert the debug stmt on the single
1845 non-EH edge from the stmt. */
1846 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1847 {
1848 basic_block bb = gsi_bb (gsi);
1849 edge_iterator ei;
1850 edge e, ef = NULL;
1851 FOR_EACH_EDGE (e, ei, bb->succs)
1852 if (!(e->flags & EDGE_EH))
1853 {
1854 gcc_checking_assert (!ef);
1855 ef = e;
1856 }
1857 /* If there are other predecessors to ef->dest, then
1858 there must be PHI nodes for the modified
1859 variable, and therefore there will be debug bind
1860 stmts after the PHI nodes. The debug bind notes
1861 we'd insert would force the creation of a new
1862 block (diverging codegen) and be redundant with
1863 the post-PHI bind stmts, so don't add them.
1864
1865 As for the exit edge, there wouldn't be redundant
1866 bind stmts, but there wouldn't be a PC to bind
1867 them to either, so avoid diverging the CFG. */
1868 if (ef && single_pred_p (ef->dest)
1869 && ef->dest != EXIT_BLOCK_PTR)
1870 {
1871 /* If there were PHI nodes in the node, we'd
1872 have to make sure the value we're binding
1873 doesn't need rewriting. But there shouldn't
1874 be PHI nodes in a single-predecessor block,
1875 so we just add the note. */
1876 gsi_insert_on_edge_immediate (ef, note);
1877 }
1878 }
1879 else
1880 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1881 }
1882 }
1883
1884 register_new_update_single (def, sym);
1885 }
1886 else
1887 {
1888 /* If DEF is a new name, register it as a new definition
1889 for all the names replaced by DEF. */
1890 if (is_new_name (def))
1891 register_new_update_set (def, names_replaced_by (def));
1892
1893 /* If DEF is an old name, register DEF as a new
1894 definition for itself. */
1895 if (is_old_name (def))
1896 register_new_update_single (def, def);
1897 }
1898 }
1899
1900
1901 /* Update every variable used in the statement pointed-to by SI. The
1902 statement is assumed to be in SSA form already. Names in
1903 OLD_SSA_NAMES used by SI will be updated to their current reaching
1904 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1905 will be registered as a new definition for their corresponding name
1906 in OLD_SSA_NAMES. */
1907
1908 static void
1909 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1910 {
1911 use_operand_p use_p;
1912 def_operand_p def_p;
1913 ssa_op_iter iter;
1914
1915 /* Only update marked statements. */
1916 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1917 return;
1918
1919 if (dump_file && (dump_flags & TDF_DETAILS))
1920 {
1921 fprintf (dump_file, "Updating SSA information for statement ");
1922 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1923 }
1924
1925 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1926 symbol is marked for renaming. */
1927 if (rewrite_uses_p (stmt))
1928 {
1929 if (is_gimple_debug (stmt))
1930 {
1931 bool failed = false;
1932
1933 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1934 if (!maybe_replace_use_in_debug_stmt (use_p))
1935 {
1936 failed = true;
1937 break;
1938 }
1939
1940 if (failed)
1941 {
1942 /* DOM sometimes threads jumps in such a way that a
1943 debug stmt ends up referencing a SSA variable that no
1944 longer dominates the debug stmt, but such that all
1945 incoming definitions refer to the same definition in
1946 an earlier dominator. We could try to recover that
1947 definition somehow, but this will have to do for now.
1948
1949 Introducing a default definition, which is what
1950 maybe_replace_use() would do in such cases, may
1951 modify code generation, for the otherwise-unused
1952 default definition would never go away, modifying SSA
1953 version numbers all over. */
1954 gimple_debug_bind_reset_value (stmt);
1955 update_stmt (stmt);
1956 }
1957 }
1958 else
1959 {
1960 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1961 maybe_replace_use (use_p);
1962 }
1963 }
1964
1965 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1966 Also register definitions for names whose underlying symbol is
1967 marked for renaming. */
1968 if (register_defs_p (stmt))
1969 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1970 maybe_register_def (def_p, stmt, gsi);
1971 }
1972
1973
1974 /* Visit all the successor blocks of BB looking for PHI nodes. For
1975 every PHI node found, check if any of its arguments is in
1976 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1977 definition, replace it. */
1978
1979 static void
1980 rewrite_update_phi_arguments (basic_block bb)
1981 {
1982 edge e;
1983 edge_iterator ei;
1984 unsigned i;
1985
1986 FOR_EACH_EDGE (e, ei, bb->succs)
1987 {
1988 gimple phi;
1989 gimple_vec phis;
1990
1991 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1992 continue;
1993
1994 phis = phis_to_rewrite[e->dest->index];
1995 FOR_EACH_VEC_ELT (phis, i, phi)
1996 {
1997 tree arg, lhs_sym, reaching_def = NULL;
1998 use_operand_p arg_p;
1999
2000 gcc_checking_assert (rewrite_uses_p (phi));
2001
2002 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2003 arg = USE_FROM_PTR (arg_p);
2004
2005 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2006 continue;
2007
2008 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2009
2010 if (arg == NULL_TREE)
2011 {
2012 /* When updating a PHI node for a recently introduced
2013 symbol we may find NULL arguments. That's why we
2014 take the symbol from the LHS of the PHI node. */
2015 reaching_def = get_reaching_def (lhs_sym);
2016
2017 }
2018 else
2019 {
2020 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2021
2022 if (marked_for_renaming (sym))
2023 reaching_def = get_reaching_def (sym);
2024 else if (is_old_name (arg))
2025 reaching_def = get_reaching_def (arg);
2026 }
2027
2028 /* Update the argument if there is a reaching def. */
2029 if (reaching_def)
2030 {
2031 source_location locus;
2032 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2033
2034 SET_USE (arg_p, reaching_def);
2035
2036 /* Virtual operands do not need a location. */
2037 if (virtual_operand_p (reaching_def))
2038 locus = UNKNOWN_LOCATION;
2039 else
2040 {
2041 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2042
2043 /* Single element PHI nodes behave like copies, so get the
2044 location from the phi argument. */
2045 if (gimple_code (stmt) == GIMPLE_PHI
