]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-parloops.c
Remove gcc/params.* files.
[thirdparty/gcc.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-general.h"
53 #include "omp-low.h"
54 #include "tree-ssa.h"
55 #include "tree-ssa-alias.h"
56 #include "tree-eh.h"
57 #include "gomp-constants.h"
58 #include "tree-dfa.h"
59 #include "stringpool.h"
60 #include "attribs.h"
61
62 /* This pass tries to distribute iterations of loops into several threads.
63 The implementation is straightforward -- for each loop we test whether its
64 iterations are independent, and if it is the case (and some additional
65 conditions regarding profitability and correctness are satisfied), we
66 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
67 machinery do its job.
68
69 The most of the complexity is in bringing the code into shape expected
70 by the omp expanders:
71 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
72 variable and that the exit test is at the start of the loop body
73 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
74 variables by accesses through pointers, and breaking up ssa chains
75 by storing the values incoming to the parallelized loop to a structure
76 passed to the new function as an argument (something similar is done
77 in omp gimplification, unfortunately only a small part of the code
78 can be shared).
79
80 TODO:
81 -- if there are several parallelizable loops in a function, it may be
82 possible to generate the threads just once (using synchronization to
83 ensure that cross-loop dependences are obeyed).
84 -- handling of common reduction patterns for outer loops.
85
86 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
87 /*
88 Reduction handling:
89 currently we use code inspired by vect_force_simple_reduction to detect
90 reduction patterns.
91 The code transformation will be introduced by an example.
92
93
94 parloop
95 {
96 int sum=1;
97
98 for (i = 0; i < N; i++)
99 {
100 x[i] = i + 3;
101 sum+=x[i];
102 }
103 }
104
105 gimple-like code:
106 header_bb:
107
108 # sum_29 = PHI <sum_11(5), 1(3)>
109 # i_28 = PHI <i_12(5), 0(3)>
110 D.1795_8 = i_28 + 3;
111 x[i_28] = D.1795_8;
112 sum_11 = D.1795_8 + sum_29;
113 i_12 = i_28 + 1;
114 if (N_6(D) > i_12)
115 goto header_bb;
116
117
118 exit_bb:
119
120 # sum_21 = PHI <sum_11(4)>
121 printf (&"%d"[0], sum_21);
122
123
124 after reduction transformation (only relevant parts):
125
126 parloop
127 {
128
129 ....
130
131
132 # Storing the initial value given by the user. #
133
134 .paral_data_store.32.sum.27 = 1;
135
136 #pragma omp parallel num_threads(4)
137
138 #pragma omp for schedule(static)
139
140 # The neutral element corresponding to the particular
141 reduction's operation, e.g. 0 for PLUS_EXPR,
142 1 for MULT_EXPR, etc. replaces the user's initial value. #
143
144 # sum.27_29 = PHI <sum.27_11, 0>
145
146 sum.27_11 = D.1827_8 + sum.27_29;
147
148 GIMPLE_OMP_CONTINUE
149
150 # Adding this reduction phi is done at create_phi_for_local_result() #
151 # sum.27_56 = PHI <sum.27_11, 0>
152 GIMPLE_OMP_RETURN
153
154 # Creating the atomic operation is done at
155 create_call_for_reduction_1() #
156
157 #pragma omp atomic_load
158 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
159 D.1840_60 = sum.27_56 + D.1839_59;
160 #pragma omp atomic_store (D.1840_60);
161
162 GIMPLE_OMP_RETURN
163
164 # collecting the result after the join of the threads is done at
165 create_loads_for_reductions().
166 The value computed by the threads is loaded from the
167 shared struct. #
168
169
170 .paral_data_load.33_52 = &.paral_data_store.32;
171 sum_37 = .paral_data_load.33_52->sum.27;
172 sum_43 = D.1795_41 + sum_37;
173
174 exit bb:
175 # sum_21 = PHI <sum_43, sum_26>
176 printf (&"%d"[0], sum_21);
177
178 ...
179
180 }
181
182 */
183
184 /* Error reporting helper for parloops_is_simple_reduction below. GIMPLE
185 statement STMT is printed with a message MSG. */
186
187 static void
188 report_ploop_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
189 {
190 dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
191 }
192
193 /* DEF_STMT_INFO occurs in a loop that contains a potential reduction
194 operation. Return true if the results of DEF_STMT_INFO are something
195 that can be accumulated by such a reduction. */
196
197 static bool
198 parloops_valid_reduction_input_p (stmt_vec_info def_stmt_info)
199 {
200 return (is_gimple_assign (def_stmt_info->stmt)
201 || is_gimple_call (def_stmt_info->stmt)
202 || STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_induction_def
203 || (gimple_code (def_stmt_info->stmt) == GIMPLE_PHI
204 && STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def
205 && !is_loop_header_bb_p (gimple_bb (def_stmt_info->stmt))));
206 }
207
208 /* Detect SLP reduction of the form:
209
210 #a1 = phi <a5, a0>
211 a2 = operation (a1)
212 a3 = operation (a2)
213 a4 = operation (a3)
214 a5 = operation (a4)
215
216 #a = phi <a5>
217
218 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
219 FIRST_STMT is the first reduction stmt in the chain
220 (a2 = operation (a1)).
221
222 Return TRUE if a reduction chain was detected. */
223
224 static bool
225 parloops_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
226 gimple *first_stmt)
227 {
228 class loop *loop = (gimple_bb (phi))->loop_father;
229 class loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
230 enum tree_code code;
231 gimple *loop_use_stmt = NULL;
232 stmt_vec_info use_stmt_info;
233 tree lhs;
234 imm_use_iterator imm_iter;
235 use_operand_p use_p;
236 int nloop_uses, size = 0, n_out_of_loop_uses;
237 bool found = false;
238
239 if (loop != vect_loop)
240 return false;
241
242 auto_vec<stmt_vec_info, 8> reduc_chain;
243 lhs = PHI_RESULT (phi);
244 code = gimple_assign_rhs_code (first_stmt);
245 while (1)
246 {
247 nloop_uses = 0;
248 n_out_of_loop_uses = 0;
249 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
250 {
251 gimple *use_stmt = USE_STMT (use_p);
252 if (is_gimple_debug (use_stmt))
253 continue;
254
255 /* Check if we got back to the reduction phi. */
256 if (use_stmt == phi)
257 {
258 loop_use_stmt = use_stmt;
259 found = true;
260 break;
261 }
262
263 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
264 {
265 loop_use_stmt = use_stmt;
266 nloop_uses++;
267 }
268 else
269 n_out_of_loop_uses++;
270
271 /* There are can be either a single use in the loop or two uses in
272 phi nodes. */
273 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
274 return false;
275 }
276
277 if (found)
278 break;
279
280 /* We reached a statement with no loop uses. */
281 if (nloop_uses == 0)
282 return false;
283
284 /* This is a loop exit phi, and we haven't reached the reduction phi. */
285 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
286 return false;
287
288 if (!is_gimple_assign (loop_use_stmt)
289 || code != gimple_assign_rhs_code (loop_use_stmt)
290 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
291 return false;
292
293 /* Insert USE_STMT into reduction chain. */
294 use_stmt_info = loop_info->lookup_stmt (loop_use_stmt);
295 reduc_chain.safe_push (use_stmt_info);
296
297 lhs = gimple_assign_lhs (loop_use_stmt);
298 size++;
299 }
300
301 if (!found || loop_use_stmt != phi || size < 2)
302 return false;
303
304 /* Swap the operands, if needed, to make the reduction operand be the second
305 operand. */
306 lhs = PHI_RESULT (phi);
307 for (unsigned i = 0; i < reduc_chain.length (); ++i)
308 {
309 gassign *next_stmt = as_a <gassign *> (reduc_chain[i]->stmt);
310 if (gimple_assign_rhs2 (next_stmt) == lhs)
311 {
312 tree op = gimple_assign_rhs1 (next_stmt);
313 stmt_vec_info def_stmt_info = loop_info->lookup_def (op);
314
315 /* Check that the other def is either defined in the loop
316 ("vect_internal_def"), or it's an induction (defined by a
317 loop-header phi-node). */
318 if (def_stmt_info
319 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
320 && parloops_valid_reduction_input_p (def_stmt_info))
321 {
322 lhs = gimple_assign_lhs (next_stmt);
323 continue;
324 }
325
326 return false;
327 }
328 else
329 {
330 tree op = gimple_assign_rhs2 (next_stmt);
331 stmt_vec_info def_stmt_info = loop_info->lookup_def (op);
332
333 /* Check that the other def is either defined in the loop
334 ("vect_internal_def"), or it's an induction (defined by a
335 loop-header phi-node). */
336 if (def_stmt_info
337 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
338 && parloops_valid_reduction_input_p (def_stmt_info))
339 {
340 if (dump_enabled_p ())
341 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: %G",
342 next_stmt);
343
344 swap_ssa_operands (next_stmt,
345 gimple_assign_rhs1_ptr (next_stmt),
346 gimple_assign_rhs2_ptr (next_stmt));
347 update_stmt (next_stmt);
348 }
349 else
350 return false;
351 }
352
353 lhs = gimple_assign_lhs (next_stmt);
354 }
355
356 /* Build up the actual chain. */
357 for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
358 {
359 REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
360 REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
361 }
362 REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
363 REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;
364
365 /* Save the chain for further analysis in SLP detection. */
366 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
367 REDUC_GROUP_SIZE (reduc_chain[0]) = size;
368
369 return true;
370 }
371
372 /* Return true if we need an in-order reduction for operation CODE
373 on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
374 overflow must wrap. */
375
376 static bool
377 parloops_needs_fold_left_reduction_p (tree type, tree_code code,
378 bool need_wrapping_integral_overflow)
379 {
380 /* CHECKME: check for !flag_finite_math_only too? */
381 if (SCALAR_FLOAT_TYPE_P (type))
382 switch (code)
383 {
384 case MIN_EXPR:
385 case MAX_EXPR:
386 return false;
387
388 default:
389 return !flag_associative_math;
390 }
391
392 if (INTEGRAL_TYPE_P (type))
393 {
394 if (!operation_no_trapping_overflow (type, code))
395 return true;
396 if (need_wrapping_integral_overflow
397 && !TYPE_OVERFLOW_WRAPS (type)
398 && operation_can_overflow (code))
399 return true;
400 return false;
401 }
402
403 if (SAT_FIXED_POINT_TYPE_P (type))
404 return true;
405
406 return false;
407 }
408
409
410 /* Function parloops_is_simple_reduction
411
412 (1) Detect a cross-iteration def-use cycle that represents a simple
413 reduction computation. We look for the following pattern:
414
415 loop_header:
416 a1 = phi < a0, a2 >
417 a3 = ...
