]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
Eliminate ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR macros
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "gimple.h"
33 #include "gimple-iterator.h"
34 #include "gimple-ssa.h"
35 #include "tree-cfg.h"
36 #include "tree-phinodes.h"
37 #include "ssa-iterators.h"
38 #include "stringpool.h"
39 #include "tree-ssanames.h"
40 #include "tree-into-ssa.h"
41 #include "expr.h"
42 #include "tree-dfa.h"
43 #include "tree-ssa.h"
44 #include "tree-inline.h"
45 #include "hash-table.h"
46 #include "tree-pass.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "params.h"
50 #include "diagnostic-core.h"
51 #include "tree-into-ssa.h"
52
53 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
54
55 /* This file builds the SSA form for a function as described in:
56 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
57 Computing Static Single Assignment Form and the Control Dependence
58 Graph. ACM Transactions on Programming Languages and Systems,
59 13(4):451-490, October 1991. */
60
61 /* Structure to map a variable VAR to the set of blocks that contain
62 definitions for VAR. */
63 struct def_blocks_d
64 {
65 /* Blocks that contain definitions of VAR. Bit I will be set if the
66 Ith block contains a definition of VAR. */
67 bitmap def_blocks;
68
69 /* Blocks that contain a PHI node for VAR. */
70 bitmap phi_blocks;
71
72 /* Blocks where VAR is live-on-entry. Similar semantics as
73 DEF_BLOCKS. */
74 bitmap livein_blocks;
75 };
76
77 typedef struct def_blocks_d *def_blocks_p;
78
79
80 /* Stack of trees used to restore the global currdefs to its original
81 state after completing rewriting of a block and its dominator
82 children. Its elements have the following properties:
83
84 - An SSA_NAME (N) indicates that the current definition of the
85 underlying variable should be set to the given SSA_NAME. If the
86 symbol associated with the SSA_NAME is not a GIMPLE register, the
87 next slot in the stack must be a _DECL node (SYM). In this case,
88 the name N in the previous slot is the current reaching
89 definition for SYM.
90
91 - A _DECL node indicates that the underlying variable has no
92 current definition.
93
94 - A NULL node at the top entry is used to mark the last slot
95 associated with the current block. */
96 static vec<tree> block_defs_stack;
97
98
99 /* Set of existing SSA names being replaced by update_ssa. */
100 static sbitmap old_ssa_names;
101
102 /* Set of new SSA names being added by update_ssa. Note that both
103 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
104 the operations done on them are presence tests. */
105 static sbitmap new_ssa_names;
106
107 static sbitmap interesting_blocks;
108
109 /* Set of SSA names that have been marked to be released after they
110 were registered in the replacement table. They will be finally
111 released after we finish updating the SSA web. */
112 static bitmap names_to_release;
113
114 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
115 the to basic block with index I. Allocated once per compilation, *not*
116 released between different functions. */
117 static vec<gimple_vec> phis_to_rewrite;
118
119 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
120 static bitmap blocks_with_phis_to_rewrite;
121
122 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
123 to grow as the callers to create_new_def_for will create new names on
124 the fly.
125 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
126 need to find a reasonable growth strategy. */
127 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
128
129
130 /* The function the SSA updating data structures have been initialized for.
131 NULL if they need to be initialized by create_new_def_for. */
132 static struct function *update_ssa_initialized_fn = NULL;
133
134 /* Global data to attach to the main dominator walk structure. */
135 struct mark_def_sites_global_data
136 {
137 /* This bitmap contains the variables which are set before they
138 are used in a basic block. */
139 bitmap kills;
140 };
141
142 /* It is advantageous to avoid things like life analysis for variables which
143 do not need PHI nodes. This enum describes whether or not a particular
144 variable may need a PHI node. */
145
146 enum need_phi_state {
147 /* This is the default. If we are still in this state after finding
148 all the definition and use sites, then we will assume the variable
149 needs PHI nodes. This is probably an overly conservative assumption. */
150 NEED_PHI_STATE_UNKNOWN,
151
152 /* This state indicates that we have seen one or more sets of the
153 variable in a single basic block and that the sets dominate all
154 uses seen so far. If after finding all definition and use sites
155 we are still in this state, then the variable does not need any
156 PHI nodes. */
157 NEED_PHI_STATE_NO,
158
159 /* This state indicates that we have either seen multiple definitions of
160 the variable in multiple blocks, or that we encountered a use in a
161 block that was not dominated by the block containing the set(s) of
162 this variable. This variable is assumed to need PHI nodes. */
163 NEED_PHI_STATE_MAYBE
164 };
165
166 /* Information stored for both SSA names and decls. */
167 struct common_info_d
168 {
169 /* This field indicates whether or not the variable may need PHI nodes.
170 See the enum's definition for more detailed information about the
171 states. */
172 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
173
174 /* The current reaching definition replacing this var. */
175 tree current_def;
176
177 /* Definitions for this var. */
178 struct def_blocks_d def_blocks;
179 };
180
181 /* The information associated with decls and SSA names. */
182 typedef struct common_info_d *common_info_p;
183
184 /* Information stored for decls. */
185 struct var_info_d
186 {
187 /* The variable. */
188 tree var;
189
190 /* Information stored for both SSA names and decls. */
191 struct common_info_d info;
192 };
193
194 /* The information associated with decls. */
195 typedef struct var_info_d *var_info_p;
196
197
198 /* VAR_INFOS hashtable helpers. */
199
200 struct var_info_hasher : typed_free_remove <var_info_d>
201 {
202 typedef var_info_d value_type;
203 typedef var_info_d compare_type;
204 static inline hashval_t hash (const value_type *);
205 static inline bool equal (const value_type *, const compare_type *);
206 };
207
208 inline hashval_t
209 var_info_hasher::hash (const value_type *p)
210 {
211 return DECL_UID (p->var);
212 }
213
214 inline bool
215 var_info_hasher::equal (const value_type *p1, const compare_type *p2)
216 {
217 return p1->var == p2->var;
218 }
219
220
221 /* Each entry in VAR_INFOS contains an element of type STRUCT
222 VAR_INFO_D. */
223 static hash_table <var_info_hasher> var_infos;
224
225
226 /* Information stored for SSA names. */
227 struct ssa_name_info
228 {
229 /* Age of this record (so that info_for_ssa_name table can be cleared
230 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
231 are assumed to be null. */
232 unsigned age;
233
234 /* Replacement mappings, allocated from update_ssa_obstack. */
235 bitmap repl_set;
236
237 /* Information stored for both SSA names and decls. */
238 struct common_info_d info;
239 };
240
241 /* The information associated with names. */
242 typedef struct ssa_name_info *ssa_name_info_p;
243
244 static vec<ssa_name_info_p> info_for_ssa_name;
245 static unsigned current_info_for_ssa_name_age;
246
247 static bitmap_obstack update_ssa_obstack;
248
249 /* The set of blocks affected by update_ssa. */
250 static bitmap blocks_to_update;
251
252 /* The main entry point to the SSA renamer (rewrite_blocks) may be
253 called several times to do different, but related, tasks.
254 Initially, we need it to rename the whole program into SSA form.
255 At other times, we may need it to only rename into SSA newly
256 exposed symbols. Finally, we can also call it to incrementally fix
257 an already built SSA web. */
258 enum rewrite_mode {
259 /* Convert the whole function into SSA form. */
260 REWRITE_ALL,
261
262 /* Incrementally update the SSA web by replacing existing SSA
263 names with new ones. See update_ssa for details. */
264 REWRITE_UPDATE
265 };
266
267 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
268 static bitmap symbols_to_rename_set;
269 static vec<tree> symbols_to_rename;
270
271 /* Mark SYM for renaming. */
272
273 static void
274 mark_for_renaming (tree sym)
275 {
276 if (!symbols_to_rename_set)
277 symbols_to_rename_set = BITMAP_ALLOC (NULL);
278 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
279 symbols_to_rename.safe_push (sym);
280 }
281
282 /* Return true if SYM is marked for renaming. */
283
284 static bool
285 marked_for_renaming (tree sym)
286 {
287 if (!symbols_to_rename_set || sym == NULL_TREE)
288 return false;
289 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
290 }
291
292
293 /* Return true if STMT needs to be rewritten. When renaming a subset
294 of the variables, not all statements will be processed. This is
295 decided in mark_def_sites. */
296
297 static inline bool
298 rewrite_uses_p (gimple stmt)
299 {
300 return gimple_visited_p (stmt);
301 }
302
303
304 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
305
306 static inline void
307 set_rewrite_uses (gimple stmt, bool rewrite_p)
308 {
309 gimple_set_visited (stmt, rewrite_p);
310 }
311
312
313 /* Return true if the DEFs created by statement STMT should be
314 registered when marking new definition sites. This is slightly
315 different than rewrite_uses_p: it's used by update_ssa to
316 distinguish statements that need to have both uses and defs
317 processed from those that only need to have their defs processed.
318 Statements that define new SSA names only need to have their defs
319 registered, but they don't need to have their uses renamed. */
320
321 static inline bool
322 register_defs_p (gimple stmt)
323 {
324 return gimple_plf (stmt, GF_PLF_1) != 0;
325 }
326
327
328 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
329
330 static inline void
331 set_register_defs (gimple stmt, bool register_defs_p)
332 {
333 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
334 }
335
336
337 /* Get the information associated with NAME. */
338
339 static inline ssa_name_info_p
340 get_ssa_name_ann (tree name)
341 {
342 unsigned ver = SSA_NAME_VERSION (name);
343 unsigned len = info_for_ssa_name.length ();
344 struct ssa_name_info *info;
345
346 /* Re-allocate the vector at most once per update/into-SSA. */
347 if (ver >= len)
348 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
349
350 /* But allocate infos lazily. */
351 info = info_for_ssa_name[ver];
352 if (!info)
353 {
354 info = XCNEW (struct ssa_name_info);
355 info->age = current_info_for_ssa_name_age;
356 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
357 info_for_ssa_name[ver] = info;
358 }
359
360 if (info->age < current_info_for_ssa_name_age)
361 {
362 info->age = current_info_for_ssa_name_age;
363 info->repl_set = NULL;
364 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
365 info->info.current_def = NULL_TREE;
366 info->info.def_blocks.def_blocks = NULL;
367 info->info.def_blocks.phi_blocks = NULL;
368 info->info.def_blocks.livein_blocks = NULL;
369 }
370
371 return info;
372 }
373
374 /* Return and allocate the auxiliar information for DECL. */
375
376 static inline var_info_p
377 get_var_info (tree decl)
378 {
379 struct var_info_d vi;
380 var_info_d **slot;
381 vi.var = decl;
382 slot = var_infos.find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
383 if (*slot == NULL)
384 {
385 var_info_p v = XCNEW (struct var_info_d);
386 v->var = decl;
387 *slot = v;
388 return v;
389 }
390 return *slot;
391 }
392
393
394 /* Clears info for SSA names. */
395
396 static void
397 clear_ssa_name_info (void)
398 {
399 current_info_for_ssa_name_age++;
400
401 /* If current_info_for_ssa_name_age wraps we use stale information.