2046 && gimple_phi_num_args (stmt) == 1)
2047 locus = gimple_phi_arg_location (stmt, 0);
2048 else
2049 locus = gimple_location (stmt);
2050 }
2051
2052 gimple_phi_arg_set_location (phi, arg_i, locus);
2053 }
2054
2055
2056 if (e->flags & EDGE_ABNORMAL)
2057 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2058 }
2059 }
2060 }
2061
2062
2063 /* Initialization of block data structures for the incremental SSA
2064 update pass. Create a block local stack of reaching definitions
2065 for new SSA names produced in this block (BLOCK_DEFS). Register
2066 new definitions for every PHI node in the block. */
2067
2068 static void
2069 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2070 basic_block bb)
2071 {
2072 bool is_abnormal_phi;
2073 gimple_stmt_iterator gsi;
2074
2075 if (dump_file && (dump_flags & TDF_DETAILS))
2076 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2077 bb->index);
2078
2079 /* Mark the unwind point for this block. */
2080 block_defs_stack.safe_push (NULL_TREE);
2081
2082 if (!bitmap_bit_p (blocks_to_update, bb->index))
2083 return;
2084
2085 /* Mark the LHS if any of the arguments flows through an abnormal
2086 edge. */
2087 is_abnormal_phi = bb_has_abnormal_pred (bb);
2088
2089 /* If any of the PHI nodes is a replacement for a name in
2090 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2091 register it as a new definition for its corresponding name. Also
2092 register definitions for names whose underlying symbols are
2093 marked for renaming. */
2094 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2095 {
2096 tree lhs, lhs_sym;
2097 gimple phi = gsi_stmt (gsi);
2098
2099 if (!register_defs_p (phi))
2100 continue;
2101
2102 lhs = gimple_phi_result (phi);
2103 lhs_sym = SSA_NAME_VAR (lhs);
2104
2105 if (marked_for_renaming (lhs_sym))
2106 register_new_update_single (lhs, lhs_sym);
2107 else
2108 {
2109
2110 /* If LHS is a new name, register a new definition for all
2111 the names replaced by LHS. */
2112 if (is_new_name (lhs))
2113 register_new_update_set (lhs, names_replaced_by (lhs));
2114
2115 /* If LHS is an OLD name, register it as a new definition
2116 for itself. */
2117 if (is_old_name (lhs))
2118 register_new_update_single (lhs, lhs);
2119 }
2120
2121 if (is_abnormal_phi)
2122 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2123 }
2124
2125 /* Step 2. Rewrite every variable used in each statement in the block. */
2126 if (bitmap_bit_p (interesting_blocks, bb->index))
2127 {
2128 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2129 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2130 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2131 }
2132
2133 /* Step 3. Update PHI nodes. */
2134 rewrite_update_phi_arguments (bb);
2135 }
2136
2137 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2138 the current reaching definition of every name re-written in BB to
2139 the original reaching definition before visiting BB. This
2140 unwinding must be done in the opposite order to what is done in
2141 register_new_update_set. */
2142
2143 static void
2144 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2145 basic_block bb ATTRIBUTE_UNUSED)
2146 {
2147 while (block_defs_stack.length () > 0)
2148 {
2149 tree var = block_defs_stack.pop ();
2150 tree saved_def;
2151
2152 /* NULL indicates the unwind stop point for this block (see
2153 rewrite_update_enter_block). */
2154 if (var == NULL)
2155 return;
2156
2157 saved_def = block_defs_stack.pop ();
2158 get_common_info (var)->current_def = saved_def;
2159 }
2160 }
2161
2162
2163 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2164 form.
2165
2166 ENTRY indicates the block where to start. Every block dominated by
2167 ENTRY will be rewritten.
2168
2169 WHAT indicates what actions will be taken by the renamer (see enum
2170 rewrite_mode).
2171
2172 BLOCKS are the set of interesting blocks for the dominator walker
2173 to process. If this set is NULL, then all the nodes dominated
2174 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2175 are not present in BLOCKS are ignored. */
2176
2177 static void
2178 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2179 {
2180 struct dom_walk_data walk_data;
2181
2182 /* Rewrite all the basic blocks in the program. */
2183 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2184
2185 /* Setup callbacks for the generic dominator tree walker. */
2186 memset (&walk_data, 0, sizeof (walk_data));
2187
2188 walk_data.dom_direction = CDI_DOMINATORS;
2189
2190 if (what == REWRITE_ALL)
2191 {
2192 walk_data.before_dom_children = rewrite_enter_block;
2193 walk_data.after_dom_children = rewrite_leave_block;
2194 }
2195 else if (what == REWRITE_UPDATE)
2196 {
2197 walk_data.before_dom_children = rewrite_update_enter_block;
2198 walk_data.after_dom_children = rewrite_update_leave_block;
2199 }
2200 else
2201 gcc_unreachable ();
2202
2203 block_defs_stack.create (10);
2204
2205 /* Initialize the dominator walker. */
2206 init_walk_dominator_tree (&walk_data);
2207
2208 /* Recursively walk the dominator tree rewriting each statement in
2209 each basic block. */
2210 walk_dominator_tree (&walk_data, entry);
2211
2212 /* Finalize the dominator walker. */
2213 fini_walk_dominator_tree (&walk_data);
2214
2215 /* Debugging dumps. */
2216 if (dump_file && (dump_flags & TDF_STATS))
2217 {
2218 dump_dfa_stats (dump_file);
2219 if (var_infos)
2220 dump_tree_ssa_stats (dump_file);
2221 }
2222
2223 block_defs_stack.release ();
2224
2225 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2226 }
2227
2228
2229 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2230 at the start of each block, and call mark_def_sites for each statement. */
2231
2232 static void
2233 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2234 {
2235 struct mark_def_sites_global_data *gd;
2236 bitmap kills;
2237 gimple_stmt_iterator gsi;
2238
2239 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2240 kills = gd->kills;
2241
2242 bitmap_clear (kills);
2243 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2244 mark_def_sites (bb, gsi_stmt (gsi), kills);
2245 }
2246
2247
2248 /* Mark the definition site blocks for each variable, so that we know
2249 where the variable is actually live.
