]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-outof-ssa.c
gimplify.c: Do not include except.h and optabs.h.
[thirdparty/gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew Macleod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "ggc.h"
28 #include "basic-block.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "toplev.h"
37 #include "ssaexpand.h"
38
39 /* FIXME: A lot of code here deals with expanding to RTL. All that code
40 should be in cfgexpand.c. */
41 #include "expr.h"
42
43
44 DEF_VEC_I(source_location);
45 DEF_VEC_ALLOC_I(source_location,heap);
46
47 /* Used to hold all the components required to do SSA PHI elimination.
48 The node and pred/succ list is a simple linear list of nodes and
49 edges represented as pairs of nodes.
50
51 The predecessor and successor list: Nodes are entered in pairs, where
52 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
53 predecessors, all the odd elements are successors.
54
55 Rationale:
56 When implemented as bitmaps, very large programs SSA->Normal times were
57 being dominated by clearing the interference graph.
58
59 Typically this list of edges is extremely small since it only includes
60 PHI results and uses from a single edge which have not coalesced with
61 each other. This means that no virtual PHI nodes are included, and
62 empirical evidence suggests that the number of edges rarely exceed
63 3, and in a bootstrap of GCC, the maximum size encountered was 7.
64 This also limits the number of possible nodes that are involved to
65 rarely more than 6, and in the bootstrap of gcc, the maximum number
66 of nodes encountered was 12. */
67
68 typedef struct _elim_graph {
69 /* Size of the elimination vectors. */
70 int size;
71
72 /* List of nodes in the elimination graph. */
73 VEC(int,heap) *nodes;
74
75 /* The predecessor and successor edge list. */
76 VEC(int,heap) *edge_list;
77
78 /* Source locus on each edge */
79 VEC(source_location,heap) *edge_locus;
80
81 /* Visited vector. */
82 sbitmap visited;
83
84 /* Stack for visited nodes. */
85 VEC(int,heap) *stack;
86
87 /* The variable partition map. */
88 var_map map;
89
90 /* Edge being eliminated by this graph. */
91 edge e;
92
93 /* List of constant copies to emit. These are pushed on in pairs. */
94 VEC(int,heap) *const_dests;
95 VEC(tree,heap) *const_copies;
96
97 /* Source locations for any constant copies. */
98 VEC(source_location,heap) *copy_locus;
99 } *elim_graph;
100
101
102 /* For an edge E find out a good source location to associate with
103 instructions inserted on edge E. If E has an implicit goto set,
104 use its location. Otherwise search instructions in predecessors
105 of E for a location, and use that one. That makes sense because
106 we insert on edges for PHI nodes, and effects of PHIs happen on
107 the end of the predecessor conceptually. */
108
109 static void
110 set_location_for_edge (edge e)
111 {
112 if (e->goto_locus)
113 {
114 set_curr_insn_source_location (e->goto_locus);
115 set_curr_insn_block (e->goto_block);
116 }
117 else
118 {
119 basic_block bb = e->src;
120 gimple_stmt_iterator gsi;
121
122 do
123 {
124 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
125 {
126 gimple stmt = gsi_stmt (gsi);
127 if (is_gimple_debug (stmt))
128 continue;
129 if (gimple_has_location (stmt) || gimple_block (stmt))
130 {
131 set_curr_insn_source_location (gimple_location (stmt));
132 set_curr_insn_block (gimple_block (stmt));
133 return;
134 }
135 }
136 /* Nothing found in this basic block. Make a half-assed attempt
137 to continue with another block. */
138 if (single_pred_p (bb))
139 bb = single_pred (bb);
140 else
141 bb = e->src;
142 }
143 while (bb != e->src);
144 }
145 }
146
147 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
148 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
149 which we deduce the size to copy in that case. */
150
