]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-outof-ssa.c
* gimple-expr.h (create_tmp_var_raw, create_tmp_var,
[thirdparty/gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "hard-reg-set.h"
33 #include "input.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "basic-block.h"
40 #include "gimple-pretty-print.h"
41 #include "bitmap.h"
42 #include "sbitmap.h"
43 #include "tree-ssa-alias.h"
44 #include "internal-fn.h"
45 #include "tree-eh.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "gimple-iterator.h"
50 #include "gimple-ssa.h"
51 #include "tree-cfg.h"
52 #include "tree-phinodes.h"
53 #include "ssa-iterators.h"
54 #include "stringpool.h"
55 #include "tree-ssanames.h"
56 #include "dumpfile.h"
57 #include "diagnostic-core.h"
58 #include "tree-ssa-live.h"
59 #include "tree-ssa-ter.h"
60 #include "tree-ssa-coalesce.h"
61 #include "tree-outof-ssa.h"
62
63 /* FIXME: A lot of code here deals with expanding to RTL. All that code
64 should be in cfgexpand.c. */
65 #include "expr.h"
66
67 /* Return TRUE if expression STMT is suitable for replacement. */
68
69 bool
70 ssa_is_replaceable_p (gimple stmt)
71 {
72 use_operand_p use_p;
73 tree def;
74 gimple use_stmt;
75
76 /* Only consider modify stmts. */
77 if (!is_gimple_assign (stmt))
78 return false;
79
80 /* If the statement may throw an exception, it cannot be replaced. */
81 if (stmt_could_throw_p (stmt))
82 return false;
83
84 /* Punt if there is more than 1 def. */
85 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
86 if (!def)
87 return false;
88
89 /* Only consider definitions which have a single use. */
90 if (!single_imm_use (def, &use_p, &use_stmt))
91 return false;
92
93 /* Used in this block, but at the TOP of the block, not the end. */
94 if (gimple_code (use_stmt) == GIMPLE_PHI)
95 return false;
96
97 /* There must be no VDEFs. */
98 if (gimple_vdef (stmt))
99 return false;
100
101 /* Float expressions must go through memory if float-store is on. */
102 if (flag_float_store
103 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
104 return false;
105
106 /* An assignment with a register variable on the RHS is not
107 replaceable. */
108 if (gimple_assign_rhs_code (stmt) == VAR_DECL
109 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
110 return false;
111
112 /* No function calls can be replaced. */
113 if (is_gimple_call (stmt))
114 return false;
115
116 /* Leave any stmt with volatile operands alone as well. */
117 if (gimple_has_volatile_ops (stmt))
118 return false;
119
120 return true;
121 }
122
123
124 /* Used to hold all the components required to do SSA PHI elimination.
125 The node and pred/succ list is a simple linear list of nodes and
126 edges represented as pairs of nodes.
127
128 The predecessor and successor list: Nodes are entered in pairs, where
129 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
130 predecessors, all the odd elements are successors.
131
132 Rationale:
133 When implemented as bitmaps, very large programs SSA->Normal times were
134 being dominated by clearing the interference graph.
135
136 Typically this list of edges is extremely small since it only includes
137 PHI results and uses from a single edge which have not coalesced with
138 each other. This means that no virtual PHI nodes are included, and
139 empirical evidence suggests that the number of edges rarely exceed
140 3, and in a bootstrap of GCC, the maximum size encountered was 7.