2250
2251 The INTERESTING_BLOCKS global will be filled in with all the blocks
2252 that should be processed by the renamer. It is assumed that the
2253 caller has already initialized and zeroed it. */
2254
2255 static void
2256 mark_def_site_blocks (void)
2257 {
2258 struct dom_walk_data walk_data;
2259 struct mark_def_sites_global_data mark_def_sites_global_data;
2260
2261 /* Setup callbacks for the generic dominator tree walker to find and
2262 mark definition sites. */
2263 walk_data.dom_direction = CDI_DOMINATORS;
2264 walk_data.initialize_block_local_data = NULL;
2265 walk_data.before_dom_children = mark_def_sites_block;
2266 walk_data.after_dom_children = NULL;
2267
2268 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2269 large enough to accommodate all the variables referenced in the
2270 function, not just the ones we are renaming. */
2271 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2272 walk_data.global_data = &mark_def_sites_global_data;
2273
2274 /* We do not have any local data. */
2275 walk_data.block_local_data_size = 0;
2276
2277 /* Initialize the dominator walker. */
2278 init_walk_dominator_tree (&walk_data);
2279
2280 /* Recursively walk the dominator tree. */
2281 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2282
2283 /* Finalize the dominator walker. */
2284 fini_walk_dominator_tree (&walk_data);
2285
2286 /* We no longer need this bitmap, clear and free it. */
2287 BITMAP_FREE (mark_def_sites_global_data.kills);
2288 }
2289
2290
2291 /* Initialize internal data needed during renaming. */
2292
2293 static void
2294 init_ssa_renamer (void)
2295 {
2296 cfun->gimple_df->in_ssa_p = false;
2297
2298 /* Allocate memory for the DEF_BLOCKS hash table. */
2299 gcc_assert (var_infos == NULL);
2300 var_infos = htab_create (vec_safe_length (cfun->local_decls),
2301 var_info_hash, var_info_eq, free);
2302
2303 bitmap_obstack_initialize (&update_ssa_obstack);
2304 }
2305
2306
2307 /* Deallocate internal data structures used by the renamer. */
2308
2309 static void
2310 fini_ssa_renamer (void)
2311 {
2312 if (var_infos)
2313 {
2314 htab_delete (var_infos);
2315 var_infos = NULL;
2316 }
2317
2318 bitmap_obstack_release (&update_ssa_obstack);
2319
2320 cfun->gimple_df->ssa_renaming_needed = 0;
2321 cfun->gimple_df->rename_vops = 0;
2322 cfun->gimple_df->in_ssa_p = true;
2323 }
2324
2325 /* Main entry point into the SSA builder. The renaming process
2326 proceeds in four main phases:
2327
2328 1- Compute dominance frontier and immediate dominators, needed to
2329 insert PHI nodes and rename the function in dominator tree
2330 order.
2331
2332 2- Find and mark all the blocks that define variables
2333 (mark_def_site_blocks).
2334
2335 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2336
2337 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2338
2339 Steps 3 and 4 are done using the dominator tree walker
2340 (walk_dominator_tree). */
2341
2342 static unsigned int
2343 rewrite_into_ssa (void)
2344 {
2345 bitmap_head *dfs;
2346 basic_block bb;
2347 unsigned i;
2348
2349 /* Initialize operand data structures. */
2350 init_ssa_operands (cfun);
2351
2352 /* Initialize internal data needed by the renamer. */
2353 init_ssa_renamer ();
2354
2355 /* Initialize the set of interesting blocks. The callback
2356 mark_def_sites will add to this set those blocks that the renamer
2357 should process. */
2358 interesting_blocks = sbitmap_alloc (last_basic_block);
2359 bitmap_clear (interesting_blocks);
2360
2361 /* Initialize dominance frontier. */
2362 dfs = XNEWVEC (bitmap_head, last_basic_block);
2363 FOR_EACH_BB (bb)
2364 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2365
2366 /* 1- Compute dominance frontiers. */
2367 calculate_dominance_info (CDI_DOMINATORS);
2368 compute_dominance_frontiers (dfs);
2369
2370 /* 2- Find and mark definition sites. */
2371 mark_def_site_blocks ();
2372
2373 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2374 insert_phi_nodes (dfs);
2375
2376 /* 4- Rename all the blocks. */
2377 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2378
2379 /* Free allocated memory. */
2380 FOR_EACH_BB (bb)
2381 bitmap_clear (&dfs[bb->index]);
2382 free (dfs);
2383
2384 sbitmap_free (interesting_blocks);
2385
2386 fini_ssa_renamer ();
2387
2388 /* Try to get rid of all gimplifier generated temporaries by making
2389 its SSA names anonymous. This way we can garbage collect them
2390 all after removing unused locals which we do in our TODO. */
2391 for (i = 1; i < num_ssa_names; ++i)
2392 {
2393 tree decl, name = ssa_name (i);
2394 if (!name
2395 || SSA_NAME_IS_DEFAULT_DEF (name))
2396 continue;
2397 decl = SSA_NAME_VAR (name);
2398 if (decl
2399 && TREE_CODE (decl) == VAR_DECL
2400 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2401 && DECL_ARTIFICIAL (decl)
2402 && DECL_IGNORED_P (decl)
2403 && !DECL_NAME (decl))
2404 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, NULL_TREE);
2405 }
2406
2407 return 0;
2408 }
2409
2410
2411 struct gimple_opt_pass pass_build_ssa =
2412 {
2413 {
2414 GIMPLE_PASS,
2415 "ssa", /* name */
2416 OPTGROUP_NONE, /* optinfo_flags */
2417 NULL, /* gate */
2418 rewrite_into_ssa, /* execute */
2419 NULL, /* sub */
2420 NULL, /* next */
2421 0, /* static_pass_number */
2422 TV_TREE_SSA_OTHER, /* tv_id */
2423 PROP_cfg, /* properties_required */
2424 PROP_ssa, /* properties_provided */
2425 0, /* properties_destroyed */
2426 0, /* todo_flags_start */
2427 TODO_verify_ssa
2428 | TODO_remove_unused_locals /* todo_flags_finish */
2429 }
2430 };
2431
2432
2433 /* Mark the definition of VAR at STMT and BB as interesting for the
2434 renamer. BLOCKS is the set of blocks that need updating. */
2435
2436 static void
2437 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2438 {
2439 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2440 set_register_defs (stmt, true);
2441
2442 if (insert_phi_p)
2443 {
2444 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2445