151 static inline rtx
152 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
153 {
154 rtx seq;
155
156 start_sequence ();
157
158 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
159 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
160 if (GET_MODE (src) == BLKmode)
161 {
162 gcc_assert (GET_MODE (dest) == BLKmode);
163 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
164 }
165 else
166 emit_move_insn (dest, src);
167
168 seq = get_insns ();
169 end_sequence ();
170
171 return seq;
172 }
173
174 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
175
176 static void
177 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
178 {
179 tree var;
180 rtx seq;
181 if (dump_file && (dump_flags & TDF_DETAILS))
182 {
183 fprintf (dump_file,
184 "Inserting a partition copy on edge BB%d->BB%d :"
185 "PART.%d = PART.%d",
186 e->src->index,
187 e->dest->index, dest, src);
188 fprintf (dump_file, "\n");
189 }
190
191 gcc_assert (SA.partition_to_pseudo[dest]);
192 gcc_assert (SA.partition_to_pseudo[src]);
193
194 set_location_for_edge (e);
195 /* If a locus is provided, override the default. */
196 if (locus)
197 set_curr_insn_source_location (locus);
198
199 var = partition_to_var (SA.map, src);
200 seq = emit_partition_copy (SA.partition_to_pseudo[dest],
201 SA.partition_to_pseudo[src],
202 TYPE_UNSIGNED (TREE_TYPE (var)),
203 var);
204
205 insert_insn_on_edge (seq, e);
206 }
207
208 /* Insert a copy instruction from expression SRC to partition DEST
209 onto edge E. */
210
211 static void
212 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
213 {
214 rtx seq, x;
215 enum machine_mode dest_mode, src_mode;
216 int unsignedp;
217 tree var;
218
219 if (dump_file && (dump_flags & TDF_DETAILS))
220 {
221 fprintf (dump_file,
222 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
223 e->src->index,
224 e->dest->index, dest);
225 print_generic_expr (dump_file, src, TDF_SLIM);
226 fprintf (dump_file, "\n");
227 }
228
229 gcc_assert (SA.partition_to_pseudo[dest]);
230
231 set_location_for_edge (e);
232 /* If a locus is provided, override the default. */
233 if (locus)
234 set_curr_insn_source_location (locus);
235
236 start_sequence ();
237
238 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
239 src_mode = TYPE_MODE (TREE_TYPE (src));
240 dest_mode = promote_decl_mode (var, &unsignedp);
241 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
242 gcc_assert (dest_mode == GET_MODE (SA.partition_to_pseudo[dest]));
243
244 if (src_mode != dest_mode)
245 {
246 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
247 x = convert_modes (dest_mode, src_mode, x, unsignedp);
248 }
249 else if (src_mode == BLKmode)
250 {
251 x = SA.partition_to_pseudo[dest];
252 store_expr (src, x, 0, false);
253 }
254 else
255 x = expand_expr (src, SA.partition_to_pseudo[dest],
256 dest_mode, EXPAND_NORMAL);
257
258 if (x != SA.partition_to_pseudo[dest])
259 emit_move_insn (SA.partition_to_pseudo[dest], x);
260 seq = get_insns ();
261 end_sequence ();
262
263 insert_insn_on_edge (seq, e);
264 }
265
266 /* Insert a copy instruction from RTL expression SRC to partition DEST
267 onto edge E. */
268
269 static void
270 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
271 source_location locus)
272 {
273 rtx seq;
274 if (dump_file && (dump_flags & TDF_DETAILS))
275 {
276 fprintf (dump_file,
277 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
278 e->src->index,
279 e->dest->index, dest);
280 print_simple_rtl (dump_file, src);
281 fprintf (dump_file, "\n");
282 }
283
284 gcc_assert (SA.partition_to_pseudo[dest]);
285
286 set_location_for_edge (e);
287 /* If a locus is provided, override the default. */
288 if (locus)
289 set_curr_insn_source_location (locus);
290
291 /* We give the destination as sizeexp in case src/dest are BLKmode
292 mems. Usually we give the source. As we result from SSA names