141 This also limits the number of possible nodes that are involved to
142 rarely more than 6, and in the bootstrap of gcc, the maximum number
143 of nodes encountered was 12. */
144
145 typedef struct _elim_graph {
146 /* Size of the elimination vectors. */
147 int size;
148
149 /* List of nodes in the elimination graph. */
150 vec<int> nodes;
151
152 /* The predecessor and successor edge list. */
153 vec<int> edge_list;
154
155 /* Source locus on each edge */
156 vec<source_location> edge_locus;
157
158 /* Visited vector. */
159 sbitmap visited;
160
161 /* Stack for visited nodes. */
162 vec<int> stack;
163
164 /* The variable partition map. */
165 var_map map;
166
167 /* Edge being eliminated by this graph. */
168 edge e;
169
170 /* List of constant copies to emit. These are pushed on in pairs. */
171 vec<int> const_dests;
172 vec<tree> const_copies;
173
174 /* Source locations for any constant copies. */
175 vec<source_location> copy_locus;
176 } *elim_graph;
177
178
179 /* For an edge E find out a good source location to associate with
180 instructions inserted on edge E. If E has an implicit goto set,
181 use its location. Otherwise search instructions in predecessors
182 of E for a location, and use that one. That makes sense because
183 we insert on edges for PHI nodes, and effects of PHIs happen on
184 the end of the predecessor conceptually. */
185
186 static void
187 set_location_for_edge (edge e)
188 {
189 if (e->goto_locus)
190 {
191 set_curr_insn_location (e->goto_locus);
192 }
193 else
194 {
195 basic_block bb = e->src;
196 gimple_stmt_iterator gsi;
197
198 do
199 {
200 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
201 {
202 gimple stmt = gsi_stmt (gsi);
203 if (is_gimple_debug (stmt))
204 continue;
205 if (gimple_has_location (stmt) || gimple_block (stmt))
206 {
207 set_curr_insn_location (gimple_location (stmt));
208 return;
209 }
210 }
211 /* Nothing found in this basic block. Make a half-assed attempt
212 to continue with another block. */
213 if (single_pred_p (bb))
214 bb = single_pred (bb);
215 else
216 bb = e->src;
217 }
218 while (bb != e->src);
219 }
220 }
221
222 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
223 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
224 which we deduce the size to copy in that case. */
225
226 static inline rtx
227 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
228 {
229 rtx seq;
230
231 start_sequence ();
232
233 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
234 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
235 if (GET_MODE (src) == BLKmode)
236 {
237 gcc_assert (GET_MODE (dest) == BLKmode);
238 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
239 }
240 else
241 emit_move_insn (dest, src);
242
243 seq = get_insns ();
244 end_sequence ();
245
246 return seq;
247 }
248
249 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
250
251 static void
252 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
253 {
254 tree var;
255 rtx seq;
256 if (dump_file && (dump_flags & TDF_DETAILS))
257 {
258 fprintf (dump_file,
259 "Inserting a partition copy on edge BB%d->BB%d :"
260 "PART.%d = PART.%d",
261 e->src->index,
262 e->dest->index, dest, src);
263 fprintf (dump_file, "\n");
264 }
265
266 gcc_assert (SA.partition_to_pseudo[dest]);
267 gcc_assert (SA.partition_to_pseudo[src]);
268
269 set_location_for_edge (e);
270 /* If a locus is provided, override the default. */
271 if (locus)
272 set_curr_insn_location (locus);
273
274 var = partition_to_var (SA.map, src);
275 seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
276 copy_rtx (SA.partition_to_pseudo[src]),
277 TYPE_UNSIGNED (TREE_TYPE (var)),
278 var);
279
280 insert_insn_on_edge (seq, e);
281 }
282
283 /* Insert a copy instruction from expression SRC to partition DEST
284 onto edge E. */
285
286 static void
287 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
288 {
289 rtx dest_rtx, seq, x;
290 machine_mode dest_mode, src_mode;
291 int unsignedp;
292 tree var;
293
294 if (dump_file && (dump_flags & TDF_DETAILS))
295 {
296 fprintf (dump_file,
297 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
298 e->src->index,
299 e->dest->index, dest);
300 print_generic_expr (dump_file, src, TDF_SLIM);
301 fprintf (dump_file, "\n");
302 }
303