2446 set_def_block (var, bb, is_phi_p);
2447
2448 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2449 site for both itself and all the old names replaced by it. */
2450 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2451 {
2452 bitmap_iterator bi;
2453 unsigned i;
2454 bitmap set = names_replaced_by (var);
2455 if (set)
2456 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2457 set_def_block (ssa_name (i), bb, is_phi_p);
2458 }
2459 }
2460 }
2461
2462
2463 /* Mark the use of VAR at STMT and BB as interesting for the
2464 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2465 nodes. */
2466
2467 static inline void
2468 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2469 {
2470 basic_block def_bb = gimple_bb (stmt);
2471
2472 mark_block_for_update (def_bb);
2473 mark_block_for_update (bb);
2474
2475 if (gimple_code (stmt) == GIMPLE_PHI)
2476 mark_phi_for_rewrite (def_bb, stmt);
2477 else
2478 {
2479 set_rewrite_uses (stmt, true);
2480
2481 if (is_gimple_debug (stmt))
2482 return;
2483 }
2484
2485 /* If VAR has not been defined in BB, then it is live-on-entry
2486 to BB. Note that we cannot just use the block holding VAR's
2487 definition because if VAR is one of the names in OLD_SSA_NAMES,
2488 it will have several definitions (itself and all the names that
2489 replace it). */
2490 if (insert_phi_p)
2491 {
2492 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2493 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2494 set_livein_block (var, bb);
2495 }
2496 }
2497
2498
2499 /* Do a dominator walk starting at BB processing statements that
2500 reference symbols in SSA operands. This is very similar to
2501 mark_def_sites, but the scan handles statements whose operands may
2502 already be SSA names.
2503
2504 If INSERT_PHI_P is true, mark those uses as live in the
2505 corresponding block. This is later used by the PHI placement
2506 algorithm to make PHI pruning decisions.
2507
2508 FIXME. Most of this would be unnecessary if we could associate a
2509 symbol to all the SSA names that reference it. But that
2510 sounds like it would be expensive to maintain. Still, it
2511 would be interesting to see if it makes better sense to do
2512 that. */
2513
2514 static void
2515 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2516 {
2517 basic_block son;
2518 gimple_stmt_iterator si;
2519 edge e;
2520 edge_iterator ei;
2521
2522 mark_block_for_update (bb);
2523
2524 /* Process PHI nodes marking interesting those that define or use
2525 the symbols that we are interested in. */
2526 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2527 {
2528 gimple phi = gsi_stmt (si);
2529 tree lhs_sym, lhs = gimple_phi_result (phi);
2530
2531 if (TREE_CODE (lhs) == SSA_NAME
2532 && (! virtual_operand_p (lhs)
2533 || ! cfun->gimple_df->rename_vops))
2534 continue;
2535
2536 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2537 mark_for_renaming (lhs_sym);
2538 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2539
2540 /* Mark the uses in phi nodes as interesting. It would be more correct
2541 to process the arguments of the phi nodes of the successor edges of
2542 BB at the end of prepare_block_for_update, however, that turns out
2543 to be significantly more expensive. Doing it here is conservatively
2544 correct -- it may only cause us to believe a value to be live in a
2545 block that also contains its definition, and thus insert a few more
2546 phi nodes for it. */
2547 FOR_EACH_EDGE (e, ei, bb->preds)
2548 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2549 }
2550
2551 /* Process the statements. */
2552 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2553 {
2554 gimple stmt;
2555 ssa_op_iter i;
2556 use_operand_p use_p;
2557 def_operand_p def_p;
2558
2559 stmt = gsi_stmt (si);
2560
2561 if (cfun->gimple_df->rename_vops
2562 && gimple_vuse (stmt))
2563 {
2564 tree use = gimple_vuse (stmt);
2565 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2566 mark_for_renaming (sym);
2567 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2568 }
2569
2570 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2571 {
2572 tree use = USE_FROM_PTR (use_p);
2573 if (!DECL_P (use))
2574 continue;
2575 mark_for_renaming (use);
2576 mark_use_interesting (use, stmt, bb, insert_phi_p);
2577 }
2578
2579 if (cfun->gimple_df->rename_vops
2580 && gimple_vdef (stmt))
2581 {
2582 tree def = gimple_vdef (stmt);
2583 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2584 mark_for_renaming (sym);
2585 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2586 }
2587
2588 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2589 {
2590 tree def = DEF_FROM_PTR (def_p);
2591 if (!DECL_P (def))
2592 continue;
2593 mark_for_renaming (def);
2594 mark_def_interesting (def, stmt, bb, insert_phi_p);
2595 }
2596 }
2597
2598 /* Now visit all the blocks dominated by BB. */
2599 for (son = first_dom_son (CDI_DOMINATORS, bb);
2600 son;
2601 son = next_dom_son (CDI_DOMINATORS, son))
2602 prepare_block_for_update (son, insert_phi_p);
2603 }
2604
2605
2606 /* Helper for prepare_names_to_update. Mark all the use sites for
2607 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2608 prepare_names_to_update. */
2609
2610 static void
2611 prepare_use_sites_for (tree name, bool insert_phi_p)
2612 {
2613 use_operand_p use_p;
2614 imm_use_iterator iter;
2615
2616 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2617 {
2618 gimple stmt = USE_STMT (use_p);
2619 basic_block bb = gimple_bb (stmt);
2620
2621 if (gimple_code (stmt) == GIMPLE_PHI)
2622 {
2623 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2624 edge e = gimple_phi_arg_edge (stmt, ix);
2625 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2626 }
2627 else
2628 {
2629 /* For regular statements, mark this as an interesting use
2630 for NAME. */
2631 mark_use_interesting (name, stmt, bb, insert_phi_p);
2632 }
2633 }
2634 }
2635
2636
2637 /* Helper for prepare_names_to_update. Mark the definition site for
