]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-loop-distribution.c
Let ldist ignore clobbers
[thirdparty/gcc.git] / gcc / tree-loop-distribution.c
1 /* Loop distribution.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass performs loop distribution: for example, the loop
23
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
28
29 is transformed to
30
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
34 |
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
38
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
44
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
84
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "params.h"
116 #include "tree-vectorizer.h"
117 #include "tree-eh.h"
118
119
120 #define MAX_DATAREFS_NUM \
121 ((unsigned) PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
122
123 /* Threshold controlling number of distributed partitions. Given it may
124 be unnecessary if a memory stream cost model is invented in the future,
125 we define it as a temporary macro, rather than a parameter. */
126 #define NUM_PARTITION_THRESHOLD (4)
127
128 /* Hashtable helpers. */
129
130 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
131 {
132 static inline hashval_t hash (const data_dependence_relation *);
133 static inline bool equal (const data_dependence_relation *,
134 const data_dependence_relation *);
135 };
136
137 /* Hash function for data dependence. */
138
139 inline hashval_t
140 ddr_hasher::hash (const data_dependence_relation *ddr)
141 {
142 inchash::hash h;
143 h.add_ptr (DDR_A (ddr));
144 h.add_ptr (DDR_B (ddr));
145 return h.end ();
146 }
147
148 /* Hash table equality function for data dependence. */
149
150 inline bool
151 ddr_hasher::equal (const data_dependence_relation *ddr1,
152 const data_dependence_relation *ddr2)
153 {
154 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
155 }
156
157 /* The loop (nest) to be distributed. */
158 static vec<loop_p> loop_nest;
159
160 /* Vector of data references in the loop to be distributed. */
161 static vec<data_reference_p> datarefs_vec;
162
163 /* If there is nonaddressable data reference in above vector. */
164 static bool has_nonaddressable_dataref_p;
165
166 /* Store index of data reference in aux field. */
167 #define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
168
169 /* Hash table for data dependence relation in the loop to be distributed. */
170 static hash_table<ddr_hasher> *ddrs_table;
171
172 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
173 struct rdg_vertex
174 {
175 /* The statement represented by this vertex. */
176 gimple *stmt;
177
178 /* Vector of data-references in this statement. */
179 vec<data_reference_p> datarefs;
180
181 /* True when the statement contains a write to memory. */
182 bool has_mem_write;
183
184 /* True when the statement contains a read from memory. */
185 bool has_mem_reads;
186 };
187
188 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
189 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
190 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
191 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
192 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
193 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
194 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
195 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
196
197 /* Data dependence type. */
198
199 enum rdg_dep_type
200 {
201 /* Read After Write (RAW). */
202 flow_dd = 'f',
203
204 /* Control dependence (execute conditional on). */
205 control_dd = 'c'
206 };
207
208 /* Dependence information attached to an edge of the RDG. */
209
210 struct rdg_edge
211 {
212 /* Type of the dependence. */
213 enum rdg_dep_type type;
214 };
215
216 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
217
218 /* Dump vertex I in RDG to FILE. */
219
220 static void
221 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
222 {
223 struct vertex *v = &(rdg->vertices[i]);
224 struct graph_edge *e;
225
226 fprintf (file, "(vertex %d: (%s%s) (in:", i,
227 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
228 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
229
230 if (v->pred)
231 for (e = v->pred; e; e = e->pred_next)
232 fprintf (file, " %d", e->src);
233
234 fprintf (file, ") (out:");
235
236 if (v->succ)
237 for (e = v->succ; e; e = e->succ_next)
238 fprintf (file, " %d", e->dest);
239
240 fprintf (file, ")\n");
241 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
242 fprintf (file, ")\n");
243 }
244
245 /* Call dump_rdg_vertex on stderr. */
246
247 DEBUG_FUNCTION void
248 debug_rdg_vertex (struct graph *rdg, int i)
249 {
250 dump_rdg_vertex (stderr, rdg, i);
251 }
252
253 /* Dump the reduced dependence graph RDG to FILE. */
254
255 static void
256 dump_rdg (FILE *file, struct graph *rdg)
257 {
258 fprintf (file, "(rdg\n");
259 for (int i = 0; i < rdg->n_vertices; i++)
260 dump_rdg_vertex (file, rdg, i);
261 fprintf (file, ")\n");
262 }
263
264 /* Call dump_rdg on stderr. */
265
266 DEBUG_FUNCTION void
267 debug_rdg (struct graph *rdg)
268 {
269 dump_rdg (stderr, rdg);
270 }
271
272 static void
273 dot_rdg_1 (FILE *file, struct graph *rdg)
274 {
275 int i;
276 pretty_printer buffer;
277 pp_needs_newline (&buffer) = false;
278 buffer.buffer->stream = file;
279
280 fprintf (file, "digraph RDG {\n");
281
282 for (i = 0; i < rdg->n_vertices; i++)
283 {
284 struct vertex *v = &(rdg->vertices[i]);
285 struct graph_edge *e;
286
287 fprintf (file, "%d [label=\"[%d] ", i, i);
288 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
289 pp_flush (&buffer);
290 fprintf (file, "\"]\n");
291
292 /* Highlight reads from memory. */
293 if (RDG_MEM_READS_STMT (rdg, i))
294 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
295
296 /* Highlight stores to memory. */
297 if (RDG_MEM_WRITE_STMT (rdg, i))
298 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
299
300 if (v->succ)
301 for (e = v->succ; e; e = e->succ_next)
302 switch (RDGE_TYPE (e))
303 {
304 case flow_dd:
305 /* These are the most common dependences: don't print these. */
306 fprintf (file, "%d -> %d \n", i, e->dest);
307 break;
308
309 case control_dd:
310 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
311 break;
312
313 default:
314 gcc_unreachable ();
315 }
316 }
317
318 fprintf (file, "}\n\n");
319 }
320
321 /* Display the Reduced Dependence Graph using dotty. */
322
323 DEBUG_FUNCTION void
324 dot_rdg (struct graph *rdg)
325 {
326 /* When debugging, you may want to enable the following code. */
327 #ifdef HAVE_POPEN
328 FILE *file = popen ("dot -Tx11", "w");
329 if (!file)
330 return;
331 dot_rdg_1 (file, rdg);
332 fflush (file);
333 close (fileno (file));
334 pclose (file);
335 #else
336 dot_rdg_1 (stderr, rdg);
337 #endif
338 }
339
340 /* Returns the index of STMT in RDG. */
341
342 static int
343 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
344 {
345 int index = gimple_uid (stmt);
346 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
347 return index;
348 }
349
350 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
351 the index of DEF in RDG. */
352
353 static void
354 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
355 {
356 use_operand_p imm_use_p;
357 imm_use_iterator iterator;
358
359 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
360 {
361 struct graph_edge *e;
362 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
363
364 if (use < 0)
365 continue;
366
367 e = add_edge (rdg, idef, use);
368 e->data = XNEW (struct rdg_edge);
369 RDGE_TYPE (e) = flow_dd;
370 }
371 }
372
373 /* Creates an edge for the control dependences of BB to the vertex V. */
374
375 static void
376 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
377 int v, control_dependences *cd)
378 {
379 bitmap_iterator bi;
380 unsigned edge_n;
381 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
382 0, edge_n, bi)
383 {
384 basic_block cond_bb = cd->get_edge_src (edge_n);
385 gimple *stmt = last_stmt (cond_bb);
386 if (stmt && is_ctrl_stmt (stmt))
387 {
388 struct graph_edge *e;
389 int c = rdg_vertex_for_stmt (rdg, stmt);
390 if (c < 0)
391 continue;
392
393 e = add_edge (rdg, c, v);
394 e->data = XNEW (struct rdg_edge);
395 RDGE_TYPE (e) = control_dd;
396 }
397 }
398 }
399
400 /* Creates the edges of the reduced dependence graph RDG. */
401
402 static void
403 create_rdg_flow_edges (struct graph *rdg)
404 {
405 int i;
406 def_operand_p def_p;
407 ssa_op_iter iter;
408
409 for (i = 0; i < rdg->n_vertices; i++)
410 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
411 iter, SSA_OP_DEF)
412 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
413 }
414
415 /* Creates the edges of the reduced dependence graph RDG. */
416
417 static void
418 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
419 {
420 int i;
421
422 for (i = 0; i < rdg->n_vertices; i++)
423 {
424 gimple *stmt = RDG_STMT (rdg, i);
425 if (gimple_code (stmt) == GIMPLE_PHI)
426 {
427 edge_iterator ei;
428 edge e;
429 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
430 if (flow_bb_inside_loop_p (loop, e->src))
431 create_edge_for_control_dependence (rdg, e->src, i, cd);
432 }
433 else
434 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
435 }
436 }
437
438 /* Build the vertices of the reduced dependence graph RDG. Return false
439 if that failed. */
440
441 static bool
442 create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop)
443 {
444 int i;
445 gimple *stmt;
446
447 FOR_EACH_VEC_ELT (stmts, i, stmt)
448 {
449 struct vertex *v = &(rdg->vertices[i]);
450
451 /* Record statement to vertex mapping. */
452 gimple_set_uid (stmt, i);
453
454 v->data = XNEW (struct rdg_vertex);
455 RDGV_STMT (v) = stmt;
456 RDGV_DATAREFS (v).create (0);
457 RDGV_HAS_MEM_WRITE (v) = false;
458 RDGV_HAS_MEM_READS (v) = false;
459 if (gimple_code (stmt) == GIMPLE_PHI)
460 continue;
461
462 unsigned drp = datarefs_vec.length ();
463 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
464 return false;
465 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
466 {
467 data_reference_p dr = datarefs_vec[j];
468 if (DR_IS_READ (dr))
469 RDGV_HAS_MEM_READS (v) = true;
470 else
471 RDGV_HAS_MEM_WRITE (v) = true;
472 RDGV_DATAREFS (v).safe_push (dr);
473 has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
474 }
475 }
476 return true;
477 }
478
479 /* Array mapping basic block's index to its topological order. */
480 static int *bb_top_order_index;
481 /* And size of the array. */
482 static int bb_top_order_index_size;
483
484 /* If X has a smaller topological sort number than Y, returns -1;
485 if greater, returns 1. */
486
487 static int
488 bb_top_order_cmp (const void *x, const void *y)
489 {
490 basic_block bb1 = *(const basic_block *) x;
491 basic_block bb2 = *(const basic_block *) y;
492
493 gcc_assert (bb1->index < bb_top_order_index_size
494 && bb2->index < bb_top_order_index_size);
495 gcc_assert (bb1 == bb2
496 || bb_top_order_index[bb1->index]
497 != bb_top_order_index[bb2->index]);
498
499 return (bb_top_order_index[bb1->index] - bb_top_order_index[bb2->index]);
500 }
501
502 /* Initialize STMTS with all the statements of LOOP. We use topological
503 order to discover all statements. The order is important because
504 generate_loops_for_partition is using the same traversal for identifying
505 statements in loop copies. */
506
507 static void
508 stmts_from_loop (struct loop *loop, vec<gimple *> *stmts)
509 {
510 unsigned int i;
511 basic_block *bbs = get_loop_body_in_custom_order (loop, bb_top_order_cmp);
512
513 for (i = 0; i < loop->num_nodes; i++)
514 {
515 basic_block bb = bbs[i];
516
517 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
518 gsi_next (&bsi))
519 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
520 stmts->safe_push (bsi.phi ());
521
522 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
523 gsi_next (&bsi))
524 {
525 gimple *stmt = gsi_stmt (bsi);
526 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
527 stmts->safe_push (stmt);
528 }
529 }
530
531 free (bbs);
532 }
533
534 /* Free the reduced dependence graph RDG. */
535
536 static void
537 free_rdg (struct graph *rdg)
538 {
539 int i;
540
541 for (i = 0; i < rdg->n_vertices; i++)
542 {
543 struct vertex *v = &(rdg->vertices[i]);
544 struct graph_edge *e;
545
546 for (e = v->succ; e; e = e->succ_next)
547 free (e->data);
548
549 if (v->data)
550 {
551 gimple_set_uid (RDGV_STMT (v), -1);
552 (RDGV_DATAREFS (v)).release ();
553 free (v->data);
554 }
555 }
556
557 free_graph (rdg);
558 }
559
560 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
561 LOOP, and one edge per flow dependence or control dependence from control
562 dependence CD. During visiting each statement, data references are also
563 collected and recorded in global data DATAREFS_VEC. */
564
565 static struct graph *
566 build_rdg (struct loop *loop, control_dependences *cd)
567 {
568 struct graph *rdg;
569
570 /* Create the RDG vertices from the stmts of the loop nest. */
571 auto_vec<gimple *, 10> stmts;
572 stmts_from_loop (loop, &stmts);
573 rdg = new_graph (stmts.length ());
574 if (!create_rdg_vertices (rdg, stmts, loop))
575 {
576 free_rdg (rdg);
577 return NULL;
578 }
579 stmts.release ();
580
581 create_rdg_flow_edges (rdg);
582 if (cd)
583 create_rdg_cd_edges (rdg, cd, loop);
584
585 return rdg;
586 }
587
588
589 /* Kind of distributed loop. */
590 enum partition_kind {
591 PKIND_NORMAL,
592 /* Partial memset stands for a paritition can be distributed into a loop
593 of memset calls, rather than a single memset call. It's handled just
594 like a normal parition, i.e, distributed as separate loop, no memset
595 call is generated.