402 Asser that this does not happen. */
403 gcc_assert (current_info_for_ssa_name_age != 0);
404 }
405
406
407 /* Get access to the auxiliar information stored per SSA name or decl. */
408
409 static inline common_info_p
410 get_common_info (tree var)
411 {
412 if (TREE_CODE (var) == SSA_NAME)
413 return &get_ssa_name_ann (var)->info;
414 else
415 return &get_var_info (var)->info;
416 }
417
418
419 /* Return the current definition for VAR. */
420
421 tree
422 get_current_def (tree var)
423 {
424 return get_common_info (var)->current_def;
425 }
426
427
428 /* Sets current definition of VAR to DEF. */
429
430 void
431 set_current_def (tree var, tree def)
432 {
433 get_common_info (var)->current_def = def;
434 }
435
436 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
437 all statements in basic block BB. */
438
439 static void
440 initialize_flags_in_bb (basic_block bb)
441 {
442 gimple stmt;
443 gimple_stmt_iterator gsi;
444
445 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
446 {
447 gimple phi = gsi_stmt (gsi);
448 set_rewrite_uses (phi, false);
449 set_register_defs (phi, false);
450 }
451
452 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
453 {
454 stmt = gsi_stmt (gsi);
455
456 /* We are going to use the operand cache API, such as
457 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
458 cache for each statement should be up-to-date. */
459 gcc_checking_assert (!gimple_modified_p (stmt));
460 set_rewrite_uses (stmt, false);
461 set_register_defs (stmt, false);
462 }
463 }
464
465 /* Mark block BB as interesting for update_ssa. */
466
467 static void
468 mark_block_for_update (basic_block bb)
469 {
470 gcc_checking_assert (blocks_to_update != NULL);
471 if (!bitmap_set_bit (blocks_to_update, bb->index))
472 return;
473 initialize_flags_in_bb (bb);
474 }
475
476 /* Return the set of blocks where variable VAR is defined and the blocks
477 where VAR is live on entry (livein). If no entry is found in
478 DEF_BLOCKS, a new one is created and returned. */
479
480 static inline struct def_blocks_d *
481 get_def_blocks_for (common_info_p info)
482 {
483 struct def_blocks_d *db_p = &info->def_blocks;
484 if (!db_p->def_blocks)
485 {
486 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
487 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
488 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
489 }
490
491 return db_p;
492 }
493
494
495 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
496 VAR is defined by a PHI node. */
497
498 static void
499 set_def_block (tree var, basic_block bb, bool phi_p)
500 {
501 struct def_blocks_d *db_p;
502 common_info_p info;
503
504 info = get_common_info (var);
505 db_p = get_def_blocks_for (info);
506
507 /* Set the bit corresponding to the block where VAR is defined. */
508 bitmap_set_bit (db_p->def_blocks, bb->index);
509 if (phi_p)
510 bitmap_set_bit (db_p->phi_blocks, bb->index);
511
512 /* Keep track of whether or not we may need to insert PHI nodes.
513
514 If we are in the UNKNOWN state, then this is the first definition
515 of VAR. Additionally, we have not seen any uses of VAR yet, so
516 we do not need a PHI node for this variable at this time (i.e.,
517 transition to NEED_PHI_STATE_NO).
518
519 If we are in any other state, then we either have multiple definitions
520 of this variable occurring in different blocks or we saw a use of the
521 variable which was not dominated by the block containing the
522 definition(s). In this case we may need a PHI node, so enter
523 state NEED_PHI_STATE_MAYBE. */
524 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
525 info->need_phi_state = NEED_PHI_STATE_NO;
526 else
527 info->need_phi_state = NEED_PHI_STATE_MAYBE;
528 }
529
530
531 /* Mark block BB as having VAR live at the entry to BB. */
532
533 static void
534 set_livein_block (tree var, basic_block bb)
535 {
536 common_info_p info;
537 struct def_blocks_d *db_p;
538
539 info = get_common_info (var);
540 db_p = get_def_blocks_for (info);
541
542 /* Set the bit corresponding to the block where VAR is live in. */
543 bitmap_set_bit (db_p->livein_blocks, bb->index);
544
545 /* Keep track of whether or not we may need to insert PHI nodes.
546
547 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
548 by the single block containing the definition(s) of this variable. If
549 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
550 NEED_PHI_STATE_MAYBE. */
551 if (info->need_phi_state == NEED_PHI_STATE_NO)
552 {
553 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
554
555 if (def_block_index == -1
556 || ! dominated_by_p (CDI_DOMINATORS, bb,
557 BASIC_BLOCK (def_block_index)))
558 info->need_phi_state = NEED_PHI_STATE_MAYBE;
559 }
560 else
561 info->need_phi_state = NEED_PHI_STATE_MAYBE;
562 }
563
564
565 /* Return true if NAME is in OLD_SSA_NAMES. */
566
567 static inline bool
568 is_old_name (tree name)
569 {
570 unsigned ver = SSA_NAME_VERSION (name);
571 if (!new_ssa_names)
572 return false;
573 return (ver < SBITMAP_SIZE (new_ssa_names)
574 && bitmap_bit_p (old_ssa_names, ver));
575 }
576
577
578 /* Return true if NAME is in NEW_SSA_NAMES. */
579
580 static inline bool
581 is_new_name (tree name)
582 {
583 unsigned ver = SSA_NAME_VERSION (name);
584 if (!new_ssa_names)
585 return false;
586 return (ver < SBITMAP_SIZE (new_ssa_names)
587 && bitmap_bit_p (new_ssa_names, ver));
588 }
589
590
591 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
592
593 static inline bitmap
594 names_replaced_by (tree new_tree)
595 {
596 return get_ssa_name_ann (new_tree)->repl_set;
597 }
598
599
600 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
601
602 static inline void
603 add_to_repl_tbl (tree new_tree, tree old)
604 {
605 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
606 if (!*set)
607 *set = BITMAP_ALLOC (&update_ssa_obstack);
608 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
609 }
610
611
612 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
613 represents the set of names O_1 ... O_j replaced by N_i. This is
614 used by update_ssa and its helpers to introduce new SSA names in an
615 already formed SSA web. */
616
617 static void
618 add_new_name_mapping (tree new_tree, tree old)
619 {
620 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
621 gcc_checking_assert (new_tree != old
622 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
623
624 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
625 caller may have created new names since the set was created. */
626 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
627 {
628 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
629 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
630 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
631 }
632
633 /* Update the REPL_TBL table. */
634 add_to_repl_tbl (new_tree, old);
635
636 /* If OLD had already been registered as a new name, then all the
637 names that OLD replaces should also be replaced by NEW_TREE. */
638 if (is_new_name (old))
639 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
640
641 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
642 respectively. */
643 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
644 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
645 }
646
647
648 /* Call back for walk_dominator_tree used to collect definition sites
649 for every variable in the function. For every statement S in block
650 BB:
651
652 1- Variables defined by S in the DEFS of S are marked in the bitmap
653 KILLS.
654
655 2- If S uses a variable VAR and there is no preceding kill of VAR,
656 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
657
658 This information is used to determine which variables are live
659 across block boundaries to reduce the number of PHI nodes
660 we create. */
661
662 static void
663 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
664 {
665 tree def;
666 use_operand_p use_p;
667 ssa_op_iter iter;
668
669 /* Since this is the first time that we rewrite the program into SSA
670 form, force an operand scan on every statement. */
671 update_stmt (stmt);
672
673 gcc_checking_assert (blocks_to_update == NULL);
674 set_register_defs (stmt, false);
675 set_rewrite_uses (stmt, false);
676
677 if (is_gimple_debug (stmt))
678 {
679 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
680 {
681 tree sym = USE_FROM_PTR (use_p);
682 gcc_checking_assert (DECL_P (sym));
683 set_rewrite_uses (stmt, true);
684 }
685 if (rewrite_uses_p (stmt))
686 bitmap_set_bit (interesting_blocks, bb->index);
687 return;
688 }
689
690 /* If a variable is used before being set, then the variable is live
691 across a block boundary, so mark it live-on-entry to BB. */
692 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
693 {
694 tree sym = USE_FROM_PTR (use_p);
695 gcc_checking_assert (DECL_P (sym));
696 if (!bitmap_bit_p (kills, DECL_UID (sym)))
697 set_livein_block (sym, bb);
698 set_rewrite_uses (stmt, true);
699 }
700
701 /* Now process the defs. Mark BB as the definition block and add
702 each def to the set of killed symbols. */
703 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
704 {
705 gcc_checking_assert (DECL_P (def));
706 set_def_block (def, bb, false);
707 bitmap_set_bit (kills, DECL_UID (def));
708 set_register_defs (stmt, true);
709 }
710
711 /* If we found the statement interesting then also mark the block BB
712 as interesting. */
713 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
714 bitmap_set_bit (interesting_blocks, bb->index);
715 }
716
717 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
718 in the dfs numbering of the dominance tree. */
719
720 struct dom_dfsnum
721 {
722 /* Basic block whose index this entry corresponds to. */
723 unsigned bb_index;
724
725 /* The dfs number of this node. */
726 unsigned dfs_num;
727 };
728
729 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
730 for qsort. */
731
732 static int
733 cmp_dfsnum (const void *a, const void *b)
734 {
735 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
736 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
737
738 return (int) da->dfs_num - (int) db->dfs_num;
739 }
740
741 /* Among the intervals starting at the N points specified in DEFS, find
742 the one that contains S, and return its bb_index. */
743
744 static unsigned
745 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
746 {
747 unsigned f = 0, t = n, m;
748
749 while (t > f + 1)
750 {
751 m = (f + t) / 2;
752 if (defs[m].dfs_num <= s)
753 f = m;
754 else
755 t = m;
756 }
757
758 return defs[f].bb_index;
759 }
760
761 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
762 KILLS is a bitmap of blocks where the value is defined before any use. */
763
764 static void
765 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
766 {
767 vec<int> worklist;
768 bitmap_iterator bi;
769 unsigned i, b, p, u, top;
770 bitmap live_phis;
771 basic_block def_bb, use_bb;
772 edge e;
773 edge_iterator ei;
774 bitmap to_remove;
775 struct dom_dfsnum *defs;
776 unsigned n_defs, adef;
777
778 if (bitmap_empty_p (uses))
779 {
780 bitmap_clear (phis);
781 return;
782 }
783
784 /* The phi must dominate a use, or an argument of a live phi. Also, we
785 do not create any phi nodes in def blocks, unless they are also livein. */
786 to_remove = BITMAP_ALLOC (NULL);
787 bitmap_and_compl (to_remove, kills, uses);
788 bitmap_and_compl_into (phis, to_remove);
789 if (bitmap_empty_p (phis))
790 {
791 BITMAP_FREE (to_remove);
792 return;
793 }
794
795 /* We want to remove the unnecessary phi nodes, but we do not want to compute
796 liveness information, as that may be linear in the size of CFG, and if
797 there are lot of different variables to rewrite, this may lead to quadratic
798 behavior.
799
800 Instead, we basically emulate standard dce. We put all uses to worklist,
801 then for each of them find the nearest def that dominates them. If this
802 def is a phi node, we mark it live, and if it was not live before, we
803 add the predecessors of its basic block to the worklist.
804
805 To quickly locate the nearest def that dominates use, we use dfs numbering
806 of the dominance tree (that is already available in order to speed up
807 queries). For each def, we have the interval given by the dfs number on
808 entry to and on exit from the corresponding subtree in the dominance tree.
809 The nearest dominator for a given use is the smallest of these intervals
810 that contains entry and exit dfs numbers for the basic block with the use.