2638 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2639 prepare_names_to_update. */
2640
2641 static void
2642 prepare_def_site_for (tree name, bool insert_phi_p)
2643 {
2644 gimple stmt;
2645 basic_block bb;
2646
2647 gcc_checking_assert (names_to_release == NULL
2648 || !bitmap_bit_p (names_to_release,
2649 SSA_NAME_VERSION (name)));
2650
2651 stmt = SSA_NAME_DEF_STMT (name);
2652 bb = gimple_bb (stmt);
2653 if (bb)
2654 {
2655 gcc_checking_assert (bb->index < last_basic_block);
2656 mark_block_for_update (bb);
2657 mark_def_interesting (name, stmt, bb, insert_phi_p);
2658 }
2659 }
2660
2661
2662 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2663 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2664 PHI nodes for newly created names. */
2665
2666 static void
2667 prepare_names_to_update (bool insert_phi_p)
2668 {
2669 unsigned i = 0;
2670 bitmap_iterator bi;
2671 sbitmap_iterator sbi;
2672
2673 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2674 remove it from NEW_SSA_NAMES so that we don't try to visit its
2675 defining basic block (which most likely doesn't exist). Notice
2676 that we cannot do the same with names in OLD_SSA_NAMES because we
2677 want to replace existing instances. */
2678 if (names_to_release)
2679 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2680 bitmap_clear_bit (new_ssa_names, i);
2681
2682 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2683 names may be considered to be live-in on blocks that contain
2684 definitions for their replacements. */
2685 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2686 prepare_def_site_for (ssa_name (i), insert_phi_p);
2687
2688 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2689 OLD_SSA_NAMES, but we have to ignore its definition site. */
2690 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2691 {
2692 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2693 prepare_def_site_for (ssa_name (i), insert_phi_p);
2694 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2695 }
2696 }
2697
2698
2699 /* Dump all the names replaced by NAME to FILE. */
2700
2701 void
2702 dump_names_replaced_by (FILE *file, tree name)
2703 {
2704 unsigned i;
2705 bitmap old_set;
2706 bitmap_iterator bi;
2707
2708 print_generic_expr (file, name, 0);
2709 fprintf (file, " -> { ");
2710
2711 old_set = names_replaced_by (name);
2712 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2713 {
2714 print_generic_expr (file, ssa_name (i), 0);
2715 fprintf (file, " ");
2716 }
2717
2718 fprintf (file, "}\n");
2719 }
2720
2721
2722 /* Dump all the names replaced by NAME to stderr. */
2723
2724 DEBUG_FUNCTION void
2725 debug_names_replaced_by (tree name)
2726 {
2727 dump_names_replaced_by (stderr, name);
2728 }
2729
2730
2731 /* Dump SSA update information to FILE. */
2732
2733 void
2734 dump_update_ssa (FILE *file)
2735 {
2736 unsigned i = 0;
2737 bitmap_iterator bi;
2738
2739 if (!need_ssa_update_p (cfun))
2740 return;
2741
2742 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2743 {
2744 sbitmap_iterator sbi;
2745
2746 fprintf (file, "\nSSA replacement table\n");
2747 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2748 "O_1, ..., O_j\n\n");
2749
2750 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2751 dump_names_replaced_by (file, ssa_name (i));
2752 }
2753
2754 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2755 {
2756 fprintf (file, "\nSymbols to be put in SSA form\n");
2757 dump_decl_set (file, symbols_to_rename_set);
2758 fprintf (file, "\n");
2759 }
2760
2761 if (names_to_release && !bitmap_empty_p (names_to_release))
2762 {
2763 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2764 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2765 {
2766 print_generic_expr (file, ssa_name (i), 0);
2767 fprintf (file, " ");
2768 }
2769 fprintf (file, "\n");
2770 }
2771 }
2772
2773
2774 /* Dump SSA update information to stderr. */
2775
2776 DEBUG_FUNCTION void
2777 debug_update_ssa (void)
2778 {
2779 dump_update_ssa (stderr);
2780 }
2781
2782
2783 /* Initialize data structures used for incremental SSA updates. */
2784
2785 static void
2786 init_update_ssa (struct function *fn)
2787 {
2788 /* Reserve more space than the current number of names. The calls to
2789 add_new_name_mapping are typically done after creating new SSA
2790 names, so we'll need to reallocate these arrays. */
2791 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2792 bitmap_clear (old_ssa_names);
2793
2794 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2795 bitmap_clear (new_ssa_names);
2796
2797 bitmap_obstack_initialize (&update_ssa_obstack);
2798
2799 names_to_release = NULL;
2800 update_ssa_initialized_fn = fn;
2801 }
2802
2803
2804 /* Deallocate data structures used for incremental SSA updates. */
2805
2806 void
2807 delete_update_ssa (void)
2808 {
2809 unsigned i;
2810 bitmap_iterator bi;
2811
2812 sbitmap_free (old_ssa_names);
2813 old_ssa_names = NULL;
2814
2815 sbitmap_free (new_ssa_names);
2816 new_ssa_names = NULL;
2817
2818 BITMAP_FREE (symbols_to_rename_set);
2819 symbols_to_rename_set = NULL;
2820 symbols_to_rename.release ();
2821
2822 if (names_to_release)
2823 {
2824 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2825 release_ssa_name (ssa_name (i));
2826 BITMAP_FREE (names_to_release);
2827 }
2828
2829 clear_ssa_name_info ();
2830
2831 fini_ssa_renamer ();
2832
2833 if (blocks_with_phis_to_rewrite)
2834 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2835 {
2836 gimple_vec phis = phis_to_rewrite[i];
2837 phis.release ();
2838 phis_to_rewrite[i].create (0);
2839 }
2840
2841 BITMAP_FREE (blocks_with_phis_to_rewrite);
2842 BITMAP_FREE (blocks_to_update);
2843
2844 update_ssa_initialized_fn = NULL;
2845 }
2846
2847
2848 /* Create a new name for OLD_NAME in statement STMT and replace the
2849 operand pointed to by DEF_P with the newly created name. If DEF_P
2850 is NULL then STMT should be a GIMPLE assignment.