304 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
305 gcc_assert (dest_rtx);
306
307 set_location_for_edge (e);
308 /* If a locus is provided, override the default. */
309 if (locus)
310 set_curr_insn_location (locus);
311
312 start_sequence ();
313
314 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
315 src_mode = TYPE_MODE (TREE_TYPE (src));
316 dest_mode = GET_MODE (dest_rtx);
317 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
318 gcc_assert (!REG_P (dest_rtx)
319 || dest_mode == promote_decl_mode (var, &unsignedp));
320
321 if (src_mode != dest_mode)
322 {
323 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
324 x = convert_modes (dest_mode, src_mode, x, unsignedp);
325 }
326 else if (src_mode == BLKmode)
327 {
328 x = dest_rtx;
329 store_expr (src, x, 0, false);
330 }
331 else
332 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
333
334 if (x != dest_rtx)
335 emit_move_insn (dest_rtx, x);
336 seq = get_insns ();
337 end_sequence ();
338
339 insert_insn_on_edge (seq, e);
340 }
341
342 /* Insert a copy instruction from RTL expression SRC to partition DEST
343 onto edge E. */
344
345 static void
346 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
347 source_location locus)
348 {
349 rtx seq;
350 if (dump_file && (dump_flags & TDF_DETAILS))
351 {
352 fprintf (dump_file,
353 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
354 e->src->index,
355 e->dest->index, dest);
356 print_simple_rtl (dump_file, src);
357 fprintf (dump_file, "\n");
358 }
359
360 gcc_assert (SA.partition_to_pseudo[dest]);
361
362 set_location_for_edge (e);
363 /* If a locus is provided, override the default. */
364 if (locus)
365 set_curr_insn_location (locus);
366
367 /* We give the destination as sizeexp in case src/dest are BLKmode
368 mems. Usually we give the source. As we result from SSA names
369 the left and right size should be the same (and no WITH_SIZE_EXPR
370 involved), so it doesn't matter. */
371 seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
372 src, unsignedsrcp,
373 partition_to_var (SA.map, dest));
374
375 insert_insn_on_edge (seq, e);
376 }
377
378 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
379 onto edge E. */
380
381 static void
382 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
383 {
384 tree var;
385 rtx seq;
386 if (dump_file && (dump_flags & TDF_DETAILS))
387 {
388 fprintf (dump_file,
389 "Inserting a temp copy on edge BB%d->BB%d : ",
390 e->src->index,
391 e->dest->index);
392 print_simple_rtl (dump_file, dest);
393 fprintf (dump_file, "= PART.%d\n", src);
394 }
395
396 gcc_assert (SA.partition_to_pseudo[src]);
397
398 set_location_for_edge (e);
399 /* If a locus is provided, override the default. */
400 if (locus)
401 set_curr_insn_location (locus);
402
403 var = partition_to_var (SA.map, src);
404 seq = emit_partition_copy (dest,
405 copy_rtx (SA.partition_to_pseudo[src]),
406 TYPE_UNSIGNED (TREE_TYPE (var)),
407 var);
408
409 insert_insn_on_edge (seq, e);
410 }
411
412
413 /* Create an elimination graph with SIZE nodes and associated data
414 structures. */
415
416 static elim_graph
417 new_elim_graph (int size)
418 {
419 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
420
421 g->nodes.create (30);
422 g->const_dests.create (20);
423 g->const_copies.create (20);
424 g->copy_locus.create (10);
425 g->edge_list.create (20);
426 g->edge_locus.create (10);
427 g->stack.create (30);
428
429 g->visited = sbitmap_alloc (size);
430
431 return g;
432 }
433
434
435 /* Empty elimination graph G. */
436
437 static inline void
438 clear_elim_graph (elim_graph g)
439 {
440 g->nodes.truncate (0);
441 g->edge_list.truncate (0);
442 g->edge_locus.truncate (0);
443 }
444
445
446 /* Delete elimination graph G. */
447
448 static inline void
449 delete_elim_graph (elim_graph g)
450 {
451 sbitmap_free (g->visited);
452 g->stack.release ();
453 g->edge_list.release ();
454 g->const_copies.release ();
455 g->const_dests.release ();
456 g->nodes.release ();
457 g->copy_locus.release ();
458 g->edge_locus.release ();
459
460 free (g);
461 }
462
463
464 /* Return the number of nodes in graph G. */
465
466 static inline int
467 elim_graph_size (elim_graph g)
468 {
469 return g->nodes.length ();
470 }
471
472
473 /* Add NODE to graph G, if it doesn't exist already. */