811 If we store the bounds for all the uses to an array and sort it, we can
812 locate the nearest dominating def in logarithmic time by binary search.*/
813 bitmap_ior (to_remove, kills, phis);
814 n_defs = bitmap_count_bits (to_remove);
815 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
816 defs[0].bb_index = 1;
817 defs[0].dfs_num = 0;
818 adef = 1;
819 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
820 {
821 def_bb = BASIC_BLOCK (i);
822 defs[adef].bb_index = i;
823 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
824 defs[adef + 1].bb_index = i;
825 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
826 adef += 2;
827 }
828 BITMAP_FREE (to_remove);
829 gcc_assert (adef == 2 * n_defs + 1);
830 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
831 gcc_assert (defs[0].bb_index == 1);
832
833 /* Now each DEFS entry contains the number of the basic block to that the
834 dfs number corresponds. Change them to the number of basic block that
835 corresponds to the interval following the dfs number. Also, for the
836 dfs_out numbers, increase the dfs number by one (so that it corresponds
837 to the start of the following interval, not to the end of the current
838 one). We use WORKLIST as a stack. */
839 worklist.create (n_defs + 1);
840 worklist.quick_push (1);
841 top = 1;
842 n_defs = 1;
843 for (i = 1; i < adef; i++)
844 {
845 b = defs[i].bb_index;
846 if (b == top)
847 {
848 /* This is a closing element. Interval corresponding to the top
849 of the stack after removing it follows. */
850 worklist.pop ();
851 top = worklist[worklist.length () - 1];
852 defs[n_defs].bb_index = top;
853 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
854 }
855 else
856 {
857 /* Opening element. Nothing to do, just push it to the stack and move
858 it to the correct position. */
859 defs[n_defs].bb_index = defs[i].bb_index;
860 defs[n_defs].dfs_num = defs[i].dfs_num;
861 worklist.quick_push (b);
862 top = b;
863 }
864
865 /* If this interval starts at the same point as the previous one, cancel
866 the previous one. */
867 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
868 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
869 else
870 n_defs++;
871 }
872 worklist.pop ();
873 gcc_assert (worklist.is_empty ());
874
875 /* Now process the uses. */
876 live_phis = BITMAP_ALLOC (NULL);
877 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
878 {
879 worklist.safe_push (i);
880 }
881
882 while (!worklist.is_empty ())
883 {
884 b = worklist.pop ();
885 if (b == ENTRY_BLOCK)
886 continue;
887
888 /* If there is a phi node in USE_BB, it is made live. Otherwise,
889 find the def that dominates the immediate dominator of USE_BB
890 (the kill in USE_BB does not dominate the use). */
891 if (bitmap_bit_p (phis, b))
892 p = b;
893 else
894 {
895 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
896 p = find_dfsnum_interval (defs, n_defs,
897 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
898 if (!bitmap_bit_p (phis, p))
899 continue;
900 }
901
902 /* If the phi node is already live, there is nothing to do. */
903 if (!bitmap_set_bit (live_phis, p))
904 continue;
905
906 /* Add the new uses to the worklist. */
907 def_bb = BASIC_BLOCK (p);
908 FOR_EACH_EDGE (e, ei, def_bb->preds)
909 {
910 u = e->src->index;
911 if (bitmap_bit_p (uses, u))
912 continue;
913
914 /* In case there is a kill directly in the use block, do not record
915 the use (this is also necessary for correctness, as we assume that
916 uses dominated by a def directly in their block have been filtered
917 out before). */
918 if (bitmap_bit_p (kills, u))
919 continue;
920
921 bitmap_set_bit (uses, u);
922 worklist.safe_push (u);
923 }
924 }
925
926 worklist.release ();
927 bitmap_copy (phis, live_phis);
928 BITMAP_FREE (live_phis);
929 free (defs);
930 }
931
932 /* Return the set of blocks where variable VAR is defined and the blocks
933 where VAR is live on entry (livein). Return NULL, if no entry is
934 found in DEF_BLOCKS. */
935
936 static inline struct def_blocks_d *
937 find_def_blocks_for (tree var)
938 {
939 def_blocks_p p = &get_common_info (var)->def_blocks;
940 if (!p->def_blocks)
941 return NULL;
942 return p;
943 }
944
945
946 /* Marks phi node PHI in basic block BB for rewrite. */
947
948 static void
949 mark_phi_for_rewrite (basic_block bb, gimple phi)
950 {
951 gimple_vec phis;
952 unsigned n, idx = bb->index;
953
954 if (rewrite_uses_p (phi))
955 return;
956
957 set_rewrite_uses (phi, true);
958
959 if (!blocks_with_phis_to_rewrite)
960 return;
961
962 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
963
964 n = (unsigned) last_basic_block + 1;
965 if (phis_to_rewrite.length () < n)
966 phis_to_rewrite.safe_grow_cleared (n);
967
968 phis = phis_to_rewrite[idx];
969 phis.reserve (10);
970
971 phis.safe_push (phi);
972 phis_to_rewrite[idx] = phis;
973 }
974
975 /* Insert PHI nodes for variable VAR using the iterated dominance
976 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
977 function assumes that the caller is incrementally updating the
978 existing SSA form, in which case VAR may be an SSA name instead of
979 a symbol.
980
981 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
982 PHI node for VAR. On exit, only the nodes that received a PHI node
983 for VAR will be present in PHI_INSERTION_POINTS. */
984
985 static void
986 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
987 {
988 unsigned bb_index;
989 edge e;
990 gimple phi;
991 basic_block bb;
992 bitmap_iterator bi;
993 struct def_blocks_d *def_map = find_def_blocks_for (var);
994
995 /* Remove the blocks where we already have PHI nodes for VAR. */
996 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
997
998 /* Remove obviously useless phi nodes. */
999 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1000 def_map->livein_blocks);
1001
1002 /* And insert the PHI nodes. */
1003 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1004 {
1005 bb = BASIC_BLOCK (bb_index);
1006 if (update_p)
1007 mark_block_for_update (bb);
1008
1009 if (dump_file && (dump_flags & TDF_DETAILS))
1010 {
1011 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1012 print_generic_expr (dump_file, var, TDF_SLIM);
1013 fprintf (dump_file, "\n");
1014 }
1015 phi = NULL;
1016
1017 if (TREE_CODE (var) == SSA_NAME)
1018 {
1019 /* If we are rewriting SSA names, create the LHS of the PHI
1020 node by duplicating VAR. This is useful in the case of
1021 pointers, to also duplicate pointer attributes (alias
1022 information, in particular). */
1023 edge_iterator ei;
1024 tree new_lhs;
1025
1026 gcc_checking_assert (update_p);
1027 new_lhs = duplicate_ssa_name (var, NULL);
1028 phi = create_phi_node (new_lhs, bb);
1029 add_new_name_mapping (new_lhs, var);
1030
1031 /* Add VAR to every argument slot of PHI. We need VAR in
1032 every argument so that rewrite_update_phi_arguments knows
1033 which name is this PHI node replacing. If VAR is a
1034 symbol marked for renaming, this is not necessary, the
1035 renamer will use the symbol on the LHS to get its
1036 reaching definition. */
1037 FOR_EACH_EDGE (e, ei, bb->preds)
1038 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1039 }
1040 else
1041 {
1042 tree tracked_var;
1043
1044 gcc_checking_assert (DECL_P (var));
1045 phi = create_phi_node (var, bb);
1046
1047 tracked_var = target_for_debug_bind (var);
1048 if (tracked_var)
1049 {
1050 gimple note = gimple_build_debug_bind (tracked_var,
1051 PHI_RESULT (phi),
1052 phi);
1053 gimple_stmt_iterator si = gsi_after_labels (bb);
1054 gsi_insert_before (&si, note, GSI_SAME_STMT);
1055 }
1056 }
1057
1058 /* Mark this PHI node as interesting for update_ssa. */
1059 set_register_defs (phi, true);
1060 mark_phi_for_rewrite (bb, phi);
1061 }
1062 }
1063
1064 /* Sort var_infos after DECL_UID of their var. */
1065
1066 static int
1067 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1068 {
1069 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1070 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1071 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1072 return -1;
1073 else
1074 return 1;
1075 }
1076
1077 /* Insert PHI nodes at the dominance frontier of blocks with variable
1078 definitions. DFS contains the dominance frontier information for
1079 the flowgraph. */
1080
1081 static void
1082 insert_phi_nodes (bitmap_head *dfs)
1083 {
1084 hash_table <var_info_hasher>::iterator hi;
1085 unsigned i;
1086 var_info_p info;
1087 vec<var_info_p> vars;
1088
1089 timevar_push (TV_TREE_INSERT_PHI_NODES);
1090
1091 vars.create (var_infos.elements ());
1092 FOR_EACH_HASH_TABLE_ELEMENT (var_infos, info, var_info_p, hi)
1093 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1094 vars.quick_push (info);
1095
1096 /* Do two stages to avoid code generation differences for UID
1097 differences but no UID ordering differences. */
1098 vars.qsort (insert_phi_nodes_compare_var_infos);
1099
1100 FOR_EACH_VEC_ELT (vars, i, info)
1101 {
1102 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1103 insert_phi_nodes_for (info->var, idf, false);
1104 BITMAP_FREE (idf);
1105 }
1106
1107 vars.release ();
1108
1109 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1110 }
1111
1112
1113 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1114 register DEF (an SSA_NAME) to be a new definition for SYM. */
1115
1116 static void
1117 register_new_def (tree def, tree sym)
1118 {
1119 common_info_p info = get_common_info (sym);
1120 tree currdef;
1121
1122 /* If this variable is set in a single basic block and all uses are
1123 dominated by the set(s) in that single basic block, then there is
1124 no reason to record anything for this variable in the block local
1125 definition stacks. Doing so just wastes time and memory.
1126
1127 This is the same test to prune the set of variables which may
1128 need PHI nodes. So we just use that information since it's already
1129 computed and available for us to use. */
1130 if (info->need_phi_state == NEED_PHI_STATE_NO)
1131 {
1132 info->current_def = def;
1133 return;
1134 }
1135
1136 currdef = info->current_def;
1137
1138 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1139 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1140 in the stack so that we know which symbol is being defined by
1141 this SSA name when we unwind the stack. */
1142 if (currdef && !is_gimple_reg (sym))
1143 block_defs_stack.safe_push (sym);
1144
1145 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1146 stack is later used by the dominator tree callbacks to restore
1147 the reaching definitions for all the variables defined in the
1148 block after a recursive visit to all its immediately dominated
1149 blocks. If there is no current reaching definition, then just
1150 record the underlying _DECL node. */
1151 block_defs_stack.safe_push (currdef ? currdef : sym);
1152
1153 /* Set the current reaching definition for SYM to be DEF. */
1154 info->current_def = def;
1155 }
1156
1157
1158 /* Perform a depth-first traversal of the dominator tree looking for
1159 variables to rename. BB is the block where to start searching.
1160 Renaming is a five step process:
1161
1162 1- Every definition made by PHI nodes at the start of the blocks is
1163 registered as the current definition for the corresponding variable.
1164
1165 2- Every statement in BB is rewritten. USE and VUSE operands are
1166 rewritten with their corresponding reaching definition. DEF and
1167 VDEF targets are registered as new definitions.
1168
1169 3- All the PHI nodes in successor blocks of BB are visited. The
1170 argument corresponding to BB is replaced with its current reaching
1171 definition.
1172
1173 4- Recursively rewrite every dominator child block of BB.