293 the left and right size should be the same (and no WITH_SIZE_EXPR
294 involved), so it doesn't matter. */
295 seq = emit_partition_copy (SA.partition_to_pseudo[dest],
296 src, unsignedsrcp,
297 partition_to_var (SA.map, dest));
298
299 insert_insn_on_edge (seq, e);
300 }
301
302 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
303 onto edge E. */
304
305 static void
306 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
307 {
308 tree var;
309 rtx seq;
310 if (dump_file && (dump_flags & TDF_DETAILS))
311 {
312 fprintf (dump_file,
313 "Inserting a temp copy on edge BB%d->BB%d : ",
314 e->src->index,
315 e->dest->index);
316 print_simple_rtl (dump_file, dest);
317 fprintf (dump_file, "= PART.%d\n", src);
318 }
319
320 gcc_assert (SA.partition_to_pseudo[src]);
321
322 set_location_for_edge (e);
323 /* If a locus is provided, override the default. */
324 if (locus)
325 set_curr_insn_source_location (locus);
326
327 var = partition_to_var (SA.map, src);
328 seq = emit_partition_copy (dest,
329 SA.partition_to_pseudo[src],
330 TYPE_UNSIGNED (TREE_TYPE (var)),
331 var);
332
333 insert_insn_on_edge (seq, e);
334 }
335
336
337 /* Create an elimination graph with SIZE nodes and associated data
338 structures. */
339
340 static elim_graph
341 new_elim_graph (int size)
342 {
343 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
344
345 g->nodes = VEC_alloc (int, heap, 30);
346 g->const_dests = VEC_alloc (int, heap, 20);
347 g->const_copies = VEC_alloc (tree, heap, 20);
348 g->copy_locus = VEC_alloc (source_location, heap, 10);
349 g->edge_list = VEC_alloc (int, heap, 20);
350 g->edge_locus = VEC_alloc (source_location, heap, 10);
351 g->stack = VEC_alloc (int, heap, 30);
352
353 g->visited = sbitmap_alloc (size);
354
355 return g;
356 }
357
358
359 /* Empty elimination graph G. */
360
361 static inline void
362 clear_elim_graph (elim_graph g)
363 {
364 VEC_truncate (int, g->nodes, 0);
365 VEC_truncate (int, g->edge_list, 0);
366 VEC_truncate (source_location, g->edge_locus, 0);
367 }
368
369
370 /* Delete elimination graph G. */
371
372 static inline void
373 delete_elim_graph (elim_graph g)
374 {
375 sbitmap_free (g->visited);
376 VEC_free (int, heap, g->stack);
377 VEC_free (int, heap, g->edge_list);
378 VEC_free (tree, heap, g->const_copies);
379 VEC_free (int, heap, g->const_dests);
380 VEC_free (int, heap, g->nodes);
381 VEC_free (source_location, heap, g->copy_locus);
382 VEC_free (source_location, heap, g->edge_locus);
383
384 free (g);
385 }
386
387
388 /* Return the number of nodes in graph G. */
389
390 static inline int
391 elim_graph_size (elim_graph g)
392 {
393 return VEC_length (int, g->nodes);
394 }
395
396
397 /* Add NODE to graph G, if it doesn't exist already. */
398
399 static inline void
400 elim_graph_add_node (elim_graph g, int node)
401 {
402 int x;
403 int t;
404
405 for (x = 0; VEC_iterate (int, g->nodes, x, t); x++)
406 if (t == node)
407 return;
408 VEC_safe_push (int, heap, g->nodes, node);
409 }
410
411
412 /* Add the edge PRED->SUCC to graph G. */
413
414 static inline void
415 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
416 {
417 VEC_safe_push (int, heap, g->edge_list, pred);
418 VEC_safe_push (int, heap, g->edge_list, succ);
419 VEC_safe_push (source_location, heap, g->edge_locus, locus);
420 }
421
422
423 /* Remove an edge from graph G for which NODE is the predecessor, and
424 return the successor node. -1 is returned if there is no such edge. */
425
426 static inline int
427 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
428 {
429 int y;
430 unsigned x;
431 for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
432 if (VEC_index (int, g->edge_list, x) == node)
433 {
434 VEC_replace (int, g->edge_list, x, -1);
435 y = VEC_index (int, g->edge_list, x + 1);
436 VEC_replace (int, g->edge_list, x + 1, -1);
437 *locus = VEC_index (source_location, g->edge_locus, x / 2);
