]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-loop-distribution.c
Update post order number for merged SCC.
[thirdparty/gcc.git] / gcc / tree-loop-distribution.c
1 /* Loop distribution.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass performs loop distribution: for example, the loop
23
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
28
29 is transformed to
30
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
34 |
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
38
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
44
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
84
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
91
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "tree-vectorizer.h"
116 #include "tree-eh.h"
117 #include "gimple-fold.h"
118
119
120 #define MAX_DATAREFS_NUM \
121 ((unsigned) param_loop_max_datarefs_for_datadeps)
122
123 /* Threshold controlling number of distributed partitions. Given it may
124 be unnecessary if a memory stream cost model is invented in the future,
125 we define it as a temporary macro, rather than a parameter. */
126 #define NUM_PARTITION_THRESHOLD (4)
127
128 /* Hashtable helpers. */
129
130 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
131 {
132 static inline hashval_t hash (const data_dependence_relation *);
133 static inline bool equal (const data_dependence_relation *,
134 const data_dependence_relation *);
135 };
136
137 /* Hash function for data dependence. */
138
139 inline hashval_t
140 ddr_hasher::hash (const data_dependence_relation *ddr)
141 {
142 inchash::hash h;
143 h.add_ptr (DDR_A (ddr));
144 h.add_ptr (DDR_B (ddr));
145 return h.end ();
146 }
147
148 /* Hash table equality function for data dependence. */
149
150 inline bool
151 ddr_hasher::equal (const data_dependence_relation *ddr1,
152 const data_dependence_relation *ddr2)
153 {
154 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
155 }
156
157
158
159 #define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
160
161 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
162 struct rdg_vertex
163 {
164 /* The statement represented by this vertex. */
165 gimple *stmt;
166
167 /* Vector of data-references in this statement. */
168 vec<data_reference_p> datarefs;
169
170 /* True when the statement contains a write to memory. */
171 bool has_mem_write;
172
173 /* True when the statement contains a read from memory. */
174 bool has_mem_reads;
175 };
176
177 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
178 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
179 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
180 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
181 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
182 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
183 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
184 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
185
186 /* Data dependence type. */
187
188 enum rdg_dep_type
189 {
190 /* Read After Write (RAW). */
191 flow_dd = 'f',
192
193 /* Control dependence (execute conditional on). */
194 control_dd = 'c'
195 };
196
197 /* Dependence information attached to an edge of the RDG. */
198
199 struct rdg_edge
200 {
201 /* Type of the dependence. */
202 enum rdg_dep_type type;
203 };
204
205 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
206
207 /* Kind of distributed loop. */
208 enum partition_kind {
209 PKIND_NORMAL,
210 /* Partial memset stands for a paritition can be distributed into a loop
211 of memset calls, rather than a single memset call. It's handled just
212 like a normal parition, i.e, distributed as separate loop, no memset
213 call is generated.
214
215 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
216 loop nest as deep as possible. As a result, parloop achieves better
217 parallelization by parallelizing deeper loop nest. This hack should
218 be unnecessary and removed once distributed memset can be understood
219 and analyzed in data reference analysis. See PR82604 for more. */
220 PKIND_PARTIAL_MEMSET,
221 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
222 };
223
224 /* Type of distributed loop. */
225 enum partition_type {
226 /* The distributed loop can be executed parallelly. */
227 PTYPE_PARALLEL = 0,
228 /* The distributed loop has to be executed sequentially. */
229 PTYPE_SEQUENTIAL
230 };
231
232 /* Builtin info for loop distribution. */
233 struct builtin_info
234 {
235 /* data-references a kind != PKIND_NORMAL partition is about. */
236 data_reference_p dst_dr;
237 data_reference_p src_dr;
238 /* Base address and size of memory objects operated by the builtin. Note
239 both dest and source memory objects must have the same size. */
240 tree dst_base;
241 tree src_base;
242 tree size;
243 /* Base and offset part of dst_base after stripping constant offset. This
244 is only used in memset builtin distribution for now. */
245 tree dst_base_base;
246 unsigned HOST_WIDE_INT dst_base_offset;
247 };
248
249 /* Partition for loop distribution. */
250 struct partition
251 {
252 /* Statements of the partition. */
253 bitmap stmts;
254 /* True if the partition defines variable which is used outside of loop. */
255 bool reduction_p;
256 location_t loc;
257 enum partition_kind kind;
258 enum partition_type type;
259 /* Data references in the partition. */
260 bitmap datarefs;
261 /* Information of builtin parition. */
262 struct builtin_info *builtin;
263 };
264
265 /* Partitions are fused because of different reasons. */
266 enum fuse_type
267 {
268 FUSE_NON_BUILTIN = 0,
269 FUSE_REDUCTION = 1,
270 FUSE_SHARE_REF = 2,
271 FUSE_SAME_SCC = 3,
272 FUSE_FINALIZE = 4
273 };
274
275 /* Description on different fusing reason. */
276 static const char *fuse_message[] = {
277 "they are non-builtins",
278 "they have reductions",
279 "they have shared memory refs",
280 "they are in the same dependence scc",
281 "there is no point to distribute loop"};
282
283
284 /* Dump vertex I in RDG to FILE. */
285
286 static void
287 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
288 {
289 struct vertex *v = &(rdg->vertices[i]);
290 struct graph_edge *e;
291
292 fprintf (file, "(vertex %d: (%s%s) (in:", i,
293 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
294 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
295
296 if (v->pred)
297 for (e = v->pred; e; e = e->pred_next)
298 fprintf (file, " %d", e->src);
299
300 fprintf (file, ") (out:");
301
302 if (v->succ)
303 for (e = v->succ; e; e = e->succ_next)
304 fprintf (file, " %d", e->dest);
305
306 fprintf (file, ")\n");
307 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
308 fprintf (file, ")\n");
309 }
310
311 /* Call dump_rdg_vertex on stderr. */
312
313 DEBUG_FUNCTION void
314 debug_rdg_vertex (struct graph *rdg, int i)
315 {
316 dump_rdg_vertex (stderr, rdg, i);
317 }
318
319 /* Dump the reduced dependence graph RDG to FILE. */
320
321 static void
322 dump_rdg (FILE *file, struct graph *rdg)
323 {
324 fprintf (file, "(rdg\n");
325 for (int i = 0; i < rdg->n_vertices; i++)
326 dump_rdg_vertex (file, rdg, i);
327 fprintf (file, ")\n");
328 }
329
330 /* Call dump_rdg on stderr. */
331
332 DEBUG_FUNCTION void
333 debug_rdg (struct graph *rdg)
334 {
335 dump_rdg (stderr, rdg);
336 }
337
338 static void
339 dot_rdg_1 (FILE *file, struct graph *rdg)
340 {
341 int i;
342 pretty_printer buffer;
343 pp_needs_newline (&buffer) = false;
344 buffer.buffer->stream = file;
345
346 fprintf (file, "digraph RDG {\n");
347
348 for (i = 0; i < rdg->n_vertices; i++)
349 {
350 struct vertex *v = &(rdg->vertices[i]);
351 struct graph_edge *e;
352
353 fprintf (file, "%d [label=\"[%d] ", i, i);
354 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
355 pp_flush (&buffer);
356 fprintf (file, "\"]\n");
357
358 /* Highlight reads from memory. */
359 if (RDG_MEM_READS_STMT (rdg, i))
360 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
361
362 /* Highlight stores to memory. */
363 if (RDG_MEM_WRITE_STMT (rdg, i))
364 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
365
366 if (v->succ)
367 for (e = v->succ; e; e = e->succ_next)
368 switch (RDGE_TYPE (e))
369 {
370 case flow_dd:
371 /* These are the most common dependences: don't print these. */
372 fprintf (file, "%d -> %d \n", i, e->dest);
373 break;
374
375 case control_dd:
376 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
377 break;
378
379 default:
380 gcc_unreachable ();
381 }
382 }
383
384 fprintf (file, "}\n\n");
385 }
386
387 /* Display the Reduced Dependence Graph using dotty. */
388
389 DEBUG_FUNCTION void
390 dot_rdg (struct graph *rdg)
391 {
392 /* When debugging, you may want to enable the following code. */
393 #ifdef HAVE_POPEN
394 FILE *file = popen ("dot -Tx11", "w");
395 if (!file)
396 return;
397 dot_rdg_1 (file, rdg);
398 fflush (file);
399 close (fileno (file));
400 pclose (file);
401 #else
402 dot_rdg_1 (stderr, rdg);
403 #endif
404 }
405
406 /* Returns the index of STMT in RDG. */
407
408 static int
409 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
410 {
411 int index = gimple_uid (stmt);
412 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
413 return index;
414 }
415
416 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
417 the index of DEF in RDG. */
418
419 static void
420 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
421 {
422 use_operand_p imm_use_p;
423 imm_use_iterator iterator;
424
425 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
426 {
427 struct graph_edge *e;
428 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
429
430 if (use < 0)
431 continue;
432
433 e = add_edge (rdg, idef, use);
434 e->data = XNEW (struct rdg_edge);
435 RDGE_TYPE (e) = flow_dd;
436 }
437 }
438
439 /* Creates an edge for the control dependences of BB to the vertex V. */
440
441 static void
442 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
443 int v, control_dependences *cd)
444 {
445 bitmap_iterator bi;
446 unsigned edge_n;
447 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
448 0, edge_n, bi)
449 {
450 basic_block cond_bb = cd->get_edge_src (edge_n);
451 gimple *stmt = last_stmt (cond_bb);
452 if (stmt && is_ctrl_stmt (stmt))
453 {
454 struct graph_edge *e;
455 int c = rdg_vertex_for_stmt (rdg, stmt);
456 if (c < 0)
457 continue;
458
459 e = add_edge (rdg, c, v);
460 e->data = XNEW (struct rdg_edge);
461 RDGE_TYPE (e) = control_dd;
462 }
463 }
464 }
465
466 /* Creates the edges of the reduced dependence graph RDG. */
467
468 static void
469 create_rdg_flow_edges (struct graph *rdg)
470 {
471 int i;
472 def_operand_p def_p;
473 ssa_op_iter iter;
474
475 for (i = 0; i < rdg->n_vertices; i++)
476 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
477 iter, SSA_OP_DEF)
478 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
479 }
480
481 /* Creates the edges of the reduced dependence graph RDG. */
482
483 static void
484 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
485 {
486 int i;
487
488 for (i = 0; i < rdg->n_vertices; i++)
489 {
490 gimple *stmt = RDG_STMT (rdg, i);
491 if (gimple_code (stmt) == GIMPLE_PHI)
492 {
493 edge_iterator ei;
494 edge e;
495 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
496 if (flow_bb_inside_loop_p (loop, e->src))
497 create_edge_for_control_dependence (rdg, e->src, i, cd);
498 }
499 else
500 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
501 }
502 }
503
504
505 class loop_distribution
506 {
507 private:
508 /* The loop (nest) to be distributed. */
509 vec<loop_p> loop_nest;
510
511 /* Vector of data references in the loop to be distributed. */
512 vec<data_reference_p> datarefs_vec;
513
514 /* If there is nonaddressable data reference in above vector. */
515 bool has_nonaddressable_dataref_p;
516
517 /* Store index of data reference in aux field. */
518
519 /* Hash table for data dependence relation in the loop to be distributed. */
520 hash_table<ddr_hasher> *ddrs_table;
521
522 /* Array mapping basic block's index to its topological order. */
523 int *bb_top_order_index;
524 /* And size of the array. */
525 int bb_top_order_index_size;
526
527 /* Build the vertices of the reduced dependence graph RDG. Return false
528 if that failed. */
529 bool create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop);
530
531 /* Initialize STMTS with all the statements of LOOP. We use topological
532 order to discover all statements. The order is important because
533 generate_loops_for_partition is using the same traversal for identifying
534 statements in loop copies. */
535 void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);
536
537
538 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
539 LOOP, and one edge per flow dependence or control dependence from control
540 dependence CD. During visiting each statement, data references are also
541 collected and recorded in global data DATAREFS_VEC. */
542 struct graph * build_rdg (class loop *loop, control_dependences *cd);
543
544 /* Merge PARTITION into the partition DEST. RDG is the reduced dependence
545 graph and we update type for result partition if it is non-NULL. */
546 void partition_merge_into (struct graph *rdg,
547 partition *dest, partition *partition,
548 enum fuse_type ft);
549
550
551 /* Return data dependence relation for data references A and B. The two
552 data references must be in lexicographic order wrto reduced dependence
553 graph RDG. We firstly try to find ddr from global ddr hash table. If
554 it doesn't exist, compute the ddr and cache it. */
555 data_dependence_relation * get_data_dependence (struct graph *rdg,
556 data_reference_p a,
557 data_reference_p b);
558
559
560 /* In reduced dependence graph RDG for loop distribution, return true if
561 dependence between references DR1 and DR2 leads to a dependence cycle
562 and such dependence cycle can't be resolved by runtime alias check. */
563 bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
564 data_reference_p dr2);
565
566
567 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
568 PARTITION1's type after merging PARTITION2 into PARTITION1. */
569 void update_type_for_merge (struct graph *rdg,
570 partition *partition1, partition *partition2);
571
572
573 /* Returns a partition with all the statements needed for computing
574 the vertex V of the RDG, also including the loop exit conditions. */
575 partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);
576
577 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
578 if it forms builtin memcpy or memmove call. */
579 void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
580 data_reference_p dst_dr, data_reference_p src_dr);
581
582 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
583 For the moment we detect memset, memcpy and memmove patterns. Bitmap
584 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
585 Returns true if there is a reduction in all partitions and we
586 possibly did not mark PARTITION as having one for this reason. */
587
588 bool
589 classify_partition (loop_p loop,
590 struct graph *rdg, partition *partition,
591 bitmap stmt_in_all_partitions);
592
593
594 /* Returns true when PARTITION1 and PARTITION2 access the same memory
595 object in RDG. */
596 bool share_memory_accesses (struct graph *rdg,
597 partition *partition1, partition *partition2);
598
599 /* For each seed statement in STARTING_STMTS, this function builds
600 partition for it by adding depended statements according to RDG.