1174
1175 5- Restore (in reverse order) the current reaching definition for every
1176 new definition introduced in this block. This is done so that when
1177 we return from the recursive call, all the current reaching
1178 definitions are restored to the names that were valid in the
1179 dominator parent of BB. */
1180
1181 /* Return the current definition for variable VAR. If none is found,
1182 create a new SSA name to act as the zeroth definition for VAR. */
1183
1184 static tree
1185 get_reaching_def (tree var)
1186 {
1187 common_info_p info = get_common_info (var);
1188 tree currdef;
1189
1190 /* Lookup the current reaching definition for VAR. */
1191 currdef = info->current_def;
1192
1193 /* If there is no reaching definition for VAR, create and register a
1194 default definition for it (if needed). */
1195 if (currdef == NULL_TREE)
1196 {
1197 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1198 currdef = get_or_create_ssa_default_def (cfun, sym);
1199 }
1200
1201 /* Return the current reaching definition for VAR, or the default
1202 definition, if we had to create one. */
1203 return currdef;
1204 }
1205
1206
1207 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1208
1209 static void
1210 rewrite_debug_stmt_uses (gimple stmt)
1211 {
1212 use_operand_p use_p;
1213 ssa_op_iter iter;
1214 bool update = false;
1215
1216 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1217 {
1218 tree var = USE_FROM_PTR (use_p), def;
1219 common_info_p info = get_common_info (var);
1220 gcc_checking_assert (DECL_P (var));
1221 def = info->current_def;
1222 if (!def)
1223 {
1224 if (TREE_CODE (var) == PARM_DECL
1225 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1226 {
1227 gimple_stmt_iterator gsi
1228 =
1229 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1230 int lim;
1231 /* Search a few source bind stmts at the start of first bb to
1232 see if a DEBUG_EXPR_DECL can't be reused. */
1233 for (lim = 32;
1234 !gsi_end_p (gsi) && lim > 0;
1235 gsi_next (&gsi), lim--)
1236 {
1237 gimple gstmt = gsi_stmt (gsi);
1238 if (!gimple_debug_source_bind_p (gstmt))
1239 break;
1240 if (gimple_debug_source_bind_get_value (gstmt) == var)
1241 {
1242 def = gimple_debug_source_bind_get_var (gstmt);
1243 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1244 break;
1245 else
1246 def = NULL_TREE;
1247 }
1248 }
1249 /* If not, add a new source bind stmt. */
1250 if (def == NULL_TREE)
1251 {
1252 gimple def_temp;
1253 def = make_node (DEBUG_EXPR_DECL);
1254 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1255 DECL_ARTIFICIAL (def) = 1;
1256 TREE_TYPE (def) = TREE_TYPE (var);
1257 DECL_MODE (def) = DECL_MODE (var);
1258 gsi =
1259 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1260 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1261 }
1262 update = true;
1263 }
1264 }
1265 else
1266 {
1267 /* Check if info->current_def can be trusted. */
1268 basic_block bb = gimple_bb (stmt);
1269 basic_block def_bb
1270 = SSA_NAME_IS_DEFAULT_DEF (def)
1271 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1272
1273 /* If definition is in current bb, it is fine. */
1274 if (bb == def_bb)
1275 ;
1276 /* If definition bb doesn't dominate the current bb,
1277 it can't be used. */
1278 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1279 def = NULL;
1280 /* If there is just one definition and dominates the current
1281 bb, it is fine. */
1282 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1283 ;
1284 else
1285 {
1286 struct def_blocks_d *db_p = get_def_blocks_for (info);
1287
1288 /* If there are some non-debug uses in the current bb,
1289 it is fine. */
1290 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1291 ;
1292 /* Otherwise give up for now. */
1293 else
1294 def = NULL;
1295 }
1296 }
1297 if (def == NULL)
1298 {
1299 gimple_debug_bind_reset_value (stmt);
1300 update_stmt (stmt);
1301 return;
1302 }
1303 SET_USE (use_p, def);
1304 }
1305 if (update)
1306 update_stmt (stmt);
1307 }
1308
1309 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1310 the block with its immediate reaching definitions. Update the current
1311 definition of a variable when a new real or virtual definition is found. */
1312
1313 static void
1314 rewrite_stmt (gimple_stmt_iterator *si)
1315 {
1316 use_operand_p use_p;
1317 def_operand_p def_p;
1318 ssa_op_iter iter;
1319 gimple stmt = gsi_stmt (*si);
1320
1321 /* If mark_def_sites decided that we don't need to rewrite this
1322 statement, ignore it. */
1323 gcc_assert (blocks_to_update == NULL);
1324 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1325 return;
1326
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 {
1329 fprintf (dump_file, "Renaming statement ");
1330 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1331 fprintf (dump_file, "\n");
1332 }
1333
1334 /* Step 1. Rewrite USES in the statement. */
1335 if (rewrite_uses_p (stmt))
1336 {
1337 if (is_gimple_debug (stmt))
1338 rewrite_debug_stmt_uses (stmt);
1339 else
1340 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1341 {
1342 tree var = USE_FROM_PTR (use_p);
1343 gcc_checking_assert (DECL_P (var));
1344 SET_USE (use_p, get_reaching_def (var));
1345 }
1346 }
1347
1348 /* Step 2. Register the statement's DEF operands. */
1349 if (register_defs_p (stmt))
1350 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1351 {
1352 tree var = DEF_FROM_PTR (def_p);
1353 tree name;
1354 tree tracked_var;
1355
1356 gcc_checking_assert (DECL_P (var));
1357
1358 if (gimple_clobber_p (stmt)
1359 && is_gimple_reg (var))
1360 {
1361 /* If we rewrite a DECL into SSA form then drop its
1362 clobber stmts and replace uses with a new default def. */
1363 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1364 && !gimple_vdef (stmt));
1365 gsi_replace (si, gimple_build_nop (), true);
1366 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1367 break;
1368 }
1369
1370 name = make_ssa_name (var, stmt);
1371 SET_DEF (def_p, name);
1372 register_new_def (DEF_FROM_PTR (def_p), var);
1373
1374 tracked_var = target_for_debug_bind (var);
1375 if (tracked_var)
1376 {
1377 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1378 gsi_insert_after (si, note, GSI_SAME_STMT);
1379 }
1380 }
1381 }
1382
1383
1384 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1385 PHI nodes. For every PHI node found, add a new argument containing the
1386 current reaching definition for the variable and the edge through which
1387 that definition is reaching the PHI node. */
1388
1389 static void
1390 rewrite_add_phi_arguments (basic_block bb)
1391 {
1392 edge e;
1393 edge_iterator ei;
1394
1395 FOR_EACH_EDGE (e, ei, bb->succs)
1396 {
1397 gimple phi;
1398 gimple_stmt_iterator gsi;
1399
1400 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1401 gsi_next (&gsi))
1402 {
1403 tree currdef, res;
1404 location_t loc;
1405
1406 phi = gsi_stmt (gsi);
1407 res = gimple_phi_result (phi);
1408 currdef = get_reaching_def (SSA_NAME_VAR (res));
1409 /* Virtual operand PHI args do not need a location. */
1410 if (virtual_operand_p (res))
1411 loc = UNKNOWN_LOCATION;
1412 else
1413 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1414 add_phi_arg (phi, currdef, e, loc);
1415 }
1416 }
1417 }
1418
1419 class rewrite_dom_walker : public dom_walker
1420 {
1421 public:
1422 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1423
1424 virtual void before_dom_children (basic_block);
1425 virtual void after_dom_children (basic_block);
1426 };
1427
1428 /* SSA Rewriting Step 1. Initialization, create a block local stack
1429 of reaching definitions for new SSA names produced in this block
1430 (BLOCK_DEFS). Register new definitions for every PHI node in the
1431 block. */
1432
1433 void
1434 rewrite_dom_walker::before_dom_children (basic_block bb)
1435 {
1436 gimple_stmt_iterator gsi;
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1440
1441 /* Mark the unwind point for this block. */
1442 block_defs_stack.safe_push (NULL_TREE);
1443
1444 /* Step 1. Register new definitions for every PHI node in the block.
1445 Conceptually, all the PHI nodes are executed in parallel and each PHI
1446 node introduces a new version for the associated variable. */
1447 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1448 {
1449 tree result = gimple_phi_result (gsi_stmt (gsi));
1450 register_new_def (result, SSA_NAME_VAR (result));
1451 }
1452
1453 /* Step 2. Rewrite every variable used in each statement in the block
1454 with its immediate reaching definitions. Update the current definition
1455 of a variable when a new real or virtual definition is found. */
1456 if (bitmap_bit_p (interesting_blocks, bb->index))
1457 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1458 rewrite_stmt (&gsi);
1459
1460 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1461 For every PHI node found, add a new argument containing the current
1462 reaching definition for the variable and the edge through which that
1463 definition is reaching the PHI node. */
1464 rewrite_add_phi_arguments (bb);
1465 }
1466
1467
1468
1469 /* Called after visiting all the statements in basic block BB and all
1470 of its dominator children. Restore CURRDEFS to its original value. */
1471
1472 void
1473 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1474 {
1475 /* Restore CURRDEFS to its original state. */
1476 while (block_defs_stack.length () > 0)
1477 {
1478 tree tmp = block_defs_stack.pop ();
1479 tree saved_def, var;
1480
1481 if (tmp == NULL_TREE)
1482 break;
1483
1484 if (TREE_CODE (tmp) == SSA_NAME)
1485 {
1486 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1487 current definition of its underlying variable. Note that
1488 if the SSA_NAME is not for a GIMPLE register, the symbol
1489 being defined is stored in the next slot in the stack.
1490 This mechanism is needed because an SSA name for a
1491 non-register symbol may be the definition for more than
1492 one symbol (e.g., SFTs, aliased variables, etc). */
1493 saved_def = tmp;
1494 var = SSA_NAME_VAR (saved_def);
1495 if (!is_gimple_reg (var))
1496 var = block_defs_stack.pop ();
1497 }
1498 else
1499 {
1500 /* If we recorded anything else, it must have been a _DECL
1501 node and its current reaching definition must have been
1502 NULL. */
1503 saved_def = NULL;
1504 var = tmp;
1505 }
1506
1507 get_common_info (var)->current_def = saved_def;
1508 }
1509 }
1510
1511
1512 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1513
1514 DEBUG_FUNCTION void
1515 debug_decl_set (bitmap set)
1516 {
1517 dump_decl_set (stderr, set);
1518 fprintf (stderr, "\n");
1519 }
1520
1521
1522 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1523 stack up to a maximum of N levels. If N is -1, the whole stack is
1524 dumped. New levels are created when the dominator tree traversal
1525 used for renaming enters a new sub-tree. */
1526
1527 void
1528 dump_defs_stack (FILE *file, int n)
1529 {
1530 int i, j;
1531
1532 fprintf (file, "\n\nRenaming stack");
1533 if (n > 0)
1534 fprintf (file, " (up to %d levels)", n);
1535 fprintf (file, "\n\n");
1536
1537 i = 1;
1538 fprintf (file, "Level %d (current level)\n", i);
1539 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1540 {
1541 tree name, var;
1542
1543 name = block_defs_stack[j];
1544 if (name == NULL_TREE)
1545 {
1546 i++;
1547 if (n > 0 && i > n)
1548 break;
1549 fprintf (file, "\nLevel %d\n", i);
1550 continue;
1551 }
1552
1553 if (DECL_P (name))
1554 {
1555 var = name;
1556 name = NULL_TREE;
1557 }
1558 else
1559 {
1560 var = SSA_NAME_VAR (name);
1561 if (!is_gimple_reg (var))
1562 {
1563 j--;
1564 var = block_defs_stack[j];
1565 }
1566 }
1567
1568 fprintf (file, " Previous CURRDEF (");
1569 print_generic_expr (file, var, 0);
1570 fprintf (file, ") = ");
1571 if (name)
1572 print_generic_expr (file, name, 0);
1573 else
1574 fprintf (file, "<NIL>");
1575 fprintf (file, "\n");
1576 }
1577 }
1578
1579
1580 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1581 stack up to a maximum of N levels. If N is -1, the whole stack is
1582 dumped. New levels are created when the dominator tree traversal
1583 used for renaming enters a new sub-tree. */
1584
1585 DEBUG_FUNCTION void
1586 debug_defs_stack (int n)
1587 {
1588 dump_defs_stack (stderr, n);
1589 }
1590
1591
1592 /* Dump the current reaching definition of every symbol to FILE. */
1593
1594 void
1595 dump_currdefs (FILE *file)
1596 {
1597 unsigned i;
1598 tree var;
1599
1600 if (symbols_to_rename.is_empty ())
1601 return;
1602
1603 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1604 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1605 {
1606 common_info_p info = get_common_info (var);
1607 fprintf (file, "CURRDEF (");
1608 print_generic_expr (file, var, 0);
1609 fprintf (file, ") = ");
1610 if (info->current_def)
1611 print_generic_expr (file, info->current_def, 0);
1612 else
1613 fprintf (file, "<NIL>");
1614 fprintf (file, "\n");
1615 }
1616 }
1617
1618
1619 /* Dump the current reaching definition of every symbol to stderr. */
1620
1621 DEBUG_FUNCTION void
1622 debug_currdefs (void)
1623 {
1624 dump_currdefs (stderr);
1625 }
1626
1627
1628 /* Dump SSA information to FILE. */
1629
1630 void
1631 dump_tree_ssa (FILE *file)
1632 {
1633 const char *funcname
1634 = lang_hooks.decl_printable_name (current_function_decl, 2);
1635
1636 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1637
1638 dump_var_infos (file);
1639 dump_defs_stack (file, -1);
1640 dump_currdefs (file);
1641 dump_tree_ssa_stats (file);
1642 }
1643
1644
1645 /* Dump SSA information to stderr. */
1646
1647 DEBUG_FUNCTION void
1648 debug_tree_ssa (void)
1649 {
1650 dump_tree_ssa (stderr);
1651 }
1652
1653
1654 /* Dump statistics for the hash table HTAB. */
1655
1656 static void
1657 htab_statistics (FILE *file, hash_table <var_info_hasher> htab)
1658 {
1659 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1660 (long) htab.size (),
1661 (long) htab.elements (),
1662 htab.collisions ());
1663 }
1664
1665
1666 /* Dump SSA statistics on FILE. */
1667
1668 void
1669 dump_tree_ssa_stats (FILE *file)
1670 {
1671 if (var_infos.is_created ())
1672 {
1673 fprintf (file, "\nHash table statistics:\n");
1674 fprintf (file, " var_infos: ");
1675 htab_statistics (file, var_infos);
1676 fprintf (file, "\n");
1677 }
1678 }
1679
1680
1681 /* Dump SSA statistics on stderr. */
1682
1683 DEBUG_FUNCTION void
1684 debug_tree_ssa_stats (void)
1685 {
1686 dump_tree_ssa_stats (stderr);
1687 }
1688
1689
1690 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1691
1692 int
1693 debug_var_infos_r (var_info_d **slot, FILE *file)
1694 {
1695 struct var_info_d *info = *slot;