596
597 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
598 loop nest as deep as possible. As a result, parloop achieves better
599 parallelization by parallelizing deeper loop nest. This hack should
600 be unnecessary and removed once distributed memset can be understood
601 and analyzed in data reference analysis. See PR82604 for more. */
602 PKIND_PARTIAL_MEMSET,
603 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
604 };
605
606 /* Type of distributed loop. */
607 enum partition_type {
608 /* The distributed loop can be executed parallelly. */
609 PTYPE_PARALLEL = 0,
610 /* The distributed loop has to be executed sequentially. */
611 PTYPE_SEQUENTIAL
612 };
613
614 /* Builtin info for loop distribution. */
615 struct builtin_info
616 {
617 /* data-references a kind != PKIND_NORMAL partition is about. */
618 data_reference_p dst_dr;
619 data_reference_p src_dr;
620 /* Base address and size of memory objects operated by the builtin. Note
621 both dest and source memory objects must have the same size. */
622 tree dst_base;
623 tree src_base;
624 tree size;
625 /* Base and offset part of dst_base after stripping constant offset. This
626 is only used in memset builtin distribution for now. */
627 tree dst_base_base;
628 unsigned HOST_WIDE_INT dst_base_offset;
629 };
630
631 /* Partition for loop distribution. */
632 struct partition
633 {
634 /* Statements of the partition. */
635 bitmap stmts;
636 /* True if the partition defines variable which is used outside of loop. */
637 bool reduction_p;
638 enum partition_kind kind;
639 enum partition_type type;
640 /* Data references in the partition. */
641 bitmap datarefs;
642 /* Information of builtin parition. */
643 struct builtin_info *builtin;
644 };
645
646
647 /* Allocate and initialize a partition from BITMAP. */
648
649 static partition *
650 partition_alloc (void)
651 {
652 partition *partition = XCNEW (struct partition);
653 partition->stmts = BITMAP_ALLOC (NULL);
654 partition->reduction_p = false;
655 partition->kind = PKIND_NORMAL;
656 partition->datarefs = BITMAP_ALLOC (NULL);
657 return partition;
658 }
659
660 /* Free PARTITION. */
661
662 static void
663 partition_free (partition *partition)
664 {
665 BITMAP_FREE (partition->stmts);
666 BITMAP_FREE (partition->datarefs);
667 if (partition->builtin)
668 free (partition->builtin);
669
670 free (partition);
671 }
672
673 /* Returns true if the partition can be generated as a builtin. */
674
675 static bool
676 partition_builtin_p (partition *partition)
677 {
678 return partition->kind > PKIND_PARTIAL_MEMSET;
679 }
680
681 /* Returns true if the partition contains a reduction. */
682
683 static bool
684 partition_reduction_p (partition *partition)
685 {
686 return partition->reduction_p;
687 }
688
689 /* Partitions are fused because of different reasons. */
690 enum fuse_type
691 {
692 FUSE_NON_BUILTIN = 0,
693 FUSE_REDUCTION = 1,
694 FUSE_SHARE_REF = 2,
695 FUSE_SAME_SCC = 3,
696 FUSE_FINALIZE = 4
697 };
698
699 /* Description on different fusing reason. */
700 static const char *fuse_message[] = {
701 "they are non-builtins",
702 "they have reductions",
703 "they have shared memory refs",
704 "they are in the same dependence scc",
705 "there is no point to distribute loop"};
706
707 static void
708 update_type_for_merge (struct graph *, partition *, partition *);
709
710 /* Merge PARTITION into the partition DEST. RDG is the reduced dependence
711 graph and we update type for result partition if it is non-NULL. */
712
713 static void
714 partition_merge_into (struct graph *rdg, partition *dest,
715 partition *partition, enum fuse_type ft)
716 {
717 if (dump_file && (dump_flags & TDF_DETAILS))
718 {
719 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
720 fprintf (dump_file, " Part 1: ");
721 dump_bitmap (dump_file, dest->stmts);
722 fprintf (dump_file, " Part 2: ");
723 dump_bitmap (dump_file, partition->stmts);
724 }
725
726 dest->kind = PKIND_NORMAL;
727 if (dest->type == PTYPE_PARALLEL)
728 dest->type = partition->type;
729
730 bitmap_ior_into (dest->stmts, partition->stmts);
731 if (partition_reduction_p (partition))
732 dest->reduction_p = true;
733
734 /* Further check if any data dependence prevents us from executing the
735 new partition parallelly. */
736 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
737 update_type_for_merge (rdg, dest, partition);
738
739 bitmap_ior_into (dest->datarefs, partition->datarefs);
740 }
741
742
743 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
744 the LOOP. */
745
746 static bool
747 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
748 {
749 imm_use_iterator imm_iter;
750 use_operand_p use_p;
751
752 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
753 {
754 if (is_gimple_debug (USE_STMT (use_p)))
755 continue;
756
757 basic_block use_bb = gimple_bb (USE_STMT (use_p));
758 if (!flow_bb_inside_loop_p (loop, use_bb))
759 return true;
760 }
761
762 return false;
763 }
764
765 /* Returns true when STMT defines a scalar variable used after the
766 loop LOOP. */
767
768 static bool
769 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
770 {
771 def_operand_p def_p;
772 ssa_op_iter op_iter;
773
774 if (gimple_code (stmt) == GIMPLE_PHI)
775 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
776
777 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
778 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
779 return true;
780
781 return false;
782 }
783
784 /* Return a copy of LOOP placed before LOOP. */
785
786 static struct loop *
787 copy_loop_before (struct loop *loop)
788 {
789 struct loop *res;
790 edge preheader = loop_preheader_edge (loop);
791
792 initialize_original_copy_tables ();
793 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
794 gcc_assert (res != NULL);
795 free_original_copy_tables ();
796 delete_update_ssa ();
797
798 return res;
799 }
800
801 /* Creates an empty basic block after LOOP. */
802
803 static void
804 create_bb_after_loop (struct loop *loop)
805 {
806 edge exit = single_exit (loop);
807
808 if (!exit)
809 return;
810
811 split_edge (exit);
812 }
813
814 /* Generate code for PARTITION from the code in LOOP. The loop is
815 copied when COPY_P is true. All the statements not flagged in the
816 PARTITION bitmap are removed from the loop or from its copy. The
817 statements are indexed in sequence inside a basic block, and the
818 basic blocks of a loop are taken in dom order. */
819
820 static void
821 generate_loops_for_partition (struct loop *loop, partition *partition,
822 bool copy_p)
823 {
824 unsigned i;
825 basic_block *bbs;
826
827 if (copy_p)
828 {
829 int orig_loop_num = loop->orig_loop_num;
830 loop = copy_loop_before (loop);
831 gcc_assert (loop != NULL);
832 loop->orig_loop_num = orig_loop_num;
833 create_preheader (loop, CP_SIMPLE_PREHEADERS);
834 create_bb_after_loop (loop);
835 }
836 else
837 {
838 /* Origin number is set to the new versioned loop's num. */
839 gcc_assert (loop->orig_loop_num != loop->num);
840 }
841
842 /* Remove stmts not in the PARTITION bitmap. */
843 bbs = get_loop_body_in_dom_order (loop);
844
845 if (MAY_HAVE_DEBUG_BIND_STMTS)
846 for (i = 0; i < loop->num_nodes; i++)
847 {
848 basic_block bb = bbs[i];
849
850 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
851 gsi_next (&bsi))
852 {
853 gphi *phi = bsi.phi ();
854 if (!virtual_operand_p (gimple_phi_result (phi))
855 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
856 reset_debug_uses (phi);
857 }
858
859 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
860 {
861 gimple *stmt = gsi_stmt (bsi);
862 if (gimple_code (stmt) != GIMPLE_LABEL
863 && !is_gimple_debug (stmt)
864 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
865 reset_debug_uses (stmt);
866 }
867 }
868
869 for (i = 0; i < loop->num_nodes; i++)
870 {
871 basic_block bb = bbs[i];
872 edge inner_exit = NULL;
873
874 if (loop != bb->loop_father)
875 inner_exit = single_exit (bb->loop_father);
876
877 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
878 {
879 gphi *phi = bsi.phi ();
880 if (!virtual_operand_p (gimple_phi_result (phi))
881 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
882 remove_phi_node (&bsi, true);
883 else
884 gsi_next (&bsi);
885 }
886
887 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
888 {
889 gimple *stmt = gsi_stmt (bsi);
890 if (gimple_code (stmt) != GIMPLE_LABEL
891 && !is_gimple_debug (stmt)
892 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
893 {
894 /* In distribution of loop nest, if bb is inner loop's exit_bb,
895 we choose its exit edge/path in order to avoid generating
896 infinite loop. For all other cases, we choose an arbitrary
897 path through the empty CFG part that this unnecessary
898 control stmt controls. */
899 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
900 {
901 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
902 gimple_cond_make_true (cond_stmt);
903 else
904 gimple_cond_make_false (cond_stmt);
905 update_stmt (stmt);
906 }
907 else if (gimple_code (stmt) == GIMPLE_SWITCH)
908 {
909 gswitch *switch_stmt = as_a <gswitch *> (stmt);
910 gimple_switch_set_index
911 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
912 update_stmt (stmt);
913 }
914 else
915 {
916 unlink_stmt_vdef (stmt);
917 gsi_remove (&bsi, true);
918 release_defs (stmt);
919 continue;
920 }
921 }
922 gsi_next (&bsi);
923 }
924 }
925
926 free (bbs);
927 }
928
929 /* If VAL memory representation contains the same value in all bytes,
930 return that value, otherwise return -1.