601 All partitions are recorded in PARTITIONS. */
602 void rdg_build_partitions (struct graph *rdg,
603 vec<gimple *> starting_stmts,
604 vec<partition *> *partitions);
605
606 /* Compute partition dependence created by the data references in DRS1
607 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
608 not NULL, we record dependence introduced by possible alias between
609 two data references in ALIAS_DDRS; otherwise, we simply ignore such
610 dependence as if it doesn't exist at all. */
611 int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
612 bitmap drs2, vec<ddr_p> *alias_ddrs);
613
614
615 /* Build and return partition dependence graph for PARTITIONS. RDG is
616 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
617 is true, data dependence caused by possible alias between references
618 is ignored, as if it doesn't exist at all; otherwise all depdendences
619 are considered. */
620 struct graph *build_partition_graph (struct graph *rdg,
621 vec<struct partition *> *partitions,
622 bool ignore_alias_p);
623
624 /* Given reduced dependence graph RDG merge strong connected components
625 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
626 possible alias between references is ignored, as if it doesn't exist
627 at all; otherwise all depdendences are considered. */
628 void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
629 *partitions, bool ignore_alias_p);
630
631 /* This is the main function breaking strong conected components in
632 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
633 relations for runtime alias check in ALIAS_DDRS. */
634 void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
635 *partitions, vec<ddr_p> *alias_ddrs);
636
637
638 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
639 ALIAS_DDRS contains ddrs which need runtime alias check. */
640 void finalize_partitions (class loop *loop, vec<struct partition *>
641 *partitions, vec<ddr_p> *alias_ddrs);
642
643 /* Distributes the code from LOOP in such a way that producer statements
644 are placed before consumer statements. Tries to separate only the
645 statements from STMTS into separate loops. Returns the number of
646 distributed loops. Set NB_CALLS to number of generated builtin calls.
647 Set *DESTROY_P to whether LOOP needs to be destroyed. */
648 int distribute_loop (class loop *loop, vec<gimple *> stmts,
649 control_dependences *cd, int *nb_calls, bool *destroy_p,
650 bool only_patterns_p);
651
652 /* Compute topological order for basic blocks. Topological order is
653 needed because data dependence is computed for data references in
654 lexicographical order. */
655 void bb_top_order_init (void);
656
657 void bb_top_order_destroy (void);
658
659 public:
660
661 /* Getter for bb_top_order. */
662
663 inline int get_bb_top_order_index_size (void)
664 {
665 return bb_top_order_index_size;
666 }
667
668 inline int get_bb_top_order_index (int i)
669 {
670 return bb_top_order_index[i];
671 }
672
673 unsigned int execute (function *fun);
674 };
675
676
677 /* If X has a smaller topological sort number than Y, returns -1;
678 if greater, returns 1. */
679 static int
680 bb_top_order_cmp_r (const void *x, const void *y, void *loop)
681 {
682 loop_distribution *_loop =
683 (loop_distribution *) loop;
684
685 basic_block bb1 = *(const basic_block *) x;
686 basic_block bb2 = *(const basic_block *) y;
687
688 int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();
689
690 gcc_assert (bb1->index < bb_top_order_index_size
691 && bb2->index < bb_top_order_index_size);
692 gcc_assert (bb1 == bb2
693 || _loop->get_bb_top_order_index(bb1->index)
694 != _loop->get_bb_top_order_index(bb2->index));
695
696 return (_loop->get_bb_top_order_index(bb1->index) -
697 _loop->get_bb_top_order_index(bb2->index));
698 }
699
700 bool
701 loop_distribution::create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts,
702 loop_p loop)
703 {
704 int i;
705 gimple *stmt;
706
707 FOR_EACH_VEC_ELT (stmts, i, stmt)
708 {
709 struct vertex *v = &(rdg->vertices[i]);
710
711 /* Record statement to vertex mapping. */
712 gimple_set_uid (stmt, i);
713
714 v->data = XNEW (struct rdg_vertex);
715 RDGV_STMT (v) = stmt;
716 RDGV_DATAREFS (v).create (0);
717 RDGV_HAS_MEM_WRITE (v) = false;
718 RDGV_HAS_MEM_READS (v) = false;
719 if (gimple_code (stmt) == GIMPLE_PHI)
720 continue;
721
722 unsigned drp = datarefs_vec.length ();
723 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
724 return false;
725 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
726 {
727 data_reference_p dr = datarefs_vec[j];
728 if (DR_IS_READ (dr))
729 RDGV_HAS_MEM_READS (v) = true;
730 else
731 RDGV_HAS_MEM_WRITE (v) = true;
732 RDGV_DATAREFS (v).safe_push (dr);
733 has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
734 }
735 }
736 return true;
737 }
738
739 void
740 loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
741 {
742 unsigned int i;
743 basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);
744
745 for (i = 0; i < loop->num_nodes; i++)
746 {
747 basic_block bb = bbs[i];
748
749 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
750 gsi_next (&bsi))
751 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
752 stmts->safe_push (bsi.phi ());
753
754 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
755 gsi_next (&bsi))
756 {
757 gimple *stmt = gsi_stmt (bsi);
758 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
759 stmts->safe_push (stmt);
760 }
761 }
762
763 free (bbs);
764 }
765
766 /* Free the reduced dependence graph RDG. */
767
768 static void
769 free_rdg (struct graph *rdg)
770 {
771 int i;
772
773 for (i = 0; i < rdg->n_vertices; i++)
774 {
775 struct vertex *v = &(rdg->vertices[i]);
776 struct graph_edge *e;
777
778 for (e = v->succ; e; e = e->succ_next)
779 free (e->data);
780
781 if (v->data)
782 {
783 gimple_set_uid (RDGV_STMT (v), -1);
784 (RDGV_DATAREFS (v)).release ();
785 free (v->data);
786 }
787 }
788
789 free_graph (rdg);
790 }
791
792 struct graph *
793 loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
794 {
795 struct graph *rdg;
796
797 /* Create the RDG vertices from the stmts of the loop nest. */
798 auto_vec<gimple *, 10> stmts;
799 stmts_from_loop (loop, &stmts);
800 rdg = new_graph (stmts.length ());
801 if (!create_rdg_vertices (rdg, stmts, loop))
802 {
803 free_rdg (rdg);
804 return NULL;
805 }
806 stmts.release ();
807
808 create_rdg_flow_edges (rdg);
809 if (cd)
810 create_rdg_cd_edges (rdg, cd, loop);
811
812 return rdg;
813 }
814
815
816 /* Allocate and initialize a partition from BITMAP. */
817
818 static partition *
819 partition_alloc (void)
820 {
821 partition *partition = XCNEW (struct partition);
822 partition->stmts = BITMAP_ALLOC (NULL);
823 partition->reduction_p = false;
824 partition->loc = UNKNOWN_LOCATION;
825 partition->kind = PKIND_NORMAL;
826 partition->type = PTYPE_PARALLEL;
827 partition->datarefs = BITMAP_ALLOC (NULL);
828 return partition;
829 }
830
831 /* Free PARTITION. */
832
833 static void
834 partition_free (partition *partition)
835 {
836 BITMAP_FREE (partition->stmts);
837 BITMAP_FREE (partition->datarefs);
838 if (partition->builtin)
839 free (partition->builtin);
840
841 free (partition);
842 }
843
844 /* Returns true if the partition can be generated as a builtin. */
845
846 static bool
847 partition_builtin_p (partition *partition)
848 {
849 return partition->kind > PKIND_PARTIAL_MEMSET;
850 }
851
852 /* Returns true if the partition contains a reduction. */
853
854 static bool
855 partition_reduction_p (partition *partition)
856 {
857 return partition->reduction_p;
858 }
859
860 void
861 loop_distribution::partition_merge_into (struct graph *rdg,
862 partition *dest, partition *partition, enum fuse_type ft)
863 {
864 if (dump_file && (dump_flags & TDF_DETAILS))
865 {
866 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
867 fprintf (dump_file, " Part 1: ");
868 dump_bitmap (dump_file, dest->stmts);
869 fprintf (dump_file, " Part 2: ");
870 dump_bitmap (dump_file, partition->stmts);
871 }
872
873 dest->kind = PKIND_NORMAL;
874 if (dest->type == PTYPE_PARALLEL)
875 dest->type = partition->type;
876
877 bitmap_ior_into (dest->stmts, partition->stmts);
878 if (partition_reduction_p (partition))
879 dest->reduction_p = true;
880
881 /* Further check if any data dependence prevents us from executing the
882 new partition parallelly. */
883 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
884 update_type_for_merge (rdg, dest, partition);
885
886 bitmap_ior_into (dest->datarefs, partition->datarefs);
887 }
888
889
890 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
891 the LOOP. */
892
893 static bool
894 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
895 {
896 imm_use_iterator imm_iter;
897 use_operand_p use_p;
898
899 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
900 {
901 if (is_gimple_debug (USE_STMT (use_p)))
902 continue;
903
904 basic_block use_bb = gimple_bb (USE_STMT (use_p));
905 if (!flow_bb_inside_loop_p (loop, use_bb))
906 return true;
907 }
908
909 return false;
910 }
911
912 /* Returns true when STMT defines a scalar variable used after the
913 loop LOOP. */
914
915 static bool
916 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
917 {
918 def_operand_p def_p;
919 ssa_op_iter op_iter;
920
921 if (gimple_code (stmt) == GIMPLE_PHI)
922 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
923
924 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
925 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
926 return true;
927
928 return false;
929 }
930
931 /* Return a copy of LOOP placed before LOOP. */
932
933 static class loop *
934 copy_loop_before (class loop *loop)
935 {
936 class loop *res;
937 edge preheader = loop_preheader_edge (loop);
938
939 initialize_original_copy_tables ();
940 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
941 gcc_assert (res != NULL);
942 free_original_copy_tables ();
943 delete_update_ssa ();
944
945 return res;
946 }
947
948 /* Creates an empty basic block after LOOP. */
949
950 static void
951 create_bb_after_loop (class loop *loop)
952 {
953 edge exit = single_exit (loop);
954
955 if (!exit)
956 return;
957
958 split_edge (exit);
959 }
960
961 /* Generate code for PARTITION from the code in LOOP. The loop is
962 copied when COPY_P is true. All the statements not flagged in the
963 PARTITION bitmap are removed from the loop or from its copy. The
964 statements are indexed in sequence inside a basic block, and the
965 basic blocks of a loop are taken in dom order. */
966
967 static void
968 generate_loops_for_partition (class loop *loop, partition *partition,
969 bool copy_p)
970 {
971 unsigned i;
972 basic_block *bbs;
973
974 if (copy_p)
975 {
976 int orig_loop_num = loop->orig_loop_num;
977 loop = copy_loop_before (loop);
978 gcc_assert (loop != NULL);
979 loop->orig_loop_num = orig_loop_num;
980 create_preheader (loop, CP_SIMPLE_PREHEADERS);
981 create_bb_after_loop (loop);
982 }
983 else
984 {
985 /* Origin number is set to the new versioned loop's num. */
986 gcc_assert (loop->orig_loop_num != loop->num);
987 }
988
989 /* Remove stmts not in the PARTITION bitmap. */
990 bbs = get_loop_body_in_dom_order (loop);
991
992 if (MAY_HAVE_DEBUG_BIND_STMTS)
993 for (i = 0; i < loop->num_nodes; i++)
994 {
995 basic_block bb = bbs[i];
996
997 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
998 gsi_next (&bsi))
999 {
1000 gphi *phi = bsi.phi ();
1001 if (!virtual_operand_p (gimple_phi_result (phi))
1002 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1003 reset_debug_uses (phi);
1004 }
1005
1006 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1007 {
1008 gimple *stmt = gsi_stmt (bsi);
1009 if (gimple_code (stmt) != GIMPLE_LABEL
1010 && !is_gimple_debug (stmt)
1011 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1012 reset_debug_uses (stmt);
1013 }
1014 }
1015
1016 for (i = 0; i < loop->num_nodes; i++)
1017 {
1018 basic_block bb = bbs[i];
1019 edge inner_exit = NULL;
1020
1021 if (loop != bb->loop_father)
1022 inner_exit = single_exit (bb->loop_father);
1023
1024 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
1025 {
1026 gphi *phi = bsi.phi ();
1027 if (!virtual_operand_p (gimple_phi_result (phi))
1028 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1029 remove_phi_node (&bsi, true);
1030 else
1031 gsi_next (&bsi);
1032 }
1033
1034 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
1035 {
1036 gimple *stmt = gsi_stmt (bsi);
1037 if (gimple_code (stmt) != GIMPLE_LABEL
1038 && !is_gimple_debug (stmt)
1039 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1040 {
1041 /* In distribution of loop nest, if bb is inner loop's exit_bb,
1042 we choose its exit edge/path in order to avoid generating
1043 infinite loop. For all other cases, we choose an arbitrary
1044 path through the empty CFG part that this unnecessary
1045 control stmt controls. */
1046 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
1047 {
1048 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
1049 gimple_cond_make_true (cond_stmt);
1050 else
1051 gimple_cond_make_false (cond_stmt);
1052 update_stmt (stmt);
1053 }
1054 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1055 {
1056 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1057 gimple_switch_set_index
1058 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
1059 update_stmt (stmt);
1060 }
1061 else
1062 {
1063 unlink_stmt_vdef (stmt);
1064 gsi_remove (&bsi, true);
1065 release_defs (stmt);
1066 continue;
1067 }
1068 }
1069 gsi_next (&bsi);
1070 }
1071 }
1072
1073 free (bbs);
1074 }
1075
1076 /* If VAL memory representation contains the same value in all bytes,
1077 return that value, otherwise return -1.