418 a2 = operation (a3, a1)
419
420 or
421
422 a3 = ...
423 loop_header:
424 a1 = phi < a0, a2 >
425 a2 = operation (a3, a1)
426
427 such that:
428 1. operation is commutative and associative and it is safe to
429 change the order of the computation
430 2. no uses for a2 in the loop (a2 is used out of the loop)
431 3. no uses of a1 in the loop besides the reduction operation
432 4. no uses of a1 outside the loop.
433
434 Conditions 1,4 are tested here.
435 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
436
437 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
438 nested cycles.
439
440 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
441 reductions:
442
443 a1 = phi < a0, a2 >
444 inner loop (def of a3)
445 a2 = phi < a3 >
446
447 (4) Detect condition expressions, ie:
448 for (int i = 0; i < N; i++)
449 if (a[i] < val)
450 ret_val = a[i];
451
452 */
453
454 static stmt_vec_info
455 parloops_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
456 bool *double_reduc,
457 bool need_wrapping_integral_overflow,
458 enum vect_reduction_type *v_reduc_type)
459 {
460 gphi *phi = as_a <gphi *> (phi_info->stmt);
461 class loop *loop = (gimple_bb (phi))->loop_father;
462 class loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
463 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
464 gimple *phi_use_stmt = NULL;
465 enum tree_code orig_code, code;
466 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
467 tree type;
468 tree name;
469 imm_use_iterator imm_iter;
470 use_operand_p use_p;
471 bool phi_def;
472
473 *double_reduc = false;
474 *v_reduc_type = TREE_CODE_REDUCTION;
475
476 tree phi_name = PHI_RESULT (phi);
477 /* ??? If there are no uses of the PHI result the inner loop reduction
478 won't be detected as possibly double-reduction by vectorizable_reduction
479 because that tries to walk the PHI arg from the preheader edge which
480 can be constant. See PR60382. */
481 if (has_zero_uses (phi_name))
482 return NULL;
483 unsigned nphi_def_loop_uses = 0;
484 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
485 {
486 gimple *use_stmt = USE_STMT (use_p);
487 if (is_gimple_debug (use_stmt))
488 continue;
489
490 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
491 {
492 if (dump_enabled_p ())
493 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
494 "intermediate value used outside loop.\n");
495
496 return NULL;
497 }
498
499 nphi_def_loop_uses++;
500 phi_use_stmt = use_stmt;
501 }
502
503 edge latch_e = loop_latch_edge (loop);
504 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
505 if (TREE_CODE (loop_arg) != SSA_NAME)
506 {
507 if (dump_enabled_p ())
508 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
509 "reduction: not ssa_name: %T\n", loop_arg);
510 return NULL;
511 }
512
513 stmt_vec_info def_stmt_info = loop_info->lookup_def (loop_arg);
514 if (!def_stmt_info
515 || !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
516 return NULL;
517
518 if (gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt))
519 {
520 name = gimple_assign_lhs (def_stmt);
521 phi_def = false;
522 }
523 else if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
524 {
525 name = PHI_RESULT (def_stmt);
526 phi_def = true;
527 }
528 else
529 {
530 if (dump_enabled_p ())
531 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
532 "reduction: unhandled reduction operation: %G",
533 def_stmt_info->stmt);
534 return NULL;
535 }
536
537 unsigned nlatch_def_loop_uses = 0;
538 auto_vec<gphi *, 3> lcphis;
539 bool inner_loop_of_double_reduc = false;
540 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
541 {
542 gimple *use_stmt = USE_STMT (use_p);
543 if (is_gimple_debug (use_stmt))
544 continue;
545 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
546 nlatch_def_loop_uses++;
547 else
548 {
549 /* We can have more than one loop-closed PHI. */
550 lcphis.safe_push (as_a <gphi *> (use_stmt));
551 if (nested_in_vect_loop
552 && (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
553 == vect_double_reduction_def))
554 inner_loop_of_double_reduc = true;
555 }
556 }
557
558 /* If this isn't a nested cycle or if the nested cycle reduction value
559 is used ouside of the inner loop we cannot handle uses of the reduction
560 value. */
561 if ((!nested_in_vect_loop || inner_loop_of_double_reduc)
562 && (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1))
563 {
564 if (dump_enabled_p ())
565 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
566 "reduction used in loop.\n");
567 return NULL;
568 }
569
570 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
571 defined in the inner loop. */
572 if (phi_def)
573 {
574 gphi *def_stmt = as_a <gphi *> (def_stmt_info->stmt);
575 op1 = PHI_ARG_DEF (def_stmt, 0);
576
577 if (gimple_phi_num_args (def_stmt) != 1
578 || TREE_CODE (op1) != SSA_NAME)
579 {
580 if (dump_enabled_p ())
581 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
582 "unsupported phi node definition.\n");
583
584 return NULL;
585 }
586
587 gimple *def1 = SSA_NAME_DEF_STMT (op1);
588 if (gimple_bb (def1)
589 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
590 && loop->inner
591 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
592 && is_gimple_assign (def1)
593 && is_a <gphi *> (phi_use_stmt)
594 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
595 {
596 if (dump_enabled_p ())
597 report_ploop_op (MSG_NOTE, def_stmt,
598 "detected double reduction: ");
599
600 *double_reduc = true;
601 return def_stmt_info;
602 }
603
604 return NULL;
605 }
606
607 /* If we are vectorizing an inner reduction we are executing that
608 in the original order only in case we are not dealing with a
609 double reduction. */
610 bool check_reduction = true;
611 if (flow_loop_nested_p (vect_loop, loop))
612 {
613 gphi *lcphi;
614 unsigned i;
615 check_reduction = false;
616 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
617 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
618 {
619 gimple *use_stmt = USE_STMT (use_p);
620 if (is_gimple_debug (use_stmt))
621 continue;
622 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
623 check_reduction = true;
624 }
625 }
626
627 gassign *def_stmt = as_a <gassign *> (def_stmt_info->stmt);
628 code = orig_code = gimple_assign_rhs_code (def_stmt);
629
630 if (nested_in_vect_loop && !check_reduction)
631 {
632 /* FIXME: Even for non-reductions code generation is funneled
633 through vectorizable_reduction for the stmt defining the
634 PHI latch value. So we have to artificially restrict ourselves
635 for the supported operations. */
636 switch (get_gimple_rhs_class (code))
637 {
638 case GIMPLE_BINARY_RHS:
639 case GIMPLE_TERNARY_RHS:
640 break;
641 default:
642 /* Not supported by vectorizable_reduction. */
643 if (dump_enabled_p ())
644 report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
645 "nested cycle: not handled operation: ");
646 return NULL;
647 }
648 if (dump_enabled_p ())
649 report_ploop_op (MSG_NOTE, def_stmt, "detected nested cycle: ");
650 return def_stmt_info;
651 }
652
653 /* We can handle "res -= x[i]", which is non-associative by
654 simply rewriting this into "res += -x[i]". Avoid changing
655 gimple instruction for the first simple tests and only do this
656 if we're allowed to change code at all. */
657 if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
658 code = PLUS_EXPR;
659
660 if (code == COND_EXPR)
661 {
662 if (! nested_in_vect_loop)
663 *v_reduc_type = COND_REDUCTION;
664
665 op3 = gimple_assign_rhs1 (def_stmt);
666 if (COMPARISON_CLASS_P (op3))
667 {
668 op4 = TREE_OPERAND (op3, 1);
669 op3 = TREE_OPERAND (op3, 0);
670 }
671 if (op3 == phi_name || op4 == phi_name)
672 {
673 if (dump_enabled_p ())
674 report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
675 "reduction: condition depends on previous"
676 " iteration: ");
677 return NULL;
678 }
679
680 op1 = gimple_assign_rhs2 (def_stmt);
681 op2 = gimple_assign_rhs3 (def_stmt);
682 }
683 else if (!commutative_tree_code (code) || !associative_tree_code (code))
684 {
685 if (dump_enabled_p ())
686 report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
687 "reduction: not commutative/associative: ");
688 return NULL;
689 }
690 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
691 {
692 op1 = gimple_assign_rhs1 (def_stmt);
693 op2 = gimple_assign_rhs2 (def_stmt);