931 E.g. for 0x24242424 return 0x24, for IEEE double
932 747708026454360457216.0 return 0x44, etc. */
933
934 static int
935 const_with_all_bytes_same (tree val)
936 {
937 unsigned char buf[64];
938 int i, len;
939
940 if (integer_zerop (val)
941 || (TREE_CODE (val) == CONSTRUCTOR
942 && !TREE_CLOBBER_P (val)
943 && CONSTRUCTOR_NELTS (val) == 0))
944 return 0;
945
946 if (real_zerop (val))
947 {
948 /* Only return 0 for +0.0, not for -0.0, which doesn't have
949 an all bytes same memory representation. Don't transform
950 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
951 switch (TREE_CODE (val))
952 {
953 case REAL_CST:
954 if (!real_isneg (TREE_REAL_CST_PTR (val)))
955 return 0;
956 break;
957 case COMPLEX_CST:
958 if (!const_with_all_bytes_same (TREE_REALPART (val))
959 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
960 return 0;
961 break;
962 case VECTOR_CST:
963 {
964 unsigned int count = vector_cst_encoded_nelts (val);
965 unsigned int j;
966 for (j = 0; j < count; ++j)
967 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
968 break;
969 if (j == count)
970 return 0;
971 break;
972 }
973 default:
974 break;
975 }
976 }
977
978 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
979 return -1;
980
981 len = native_encode_expr (val, buf, sizeof (buf));
982 if (len == 0)
983 return -1;
984 for (i = 1; i < len; i++)
985 if (buf[i] != buf[0])
986 return -1;
987 return buf[0];
988 }
989
990 /* Generate a call to memset for PARTITION in LOOP. */
991
992 static void
993 generate_memset_builtin (struct loop *loop, partition *partition)
994 {
995 gimple_stmt_iterator gsi;
996 tree mem, fn, nb_bytes;
997 tree val;
998 struct builtin_info *builtin = partition->builtin;
999 gimple *fn_call;
1000
1001 /* The new statements will be placed before LOOP. */
1002 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1003
1004 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1005 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1006 false, GSI_CONTINUE_LINKING);
1007 mem = builtin->dst_base;
1008 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1009 false, GSI_CONTINUE_LINKING);
1010
1011 /* This exactly matches the pattern recognition in classify_partition. */
1012 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1013 /* Handle constants like 0x15151515 and similarly
1014 floating point constants etc. where all bytes are the same. */
1015 int bytev = const_with_all_bytes_same (val);
1016 if (bytev != -1)
1017 val = build_int_cst (integer_type_node, bytev);
1018 else if (TREE_CODE (val) == INTEGER_CST)
1019 val = fold_convert (integer_type_node, val);
1020 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1021 {
1022 tree tem = make_ssa_name (integer_type_node);
1023 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1024 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1025 val = tem;
1026 }
1027
1028 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1029 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1030 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1031
1032 if (dump_file && (dump_flags & TDF_DETAILS))
1033 {
1034 fprintf (dump_file, "generated memset");
1035 if (bytev == 0)
1036 fprintf (dump_file, " zero\n");
1037 else
1038 fprintf (dump_file, "\n");
1039 }
1040 }
1041
1042 /* Generate a call to memcpy for PARTITION in LOOP. */
1043
1044 static void
1045 generate_memcpy_builtin (struct loop *loop, partition *partition)
1046 {
1047 gimple_stmt_iterator gsi;
1048 gimple *fn_call;
1049 tree dest, src, fn, nb_bytes;
1050 enum built_in_function kind;
1051 struct builtin_info *builtin = partition->builtin;
1052
1053 /* The new statements will be placed before LOOP. */
1054 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1055
1056 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1057 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1058 false, GSI_CONTINUE_LINKING);
1059 dest = builtin->dst_base;
1060 src = builtin->src_base;
1061 if (partition->kind == PKIND_MEMCPY
1062 || ! ptr_derefs_may_alias_p (dest, src))
1063 kind = BUILT_IN_MEMCPY;
1064 else
1065 kind = BUILT_IN_MEMMOVE;
1066
1067 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1068 false, GSI_CONTINUE_LINKING);
1069 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1070 false, GSI_CONTINUE_LINKING);
1071 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1072 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1073 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1074
1075 if (dump_file && (dump_flags & TDF_DETAILS))
1076 {
1077 if (kind == BUILT_IN_MEMCPY)
1078 fprintf (dump_file, "generated memcpy\n");
1079 else
1080 fprintf (dump_file, "generated memmove\n");
1081 }
1082 }
1083
1084 /* Remove and destroy the loop LOOP. */
1085
1086 static void
1087 destroy_loop (struct loop *loop)
1088 {
1089 unsigned nbbs = loop->num_nodes;
1090 edge exit = single_exit (loop);
1091 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1092 basic_block *bbs;
1093 unsigned i;
1094
1095 bbs = get_loop_body_in_dom_order (loop);
1096
1097 gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
1098 bool safe_p = single_pred_p (exit->dest);
1099 i = nbbs;
1100 do
1101 {
1102 /* We have made sure to not leave any dangling uses of SSA
1103 names defined in the loop. With the exception of virtuals.
1104 Make sure we replace all uses of virtual defs that will remain
1105 outside of the loop with the bare symbol as delete_basic_block
1106 will release them. */
1107 --i;
1108 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1109 gsi_next (&gsi))
1110 {
1111 gphi *phi = gsi.phi ();
1112 if (virtual_operand_p (gimple_phi_result (phi)))
1113 mark_virtual_phi_result_for_renaming (phi);
1114 }
1115 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1116 {
1117 gimple *stmt = gsi_stmt (gsi);
1118 tree vdef = gimple_vdef (stmt);
1119 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1120 mark_virtual_operand_for_renaming (vdef);
1121 /* Also move and eventually reset debug stmts. We can leave
1122 constant values in place in case the stmt dominates the exit.
1123 ??? Non-constant values from the last iteration can be
1124 replaced with final values if we can compute them. */
1125 if (gimple_debug_bind_p (stmt))
1126 {
1127 tree val = gimple_debug_bind_get_value (stmt);
1128 gsi_move_before (&gsi, &dst_gsi);
1129 if (val
1130 && (!safe_p
1131 || !is_gimple_min_invariant (val)
1132 || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1133 {
1134 gimple_debug_bind_reset_value (stmt);
1135 update_stmt (stmt);
1136 }
1137 }
1138 else
1139 gsi_next (&gsi);
1140 }
1141 }
1142 while (i != 0);
1143
1144 redirect_edge_pred (exit, src);
1145 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1146 exit->flags |= EDGE_FALLTHRU;
1147 cancel_loop_tree (loop);
1148 rescan_loop_exit (exit, false, true);
1149
1150 i = nbbs;
1151 do
1152 {
1153 --i;
1154 delete_basic_block (bbs[i]);
1155 }
1156 while (i != 0);
1157
1158 free (bbs);
1159
1160 set_immediate_dominator (CDI_DOMINATORS, dest,
1161 recompute_dominator (CDI_DOMINATORS, dest));
1162 }
1163
1164 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1165
1166 static bool
1167 generate_code_for_partition (struct loop *loop,
1168 partition *partition, bool copy_p)
1169 {
1170 switch (partition->kind)
1171 {
1172 case PKIND_NORMAL:
1173 case PKIND_PARTIAL_MEMSET:
1174 /* Reductions all have to be in the last partition. */
1175 gcc_assert (!partition_reduction_p (partition)
1176 || !copy_p);
1177 generate_loops_for_partition (loop, partition, copy_p);
1178 return false;
1179
1180 case PKIND_MEMSET:
1181 generate_memset_builtin (loop, partition);
1182 break;
1183
1184 case PKIND_MEMCPY:
1185 case PKIND_MEMMOVE:
1186 generate_memcpy_builtin (loop, partition);
1187 break;
1188
1189 default:
1190 gcc_unreachable ();
1191 }
1192
1193 /* Common tail for partitions we turn into a call. If this was the last
1194 partition for which we generate code, we have to destroy the loop. */
1195 if (!copy_p)
1196 return true;
1197 return false;
1198 }
1199
1200 /* Return data dependence relation for data references A and B. The two
1201 data references must be in lexicographic order wrto reduced dependence
1202 graph RDG. We firstly try to find ddr from global ddr hash table. If
1203 it doesn't exist, compute the ddr and cache it. */
1204
1205 static data_dependence_relation *
1206 get_data_dependence (struct graph *rdg, data_reference_p a, data_reference_p b)
1207 {
1208 struct data_dependence_relation ent, **slot;
1209 struct data_dependence_relation *ddr;
1210
1211 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1212 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1213 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1214 ent.a = a;
1215 ent.b = b;
1216 slot = ddrs_table->find_slot (&ent, INSERT);
1217 if (*slot == NULL)
1218 {
1219 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1220 compute_affine_dependence (ddr, loop_nest[0]);
1221 *slot = ddr;
1222 }
1223
1224 return *slot;
1225 }
1226
1227 /* In reduced dependence graph RDG for loop distribution, return true if
1228 dependence between references DR1 and DR2 leads to a dependence cycle
1229 and such dependence cycle can't be resolved by runtime alias check. */
1230
1231 static bool
1232 data_dep_in_cycle_p (struct graph *rdg,
1233 data_reference_p dr1, data_reference_p dr2)
1234 {
1235 struct data_dependence_relation *ddr;
1236
1237 /* Re-shuffle data-refs to be in topological order. */
1238 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1239 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1240 std::swap (dr1, dr2);
1241
1242 ddr = get_data_dependence (rdg, dr1, dr2);
1243
1244 /* In case of no data dependence. */
1245 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1246 return false;
1247 /* For unknown data dependence or known data dependence which can't be
1248 expressed in classic distance vector, we check if it can be resolved
1249 by runtime alias check. If yes, we still consider data dependence
1250 as won't introduce data dependence cycle. */
1251 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1252 || DDR_NUM_DIST_VECTS (ddr) == 0)
1253 return !runtime_alias_check_p (ddr, NULL, true);
1254 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1255 return true;
1256 else if (DDR_REVERSED_P (ddr)
1257 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1258 return false;
1259
1260 return true;
1261 }
1262
1263 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
1264 PARTITION1's type after merging PARTITION2 into PARTITION1. */
1265
1266 static void
1267 update_type_for_merge (struct graph *rdg,
1268 partition *partition1, partition *partition2)
1269 {
1270 unsigned i, j;
1271 bitmap_iterator bi, bj;
1272 data_reference_p dr1, dr2;
1273
1274 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1275 {
1276 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1277
1278 dr1 = datarefs_vec[i];
1279 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1280 {
1281 dr2 = datarefs_vec[j];
1282 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1283 continue;
1284
1285 /* Partition can only be executed sequentially if there is any
1286 data dependence cycle. */
1287 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1288 {
1289 partition1->type = PTYPE_SEQUENTIAL;
1290 return;
1291 }
1292 }
1293 }
1294 }
1295
1296 /* Returns a partition with all the statements needed for computing
1297 the vertex V of the RDG, also including the loop exit conditions. */
1298
1299 static partition *
1300 build_rdg_partition_for_vertex (struct graph *rdg, int v)
1301 {
1302 partition *partition = partition_alloc ();
1303 auto_vec<int, 3> nodes;
1304 unsigned i, j;
1305 int x;
1306 data_reference_p dr;
1307
1308 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1309
1310 FOR_EACH_VEC_ELT (nodes, i, x)
1311 {
1312 bitmap_set_bit (partition->stmts, x);
1313
1314 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1315 {
1316 unsigned idx = (unsigned) DR_INDEX (dr);
1317 gcc_assert (idx < datarefs_vec.length ());
1318
1319 /* Partition can only be executed sequentially if there is any
1320 unknown data reference. */
1321 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1322 || !DR_INIT (dr) || !DR_STEP (dr))
1323 partition->type = PTYPE_SEQUENTIAL;
1324
1325 bitmap_set_bit (partition->datarefs, idx);
1326 }
1327 }
1328
1329 if (partition->type == PTYPE_SEQUENTIAL)
1330 return partition;
1331
1332 /* Further check if any data dependence prevents us from executing the
1333 partition parallelly. */
1334 update_type_for_merge (rdg, partition, partition);
1335
1336 return partition;
1337 }
1338
1339 /* Given PARTITION of LOOP and RDG, record single load/store data references
1340 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1341 data references. */
1342
1343 static bool
1344 find_single_drs (struct loop *loop, struct graph *rdg, partition *partition,
1345 data_reference_p *dst_dr, data_reference_p *src_dr)
1346 {
1347 unsigned i;
1348 data_reference_p single_ld = NULL, single_st = NULL;
1349 bitmap_iterator bi;
1350
1351 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1352 {
1353 gimple *stmt = RDG_STMT (rdg, i);
1354 data_reference_p dr;
1355
1356 if (gimple_code (stmt) == GIMPLE_PHI)
1357 continue;
1358
1359 /* Any scalar stmts are ok. */
1360 if (!gimple_vuse (stmt))
1361 continue;
1362
1363 /* Otherwise just regular loads/stores. */
1364 if (!gimple_assign_single_p (stmt))
1365 return false;
1366
1367 /* But exactly one store and/or load. */
1368 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1369 {
1370 tree type = TREE_TYPE (DR_REF (dr));
1371
1372 /* The memset, memcpy and memmove library calls are only
1373 able to deal with generic address space. */
1374 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1375 return false;
1376
1377 if (DR_IS_READ (dr))
1378 {
1379 if (single_ld != NULL)
1380 return false;
1381 single_ld = dr;
1382 }
1383 else
1384 {
1385 if (single_st != NULL)
1386 return false;
1387 single_st = dr;
1388 }
1389 }
1390 }
1391
1392 if (!single_st)
1393 return false;
1394
1395 /* Bail out if this is a bitfield memory reference. */
1396 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1397 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1398 return false;
1399
1400 /* Data reference must be executed exactly once per iteration of each
1401 loop in the loop nest. We only need to check dominance information
1402 against the outermost one in a perfect loop nest because a bb can't
1403 dominate outermost loop's latch without dominating inner loop's. */
1404 basic_block bb_st = gimple_bb (DR_STMT (single_st));
1405 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1406 return false;
1407
1408 if (single_ld)
1409 {
1410 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1411 /* Direct aggregate copy or via an SSA name temporary. */
1412 if (load != store
1413 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1414 return false;
1415
1416 /* Bail out if this is a bitfield memory reference. */
1417 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1418 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1419 return false;
1420
1421 /* Load and store must be in the same loop nest. */
1422 basic_block bb_ld = gimple_bb (DR_STMT (single_ld));
1423 if (bb_st->loop_father != bb_ld->loop_father)
1424 return false;
1425
1426 /* Data reference must be executed exactly once per iteration.