1078 E.g. for 0x24242424 return 0x24, for IEEE double
1079 747708026454360457216.0 return 0x44, etc. */
1080
1081 static int
1082 const_with_all_bytes_same (tree val)
1083 {
1084 unsigned char buf[64];
1085 int i, len;
1086
1087 if (integer_zerop (val)
1088 || (TREE_CODE (val) == CONSTRUCTOR
1089 && !TREE_CLOBBER_P (val)
1090 && CONSTRUCTOR_NELTS (val) == 0))
1091 return 0;
1092
1093 if (real_zerop (val))
1094 {
1095 /* Only return 0 for +0.0, not for -0.0, which doesn't have
1096 an all bytes same memory representation. Don't transform
1097 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
1098 switch (TREE_CODE (val))
1099 {
1100 case REAL_CST:
1101 if (!real_isneg (TREE_REAL_CST_PTR (val)))
1102 return 0;
1103 break;
1104 case COMPLEX_CST:
1105 if (!const_with_all_bytes_same (TREE_REALPART (val))
1106 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
1107 return 0;
1108 break;
1109 case VECTOR_CST:
1110 {
1111 unsigned int count = vector_cst_encoded_nelts (val);
1112 unsigned int j;
1113 for (j = 0; j < count; ++j)
1114 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
1115 break;
1116 if (j == count)
1117 return 0;
1118 break;
1119 }
1120 default:
1121 break;
1122 }
1123 }
1124
1125 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
1126 return -1;
1127
1128 len = native_encode_expr (val, buf, sizeof (buf));
1129 if (len == 0)
1130 return -1;
1131 for (i = 1; i < len; i++)
1132 if (buf[i] != buf[0])
1133 return -1;
1134 return buf[0];
1135 }
1136
1137 /* Generate a call to memset for PARTITION in LOOP. */
1138
1139 static void
1140 generate_memset_builtin (class loop *loop, partition *partition)
1141 {
1142 gimple_stmt_iterator gsi;
1143 tree mem, fn, nb_bytes;
1144 tree val;
1145 struct builtin_info *builtin = partition->builtin;
1146 gimple *fn_call;
1147
1148 /* The new statements will be placed before LOOP. */
1149 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1150
1151 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1152 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1153 false, GSI_CONTINUE_LINKING);
1154 mem = rewrite_to_non_trapping_overflow (builtin->dst_base);
1155 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1156 false, GSI_CONTINUE_LINKING);
1157
1158 /* This exactly matches the pattern recognition in classify_partition. */
1159 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1160 /* Handle constants like 0x15151515 and similarly
1161 floating point constants etc. where all bytes are the same. */
1162 int bytev = const_with_all_bytes_same (val);
1163 if (bytev != -1)
1164 val = build_int_cst (integer_type_node, bytev);
1165 else if (TREE_CODE (val) == INTEGER_CST)
1166 val = fold_convert (integer_type_node, val);
1167 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1168 {
1169 tree tem = make_ssa_name (integer_type_node);
1170 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1171 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1172 val = tem;
1173 }
1174
1175 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1176 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1177 gimple_set_location (fn_call, partition->loc);
1178 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1179 fold_stmt (&gsi);
1180
1181 if (dump_file && (dump_flags & TDF_DETAILS))
1182 {
1183 fprintf (dump_file, "generated memset");
1184 if (bytev == 0)
1185 fprintf (dump_file, " zero\n");
1186 else
1187 fprintf (dump_file, "\n");
1188 }
1189 }
1190
1191 /* Generate a call to memcpy for PARTITION in LOOP. */
1192
1193 static void
1194 generate_memcpy_builtin (class loop *loop, partition *partition)
1195 {
1196 gimple_stmt_iterator gsi;
1197 gimple *fn_call;
1198 tree dest, src, fn, nb_bytes;
1199 enum built_in_function kind;
1200 struct builtin_info *builtin = partition->builtin;
1201
1202 /* The new statements will be placed before LOOP. */
1203 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1204
1205 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1206 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1207 false, GSI_CONTINUE_LINKING);
1208 dest = rewrite_to_non_trapping_overflow (builtin->dst_base);
1209 src = rewrite_to_non_trapping_overflow (builtin->src_base);
1210 if (partition->kind == PKIND_MEMCPY
1211 || ! ptr_derefs_may_alias_p (dest, src))
1212 kind = BUILT_IN_MEMCPY;
1213 else
1214 kind = BUILT_IN_MEMMOVE;
1215
1216 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1217 false, GSI_CONTINUE_LINKING);
1218 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1219 false, GSI_CONTINUE_LINKING);
1220 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1221 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1222 gimple_set_location (fn_call, partition->loc);
1223 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1224 fold_stmt (&gsi);
1225
1226 if (dump_file && (dump_flags & TDF_DETAILS))
1227 {
1228 if (kind == BUILT_IN_MEMCPY)
1229 fprintf (dump_file, "generated memcpy\n");
1230 else
1231 fprintf (dump_file, "generated memmove\n");
1232 }
1233 }
1234
1235 /* Remove and destroy the loop LOOP. */
1236
1237 static void
1238 destroy_loop (class loop *loop)
1239 {
1240 unsigned nbbs = loop->num_nodes;
1241 edge exit = single_exit (loop);
1242 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1243 basic_block *bbs;
1244 unsigned i;
1245
1246 bbs = get_loop_body_in_dom_order (loop);
1247
1248 gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
1249 bool safe_p = single_pred_p (exit->dest);
1250 for (unsigned i = 0; i < nbbs; ++i)
1251 {
1252 /* We have made sure to not leave any dangling uses of SSA
1253 names defined in the loop. With the exception of virtuals.
1254 Make sure we replace all uses of virtual defs that will remain
1255 outside of the loop with the bare symbol as delete_basic_block
1256 will release them. */
1257 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1258 gsi_next (&gsi))
1259 {
1260 gphi *phi = gsi.phi ();
1261 if (virtual_operand_p (gimple_phi_result (phi)))
1262 mark_virtual_phi_result_for_renaming (phi);
1263 }
1264 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1265 {
1266 gimple *stmt = gsi_stmt (gsi);
1267 tree vdef = gimple_vdef (stmt);
1268 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1269 mark_virtual_operand_for_renaming (vdef);
1270 /* Also move and eventually reset debug stmts. We can leave
1271 constant values in place in case the stmt dominates the exit.