1696
1697 fprintf (file, "VAR: ");
1698 print_generic_expr (file, info->var, dump_flags);
1699 bitmap_print (file, info->info.def_blocks.def_blocks,
1700 ", DEF_BLOCKS: { ", "}");
1701 bitmap_print (file, info->info.def_blocks.livein_blocks,
1702 ", LIVEIN_BLOCKS: { ", "}");
1703 bitmap_print (file, info->info.def_blocks.phi_blocks,
1704 ", PHI_BLOCKS: { ", "}\n");
1705
1706 return 1;
1707 }
1708
1709
1710 /* Dump the VAR_INFOS hash table on FILE. */
1711
1712 void
1713 dump_var_infos (FILE *file)
1714 {
1715 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1716 if (var_infos.is_created ())
1717 var_infos.traverse <FILE *, debug_var_infos_r> (file);
1718 }
1719
1720
1721 /* Dump the VAR_INFOS hash table on stderr. */
1722
1723 DEBUG_FUNCTION void
1724 debug_var_infos (void)
1725 {
1726 dump_var_infos (stderr);
1727 }
1728
1729
1730 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1731
1732 static inline void
1733 register_new_update_single (tree new_name, tree old_name)
1734 {
1735 common_info_p info = get_common_info (old_name);
1736 tree currdef = info->current_def;
1737
1738 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1739 This stack is later used by the dominator tree callbacks to
1740 restore the reaching definitions for all the variables
1741 defined in the block after a recursive visit to all its
1742 immediately dominated blocks. */
1743 block_defs_stack.reserve (2);
1744 block_defs_stack.quick_push (currdef);
1745 block_defs_stack.quick_push (old_name);
1746
1747 /* Set the current reaching definition for OLD_NAME to be
1748 NEW_NAME. */
1749 info->current_def = new_name;
1750 }
1751
1752
1753 /* Register NEW_NAME to be the new reaching definition for all the
1754 names in OLD_NAMES. Used by the incremental SSA update routines to
1755 replace old SSA names with new ones. */
1756
1757 static inline void
1758 register_new_update_set (tree new_name, bitmap old_names)
1759 {
1760 bitmap_iterator bi;
1761 unsigned i;
1762
1763 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1764 register_new_update_single (new_name, ssa_name (i));
1765 }
1766
1767
1768
1769 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1770 it is a symbol marked for renaming, replace it with USE_P's current
1771 reaching definition. */
1772
1773 static inline void
1774 maybe_replace_use (use_operand_p use_p)
1775 {
1776 tree rdef = NULL_TREE;
1777 tree use = USE_FROM_PTR (use_p);
1778 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1779
1780 if (marked_for_renaming (sym))
1781 rdef = get_reaching_def (sym);
1782 else if (is_old_name (use))
1783 rdef = get_reaching_def (use);
1784
1785 if (rdef && rdef != use)
1786 SET_USE (use_p, rdef);
1787 }
1788
1789
1790 /* Same as maybe_replace_use, but without introducing default stmts,
1791 returning false to indicate a need to do so. */
1792
1793 static inline bool
1794 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1795 {
1796 tree rdef = NULL_TREE;
1797 tree use = USE_FROM_PTR (use_p);
1798 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1799
1800 if (marked_for_renaming (sym))
1801 rdef = get_var_info (sym)->info.current_def;
1802 else if (is_old_name (use))
1803 {
1804 rdef = get_ssa_name_ann (use)->info.current_def;
1805 /* We can't assume that, if there's no current definition, the
1806 default one should be used. It could be the case that we've
1807 rearranged blocks so that the earlier definition no longer
1808 dominates the use. */
1809 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1810 rdef = use;
1811 }
1812 else
1813 rdef = use;
1814
1815 if (rdef && rdef != use)
1816 SET_USE (use_p, rdef);
1817
1818 return rdef != NULL_TREE;
1819 }
1820
1821
1822 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1823 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1824 register it as the current definition for the names replaced by
1825 DEF_P. */
1826
1827 static inline void
1828 maybe_register_def (def_operand_p def_p, gimple stmt,
1829 gimple_stmt_iterator gsi)
1830 {
1831 tree def = DEF_FROM_PTR (def_p);
1832 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1833
1834 /* If DEF is a naked symbol that needs renaming, create a new
1835 name for it. */
1836 if (marked_for_renaming (sym))
1837 {
1838 if (DECL_P (def))
1839 {
1840 tree tracked_var;
1841
1842 def = make_ssa_name (def, stmt);
1843 SET_DEF (def_p, def);
1844
1845 tracked_var = target_for_debug_bind (sym);
1846 if (tracked_var)
1847 {
1848 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1849 /* If stmt ends the bb, insert the debug stmt on the single
1850 non-EH edge from the stmt. */
1851 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1852 {
1853 basic_block bb = gsi_bb (gsi);
1854 edge_iterator ei;
1855 edge e, ef = NULL;
1856 FOR_EACH_EDGE (e, ei, bb->succs)
1857 if (!(e->flags & EDGE_EH))
1858 {
1859 gcc_checking_assert (!ef);
1860 ef = e;
1861 }
1862 /* If there are other predecessors to ef->dest, then
1863 there must be PHI nodes for the modified
1864 variable, and therefore there will be debug bind
1865 stmts after the PHI nodes. The debug bind notes
1866 we'd insert would force the creation of a new
1867 block (diverging codegen) and be redundant with
1868 the post-PHI bind stmts, so don't add them.
1869
1870 As for the exit edge, there wouldn't be redundant
1871 bind stmts, but there wouldn't be a PC to bind
1872 them to either, so avoid diverging the CFG. */
1873 if (ef && single_pred_p (ef->dest)
1874 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1875 {
1876 /* If there were PHI nodes in the node, we'd
1877 have to make sure the value we're binding
1878 doesn't need rewriting. But there shouldn't
1879 be PHI nodes in a single-predecessor block,
1880 so we just add the note. */
1881 gsi_insert_on_edge_immediate (ef, note);
1882 }
1883 }
1884 else
1885 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1886 }
1887 }
1888
1889 register_new_update_single (def, sym);
1890 }
1891 else
1892 {
1893 /* If DEF is a new name, register it as a new definition
1894 for all the names replaced by DEF. */
1895 if (is_new_name (def))
1896 register_new_update_set (def, names_replaced_by (def));
1897
1898 /* If DEF is an old name, register DEF as a new
1899 definition for itself. */
1900 if (is_old_name (def))
1901 register_new_update_single (def, def);
1902 }
1903 }
1904
1905
1906 /* Update every variable used in the statement pointed-to by SI. The
1907 statement is assumed to be in SSA form already. Names in
1908 OLD_SSA_NAMES used by SI will be updated to their current reaching
1909 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1910 will be registered as a new definition for their corresponding name
1911 in OLD_SSA_NAMES. */
1912
1913 static void
1914 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1915 {
1916 use_operand_p use_p;
1917 def_operand_p def_p;
1918 ssa_op_iter iter;
1919
1920 /* Only update marked statements. */
1921 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1922 return;
1923
1924 if (dump_file && (dump_flags & TDF_DETAILS))
1925 {
1926 fprintf (dump_file, "Updating SSA information for statement ");
1927 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1928 }
1929
1930 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1931 symbol is marked for renaming. */
1932 if (rewrite_uses_p (stmt))
1933 {
1934 if (is_gimple_debug (stmt))
1935 {
1936 bool failed = false;
1937
1938 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1939 if (!maybe_replace_use_in_debug_stmt (use_p))
1940 {
1941 failed = true;
1942 break;
1943 }
1944
1945 if (failed)
1946 {
1947 /* DOM sometimes threads jumps in such a way that a
1948 debug stmt ends up referencing a SSA variable that no
1949 longer dominates the debug stmt, but such that all
1950 incoming definitions refer to the same definition in
1951 an earlier dominator. We could try to recover that
1952 definition somehow, but this will have to do for now.
1953
1954 Introducing a default definition, which is what
1955 maybe_replace_use() would do in such cases, may
1956 modify code generation, for the otherwise-unused
1957 default definition would never go away, modifying SSA
1958 version numbers all over. */
1959 gimple_debug_bind_reset_value (stmt);
1960 update_stmt (stmt);
1961 }
1962 }
1963 else
1964 {
1965 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1966 maybe_replace_use (use_p);
1967 }
1968 }
1969
1970 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1971 Also register definitions for names whose underlying symbol is
1972 marked for renaming. */
1973 if (register_defs_p (stmt))
1974 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1975 maybe_register_def (def_p, stmt, gsi);
1976 }
1977
1978
1979 /* Visit all the successor blocks of BB looking for PHI nodes. For
1980 every PHI node found, check if any of its arguments is in
1981 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1982 definition, replace it. */
1983
1984 static void
1985 rewrite_update_phi_arguments (basic_block bb)
1986 {
1987 edge e;
1988 edge_iterator ei;
1989 unsigned i;
1990
1991 FOR_EACH_EDGE (e, ei, bb->succs)
1992 {
1993 gimple phi;
1994 gimple_vec phis;
1995
1996 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1997 continue;
1998
1999 phis = phis_to_rewrite[e->dest->index];
2000 FOR_EACH_VEC_ELT (phis, i, phi)
2001 {
2002 tree arg, lhs_sym, reaching_def = NULL;
2003 use_operand_p arg_p;
2004
2005 gcc_checking_assert (rewrite_uses_p (phi));
2006
2007 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2008 arg = USE_FROM_PTR (arg_p);
2009
2010 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2011 continue;
2012
2013 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2014
2015 if (arg == NULL_TREE)
2016 {
2017 /* When updating a PHI node for a recently introduced
2018 symbol we may find NULL arguments. That's why we
2019 take the symbol from the LHS of the PHI node. */
2020 reaching_def = get_reaching_def (lhs_sym);
2021
2022 }
2023 else
2024 {
2025 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2026
2027 if (marked_for_renaming (sym))
2028 reaching_def = get_reaching_def (sym);
2029 else if (is_old_name (arg))
2030 reaching_def = get_reaching_def (arg);
2031 }
2032
2033 /* Update the argument if there is a reaching def. */
2034 if (reaching_def)
2035 {
2036 source_location locus;
2037 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2038
2039 SET_USE (arg_p, reaching_def);
2040
2041 /* Virtual operands do not need a location. */
2042 if (virtual_operand_p (reaching_def))
2043 locus = UNKNOWN_LOCATION;
2044 else
2045 {
2046 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2047
2048 /* Single element PHI nodes behave like copies, so get the
2049 location from the phi argument. */
2050 if (gimple_code (stmt) == GIMPLE_PHI
2051 && gimple_phi_num_args (stmt) == 1)
2052 locus = gimple_phi_arg_location (stmt, 0);
2053 else
2054 locus = gimple_location (stmt);
2055 }
2056
2057 gimple_phi_arg_set_location (phi, arg_i, locus);
2058 }
2059
2060
2061 if (e->flags & EDGE_ABNORMAL)
2062 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2063 }
2064 }
2065 }
2066
2067 class rewrite_update_dom_walker : public dom_walker
2068 {
2069 public:
2070 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2071
2072 virtual void before_dom_children (basic_block);
2073 virtual void after_dom_children (basic_block);
2074 };
2075
2076 /* Initialization of block data structures for the incremental SSA
2077 update pass. Create a block local stack of reaching definitions
2078 for new SSA names produced in this block (BLOCK_DEFS). Register
2079 new definitions for every PHI node in the block. */
2080
2081 void
2082 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2083 {
2084 bool is_abnormal_phi;
2085 gimple_stmt_iterator gsi;
2086
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2088 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2089 bb->index);
2090
2091 /* Mark the unwind point for this block. */
2092 block_defs_stack.safe_push (NULL_TREE);
2093
2094 if (!bitmap_bit_p (blocks_to_update, bb->index))
2095 return;
2096
2097 /* Mark the LHS if any of the arguments flows through an abnormal
2098 edge. */
2099 is_abnormal_phi = bb_has_abnormal_pred (bb);
2100
2101 /* If any of the PHI nodes is a replacement for a name in
2102 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2103 register it as a new definition for its corresponding name. Also
2104 register definitions for names whose underlying symbols are
2105 marked for renaming. */
2106 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2107 {
2108 tree lhs, lhs_sym;
2109 gimple phi = gsi_stmt (gsi);
2110
2111 if (!register_defs_p (phi))
2112 continue;
2113
2114 lhs = gimple_phi_result (phi);
2115 lhs_sym = SSA_NAME_VAR (lhs);
2116
2117 if (marked_for_renaming (lhs_sym))
2118 register_new_update_single (lhs, lhs_sym);
2119 else
2120 {
2121
2122 /* If LHS is a new name, register a new definition for all
2123 the names replaced by LHS. */
2124 if (is_new_name (lhs))
2125 register_new_update_set (lhs, names_replaced_by (lhs));
2126
2127 /* If LHS is an OLD name, register it as a new definition
2128 for itself. */
2129 if (is_old_name (lhs))
2130 register_new_update_single (lhs, lhs);
2131 }
2132
2133 if (is_abnormal_phi)
2134 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2135 }
2136
2137 /* Step 2. Rewrite every variable used in each statement in the block. */
2138 if (bitmap_bit_p (interesting_blocks, bb->index))
2139 {
2140 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2141 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2142 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2143 }
2144
2145 /* Step 3. Update PHI nodes. */
2146 rewrite_update_phi_arguments (bb);
2147 }
2148
2149 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2150 the current reaching definition of every name re-written in BB to
2151 the original reaching definition before visiting BB. This
2152 unwinding must be done in the opposite order to what is done in
2153 register_new_update_set. */
2154
2155 void
2156 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2157 {
2158 while (block_defs_stack.length () > 0)
2159 {
2160 tree var = block_defs_stack.pop ();
2161 tree saved_def;
2162
2163 /* NULL indicates the unwind stop point for this block (see
2164 rewrite_update_enter_block). */
2165 if (var == NULL)
2166 return;
2167
2168 saved_def = block_defs_stack.pop ();
2169 get_common_info (var)->current_def = saved_def;
2170 }
2171 }
2172
2173
2174 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2175 form.