2851 Return the new name and register the replacement mapping <NEW, OLD> in
2852 update_ssa's tables. */
2853
2854 tree
2855 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2856 {
2857 tree new_name;
2858
2859 timevar_push (TV_TREE_SSA_INCREMENTAL);
2860
2861 if (!update_ssa_initialized_fn)
2862 init_update_ssa (cfun);
2863
2864 gcc_assert (update_ssa_initialized_fn == cfun);
2865
2866 new_name = duplicate_ssa_name (old_name, stmt);
2867 if (def)
2868 SET_DEF (def, new_name);
2869 else
2870 gimple_assign_set_lhs (stmt, new_name);
2871
2872 if (gimple_code (stmt) == GIMPLE_PHI)
2873 {
2874 basic_block bb = gimple_bb (stmt);
2875
2876 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2877 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2878 }
2879
2880 add_new_name_mapping (new_name, old_name);
2881
2882 /* For the benefit of passes that will be updating the SSA form on
2883 their own, set the current reaching definition of OLD_NAME to be
2884 NEW_NAME. */
2885 get_ssa_name_ann (old_name)->info.current_def = new_name;
2886
2887 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2888
2889 return new_name;
2890 }
2891
2892
2893 /* Mark virtual operands of FN for renaming by update_ssa. */
2894
2895 void
2896 mark_virtual_operands_for_renaming (struct function *fn)
2897 {
2898 fn->gimple_df->ssa_renaming_needed = 1;
2899 fn->gimple_df->rename_vops = 1;
2900 }
2901
2902
2903 /* Return true if there is any work to be done by update_ssa
2904 for function FN. */
2905
2906 bool
2907 need_ssa_update_p (struct function *fn)
2908 {
2909 gcc_assert (fn != NULL);
2910 return (update_ssa_initialized_fn == fn
2911 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2912 }
2913
2914 /* Return true if name N has been registered in the replacement table. */
2915
2916 bool
2917 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2918 {
2919 if (!update_ssa_initialized_fn)
2920 return false;
2921
2922 gcc_assert (update_ssa_initialized_fn == cfun);
2923
2924 return is_new_name (n) || is_old_name (n);
2925 }
2926
2927
2928 /* Mark NAME to be released after update_ssa has finished. */
2929
2930 void
2931 release_ssa_name_after_update_ssa (tree name)
2932 {
2933 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2934
2935 if (names_to_release == NULL)
2936 names_to_release = BITMAP_ALLOC (NULL);
2937
2938 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2939 }
2940
2941
2942 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2943 frontier information. BLOCKS is the set of blocks to be updated.
2944
2945 This is slightly different than the regular PHI insertion
2946 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2947 real names (i.e., GIMPLE registers) are inserted:
2948
2949 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2950 nodes inside the region affected by the block that defines VAR
2951 and the blocks that define all its replacements. All these
2952 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2953
2954 First, we compute the entry point to the region (ENTRY). This is
2955 given by the nearest common dominator to all the definition
2956 blocks. When computing the iterated dominance frontier (IDF), any
2957 block not strictly dominated by ENTRY is ignored.