694 }
695 else
696 {
697 if (dump_enabled_p ())
698 report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
699 "reduction: not handled operation: ");
700 return NULL;
701 }
702
703 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
704 {
705 if (dump_enabled_p ())
706 report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
707 "reduction: both uses not ssa_names: ");
708
709 return NULL;
710 }
711
712 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
713 if ((TREE_CODE (op1) == SSA_NAME
714 && !types_compatible_p (type,TREE_TYPE (op1)))
715 || (TREE_CODE (op2) == SSA_NAME
716 && !types_compatible_p (type, TREE_TYPE (op2)))
717 || (op3 && TREE_CODE (op3) == SSA_NAME
718 && !types_compatible_p (type, TREE_TYPE (op3)))
719 || (op4 && TREE_CODE (op4) == SSA_NAME
720 && !types_compatible_p (type, TREE_TYPE (op4))))
721 {
722 if (dump_enabled_p ())
723 {
724 dump_printf_loc (MSG_NOTE, vect_location,
725 "reduction: multiple types: operation type: "
726 "%T, operands types: %T,%T",
727 type, TREE_TYPE (op1), TREE_TYPE (op2));
728 if (op3)
729 dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op3));
730
731 if (op4)
732 dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op4));
733 dump_printf (MSG_NOTE, "\n");
734 }
735
736 return NULL;
737 }
738
739 /* Check whether it's ok to change the order of the computation.
740 Generally, when vectorizing a reduction we change the order of the
741 computation. This may change the behavior of the program in some
742 cases, so we need to check that this is ok. One exception is when
743 vectorizing an outer-loop: the inner-loop is executed sequentially,
744 and therefore vectorizing reductions in the inner-loop during
745 outer-loop vectorization is safe. */
746 if (check_reduction
747 && *v_reduc_type == TREE_CODE_REDUCTION
748 && parloops_needs_fold_left_reduction_p (type, code,
749 need_wrapping_integral_overflow))
750 *v_reduc_type = FOLD_LEFT_REDUCTION;
751
752 /* Reduction is safe. We're dealing with one of the following:
753 1) integer arithmetic and no trapv
754 2) floating point arithmetic, and special flags permit this optimization
755 3) nested cycle (i.e., outer loop vectorization). */
756 stmt_vec_info def1_info = loop_info->lookup_def (op1);
757 stmt_vec_info def2_info = loop_info->lookup_def (op2);
758 if (code != COND_EXPR && !def1_info && !def2_info)
759 {
760 if (dump_enabled_p ())
761 report_ploop_op (MSG_NOTE, def_stmt,
762 "reduction: no defs for operands: ");
763 return NULL;
764 }
765
766 /* Check that one def is the reduction def, defined by PHI,
767 the other def is either defined in the loop ("vect_internal_def"),
768 or it's an induction (defined by a loop-header phi-node). */
769
770 if (def2_info
771 && def2_info->stmt == phi
772 && (code == COND_EXPR
773 || !def1_info
774 || !flow_bb_inside_loop_p (loop, gimple_bb (def1_info->stmt))
775 || parloops_valid_reduction_input_p (def1_info)))
776 {
777 if (dump_enabled_p ())
778 report_ploop_op (MSG_NOTE, def_stmt, "detected reduction: ");
779 return def_stmt_info;
780 }
781
782 if (def1_info
783 && def1_info->stmt == phi
784 && (code == COND_EXPR
785 || !def2_info
786 || !flow_bb_inside_loop_p (loop, gimple_bb (def2_info->stmt))
787 || parloops_valid_reduction_input_p (def2_info)))
788 {
789 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
790 {
791 /* Check if we can swap operands (just for simplicity - so that
792 the rest of the code can assume that the reduction variable
793 is always the last (second) argument). */
794 if (code == COND_EXPR)
795 {
796 /* Swap cond_expr by inverting the condition. */
797 tree cond_expr = gimple_assign_rhs1 (def_stmt);
798 enum tree_code invert_code = ERROR_MARK;
799 enum tree_code cond_code = TREE_CODE (cond_expr);
800
801 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
802 {
803 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
804 invert_code = invert_tree_comparison (cond_code, honor_nans);
805 }
806 if (invert_code != ERROR_MARK)
807 {
808 TREE_SET_CODE (cond_expr, invert_code);
809 swap_ssa_operands (def_stmt,
810 gimple_assign_rhs2_ptr (def_stmt),
811 gimple_assign_rhs3_ptr (def_stmt));
812 }
813 else
814 {
815 if (dump_enabled_p ())
816 report_ploop_op (MSG_NOTE, def_stmt,
817 "detected reduction: cannot swap operands "
818 "for cond_expr");
819 return NULL;
820 }
821 }
822 else
823 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
824 gimple_assign_rhs2_ptr (def_stmt));
825
826 if (dump_enabled_p ())
827 report_ploop_op (MSG_NOTE, def_stmt,
828 "detected reduction: need to swap operands: ");
829 }
830 else
831 {
832 if (dump_enabled_p ())
833 report_ploop_op (MSG_NOTE, def_stmt, "detected reduction: ");
834 }
835
836 return def_stmt_info;
837 }
838
839 /* Try to find SLP reduction chain. */
840 if (! nested_in_vect_loop
841 && code != COND_EXPR
842 && orig_code != MINUS_EXPR
843 && parloops_is_slp_reduction (loop_info, phi, def_stmt))
844 {
845 if (dump_enabled_p ())
846 report_ploop_op (MSG_NOTE, def_stmt,
847 "reduction: detected reduction chain: ");
848
849 return def_stmt_info;
850 }
851
852 /* Look for the expression computing loop_arg from loop PHI result. */
853 if (check_reduction_path (vect_location, loop, phi, loop_arg, code))
854 return def_stmt_info;
855
856 if (dump_enabled_p ())
857 {
858 report_ploop_op (MSG_MISSED_OPTIMIZATION, def_stmt,
859 "reduction: unknown pattern: ");
860 }
861
862 return NULL;
863 }
864
865 /* Wrapper around vect_is_simple_reduction, which will modify code
866 in-place if it enables detection of more reductions. Arguments
867 as there. */
868
869 stmt_vec_info
870 parloops_force_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
871 bool *double_reduc,
872 bool need_wrapping_integral_overflow)
873 {
874 enum vect_reduction_type v_reduc_type;
875 stmt_vec_info def_info
876 = parloops_is_simple_reduction (loop_info, phi_info, double_reduc,
877 need_wrapping_integral_overflow,
878 &v_reduc_type);
879 if (def_info)
880 {
881 STMT_VINFO_REDUC_TYPE (phi_info) = v_reduc_type;
882 STMT_VINFO_REDUC_DEF (phi_info) = def_info;
883 STMT_VINFO_REDUC_TYPE (def_info) = v_reduc_type;
884 STMT_VINFO_REDUC_DEF (def_info) = phi_info;
885 }
886 return def_info;
887 }
888
889 /* Minimal number of iterations of a loop that should be executed in each
890 thread. */
891 #define MIN_PER_THREAD param_parloops_min_per_thread
892
893 /* Element of the hashtable, representing a
894 reduction in the current loop. */
895 struct reduction_info
896 {
897 gimple *reduc_stmt; /* reduction statement. */
898 gimple *reduc_phi; /* The phi node defining the reduction. */
899 enum tree_code reduction_code;/* code for the reduction operation. */
900 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
901 result. */
902 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
903 of the reduction variable when existing the loop. */
904 tree initial_value; /* The initial value of the reduction var before entering the loop. */
905 tree field; /* the name of the field in the parloop data structure intended for reduction. */
906 tree reduc_addr; /* The address of the reduction variable for
907 openacc reductions. */
908 tree init; /* reduction initialization value. */
909 gphi *new_phi; /* (helper field) Newly created phi node whose result
910 will be passed to the atomic operation. Represents
911 the local result each thread computed for the reduction
912 operation. */
913 };
914
915 /* Reduction info hashtable helpers. */
916
917 struct reduction_hasher : free_ptr_hash <reduction_info>
918 {
919 static inline hashval_t hash (const reduction_info *);
920 static inline bool equal (const reduction_info *, const reduction_info *);
921 };
922
923 /* Equality and hash functions for hashtab code. */
924
925 inline bool
926 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
927 {
928 return (a->reduc_phi == b->reduc_phi);
929 }
930
931 inline hashval_t
932 reduction_hasher::hash (const reduction_info *a)
933 {
934 return a->reduc_version;
935 }
936
937 typedef hash_table<reduction_hasher> reduction_info_table_type;
938
939
940 static struct reduction_info *
941 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
942 {
943 struct reduction_info tmpred, *red;
944
945 if (reduction_list->is_empty () || phi == NULL)
946 return NULL;
947