1272 ??? Non-constant values from the last iteration can be
1273 replaced with final values if we can compute them. */
1274 if (gimple_debug_bind_p (stmt))
1275 {
1276 tree val = gimple_debug_bind_get_value (stmt);
1277 gsi_move_before (&gsi, &dst_gsi);
1278 if (val
1279 && (!safe_p
1280 || !is_gimple_min_invariant (val)
1281 || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1282 {
1283 gimple_debug_bind_reset_value (stmt);
1284 update_stmt (stmt);
1285 }
1286 }
1287 else
1288 gsi_next (&gsi);
1289 }
1290 }
1291
1292 redirect_edge_pred (exit, src);
1293 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1294 exit->flags |= EDGE_FALLTHRU;
1295 cancel_loop_tree (loop);
1296 rescan_loop_exit (exit, false, true);
1297
1298 i = nbbs;
1299 do
1300 {
1301 --i;
1302 delete_basic_block (bbs[i]);
1303 }
1304 while (i != 0);
1305
1306 free (bbs);
1307
1308 set_immediate_dominator (CDI_DOMINATORS, dest,
1309 recompute_dominator (CDI_DOMINATORS, dest));
1310 }
1311
1312 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1313
1314 static bool
1315 generate_code_for_partition (class loop *loop,
1316 partition *partition, bool copy_p)
1317 {
1318 switch (partition->kind)
1319 {
1320 case PKIND_NORMAL:
1321 case PKIND_PARTIAL_MEMSET:
1322 /* Reductions all have to be in the last partition. */
1323 gcc_assert (!partition_reduction_p (partition)
1324 || !copy_p);
1325 generate_loops_for_partition (loop, partition, copy_p);
1326 return false;
1327
1328 case PKIND_MEMSET:
1329 generate_memset_builtin (loop, partition);
1330 break;
1331
1332 case PKIND_MEMCPY:
1333 case PKIND_MEMMOVE:
1334 generate_memcpy_builtin (loop, partition);
1335 break;
1336
1337 default:
1338 gcc_unreachable ();
1339 }
1340
1341 /* Common tail for partitions we turn into a call. If this was the last
1342 partition for which we generate code, we have to destroy the loop. */
1343 if (!copy_p)
1344 return true;
1345 return false;
1346 }
1347
1348 data_dependence_relation *
1349 loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
1350 data_reference_p b)
1351 {
1352 struct data_dependence_relation ent, **slot;
1353 struct data_dependence_relation *ddr;
1354
1355 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1356 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1357 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1358 ent.a = a;
1359 ent.b = b;
1360 slot = ddrs_table->find_slot (&ent, INSERT);
1361 if (*slot == NULL)
1362 {
1363 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1364 compute_affine_dependence (ddr, loop_nest[0]);
1365 *slot = ddr;
1366 }
1367
1368 return *slot;
1369 }
1370
1371 bool
1372 loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
1373 data_reference_p dr1,
1374 data_reference_p dr2)
1375 {
1376 struct data_dependence_relation *ddr;
1377
1378 /* Re-shuffle data-refs to be in topological order. */
1379 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1380 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1381 std::swap (dr1, dr2);
1382
1383 ddr = get_data_dependence (rdg, dr1, dr2);
1384
1385 /* In case of no data dependence. */
1386 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1387 return false;
1388 /* For unknown data dependence or known data dependence which can't be
1389 expressed in classic distance vector, we check if it can be resolved
1390 by runtime alias check. If yes, we still consider data dependence
1391 as won't introduce data dependence cycle. */
1392 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1393 || DDR_NUM_DIST_VECTS (ddr) == 0)
1394 return !runtime_alias_check_p (ddr, NULL, true);
1395 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1396 return true;
1397 else if (DDR_REVERSED_P (ddr)
1398 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1399 return false;
1400
1401 return true;
1402 }
1403
1404 void
1405 loop_distribution::update_type_for_merge (struct graph *rdg,
1406 partition *partition1,
1407 partition *partition2)
1408 {
1409 unsigned i, j;
1410 bitmap_iterator bi, bj;
1411 data_reference_p dr1, dr2;
1412
1413 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1414 {
1415 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1416
1417 dr1 = datarefs_vec[i];
1418 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1419 {
1420 dr2 = datarefs_vec[j];
1421 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1422 continue;
1423
1424 /* Partition can only be executed sequentially if there is any
1425 data dependence cycle. */
1426 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1427 {
1428 partition1->type = PTYPE_SEQUENTIAL;
1429 return;
1430 }
1431 }
1432 }
1433 }
1434
1435 partition *
1436 loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
1437 {
1438 partition *partition = partition_alloc ();
1439 auto_vec<int, 3> nodes;
1440 unsigned i, j;
1441 int x;
1442 data_reference_p dr;
1443
1444 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1445
1446 FOR_EACH_VEC_ELT (nodes, i, x)
1447 {
1448 bitmap_set_bit (partition->stmts, x);
1449
1450 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1451 {
1452 unsigned idx = (unsigned) DR_INDEX (dr);
1453 gcc_assert (idx < datarefs_vec.length ());
1454
1455 /* Partition can only be executed sequentially if there is any
1456 unknown data reference. */
1457 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1458 || !DR_INIT (dr) || !DR_STEP (dr))
1459 partition->type = PTYPE_SEQUENTIAL;
1460
1461 bitmap_set_bit (partition->datarefs, idx);
1462 }
1463 }
1464
1465 if (partition->type == PTYPE_SEQUENTIAL)
1466 return partition;
1467
1468 /* Further check if any data dependence prevents us from executing the
1469 partition parallelly. */
1470 update_type_for_merge (rdg, partition, partition);
1471
1472 return partition;
1473 }
1474
1475 /* Given PARTITION of LOOP and RDG, record single load/store data references
1476 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1477 data references. */
1478
1479 static bool
1480 find_single_drs (class loop *loop, struct graph *rdg, partition *partition,
1481 data_reference_p *dst_dr, data_reference_p *src_dr)
1482 {
1483 unsigned i;
1484 data_reference_p single_ld = NULL, single_st = NULL;
1485 bitmap_iterator bi;
1486
1487 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1488 {
1489 gimple *stmt = RDG_STMT (rdg, i);
1490 data_reference_p dr;
1491
1492 if (gimple_code (stmt) == GIMPLE_PHI)
1493 continue;
1494
1495 /* Any scalar stmts are ok. */
1496 if (!gimple_vuse (stmt))
1497 continue;
1498
1499 /* Otherwise just regular loads/stores. */
1500 if (!gimple_assign_single_p (stmt))
1501 return false;
1502
1503 /* But exactly one store and/or load. */
1504 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1505 {
1506 tree type = TREE_TYPE (DR_REF (dr));
1507
1508 /* The memset, memcpy and memmove library calls are only
1509 able to deal with generic address space. */
1510 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1511 return false;
1512
1513 if (DR_IS_READ (dr))
1514 {
1515 if (single_ld != NULL)
1516 return false;
1517 single_ld = dr;
1518 }
1519 else
1520 {
1521 if (single_st != NULL)
1522 return false;
1523 single_st = dr;
1524 }
1525 }
1526 }
1527
1528 if (!single_st)
1529 return false;
1530
1531 /* Bail out if this is a bitfield memory reference. */
1532 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1533 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1534 return false;
1535
1536 /* Data reference must be executed exactly once per iteration of each
1537 loop in the loop nest. We only need to check dominance information
1538 against the outermost one in a perfect loop nest because a bb can't
1539 dominate outermost loop's latch without dominating inner loop's. */
1540 basic_block bb_st = gimple_bb (DR_STMT (single_st));
1541 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1542 return false;
1543
1544 if (single_ld)
1545 {
1546 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1547 /* Direct aggregate copy or via an SSA name temporary. */
1548 if (load != store
1549 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1550 return false;
1551
1552 /* Bail out if this is a bitfield memory reference. */
1553 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1554 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1555 return false;
1556
1557 /* Load and store must be in the same loop nest. */
1558 basic_block bb_ld = gimple_bb (DR_STMT (single_ld));
1559 if (bb_st->loop_father != bb_ld->loop_father)
1560 return false;
1561
1562 /* Data reference must be executed exactly once per iteration.
1563 Same as single_st, we only need to check against the outermost
1564 loop. */
1565 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1566 return false;
1567
1568 edge e = single_exit (bb_st->loop_father);
1569 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1570 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1571 if (dom_ld != dom_st)
1572 return false;
1573 }
1574
1575 *src_dr = single_ld;
1576 *dst_dr = single_st;
1577 return true;
1578 }
1579
1580 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1581 loops from inner to outer to see if loop's step equals to access size at
1582 each level of loop. Return 2 if we can prove this at all level loops;
1583 record access base and size in BASE and SIZE; save loop's step at each
1584 level of loop in STEPS if it is not null. For example:
1585
1586 int arr[100][100][100];
1587 for (i = 0; i < 100; i++) ;steps[2] = 40000
1588 for (j = 100; j > 0; j--) ;steps[1] = -400
1589 for (k = 0; k < 100; k++) ;steps[0] = 4
1590 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1591
1592 Return 1 if we can prove the equality at the innermost loop, but not all
1593 level loops. In this case, no information is recorded.
1594
1595 Return 0 if no equality can be proven at any level loops. */
1596
1597 static int
1598 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1599 tree *size, vec<tree> *steps = NULL)
1600 {
1601 location_t loc = gimple_location (DR_STMT (dr));
1602 basic_block bb = gimple_bb (DR_STMT (dr));
1603 class loop *loop = bb->loop_father;
1604 tree ref = DR_REF (dr);
1605 tree access_base = build_fold_addr_expr (ref);
1606 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1607 int res = 0;
1608
1609 do {
1610 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1611 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1612 return res;
1613
1614 access_base = CHREC_LEFT (scev_fn);
1615 if (tree_contains_chrecs (access_base, NULL))
1616 return res;
1617
1618 tree scev_step = CHREC_RIGHT (scev_fn);
1619 /* Only support constant steps. */
1620 if (TREE_CODE (scev_step) != INTEGER_CST)
1621 return res;
1622
1623 enum ev_direction access_dir = scev_direction (scev_fn);
1624 if (access_dir == EV_DIR_UNKNOWN)
1625 return res;
1626
1627 if (steps != NULL)
1628 steps->safe_push (scev_step);
1629
1630 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1631 /* Compute absolute value of scev step. */
1632 if (access_dir == EV_DIR_DECREASES)
1633 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1634
1635 /* At each level of loop, scev step must equal to access size. In other
1636 words, DR must access consecutive memory between loop iterations. */
1637 if (!operand_equal_p (scev_step, access_size, 0))
1638 return res;
1639
1640 /* Access stride can be computed for data reference at least for the
1641 innermost loop. */
1642 res = 1;
1643
1644 /* Compute DR's execution times in loop. */
1645 tree niters = number_of_latch_executions (loop);
1646 niters = fold_convert_loc (loc, sizetype, niters);
1647 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1648 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1649
1650 /* Compute DR's overall access size in loop. */
1651 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1652 niters, scev_step);
1653 /* Adjust base address in case of negative step. */
1654 if (access_dir == EV_DIR_DECREASES)
1655 {
1656 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1657 scev_step, access_size);
1658 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1659 }
1660 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1661
1662 *base = access_base;
1663 *size = access_size;
1664 /* Access stride can be computed for data reference at each level loop. */
1665 return 2;
1666 }
1667
1668 /* Allocate and return builtin struct. Record information like DST_DR,
1669 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1670
1671 static struct builtin_info *
1672 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1673 tree dst_base, tree src_base, tree size)
1674 {
1675 struct builtin_info *builtin = XNEW (struct builtin_info);
1676 builtin->dst_dr = dst_dr;
1677 builtin->src_dr = src_dr;
1678 builtin->dst_base = dst_base;
1679 builtin->src_base = src_base;
1680 builtin->size = size;
1681 return builtin;
1682 }
1683
1684 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1685 memset call. */
1686
1687 static void
1688 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1689 {
1690 gimple *stmt = DR_STMT (dr);
1691 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1692
1693 if (const_with_all_bytes_same (rhs) == -1
1694 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1695 || (TYPE_MODE (TREE_TYPE (rhs))
1696 != TYPE_MODE (unsigned_char_type_node))))
1697 return;
1698
1699 if (TREE_CODE (rhs) == SSA_NAME
1700 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1701 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1702 return;
1703
1704 int res = compute_access_range (loop, dr, &base, &size);
1705 if (res == 0)
1706 return;
1707 if (res == 1)
1708 {
1709 partition->kind = PKIND_PARTIAL_MEMSET;
1710 return;
1711 }
1712
1713 poly_uint64 base_offset;
1714 unsigned HOST_WIDE_INT const_base_offset;
1715 tree base_base = strip_offset (base, &base_offset);
1716 if (!base_offset.is_constant (&const_base_offset))
1717 return;
1718
1719 struct builtin_info *builtin;
1720 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1721 builtin->dst_base_base = base_base;
1722 builtin->dst_base_offset = const_base_offset;
1723 partition->builtin = builtin;
1724 partition->kind = PKIND_MEMSET;
1725 }
1726
1727 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1728 if it forms builtin memcpy or memmove call. */
1729
1730 void
1731 loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
1732 partition *partition,
1733 data_reference_p dst_dr,
1734 data_reference_p src_dr)
1735 {
1736 tree base, size, src_base, src_size;
1737 auto_vec<tree> dst_steps, src_steps;
1738
1739 /* Compute access range of both load and store. */
1740 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1741 if (res != 2)
1742 return;
1743 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1744 if (res != 2)
1745 return;
1746
1747 /* They much have the same access size. */
1748 if (!operand_equal_p (size, src_size, 0))
1749 return;
1750
1751 /* Load and store in loop nest must access memory in the same way, i.e,
1752 their must have the same steps in each loop of the nest. */
1753 if (dst_steps.length () != src_steps.length ())
1754 return;
1755 for (unsigned i = 0; i < dst_steps.length (); ++i)
1756 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1757 return;
1758
1759 /* Now check that if there is a dependence. */
1760 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1761
1762 /* Classify as memcpy if no dependence between load and store. */
1763 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1764 {
1765 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1766 partition->kind = PKIND_MEMCPY;
1767 return;
1768 }
1769
1770 /* Can't do memmove in case of unknown dependence or dependence without
1771 classical distance vector. */
1772 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1773 || DDR_NUM_DIST_VECTS (ddr) == 0)
1774 return;
1775
1776 unsigned i;
1777 lambda_vector dist_v;
1778 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1779 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1780 {
1781 unsigned dep_lev = dependence_level (dist_v, num_lev);
1782 /* Can't do memmove if load depends on store. */
1783 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1784 return;
1785 }
1786
1787 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1788 partition->kind = PKIND_MEMMOVE;
1789 return;
1790 }
1791
1792 bool
1793 loop_distribution::classify_partition (loop_p loop,
1794 struct graph *rdg, partition *partition,
1795 bitmap stmt_in_all_partitions)
1796 {
1797 bitmap_iterator bi;
1798 unsigned i;
1799 data_reference_p single_ld = NULL, single_st = NULL;
1800 bool volatiles_p = false, has_reduction = false;
1801
1802 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1803 {
1804 gimple *stmt = RDG_STMT (rdg, i);
1805
1806 if (gimple_has_volatile_ops (stmt))
1807 volatiles_p = true;
1808
1809 /* If the stmt is not included by all partitions and there is uses
1810 outside of the loop, then mark the partition as reduction. */
1811 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1812 {
1813 /* Due to limitation in the transform phase we have to fuse all
1814 reduction partitions. As a result, this could cancel valid
1815 loop distribution especially for loop that induction variable
1816 is used outside of loop. To workaround this issue, we skip
1817 marking partition as reudction if the reduction stmt belongs
1818 to all partitions. In such case, reduction will be computed
1819 correctly no matter how partitions are fused/distributed. */
1820 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1821 partition->reduction_p = true;
1822 else
1823 has_reduction = true;
1824 }
1825 }
1826
1827 /* Simple workaround to prevent classifying the partition as builtin
1828 if it contains any use outside of loop. For the case where all
1829 partitions have the reduction this simple workaround is delayed
1830 to only affect the last partition. */
1831 if (partition->reduction_p)
1832 return has_reduction;
1833
1834 /* Perform general partition disqualification for builtins. */
1835 if (volatiles_p
1836 || !flag_tree_loop_distribute_patterns)
1837 return has_reduction;
1838
1839 /* Find single load/store data references for builtin partition. */
1840 if (!find_single_drs (loop, rdg, partition, &single_st, &single_ld))
1841 return has_reduction;
1842
1843 partition->loc = gimple_location (DR_STMT (single_st));
1844
1845 /* Classify the builtin kind. */
1846 if (single_ld == NULL)
1847 classify_builtin_st (loop, partition, single_st);
1848 else
1849 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1850 return has_reduction;
1851 }
1852
1853 bool
1854 loop_distribution::share_memory_accesses (struct graph *rdg,
1855 partition *partition1, partition *partition2)
1856 {
1857 unsigned i, j;
1858 bitmap_iterator bi, bj;
1859 data_reference_p dr1, dr2;
1860
1861 /* First check whether in the intersection of the two partitions are
1862 any loads or stores. Common loads are the situation that happens
1863 most often. */
1864 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1865 if (RDG_MEM_WRITE_STMT (rdg, i)
1866 || RDG_MEM_READS_STMT (rdg, i))
1867 return true;
1868
1869 /* Then check whether the two partitions access the same memory object. */
1870 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1871 {
1872 dr1 = datarefs_vec[i];
1873
1874 if (!DR_BASE_ADDRESS (dr1)
1875 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1876 continue;
1877
1878 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1879 {
1880 dr2 = datarefs_vec[j];
1881
1882 if (!DR_BASE_ADDRESS (dr2)
1883 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1884 continue;
1885
1886 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1887 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1888 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1889 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1890 return true;
1891 }
1892 }
1893
1894 return false;
1895 }
1896
1897 /* For each seed statement in STARTING_STMTS, this function builds
1898 partition for it by adding depended statements according to RDG.