2958
2959 We then call the standard PHI insertion algorithm with the pruned
2960 IDF.
2961
2962 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2963 names is not pruned. PHI nodes are inserted at every IDF block. */
2964
2965 static void
2966 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2967 unsigned update_flags)
2968 {
2969 basic_block entry;
2970 struct def_blocks_d *db;
2971 bitmap idf, pruned_idf;
2972 bitmap_iterator bi;
2973 unsigned i;
2974
2975 if (TREE_CODE (var) == SSA_NAME)
2976 gcc_checking_assert (is_old_name (var));
2977 else
2978 gcc_checking_assert (marked_for_renaming (var));
2979
2980 /* Get all the definition sites for VAR. */
2981 db = find_def_blocks_for (var);
2982
2983 /* No need to do anything if there were no definitions to VAR. */
2984 if (db == NULL || bitmap_empty_p (db->def_blocks))
2985 return;
2986
2987 /* Compute the initial iterated dominance frontier. */
2988 idf = compute_idf (db->def_blocks, dfs);
2989 pruned_idf = BITMAP_ALLOC (NULL);
2990
2991 if (TREE_CODE (var) == SSA_NAME)
2992 {
2993 if (update_flags == TODO_update_ssa)
2994 {
2995 /* If doing regular SSA updates for GIMPLE registers, we are
2996 only interested in IDF blocks dominated by the nearest
2997 common dominator of all the definition blocks. */
2998 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2999 db->def_blocks);
3000 if (entry != ENTRY_BLOCK_PTR)
3001 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3002 if (BASIC_BLOCK (i) != entry
3003 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3004 bitmap_set_bit (pruned_idf, i);
3005 }
3006 else
3007 {
3008 /* Otherwise, do not prune the IDF for VAR. */
3009 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3010 bitmap_copy (pruned_idf, idf);
3011 }
3012 }
3013 else
3014 {
3015 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3016 for the first time, so we need to compute the full IDF for
3017 it. */
3018 bitmap_copy (pruned_idf, idf);
3019 }
3020
3021 if (!bitmap_empty_p (pruned_idf))
3022 {
3023 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3024 are included in the region to be updated. The feeding blocks
3025 are important to guarantee that the PHI arguments are renamed
3026 properly. */
3027
3028 /* FIXME, this is not needed if we are updating symbols. We are
3029 already starting at the ENTRY block anyway. */
3030 bitmap_ior_into (blocks, pruned_idf);
3031 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3032 {
3033 edge e;
3034 edge_iterator ei;
3035 basic_block bb = BASIC_BLOCK (i);
3036
3037 FOR_EACH_EDGE (e, ei, bb->preds)
3038 if (e->src->index >= 0)
3039 bitmap_set_bit (blocks, e->src->index);
3040 }
3041
3042 insert_phi_nodes_for (var, pruned_idf, true);
3043 }
3044
3045 BITMAP_FREE (pruned_idf);
3046 BITMAP_FREE (idf);
3047 }
3048
3049 /* Sort symbols_to_rename after their DECL_UID. */
3050
3051 static int
3052 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3053 {
3054 const_tree syma = *(const const_tree *)a;
3055 const_tree symb = *(const const_tree *)b;
3056 if (DECL_UID (syma) == DECL_UID (symb))
3057 return 0;
3058 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3059 }
3060
3061 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3062 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3063
3064 1- The names in OLD_SSA_NAMES dominated by the definitions of
3065 NEW_SSA_NAMES are all re-written to be reached by the
3066 appropriate definition from NEW_SSA_NAMES.
3067
3068 2- If needed, new PHI nodes are added to the iterated dominance
3069 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3070
3071 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3072 calling create_new_def_for to create new defs for names that the
3073 caller wants to replace.
3074
3075 The caller cretaes the new names to be inserted and the names that need
3076 to be replaced by calling create_new_def_for for each old definition
3077 to be replaced. Note that the function assumes that the
3078 new defining statement has already been inserted in the IL.
3079
3080 For instance, given the following code:
3081
3082 1 L0:
3083 2 x_1 = PHI (0, x_5)
3084 3 if (x_1 < 10)
3085 4 if (x_1 > 7)
3086 5 y_2 = 0
3087 6 else
3088 7 y_3 = x_1 + x_7
3089 8 endif
3090 9 x_5 = x_1 + 1
3091 10 goto L0;
3092 11 endif
3093
3094 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3095
3096 1 L0:
3097 2 x_1 = PHI (0, x_5)
3098 3 if (x_1 < 10)
3099 4 x_10 = ...
3100 5 if (x_1 > 7)
3101 6 y_2 = 0
3102 7 else
3103 8 x_11 = ...
3104 9 y_3 = x_1 + x_7
3105 10 endif
3106 11 x_5 = x_1 + 1
3107 12 goto L0;
3108 13 endif
3109
3110 We want to replace all the uses of x_1 with the new definitions of
3111 x_10 and x_11. Note that the only uses that should be replaced are
3112 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3113 *not* be replaced (this is why we cannot just mark symbol 'x' for
3114 renaming).
3115
3116 Additionally, we may need to insert a PHI node at line 11 because
3117 that is a merge point for x_10 and x_11. So the use of x_1 at line
3118 11 will be replaced with the new PHI node. The insertion of PHI
3119 nodes is optional. They are not strictly necessary to preserve the
3120 SSA form, and depending on what the caller inserted, they may not
3121 even be useful for the optimizers. UPDATE_FLAGS controls various
3122 aspects of how update_ssa operates, see the documentation for
3123 TODO_update_ssa*. */
3124
3125 void
3126 update_ssa (unsigned update_flags)
3127 {
3128 basic_block bb, start_bb;
3129 bitmap_iterator bi;
3130 unsigned i = 0;
3131 bool insert_phi_p;
3132 sbitmap_iterator sbi;
3133 tree sym;
3134
3135 /* Only one update flag should be set. */
3136 gcc_assert (update_flags == TODO_update_ssa
3137 || update_flags == TODO_update_ssa_no_phi
3138 || update_flags == TODO_update_ssa_full_phi
3139 || update_flags == TODO_update_ssa_only_virtuals);
3140
3141 if (!need_ssa_update_p (cfun))
3142 return;
3143
3144 timevar_push (TV_TREE_SSA_INCREMENTAL);
3145
3146 if (dump_file && (dump_flags & TDF_DETAILS))
3147 fprintf (dump_file, "\nUpdating SSA:\n");
3148
3149 if (!update_ssa_initialized_fn)
3150 init_update_ssa (cfun);
3151 else if (update_flags == TODO_update_ssa_only_virtuals)
3152 {
3153 /* If we only need to update virtuals, remove all the mappings for
3154 real names before proceeding. The caller is responsible for