1427 Same as single_st, we only need to check against the outermost
1428 loop. */
1429 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1430 return false;
1431
1432 edge e = single_exit (bb_st->loop_father);
1433 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1434 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1435 if (dom_ld != dom_st)
1436 return false;
1437 }
1438
1439 *src_dr = single_ld;
1440 *dst_dr = single_st;
1441 return true;
1442 }
1443
1444 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1445 loops from inner to outer to see if loop's step equals to access size at
1446 each level of loop. Return 2 if we can prove this at all level loops;
1447 record access base and size in BASE and SIZE; save loop's step at each
1448 level of loop in STEPS if it is not null. For example:
1449
1450 int arr[100][100][100];
1451 for (i = 0; i < 100; i++) ;steps[2] = 40000
1452 for (j = 100; j > 0; j--) ;steps[1] = -400
1453 for (k = 0; k < 100; k++) ;steps[0] = 4
1454 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1455
1456 Return 1 if we can prove the equality at the innermost loop, but not all
1457 level loops. In this case, no information is recorded.
1458
1459 Return 0 if no equality can be proven at any level loops. */
1460
1461 static int
1462 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1463 tree *size, vec<tree> *steps = NULL)
1464 {
1465 location_t loc = gimple_location (DR_STMT (dr));
1466 basic_block bb = gimple_bb (DR_STMT (dr));
1467 struct loop *loop = bb->loop_father;
1468 tree ref = DR_REF (dr);
1469 tree access_base = build_fold_addr_expr (ref);
1470 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1471 int res = 0;
1472
1473 do {
1474 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1475 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1476 return res;
1477
1478 access_base = CHREC_LEFT (scev_fn);
1479 if (tree_contains_chrecs (access_base, NULL))
1480 return res;
1481
1482 tree scev_step = CHREC_RIGHT (scev_fn);
1483 /* Only support constant steps. */
1484 if (TREE_CODE (scev_step) != INTEGER_CST)
1485 return res;
1486
1487 enum ev_direction access_dir = scev_direction (scev_fn);
1488 if (access_dir == EV_DIR_UNKNOWN)
1489 return res;
1490
1491 if (steps != NULL)
1492 steps->safe_push (scev_step);
1493
1494 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1495 /* Compute absolute value of scev step. */
1496 if (access_dir == EV_DIR_DECREASES)
1497 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1498
1499 /* At each level of loop, scev step must equal to access size. In other
1500 words, DR must access consecutive memory between loop iterations. */
1501 if (!operand_equal_p (scev_step, access_size, 0))
1502 return res;
1503
1504 /* Access stride can be computed for data reference at least for the
1505 innermost loop. */
1506 res = 1;
1507
1508 /* Compute DR's execution times in loop. */
1509 tree niters = number_of_latch_executions (loop);
1510 niters = fold_convert_loc (loc, sizetype, niters);
1511 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1512 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1513
1514 /* Compute DR's overall access size in loop. */
1515 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1516 niters, scev_step);
1517 /* Adjust base address in case of negative step. */
1518 if (access_dir == EV_DIR_DECREASES)
1519 {
1520 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1521 scev_step, access_size);
1522 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1523 }
1524 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1525
1526 *base = access_base;
1527 *size = access_size;
1528 /* Access stride can be computed for data reference at each level loop. */
1529 return 2;
1530 }
1531
1532 /* Allocate and return builtin struct. Record information like DST_DR,
1533 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1534
1535 static struct builtin_info *
1536 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1537 tree dst_base, tree src_base, tree size)
1538 {
1539 struct builtin_info *builtin = XNEW (struct builtin_info);
1540 builtin->dst_dr = dst_dr;
1541 builtin->src_dr = src_dr;
1542 builtin->dst_base = dst_base;
1543 builtin->src_base = src_base;
1544 builtin->size = size;
1545 return builtin;
1546 }
1547
1548 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1549 memset call. */
1550
1551 static void
1552 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1553 {
1554 gimple *stmt = DR_STMT (dr);
1555 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1556
1557 if (const_with_all_bytes_same (rhs) == -1
1558 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1559 || (TYPE_MODE (TREE_TYPE (rhs))
1560 != TYPE_MODE (unsigned_char_type_node))))
1561 return;
1562
1563 if (TREE_CODE (rhs) == SSA_NAME
1564 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1565 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1566 return;
1567
1568 int res = compute_access_range (loop, dr, &base, &size);
1569 if (res == 0)
1570 return;
1571 if (res == 1)
1572 {
1573 partition->kind = PKIND_PARTIAL_MEMSET;
1574 return;
1575 }
1576
1577 poly_uint64 base_offset;
1578 unsigned HOST_WIDE_INT const_base_offset;
1579 tree base_base = strip_offset (base, &base_offset);
1580 if (!base_offset.is_constant (&const_base_offset))
1581 return;
1582
1583 struct builtin_info *builtin;
1584 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1585 builtin->dst_base_base = base_base;
1586 builtin->dst_base_offset = const_base_offset;
1587 partition->builtin = builtin;
1588 partition->kind = PKIND_MEMSET;
1589 }
1590
1591 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1592 if it forms builtin memcpy or memmove call. */
1593
1594 static void
1595 classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
1596 data_reference_p dst_dr, data_reference_p src_dr)
1597 {
1598 tree base, size, src_base, src_size;
1599 auto_vec<tree> dst_steps, src_steps;
1600
1601 /* Compute access range of both load and store. */
1602 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1603 if (res != 2)
1604 return;
1605 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1606 if (res != 2)
1607 return;
1608
1609 /* They much have the same access size. */
1610 if (!operand_equal_p (size, src_size, 0))
1611 return;
1612
1613 /* Load and store in loop nest must access memory in the same way, i.e,
1614 their must have the same steps in each loop of the nest. */
1615 if (dst_steps.length () != src_steps.length ())
1616 return;
1617 for (unsigned i = 0; i < dst_steps.length (); ++i)
1618 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1619 return;
1620
1621 /* Now check that if there is a dependence. */
1622 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1623
1624 /* Classify as memcpy if no dependence between load and store. */
1625 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1626 {
1627 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1628 partition->kind = PKIND_MEMCPY;
1629 return;
1630 }
1631
1632 /* Can't do memmove in case of unknown dependence or dependence without
1633 classical distance vector. */
1634 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1635 || DDR_NUM_DIST_VECTS (ddr) == 0)
1636 return;
1637
1638 unsigned i;
1639 lambda_vector dist_v;
1640 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1641 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1642 {
1643 unsigned dep_lev = dependence_level (dist_v, num_lev);
1644 /* Can't do memmove if load depends on store. */
1645 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1646 return;
1647 }
1648
1649 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1650 partition->kind = PKIND_MEMMOVE;
1651 return;
1652 }
1653
1654 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
1655 For the moment we detect memset, memcpy and memmove patterns. Bitmap
1656 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions. */
1657
1658 static void
1659 classify_partition (loop_p loop, struct graph *rdg, partition *partition,
1660 bitmap stmt_in_all_partitions)
1661 {
1662 bitmap_iterator bi;
1663 unsigned i;
1664 data_reference_p single_ld = NULL, single_st = NULL;
1665 bool volatiles_p = false, has_reduction = false;
1666
1667 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1668 {
1669 gimple *stmt = RDG_STMT (rdg, i);
1670
1671 if (gimple_has_volatile_ops (stmt))
1672 volatiles_p = true;
1673
1674 /* If the stmt is not included by all partitions and there is uses
1675 outside of the loop, then mark the partition as reduction. */
1676 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1677 {
1678 /* Due to limitation in the transform phase we have to fuse all
1679 reduction partitions. As a result, this could cancel valid
1680 loop distribution especially for loop that induction variable
1681 is used outside of loop. To workaround this issue, we skip
1682 marking partition as reudction if the reduction stmt belongs
1683 to all partitions. In such case, reduction will be computed
1684 correctly no matter how partitions are fused/distributed. */
1685 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1686 {
1687 partition->reduction_p = true;
1688 return;
1689 }
1690 has_reduction = true;
1691 }
1692 }
1693
1694 /* Perform general partition disqualification for builtins. */
1695 if (volatiles_p
1696 /* Simple workaround to prevent classifying the partition as builtin
1697 if it contains any use outside of loop. */
1698 || has_reduction
1699 || !flag_tree_loop_distribute_patterns)
1700 return;
1701
1702 /* Find single load/store data references for builtin partition. */
1703 if (!find_single_drs (loop, rdg, partition, &single_st, &single_ld))
1704 return;
1705
1706 /* Classify the builtin kind. */
1707 if (single_ld == NULL)
1708 classify_builtin_st (loop, partition, single_st);
1709 else
1710 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1711 }
1712
1713 /* Returns true when PARTITION1 and PARTITION2 access the same memory
1714 object in RDG. */
1715
1716 static bool
1717 share_memory_accesses (struct graph *rdg,
1718 partition *partition1, partition *partition2)
1719 {
1720 unsigned i, j;
1721 bitmap_iterator bi, bj;
1722 data_reference_p dr1, dr2;
1723
1724 /* First check whether in the intersection of the two partitions are
1725 any loads or stores. Common loads are the situation that happens
1726 most often. */
1727 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1728 if (RDG_MEM_WRITE_STMT (rdg, i)
1729 || RDG_MEM_READS_STMT (rdg, i))
1730 return true;
1731
1732 /* Then check whether the two partitions access the same memory object. */
1733 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1734 {
1735 dr1 = datarefs_vec[i];
1736
1737 if (!DR_BASE_ADDRESS (dr1)
1738 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1739 continue;
1740
1741 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1742 {
1743 dr2 = datarefs_vec[j];
1744
1745 if (!DR_BASE_ADDRESS (dr2)
1746 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1747 continue;
1748
1749 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1750 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1751 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1752 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1753 return true;
1754 }
1755 }
1756
1757 return false;
1758 }
1759
1760 /* For each seed statement in STARTING_STMTS, this function builds
1761 partition for it by adding depended statements according to RDG.