1899 All partitions are recorded in PARTITIONS. */
1900
1901 void
1902 loop_distribution::rdg_build_partitions (struct graph *rdg,
1903 vec<gimple *> starting_stmts,
1904 vec<partition *> *partitions)
1905 {
1906 auto_bitmap processed;
1907 int i;
1908 gimple *stmt;
1909
1910 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1911 {
1912 int v = rdg_vertex_for_stmt (rdg, stmt);
1913
1914 if (dump_file && (dump_flags & TDF_DETAILS))
1915 fprintf (dump_file,
1916 "ldist asked to generate code for vertex %d\n", v);
1917
1918 /* If the vertex is already contained in another partition so
1919 is the partition rooted at it. */
1920 if (bitmap_bit_p (processed, v))
1921 continue;
1922
1923 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1924 bitmap_ior_into (processed, partition->stmts);
1925
1926 if (dump_file && (dump_flags & TDF_DETAILS))
1927 {
1928 fprintf (dump_file, "ldist creates useful %s partition:\n",
1929 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1930 bitmap_print (dump_file, partition->stmts, " ", "\n");
1931 }
1932
1933 partitions->safe_push (partition);
1934 }
1935
1936 /* All vertices should have been assigned to at least one partition now,
1937 other than vertices belonging to dead code. */
1938 }
1939
1940 /* Dump to FILE the PARTITIONS. */
1941
1942 static void
1943 dump_rdg_partitions (FILE *file, vec<partition *> partitions)
1944 {
1945 int i;
1946 partition *partition;
1947
1948 FOR_EACH_VEC_ELT (partitions, i, partition)
1949 debug_bitmap_file (file, partition->stmts);
1950 }
1951
1952 /* Debug PARTITIONS. */
1953 extern void debug_rdg_partitions (vec<partition *> );
1954
1955 DEBUG_FUNCTION void
1956 debug_rdg_partitions (vec<partition *> partitions)
1957 {
1958 dump_rdg_partitions (stderr, partitions);
1959 }
1960
1961 /* Returns the number of read and write operations in the RDG. */
1962
1963 static int
1964 number_of_rw_in_rdg (struct graph *rdg)
1965 {
1966 int i, res = 0;
1967
1968 for (i = 0; i < rdg->n_vertices; i++)
1969 {
1970 if (RDG_MEM_WRITE_STMT (rdg, i))
1971 ++res;
1972
1973 if (RDG_MEM_READS_STMT (rdg, i))
1974 ++res;
1975 }
1976
1977 return res;
1978 }
1979
1980 /* Returns the number of read and write operations in a PARTITION of
1981 the RDG. */
1982
1983 static int
1984 number_of_rw_in_partition (struct graph *rdg, partition *partition)
1985 {
1986 int res = 0;
1987 unsigned i;
1988 bitmap_iterator ii;
1989
1990 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
1991 {
1992 if (RDG_MEM_WRITE_STMT (rdg, i))
1993 ++res;
1994
1995 if (RDG_MEM_READS_STMT (rdg, i))
1996 ++res;
1997 }
1998
1999 return res;
2000 }
2001
2002 /* Returns true when one of the PARTITIONS contains all the read or
2003 write operations of RDG. */
2004
2005 static bool
2006 partition_contains_all_rw (struct graph *rdg,
2007 vec<partition *> partitions)
2008 {
2009 int i;
2010 partition *partition;
2011 int nrw = number_of_rw_in_rdg (rdg);
2012
2013 FOR_EACH_VEC_ELT (partitions, i, partition)
2014 if (nrw == number_of_rw_in_partition (rdg, partition))
2015 return true;
2016
2017 return false;
2018 }
2019
2020 int
2021 loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
2022 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
2023 {
2024 unsigned i, j;
2025 bitmap_iterator bi, bj;
2026 data_reference_p dr1, dr2, saved_dr1;
2027
2028 /* dependence direction - 0 is no dependence, -1 is back,
2029 1 is forth, 2 is both (we can stop then, merging will occur). */
2030 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
2031 {
2032 dr1 = datarefs_vec[i];
2033
2034 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
2035 {
2036 int res, this_dir = 1;
2037 ddr_p ddr;
2038
2039 dr2 = datarefs_vec[j];
2040
2041 /* Skip all <read, read> data dependence. */
2042 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
2043 continue;
2044
2045 saved_dr1 = dr1;
2046 /* Re-shuffle data-refs to be in topological order. */
2047 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
2048 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
2049 {
2050 std::swap (dr1, dr2);
2051 this_dir = -this_dir;
2052 }
2053 ddr = get_data_dependence (rdg, dr1, dr2);
2054 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2055 {
2056 this_dir = 0;
2057 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
2058 DR_BASE_ADDRESS (dr2));
2059 /* Be conservative. If data references are not well analyzed,
2060 or the two data references have the same base address and
2061 offset, add dependence and consider it alias to each other.
2062 In other words, the dependence cannot be resolved by
2063 runtime alias check. */
2064 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
2065 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
2066 || !DR_INIT (dr1) || !DR_INIT (dr2)
2067 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
2068 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
2069 || res == 0)
2070 this_dir = 2;
2071 /* Data dependence could be resolved by runtime alias check,
2072 record it in ALIAS_DDRS. */
2073 else if (alias_ddrs != NULL)
2074 alias_ddrs->safe_push (ddr);
2075 /* Or simply ignore it. */
2076 }
2077 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
2078 {
2079 if (DDR_REVERSED_P (ddr))
2080 this_dir = -this_dir;
2081
2082 /* Known dependences can still be unordered througout the
2083 iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
2084 if (DDR_NUM_DIST_VECTS (ddr) != 1)
2085 this_dir = 2;
2086 /* If the overlap is exact preserve stmt order. */
2087 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
2088 DDR_NB_LOOPS (ddr)))
2089 ;
2090 /* Else as the distance vector is lexicographic positive swap
2091 the dependence direction. */
2092 else
2093 this_dir = -this_dir;
2094 }
2095 else
2096 this_dir = 0;
2097 if (this_dir == 2)
2098 return 2;
2099 else if (dir == 0)
2100 dir = this_dir;
2101 else if (this_dir != 0 && dir != this_dir)
2102 return 2;
2103 /* Shuffle "back" dr1. */
2104 dr1 = saved_dr1;
2105 }
2106 }
2107 return dir;
2108 }
2109
2110 /* Compare postorder number of the partition graph vertices V1 and V2. */
2111
2112 static int
2113 pgcmp (const void *v1_, const void *v2_)
2114 {
2115 const vertex *v1 = (const vertex *)v1_;
2116 const vertex *v2 = (const vertex *)v2_;
2117 return v2->post - v1->post;
2118 }
2119
2120 /* Data attached to vertices of partition dependence graph. */
2121 struct pg_vdata
2122 {
2123 /* ID of the corresponding partition. */
2124 int id;
2125 /* The partition. */
2126 struct partition *partition;
2127 };
2128
2129 /* Data attached to edges of partition dependence graph. */
2130 struct pg_edata
2131 {
2132 /* If the dependence edge can be resolved by runtime alias check,
2133 this vector contains data dependence relations for runtime alias
2134 check. On the other hand, if the dependence edge is introduced
2135 because of compilation time known data dependence, this vector
2136 contains nothing. */
2137 vec<ddr_p> alias_ddrs;
2138 };
2139
2140 /* Callback data for traversing edges in graph. */
2141 struct pg_edge_callback_data
2142 {
2143 /* Bitmap contains strong connected components should be merged. */
2144 bitmap sccs_to_merge;
2145 /* Array constains component information for all vertices. */
2146 int *vertices_component;
2147 /* Vector to record all data dependence relations which are needed
2148 to break strong connected components by runtime alias checks. */
2149 vec<ddr_p> *alias_ddrs;
2150 };
2151
2152 /* Initialize vertice's data for partition dependence graph PG with
2153 PARTITIONS. */
2154
2155 static void
2156 init_partition_graph_vertices (struct graph *pg,
2157 vec<struct partition *> *partitions)
2158 {
2159 int i;
2160 partition *partition;
2161 struct pg_vdata *data;
2162
2163 for (i = 0; partitions->iterate (i, &partition); ++i)
2164 {
2165 data = new pg_vdata;
2166 pg->vertices[i].data = data;
2167 data->id = i;
2168 data->partition = partition;
2169 }
2170 }
2171
2172 /* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2173 dependence relations to the EDGE if DDRS isn't NULL. */
2174
2175 static void
2176 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2177 {
2178 struct graph_edge *e = add_edge (pg, i, j);
2179
2180 /* If the edge is attached with data dependence relations, it means this
2181 dependence edge can be resolved by runtime alias checks. */
2182 if (ddrs != NULL)
2183 {
2184 struct pg_edata *data = new pg_edata;
2185
2186 gcc_assert (ddrs->length () > 0);
2187 e->data = data;
2188 data->alias_ddrs = vNULL;
2189 data->alias_ddrs.safe_splice (*ddrs);
2190 }
2191 }
2192
2193 /* Callback function for graph travesal algorithm. It returns true
2194 if edge E should skipped when traversing the graph. */
2195
2196 static bool
2197 pg_skip_alias_edge (struct graph_edge *e)
2198 {
2199 struct pg_edata *data = (struct pg_edata *)e->data;
2200 return (data != NULL && data->alias_ddrs.length () > 0);
2201 }
2202
2203 /* Callback function freeing data attached to edge E of graph. */
2204
2205 static void
2206 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2207 {
2208 if (e->data != NULL)
2209 {
2210 struct pg_edata *data = (struct pg_edata *)e->data;
2211 data->alias_ddrs.release ();
2212 delete data;
2213 }
2214 }
2215
2216 /* Free data attached to vertice of partition dependence graph PG. */
2217
2218 static void
2219 free_partition_graph_vdata (struct graph *pg)
2220 {
2221 int i;
2222 struct pg_vdata *data;
2223
2224 for (i = 0; i < pg->n_vertices; ++i)
2225 {
2226 data = (struct pg_vdata *)pg->vertices[i].data;
2227 delete data;
2228 }
2229 }
2230
2231 /* Build and return partition dependence graph for PARTITIONS. RDG is
2232 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2233 is true, data dependence caused by possible alias between references
2234 is ignored, as if it doesn't exist at all; otherwise all depdendences
2235 are considered. */
2236
2237 struct graph *
2238 loop_distribution::build_partition_graph (struct graph *rdg,
2239 vec<struct partition *> *partitions,
2240 bool ignore_alias_p)
2241 {
2242 int i, j;
2243 struct partition *partition1, *partition2;
2244 graph *pg = new_graph (partitions->length ());
2245 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2246
2247 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2248
2249 init_partition_graph_vertices (pg, partitions);
2250
2251 for (i = 0; partitions->iterate (i, &partition1); ++i)
2252 {
2253 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2254 {
2255 /* dependence direction - 0 is no dependence, -1 is back,
2256 1 is forth, 2 is both (we can stop then, merging will occur). */
2257 int dir = 0;
2258
2259 /* If the first partition has reduction, add back edge; if the
2260 second partition has reduction, add forth edge. This makes
2261 sure that reduction partition will be sorted as the last one. */
2262 if (partition_reduction_p (partition1))
2263 dir = -1;
2264 else if (partition_reduction_p (partition2))
2265 dir = 1;
2266
2267 /* Cleanup the temporary vector. */
2268 alias_ddrs.truncate (0);
2269
2270 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2271 partition2->datarefs, alias_ddrs_p);
2272
2273 /* Add edge to partition graph if there exists dependence. There
2274 are two types of edges. One type edge is caused by compilation
2275 time known dependence, this type cannot be resolved by runtime
2276 alias check. The other type can be resolved by runtime alias
2277 check. */
2278 if (dir == 1 || dir == 2
2279 || alias_ddrs.length () > 0)
2280 {
2281 /* Attach data dependence relations to edge that can be resolved
2282 by runtime alias check. */
2283 bool alias_edge_p = (dir != 1 && dir != 2);
2284 add_partition_graph_edge (pg, i, j,
2285 (alias_edge_p) ? &alias_ddrs : NULL);
2286 }
2287 if (dir == -1 || dir == 2
2288 || alias_ddrs.length () > 0)
2289 {
2290 /* Attach data dependence relations to edge that can be resolved
2291 by runtime alias check. */
2292 bool alias_edge_p = (dir != -1 && dir != 2);
2293 add_partition_graph_edge (pg, j, i,
2294 (alias_edge_p) ? &alias_ddrs : NULL);
2295 }
2296 }
2297 }
2298 return pg;
2299 }
2300
2301 /* Sort partitions in PG in descending post order and store them in
2302 PARTITIONS. */
2303
2304 static void
2305 sort_partitions_by_post_order (struct graph *pg,
2306 vec<struct partition *> *partitions)