948 if (gimple_uid (phi) == (unsigned int)-1
949 || gimple_uid (phi) == 0)
950 return NULL;
951
952 tmpred.reduc_phi = phi;
953 tmpred.reduc_version = gimple_uid (phi);
954 red = reduction_list->find (&tmpred);
955 gcc_assert (red == NULL || red->reduc_phi == phi);
956
957 return red;
958 }
959
960 /* Element of hashtable of names to copy. */
961
962 struct name_to_copy_elt
963 {
964 unsigned version; /* The version of the name to copy. */
965 tree new_name; /* The new name used in the copy. */
966 tree field; /* The field of the structure used to pass the
967 value. */
968 };
969
970 /* Name copies hashtable helpers. */
971
972 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
973 {
974 static inline hashval_t hash (const name_to_copy_elt *);
975 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
976 };
977
978 /* Equality and hash functions for hashtab code. */
979
980 inline bool
981 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
982 {
983 return a->version == b->version;
984 }
985
986 inline hashval_t
987 name_to_copy_hasher::hash (const name_to_copy_elt *a)
988 {
989 return (hashval_t) a->version;
990 }
991
992 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
993
994 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
995 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
996 represents the denominator for every element in the matrix. */
997 typedef struct lambda_trans_matrix_s
998 {
999 lambda_matrix matrix;
1000 int rowsize;
1001 int colsize;
1002 int denominator;
1003 } *lambda_trans_matrix;
1004 #define LTM_MATRIX(T) ((T)->matrix)
1005 #define LTM_ROWSIZE(T) ((T)->rowsize)
1006 #define LTM_COLSIZE(T) ((T)->colsize)
1007 #define LTM_DENOMINATOR(T) ((T)->denominator)
1008
1009 /* Allocate a new transformation matrix. */
1010
1011 static lambda_trans_matrix
1012 lambda_trans_matrix_new (int colsize, int rowsize,
1013 struct obstack * lambda_obstack)
1014 {
1015 lambda_trans_matrix ret;
1016
1017 ret = (lambda_trans_matrix)
1018 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
1019 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
1020 LTM_ROWSIZE (ret) = rowsize;
1021 LTM_COLSIZE (ret) = colsize;
1022 LTM_DENOMINATOR (ret) = 1;
1023 return ret;
1024 }
1025
1026 /* Multiply a vector VEC by a matrix MAT.
1027 MAT is an M*N matrix, and VEC is a vector with length N. The result
1028 is stored in DEST which must be a vector of length M. */
1029
1030 static void
1031 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
1032 lambda_vector vec, lambda_vector dest)
1033 {
1034 int i, j;
1035
1036 lambda_vector_clear (dest, m);
1037 for (i = 0; i < m; i++)
1038 for (j = 0; j < n; j++)
1039 dest[i] += matrix[i][j] * vec[j];
1040 }
1041
1042 /* Return true if TRANS is a legal transformation matrix that respects
1043 the dependence vectors in DISTS and DIRS. The conservative answer
1044 is false.
1045
1046 "Wolfe proves that a unimodular transformation represented by the
1047 matrix T is legal when applied to a loop nest with a set of
1048 lexicographically non-negative distance vectors RDG if and only if
1049 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
1050 i.e.: if and only if it transforms the lexicographically positive
1051 distance vectors to lexicographically positive vectors. Note that
1052 a unimodular matrix must transform the zero vector (and only it) to
1053 the zero vector." S.Muchnick. */
1054
1055 static bool
1056 lambda_transform_legal_p (lambda_trans_matrix trans,
1057 int nb_loops,
1058 vec<ddr_p> dependence_relations)
1059 {
1060 unsigned int i, j;
1061 lambda_vector distres;
1062 struct data_dependence_relation *ddr;
1063
1064 gcc_assert (LTM_COLSIZE (trans) == nb_loops
1065 && LTM_ROWSIZE (trans) == nb_loops);
1066
1067 /* When there are no dependences, the transformation is correct. */
1068 if (dependence_relations.length () == 0)
1069 return true;
1070
1071 ddr = dependence_relations[0];
1072 if (ddr == NULL)
1073 return true;
1074
1075 /* When there is an unknown relation in the dependence_relations, we
1076 know that it is no worth looking at this loop nest: give up. */
1077 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1078 return false;
1079
1080 distres = lambda_vector_new (nb_loops);
1081
1082 /* For each distance vector in the dependence graph. */
1083 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
1084 {
1085 /* Don't care about relations for which we know that there is no
1086 dependence, nor about read-read (aka. output-dependences):
1087 these data accesses can happen in any order. */
1088 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
1089 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
1090 continue;
1091
1092 /* Conservatively answer: "this transformation is not valid". */
1093 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1094 return false;
1095
1096 /* If the dependence could not be captured by a distance vector,
1097 conservatively answer that the transform is not valid. */
1098 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1099 return false;
1100
1101 /* Compute trans.dist_vect */
1102 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
1103 {
1104 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
1105 DDR_DIST_VECT (ddr, j), distres);
1106
1107 if (!lambda_vector_lexico_pos (distres, nb_loops))
1108 return false;
1109 }
1110 }
1111 return true;
1112 }
1113
1114 /* Data dependency analysis. Returns true if the iterations of LOOP
1115 are independent on each other (that is, if we can execute them
1116 in parallel). */
1117
1118 static bool
1119 loop_parallel_p (class loop *loop, struct obstack * parloop_obstack)
1120 {
1121 vec<ddr_p> dependence_relations;
1122 vec<data_reference_p> datarefs;
1123 lambda_trans_matrix trans;
1124 bool ret = false;
1125
1126 if (dump_file && (dump_flags & TDF_DETAILS))
1127 {
1128 fprintf (dump_file, "Considering loop %d\n", loop->num);
1129 if (!loop->inner)
1130 fprintf (dump_file, "loop is innermost\n");
1131 else
1132 fprintf (dump_file, "loop NOT innermost\n");
1133 }
1134
1135 /* Check for problems with dependences. If the loop can be reversed,
1136 the iterations are independent. */
1137 auto_vec<loop_p, 3> loop_nest;
1138 datarefs.create (10);
1139 dependence_relations.create (100);
1140 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
1141 &dependence_relations))
1142 {
1143 if (dump_file && (dump_flags & TDF_DETAILS))
1144 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
1145 ret = false;
1146 goto end;
1147 }
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1149 dump_data_dependence_relations (dump_file, dependence_relations);
1150
1151 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
1152 LTM_MATRIX (trans)[0][0] = -1;
1153
1154 if (lambda_transform_legal_p (trans, 1, dependence_relations))
1155 {
1156 ret = true;
1157 if (dump_file && (dump_flags & TDF_DETAILS))
1158 fprintf (dump_file, " SUCCESS: may be parallelized\n");
1159 }
1160 else if (dump_file && (dump_flags & TDF_DETAILS))
1161 fprintf (dump_file,
1162 " FAILED: data dependencies exist across iterations\n");
1163
1164 end:
1165 free_dependence_relations (dependence_relations);
1166 free_data_refs (datarefs);
1167
1168 return ret;
1169 }
1170
1171 /* Return true when LOOP contains basic blocks marked with the
1172 BB_IRREDUCIBLE_LOOP flag. */
1173
1174 static inline bool
1175 loop_has_blocks_with_irreducible_flag (class loop *loop)
1176 {
1177 unsigned i;
1178 basic_block *bbs = get_loop_body_in_dom_order (loop);
1179 bool res = true;
1180
1181 for (i = 0; i < loop->num_nodes; i++)
1182 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
1183 goto end;
1184
1185 res = false;
1186 end:
1187 free (bbs);
1188 return res;
1189 }
1190
1191 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
1192 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
1193 to their addresses that can be reused. The address of OBJ is known to
1194 be invariant in the whole function. Other needed statements are placed
1195 right before GSI. */
1196
1197 static tree
1198 take_address_of (tree obj, tree type, edge entry,
1199 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
1200 {
1201 int uid;
1202 tree *var_p, name, addr;
1203 gassign *stmt;
1204 gimple_seq stmts;
1205
1206 /* Since the address of OBJ is invariant, the trees may be shared.