3155 having dealt with the name mappings before calling update_ssa. */
3156 bitmap_clear (old_ssa_names);
3157 bitmap_clear (new_ssa_names);
3158 }
3159
3160 gcc_assert (update_ssa_initialized_fn == cfun);
3161
3162 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3163 if (!phis_to_rewrite.exists ())
3164 phis_to_rewrite.create (last_basic_block + 1);
3165 blocks_to_update = BITMAP_ALLOC (NULL);
3166
3167 /* Ensure that the dominance information is up-to-date. */
3168 calculate_dominance_info (CDI_DOMINATORS);
3169
3170 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3171
3172 /* If there are names defined in the replacement table, prepare
3173 definition and use sites for all the names in NEW_SSA_NAMES and
3174 OLD_SSA_NAMES. */
3175 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3176 {
3177 prepare_names_to_update (insert_phi_p);
3178
3179 /* If all the names in NEW_SSA_NAMES had been marked for
3180 removal, and there are no symbols to rename, then there's
3181 nothing else to do. */
3182 if (bitmap_first_set_bit (new_ssa_names) < 0
3183 && !cfun->gimple_df->ssa_renaming_needed)
3184 goto done;
3185 }
3186
3187 /* Next, determine the block at which to start the renaming process. */
3188 if (cfun->gimple_df->ssa_renaming_needed)
3189 {
3190 /* If we rename bare symbols initialize the mapping to
3191 auxiliar info we need to keep track of. */
3192 var_infos = htab_create (47, var_info_hash, var_info_eq, free);
3193
3194 /* If we have to rename some symbols from scratch, we need to
3195 start the process at the root of the CFG. FIXME, it should
3196 be possible to determine the nearest block that had a
3197 definition for each of the symbols that are marked for
3198 updating. For now this seems more work than it's worth. */
3199 start_bb = ENTRY_BLOCK_PTR;
3200
3201 /* Traverse the CFG looking for existing definitions and uses of
3202 symbols in SSA operands. Mark interesting blocks and
3203 statements and set local live-in information for the PHI
3204 placement heuristics. */
3205 prepare_block_for_update (start_bb, insert_phi_p);
3206
3207 #ifdef ENABLE_CHECKING
3208 for (i = 1; i < num_ssa_names; ++i)
3209 {
3210 tree name = ssa_name (i);
3211 if (!name
3212 || virtual_operand_p (name))
3213 continue;
3214
3215 /* For all but virtual operands, which do not have SSA names
3216 with overlapping life ranges, ensure that symbols marked
3217 for renaming do not have existing SSA names associated with
3218 them as we do not re-write them out-of-SSA before going
3219 into SSA for the remaining symbol uses. */
3220 if (marked_for_renaming (SSA_NAME_VAR (name)))
3221 {
3222 fprintf (stderr, "Existing SSA name for symbol marked for "
3223 "renaming: ");
3224 print_generic_expr (stderr, name, TDF_SLIM);
3225 fprintf (stderr, "\n");
3226 internal_error ("SSA corruption");
3227 }
3228 }
3229 #endif
3230 }
3231 else
3232 {
3233 /* Otherwise, the entry block to the region is the nearest
3234 common dominator for the blocks in BLOCKS. */
3235 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3236 blocks_to_update);
3237 }
3238
3239 /* If requested, insert PHI nodes at the iterated dominance frontier
3240 of every block, creating new definitions for names in OLD_SSA_NAMES
3241 and for symbols found. */
3242 if (insert_phi_p)
3243 {
3244 bitmap_head *dfs;
3245
3246 /* If the caller requested PHI nodes to be added, compute
3247 dominance frontiers. */
3248 dfs = XNEWVEC (bitmap_head, last_basic_block);
3249 FOR_EACH_BB (bb)
3250 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3251 compute_dominance_frontiers (dfs);
3252
3253 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3254 {
3255 sbitmap_iterator sbi;
3256
3257 /* insert_update_phi_nodes_for will call add_new_name_mapping
3258 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3259 will grow while we are traversing it (but it will not
3260 gain any new members). Copy OLD_SSA_NAMES to a temporary
3261 for traversal. */
3262 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3263 bitmap_copy (tmp, old_ssa_names);
3264 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3265 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3266 update_flags);
3267 sbitmap_free (tmp);
3268 }
3269
3270 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3271 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3272 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3273 update_flags);
3274
3275 FOR_EACH_BB (bb)
3276 bitmap_clear (&dfs[bb->index]);
3277 free (dfs);
3278
3279 /* Insertion of PHI nodes may have added blocks to the region.
3280 We need to re-compute START_BB to include the newly added
3281 blocks. */
3282 if (start_bb != ENTRY_BLOCK_PTR)
3283 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3284 blocks_to_update);
3285 }
3286
3287 /* Reset the current definition for name and symbol before renaming
3288 the sub-graph. */
3289 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3290 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3291
3292 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3293 get_var_info (sym)->info.current_def = NULL_TREE;
3294
3295 /* Now start the renaming process at START_BB. */
3296 interesting_blocks = sbitmap_alloc (last_basic_block);
3297 bitmap_clear (interesting_blocks);
3298 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3299 bitmap_set_bit (interesting_blocks, i);
3300
3301 rewrite_blocks (start_bb, REWRITE_UPDATE);
3302
3303 sbitmap_free (interesting_blocks);
3304
3305 /* Debugging dumps. */
3306 if (dump_file)
3307 {
3308 int c;
3309 unsigned i;
3310
3311 dump_update_ssa (dump_file);
3312
3313 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3314 start_bb->index);
3315
3316 c = 0;
3317 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3318 c++;
3319 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3320 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3321 c, PERCENT (c, last_basic_block));
3322
3323 if (dump_flags & TDF_DETAILS)
3324 {
3325 fprintf (dump_file, "Affected blocks:");
3326 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3327 fprintf (dump_file, " %u", i);
3328 fprintf (dump_file, "\n");
3329 }
3330
3331 fprintf (dump_file, "\n\n");
3332 }
3333
3334 /* Free allocated memory. */
3335 done:
3336 delete_update_ssa ();
3337
3338 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3339 }