2307 {
2308 int i;
2309 struct pg_vdata *data;
2310
2311 /* Now order the remaining nodes in descending postorder. */
2312 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2313 partitions->truncate (0);
2314 for (i = 0; i < pg->n_vertices; ++i)
2315 {
2316 data = (struct pg_vdata *)pg->vertices[i].data;
2317 if (data->partition)
2318 partitions->safe_push (data->partition);
2319 }
2320 }
2321
2322 void
2323 loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
2324 vec<struct partition *> *partitions,
2325 bool ignore_alias_p)
2326 {
2327 struct partition *partition1, *partition2;
2328 struct pg_vdata *data;
2329 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2330 int i, j, num_sccs = graphds_scc (pg, NULL);
2331
2332 /* Strong connected compoenent means dependence cycle, we cannot distribute
2333 them. So fuse them together. */
2334 if ((unsigned) num_sccs < partitions->length ())
2335 {
2336 for (i = 0; i < num_sccs; ++i)
2337 {
2338 for (j = 0; partitions->iterate (j, &partition1); ++j)
2339 if (pg->vertices[j].component == i)
2340 break;
2341 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2342 if (pg->vertices[j].component == i)
2343 {
2344 partition_merge_into (NULL, partition1,
2345 partition2, FUSE_SAME_SCC);
2346 partition1->type = PTYPE_SEQUENTIAL;
2347 (*partitions)[j] = NULL;
2348 partition_free (partition2);
2349 data = (struct pg_vdata *)pg->vertices[j].data;
2350 data->partition = NULL;
2351 }
2352 }
2353 }
2354
2355 sort_partitions_by_post_order (pg, partitions);
2356 gcc_assert (partitions->length () == (unsigned)num_sccs);
2357 free_partition_graph_vdata (pg);
2358 free_graph (pg);
2359 }
2360
2361 /* Callback function for traversing edge E in graph G. DATA is private
2362 callback data. */
2363
2364 static void
2365 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2366 {
2367 int i, j, component;
2368 struct pg_edge_callback_data *cbdata;
2369 struct pg_edata *edata = (struct pg_edata *) e->data;
2370
2371 /* If the edge doesn't have attached data dependence, it represents
2372 compilation time known dependences. This type dependence cannot
2373 be resolved by runtime alias check. */
2374 if (edata == NULL || edata->alias_ddrs.length () == 0)
2375 return;
2376
2377 cbdata = (struct pg_edge_callback_data *) data;
2378 i = e->src;
2379 j = e->dest;
2380 component = cbdata->vertices_component[i];
2381 /* Vertices are topologically sorted according to compilation time
2382 known dependences, so we can break strong connected components
2383 by removing edges of the opposite direction, i.e, edges pointing
2384 from vertice with smaller post number to vertice with bigger post
2385 number. */
2386 if (g->vertices[i].post < g->vertices[j].post
2387 /* We only need to remove edges connecting vertices in the same
2388 strong connected component to break it. */
2389 && component == cbdata->vertices_component[j]
2390 /* Check if we want to break the strong connected component or not. */
2391 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2392 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2393 }
2394
2395 /* This is the main function breaking strong conected components in
2396 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2397 relations for runtime alias check in ALIAS_DDRS. */
2398 void
2399 loop_distribution::break_alias_scc_partitions (struct graph *rdg,
2400 vec<struct partition *> *partitions,
2401 vec<ddr_p> *alias_ddrs)
2402 {
2403 int i, j, k, num_sccs, num_sccs_no_alias;
2404 /* Build partition dependence graph. */
2405 graph *pg = build_partition_graph (rdg, partitions, false);
2406
2407 alias_ddrs->truncate (0);
2408 /* Find strong connected components in the graph, with all dependence edges
2409 considered. */
2410 num_sccs = graphds_scc (pg, NULL);
2411 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2412 compilation time known dependences are merged before this function. */
2413 if ((unsigned) num_sccs < partitions->length ())
2414 {
2415 struct pg_edge_callback_data cbdata;
2416 auto_bitmap sccs_to_merge;
2417 auto_vec<enum partition_type> scc_types;
2418 struct partition *partition, *first;
2419
2420 /* If all partitions in a SCC have the same type, we can simply merge the
2421 SCC. This loop finds out such SCCS and record them in bitmap. */
2422 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2423 for (i = 0; i < num_sccs; ++i)
2424 {
2425 for (j = 0; partitions->iterate (j, &first); ++j)
2426 if (pg->vertices[j].component == i)
2427 break;
2428
2429 bool same_type = true, all_builtins = partition_builtin_p (first);
2430 for (++j; partitions->iterate (j, &partition); ++j)
2431 {
2432 if (pg->vertices[j].component != i)
2433 continue;
2434
2435 if (first->type != partition->type)
2436 {
2437 same_type = false;
2438 break;
2439 }
2440 all_builtins &= partition_builtin_p (partition);
2441 }
2442 /* Merge SCC if all partitions in SCC have the same type, though the
2443 result partition is sequential, because vectorizer can do better
2444 runtime alias check. One expecption is all partitions in SCC are
2445 builtins. */
2446 if (!same_type || all_builtins)
2447 bitmap_clear_bit (sccs_to_merge, i);
2448 }
2449
2450 /* Initialize callback data for traversing. */
2451 cbdata.sccs_to_merge = sccs_to_merge;
2452 cbdata.alias_ddrs = alias_ddrs;
2453 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2454 /* Record the component information which will be corrupted by next
2455 graph scc finding call. */
2456 for (i = 0; i < pg->n_vertices; ++i)
2457 cbdata.vertices_component[i] = pg->vertices[i].component;
2458
2459 /* Collect data dependences for runtime alias checks to break SCCs. */
2460 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2461 {
2462 /* Run SCC finding algorithm again, with alias dependence edges
2463 skipped. This is to topologically sort partitions according to
2464 compilation time known dependence. Note the topological order
2465 is stored in the form of pg's post order number. */
2466 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2467 gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
2468 /* With topological order, we can construct two subgraphs L and R.
2469 L contains edge <x, y> where x < y in terms of post order, while
2470 R contains edge <x, y> where x > y. Edges for compilation time
2471 known dependence all fall in R, so we break SCCs by removing all
2472 (alias) edges of in subgraph L. */
2473 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2474 }
2475
2476 /* For SCC that doesn't need to be broken, merge it. */
2477 for (i = 0; i < num_sccs; ++i)
2478 {
2479 if (!bitmap_bit_p (sccs_to_merge, i))
2480 continue;
2481
2482 for (j = 0; partitions->iterate (j, &first); ++j)
2483 if (cbdata.vertices_component[j] == i)
2484 break;
2485 for (k = j + 1; partitions->iterate (k, &partition); ++k)
2486 {
2487 struct pg_vdata *data;
2488
2489 if (cbdata.vertices_component[k] != i)
2490 continue;
2491
2492 /* Update to the minimal postordeer number of vertices in scc so
2493 that merged partition is sorted correctly against others. */
2494 if (pg->vertices[j].post > pg->vertices[k].post)
2495 pg->vertices[j].post = pg->vertices[k].post;
2496
2497 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2498 (*partitions)[k] = NULL;
2499 partition_free (partition);
2500 data = (struct pg_vdata *)pg->vertices[k].data;
2501 gcc_assert (data->id == k);
2502 data->partition = NULL;
2503 /* The result partition of merged SCC must be sequential. */
2504 first->type = PTYPE_SEQUENTIAL;
2505 }
2506 }
2507 }
2508
2509 sort_partitions_by_post_order (pg, partitions);
2510 free_partition_graph_vdata (pg);
2511 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2512 free_graph (pg);
2513
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2515 {
2516 fprintf (dump_file, "Possible alias data dependence to break:\n");
2517 dump_data_dependence_relations (dump_file, *alias_ddrs);
2518 }
2519 }
2520
2521 /* Compute and return an expression whose value is the segment length which
2522 will be accessed by DR in NITERS iterations. */
2523
2524 static tree
2525 data_ref_segment_size (struct data_reference *dr, tree niters)
2526 {
2527 niters = size_binop (MINUS_EXPR,
2528 fold_convert (sizetype, niters),
2529 size_one_node);
2530 return size_binop (MULT_EXPR,
2531 fold_convert (sizetype, DR_STEP (dr)),
2532 fold_convert (sizetype, niters));
2533 }
2534
2535 /* Return true if LOOP's latch is dominated by statement for data reference
2536 DR. */
2537
2538 static inline bool
2539 latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
2540 {
2541 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2542 gimple_bb (DR_STMT (dr)));
2543 }
2544
2545 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2546 data dependence relations ALIAS_DDRS. */
2547
2548 static void
2549 compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
2550 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2551 {
2552 unsigned int i;
2553 unsigned HOST_WIDE_INT factor = 1;
2554 tree niters_plus_one, niters = number_of_latch_executions (loop);
2555
2556 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2557 niters = fold_convert (sizetype, niters);
2558 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2559
2560 if (dump_file && (dump_flags & TDF_DETAILS))
2561 fprintf (dump_file, "Creating alias check pairs:\n");
2562
2563 /* Iterate all data dependence relations and compute alias check pairs. */
2564 for (i = 0; i < alias_ddrs->length (); i++)
2565 {
2566 ddr_p ddr = (*alias_ddrs)[i];
2567 struct data_reference *dr_a = DDR_A (ddr);
2568 struct data_reference *dr_b = DDR_B (ddr);
2569 tree seg_length_a, seg_length_b;
2570
2571 if (latch_dominated_by_data_ref (loop, dr_a))
2572 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2573 else
2574 seg_length_a = data_ref_segment_size (dr_a, niters);
2575
2576 if (latch_dominated_by_data_ref (loop, dr_b))
2577 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2578 else
2579 seg_length_b = data_ref_segment_size (dr_b, niters);
2580
2581 unsigned HOST_WIDE_INT access_size_a
2582 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2583 unsigned HOST_WIDE_INT access_size_b
2584 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2585 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2586 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2587
2588 dr_with_seg_len_pair_t dr_with_seg_len_pair
2589 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2590 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
2591 /* ??? Would WELL_ORDERED be safe? */
2592 dr_with_seg_len_pair_t::REORDERED);
2593
2594 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2595 }
2596
2597 if (tree_fits_uhwi_p (niters))
2598 factor = tree_to_uhwi (niters);
2599
2600 /* Prune alias check pairs. */
2601 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2602 if (dump_file && (dump_flags & TDF_DETAILS))
2603 fprintf (dump_file,
2604 "Improved number of alias checks from %d to %d\n",
2605 alias_ddrs->length (), comp_alias_pairs->length ());
2606 }
2607
2608 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2609 checks and version LOOP under condition of these runtime alias checks. */
2610
2611 static void
2612 version_loop_by_alias_check (vec<struct partition *> *partitions,
2613 class loop *loop, vec<ddr_p> *alias_ddrs)
2614 {
2615 profile_probability prob;
2616 basic_block cond_bb;
2617 class loop *nloop;
2618 tree lhs, arg0, cond_expr = NULL_TREE;
2619 gimple_seq cond_stmts = NULL;
2620 gimple *call_stmt = NULL;
2621 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2622
2623 /* Generate code for runtime alias checks if necessary. */
2624 gcc_assert (alias_ddrs->length () > 0);
2625
2626 if (dump_file && (dump_flags & TDF_DETAILS))
2627 fprintf (dump_file,
2628 "Version loop <%d> with runtime alias check\n", loop->num);
2629
2630 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2631 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2632 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2633 is_gimple_val, NULL_TREE);
2634
2635 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2636 bool cancelable_p = flag_tree_loop_vectorize;
2637 if (cancelable_p)
2638 {
2639 unsigned i = 0;
2640 struct partition *partition;
2641 for (; partitions->iterate (i, &partition); ++i)