438 VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION);
439 return y;
440 }
441 *locus = UNKNOWN_LOCATION;
442 return -1;
443 }
444
445
446 /* Find all the nodes in GRAPH which are successors to NODE in the
447 edge list. VAR will hold the partition number found. CODE is the
448 code fragment executed for every node found. */
449
450 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
451 do { \
452 unsigned x_; \
453 int y_; \
454 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
455 { \
456 y_ = VEC_index (int, (GRAPH)->edge_list, x_); \
457 if (y_ != (NODE)) \
458 continue; \
459 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \
460 (void) ((LOCUS) = VEC_index (source_location, \
461 (GRAPH)->edge_locus, x_ / 2)); \
462 CODE; \
463 } \
464 } while (0)
465
466
467 /* Find all the nodes which are predecessors of NODE in the edge list for
468 GRAPH. VAR will hold the partition number found. CODE is the
469 code fragment executed for every node found. */
470
471 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
472 do { \
473 unsigned x_; \
474 int y_; \
475 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \
476 { \
477 y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \
478 if (y_ != (NODE)) \
479 continue; \
480 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \
481 (void) ((LOCUS) = VEC_index (source_location, \
482 (GRAPH)->edge_locus, x_ / 2)); \
483 CODE; \
484 } \
485 } while (0)
486
487
488 /* Add T to elimination graph G. */
489
490 static inline void
491 eliminate_name (elim_graph g, int T)
492 {
493 elim_graph_add_node (g, T);
494 }
495
496
497 /* Build elimination graph G for basic block BB on incoming PHI edge
498 G->e. */
499
500 static void
501 eliminate_build (elim_graph g)
502 {
503 tree Ti;
504 int p0, pi;
505 gimple_stmt_iterator gsi;
506
507 clear_elim_graph (g);
508
509 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
510 {
511 gimple phi = gsi_stmt (gsi);
512 source_location locus;
513
514 p0 = var_to_partition (g->map, gimple_phi_result (phi));
515 /* Ignore results which are not in partitions. */
516 if (p0 == NO_PARTITION)
517 continue;
518
519 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
520 locus = gimple_phi_arg_location_from_edge (phi, g->e);
521
522 /* If this argument is a constant, or a SSA_NAME which is being
523 left in SSA form, just queue a copy to be emitted on this
524 edge. */
525 if (!phi_ssa_name_p (Ti)
526 || (TREE_CODE (Ti) == SSA_NAME
527 && var_to_partition (g->map, Ti) == NO_PARTITION))
528 {
529 /* Save constant copies until all other copies have been emitted
530 on this edge. */
531 VEC_safe_push (int, heap, g->const_dests, p0);
532 VEC_safe_push (tree, heap, g->const_copies, Ti);
533 VEC_safe_push (source_location, heap, g->copy_locus, locus);
534 }
535 else
536 {
537 pi = var_to_partition (g->map, Ti);
538 if (p0 != pi)
539 {
540 eliminate_name (g, p0);
541 eliminate_name (g, pi);
542 elim_graph_add_edge (g, p0, pi, locus);
543 }
544 }
545 }
546 }
547
548
549 /* Push successors of T onto the elimination stack for G. */
550
551 static void
552 elim_forward (elim_graph g, int T)
553 {
554 int S;
555 source_location locus;
556
557 SET_BIT (g->visited, T);
558 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
559 {
560 if (!TEST_BIT (g->visited, S))
561 elim_forward (g, S);
562 });
563 VEC_safe_push (int, heap, g->stack, T);
564 }
565
566
567 /* Return 1 if there unvisited predecessors of T in graph G. */
568
569 static int
570 elim_unvisited_predecessor (elim_graph g, int T)
571 {
572 int P;
573 source_location locus;
574
575 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
576 {
577 if (!TEST_BIT (g->visited, P))
578 return 1;
579 });
580 return 0;
581 }
582
583 /* Process predecessors first, and insert a copy. */
584
585 static void
586 elim_backward (elim_graph g, int T)
587 {
588 int P;