474
475 static inline void
476 elim_graph_add_node (elim_graph g, int node)
477 {
478 int x;
479 int t;
480
481 FOR_EACH_VEC_ELT (g->nodes, x, t)
482 if (t == node)
483 return;
484 g->nodes.safe_push (node);
485 }
486
487
488 /* Add the edge PRED->SUCC to graph G. */
489
490 static inline void
491 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
492 {
493 g->edge_list.safe_push (pred);
494 g->edge_list.safe_push (succ);
495 g->edge_locus.safe_push (locus);
496 }
497
498
499 /* Remove an edge from graph G for which NODE is the predecessor, and
500 return the successor node. -1 is returned if there is no such edge. */
501
502 static inline int
503 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
504 {
505 int y;
506 unsigned x;
507 for (x = 0; x < g->edge_list.length (); x += 2)
508 if (g->edge_list[x] == node)
509 {
510 g->edge_list[x] = -1;
511 y = g->edge_list[x + 1];
512 g->edge_list[x + 1] = -1;
513 *locus = g->edge_locus[x / 2];
514 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
515 return y;
516 }
517 *locus = UNKNOWN_LOCATION;
518 return -1;
519 }
520
521
522 /* Find all the nodes in GRAPH which are successors to NODE in the
523 edge list. VAR will hold the partition number found. CODE is the
524 code fragment executed for every node found. */
525
526 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
527 do { \
528 unsigned x_; \
529 int y_; \
530 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
531 { \
532 y_ = (GRAPH)->edge_list[x_]; \
533 if (y_ != (NODE)) \
534 continue; \
535 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
536 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
537 CODE; \
538 } \
539 } while (0)
540
541
542 /* Find all the nodes which are predecessors of NODE in the edge list for
543 GRAPH. VAR will hold the partition number found. CODE is the
544 code fragment executed for every node found. */
545
546 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
547 do { \
548 unsigned x_; \
549 int y_; \
550 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
551 { \
552 y_ = (GRAPH)->edge_list[x_ + 1]; \
553 if (y_ != (NODE)) \
554 continue; \
555 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
556 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
557 CODE; \
558 } \
559 } while (0)
560
561
562 /* Add T to elimination graph G. */
563
564 static inline void
565 eliminate_name (elim_graph g, int T)
566 {
567 elim_graph_add_node (g, T);
568 }
569
570 /* Return true if this phi argument T should have a copy queued when using
571 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
572 test for ssa_name is definitely simpler, but don't let invalid contents
573 slip through in the meantime. */
574
575 static inline bool
576 queue_phi_copy_p (var_map map, tree t)
577 {
578 if (TREE_CODE (t) == SSA_NAME)
579 {
580 if (var_to_partition (map, t) == NO_PARTITION)
581 return true;
582 return false;
583 }
584 gcc_checking_assert (is_gimple_min_invariant (t));
585 return true;
586 }
587
588 /* Build elimination graph G for basic block BB on incoming PHI edge
589 G->e. */
590
591 static void
592 eliminate_build (elim_graph g)
593 {
594 tree Ti;
595 int p0, pi;
596 gphi_iterator gsi;
597
598 clear_elim_graph (g);
599
600 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
601 {
602 gphi *phi = gsi.phi ();
603 source_location locus;
604
605 p0 = var_to_partition (g->map, gimple_phi_result (phi));
606 /* Ignore results which are not in partitions. */
607 if (p0 == NO_PARTITION)
608 continue;
609
610 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
611 locus = gimple_phi_arg_location_from_edge (phi, g->e);
612
613 /* If this argument is a constant, or a SSA_NAME which is being
614 left in SSA form, just queue a copy to be emitted on this
615 edge. */
616 if (queue_phi_copy_p (g->map, Ti))
617 {
618 /* Save constant copies until all other copies have been emitted
619 on this edge. */
620 g->const_dests.safe_push (p0);
621 g->const_copies.safe_push (Ti);
622 g->copy_locus.safe_push (locus);
623 }
624 else
625 {
626 pi = var_to_partition (g->map, Ti);
627 if (p0 != pi)
628 {
629 eliminate_name (g, p0);
630 eliminate_name (g, pi);
631 elim_graph_add_edge (g, p0, pi, locus);
632 }
633 }
634 }
635 }
636
637