1762 All partitions are recorded in PARTITIONS. */
1763
1764 static void
1765 rdg_build_partitions (struct graph *rdg,
1766 vec<gimple *> starting_stmts,
1767 vec<partition *> *partitions)
1768 {
1769 auto_bitmap processed;
1770 int i;
1771 gimple *stmt;
1772
1773 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1774 {
1775 int v = rdg_vertex_for_stmt (rdg, stmt);
1776
1777 if (dump_file && (dump_flags & TDF_DETAILS))
1778 fprintf (dump_file,
1779 "ldist asked to generate code for vertex %d\n", v);
1780
1781 /* If the vertex is already contained in another partition so
1782 is the partition rooted at it. */
1783 if (bitmap_bit_p (processed, v))
1784 continue;
1785
1786 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1787 bitmap_ior_into (processed, partition->stmts);
1788
1789 if (dump_file && (dump_flags & TDF_DETAILS))
1790 {
1791 fprintf (dump_file, "ldist creates useful %s partition:\n",
1792 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1793 bitmap_print (dump_file, partition->stmts, " ", "\n");
1794 }
1795
1796 partitions->safe_push (partition);
1797 }
1798
1799 /* All vertices should have been assigned to at least one partition now,
1800 other than vertices belonging to dead code. */
1801 }
1802
1803 /* Dump to FILE the PARTITIONS. */
1804
1805 static void
1806 dump_rdg_partitions (FILE *file, vec<partition *> partitions)
1807 {
1808 int i;
1809 partition *partition;
1810
1811 FOR_EACH_VEC_ELT (partitions, i, partition)
1812 debug_bitmap_file (file, partition->stmts);
1813 }
1814
1815 /* Debug PARTITIONS. */
1816 extern void debug_rdg_partitions (vec<partition *> );
1817
1818 DEBUG_FUNCTION void
1819 debug_rdg_partitions (vec<partition *> partitions)
1820 {
1821 dump_rdg_partitions (stderr, partitions);
1822 }
1823
1824 /* Returns the number of read and write operations in the RDG. */
1825
1826 static int
1827 number_of_rw_in_rdg (struct graph *rdg)
1828 {
1829 int i, res = 0;
1830
1831 for (i = 0; i < rdg->n_vertices; i++)
1832 {
1833 if (RDG_MEM_WRITE_STMT (rdg, i))
1834 ++res;
1835
1836 if (RDG_MEM_READS_STMT (rdg, i))
1837 ++res;
1838 }
1839
1840 return res;
1841 }
1842
1843 /* Returns the number of read and write operations in a PARTITION of
1844 the RDG. */
1845
1846 static int
1847 number_of_rw_in_partition (struct graph *rdg, partition *partition)
1848 {
1849 int res = 0;
1850 unsigned i;
1851 bitmap_iterator ii;
1852
1853 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
1854 {
1855 if (RDG_MEM_WRITE_STMT (rdg, i))
1856 ++res;
1857
1858 if (RDG_MEM_READS_STMT (rdg, i))
1859 ++res;
1860 }
1861
1862 return res;
1863 }
1864
1865 /* Returns true when one of the PARTITIONS contains all the read or
1866 write operations of RDG. */
1867
1868 static bool
1869 partition_contains_all_rw (struct graph *rdg,
1870 vec<partition *> partitions)
1871 {
1872 int i;
1873 partition *partition;
1874 int nrw = number_of_rw_in_rdg (rdg);
1875
1876 FOR_EACH_VEC_ELT (partitions, i, partition)
1877 if (nrw == number_of_rw_in_partition (rdg, partition))
1878 return true;
1879
1880 return false;
1881 }
1882
1883 /* Compute partition dependence created by the data references in DRS1
1884 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
1885 not NULL, we record dependence introduced by possible alias between
1886 two data references in ALIAS_DDRS; otherwise, we simply ignore such
1887 dependence as if it doesn't exist at all. */
1888
1889 static int
1890 pg_add_dependence_edges (struct graph *rdg, int dir,
1891 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
1892 {
1893 unsigned i, j;
1894 bitmap_iterator bi, bj;
1895 data_reference_p dr1, dr2, saved_dr1;
1896
1897 /* dependence direction - 0 is no dependence, -1 is back,
1898 1 is forth, 2 is both (we can stop then, merging will occur). */
1899 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
1900 {
1901 dr1 = datarefs_vec[i];
1902
1903 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
1904 {
1905 int res, this_dir = 1;
1906 ddr_p ddr;
1907
1908 dr2 = datarefs_vec[j];
1909
1910 /* Skip all <read, read> data dependence. */
1911 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1912 continue;
1913
1914 saved_dr1 = dr1;
1915 /* Re-shuffle data-refs to be in topological order. */
1916 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1917 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1918 {
1919 std::swap (dr1, dr2);
1920 this_dir = -this_dir;
1921 }
1922 ddr = get_data_dependence (rdg, dr1, dr2);
1923 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1924 {
1925 this_dir = 0;
1926 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
1927 DR_BASE_ADDRESS (dr2));
1928 /* Be conservative. If data references are not well analyzed,
1929 or the two data references have the same base address and
1930 offset, add dependence and consider it alias to each other.
1931 In other words, the dependence cannot be resolved by
1932 runtime alias check. */
1933 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
1934 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
1935 || !DR_INIT (dr1) || !DR_INIT (dr2)
1936 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
1937 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
1938 || res == 0)
1939 this_dir = 2;
1940 /* Data dependence could be resolved by runtime alias check,
1941 record it in ALIAS_DDRS. */
1942 else if (alias_ddrs != NULL)
1943 alias_ddrs->safe_push (ddr);
1944 /* Or simply ignore it. */
1945 }
1946 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1947 {
1948 if (DDR_REVERSED_P (ddr))
1949 this_dir = -this_dir;
1950
1951 /* Known dependences can still be unordered througout the
1952 iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
1953 if (DDR_NUM_DIST_VECTS (ddr) != 1)
1954 this_dir = 2;
1955 /* If the overlap is exact preserve stmt order. */
1956 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
1957 DDR_NB_LOOPS (ddr)))
1958 ;
1959 /* Else as the distance vector is lexicographic positive swap
1960 the dependence direction. */
1961 else
1962 this_dir = -this_dir;
1963 }
1964 else
1965 this_dir = 0;
1966 if (this_dir == 2)
1967 return 2;
1968 else if (dir == 0)
1969 dir = this_dir;
1970 else if (this_dir != 0 && dir != this_dir)
1971 return 2;
1972 /* Shuffle "back" dr1. */
1973 dr1 = saved_dr1;
1974 }
1975 }
1976 return dir;
1977 }
1978
1979 /* Compare postorder number of the partition graph vertices V1 and V2. */
1980
1981 static int
1982 pgcmp (const void *v1_, const void *v2_)
1983 {
1984 const vertex *v1 = (const vertex *)v1_;
1985 const vertex *v2 = (const vertex *)v2_;
1986 return v2->post - v1->post;
1987 }
1988
1989 /* Data attached to vertices of partition dependence graph. */
1990 struct pg_vdata
1991 {
1992 /* ID of the corresponding partition. */
1993 int id;
1994 /* The partition. */
1995 struct partition *partition;
1996 };
1997
1998 /* Data attached to edges of partition dependence graph. */
1999 struct pg_edata
2000 {
2001 /* If the dependence edge can be resolved by runtime alias check,
2002 this vector contains data dependence relations for runtime alias
2003 check. On the other hand, if the dependence edge is introduced
2004 because of compilation time known data dependence, this vector
2005 contains nothing. */
2006 vec<ddr_p> alias_ddrs;
2007 };
2008
2009 /* Callback data for traversing edges in graph. */
2010 struct pg_edge_callback_data
2011 {
2012 /* Bitmap contains strong connected components should be merged. */
2013 bitmap sccs_to_merge;
2014 /* Array constains component information for all vertices. */
2015 int *vertices_component;
2016 /* Vector to record all data dependence relations which are needed
2017 to break strong connected components by runtime alias checks. */
2018 vec<ddr_p> *alias_ddrs;
2019 };
2020
2021 /* Initialize vertice's data for partition dependence graph PG with
2022 PARTITIONS. */
2023
2024 static void
2025 init_partition_graph_vertices (struct graph *pg,
2026 vec<struct partition *> *partitions)
2027 {
2028 int i;
2029 partition *partition;
2030 struct pg_vdata *data;
2031
2032 for (i = 0; partitions->iterate (i, &partition); ++i)
2033 {
2034 data = new pg_vdata;
2035 pg->vertices[i].data = data;
2036 data->id = i;
2037 data->partition = partition;
2038 }
2039 }
2040
2041 /* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2042 dependence relations to the EDGE if DDRS isn't NULL. */
2043
2044 static void
2045 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2046 {
2047 struct graph_edge *e = add_edge (pg, i, j);
2048
2049 /* If the edge is attached with data dependence relations, it means this
2050 dependence edge can be resolved by runtime alias checks. */
2051 if (ddrs != NULL)
2052 {
2053 struct pg_edata *data = new pg_edata;
2054
2055 gcc_assert (ddrs->length () > 0);
2056 e->data = data;
2057 data->alias_ddrs = vNULL;
2058 data->alias_ddrs.safe_splice (*ddrs);
2059 }
2060 }
2061
2062 /* Callback function for graph travesal algorithm. It returns true
2063 if edge E should skipped when traversing the graph. */
2064
2065 static bool
2066 pg_skip_alias_edge (struct graph_edge *e)
2067 {
2068 struct pg_edata *data = (struct pg_edata *)e->data;
2069 return (data != NULL && data->alias_ddrs.length () > 0);
2070 }
2071
2072 /* Callback function freeing data attached to edge E of graph. */
2073
2074 static void
2075 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2076 {
2077 if (e->data != NULL)
2078 {
2079 struct pg_edata *data = (struct pg_edata *)e->data;
2080 data->alias_ddrs.release ();
2081 delete data;
2082 }
2083 }
2084
2085 /* Free data attached to vertice of partition dependence graph PG. */
2086
2087 static void
2088 free_partition_graph_vdata (struct graph *pg)
2089 {
2090 int i;
2091 struct pg_vdata *data;
2092
2093 for (i = 0; i < pg->n_vertices; ++i)
2094 {
2095 data = (struct pg_vdata *)pg->vertices[i].data;
2096 delete data;
2097 }
2098 }
2099
2100 /* Build and return partition dependence graph for PARTITIONS. RDG is
2101 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2102 is true, data dependence caused by possible alias between references
2103 is ignored, as if it doesn't exist at all; otherwise all depdendences
2104 are considered. */
2105
2106 static struct graph *
2107 build_partition_graph (struct graph *rdg,
2108 vec<struct partition *> *partitions,
2109 bool ignore_alias_p)
2110 {
2111 int i, j;
2112 struct partition *partition1, *partition2;
2113 graph *pg = new_graph (partitions->length ());
2114 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2115
2116 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2117
2118 init_partition_graph_vertices (pg, partitions);
2119
2120 for (i = 0; partitions->iterate (i, &partition1); ++i)
2121 {
2122 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2123 {
2124 /* dependence direction - 0 is no dependence, -1 is back,
2125 1 is forth, 2 is both (we can stop then, merging will occur). */
2126 int dir = 0;
2127
2128 /* If the first partition has reduction, add back edge; if the
2129 second partition has reduction, add forth edge. This makes
2130 sure that reduction partition will be sorted as the last one. */
2131 if (partition_reduction_p (partition1))
2132 dir = -1;
2133 else if (partition_reduction_p (partition2))
2134 dir = 1;
2135
2136 /* Cleanup the temporary vector. */
2137 alias_ddrs.truncate (0);
2138
2139 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2140 partition2->datarefs, alias_ddrs_p);
2141
2142 /* Add edge to partition graph if there exists dependence. There
2143 are two types of edges. One type edge is caused by compilation
2144 time known dependence, this type cannot be resolved by runtime
2145 alias check. The other type can be resolved by runtime alias
2146 check. */
2147 if (dir == 1 || dir == 2
2148 || alias_ddrs.length () > 0)
2149 {
2150 /* Attach data dependence relations to edge that can be resolved
2151 by runtime alias check. */
2152 bool alias_edge_p = (dir != 1 && dir != 2);
2153 add_partition_graph_edge (pg, i, j,
2154 (alias_edge_p) ? &alias_ddrs : NULL);
2155 }
2156 if (dir == -1 || dir == 2
2157 || alias_ddrs.length () > 0)
2158 {
2159 /* Attach data dependence relations to edge that can be resolved
2160 by runtime alias check. */
2161 bool alias_edge_p = (dir != -1 && dir != 2);
2162 add_partition_graph_edge (pg, j, i,
2163 (alias_edge_p) ? &alias_ddrs : NULL);
2164 }
2165 }
2166 }
2167 return pg;
2168 }
2169
2170 /* Sort partitions in PG in descending post order and store them in
2171 PARTITIONS. */
2172
2173 static void
2174 sort_partitions_by_post_order (struct graph *pg,
2175 vec<struct partition *> *partitions)
2176 {
2177 int i;
2178 struct pg_vdata *data;
2179
2180 /* Now order the remaining nodes in descending postorder. */