1207 Avoid rewriting unrelated parts of the code. */
1208 obj = unshare_expr (obj);
1209 for (var_p = &obj;
1210 handled_component_p (*var_p);
1211 var_p = &TREE_OPERAND (*var_p, 0))
1212 continue;
1213
1214 /* Canonicalize the access to base on a MEM_REF. */
1215 if (DECL_P (*var_p))
1216 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
1217
1218 /* Assign a canonical SSA name to the address of the base decl used
1219 in the address and share it for all accesses and addresses based
1220 on it. */
1221 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
1222 int_tree_map elt;
1223 elt.uid = uid;
1224 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
1225 if (!slot->to)
1226 {
1227 if (gsi == NULL)
1228 return NULL;
1229 addr = TREE_OPERAND (*var_p, 0);
1230 const char *obj_name
1231 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
1232 if (obj_name)
1233 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
1234 else
1235 name = make_ssa_name (TREE_TYPE (addr));
1236 stmt = gimple_build_assign (name, addr);
1237 gsi_insert_on_edge_immediate (entry, stmt);
1238
1239 slot->uid = uid;
1240 slot->to = name;
1241 }
1242 else
1243 name = slot->to;
1244
1245 /* Express the address in terms of the canonical SSA name. */
1246 TREE_OPERAND (*var_p, 0) = name;
1247 if (gsi == NULL)
1248 return build_fold_addr_expr_with_type (obj, type);
1249
1250 name = force_gimple_operand (build_addr (obj),
1251 &stmts, true, NULL_TREE);
1252 if (!gimple_seq_empty_p (stmts))
1253 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
1254
1255 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
1256 {
1257 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
1258 NULL_TREE);
1259 if (!gimple_seq_empty_p (stmts))
1260 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
1261 }
1262
1263 return name;
1264 }
1265
1266 static tree
1267 reduc_stmt_res (gimple *stmt)
1268 {
1269 return (gimple_code (stmt) == GIMPLE_PHI
1270 ? gimple_phi_result (stmt)
1271 : gimple_assign_lhs (stmt));
1272 }
1273
1274 /* Callback for htab_traverse. Create the initialization statement
1275 for reduction described in SLOT, and place it at the preheader of
1276 the loop described in DATA. */
1277
1278 int
1279 initialize_reductions (reduction_info **slot, class loop *loop)
1280 {
1281 tree init;
1282 tree type, arg;
1283 edge e;
1284
1285 struct reduction_info *const reduc = *slot;
1286
1287 /* Create initialization in preheader:
1288 reduction_variable = initialization value of reduction. */
1289
1290 /* In the phi node at the header, replace the argument coming
1291 from the preheader with the reduction initialization value. */
1292
1293 /* Initialize the reduction. */
1294 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1295 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
1296 reduc->reduction_code, type);
1297 reduc->init = init;
1298
1299 /* Replace the argument representing the initialization value
1300 with the initialization value for the reduction (neutral
1301 element for the particular operation, e.g. 0 for PLUS_EXPR,
1302 1 for MULT_EXPR, etc).
1303 Keep the old value in a new variable "reduction_initial",
1304 that will be taken in consideration after the parallel
1305 computing is done. */
1306
1307 e = loop_preheader_edge (loop);
1308 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
1309 /* Create new variable to hold the initial value. */
1310
1311 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
1312 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
1313 reduc->initial_value = arg;
1314 return 1;
1315 }
1316
1317 struct elv_data
1318 {
1319 struct walk_stmt_info info;
1320 edge entry;
1321 int_tree_htab_type *decl_address;
1322 gimple_stmt_iterator *gsi;
1323 bool changed;
1324 bool reset;
1325 };
1326
1327 /* Eliminates references to local variables in *TP out of the single
1328 entry single exit region starting at DTA->ENTRY.
1329 DECL_ADDRESS contains addresses of the references that had their
1330 address taken already. If the expression is changed, CHANGED is
1331 set to true. Callback for walk_tree. */
1332
1333 static tree
1334 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
1335 {
1336 struct elv_data *const dta = (struct elv_data *) data;
1337 tree t = *tp, var, addr, addr_type, type, obj;
1338
1339 if (DECL_P (t))
1340 {
1341 *walk_subtrees = 0;
1342
1343 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
1344 return NULL_TREE;
1345
1346 type = TREE_TYPE (t);
1347 addr_type = build_pointer_type (type);
1348 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
1349 dta->gsi);
1350 if (dta->gsi == NULL && addr == NULL_TREE)
1351 {
1352 dta->reset = true;
1353 return NULL_TREE;
1354 }
1355
1356 *tp = build_simple_mem_ref (addr);
1357
1358 dta->changed = true;
1359 return NULL_TREE;
1360 }
1361
1362 if (TREE_CODE (t) == ADDR_EXPR)
1363 {
1364 /* ADDR_EXPR may appear in two contexts:
1365 -- as a gimple operand, when the address taken is a function invariant
1366 -- as gimple rhs, when the resulting address in not a function
1367 invariant
1368 We do not need to do anything special in the latter case (the base of
1369 the memory reference whose address is taken may be replaced in the
1370 DECL_P case). The former case is more complicated, as we need to
1371 ensure that the new address is still a gimple operand. Thus, it
1372 is not sufficient to replace just the base of the memory reference --
1373 we need to move the whole computation of the address out of the
1374 loop. */
1375 if (!is_gimple_val (t))
1376 return NULL_TREE;
1377
1378 *walk_subtrees = 0;
1379 obj = TREE_OPERAND (t, 0);
1380 var = get_base_address (obj);
1381 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
1382 return NULL_TREE;
1383
1384 addr_type = TREE_TYPE (t);
1385 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
1386 dta->gsi);
1387 if (dta->gsi == NULL && addr == NULL_TREE)
1388 {
1389 dta->reset = true;
1390 return NULL_TREE;
1391 }
1392 *tp = addr;
1393
1394 dta->changed = true;
1395 return NULL_TREE;
1396 }
1397
1398 if (!EXPR_P (t))
1399 *walk_subtrees = 0;
1400
1401 return NULL_TREE;
1402 }
1403
1404 /* Moves the references to local variables in STMT at *GSI out of the single
1405 entry single exit region starting at ENTRY. DECL_ADDRESS contains
1406 addresses of the references that had their address taken
1407 already. */
1408
1409 static void
1410 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
1411 int_tree_htab_type *decl_address)
1412 {
1413 struct elv_data dta;
1414 gimple *stmt = gsi_stmt (*gsi);
1415
1416 memset (&dta.info, '\0', sizeof (dta.info));
1417 dta.entry = entry;
1418 dta.decl_address = decl_address;
1419 dta.changed = false;
1420 dta.reset = false;
1421
1422 if (gimple_debug_bind_p (stmt))
1423 {
1424 dta.gsi = NULL;
1425 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
1426 eliminate_local_variables_1, &dta.info, NULL);
1427 if (dta.reset)
1428 {
1429 gimple_debug_bind_reset_value (stmt);
1430 dta.changed = true;
1431 }
1432 }
1433 else if (gimple_clobber_p (stmt))
1434 {
1435 unlink_stmt_vdef (stmt);
1436 stmt = gimple_build_nop ();
1437 gsi_replace (gsi, stmt, false);
1438 dta.changed = true;
1439 }
1440 else
1441 {
1442 dta.gsi = gsi;
1443 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
1444 }
1445
1446 if (dta.changed)
1447 update_stmt (stmt);
1448 }
1449
1450 /* Eliminates the references to local variables from the single entry
1451 single exit region between the ENTRY and EXIT edges.