589 source_location locus;
590
591 SET_BIT (g->visited, T);
592 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
593 {
594 if (!TEST_BIT (g->visited, P))
595 {
596 elim_backward (g, P);
597 insert_partition_copy_on_edge (g->e, P, T, locus);
598 }
599 });
600 }
601
602 /* Allocate a new pseudo register usable for storing values sitting
603 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
604
605 static rtx
606 get_temp_reg (tree name)
607 {
608 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
609 tree type = TREE_TYPE (var);
610 int unsignedp;
611 enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
612 rtx x = gen_reg_rtx (reg_mode);
613 if (POINTER_TYPE_P (type))
614 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
615 return x;
616 }
617
618 /* Insert required copies for T in graph G. Check for a strongly connected
619 region, and create a temporary to break the cycle if one is found. */
620
621 static void
622 elim_create (elim_graph g, int T)
623 {
624 int P, S;
625 source_location locus;
626
627 if (elim_unvisited_predecessor (g, T))
628 {
629 tree var = partition_to_var (g->map, T);
630 rtx U = get_temp_reg (var);
631 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
632
633 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
634 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
635 {
636 if (!TEST_BIT (g->visited, P))
637 {
638 elim_backward (g, P);
639 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
640 }
641 });
642 }
643 else
644 {
645 S = elim_graph_remove_succ_edge (g, T, &locus);
646 if (S != -1)
647 {
648 SET_BIT (g->visited, T);
649 insert_partition_copy_on_edge (g->e, T, S, locus);
650 }
651 }
652 }
653
654
655 /* Eliminate all the phi nodes on edge E in graph G. */
656
657 static void
658 eliminate_phi (edge e, elim_graph g)
659 {
660 int x;
661
662 gcc_assert (VEC_length (tree, g->const_copies) == 0);
663 gcc_assert (VEC_length (source_location, g->copy_locus) == 0);
664
665 /* Abnormal edges already have everything coalesced. */
666 if (e->flags & EDGE_ABNORMAL)
667 return;
668
669 g->e = e;
670
671 eliminate_build (g);
672
673 if (elim_graph_size (g) != 0)
674 {
675 int part;
676
677 sbitmap_zero (g->visited);
678 VEC_truncate (int, g->stack, 0);
679
680 for (x = 0; VEC_iterate (int, g->nodes, x, part); x++)
681 {
682 if (!TEST_BIT (g->visited, part))
683 elim_forward (g, part);
684 }
685
686 sbitmap_zero (g->visited);
687 while (VEC_length (int, g->stack) > 0)
688 {
689 x = VEC_pop (int, g->stack);
690 if (!TEST_BIT (g->visited, x))
691 elim_create (g, x);
692 }
693 }
694
695 /* If there are any pending constant copies, issue them now. */
696 while (VEC_length (tree, g->const_copies) > 0)
697 {
698 int dest;
699 tree src;
700 source_location locus;
701
702 src = VEC_pop (tree, g->const_copies);
703 dest = VEC_pop (int, g->const_dests);
704 locus = VEC_pop (source_location, g->copy_locus);
705 insert_value_copy_on_edge (e, dest, src, locus);
706 }
707 }
708
709
710 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
711 check to see if this allows another PHI node to be removed. */
712
713 static void
714 remove_gimple_phi_args (gimple phi)
715 {
716 use_operand_p arg_p;
717 ssa_op_iter iter;
718
719 if (dump_file && (dump_flags & TDF_DETAILS))
720 {
721 fprintf (dump_file, "Removing Dead PHI definition: ");
722 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
723 }
724
725 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
726 {
727 tree arg = USE_FROM_PTR (arg_p);
728 if (TREE_CODE (arg) == SSA_NAME)
729 {
730 /* Remove the reference to the existing argument. */
731 SET_USE (arg_p, NULL_TREE);
732 if (has_zero_uses (arg))
733 {
734 gimple stmt;
735 gimple_stmt_iterator gsi;
736
737 stmt = SSA_NAME_DEF_STMT (arg);
738
739 /* Also remove the def if it is a PHI node. */
740 if (gimple_code (stmt) == GIMPLE_PHI)
741 {
742 remove_gimple_phi_args (stmt);