2181 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2182 partitions->truncate (0);
2183 for (i = 0; i < pg->n_vertices; ++i)
2184 {
2185 data = (struct pg_vdata *)pg->vertices[i].data;
2186 if (data->partition)
2187 partitions->safe_push (data->partition);
2188 }
2189 }
2190
2191 /* Given reduced dependence graph RDG merge strong connected components
2192 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
2193 possible alias between references is ignored, as if it doesn't exist
2194 at all; otherwise all depdendences are considered. */
2195
2196 static void
2197 merge_dep_scc_partitions (struct graph *rdg,
2198 vec<struct partition *> *partitions,
2199 bool ignore_alias_p)
2200 {
2201 struct partition *partition1, *partition2;
2202 struct pg_vdata *data;
2203 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2204 int i, j, num_sccs = graphds_scc (pg, NULL);
2205
2206 /* Strong connected compoenent means dependence cycle, we cannot distribute
2207 them. So fuse them together. */
2208 if ((unsigned) num_sccs < partitions->length ())
2209 {
2210 for (i = 0; i < num_sccs; ++i)
2211 {
2212 for (j = 0; partitions->iterate (j, &partition1); ++j)
2213 if (pg->vertices[j].component == i)
2214 break;
2215 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2216 if (pg->vertices[j].component == i)
2217 {
2218 partition_merge_into (NULL, partition1,
2219 partition2, FUSE_SAME_SCC);
2220 partition1->type = PTYPE_SEQUENTIAL;
2221 (*partitions)[j] = NULL;
2222 partition_free (partition2);
2223 data = (struct pg_vdata *)pg->vertices[j].data;
2224 data->partition = NULL;
2225 }
2226 }
2227 }
2228
2229 sort_partitions_by_post_order (pg, partitions);
2230 gcc_assert (partitions->length () == (unsigned)num_sccs);
2231 free_partition_graph_vdata (pg);
2232 free_graph (pg);
2233 }
2234
2235 /* Callback function for traversing edge E in graph G. DATA is private
2236 callback data. */
2237
2238 static void
2239 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2240 {
2241 int i, j, component;
2242 struct pg_edge_callback_data *cbdata;
2243 struct pg_edata *edata = (struct pg_edata *) e->data;
2244
2245 /* If the edge doesn't have attached data dependence, it represents
2246 compilation time known dependences. This type dependence cannot
2247 be resolved by runtime alias check. */
2248 if (edata == NULL || edata->alias_ddrs.length () == 0)
2249 return;
2250
2251 cbdata = (struct pg_edge_callback_data *) data;
2252 i = e->src;
2253 j = e->dest;
2254 component = cbdata->vertices_component[i];
2255 /* Vertices are topologically sorted according to compilation time
2256 known dependences, so we can break strong connected components
2257 by removing edges of the opposite direction, i.e, edges pointing
2258 from vertice with smaller post number to vertice with bigger post
2259 number. */
2260 if (g->vertices[i].post < g->vertices[j].post
2261 /* We only need to remove edges connecting vertices in the same
2262 strong connected component to break it. */
2263 && component == cbdata->vertices_component[j]
2264 /* Check if we want to break the strong connected component or not. */
2265 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2266 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2267 }
2268
2269 /* This is the main function breaking strong conected components in
2270 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2271 relations for runtime alias check in ALIAS_DDRS. */
2272
2273 static void
2274 break_alias_scc_partitions (struct graph *rdg,
2275 vec<struct partition *> *partitions,
2276 vec<ddr_p> *alias_ddrs)
2277 {
2278 int i, j, k, num_sccs, num_sccs_no_alias;
2279 /* Build partition dependence graph. */
2280 graph *pg = build_partition_graph (rdg, partitions, false);
2281
2282 alias_ddrs->truncate (0);
2283 /* Find strong connected components in the graph, with all dependence edges
2284 considered. */
2285 num_sccs = graphds_scc (pg, NULL);
2286 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2287 compilation time known dependences are merged before this function. */
2288 if ((unsigned) num_sccs < partitions->length ())
2289 {
2290 struct pg_edge_callback_data cbdata;
2291 auto_bitmap sccs_to_merge;
2292 auto_vec<enum partition_type> scc_types;
2293 struct partition *partition, *first;
2294
2295 /* If all partitions in a SCC have the same type, we can simply merge the
2296 SCC. This loop finds out such SCCS and record them in bitmap. */
2297 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2298 for (i = 0; i < num_sccs; ++i)
2299 {
2300 for (j = 0; partitions->iterate (j, &first); ++j)
2301 if (pg->vertices[j].component == i)
2302 break;
2303
2304 bool same_type = true, all_builtins = partition_builtin_p (first);
2305 for (++j; partitions->iterate (j, &partition); ++j)
2306 {
2307 if (pg->vertices[j].component != i)
2308 continue;
2309
2310 if (first->type != partition->type)
2311 {
2312 same_type = false;
2313 break;
2314 }
2315 all_builtins &= partition_builtin_p (partition);
2316 }
2317 /* Merge SCC if all partitions in SCC have the same type, though the
2318 result partition is sequential, because vectorizer can do better
2319 runtime alias check. One expecption is all partitions in SCC are
2320 builtins. */
2321 if (!same_type || all_builtins)
2322 bitmap_clear_bit (sccs_to_merge, i);
2323 }
2324
2325 /* Initialize callback data for traversing. */
2326 cbdata.sccs_to_merge = sccs_to_merge;
2327 cbdata.alias_ddrs = alias_ddrs;
2328 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2329 /* Record the component information which will be corrupted by next
2330 graph scc finding call. */
2331 for (i = 0; i < pg->n_vertices; ++i)
2332 cbdata.vertices_component[i] = pg->vertices[i].component;
2333
2334 /* Collect data dependences for runtime alias checks to break SCCs. */
2335 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2336 {
2337 /* Run SCC finding algorithm again, with alias dependence edges
2338 skipped. This is to topologically sort partitions according to
2339 compilation time known dependence. Note the topological order
2340 is stored in the form of pg's post order number. */
2341 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2342 gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
2343 /* With topological order, we can construct two subgraphs L and R.
2344 L contains edge <x, y> where x < y in terms of post order, while
2345 R contains edge <x, y> where x > y. Edges for compilation time
2346 known dependence all fall in R, so we break SCCs by removing all
2347 (alias) edges of in subgraph L. */
2348 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2349 }
2350
2351 /* For SCC that doesn't need to be broken, merge it. */
2352 for (i = 0; i < num_sccs; ++i)
2353 {
2354 if (!bitmap_bit_p (sccs_to_merge, i))
2355 continue;
2356
2357 for (j = 0; partitions->iterate (j, &first); ++j)
2358 if (cbdata.vertices_component[j] == i)
2359 break;
2360 for (k = j + 1; partitions->iterate (k, &partition); ++k)
2361 {
2362 struct pg_vdata *data;
2363
2364 if (cbdata.vertices_component[k] != i)
2365 continue;
2366
2367 /* Update postorder number so that merged reduction partition is
2368 sorted after other partitions. */
2369 if (!partition_reduction_p (first)
2370 && partition_reduction_p (partition))
2371 {
2372 gcc_assert (pg->vertices[k].post < pg->vertices[j].post);
2373 pg->vertices[j].post = pg->vertices[k].post;
2374 }
2375 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2376 (*partitions)[k] = NULL;
2377 partition_free (partition);
2378 data = (struct pg_vdata *)pg->vertices[k].data;
2379 gcc_assert (data->id == k);
2380 data->partition = NULL;
2381 /* The result partition of merged SCC must be sequential. */
2382 first->type = PTYPE_SEQUENTIAL;
2383 }
2384 }
2385 }
2386
2387 sort_partitions_by_post_order (pg, partitions);
2388 free_partition_graph_vdata (pg);
2389 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2390 free_graph (pg);
2391
2392 if (dump_file && (dump_flags & TDF_DETAILS))
2393 {
2394 fprintf (dump_file, "Possible alias data dependence to break:\n");
2395 dump_data_dependence_relations (dump_file, *alias_ddrs);
2396 }
2397 }
2398
2399 /* Compute and return an expression whose value is the segment length which
2400 will be accessed by DR in NITERS iterations. */
2401
2402 static tree
2403 data_ref_segment_size (struct data_reference *dr, tree niters)
2404 {
2405 niters = size_binop (MINUS_EXPR,
2406 fold_convert (sizetype, niters),
2407 size_one_node);
2408 return size_binop (MULT_EXPR,
2409 fold_convert (sizetype, DR_STEP (dr)),
2410 fold_convert (sizetype, niters));
2411 }
2412
2413 /* Return true if LOOP's latch is dominated by statement for data reference
2414 DR. */
2415
2416 static inline bool
2417 latch_dominated_by_data_ref (struct loop *loop, data_reference *dr)
2418 {
2419 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2420 gimple_bb (DR_STMT (dr)));
2421 }
2422
2423 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2424 data dependence relations ALIAS_DDRS. */
2425
2426 static void
2427 compute_alias_check_pairs (struct loop *loop, vec<ddr_p> *alias_ddrs,
2428 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2429 {
2430 unsigned int i;
2431 unsigned HOST_WIDE_INT factor = 1;
2432 tree niters_plus_one, niters = number_of_latch_executions (loop);
2433
2434 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2435 niters = fold_convert (sizetype, niters);
2436 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2437
2438 if (dump_file && (dump_flags & TDF_DETAILS))
2439 fprintf (dump_file, "Creating alias check pairs:\n");
2440
2441 /* Iterate all data dependence relations and compute alias check pairs. */
2442 for (i = 0; i < alias_ddrs->length (); i++)
2443 {
2444 ddr_p ddr = (*alias_ddrs)[i];
2445 struct data_reference *dr_a = DDR_A (ddr);
2446 struct data_reference *dr_b = DDR_B (ddr);
2447 tree seg_length_a, seg_length_b;
2448 int comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
2449 DR_BASE_ADDRESS (dr_b));
2450
2451 if (comp_res == 0)
2452 comp_res = data_ref_compare_tree (DR_OFFSET (dr_a), DR_OFFSET (dr_b));
2453 gcc_assert (comp_res != 0);
2454
2455 if (latch_dominated_by_data_ref (loop, dr_a))
2456 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2457 else
2458 seg_length_a = data_ref_segment_size (dr_a, niters);
2459
2460 if (latch_dominated_by_data_ref (loop, dr_b))
2461 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2462 else
2463 seg_length_b = data_ref_segment_size (dr_b, niters);
2464
2465 unsigned HOST_WIDE_INT access_size_a
2466 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2467 unsigned HOST_WIDE_INT access_size_b
2468 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2469 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2470 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2471
2472 dr_with_seg_len_pair_t dr_with_seg_len_pair
2473 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2474 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b));
2475
2476 /* Canonicalize pairs by sorting the two DR members. */
2477 if (comp_res > 0)
2478 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2479
2480 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2481 }
2482
2483 if (tree_fits_uhwi_p (niters))
2484 factor = tree_to_uhwi (niters);
2485
2486 /* Prune alias check pairs. */
2487 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2488 if (dump_file && (dump_flags & TDF_DETAILS))
2489 fprintf (dump_file,
2490 "Improved number of alias checks from %d to %d\n",
2491 alias_ddrs->length (), comp_alias_pairs->length ());
2492 }
2493
2494 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2495 checks and version LOOP under condition of these runtime alias checks. */
2496
2497 static void
2498 version_loop_by_alias_check (vec<struct partition *> *partitions,
2499 struct loop *loop, vec<ddr_p> *alias_ddrs)
2500 {
2501 profile_probability prob;
2502 basic_block cond_bb;
2503 struct loop *nloop;
2504 tree lhs, arg0, cond_expr = NULL_TREE;
2505 gimple_seq cond_stmts = NULL;
2506 gimple *call_stmt = NULL;
2507 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2508
2509 /* Generate code for runtime alias checks if necessary. */
2510 gcc_assert (alias_ddrs->length () > 0);
2511
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file,
2514 "Version loop <%d> with runtime alias check\n", loop->num);
2515
2516 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2517 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2518 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2519 is_gimple_val, NULL_TREE);
2520
2521 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2522 bool cancelable_p = flag_tree_loop_vectorize;