1452
1453 This includes:
1454 1) Taking address of a local variable -- these are moved out of the
1455 region (and temporary variable is created to hold the address if
1456 necessary).
1457
1458 2) Dereferencing a local variable -- these are replaced with indirect
1459 references. */
1460
1461 static void
1462 eliminate_local_variables (edge entry, edge exit)
1463 {
1464 basic_block bb;
1465 auto_vec<basic_block, 3> body;
1466 unsigned i;
1467 gimple_stmt_iterator gsi;
1468 bool has_debug_stmt = false;
1469 int_tree_htab_type decl_address (10);
1470 basic_block entry_bb = entry->src;
1471 basic_block exit_bb = exit->dest;
1472
1473 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1474
1475 FOR_EACH_VEC_ELT (body, i, bb)
1476 if (bb != entry_bb && bb != exit_bb)
1477 {
1478 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1479 if (is_gimple_debug (gsi_stmt (gsi)))
1480 {
1481 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1482 has_debug_stmt = true;
1483 }
1484 else
1485 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
1486 }
1487
1488 if (has_debug_stmt)
1489 FOR_EACH_VEC_ELT (body, i, bb)
1490 if (bb != entry_bb && bb != exit_bb)
1491 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1492 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1493 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
1494 }
1495
1496 /* Returns true if expression EXPR is not defined between ENTRY and
1497 EXIT, i.e. if all its operands are defined outside of the region. */
1498
1499 static bool
1500 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
1501 {
1502 basic_block entry_bb = entry->src;
1503 basic_block exit_bb = exit->dest;
1504 basic_block def_bb;
1505
1506 if (is_gimple_min_invariant (expr))
1507 return true;
1508
1509 if (TREE_CODE (expr) == SSA_NAME)
1510 {
1511 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1512 if (def_bb
1513 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
1514 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
1515 return false;
1516
1517 return true;
1518 }
1519
1520 return false;
1521 }
1522
1523 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
1524 The copies are stored to NAME_COPIES, if NAME was already duplicated,
1525 its duplicate stored in NAME_COPIES is returned.
1526
1527 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
1528 duplicated, storing the copies in DECL_COPIES. */
1529
1530 static tree
1531 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
1532 int_tree_htab_type *decl_copies,
1533 bool copy_name_p)
1534 {
1535 tree copy, var, var_copy;
1536 unsigned idx, uid, nuid;
1537 struct int_tree_map ielt;
1538 struct name_to_copy_elt elt, *nelt;
1539 name_to_copy_elt **slot;
1540 int_tree_map *dslot;
1541
1542 if (TREE_CODE (name) != SSA_NAME)
1543 return name;
1544
1545 idx = SSA_NAME_VERSION (name);
1546 elt.version = idx;
1547 slot = name_copies->find_slot_with_hash (&elt, idx,
1548 copy_name_p ? INSERT : NO_INSERT);
1549 if (slot && *slot)
1550 return (*slot)->new_name;
1551
1552 if (copy_name_p)
1553 {
1554 copy = duplicate_ssa_name (name, NULL);
1555 nelt = XNEW (struct name_to_copy_elt);
1556 nelt->version = idx;
1557 nelt->new_name = copy;
1558 nelt->field = NULL_TREE;
1559 *slot = nelt;
1560 }
1561 else
1562 {
1563 gcc_assert (!slot);
1564 copy = name;
1565 }
1566
1567 var = SSA_NAME_VAR (name);
1568 if (!var)
1569 return copy;
1570
1571 uid = DECL_UID (var);
1572 ielt.uid = uid;
1573 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
1574 if (!dslot->to)
1575 {
1576 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
1577 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
1578 dslot->uid = uid;
1579 dslot->to = var_copy;
1580
1581 /* Ensure that when we meet this decl next time, we won't duplicate
1582 it again. */
1583 nuid = DECL_UID (var_copy);
1584 ielt.uid = nuid;
1585 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
1586 gcc_assert (!dslot->to);
1587 dslot->uid = nuid;
1588 dslot->to = var_copy;
1589 }
1590 else
1591 var_copy = dslot->to;
1592
1593 replace_ssa_name_symbol (copy, var_copy);
1594 return copy;
1595 }
1596
1597 /* Finds the ssa names used in STMT that are defined outside the
1598 region between ENTRY and EXIT and replaces such ssa names with
1599 their duplicates. The duplicates are stored to NAME_COPIES. Base
1600 decls of all ssa names used in STMT (including those defined in
1601 LOOP) are replaced with the new temporary variables; the
1602 replacement decls are stored in DECL_COPIES. */
1603
1604 static void
1605 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
1606 name_to_copy_table_type *name_copies,
1607 int_tree_htab_type *decl_copies)
1608 {
1609 use_operand_p use;
1610 def_operand_p def;
1611 ssa_op_iter oi;
1612 tree name, copy;
1613 bool copy_name_p;
1614
1615 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
1616 {
1617 name = DEF_FROM_PTR (def);
1618 gcc_assert (TREE_CODE (name) == SSA_NAME);
1619 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
1620 false);
1621 gcc_assert (copy == name);
1622 }
1623
1624 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
1625 {
1626 name = USE_FROM_PTR (use);
1627 if (TREE_CODE (name) != SSA_NAME)
1628 continue;
1629
1630 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
1631 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
1632 copy_name_p);
1633 SET_USE (use, copy);
1634 }
1635 }
1636
1637 /* Finds the ssa names used in STMT that are defined outside the
1638 region between ENTRY and EXIT and replaces such ssa names with
1639 their duplicates. The duplicates are stored to NAME_COPIES. Base
1640 decls of all ssa names used in STMT (including those defined in
1641 LOOP) are replaced with the new temporary variables; the
1642 replacement decls are stored in DECL_COPIES. */
1643
1644 static bool
1645 separate_decls_in_region_debug (gimple *stmt,
1646 name_to_copy_table_type *name_copies,
1647 int_tree_htab_type *decl_copies)
1648 {
1649 use_operand_p use;
1650 ssa_op_iter oi;
1651 tree var, name;
1652 struct int_tree_map ielt;
1653 struct name_to_copy_elt elt;
1654 name_to_copy_elt **slot;
1655 int_tree_map *dslot;
1656
1657 if (gimple_debug_bind_p (stmt))
1658 var = gimple_debug_bind_get_var (stmt);
1659 else if (gimple_debug_source_bind_p (stmt))
1660 var = gimple_debug_source_bind_get_var (stmt);
1661 else
1662 return true;
1663 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
1664 return true;
1665 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
1666 ielt.uid = DECL_UID (var);
1667 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
1668 if (!dslot)
1669 return true;
1670 if (gimple_debug_bind_p (stmt))
1671 gimple_debug_bind_set_var (stmt, dslot->to);
1672 else if (gimple_debug_source_bind_p (stmt))
1673 gimple_debug_source_bind_set_var (stmt, dslot->to);
1674
1675 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
1676 {
1677 name = USE_FROM_PTR (use);
1678 if (TREE_CODE (name) != SSA_NAME)
1679 continue;
1680
1681 elt.version = SSA_NAME_VERSION (name);
1682 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
1683 if (!slot)
1684 {
1685 gimple_debug_bind_reset_value (stmt);
1686 update_stmt (stmt);
1687 break;
1688 }
1689
1690 SET_USE (use, (*slot)->new_name);
1691 }
1692
1693 return false;
1694 }
1695
1696 /* Callback for htab_traverse. Adds a field corresponding to the reduction
1697 specified in SLOT. The type is passed in DATA. */
1698
1699 int
1700 add_field_for_reduction (reduction_info **slot, tree type)
1701 {
1702
1703 struct reduction_info *const red = *slot;
1704 tree var = reduc_stmt_res (red->reduc_stmt);
1705 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1706 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1707
1708 insert_field_into_struct (type, field);
1709
1710 red->field = field;
1711
1712 return 1;
1713 }
1714
1715 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1716 described in SLOT. The type is passed in DATA. */
1717
1718 int
1719 add_field_for_name (name_to_copy_elt **slot, tree type)
1720 {
1721 struct name_to_copy_elt *const elt = *slot;
1722 tree name = ssa_name (elt->version);
1723 tree field = build_decl (UNKNOWN_LOCATION,
1724 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1725 TREE_TYPE (name));
1726
1727 insert_field_into_struct (type, field);
1728 elt->field = field;
1729
1730 return 1;
1731 }
1732
1733 /* Callback for htab_traverse. A local result is the intermediate result
1734 computed by a single
1735 thread, or the initial value in case no iteration was executed.