2642 if (!partition_builtin_p (partition))
2643 break;
2644
2645 /* If all partitions are builtins, distributing it would be profitable and
2646 we don't want to cancel the runtime alias checks. */
2647 if (i == partitions->length ())
2648 cancelable_p = false;
2649 }
2650
2651 /* Generate internal function call for loop distribution alias check if the
2652 runtime alias check should be cancelable. */
2653 if (cancelable_p)
2654 {
2655 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2656 2, NULL_TREE, cond_expr);
2657 lhs = make_ssa_name (boolean_type_node);
2658 gimple_call_set_lhs (call_stmt, lhs);
2659 }
2660 else
2661 lhs = cond_expr;
2662
2663 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2664 initialize_original_copy_tables ();
2665 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2666 prob, prob.invert (), true);
2667 free_original_copy_tables ();
2668 /* Record the original loop number in newly generated loops. In case of
2669 distribution, the original loop will be distributed and the new loop
2670 is kept. */
2671 loop->orig_loop_num = nloop->num;
2672 nloop->orig_loop_num = nloop->num;
2673 nloop->dont_vectorize = true;
2674 nloop->force_vectorize = false;
2675
2676 if (call_stmt)
2677 {
2678 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2679 loop could be destroyed. */
2680 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2681 gimple_call_set_arg (call_stmt, 0, arg0);
2682 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2683 }
2684
2685 if (cond_stmts)
2686 {
2687 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2688 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2689 }
2690 update_ssa (TODO_update_ssa);
2691 }
2692
2693 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2694 ALIAS_DDRS are data dependence relations for runtime alias check. */
2695
2696 static inline bool
2697 version_for_distribution_p (vec<struct partition *> *partitions,
2698 vec<ddr_p> *alias_ddrs)
2699 {
2700 /* No need to version loop if we have only one partition. */
2701 if (partitions->length () == 1)
2702 return false;
2703
2704 /* Need to version loop if runtime alias check is necessary. */
2705 return (alias_ddrs->length () > 0);
2706 }
2707
2708 /* Compare base offset of builtin mem* partitions P1 and P2. */
2709
2710 static int
2711 offset_cmp (const void *vp1, const void *vp2)
2712 {
2713 struct partition *p1 = *(struct partition *const *) vp1;
2714 struct partition *p2 = *(struct partition *const *) vp2;
2715 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2716 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2717 return (o2 < o1) - (o1 < o2);
2718 }
2719
2720 /* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2721 case optimization transforming below code:
2722
2723 __builtin_memset (&obj, 0, 100);
2724 _1 = &obj + 100;
2725 __builtin_memset (_1, 0, 200);
2726 _2 = &obj + 300;
2727 __builtin_memset (_2, 0, 100);
2728
2729 into:
2730
2731 __builtin_memset (&obj, 0, 400);
2732
2733 Note we don't have dependence information between different partitions
2734 at this point, as a result, we can't handle nonadjacent memset builtin
2735 partitions since dependence might be broken. */
2736
2737 static void
2738 fuse_memset_builtins (vec<struct partition *> *partitions)
2739 {
2740 unsigned i, j;
2741 struct partition *part1, *part2;
2742 tree rhs1, rhs2;
2743
2744 for (i = 0; partitions->iterate (i, &part1);)
2745 {
2746 if (part1->kind != PKIND_MEMSET)
2747 {
2748 i++;
2749 continue;
2750 }
2751
2752 /* Find sub-array of memset builtins of the same base. Index range
2753 of the sub-array is [i, j) with "j > i". */
2754 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2755 {
2756 if (part2->kind != PKIND_MEMSET
2757 || !operand_equal_p (part1->builtin->dst_base_base,
2758 part2->builtin->dst_base_base, 0))
2759 break;
2760
2761 /* Memset calls setting different values can't be merged. */
2762 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2763 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2764 if (!operand_equal_p (rhs1, rhs2, 0))
2765 break;
2766 }
2767
2768 /* Stable sort is required in order to avoid breaking dependence. */
2769 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2770 offset_cmp);
2771 /* Continue with next partition. */
2772 i = j;
2773 }
2774
2775 /* Merge all consecutive memset builtin partitions. */
2776 for (i = 0; i < partitions->length () - 1;)
2777 {
2778 part1 = (*partitions)[i];
2779 if (part1->kind != PKIND_MEMSET)
2780 {
2781 i++;
2782 continue;
2783 }
2784
2785 part2 = (*partitions)[i + 1];
2786 /* Only merge memset partitions of the same base and with constant
2787 access sizes. */
2788 if (part2->kind != PKIND_MEMSET
2789 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2790 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2791 || !operand_equal_p (part1->builtin->dst_base_base,
2792 part2->builtin->dst_base_base, 0))
2793 {
2794 i++;
2795 continue;
2796 }
2797 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2798 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2799 int bytev1 = const_with_all_bytes_same (rhs1);
2800 int bytev2 = const_with_all_bytes_same (rhs2);
2801 /* Only merge memset partitions of the same value. */
2802 if (bytev1 != bytev2 || bytev1 == -1)
2803 {
2804 i++;
2805 continue;
2806 }
2807 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2808 wi::to_wide (part1->builtin->size));
2809 /* Only merge adjacent memset partitions. */
2810 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2811 {
2812 i++;
2813 continue;
2814 }
2815 /* Merge partitions[i] and partitions[i+1]. */
2816 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2817 part1->builtin->size,
2818 part2->builtin->size);
2819 partition_free (part2);
2820 partitions->ordered_remove (i + 1);
2821 }
2822 }
2823
2824 void
2825 loop_distribution::finalize_partitions (class loop *loop,
2826 vec<struct partition *> *partitions,
2827 vec<ddr_p> *alias_ddrs)
2828 {
2829 unsigned i;
2830 struct partition *partition, *a;
2831
2832 if (partitions->length () == 1
2833 || alias_ddrs->length () > 0)
2834 return;
2835
2836 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2837 bool same_type_p = true;
2838 enum partition_type type = ((*partitions)[0])->type;
2839 for (i = 0; partitions->iterate (i, &partition); ++i)
2840 {
2841 same_type_p &= (type == partition->type);
2842 if (partition_builtin_p (partition))
2843 {
2844 num_builtin++;
2845 continue;
2846 }
2847 num_normal++;
2848 if (partition->kind == PKIND_PARTIAL_MEMSET)
2849 num_partial_memset++;
2850 }
2851
2852 /* Don't distribute current loop into too many loops given we don't have
2853 memory stream cost model. Be even more conservative in case of loop
2854 nest distribution. */
2855 if ((same_type_p && num_builtin == 0
2856 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2857 || (loop->inner != NULL
2858 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2859 || (loop->inner == NULL
2860 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2861 {
2862 a = (*partitions)[0];
2863 for (i = 1; partitions->iterate (i, &partition); ++i)
2864 {
2865 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2866 partition_free (partition);
2867 }
2868 partitions->truncate (1);
2869 }
2870
2871 /* Fuse memset builtins if possible. */
2872 if (partitions->length () > 1)
2873 fuse_memset_builtins (partitions);
2874 }
2875
2876 /* Distributes the code from LOOP in such a way that producer statements
2877 are placed before consumer statements. Tries to separate only the
2878 statements from STMTS into separate loops. Returns the number of
2879 distributed loops. Set NB_CALLS to number of generated builtin calls.
2880 Set *DESTROY_P to whether LOOP needs to be destroyed. */
2881
2882 int
2883 loop_distribution::distribute_loop (class loop *loop, vec<gimple *> stmts,
2884 control_dependences *cd, int *nb_calls, bool *destroy_p,
2885 bool only_patterns_p)
2886 {
2887 ddrs_table = new hash_table<ddr_hasher> (389);
2888 struct graph *rdg;
2889 partition *partition;
2890 int i, nbp;
2891
2892 *destroy_p = false;
2893 *nb_calls = 0;
2894 loop_nest.create (0);
2895 if (!find_loop_nest (loop, &loop_nest))
2896 {
2897 loop_nest.release ();
2898 delete ddrs_table;
2899 return 0;
2900 }
2901
2902 datarefs_vec.create (20);
2903 has_nonaddressable_dataref_p = false;
2904 rdg = build_rdg (loop, cd);
2905 if (!rdg)
2906 {
2907 if (dump_file && (dump_flags & TDF_DETAILS))
2908 fprintf (dump_file,
2909 "Loop %d not distributed: failed to build the RDG.\n",
2910 loop->num);
2911
2912 loop_nest.release ();
2913 free_data_refs (datarefs_vec);
2914 delete ddrs_table;
2915 return 0;
2916 }
2917
2918 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
2919 {
2920 if (dump_file && (dump_flags & TDF_DETAILS))
2921 fprintf (dump_file,
2922 "Loop %d not distributed: too many memory references.\n",
2923 loop->num);
2924
2925 free_rdg (rdg);
2926 loop_nest.release ();
2927 free_data_refs (datarefs_vec);
2928 delete ddrs_table;
2929 return 0;
2930 }
2931
2932 data_reference_p dref;
2933 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
2934 dref->aux = (void *) (uintptr_t) i;
2935
2936 if (dump_file && (dump_flags & TDF_DETAILS))
2937 dump_rdg (dump_file, rdg);
2938
2939 auto_vec<struct partition *, 3> partitions;
2940 rdg_build_partitions (rdg, stmts, &partitions);
2941
2942 auto_vec<ddr_p> alias_ddrs;
2943
2944 auto_bitmap stmt_in_all_partitions;
2945 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
2946 for (i = 1; partitions.iterate (i, &partition); ++i)
2947 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
2948
2949 bool any_builtin = false;
2950 bool reduction_in_all = false;
2951 FOR_EACH_VEC_ELT (partitions, i, partition)
2952 {
2953 reduction_in_all
2954 |= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
2955 any_builtin |= partition_builtin_p (partition);
2956 }
2957
2958 /* If we are only distributing patterns but did not detect any,
2959 simply bail out. */
2960 if (only_patterns_p
2961 && !any_builtin)
2962 {
2963 nbp = 0;
2964 goto ldist_done;
2965 }
2966
2967 /* If we are only distributing patterns fuse all partitions that
2968 were not classified as builtins. This also avoids chopping
2969 a loop into pieces, separated by builtin calls. That is, we
2970 only want no or a single loop body remaining. */
2971 struct partition *into;
2972 if (only_patterns_p)
2973 {
2974 for (i = 0; partitions.iterate (i, &into); ++i)
2975 if (!partition_builtin_p (into))
2976 break;
2977 for (++i; partitions.iterate (i, &partition); ++i)
2978 if (!partition_builtin_p (partition))
2979 {
2980 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
2981 partitions.unordered_remove (i);
2982 partition_free (partition);
2983 i--;
2984 }
2985 }
2986
2987 /* Due to limitations in the transform phase we have to fuse all
2988 reduction partitions into the last partition so the existing
2989 loop will contain all loop-closed PHI nodes. */
2990 for (i = 0; partitions.iterate (i, &into); ++i)
2991 if (partition_reduction_p (into))
2992 break;
2993 for (i = i + 1; partitions.iterate (i, &partition); ++i)
2994 if (partition_reduction_p (partition))
2995 {
2996 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
2997 partitions.unordered_remove (i);
2998 partition_free (partition);
2999 i--;
3000 }
3001
3002 /* Apply our simple cost model - fuse partitions with similar
3003 memory accesses. */
3004 for (i = 0; partitions.iterate (i, &into); ++i)
3005 {
3006 bool changed = false;
3007 if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
3008 continue;
3009 for (int j = i + 1;
3010 partitions.iterate (j, &partition); ++j)
3011 {
3012 if (share_memory_accesses (rdg, into, partition))
3013 {
3014 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
3015 partitions.unordered_remove (j);
3016 partition_free (partition);
3017 j--;
3018 changed = true;
3019 }
3020 }
3021 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
3022 accesses when 1 and 2 have similar accesses but not 0 and 1
3023 then in the next iteration we will fail to consider merging
3024 1 into 0,2. So try again if we did any merging into 0. */
3025 if (changed)
3026 i--;
3027 }
3028
3029 /* Put a non-builtin partition last if we need to preserve a reduction.