2523 if (cancelable_p)
2524 {
2525 unsigned i = 0;
2526 struct partition *partition;
2527 for (; partitions->iterate (i, &partition); ++i)
2528 if (!partition_builtin_p (partition))
2529 break;
2530
2531 /* If all partitions are builtins, distributing it would be profitable and
2532 we don't want to cancel the runtime alias checks. */
2533 if (i == partitions->length ())
2534 cancelable_p = false;
2535 }
2536
2537 /* Generate internal function call for loop distribution alias check if the
2538 runtime alias check should be cancelable. */
2539 if (cancelable_p)
2540 {
2541 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2542 2, NULL_TREE, cond_expr);
2543 lhs = make_ssa_name (boolean_type_node);
2544 gimple_call_set_lhs (call_stmt, lhs);
2545 }
2546 else
2547 lhs = cond_expr;
2548
2549 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2550 initialize_original_copy_tables ();
2551 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2552 prob, prob.invert (), true);
2553 free_original_copy_tables ();
2554 /* Record the original loop number in newly generated loops. In case of
2555 distribution, the original loop will be distributed and the new loop
2556 is kept. */
2557 loop->orig_loop_num = nloop->num;
2558 nloop->orig_loop_num = nloop->num;
2559 nloop->dont_vectorize = true;
2560 nloop->force_vectorize = false;
2561
2562 if (call_stmt)
2563 {
2564 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2565 loop could be destroyed. */
2566 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2567 gimple_call_set_arg (call_stmt, 0, arg0);
2568 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2569 }
2570
2571 if (cond_stmts)
2572 {
2573 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2574 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2575 }
2576 update_ssa (TODO_update_ssa);
2577 }
2578
2579 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2580 ALIAS_DDRS are data dependence relations for runtime alias check. */
2581
2582 static inline bool
2583 version_for_distribution_p (vec<struct partition *> *partitions,
2584 vec<ddr_p> *alias_ddrs)
2585 {
2586 /* No need to version loop if we have only one partition. */
2587 if (partitions->length () == 1)
2588 return false;
2589
2590 /* Need to version loop if runtime alias check is necessary. */
2591 return (alias_ddrs->length () > 0);
2592 }
2593
2594 /* Compare base offset of builtin mem* partitions P1 and P2. */
2595
2596 static int
2597 offset_cmp (const void *vp1, const void *vp2)
2598 {
2599 struct partition *p1 = *(struct partition *const *) vp1;
2600 struct partition *p2 = *(struct partition *const *) vp2;
2601 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2602 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2603 return (o2 < o1) - (o1 < o2);
2604 }
2605
2606 /* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2607 case optimization transforming below code:
2608
2609 __builtin_memset (&obj, 0, 100);
2610 _1 = &obj + 100;
2611 __builtin_memset (_1, 0, 200);
2612 _2 = &obj + 300;
2613 __builtin_memset (_2, 0, 100);
2614
2615 into:
2616
2617 __builtin_memset (&obj, 0, 400);
2618
2619 Note we don't have dependence information between different partitions
2620 at this point, as a result, we can't handle nonadjacent memset builtin
2621 partitions since dependence might be broken. */
2622
2623 static void
2624 fuse_memset_builtins (vec<struct partition *> *partitions)
2625 {
2626 unsigned i, j;
2627 struct partition *part1, *part2;
2628 tree rhs1, rhs2;
2629
2630 for (i = 0; partitions->iterate (i, &part1);)
2631 {
2632 if (part1->kind != PKIND_MEMSET)
2633 {
2634 i++;
2635 continue;
2636 }
2637
2638 /* Find sub-array of memset builtins of the same base. Index range
2639 of the sub-array is [i, j) with "j > i". */
2640 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2641 {
2642 if (part2->kind != PKIND_MEMSET
2643 || !operand_equal_p (part1->builtin->dst_base_base,
2644 part2->builtin->dst_base_base, 0))
2645 break;
2646
2647 /* Memset calls setting different values can't be merged. */
2648 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2649 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2650 if (!operand_equal_p (rhs1, rhs2, 0))
2651 break;
2652 }
2653
2654 /* Stable sort is required in order to avoid breaking dependence. */
2655 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2656 offset_cmp);
2657 /* Continue with next partition. */
2658 i = j;
2659 }
2660
2661 /* Merge all consecutive memset builtin partitions. */
2662 for (i = 0; i < partitions->length () - 1;)
2663 {
2664 part1 = (*partitions)[i];
2665 if (part1->kind != PKIND_MEMSET)
2666 {
2667 i++;
2668 continue;
2669 }
2670
2671 part2 = (*partitions)[i + 1];
2672 /* Only merge memset partitions of the same base and with constant
2673 access sizes. */
2674 if (part2->kind != PKIND_MEMSET
2675 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2676 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2677 || !operand_equal_p (part1->builtin->dst_base_base,
2678 part2->builtin->dst_base_base, 0))
2679 {
2680 i++;
2681 continue;
2682 }
2683 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2684 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2685 int bytev1 = const_with_all_bytes_same (rhs1);
2686 int bytev2 = const_with_all_bytes_same (rhs2);
2687 /* Only merge memset partitions of the same value. */
2688 if (bytev1 != bytev2 || bytev1 == -1)
2689 {
2690 i++;
2691 continue;
2692 }
2693 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2694 wi::to_wide (part1->builtin->size));
2695 /* Only merge adjacent memset partitions. */
2696 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2697 {
2698 i++;
2699 continue;
2700 }
2701 /* Merge partitions[i] and partitions[i+1]. */
2702 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2703 part1->builtin->size,
2704 part2->builtin->size);
2705 partition_free (part2);
2706 partitions->ordered_remove (i + 1);
2707 }
2708 }
2709
2710 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
2711 ALIAS_DDRS contains ddrs which need runtime alias check. */
2712
2713 static void
2714 finalize_partitions (struct loop *loop, vec<struct partition *> *partitions,
2715 vec<ddr_p> *alias_ddrs)
2716 {
2717 unsigned i;
2718 struct partition *partition, *a;
2719
2720 if (partitions->length () == 1
2721 || alias_ddrs->length () > 0)
2722 return;
2723
2724 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2725 bool same_type_p = true;
2726 enum partition_type type = ((*partitions)[0])->type;
2727 for (i = 0; partitions->iterate (i, &partition); ++i)
2728 {
2729 same_type_p &= (type == partition->type);
2730 if (partition_builtin_p (partition))
2731 {
2732 num_builtin++;
2733 continue;
2734 }
2735 num_normal++;
2736 if (partition->kind == PKIND_PARTIAL_MEMSET)
2737 num_partial_memset++;
2738 }
2739
2740 /* Don't distribute current loop into too many loops given we don't have
2741 memory stream cost model. Be even more conservative in case of loop
2742 nest distribution. */
2743 if ((same_type_p && num_builtin == 0
2744 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2745 || (loop->inner != NULL
2746 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2747 || (loop->inner == NULL
2748 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2749 {
2750 a = (*partitions)[0];
2751 for (i = 1; partitions->iterate (i, &partition); ++i)
2752 {
2753 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2754 partition_free (partition);
2755 }
2756 partitions->truncate (1);
2757 }
2758
2759 /* Fuse memset builtins if possible. */
2760 if (partitions->length () > 1)
2761 fuse_memset_builtins (partitions);
2762 }
2763
2764 /* Distributes the code from LOOP in such a way that producer statements
2765 are placed before consumer statements. Tries to separate only the
2766 statements from STMTS into separate loops. Returns the number of
2767 distributed loops. Set NB_CALLS to number of generated builtin calls.
2768 Set *DESTROY_P to whether LOOP needs to be destroyed. */
2769
2770 static int
2771 distribute_loop (struct loop *loop, vec<gimple *> stmts,
2772 control_dependences *cd, int *nb_calls, bool *destroy_p)
2773 {
2774 ddrs_table = new hash_table<ddr_hasher> (389);
2775 struct graph *rdg;
2776 partition *partition;
2777 bool any_builtin;
2778 int i, nbp;
2779
2780 *destroy_p = false;
2781 *nb_calls = 0;
2782 loop_nest.create (0);
2783 if (!find_loop_nest (loop, &loop_nest))
2784 {
2785 loop_nest.release ();
2786 delete ddrs_table;
2787 return 0;
2788 }
2789
2790 datarefs_vec.create (20);
2791 has_nonaddressable_dataref_p = false;
2792 rdg = build_rdg (loop, cd);
2793 if (!rdg)
2794 {
2795 if (dump_file && (dump_flags & TDF_DETAILS))
2796 fprintf (dump_file,
2797 "Loop %d not distributed: failed to build the RDG.\n",
2798 loop->num);
2799
2800 loop_nest.release ();
2801 free_data_refs (datarefs_vec);
2802 delete ddrs_table;
2803 return 0;
2804 }
2805
2806 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
2807 {
2808 if (dump_file && (dump_flags & TDF_DETAILS))
2809 fprintf (dump_file,
2810 "Loop %d not distributed: too many memory references.\n",
2811 loop->num);
2812
2813 free_rdg (rdg);
2814 loop_nest.release ();
2815 free_data_refs (datarefs_vec);
2816 delete ddrs_table;
2817 return 0;
2818 }
2819
2820 data_reference_p dref;
2821 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
2822 dref->aux = (void *) (uintptr_t) i;
2823
2824 if (dump_file && (dump_flags & TDF_DETAILS))
2825 dump_rdg (dump_file, rdg);
2826
2827 auto_vec<struct partition *, 3> partitions;
2828 rdg_build_partitions (rdg, stmts, &partitions);
2829
2830 auto_vec<ddr_p> alias_ddrs;
2831
2832 auto_bitmap stmt_in_all_partitions;
2833 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
2834 for (i = 1; partitions.iterate (i, &partition); ++i)
2835 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
2836
2837 any_builtin = false;
2838 FOR_EACH_VEC_ELT (partitions, i, partition)
2839 {
2840 classify_partition (loop, rdg, partition, stmt_in_all_partitions);
2841 any_builtin |= partition_builtin_p (partition);
2842 }
2843
2844 /* If we are only distributing patterns but did not detect any,
2845 simply bail out. */
2846 if (!flag_tree_loop_distribution
2847 && !any_builtin)
2848 {
2849 nbp = 0;
2850 goto ldist_done;
2851 }
2852
2853 /* If we are only distributing patterns fuse all partitions that
2854 were not classified as builtins. This also avoids chopping
2855 a loop into pieces, separated by builtin calls. That is, we
2856 only want no or a single loop body remaining. */
2857 struct partition *into;
2858 if (!flag_tree_loop_distribution)
2859 {
2860 for (i = 0; partitions.iterate (i, &into); ++i)
2861 if (!partition_builtin_p (into))
2862 break;
2863 for (++i; partitions.iterate (i, &partition); ++i)
2864 if (!partition_builtin_p (partition))
2865 {
2866 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
2867 partitions.unordered_remove (i);
2868 partition_free (partition);
2869 i--;
2870 }
2871 }
2872
2873 /* Due to limitations in the transform phase we have to fuse all
2874 reduction partitions into the last partition so the existing
2875 loop will contain all loop-closed PHI nodes. */
2876 for (i = 0; partitions.iterate (i, &into); ++i)
2877 if (partition_reduction_p (into))
2878 break;
2879 for (i = i + 1; partitions.iterate (i, &partition); ++i)
2880 if (partition_reduction_p (partition))
2881 {
2882 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
2883 partitions.unordered_remove (i);
2884 partition_free (partition);
2885 i--;
2886 }
2887
2888 /* Apply our simple cost model - fuse partitions with similar
2889 memory accesses. */
2890 for (i = 0; partitions.iterate (i, &into); ++i)
2891 {
2892 bool changed = false;
2893 if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
2894 continue;
2895 for (int j = i + 1;
2896 partitions.iterate (j, &partition); ++j)
2897 {
2898 if (share_memory_accesses (rdg, into, partition))
2899 {
2900 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
2901 partitions.unordered_remove (j);
2902 partition_free (partition);
2903 j--;
2904 changed = true;
2905 }
2906 }
2907 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
2908 accesses when 1 and 2 have similar accesses but not 0 and 1
2909 then in the next iteration we will fail to consider merging
2910 1 into 0,2. So try again if we did any merging into 0. */
2911 if (changed)
2912 i--;
2913 }
2914
2915 /* Build the partition dependency graph and fuse partitions in strong
2916 connected component. */
2917 if (partitions.length () > 1)
2918 {
2919 /* Don't support loop nest distribution under runtime alias check
2920 since it's not likely to enable many vectorization opportunities.