1736 This function creates a phi node reflecting these values.
1737 The phi's result will be stored in NEW_PHI field of the
1738 reduction's data structure. */
1739
1740 int
1741 create_phi_for_local_result (reduction_info **slot, class loop *loop)
1742 {
1743 struct reduction_info *const reduc = *slot;
1744 edge e;
1745 gphi *new_phi;
1746 basic_block store_bb, continue_bb;
1747 tree local_res;
1748 location_t locus;
1749
1750 /* STORE_BB is the block where the phi
1751 should be stored. It is the destination of the loop exit.
1752 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1753 continue_bb = single_pred (loop->latch);
1754 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1755
1756 /* STORE_BB has two predecessors. One coming from the loop
1757 (the reduction's result is computed at the loop),
1758 and another coming from a block preceding the loop,
1759 when no iterations
1760 are executed (the initial value should be taken). */
1761 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1762 e = EDGE_PRED (store_bb, 1);
1763 else
1764 e = EDGE_PRED (store_bb, 0);
1765 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1766 local_res = copy_ssa_name (lhs);
1767 locus = gimple_location (reduc->reduc_stmt);
1768 new_phi = create_phi_node (local_res, store_bb);
1769 add_phi_arg (new_phi, reduc->init, e, locus);
1770 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1771 reduc->new_phi = new_phi;
1772
1773 return 1;
1774 }
1775
1776 struct clsn_data
1777 {
1778 tree store;
1779 tree load;
1780
1781 basic_block store_bb;
1782 basic_block load_bb;
1783 };
1784
1785 /* Callback for htab_traverse. Create an atomic instruction for the
1786 reduction described in SLOT.
1787 DATA annotates the place in memory the atomic operation relates to,
1788 and the basic block it needs to be generated in. */
1789
1790 int
1791 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1792 {
1793 struct reduction_info *const reduc = *slot;
1794 gimple_stmt_iterator gsi;
1795 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1796 tree load_struct;
1797 basic_block bb;
1798 basic_block new_bb;
1799 edge e;
1800 tree t, addr, ref, x;
1801 tree tmp_load, name;
1802 gimple *load;
1803
1804 if (reduc->reduc_addr == NULL_TREE)
1805 {
1806 load_struct = build_simple_mem_ref (clsn_data->load);
1807 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1808
1809 addr = build_addr (t);
1810 }
1811 else
1812 {
1813 /* Set the address for the atomic store. */
1814 addr = reduc->reduc_addr;
1815
1816 /* Remove the non-atomic store '*addr = sum'. */
1817 tree res = PHI_RESULT (reduc->keep_res);
1818 use_operand_p use_p;
1819 gimple *stmt;
1820 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1821 gcc_assert (single_use_p);
1822 replace_uses_by (gimple_vdef (stmt),
1823 gimple_vuse (stmt));
1824 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1825 gsi_remove (&gsi, true);
1826 }
1827
1828 /* Create phi node. */
1829 bb = clsn_data->load_bb;
1830
1831 gsi = gsi_last_bb (bb);
1832 e = split_block (bb, gsi_stmt (gsi));
1833 new_bb = e->dest;
1834
1835 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1836 tmp_load = make_ssa_name (tmp_load);
1837 load = gimple_build_omp_atomic_load (tmp_load, addr,
1838 OMP_MEMORY_ORDER_RELAXED);
1839 SSA_NAME_DEF_STMT (tmp_load) = load;
1840 gsi = gsi_start_bb (new_bb);
1841 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1842
1843 e = split_block (new_bb, load);
1844 new_bb = e->dest;
1845 gsi = gsi_start_bb (new_bb);
1846 ref = tmp_load;
1847 x = fold_build2 (reduc->reduction_code,
1848 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1849 PHI_RESULT (reduc->new_phi));
1850
1851 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1852 GSI_CONTINUE_LINKING);
1853
1854 gimple *store = gimple_build_omp_atomic_store (name,
1855 OMP_MEMORY_ORDER_RELAXED);
1856 gsi_insert_after (&gsi, store, GSI_NEW_STMT);
1857 return 1;
1858 }
1859
1860 /* Create the atomic operation at the join point of the threads.
1861 REDUCTION_LIST describes the reductions in the LOOP.
1862 LD_ST_DATA describes the shared data structure where
1863 shared data is stored in and loaded from. */
1864 static void
1865 create_call_for_reduction (class loop *loop,
1866 reduction_info_table_type *reduction_list,
1867 struct clsn_data *ld_st_data)
1868 {
1869 reduction_list->traverse <class loop *, create_phi_for_local_result> (loop);
1870 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1871 basic_block continue_bb = single_pred (loop->latch);
1872 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1873 reduction_list
1874 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1875 }
1876
1877 /* Callback for htab_traverse. Loads the final reduction value at the
1878 join point of all threads, and inserts it in the right place. */
1879
1880 int
1881 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1882 {
1883 struct reduction_info *const red = *slot;
1884 gimple *stmt;
1885 gimple_stmt_iterator gsi;
1886 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1887 tree load_struct;
1888 tree name;
1889 tree x;
1890
1891 /* If there's no exit phi, the result of the reduction is unused. */
1892 if (red->keep_res == NULL)
1893 return 1;
1894
1895 gsi = gsi_after_labels (clsn_data->load_bb);
1896 load_struct = build_simple_mem_ref (clsn_data->load);
1897 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1898 NULL_TREE);
1899
1900 x = load_struct;
1901 name = PHI_RESULT (red->keep_res);
1902 stmt = gimple_build_assign (name, x);
1903
1904 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1905
1906 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1907 !gsi_end_p (gsi); gsi_next (&gsi))
1908 if (gsi_stmt (gsi) == red->keep_res)
1909 {
1910 remove_phi_node (&gsi, false);
1911 return 1;
1912 }
1913 gcc_unreachable ();
1914 }
1915
1916 /* Load the reduction result that was stored in LD_ST_DATA.
1917 REDUCTION_LIST describes the list of reductions that the
1918 loads should be generated for. */
1919 static void
1920 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1921 struct clsn_data *ld_st_data)
1922 {
1923 gimple_stmt_iterator gsi;
1924 tree t;
1925 gimple *stmt;
1926
1927 gsi = gsi_after_labels (ld_st_data->load_bb);
1928 t = build_fold_addr_expr (ld_st_data->store);
1929 stmt = gimple_build_assign (ld_st_data->load, t);
1930
1931 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1932
1933 reduction_list
1934 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1935
1936 }
1937
1938 /* Callback for htab_traverse. Store the neutral value for the
1939 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1940 1 for MULT_EXPR, etc. into the reduction field.
1941 The reduction is specified in SLOT. The store information is
1942 passed in DATA. */
1943
1944 int
1945 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1946 {
1947 struct reduction_info *const red = *slot;
1948 tree t;
1949 gimple *stmt;
1950 gimple_stmt_iterator gsi;
1951 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1952
1953 gsi = gsi_last_bb (clsn_data->store_bb);
1954 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1955 stmt = gimple_build_assign (t, red->initial_value);
1956 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1957
1958 return 1;
1959 }
1960
1961 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1962 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1963 specified in SLOT. */
1964
1965 int
1966 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1967 struct clsn_data *clsn_data)
1968 {
1969 struct name_to_copy_elt *const elt = *slot;
1970 tree t;
1971 gimple *stmt;
1972 gimple_stmt_iterator gsi;
1973 tree type = TREE_TYPE (elt->new_name);
1974 tree load_struct;
1975
1976 gsi = gsi_last_bb (clsn_data->store_bb);
1977 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1978 stmt = gimple_build_assign (t, ssa_name (elt->version));
1979 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1980
1981 gsi = gsi_last_bb (clsn_data->load_bb);
1982 load_struct = build_simple_mem_ref (clsn_data->load);
1983 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1984 stmt = gimple_build_assign (elt->new_name, t);
1985 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1986
1987 return 1;
1988 }
1989
1990 /* Moves all the variables used in LOOP and defined outside of it (including
1991 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1992 name) to a structure created for this purpose. The code
1993
1994 while (1)
1995 {
1996 use (a);
1997 use (b);
1998 }
1999
2000 is transformed this way:
2001
2002 bb0:
2003 old.a = a;
2004 old.b = b;
2005
2006 bb1:
2007 a' = new->a;
2008 b' = new->b;
2009 while (1)
2010 {
2011 use (a');
2012 use (b');
2013 }
2014
2015 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
2016 pointer `new' is intentionally not initialized (the loop will be split to a
2017 separate function later, and `new' will be initialized from its arguments).