2176
2177 ENTRY indicates the block where to start. Every block dominated by
2178 ENTRY will be rewritten.
2179
2180 WHAT indicates what actions will be taken by the renamer (see enum
2181 rewrite_mode).
2182
2183 BLOCKS are the set of interesting blocks for the dominator walker
2184 to process. If this set is NULL, then all the nodes dominated
2185 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2186 are not present in BLOCKS are ignored. */
2187
2188 static void
2189 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2190 {
2191 /* Rewrite all the basic blocks in the program. */
2192 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2193
2194 block_defs_stack.create (10);
2195
2196 /* Recursively walk the dominator tree rewriting each statement in
2197 each basic block. */
2198 if (what == REWRITE_ALL)
2199 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2200 else if (what == REWRITE_UPDATE)
2201 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2202 else
2203 gcc_unreachable ();
2204
2205 /* Debugging dumps. */
2206 if (dump_file && (dump_flags & TDF_STATS))
2207 {
2208 dump_dfa_stats (dump_file);
2209 if (var_infos.is_created ())
2210 dump_tree_ssa_stats (dump_file);
2211 }
2212
2213 block_defs_stack.release ();
2214
2215 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2216 }
2217
2218 class mark_def_dom_walker : public dom_walker
2219 {
2220 public:
2221 mark_def_dom_walker (cdi_direction direction);
2222 ~mark_def_dom_walker ();
2223
2224 virtual void before_dom_children (basic_block);
2225
2226 private:
2227 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2228 large enough to accommodate all the variables referenced in the
2229 function, not just the ones we are renaming. */
2230 bitmap m_kills;
2231 };
2232
2233 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2234 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2235 {
2236 }
2237
2238 mark_def_dom_walker::~mark_def_dom_walker ()
2239 {
2240 BITMAP_FREE (m_kills);
2241 }
2242
2243 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2244 at the start of each block, and call mark_def_sites for each statement. */
2245
2246 void
2247 mark_def_dom_walker::before_dom_children (basic_block bb)
2248 {
2249 gimple_stmt_iterator gsi;
2250
2251 bitmap_clear (m_kills);
2252 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2253 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2254 }
2255
2256 /* Initialize internal data needed during renaming. */
2257
2258 static void
2259 init_ssa_renamer (void)
2260 {
2261 cfun->gimple_df->in_ssa_p = false;
2262
2263 /* Allocate memory for the DEF_BLOCKS hash table. */
2264 gcc_assert (!var_infos.is_created ());
2265 var_infos.create (vec_safe_length (cfun->local_decls));
2266
2267 bitmap_obstack_initialize (&update_ssa_obstack);
2268 }
2269
2270
2271 /* Deallocate internal data structures used by the renamer. */
2272
2273 static void
2274 fini_ssa_renamer (void)
2275 {
2276 if (var_infos.is_created ())
2277 var_infos.dispose ();
2278
2279 bitmap_obstack_release (&update_ssa_obstack);
2280
2281 cfun->gimple_df->ssa_renaming_needed = 0;
2282 cfun->gimple_df->rename_vops = 0;
2283 cfun->gimple_df->in_ssa_p = true;
2284 }
2285
2286 /* Main entry point into the SSA builder. The renaming process
2287 proceeds in four main phases:
2288
2289 1- Compute dominance frontier and immediate dominators, needed to
2290 insert PHI nodes and rename the function in dominator tree
2291 order.
2292
2293 2- Find and mark all the blocks that define variables.
2294
2295 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2296
2297 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2298
2299 Steps 3 and 4 are done using the dominator tree walker
2300 (walk_dominator_tree). */
2301
2302 static unsigned int
2303 rewrite_into_ssa (void)
2304 {
2305 bitmap_head *dfs;
2306 basic_block bb;
2307 unsigned i;
2308
2309 /* Initialize operand data structures. */
2310 init_ssa_operands (cfun);
2311
2312 /* Initialize internal data needed by the renamer. */
2313 init_ssa_renamer ();
2314
2315 /* Initialize the set of interesting blocks. The callback
2316 mark_def_sites will add to this set those blocks that the renamer
2317 should process. */
2318 interesting_blocks = sbitmap_alloc (last_basic_block);
2319 bitmap_clear (interesting_blocks);
2320
2321 /* Initialize dominance frontier. */
2322 dfs = XNEWVEC (bitmap_head, last_basic_block);
2323 FOR_EACH_BB (bb)
2324 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2325
2326 /* 1- Compute dominance frontiers. */
2327 calculate_dominance_info (CDI_DOMINATORS);
2328 compute_dominance_frontiers (dfs);
2329
2330 /* 2- Find and mark definition sites. */
2331 mark_def_dom_walker (CDI_DOMINATORS).walk (cfun->cfg->x_entry_block_ptr);
2332
2333 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2334 insert_phi_nodes (dfs);
2335
2336 /* 4- Rename all the blocks. */
2337 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (cfun), REWRITE_ALL);
2338
2339 /* Free allocated memory. */
2340 FOR_EACH_BB (bb)
2341 bitmap_clear (&dfs[bb->index]);
2342 free (dfs);
2343
2344 sbitmap_free (interesting_blocks);
2345
2346 fini_ssa_renamer ();
2347
2348 /* Try to get rid of all gimplifier generated temporaries by making
2349 its SSA names anonymous. This way we can garbage collect them
2350 all after removing unused locals which we do in our TODO. */
2351 for (i = 1; i < num_ssa_names; ++i)
2352 {
2353 tree decl, name = ssa_name (i);
2354 if (!name
2355 || SSA_NAME_IS_DEFAULT_DEF (name))
2356 continue;
2357 decl = SSA_NAME_VAR (name);
2358 if (decl
2359 && TREE_CODE (decl) == VAR_DECL
2360 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2361 && DECL_IGNORED_P (decl))
2362 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2363 }
2364
2365 return 0;
2366 }
2367
2368 /* Gate for IPCP optimization. */
2369
2370 static bool
2371 gate_into_ssa (void)
2372 {
2373 /* Do nothing for funcions that was produced already in SSA form. */
2374 return !(cfun->curr_properties & PROP_ssa);
2375 }
2376
2377 namespace {
2378
2379 const pass_data pass_data_build_ssa =
2380 {
2381 GIMPLE_PASS, /* type */
2382 "ssa", /* name */
2383 OPTGROUP_NONE, /* optinfo_flags */
2384 true, /* has_gate */
2385 true, /* has_execute */
2386 TV_TREE_SSA_OTHER, /* tv_id */
2387 PROP_cfg, /* properties_required */
2388 PROP_ssa, /* properties_provided */
2389 0, /* properties_destroyed */
2390 0, /* todo_flags_start */
2391 ( TODO_verify_ssa | TODO_remove_unused_locals ), /* todo_flags_finish */
2392 };
2393
2394 class pass_build_ssa : public gimple_opt_pass
2395 {
2396 public:
2397 pass_build_ssa (gcc::context *ctxt)
2398 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2399 {}
2400
2401 /* opt_pass methods: */
2402 bool gate () { return gate_into_ssa (); }
2403 unsigned int execute () { return rewrite_into_ssa (); }
2404
2405 }; // class pass_build_ssa
2406
2407 } // anon namespace
2408
2409 gimple_opt_pass *
2410 make_pass_build_ssa (gcc::context *ctxt)
2411 {
2412 return new pass_build_ssa (ctxt);
2413 }
2414
2415
2416 /* Mark the definition of VAR at STMT and BB as interesting for the
2417 renamer. BLOCKS is the set of blocks that need updating. */
2418
2419 static void
2420 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2421 {
2422 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2423 set_register_defs (stmt, true);
2424
2425 if (insert_phi_p)
2426 {
2427 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2428
2429 set_def_block (var, bb, is_phi_p);
2430
2431 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2432 site for both itself and all the old names replaced by it. */
2433 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2434 {
2435 bitmap_iterator bi;
2436 unsigned i;
2437 bitmap set = names_replaced_by (var);
2438 if (set)
2439 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2440 set_def_block (ssa_name (i), bb, is_phi_p);
2441 }
2442 }
2443 }
2444
2445
2446 /* Mark the use of VAR at STMT and BB as interesting for the
2447 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2448 nodes. */
2449
2450 static inline void
2451 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2452 {
2453 basic_block def_bb = gimple_bb (stmt);
2454
2455 mark_block_for_update (def_bb);
2456 mark_block_for_update (bb);
2457
2458 if (gimple_code (stmt) == GIMPLE_PHI)
2459 mark_phi_for_rewrite (def_bb, stmt);
2460 else
2461 {
2462 set_rewrite_uses (stmt, true);
2463
2464 if (is_gimple_debug (stmt))
2465 return;
2466 }
2467
2468 /* If VAR has not been defined in BB, then it is live-on-entry
2469 to BB. Note that we cannot just use the block holding VAR's
2470 definition because if VAR is one of the names in OLD_SSA_NAMES,
2471 it will have several definitions (itself and all the names that
2472 replace it). */
2473 if (insert_phi_p)
2474 {
2475 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2476 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2477 set_livein_block (var, bb);
2478 }
2479 }
2480
2481
2482 /* Do a dominator walk starting at BB processing statements that
2483 reference symbols in SSA operands. This is very similar to
2484 mark_def_sites, but the scan handles statements whose operands may
2485 already be SSA names.
2486
2487 If INSERT_PHI_P is true, mark those uses as live in the
2488 corresponding block. This is later used by the PHI placement
2489 algorithm to make PHI pruning decisions.