2921 Also if loop has any data reference which may be not addressable
2922 since alias check needs to take, compare address of the object. */
2923 if (loop->inner || has_nonaddressable_dataref_p)
2924 merge_dep_scc_partitions (rdg, &partitions, false);
2925 else
2926 {
2927 merge_dep_scc_partitions (rdg, &partitions, true);
2928 if (partitions.length () > 1)
2929 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
2930 }
2931 }
2932
2933 finalize_partitions (loop, &partitions, &alias_ddrs);
2934
2935 nbp = partitions.length ();
2936 if (nbp == 0
2937 || (nbp == 1 && !partition_builtin_p (partitions[0]))
2938 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
2939 {
2940 nbp = 0;
2941 goto ldist_done;
2942 }
2943
2944 if (version_for_distribution_p (&partitions, &alias_ddrs))
2945 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
2946
2947 if (dump_file && (dump_flags & TDF_DETAILS))
2948 {
2949 fprintf (dump_file,
2950 "distribute loop <%d> into partitions:\n", loop->num);
2951 dump_rdg_partitions (dump_file, partitions);
2952 }
2953
2954 FOR_EACH_VEC_ELT (partitions, i, partition)
2955 {
2956 if (partition_builtin_p (partition))
2957 (*nb_calls)++;
2958 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
2959 }
2960
2961 ldist_done:
2962 loop_nest.release ();
2963 free_data_refs (datarefs_vec);
2964 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
2965 iter != ddrs_table->end (); ++iter)
2966 {
2967 free_dependence_relation (*iter);
2968 *iter = NULL;
2969 }
2970 delete ddrs_table;
2971
2972 FOR_EACH_VEC_ELT (partitions, i, partition)
2973 partition_free (partition);
2974
2975 free_rdg (rdg);
2976 return nbp - *nb_calls;
2977 }
2978
2979 /* Distribute all loops in the current function. */
2980
2981 namespace {
2982
2983 const pass_data pass_data_loop_distribution =
2984 {
2985 GIMPLE_PASS, /* type */
2986 "ldist", /* name */
2987 OPTGROUP_LOOP, /* optinfo_flags */
2988 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
2989 ( PROP_cfg | PROP_ssa ), /* properties_required */
2990 0, /* properties_provided */
2991 0, /* properties_destroyed */
2992 0, /* todo_flags_start */
2993 0, /* todo_flags_finish */
2994 };
2995
2996 class pass_loop_distribution : public gimple_opt_pass
2997 {
2998 public:
2999 pass_loop_distribution (gcc::context *ctxt)
3000 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3001 {}
3002
3003 /* opt_pass methods: */
3004 virtual bool gate (function *)
3005 {
3006 return flag_tree_loop_distribution
3007 || flag_tree_loop_distribute_patterns;
3008 }
3009
3010 virtual unsigned int execute (function *);
3011
3012 }; // class pass_loop_distribution
3013
3014
3015 /* Given LOOP, this function records seed statements for distribution in
3016 WORK_LIST. Return false if there is nothing for distribution. */
3017
3018 static bool
3019 find_seed_stmts_for_distribution (struct loop *loop, vec<gimple *> *work_list)
3020 {
3021 basic_block *bbs = get_loop_body_in_dom_order (loop);
3022
3023 /* Initialize the worklist with stmts we seed the partitions with. */
3024 for (unsigned i = 0; i < loop->num_nodes; ++i)
3025 {
3026 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3027 !gsi_end_p (gsi); gsi_next (&gsi))
3028 {
3029 gphi *phi = gsi.phi ();
3030 if (virtual_operand_p (gimple_phi_result (phi)))
3031 continue;
3032 /* Distribute stmts which have defs that are used outside of
3033 the loop. */
3034 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3035 continue;
3036 work_list->safe_push (phi);
3037 }
3038 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3039 !gsi_end_p (gsi); gsi_next (&gsi))
3040 {
3041 gimple *stmt = gsi_stmt (gsi);
3042
3043 /* Ignore clobbers, they do not have true side effects. */
3044 if (gimple_clobber_p (stmt))
3045 continue;
3046
3047 /* If there is a stmt with side-effects bail out - we
3048 cannot and should not distribute this loop. */
3049 if (gimple_has_side_effects (stmt))
3050 {
3051 free (bbs);
3052 return false;
3053 }
3054
3055 /* Distribute stmts which have defs that are used outside of
3056 the loop. */
3057 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3058 ;
3059 /* Otherwise only distribute stores for now. */
3060 else if (!gimple_vdef (stmt))
3061 continue;
3062
3063 work_list->safe_push (stmt);
3064 }
3065 }
3066 free (bbs);
3067 return work_list->length () > 0;
3068 }
3069
3070 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3071 perfect loop nest. */
3072
3073 static struct loop *
3074 prepare_perfect_loop_nest (struct loop *loop)
3075 {
3076 struct loop *outer = loop_outer (loop);
3077 tree niters = number_of_latch_executions (loop);
3078
3079 /* TODO: We only support the innermost 3-level loop nest distribution
3080 because of compilation time issue for now. This should be relaxed
3081 in the future. Note we only allow 3-level loop nest distribution
3082 when parallelizing loops. */
3083 while ((loop->inner == NULL
3084 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3085 && loop_outer (outer)
3086 && outer->inner == loop && loop->next == NULL
3087 && single_exit (outer)
3088 && optimize_loop_for_speed_p (outer)
3089 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3090 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3091 && niters != chrec_dont_know)
3092 {
3093 loop = outer;
3094 outer = loop_outer (loop);
3095 }
3096
3097 return loop;
3098 }
3099
3100 unsigned int
3101 pass_loop_distribution::execute (function *fun)
3102 {
3103 struct loop *loop;
3104 bool changed = false;
3105 basic_block bb;
3106 control_dependences *cd = NULL;
3107 auto_vec<loop_p> loops_to_be_destroyed;
3108
3109 if (number_of_loops (fun) <= 1)
3110 return 0;
3111
3112 /* Compute topological order for basic blocks. Topological order is
3113 needed because data dependence is computed for data references in
3114 lexicographical order. */
3115 if (bb_top_order_index == NULL)
3116 {
3117 int rpo_num;
3118 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3119
3120 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3121 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3122 rpo_num = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, true);
3123 for (int i = 0; i < rpo_num; i++)
3124 bb_top_order_index[rpo[i]] = i;
3125
3126 free (rpo);
3127 }
3128
3129 FOR_ALL_BB_FN (bb, fun)
3130 {
3131 gimple_stmt_iterator gsi;
3132 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3133 gimple_set_uid (gsi_stmt (gsi), -1);
3134 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3135 gimple_set_uid (gsi_stmt (gsi), -1);
3136 }
3137
3138 /* We can at the moment only distribute non-nested loops, thus restrict
3139 walking to innermost loops. */
3140 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3141 {
3142 /* Don't distribute multiple exit edges loop, or cold loop. */
3143 if (!single_exit (loop)
3144 || !optimize_loop_for_speed_p (loop))
3145 continue;
3146
3147 /* Don't distribute loop if niters is unknown. */
3148 tree niters = number_of_latch_executions (loop);
3149 if (niters == NULL_TREE || niters == chrec_dont_know)
3150 continue;
3151
3152 /* Get the perfect loop nest for distribution. */
3153 loop = prepare_perfect_loop_nest (loop);
3154 for (; loop; loop = loop->inner)
3155 {
3156 auto_vec<gimple *> work_list;
3157 if (!find_seed_stmts_for_distribution (loop, &work_list))
3158 break;
3159
3160 const char *str = loop->inner ? " nest" : "";
3161 dump_user_location_t loc = find_loop_location (loop);
3162 if (!cd)
3163 {
3164 calculate_dominance_info (CDI_DOMINATORS);
3165 calculate_dominance_info (CDI_POST_DOMINATORS);
3166 cd = new control_dependences ();
3167 free_dominance_info (CDI_POST_DOMINATORS);
3168 }
3169
3170 bool destroy_p;
3171 int nb_generated_loops, nb_generated_calls;
3172 nb_generated_loops = distribute_loop (loop, work_list, cd,
3173 &nb_generated_calls,
3174 &destroy_p);
3175 if (destroy_p)
3176 loops_to_be_destroyed.safe_push (loop);
3177
3178 if (nb_generated_loops + nb_generated_calls > 0)
3179 {
3180 changed = true;
3181 if (dump_enabled_p ())
3182 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3183 loc, "Loop%s %d distributed: split to %d loops "
3184 "and %d library calls.\n", str, loop->num,
3185 nb_generated_loops, nb_generated_calls);
3186
3187 break;
3188 }
3189
3190 if (dump_file && (dump_flags & TDF_DETAILS))
3191 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3192 }
3193 }
3194
3195 if (cd)
3196 delete cd;
3197
3198 if (bb_top_order_index != NULL)
3199 {
3200 free (bb_top_order_index);
3201 bb_top_order_index = NULL;
3202 bb_top_order_index_size = 0;
3203 }
3204
3205 if (changed)
3206 {
3207 /* Destroy loop bodies that could not be reused. Do this late as we
3208 otherwise can end up refering to stale data in control dependences. */
3209 unsigned i;
3210 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3211 destroy_loop (loop);
3212
3213 /* Cached scalar evolutions now may refer to wrong or non-existing
3214 loops. */
3215 scev_reset_htab ();
3216 mark_virtual_operands_for_renaming (fun);
3217 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3218 }
3219
3220 checking_verify_loop_structure ();
3221
3222 return changed ? TODO_cleanup_cfg : 0;
3223 }
3224
3225 } // anon namespace
3226
3227 gimple_opt_pass *
3228 make_pass_loop_distribution (gcc::context *ctxt)
3229 {
3230 return new pass_loop_distribution (ctxt);
3231 }