638 /* Push successors of T onto the elimination stack for G. */
639
640 static void
641 elim_forward (elim_graph g, int T)
642 {
643 int S;
644 source_location locus;
645
646 bitmap_set_bit (g->visited, T);
647 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
648 {
649 if (!bitmap_bit_p (g->visited, S))
650 elim_forward (g, S);
651 });
652 g->stack.safe_push (T);
653 }
654
655
656 /* Return 1 if there unvisited predecessors of T in graph G. */
657
658 static int
659 elim_unvisited_predecessor (elim_graph g, int T)
660 {
661 int P;
662 source_location locus;
663
664 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
665 {
666 if (!bitmap_bit_p (g->visited, P))
667 return 1;
668 });
669 return 0;
670 }
671
672 /* Process predecessors first, and insert a copy. */
673
674 static void
675 elim_backward (elim_graph g, int T)
676 {
677 int P;
678 source_location locus;
679
680 bitmap_set_bit (g->visited, T);
681 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
682 {
683 if (!bitmap_bit_p (g->visited, P))
684 {
685 elim_backward (g, P);
686 insert_partition_copy_on_edge (g->e, P, T, locus);
687 }
688 });
689 }
690
691 /* Allocate a new pseudo register usable for storing values sitting
692 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
693
694 static rtx
695 get_temp_reg (tree name)
696 {
697 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
698 tree type = TREE_TYPE (var);
699 int unsignedp;
700 machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
701 rtx x = gen_reg_rtx (reg_mode);
702 if (POINTER_TYPE_P (type))
703 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
704 return x;
705 }
706
707 /* Insert required copies for T in graph G. Check for a strongly connected
708 region, and create a temporary to break the cycle if one is found. */
709
710 static void
711 elim_create (elim_graph g, int T)
712 {
713 int P, S;
714 source_location locus;
715
716 if (elim_unvisited_predecessor (g, T))
717 {
718 tree var = partition_to_var (g->map, T);
719 rtx U = get_temp_reg (var);
720 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
721
722 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
723 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
724 {
725 if (!bitmap_bit_p (g->visited, P))
726 {
727 elim_backward (g, P);
728 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
729 }
730 });
731 }
732 else
733 {
734 S = elim_graph_remove_succ_edge (g, T, &locus);
735 if (S != -1)
736 {
737 bitmap_set_bit (g->visited, T);
738 insert_partition_copy_on_edge (g->e, T, S, locus);
739 }
740 }
741 }
742
743
744 /* Eliminate all the phi nodes on edge E in graph G. */
745
746 static void
747 eliminate_phi (edge e, elim_graph g)
748 {
749 int x;
750
751 gcc_assert (g->const_copies.length () == 0);
752 gcc_assert (g->copy_locus.length () == 0);
753
754 /* Abnormal edges already have everything coalesced. */
755 if (e->flags & EDGE_ABNORMAL)
756 return;
757
758 g->e = e;
759
760 eliminate_build (g);
761
762 if (elim_graph_size (g) != 0)
763 {
764 int part;
765
766 bitmap_clear (g->visited);
767 g->stack.truncate (0);
768
769 FOR_EACH_VEC_ELT (g->nodes, x, part)
770 {
771 if (!bitmap_bit_p (g->visited, part))
772 elim_forward (g, part);
773 }
774
775 bitmap_clear (g->visited);
776 while (g->stack.length () > 0)
777 {
778 x = g->stack.pop ();
779 if (!bitmap_bit_p (g->visited, x))
780 elim_create (g, x);
781 }
782 }
783
784 /* If there are any pending constant copies, issue them now. */
785 while (g->const_copies.length () > 0)
786 {
787 int dest;
788 tree src;
789 source_location locus;
790
791 src = g->const_copies.pop ();
792 dest = g->const_dests.pop ();
793 locus = g->copy_locus.pop ();
794 insert_value_copy_on_edge (e, dest, src, locus);
795 }
796 }
797
798
799 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
800 check to see if this allows another PHI node to be removed. */
801
802 static void
803 remove_gimple_phi_args (gphi *phi)
804 {
805 use_operand_p arg_p;
806 ssa_op_iter iter;
807
808 if (dump_file && (dump_flags & TDF_DETAILS))
809 {
810 fprintf (dump_file, "Removing Dead PHI definition: ");
811 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
812 }
813
814 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
815 {
816 tree arg = USE_FROM_PTR (arg_p);
817 if (TREE_CODE (arg) == SSA_NAME)