2490
2491 FIXME. Most of this would be unnecessary if we could associate a
2492 symbol to all the SSA names that reference it. But that
2493 sounds like it would be expensive to maintain. Still, it
2494 would be interesting to see if it makes better sense to do
2495 that. */
2496
2497 static void
2498 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2499 {
2500 basic_block son;
2501 gimple_stmt_iterator si;
2502 edge e;
2503 edge_iterator ei;
2504
2505 mark_block_for_update (bb);
2506
2507 /* Process PHI nodes marking interesting those that define or use
2508 the symbols that we are interested in. */
2509 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2510 {
2511 gimple phi = gsi_stmt (si);
2512 tree lhs_sym, lhs = gimple_phi_result (phi);
2513
2514 if (TREE_CODE (lhs) == SSA_NAME
2515 && (! virtual_operand_p (lhs)
2516 || ! cfun->gimple_df->rename_vops))
2517 continue;
2518
2519 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2520 mark_for_renaming (lhs_sym);
2521 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2522
2523 /* Mark the uses in phi nodes as interesting. It would be more correct
2524 to process the arguments of the phi nodes of the successor edges of
2525 BB at the end of prepare_block_for_update, however, that turns out
2526 to be significantly more expensive. Doing it here is conservatively
2527 correct -- it may only cause us to believe a value to be live in a
2528 block that also contains its definition, and thus insert a few more
2529 phi nodes for it. */
2530 FOR_EACH_EDGE (e, ei, bb->preds)
2531 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2532 }
2533
2534 /* Process the statements. */
2535 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2536 {
2537 gimple stmt;
2538 ssa_op_iter i;
2539 use_operand_p use_p;
2540 def_operand_p def_p;
2541
2542 stmt = gsi_stmt (si);
2543
2544 if (cfun->gimple_df->rename_vops
2545 && gimple_vuse (stmt))
2546 {
2547 tree use = gimple_vuse (stmt);
2548 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2549 mark_for_renaming (sym);
2550 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2551 }
2552
2553 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2554 {
2555 tree use = USE_FROM_PTR (use_p);
2556 if (!DECL_P (use))
2557 continue;
2558 mark_for_renaming (use);
2559 mark_use_interesting (use, stmt, bb, insert_phi_p);
2560 }
2561
2562 if (cfun->gimple_df->rename_vops
2563 && gimple_vdef (stmt))
2564 {
2565 tree def = gimple_vdef (stmt);
2566 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2567 mark_for_renaming (sym);
2568 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2569 }
2570
2571 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2572 {
2573 tree def = DEF_FROM_PTR (def_p);
2574 if (!DECL_P (def))
2575 continue;
2576 mark_for_renaming (def);
2577 mark_def_interesting (def, stmt, bb, insert_phi_p);
2578 }
2579 }
2580
2581 /* Now visit all the blocks dominated by BB. */
2582 for (son = first_dom_son (CDI_DOMINATORS, bb);
2583 son;
2584 son = next_dom_son (CDI_DOMINATORS, son))
2585 prepare_block_for_update (son, insert_phi_p);
2586 }
2587
2588
2589 /* Helper for prepare_names_to_update. Mark all the use sites for
2590 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2591 prepare_names_to_update. */
2592
2593 static void
2594 prepare_use_sites_for (tree name, bool insert_phi_p)
2595 {
2596 use_operand_p use_p;
2597 imm_use_iterator iter;
2598
2599 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2600 {
2601 gimple stmt = USE_STMT (use_p);
2602 basic_block bb = gimple_bb (stmt);
2603
2604 if (gimple_code (stmt) == GIMPLE_PHI)
2605 {
2606 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2607 edge e = gimple_phi_arg_edge (stmt, ix);
2608 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2609 }
2610 else
2611 {
2612 /* For regular statements, mark this as an interesting use
2613 for NAME. */
2614 mark_use_interesting (name, stmt, bb, insert_phi_p);
2615 }
2616 }
2617 }
2618
2619
2620 /* Helper for prepare_names_to_update. Mark the definition site for
2621 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2622 prepare_names_to_update. */
2623
2624 static void
2625 prepare_def_site_for (tree name, bool insert_phi_p)
2626 {
2627 gimple stmt;
2628 basic_block bb;
2629
2630 gcc_checking_assert (names_to_release == NULL
2631 || !bitmap_bit_p (names_to_release,
2632 SSA_NAME_VERSION (name)));
2633
2634 stmt = SSA_NAME_DEF_STMT (name);
2635 bb = gimple_bb (stmt);
2636 if (bb)
2637 {
2638 gcc_checking_assert (bb->index < last_basic_block);
2639 mark_block_for_update (bb);
2640 mark_def_interesting (name, stmt, bb, insert_phi_p);
2641 }
2642 }
2643
2644
2645 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2646 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2647 PHI nodes for newly created names. */
2648
2649 static void
2650 prepare_names_to_update (bool insert_phi_p)
2651 {
2652 unsigned i = 0;
2653 bitmap_iterator bi;
2654 sbitmap_iterator sbi;
2655
2656 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2657 remove it from NEW_SSA_NAMES so that we don't try to visit its
2658 defining basic block (which most likely doesn't exist). Notice
2659 that we cannot do the same with names in OLD_SSA_NAMES because we
2660 want to replace existing instances. */
2661 if (names_to_release)
2662 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2663 bitmap_clear_bit (new_ssa_names, i);
2664
2665 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2666 names may be considered to be live-in on blocks that contain
2667 definitions for their replacements. */
2668 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2669 prepare_def_site_for (ssa_name (i), insert_phi_p);
2670
2671 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2672 OLD_SSA_NAMES, but we have to ignore its definition site. */
2673 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2674 {
2675 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2676 prepare_def_site_for (ssa_name (i), insert_phi_p);
2677 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2678 }
2679 }
2680
2681
2682 /* Dump all the names replaced by NAME to FILE. */
2683
2684 void
2685 dump_names_replaced_by (FILE *file, tree name)
2686 {
2687 unsigned i;
2688 bitmap old_set;
2689 bitmap_iterator bi;
2690
2691 print_generic_expr (file, name, 0);
2692 fprintf (file, " -> { ");
2693
2694 old_set = names_replaced_by (name);
2695 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2696 {
2697 print_generic_expr (file, ssa_name (i), 0);
2698 fprintf (file, " ");
2699 }
2700
2701 fprintf (file, "}\n");
2702 }
2703
2704
2705 /* Dump all the names replaced by NAME to stderr. */
2706
2707 DEBUG_FUNCTION void
2708 debug_names_replaced_by (tree name)
2709 {
2710 dump_names_replaced_by (stderr, name);
2711 }
2712
2713
2714 /* Dump SSA update information to FILE. */
2715
2716 void
2717 dump_update_ssa (FILE *file)
2718 {
2719 unsigned i = 0;
2720 bitmap_iterator bi;
2721
2722 if (!need_ssa_update_p (cfun))
2723 return;
2724
2725 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2726 {
2727 sbitmap_iterator sbi;
2728
2729 fprintf (file, "\nSSA replacement table\n");
2730 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2731 "O_1, ..., O_j\n\n");
2732
2733 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2734 dump_names_replaced_by (file, ssa_name (i));
2735 }
2736
2737 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2738 {
2739 fprintf (file, "\nSymbols to be put in SSA form\n");
2740 dump_decl_set (file, symbols_to_rename_set);
2741 fprintf (file, "\n");
2742 }
2743
2744 if (names_to_release && !bitmap_empty_p (names_to_release))
2745 {
2746 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2747 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2748 {
2749 print_generic_expr (file, ssa_name (i), 0);
2750 fprintf (file, " ");
2751 }
2752 fprintf (file, "\n");
2753 }
2754 }
2755
2756
2757 /* Dump SSA update information to stderr. */
2758
2759 DEBUG_FUNCTION void
2760 debug_update_ssa (void)
2761 {
2762 dump_update_ssa (stderr);
2763 }
2764
2765
2766 /* Initialize data structures used for incremental SSA updates. */
2767
2768 static void
2769 init_update_ssa (struct function *fn)
2770 {
2771 /* Reserve more space than the current number of names. The calls to
2772 add_new_name_mapping are typically done after creating new SSA
2773 names, so we'll need to reallocate these arrays. */
2774 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2775 bitmap_clear (old_ssa_names);
2776
2777 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2778 bitmap_clear (new_ssa_names);
2779
2780 bitmap_obstack_initialize (&update_ssa_obstack);
2781
2782 names_to_release = NULL;
2783 update_ssa_initialized_fn = fn;
2784 }
2785
2786
2787 /* Deallocate data structures used for incremental SSA updates. */
2788
2789 void
2790 delete_update_ssa (void)
2791 {
2792 unsigned i;
2793 bitmap_iterator bi;
2794
2795 sbitmap_free (old_ssa_names);
2796 old_ssa_names = NULL;
2797
2798 sbitmap_free (new_ssa_names);
2799 new_ssa_names = NULL;
2800
2801 BITMAP_FREE (symbols_to_rename_set);
2802 symbols_to_rename_set = NULL;
2803 symbols_to_rename.release ();
2804
2805 if (names_to_release)
2806 {
2807 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2808 release_ssa_name (ssa_name (i));
2809 BITMAP_FREE (names_to_release);
2810 }
2811
2812 clear_ssa_name_info ();
2813
2814 fini_ssa_renamer ();
2815
2816 if (blocks_with_phis_to_rewrite)
2817 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2818 {
2819 gimple_vec phis = phis_to_rewrite[i];
2820 phis.release ();
2821 phis_to_rewrite[i].create (0);
2822 }
2823
2824 BITMAP_FREE (blocks_with_phis_to_rewrite);
2825 BITMAP_FREE (blocks_to_update);
2826
2827 update_ssa_initialized_fn = NULL;
2828 }
2829
2830
2831 /* Create a new name for OLD_NAME in statement STMT and replace the
2832 operand pointed to by DEF_P with the newly created name. If DEF_P
2833 is NULL then STMT should be a GIMPLE assignment.
2834 Return the new name and register the replacement mapping <NEW, OLD> in
2835 update_ssa's tables. */
2836
2837 tree
2838 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2839 {
2840 tree new_name;
2841
2842 timevar_push (TV_TREE_SSA_INCREMENTAL);
2843
2844 if (!update_ssa_initialized_fn)
2845 init_update_ssa (cfun);
2846
2847 gcc_assert (update_ssa_initialized_fn == cfun);
2848
2849 new_name = duplicate_ssa_name (old_name, stmt);
2850 if (def)
2851 SET_DEF (def, new_name);
2852 else
2853 gimple_assign_set_lhs (stmt, new_name);
2854
2855 if (gimple_code (stmt) == GIMPLE_PHI)
2856 {
2857 basic_block bb = gimple_bb (stmt);
2858
2859 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2860 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2861 }
2862
2863 add_new_name_mapping (new_name, old_name);
2864
2865 /* For the benefit of passes that will be updating the SSA form on
2866 their own, set the current reaching definition of OLD_NAME to be
2867 NEW_NAME. */
2868 get_ssa_name_ann (old_name)->info.current_def = new_name;
2869
2870 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2871
2872 return new_name;
2873 }
2874
2875
2876 /* Mark virtual operands of FN for renaming by update_ssa. */
2877
2878 void
2879 mark_virtual_operands_for_renaming (struct function *fn)
2880 {
2881 fn->gimple_df->ssa_renaming_needed = 1;
2882 fn->gimple_df->rename_vops = 1;
2883 }
2884
2885 /* Replace all uses of NAME by underlying variable and mark it
2886 for renaming. This assumes the defining statement of NAME is
2887 going to be removed. */
2888
2889 void
2890 mark_virtual_operand_for_renaming (tree name)
2891 {
2892 tree name_var = SSA_NAME_VAR (name);
2893 bool used = false;
2894 imm_use_iterator iter;
2895 use_operand_p use_p;
2896 gimple stmt;
2897
2898 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2899 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2900 {
2901 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2902 SET_USE (use_p, name_var);
2903 used = true;
2904 }
2905 if (used)
2906 mark_virtual_operands_for_renaming (cfun);
2907 }
2908
2909 /* Replace all uses of the virtual PHI result by its underlying variable
2910 and mark it for renaming. This assumes the PHI node is going to be
2911 removed. */
2912
2913 void
2914 mark_virtual_phi_result_for_renaming (gimple phi)
2915 {
2916 if (dump_file && (dump_flags & TDF_DETAILS))
2917 {
2918 fprintf (dump_file, "Marking result for renaming : ");
2919 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2920 fprintf (dump_file, "\n");
2921 }
2922
2923 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2924 }
2925
2926 /* Return true if there is any work to be done by update_ssa
2927 for function FN. */
2928
2929 bool
2930 need_ssa_update_p (struct function *fn)
2931 {
2932 gcc_assert (fn != NULL);
2933 return (update_ssa_initialized_fn == fn
2934 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2935 }
2936
2937 /* Return true if name N has been registered in the replacement table. */
2938
2939 bool
2940 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2941 {
2942 if (!update_ssa_initialized_fn)
2943 return false;
2944
2945 gcc_assert (update_ssa_initialized_fn == cfun);
2946
2947 return is_new_name (n) || is_old_name (n);
2948 }
2949
2950
2951 /* Mark NAME to be released after update_ssa has finished. */
2952
2953 void
2954 release_ssa_name_after_update_ssa (tree name)
2955 {
2956 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2957
2958 if (names_to_release == NULL)
2959 names_to_release = BITMAP_ALLOC (NULL);
2960
2961 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2962 }
2963
2964
2965 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2966 frontier information. BLOCKS is the set of blocks to be updated.
2967
2968 This is slightly different than the regular PHI insertion
2969 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2970 real names (i.e., GIMPLE registers) are inserted:
2971
2972 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2973 nodes inside the region affected by the block that defines VAR
2974 and the blocks that define all its replacements. All these
2975 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2976
2977 First, we compute the entry point to the region (ENTRY). This is
2978 given by the nearest common dominator to all the definition
2979 blocks. When computing the iterated dominance frontier (IDF), any
2980 block not strictly dominated by ENTRY is ignored.