743 gsi = gsi_for_stmt (stmt);
744 remove_phi_node (&gsi, true);
745 }
746
747 }
748 }
749 }
750 }
751
752 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
753
754 static void
755 eliminate_useless_phis (void)
756 {
757 basic_block bb;
758 gimple_stmt_iterator gsi;
759 tree result;
760
761 FOR_EACH_BB (bb)
762 {
763 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
764 {
765 gimple phi = gsi_stmt (gsi);
766 result = gimple_phi_result (phi);
767 if (!is_gimple_reg (SSA_NAME_VAR (result)))
768 {
769 #ifdef ENABLE_CHECKING
770 size_t i;
771 /* There should be no arguments which are not virtual, or the
772 results will be incorrect. */
773 for (i = 0; i < gimple_phi_num_args (phi); i++)
774 {
775 tree arg = PHI_ARG_DEF (phi, i);
776 if (TREE_CODE (arg) == SSA_NAME
777 && is_gimple_reg (SSA_NAME_VAR (arg)))
778 {
779 fprintf (stderr, "Argument of PHI is not virtual (");
780 print_generic_expr (stderr, arg, TDF_SLIM);
781 fprintf (stderr, "), but the result is :");
782 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
783 internal_error ("SSA corruption");
784 }
785 }
786 #endif
787 remove_phi_node (&gsi, true);
788 }
789 else
790 {
791 /* Also remove real PHIs with no uses. */
792 if (has_zero_uses (result))
793 {
794 remove_gimple_phi_args (phi);
795 remove_phi_node (&gsi, true);
796 }
797 else
798 gsi_next (&gsi);
799 }
800 }
801 }
802 }
803
804
805 /* This function will rewrite the current program using the variable mapping
806 found in MAP. If the replacement vector VALUES is provided, any
807 occurrences of partitions with non-null entries in the vector will be
808 replaced with the expression in the vector instead of its mapped
809 variable. */
810
811 static void
812 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
813 {
814 #ifdef ENABLE_CHECKING
815 basic_block bb;
816 /* Search for PHIs where the destination has no partition, but one
817 or more arguments has a partition. This should not happen and can
818 create incorrect code. */
819 FOR_EACH_BB (bb)
820 {
821 gimple_stmt_iterator gsi;
822 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
823 {
824 gimple phi = gsi_stmt (gsi);
825 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
826 if (T0 == NULL_TREE)
827 {
828 size_t i;
829 for (i = 0; i < gimple_phi_num_args (phi); i++)
830 {
831 tree arg = PHI_ARG_DEF (phi, i);
832
833 if (TREE_CODE (arg) == SSA_NAME
834 && var_to_partition (map, arg) != NO_PARTITION)
835 {
836 fprintf (stderr, "Argument of PHI is in a partition :(");
837 print_generic_expr (stderr, arg, TDF_SLIM);
838 fprintf (stderr, "), but the result is not :");
839 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
840 internal_error ("SSA corruption");
841 }
842 }
843 }
844 }
845 }
846 #endif
847 }
848
849 /* Given the out-of-ssa info object SA (with prepared partitions)
850 eliminate all phi nodes in all basic blocks. Afterwards no
851 basic block will have phi nodes anymore and there are possibly
852 some RTL instructions inserted on edges. */
853
854 void
855 expand_phi_nodes (struct ssaexpand *sa)
856 {
857 basic_block bb;
858 elim_graph g = new_elim_graph (sa->map->num_partitions);
859 g->map = sa->map;
860
861 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
862 if (!gimple_seq_empty_p (phi_nodes (bb)))
863 {
864 edge e;
865 edge_iterator ei;
866 FOR_EACH_EDGE (e, ei, bb->preds)
867 eliminate_phi (e, g);
868 set_phi_nodes (bb, NULL);
869 /* We can't redirect EH edges in RTL land, so we need to do this
870 here. Redirection happens only when splitting is necessary,
871 which it is only for critical edges, normally. For EH edges
872 it might also be necessary when the successor has more than
873 one predecessor. In that case the edge is either required to
874 be fallthru (which EH edges aren't), or the predecessor needs
875 to end with a jump (which again, isn't the case with EH edges).