818 {
819 /* Remove the reference to the existing argument. */
820 SET_USE (arg_p, NULL_TREE);
821 if (has_zero_uses (arg))
822 {
823 gimple stmt;
824 gimple_stmt_iterator gsi;
825
826 stmt = SSA_NAME_DEF_STMT (arg);
827
828 /* Also remove the def if it is a PHI node. */
829 if (gimple_code (stmt) == GIMPLE_PHI)
830 {
831 remove_gimple_phi_args (as_a <gphi *> (stmt));
832 gsi = gsi_for_stmt (stmt);
833 remove_phi_node (&gsi, true);
834 }
835
836 }
837 }
838 }
839 }
840
841 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
842
843 static void
844 eliminate_useless_phis (void)
845 {
846 basic_block bb;
847 gphi_iterator gsi;
848 tree result;
849
850 FOR_EACH_BB_FN (bb, cfun)
851 {
852 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
853 {
854 gphi *phi = gsi.phi ();
855 result = gimple_phi_result (phi);
856 if (virtual_operand_p (result))
857 {
858 #ifdef ENABLE_CHECKING
859 size_t i;
860 /* There should be no arguments which are not virtual, or the
861 results will be incorrect. */
862 for (i = 0; i < gimple_phi_num_args (phi); i++)
863 {
864 tree arg = PHI_ARG_DEF (phi, i);
865 if (TREE_CODE (arg) == SSA_NAME
866 && !virtual_operand_p (arg))
867 {
868 fprintf (stderr, "Argument of PHI is not virtual (");
869 print_generic_expr (stderr, arg, TDF_SLIM);
870 fprintf (stderr, "), but the result is :");
871 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
872 internal_error ("SSA corruption");
873 }
874 }
875 #endif
876 remove_phi_node (&gsi, true);
877 }
878 else
879 {
880 /* Also remove real PHIs with no uses. */
881 if (has_zero_uses (result))
882 {
883 remove_gimple_phi_args (phi);
884 remove_phi_node (&gsi, true);
885 }
886 else
887 gsi_next (&gsi);
888 }
889 }
890 }
891 }
892
893
894 /* This function will rewrite the current program using the variable mapping
895 found in MAP. If the replacement vector VALUES is provided, any
896 occurrences of partitions with non-null entries in the vector will be
897 replaced with the expression in the vector instead of its mapped
898 variable. */
899
900 static void
901 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
902 {
903 #ifdef ENABLE_CHECKING
904 basic_block bb;
905 /* Search for PHIs where the destination has no partition, but one
906 or more arguments has a partition. This should not happen and can
907 create incorrect code. */
908 FOR_EACH_BB_FN (bb, cfun)
909 {
910 gphi_iterator gsi;
911 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
912 {
913 gphi *phi = gsi.phi ();
914 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
915 if (T0 == NULL_TREE)
916 {
917 size_t i;
918 for (i = 0; i < gimple_phi_num_args (phi); i++)
919 {
920 tree arg = PHI_ARG_DEF (phi, i);
921
922 if (TREE_CODE (arg) == SSA_NAME
923 && var_to_partition (map, arg) != NO_PARTITION)
924 {
925 fprintf (stderr, "Argument of PHI is in a partition :(");
926 print_generic_expr (stderr, arg, TDF_SLIM);
927 fprintf (stderr, "), but the result is not :");
928 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
929 internal_error ("SSA corruption");
930 }
931 }
932 }
933 }
934 }
935 #endif
936 }
937
938 /* Given the out-of-ssa info object SA (with prepared partitions)
939 eliminate all phi nodes in all basic blocks. Afterwards no
940 basic block will have phi nodes anymore and there are possibly
941 some RTL instructions inserted on edges. */
942
943 void
944 expand_phi_nodes (struct ssaexpand *sa)
945 {
946 basic_block bb;
947 elim_graph g = new_elim_graph (sa->map->num_partitions);
948 g->map = sa->map;
949
950 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
951 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
952 if (!gimple_seq_empty_p (phi_nodes (bb)))
953 {
954 edge e;
955 edge_iterator ei;
956 FOR_EACH_EDGE (e, ei, bb->preds)
957 eliminate_phi (e, g);
958 set_phi_nodes (bb, NULL);
959 /* We can't redirect EH edges in RTL land, so we need to do this
960 here. Redirection happens only when splitting is necessary,
961 which it is only for critical edges, normally. For EH edges
962 it might also be necessary when the successor has more than
963 one predecessor. In that case the edge is either required to
964 be fallthru (which EH edges aren't), or the predecessor needs
965 to end with a jump (which again, isn't the case with EH edges).