2981
2982 We then call the standard PHI insertion algorithm with the pruned
2983 IDF.
2984
2985 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2986 names is not pruned. PHI nodes are inserted at every IDF block. */
2987
2988 static void
2989 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2990 unsigned update_flags)
2991 {
2992 basic_block entry;
2993 struct def_blocks_d *db;
2994 bitmap idf, pruned_idf;
2995 bitmap_iterator bi;
2996 unsigned i;
2997
2998 if (TREE_CODE (var) == SSA_NAME)
2999 gcc_checking_assert (is_old_name (var));
3000 else
3001 gcc_checking_assert (marked_for_renaming (var));
3002
3003 /* Get all the definition sites for VAR. */
3004 db = find_def_blocks_for (var);
3005
3006 /* No need to do anything if there were no definitions to VAR. */
3007 if (db == NULL || bitmap_empty_p (db->def_blocks))
3008 return;
3009
3010 /* Compute the initial iterated dominance frontier. */
3011 idf = compute_idf (db->def_blocks, dfs);
3012 pruned_idf = BITMAP_ALLOC (NULL);
3013
3014 if (TREE_CODE (var) == SSA_NAME)
3015 {
3016 if (update_flags == TODO_update_ssa)
3017 {
3018 /* If doing regular SSA updates for GIMPLE registers, we are
3019 only interested in IDF blocks dominated by the nearest
3020 common dominator of all the definition blocks. */
3021 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3022 db->def_blocks);
3023 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3024 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3025 if (BASIC_BLOCK (i) != entry
3026 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3027 bitmap_set_bit (pruned_idf, i);
3028 }
3029 else
3030 {
3031 /* Otherwise, do not prune the IDF for VAR. */
3032 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3033 bitmap_copy (pruned_idf, idf);
3034 }
3035 }
3036 else
3037 {
3038 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3039 for the first time, so we need to compute the full IDF for
3040 it. */
3041 bitmap_copy (pruned_idf, idf);
3042 }
3043
3044 if (!bitmap_empty_p (pruned_idf))
3045 {
3046 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3047 are included in the region to be updated. The feeding blocks
3048 are important to guarantee that the PHI arguments are renamed
3049 properly. */
3050
3051 /* FIXME, this is not needed if we are updating symbols. We are
3052 already starting at the ENTRY block anyway. */
3053 bitmap_ior_into (blocks, pruned_idf);
3054 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3055 {
3056 edge e;
3057 edge_iterator ei;
3058 basic_block bb = BASIC_BLOCK (i);
3059
3060 FOR_EACH_EDGE (e, ei, bb->preds)
3061 if (e->src->index >= 0)
3062 bitmap_set_bit (blocks, e->src->index);
3063 }
3064
3065 insert_phi_nodes_for (var, pruned_idf, true);
3066 }
3067
3068 BITMAP_FREE (pruned_idf);
3069 BITMAP_FREE (idf);
3070 }
3071
3072 /* Sort symbols_to_rename after their DECL_UID. */
3073
3074 static int
3075 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3076 {
3077 const_tree syma = *(const const_tree *)a;
3078 const_tree symb = *(const const_tree *)b;
3079 if (DECL_UID (syma) == DECL_UID (symb))
3080 return 0;
3081 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3082 }
3083
3084 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3085 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3086
3087 1- The names in OLD_SSA_NAMES dominated by the definitions of
3088 NEW_SSA_NAMES are all re-written to be reached by the
3089 appropriate definition from NEW_SSA_NAMES.
3090
3091 2- If needed, new PHI nodes are added to the iterated dominance
3092 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3093
3094 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3095 calling create_new_def_for to create new defs for names that the
3096 caller wants to replace.
3097
3098 The caller cretaes the new names to be inserted and the names that need
3099 to be replaced by calling create_new_def_for for each old definition
3100 to be replaced. Note that the function assumes that the
3101 new defining statement has already been inserted in the IL.
3102
3103 For instance, given the following code:
3104
3105 1 L0:
3106 2 x_1 = PHI (0, x_5)
3107 3 if (x_1 < 10)
3108 4 if (x_1 > 7)
3109 5 y_2 = 0
3110 6 else
3111 7 y_3 = x_1 + x_7
3112 8 endif
3113 9 x_5 = x_1 + 1
3114 10 goto L0;
3115 11 endif
3116
3117 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3118
3119 1 L0:
3120 2 x_1 = PHI (0, x_5)
3121 3 if (x_1 < 10)
3122 4 x_10 = ...
3123 5 if (x_1 > 7)
3124 6 y_2 = 0
3125 7 else
3126 8 x_11 = ...
3127 9 y_3 = x_1 + x_7
3128 10 endif
3129 11 x_5 = x_1 + 1
3130 12 goto L0;
3131 13 endif
3132
3133 We want to replace all the uses of x_1 with the new definitions of
3134 x_10 and x_11. Note that the only uses that should be replaced are
3135 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3136 *not* be replaced (this is why we cannot just mark symbol 'x' for
3137 renaming).
3138
3139 Additionally, we may need to insert a PHI node at line 11 because
3140 that is a merge point for x_10 and x_11. So the use of x_1 at line
3141 11 will be replaced with the new PHI node. The insertion of PHI
3142 nodes is optional. They are not strictly necessary to preserve the
3143 SSA form, and depending on what the caller inserted, they may not
3144 even be useful for the optimizers. UPDATE_FLAGS controls various
3145 aspects of how update_ssa operates, see the documentation for
3146 TODO_update_ssa*. */
3147
3148 void
3149 update_ssa (unsigned update_flags)
3150 {
3151 basic_block bb, start_bb;
3152 bitmap_iterator bi;
3153 unsigned i = 0;
3154 bool insert_phi_p;
3155 sbitmap_iterator sbi;
3156 tree sym;
3157
3158 /* Only one update flag should be set. */
3159 gcc_assert (update_flags == TODO_update_ssa
3160 || update_flags == TODO_update_ssa_no_phi
3161 || update_flags == TODO_update_ssa_full_phi
3162 || update_flags == TODO_update_ssa_only_virtuals);
3163
3164 if (!need_ssa_update_p (cfun))
3165 return;
3166
3167 timevar_push (TV_TREE_SSA_INCREMENTAL);
3168
3169 if (dump_file && (dump_flags & TDF_DETAILS))
3170 fprintf (dump_file, "\nUpdating SSA:\n");
3171
3172 if (!update_ssa_initialized_fn)
3173 init_update_ssa (cfun);
3174 else if (update_flags == TODO_update_ssa_only_virtuals)
3175 {
3176 /* If we only need to update virtuals, remove all the mappings for
3177 real names before proceeding. The caller is responsible for
3178 having dealt with the name mappings before calling update_ssa. */
3179 bitmap_clear (old_ssa_names);
3180 bitmap_clear (new_ssa_names);
3181 }
3182
3183 gcc_assert (update_ssa_initialized_fn == cfun);
3184
3185 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3186 if (!phis_to_rewrite.exists ())
3187 phis_to_rewrite.create (last_basic_block + 1);
3188 blocks_to_update = BITMAP_ALLOC (NULL);
3189
3190 /* Ensure that the dominance information is up-to-date. */
3191 calculate_dominance_info (CDI_DOMINATORS);
3192
3193 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3194
3195 /* If there are names defined in the replacement table, prepare
3196 definition and use sites for all the names in NEW_SSA_NAMES and
3197 OLD_SSA_NAMES. */
3198 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3199 {
3200 prepare_names_to_update (insert_phi_p);
3201
3202 /* If all the names in NEW_SSA_NAMES had been marked for
3203 removal, and there are no symbols to rename, then there's
3204 nothing else to do. */
3205 if (bitmap_first_set_bit (new_ssa_names) < 0
3206 && !cfun->gimple_df->ssa_renaming_needed)
3207 goto done;
3208 }
3209
3210 /* Next, determine the block at which to start the renaming process. */
3211 if (cfun->gimple_df->ssa_renaming_needed)
3212 {
3213 /* If we rename bare symbols initialize the mapping to
3214 auxiliar info we need to keep track of. */
3215 var_infos.create (47);
3216
3217 /* If we have to rename some symbols from scratch, we need to
3218 start the process at the root of the CFG. FIXME, it should
3219 be possible to determine the nearest block that had a
3220 definition for each of the symbols that are marked for
3221 updating. For now this seems more work than it's worth. */
3222 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3223
3224 /* Traverse the CFG looking for existing definitions and uses of
3225 symbols in SSA operands. Mark interesting blocks and
3226 statements and set local live-in information for the PHI
3227 placement heuristics. */
3228 prepare_block_for_update (start_bb, insert_phi_p);
3229
3230 #ifdef ENABLE_CHECKING
3231 for (i = 1; i < num_ssa_names; ++i)
3232 {
3233 tree name = ssa_name (i);
3234 if (!name
3235 || virtual_operand_p (name))
3236 continue;
3237
3238 /* For all but virtual operands, which do not have SSA names
3239 with overlapping life ranges, ensure that symbols marked
3240 for renaming do not have existing SSA names associated with
3241 them as we do not re-write them out-of-SSA before going
3242 into SSA for the remaining symbol uses. */
3243 if (marked_for_renaming (SSA_NAME_VAR (name)))
3244 {
3245 fprintf (stderr, "Existing SSA name for symbol marked for "
3246 "renaming: ");
3247 print_generic_expr (stderr, name, TDF_SLIM);
3248 fprintf (stderr, "\n");
3249 internal_error ("SSA corruption");
3250 }
3251 }
3252 #endif
3253 }
3254 else
3255 {
3256 /* Otherwise, the entry block to the region is the nearest
3257 common dominator for the blocks in BLOCKS. */
3258 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3259 blocks_to_update);
3260 }
3261
3262 /* If requested, insert PHI nodes at the iterated dominance frontier
3263 of every block, creating new definitions for names in OLD_SSA_NAMES
3264 and for symbols found. */
3265 if (insert_phi_p)
3266 {
3267 bitmap_head *dfs;
3268
3269 /* If the caller requested PHI nodes to be added, compute
3270 dominance frontiers. */
3271 dfs = XNEWVEC (bitmap_head, last_basic_block);
3272 FOR_EACH_BB (bb)
3273 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3274 compute_dominance_frontiers (dfs);
3275
3276 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3277 {
3278 sbitmap_iterator sbi;
3279
3280 /* insert_update_phi_nodes_for will call add_new_name_mapping
3281 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3282 will grow while we are traversing it (but it will not
3283 gain any new members). Copy OLD_SSA_NAMES to a temporary
3284 for traversal. */
3285 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3286 bitmap_copy (tmp, old_ssa_names);
3287 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3288 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3289 update_flags);
3290 sbitmap_free (tmp);
3291 }
3292
3293 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3294 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3295 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3296 update_flags);
3297
3298 FOR_EACH_BB (bb)
3299 bitmap_clear (&dfs[bb->index]);
3300 free (dfs);
3301
3302 /* Insertion of PHI nodes may have added blocks to the region.
3303 We need to re-compute START_BB to include the newly added
3304 blocks. */
3305 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3306 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3307 blocks_to_update);
3308 }
3309
3310 /* Reset the current definition for name and symbol before renaming
3311 the sub-graph. */
3312 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3313 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3314
3315 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3316 get_var_info (sym)->info.current_def = NULL_TREE;
3317
3318 /* Now start the renaming process at START_BB. */
3319 interesting_blocks = sbitmap_alloc (last_basic_block);
3320 bitmap_clear (interesting_blocks);
3321 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3322 bitmap_set_bit (interesting_blocks, i);
3323
3324 rewrite_blocks (start_bb, REWRITE_UPDATE);
3325
3326 sbitmap_free (interesting_blocks);
3327
3328 /* Debugging dumps. */
3329 if (dump_file)
3330 {
3331 int c;
3332 unsigned i;
3333
3334 dump_update_ssa (dump_file);
3335
3336 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3337 start_bb->index);
3338
3339 c = 0;
3340 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3341 c++;
3342 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3343 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3344 c, PERCENT (c, last_basic_block));
3345
3346 if (dump_flags & TDF_DETAILS)
3347 {
3348 fprintf (dump_file, "Affected blocks:");
3349 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3350 fprintf (dump_file, " %u", i);
3351 fprintf (dump_file, "\n");
3352 }
3353
3354 fprintf (dump_file, "\n\n");
3355 }
3356
3357 /* Free allocated memory. */
3358 done:
3359 delete_update_ssa ();
3360
3361 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3362 }