876 Hence, split all EH edges on which we inserted instructions
877 and whose successor has multiple predecessors. */
878 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
879 {
880 if (e->insns.r && (e->flags & EDGE_EH)
881 && !single_pred_p (e->dest))
882 {
883 rtx insns = e->insns.r;
884 basic_block bb;
885 e->insns.r = NULL_RTX;
886 bb = split_edge (e);
887 single_pred_edge (bb)->insns.r = insns;
888 }
889 else
890 ei_next (&ei);
891 }
892 }
893
894 delete_elim_graph (g);
895 }
896
897
898 /* Remove the ssa-names in the current function and translate them into normal
899 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
900 should also be used. */
901
902 static void
903 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
904 {
905 bitmap values = NULL;
906 var_map map;
907 unsigned i;
908
909 map = coalesce_ssa_name ();
910
911 /* Return to viewing the variable list as just all reference variables after
912 coalescing has been performed. */
913 partition_view_normal (map, false);
914
915 if (dump_file && (dump_flags & TDF_DETAILS))
916 {
917 fprintf (dump_file, "After Coalescing:\n");
918 dump_var_map (dump_file, map);
919 }
920
921 if (perform_ter)
922 {
923 values = find_replaceable_exprs (map);
924 if (values && dump_file && (dump_flags & TDF_DETAILS))
925 dump_replaceable_exprs (dump_file, values);
926 }
927
928 rewrite_trees (map);
929
930 sa->map = map;
931 sa->values = values;
932 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
933 for (i = 1; i < num_ssa_names; i++)
934 {
935 tree t = ssa_name (i);
936 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
937 {
938 int p = var_to_partition (map, t);
939 if (p != NO_PARTITION)
940 bitmap_set_bit (sa->partition_has_default_def, p);
941 }
942 }
943 }
944
945
946 /* If not already done so for basic block BB, assign increasing uids
947 to each of its instructions. */
948
949 static void
950 maybe_renumber_stmts_bb (basic_block bb)
951 {
952 unsigned i = 0;
953 gimple_stmt_iterator gsi;
954
955 if (!bb->aux)
956 return;
957 bb->aux = NULL;
958 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
959 {
960 gimple stmt = gsi_stmt (gsi);
961 gimple_set_uid (stmt, i);
962 i++;
963 }
964 }
965
966
967 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
968 of a PHI node) and ARG (one of its arguments) conflict. Return false
969 otherwise, also when we simply aren't sure. */
970
971 static bool
972 trivially_conflicts_p (basic_block bb, tree result, tree arg)
973 {
974 use_operand_p use;
975 imm_use_iterator imm_iter;
976 gimple defa = SSA_NAME_DEF_STMT (arg);
977
978 /* If ARG isn't defined in the same block it's too complicated for
979 our little mind. */
980 if (gimple_bb (defa) != bb)
981 return false;
982
983 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
984 {
985 gimple use_stmt = USE_STMT (use);
986 if (is_gimple_debug (use_stmt))
987 continue;
988 /* Now, if there's a use of RESULT that lies outside this basic block,
989 then there surely is a conflict with ARG. */
990 if (gimple_bb (use_stmt) != bb)
991 return true;
992 if (gimple_code (use_stmt) == GIMPLE_PHI)
993 continue;
994 /* The use now is in a real stmt of BB, so if ARG was defined
995 in a PHI node (like RESULT) both conflict. */
996 if (gimple_code (defa) == GIMPLE_PHI)
997 return true;
998 maybe_renumber_stmts_bb (bb);
999 /* If the use of RESULT occurs after the definition of ARG,
1000 the two conflict too. */
1001 if (gimple_uid (defa) < gimple_uid (use_stmt))
1002 return true;
1003 }
1004
1005 return false;
1006 }
1007
1008
1009 /* Search every PHI node for arguments associated with backedges which
1010 we can trivially determine will need a copy (the argument is either
1011 not an SSA_NAME or the argument has a different underlying variable
1012 than the PHI result).