966 Hence, split all EH edges on which we inserted instructions
967 and whose successor has multiple predecessors. */
968 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
969 {
970 if (e->insns.r && (e->flags & EDGE_EH)
971 && !single_pred_p (e->dest))
972 {
973 rtx_insn *insns = e->insns.r;
974 basic_block bb;
975 e->insns.r = NULL;
976 bb = split_edge (e);
977 single_pred_edge (bb)->insns.r = insns;
978 }
979 else
980 ei_next (&ei);
981 }
982 }
983
984 delete_elim_graph (g);
985 }
986
987
988 /* Remove the ssa-names in the current function and translate them into normal
989 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
990 should also be used. */
991
992 static void
993 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
994 {
995 bitmap values = NULL;
996 var_map map;
997 unsigned i;
998
999 map = coalesce_ssa_name ();
1000
1001 /* Return to viewing the variable list as just all reference variables after
1002 coalescing has been performed. */
1003 partition_view_normal (map, false);
1004
1005 if (dump_file && (dump_flags & TDF_DETAILS))
1006 {
1007 fprintf (dump_file, "After Coalescing:\n");
1008 dump_var_map (dump_file, map);
1009 }
1010
1011 if (perform_ter)
1012 {
1013 values = find_replaceable_exprs (map);
1014 if (values && dump_file && (dump_flags & TDF_DETAILS))
1015 dump_replaceable_exprs (dump_file, values);
1016 }
1017
1018 rewrite_trees (map);
1019
1020 sa->map = map;
1021 sa->values = values;
1022 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
1023 for (i = 1; i < num_ssa_names; i++)
1024 {
1025 tree t = ssa_name (i);
1026 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
1027 {
1028 int p = var_to_partition (map, t);
1029 if (p != NO_PARTITION)
1030 bitmap_set_bit (sa->partition_has_default_def, p);
1031 }
1032 }
1033 }
1034
1035
1036 /* If not already done so for basic block BB, assign increasing uids
1037 to each of its instructions. */
1038
1039 static void
1040 maybe_renumber_stmts_bb (basic_block bb)
1041 {
1042 unsigned i = 0;
1043 gimple_stmt_iterator gsi;
1044
1045 if (!bb->aux)
1046 return;
1047 bb->aux = NULL;
1048 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1049 {
1050 gimple stmt = gsi_stmt (gsi);
1051 gimple_set_uid (stmt, i);
1052 i++;
1053 }
1054 }
1055
1056
1057 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1058 of a PHI node) and ARG (one of its arguments) conflict. Return false
1059 otherwise, also when we simply aren't sure. */
1060
1061 static bool
1062 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1063 {
1064 use_operand_p use;
1065 imm_use_iterator imm_iter;
1066 gimple defa = SSA_NAME_DEF_STMT (arg);
1067
1068 /* If ARG isn't defined in the same block it's too complicated for
1069 our little mind. */
1070 if (gimple_bb (defa) != bb)
1071 return false;
1072
1073 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1074 {
1075 gimple use_stmt = USE_STMT (use);
1076 if (is_gimple_debug (use_stmt))
1077 continue;
1078 /* Now, if there's a use of RESULT that lies outside this basic block,
1079 then there surely is a conflict with ARG. */
1080 if (gimple_bb (use_stmt) != bb)
1081 return true;
1082 if (gimple_code (use_stmt) == GIMPLE_PHI)
1083 continue;
1084 /* The use now is in a real stmt of BB, so if ARG was defined
1085 in a PHI node (like RESULT) both conflict. */
1086 if (gimple_code (defa) == GIMPLE_PHI)
1087 return true;
1088 maybe_renumber_stmts_bb (bb);
1089 /* If the use of RESULT occurs after the definition of ARG,
1090 the two conflict too. */
1091 if (gimple_uid (defa) < gimple_uid (use_stmt))
1092 return true;
1093 }
1094
1095 return false;
1096 }
1097
1098
1099 /* Search every PHI node for arguments associated with backedges which
1100 we can trivially determine will need a copy (the argument is either
1101 not an SSA_NAME or the argument has a different underlying variable
1102 than the PHI result).