3030 ??? This is a workaround that makes sort_partitions_by_post_order do
3031 the correct thing while in reality it should sort each component
3032 separately and then put the component with a reduction or a non-builtin
3033 last. */
3034 if (reduction_in_all
3035 && partition_builtin_p (partitions.last()))
3036 FOR_EACH_VEC_ELT (partitions, i, partition)
3037 if (!partition_builtin_p (partition))
3038 {
3039 partitions.unordered_remove (i);
3040 partitions.quick_push (partition);
3041 break;
3042 }
3043
3044 /* Build the partition dependency graph and fuse partitions in strong
3045 connected component. */
3046 if (partitions.length () > 1)
3047 {
3048 /* Don't support loop nest distribution under runtime alias check
3049 since it's not likely to enable many vectorization opportunities.
3050 Also if loop has any data reference which may be not addressable
3051 since alias check needs to take, compare address of the object. */
3052 if (loop->inner || has_nonaddressable_dataref_p)
3053 merge_dep_scc_partitions (rdg, &partitions, false);
3054 else
3055 {
3056 merge_dep_scc_partitions (rdg, &partitions, true);
3057 if (partitions.length () > 1)
3058 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
3059 }
3060 }
3061
3062 finalize_partitions (loop, &partitions, &alias_ddrs);
3063
3064 /* If there is a reduction in all partitions make sure the last one
3065 is not classified for builtin code generation. */
3066 if (reduction_in_all)
3067 {
3068 partition = partitions.last ();
3069 if (only_patterns_p
3070 && partition_builtin_p (partition)
3071 && !partition_builtin_p (partitions[0]))
3072 {
3073 nbp = 0;
3074 goto ldist_done;
3075 }
3076 partition->kind = PKIND_NORMAL;
3077 }
3078
3079 nbp = partitions.length ();
3080 if (nbp == 0
3081 || (nbp == 1 && !partition_builtin_p (partitions[0]))
3082 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
3083 {
3084 nbp = 0;
3085 goto ldist_done;
3086 }
3087
3088 if (version_for_distribution_p (&partitions, &alias_ddrs))
3089 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
3090
3091 if (dump_file && (dump_flags & TDF_DETAILS))
3092 {
3093 fprintf (dump_file,
3094 "distribute loop <%d> into partitions:\n", loop->num);
3095 dump_rdg_partitions (dump_file, partitions);
3096 }
3097
3098 FOR_EACH_VEC_ELT (partitions, i, partition)
3099 {
3100 if (partition_builtin_p (partition))
3101 (*nb_calls)++;
3102 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
3103 }
3104
3105 ldist_done:
3106 loop_nest.release ();
3107 free_data_refs (datarefs_vec);
3108 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
3109 iter != ddrs_table->end (); ++iter)
3110 {
3111 free_dependence_relation (*iter);
3112 *iter = NULL;
3113 }
3114 delete ddrs_table;
3115
3116 FOR_EACH_VEC_ELT (partitions, i, partition)
3117 partition_free (partition);
3118
3119 free_rdg (rdg);
3120 return nbp - *nb_calls;
3121 }
3122
3123
3124 void loop_distribution::bb_top_order_init (void)
3125 {
3126 int rpo_num;
3127 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3128
3129 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3130 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3131 rpo_num = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, true);
3132 for (int i = 0; i < rpo_num; i++)
3133 bb_top_order_index[rpo[i]] = i;
3134
3135 free (rpo);
3136 }
3137
3138 void loop_distribution::bb_top_order_destroy ()
3139 {
3140 free (bb_top_order_index);
3141 bb_top_order_index = NULL;
3142 bb_top_order_index_size = 0;
3143 }
3144
3145
3146 /* Given LOOP, this function records seed statements for distribution in
3147 WORK_LIST. Return false if there is nothing for distribution. */
3148
3149 static bool
3150 find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
3151 {
3152 basic_block *bbs = get_loop_body_in_dom_order (loop);
3153
3154 /* Initialize the worklist with stmts we seed the partitions with. */
3155 for (unsigned i = 0; i < loop->num_nodes; ++i)
3156 {
3157 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3158 !gsi_end_p (gsi); gsi_next (&gsi))
3159 {
3160 gphi *phi = gsi.phi ();
3161 if (virtual_operand_p (gimple_phi_result (phi)))
3162 continue;
3163 /* Distribute stmts which have defs that are used outside of
3164 the loop. */
3165 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3166 continue;
3167 work_list->safe_push (phi);
3168 }
3169 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3170 !gsi_end_p (gsi); gsi_next (&gsi))
3171 {
3172 gimple *stmt = gsi_stmt (gsi);
3173
3174 /* Ignore clobbers, they do not have true side effects. */
3175 if (gimple_clobber_p (stmt))
3176 continue;
3177
3178 /* If there is a stmt with side-effects bail out - we
3179 cannot and should not distribute this loop. */
3180 if (gimple_has_side_effects (stmt))
3181 {
3182 free (bbs);
3183 return false;
3184 }
3185
3186 /* Distribute stmts which have defs that are used outside of
3187 the loop. */
3188 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3189 ;
3190 /* Otherwise only distribute stores for now. */
3191 else if (!gimple_vdef (stmt))
3192 continue;
3193
3194 work_list->safe_push (stmt);
3195 }
3196 }
3197 free (bbs);
3198 return work_list->length () > 0;
3199 }
3200
3201 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3202 perfect loop nest. */
3203
3204 static class loop *
3205 prepare_perfect_loop_nest (class loop *loop)
3206 {
3207 class loop *outer = loop_outer (loop);
3208 tree niters = number_of_latch_executions (loop);
3209
3210 /* TODO: We only support the innermost 3-level loop nest distribution
3211 because of compilation time issue for now. This should be relaxed
3212 in the future. Note we only allow 3-level loop nest distribution
3213 when parallelizing loops. */
3214 while ((loop->inner == NULL
3215 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3216 && loop_outer (outer)
3217 && outer->inner == loop && loop->next == NULL
3218 && single_exit (outer)
3219 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3220 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3221 && niters != chrec_dont_know)
3222 {
3223 loop = outer;
3224 outer = loop_outer (loop);
3225 }
3226
3227 return loop;
3228 }
3229
3230
3231 unsigned int
3232 loop_distribution::execute (function *fun)
3233 {
3234 class loop *loop;
3235 bool changed = false;
3236 basic_block bb;
3237 control_dependences *cd = NULL;
3238 auto_vec<loop_p> loops_to_be_destroyed;
3239
3240 if (number_of_loops (fun) <= 1)
3241 return 0;
3242
3243 bb_top_order_init ();
3244
3245 FOR_ALL_BB_FN (bb, fun)
3246 {
3247 gimple_stmt_iterator gsi;
3248 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3249 gimple_set_uid (gsi_stmt (gsi), -1);
3250 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3251 gimple_set_uid (gsi_stmt (gsi), -1);
3252 }
3253
3254 /* We can at the moment only distribute non-nested loops, thus restrict
3255 walking to innermost loops. */
3256 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3257 {
3258 /* Don't distribute multiple exit edges loop, or cold loop when
3259 not doing pattern detection. */
3260 if (!single_exit (loop)
3261 || (!flag_tree_loop_distribute_patterns
3262 && !optimize_loop_for_speed_p (loop)))
3263 continue;
3264
3265 /* Don't distribute loop if niters is unknown. */
3266 tree niters = number_of_latch_executions (loop);
3267 if (niters == NULL_TREE || niters == chrec_dont_know)
3268 continue;
3269
3270 /* Get the perfect loop nest for distribution. */
3271 loop = prepare_perfect_loop_nest (loop);
3272 for (; loop; loop = loop->inner)
3273 {
3274 auto_vec<gimple *> work_list;
3275 if (!find_seed_stmts_for_distribution (loop, &work_list))
3276 break;
3277
3278 const char *str = loop->inner ? " nest" : "";
3279 dump_user_location_t loc = find_loop_location (loop);
3280 if (!cd)
3281 {
3282 calculate_dominance_info (CDI_DOMINATORS);
3283 calculate_dominance_info (CDI_POST_DOMINATORS);
3284 cd = new control_dependences ();
3285 free_dominance_info (CDI_POST_DOMINATORS);
3286 }
3287
3288 bool destroy_p;
3289 int nb_generated_loops, nb_generated_calls;
3290 nb_generated_loops
3291 = distribute_loop (loop, work_list, cd, &nb_generated_calls,
3292 &destroy_p, (!optimize_loop_for_speed_p (loop)
3293 || !flag_tree_loop_distribution));
3294 if (destroy_p)
3295 loops_to_be_destroyed.safe_push (loop);
3296
3297 if (nb_generated_loops + nb_generated_calls > 0)
3298 {
3299 changed = true;
3300 if (dump_enabled_p ())
3301 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3302 loc, "Loop%s %d distributed: split to %d loops "
3303 "and %d library calls.\n", str, loop->num,
3304 nb_generated_loops, nb_generated_calls);
3305
3306 break;
3307 }
3308
3309 if (dump_file && (dump_flags & TDF_DETAILS))
3310 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3311 }
3312 }
3313
3314 if (cd)
3315 delete cd;
3316
3317 if (bb_top_order_index != NULL)
3318 bb_top_order_destroy ();
3319
3320 if (changed)
3321 {
3322 /* Destroy loop bodies that could not be reused. Do this late as we
3323 otherwise can end up refering to stale data in control dependences. */
3324 unsigned i;
3325 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3326 destroy_loop (loop);
3327
3328 /* Cached scalar evolutions now may refer to wrong or non-existing
3329 loops. */
3330 scev_reset_htab ();
3331 mark_virtual_operands_for_renaming (fun);
3332 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3333 }
3334
3335 checking_verify_loop_structure ();
3336
3337 return changed ? TODO_cleanup_cfg : 0;
3338 }
3339
3340
3341 /* Distribute all loops in the current function. */
3342
3343 namespace {
3344
3345 const pass_data pass_data_loop_distribution =
3346 {
3347 GIMPLE_PASS, /* type */
3348 "ldist", /* name */
3349 OPTGROUP_LOOP, /* optinfo_flags */
3350 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
3351 ( PROP_cfg | PROP_ssa ), /* properties_required */
3352 0, /* properties_provided */
3353 0, /* properties_destroyed */
3354 0, /* todo_flags_start */
3355 0, /* todo_flags_finish */
3356 };
3357
3358 class pass_loop_distribution : public gimple_opt_pass
3359 {
3360 public:
3361 pass_loop_distribution (gcc::context *ctxt)
3362 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3363 {}
3364
3365 /* opt_pass methods: */
3366 virtual bool gate (function *)
3367 {
3368 return flag_tree_loop_distribution
3369 || flag_tree_loop_distribute_patterns;
3370 }
3371
3372 virtual unsigned int execute (function *);
3373
3374 }; // class pass_loop_distribution
3375
3376 unsigned int
3377 pass_loop_distribution::execute (function *fun)
3378 {
3379 return loop_distribution ().execute (fun);
3380 }
3381
3382 } // anon namespace
3383
3384 gimple_opt_pass *
3385 make_pass_loop_distribution (gcc::context *ctxt)
3386 {
3387 return new pass_loop_distribution (ctxt);
3388 }