1013
1014 Insert a copy from the PHI argument to a new destination at the
1015 end of the block with the backedge to the top of the loop. Update
1016 the PHI argument to reference this new destination. */
1017
1018 static void
1019 insert_backedge_copies (void)
1020 {
1021 basic_block bb;
1022 gimple_stmt_iterator gsi;
1023
1024 FOR_EACH_BB (bb)
1025 {
1026 /* Mark block as possibly needing calculation of UIDs. */
1027 bb->aux = &bb->aux;
1028
1029 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1030 {
1031 gimple phi = gsi_stmt (gsi);
1032 tree result = gimple_phi_result (phi);
1033 tree result_var;
1034 size_t i;
1035
1036 if (!is_gimple_reg (result))
1037 continue;
1038
1039 result_var = SSA_NAME_VAR (result);
1040 for (i = 0; i < gimple_phi_num_args (phi); i++)
1041 {
1042 tree arg = gimple_phi_arg_def (phi, i);
1043 edge e = gimple_phi_arg_edge (phi, i);
1044
1045 /* If the argument is not an SSA_NAME, then we will need a
1046 constant initialization. If the argument is an SSA_NAME with
1047 a different underlying variable then a copy statement will be
1048 needed. */
1049 if ((e->flags & EDGE_DFS_BACK)
1050 && (TREE_CODE (arg) != SSA_NAME
1051 || SSA_NAME_VAR (arg) != result_var
1052 || trivially_conflicts_p (bb, result, arg)))
1053 {
1054 tree name;
1055 gimple stmt, last = NULL;
1056 gimple_stmt_iterator gsi2;
1057
1058 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1059 if (!gsi_end_p (gsi2))
1060 last = gsi_stmt (gsi2);
1061
1062 /* In theory the only way we ought to get back to the
1063 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1064 However, better safe than sorry.
1065 If the block ends with a control statement or
1066 something that might throw, then we have to
1067 insert this assignment before the last
1068 statement. Else insert it after the last statement. */
1069 if (last && stmt_ends_bb_p (last))
1070 {
1071 /* If the last statement in the block is the definition
1072 site of the PHI argument, then we can't insert
1073 anything after it. */
1074 if (TREE_CODE (arg) == SSA_NAME
1075 && SSA_NAME_DEF_STMT (arg) == last)
1076 continue;
1077 }
1078
1079 /* Create a new instance of the underlying variable of the
1080 PHI result. */
1081 stmt = gimple_build_assign (result_var,
1082 gimple_phi_arg_def (phi, i));
1083 name = make_ssa_name (result_var, stmt);
1084 gimple_assign_set_lhs (stmt, name);
1085
1086 /* copy location if present. */
1087 if (gimple_phi_arg_has_location (phi, i))
1088 gimple_set_location (stmt,
1089 gimple_phi_arg_location (phi, i));
1090
1091 /* Insert the new statement into the block and update
1092 the PHI node. */
1093 if (last && stmt_ends_bb_p (last))
1094 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1095 else
1096 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1097 SET_PHI_ARG_DEF (phi, i, name);
1098 }
1099 }
1100 }
1101
1102 /* Unmark this block again. */
1103 bb->aux = NULL;
1104 }
1105 }
1106
1107 /* Free all memory associated with going out of SSA form. SA is
1108 the outof-SSA info object. */
1109
1110 void
1111 finish_out_of_ssa (struct ssaexpand *sa)
1112 {
1113 free (sa->partition_to_pseudo);
1114 if (sa->values)
1115 BITMAP_FREE (sa->values);
1116 delete_var_map (sa->map);
1117 BITMAP_FREE (sa->partition_has_default_def);
1118 memset (sa, 0, sizeof *sa);
1119 }
1120
1121 /* Take the current function out of SSA form, translating PHIs as described in
1122 R. Morgan, ``Building an Optimizing Compiler'',
1123 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1124
1125 unsigned int
1126 rewrite_out_of_ssa (struct ssaexpand *sa)
1127 {
1128 /* If elimination of a PHI requires inserting a copy on a backedge,
1129 then we will have to split the backedge which has numerous
1130 undesirable performance effects.
1131
1132 A significant number of such cases can be handled here by inserting
1133 copies into the loop itself. */
1134 insert_backedge_copies ();
1135
1136
1137 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1138 eliminate_useless_phis ();
1139
1140 if (dump_file && (dump_flags & TDF_DETAILS))
1141 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1142
1143 remove_ssa_form (flag_tree_ter, sa);
1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1146 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1147
1148 return 0;
1149 }