1103
1104 Insert a copy from the PHI argument to a new destination at the
1105 end of the block with the backedge to the top of the loop. Update
1106 the PHI argument to reference this new destination. */
1107
1108 static void
1109 insert_backedge_copies (void)
1110 {
1111 basic_block bb;
1112 gphi_iterator gsi;
1113
1114 mark_dfs_back_edges ();
1115
1116 FOR_EACH_BB_FN (bb, cfun)
1117 {
1118 /* Mark block as possibly needing calculation of UIDs. */
1119 bb->aux = &bb->aux;
1120
1121 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1122 {
1123 gphi *phi = gsi.phi ();
1124 tree result = gimple_phi_result (phi);
1125 size_t i;
1126
1127 if (virtual_operand_p (result))
1128 continue;
1129
1130 for (i = 0; i < gimple_phi_num_args (phi); i++)
1131 {
1132 tree arg = gimple_phi_arg_def (phi, i);
1133 edge e = gimple_phi_arg_edge (phi, i);
1134
1135 /* If the argument is not an SSA_NAME, then we will need a
1136 constant initialization. If the argument is an SSA_NAME with
1137 a different underlying variable then a copy statement will be
1138 needed. */
1139 if ((e->flags & EDGE_DFS_BACK)
1140 && (TREE_CODE (arg) != SSA_NAME
1141 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1142 || trivially_conflicts_p (bb, result, arg)))
1143 {
1144 tree name;
1145 gassign *stmt;
1146 gimple last = NULL;
1147 gimple_stmt_iterator gsi2;
1148
1149 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1150 if (!gsi_end_p (gsi2))
1151 last = gsi_stmt (gsi2);
1152
1153 /* In theory the only way we ought to get back to the
1154 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1155 However, better safe than sorry.
1156 If the block ends with a control statement or
1157 something that might throw, then we have to
1158 insert this assignment before the last
1159 statement. Else insert it after the last statement. */
1160 if (last && stmt_ends_bb_p (last))
1161 {
1162 /* If the last statement in the block is the definition
1163 site of the PHI argument, then we can't insert
1164 anything after it. */
1165 if (TREE_CODE (arg) == SSA_NAME
1166 && SSA_NAME_DEF_STMT (arg) == last)
1167 continue;
1168 }
1169
1170 /* Create a new instance of the underlying variable of the
1171 PHI result. */
1172 name = copy_ssa_name (result);
1173 stmt = gimple_build_assign (name,
1174 gimple_phi_arg_def (phi, i));
1175
1176 /* copy location if present. */
1177 if (gimple_phi_arg_has_location (phi, i))
1178 gimple_set_location (stmt,
1179 gimple_phi_arg_location (phi, i));
1180
1181 /* Insert the new statement into the block and update
1182 the PHI node. */
1183 if (last && stmt_ends_bb_p (last))
1184 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1185 else
1186 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1187 SET_PHI_ARG_DEF (phi, i, name);
1188 }
1189 }
1190 }
1191
1192 /* Unmark this block again. */
1193 bb->aux = NULL;
1194 }
1195 }
1196
1197 /* Free all memory associated with going out of SSA form. SA is
1198 the outof-SSA info object. */
1199
1200 void
1201 finish_out_of_ssa (struct ssaexpand *sa)
1202 {
1203 free (sa->partition_to_pseudo);
1204 if (sa->values)
1205 BITMAP_FREE (sa->values);
1206 delete_var_map (sa->map);
1207 BITMAP_FREE (sa->partition_has_default_def);
1208 memset (sa, 0, sizeof *sa);
1209 }
1210
1211 /* Take the current function out of SSA form, translating PHIs as described in
1212 R. Morgan, ``Building an Optimizing Compiler'',
1213 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1214
1215 unsigned int
1216 rewrite_out_of_ssa (struct ssaexpand *sa)
1217 {
1218 /* If elimination of a PHI requires inserting a copy on a backedge,
1219 then we will have to split the backedge which has numerous
1220 undesirable performance effects.
1221
1222 A significant number of such cases can be handled here by inserting
1223 copies into the loop itself. */
1224 insert_backedge_copies ();
1225
1226
1227 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1228 eliminate_useless_phis ();
1229
1230 if (dump_file && (dump_flags & TDF_DETAILS))
1231 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1232
1233 remove_ssa_form (flag_tree_ter, sa);
1234
1235 if (dump_file && (dump_flags & TDF_DETAILS))
1236 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1237
1238 return 0;
1239 }