2018 LD_ST_DATA holds information about the shared data structure used to pass
2019 information among the threads. It is initialized here, and
2020 gen_parallel_loop will pass it to create_call_for_reduction that
2021 needs this information. REDUCTION_LIST describes the reductions
2022 in LOOP. */
2023
2024 static void
2025 separate_decls_in_region (edge entry, edge exit,
2026 reduction_info_table_type *reduction_list,
2027 tree *arg_struct, tree *new_arg_struct,
2028 struct clsn_data *ld_st_data)
2029
2030 {
2031 basic_block bb1 = split_edge (entry);
2032 basic_block bb0 = single_pred (bb1);
2033 name_to_copy_table_type name_copies (10);
2034 int_tree_htab_type decl_copies (10);
2035 unsigned i;
2036 tree type, type_name, nvar;
2037 gimple_stmt_iterator gsi;
2038 struct clsn_data clsn_data;
2039 auto_vec<basic_block, 3> body;
2040 basic_block bb;
2041 basic_block entry_bb = bb1;
2042 basic_block exit_bb = exit->dest;
2043 bool has_debug_stmt = false;
2044
2045 entry = single_succ_edge (entry_bb);
2046 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
2047
2048 FOR_EACH_VEC_ELT (body, i, bb)
2049 {
2050 if (bb != entry_bb && bb != exit_bb)
2051 {
2052 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2053 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
2054 &name_copies, &decl_copies);
2055
2056 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2057 {
2058 gimple *stmt = gsi_stmt (gsi);
2059
2060 if (is_gimple_debug (stmt))
2061 has_debug_stmt = true;
2062 else
2063 separate_decls_in_region_stmt (entry, exit, stmt,
2064 &name_copies, &decl_copies);
2065 }
2066 }
2067 }
2068
2069 /* Now process debug bind stmts. We must not create decls while
2070 processing debug stmts, so we defer their processing so as to
2071 make sure we will have debug info for as many variables as
2072 possible (all of those that were dealt with in the loop above),
2073 and discard those for which we know there's nothing we can
2074 do. */
2075 if (has_debug_stmt)
2076 FOR_EACH_VEC_ELT (body, i, bb)
2077 if (bb != entry_bb && bb != exit_bb)
2078 {
2079 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
2080 {
2081 gimple *stmt = gsi_stmt (gsi);
2082
2083 if (is_gimple_debug (stmt))
2084 {
2085 if (separate_decls_in_region_debug (stmt, &name_copies,
2086 &decl_copies))
2087 {
2088 gsi_remove (&gsi, true);
2089 continue;
2090 }
2091 }
2092
2093 gsi_next (&gsi);
2094 }
2095 }
2096
2097 if (name_copies.is_empty () && reduction_list->is_empty ())
2098 {
2099 /* It may happen that there is nothing to copy (if there are only
2100 loop carried and external variables in the loop). */
2101 *arg_struct = NULL;
2102 *new_arg_struct = NULL;
2103 }
2104 else
2105 {
2106 /* Create the type for the structure to store the ssa names to. */
2107 type = lang_hooks.types.make_type (RECORD_TYPE);
2108 type_name = build_decl (UNKNOWN_LOCATION,
2109 TYPE_DECL, create_tmp_var_name (".paral_data"),
2110 type);
2111 TYPE_NAME (type) = type_name;
2112
2113 name_copies.traverse <tree, add_field_for_name> (type);
2114 if (reduction_list && !reduction_list->is_empty ())
2115 {
2116 /* Create the fields for reductions. */
2117 reduction_list->traverse <tree, add_field_for_reduction> (type);
2118 }
2119 layout_type (type);
2120
2121 /* Create the loads and stores. */
2122 *arg_struct = create_tmp_var (type, ".paral_data_store");
2123 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
2124 *new_arg_struct = make_ssa_name (nvar);
2125
2126 ld_st_data->store = *arg_struct;
2127 ld_st_data->load = *new_arg_struct;
2128 ld_st_data->store_bb = bb0;
2129 ld_st_data->load_bb = bb1;
2130
2131 name_copies
2132 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
2133 (ld_st_data);
2134
2135 /* Load the calculation from memory (after the join of the threads). */
2136
2137 if (reduction_list && !reduction_list->is_empty ())
2138 {
2139 reduction_list
2140 ->traverse <struct clsn_data *, create_stores_for_reduction>
2141 (ld_st_data);
2142 clsn_data.load = make_ssa_name (nvar);
2143 clsn_data.load_bb = exit->dest;
2144 clsn_data.store = ld_st_data->store;
2145 create_final_loads_for_reduction (reduction_list, &clsn_data);
2146 }
2147 }
2148 }
2149
2150 /* Returns true if FN was created to run in parallel. */
2151
2152 bool
2153 parallelized_function_p (tree fndecl)
2154 {
2155 cgraph_node *node = cgraph_node::get (fndecl);
2156 gcc_assert (node != NULL);
2157 return node->parallelized_function;
2158 }
2159
2160 /* Creates and returns an empty function that will receive the body of
2161 a parallelized loop. */
2162
2163 static tree
2164 create_loop_fn (location_t loc)
2165 {
2166 char buf[100];
2167 char *tname;
2168 tree decl, type, name, t;
2169 struct function *act_cfun = cfun;
2170 static unsigned loopfn_num;
2171
2172 loc = LOCATION_LOCUS (loc);
2173 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
2174 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
2175 clean_symbol_name (tname);
2176 name = get_identifier (tname);
2177 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2178
2179 decl = build_decl (loc, FUNCTION_DECL, name, type);
2180 TREE_STATIC (decl) = 1;
2181 TREE_USED (decl) = 1;
2182 DECL_ARTIFICIAL (decl) = 1;
2183 DECL_IGNORED_P (decl) = 0;
2184 TREE_PUBLIC (decl) = 0;
2185 DECL_UNINLINABLE (decl) = 1;
2186 DECL_EXTERNAL (decl) = 0;
2187 DECL_CONTEXT (decl) = NULL_TREE;
2188 DECL_INITIAL (decl) = make_node (BLOCK);
2189 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
2190
2191 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
2192 DECL_ARTIFICIAL (t) = 1;
2193 DECL_IGNORED_P (t) = 1;
2194 DECL_RESULT (decl) = t;
2195
2196 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
2197 ptr_type_node);
2198 DECL_ARTIFICIAL (t) = 1;
2199 DECL_ARG_TYPE (t) = ptr_type_node;
2200 DECL_CONTEXT (t) = decl;
2201 TREE_USED (t) = 1;
2202 DECL_ARGUMENTS (decl) = t;
2203
2204 allocate_struct_function (decl, false);
2205 DECL_STRUCT_FUNCTION (decl)->last_clique = act_cfun->last_clique;
2206
2207 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
2208 it. */
2209 set_cfun (act_cfun);
2210
2211 return decl;
2212 }
2213
2214 /* Replace uses of NAME by VAL in block BB. */
2215
2216 static void
2217 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
2218 {
2219 gimple *use_stmt;
2220 imm_use_iterator imm_iter;
2221
2222 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
2223 {
2224 if (gimple_bb (use_stmt) != bb)
2225 continue;
2226
2227 use_operand_p use_p;
2228 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
2229 SET_USE (use_p, val);
2230 }
2231 }
2232
2233 /* Do transformation from:
2234
2235 <bb preheader>:
2236 ...
2237 goto <bb header>
2238
2239 <bb header>:
2240 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
2241 sum_a = PHI <sum_init (preheader), sum_b (latch)>
2242 ...
2243 use (ivtmp_a)
2244 ...
2245 sum_b = sum_a + sum_update
2246 ...
2247 if (ivtmp_a < n)
2248 goto <bb latch>;
2249 else
2250 goto <bb exit>;
2251
2252 <bb latch>:
2253 ivtmp_b = ivtmp_a + 1;
2254 goto <bb header>
2255
2256 <bb exit>:
2257 sum_z = PHI <sum_b (cond[1]), ...>
2258
2259 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
2260 that's <bb header>.
2261
2262 to:
2263
2264 <bb preheader>:
2265 ...
2266 goto <bb newheader>
2267
2268 <bb header>:
2269 ivtmp_a = PHI <ivtmp_c (latch)>
2270 sum_a = PHI <sum_c (latch)>
2271 ...
2272 use (ivtmp_a)
2273 ...
2274 sum_b = sum_a + sum_update
2275 ...
2276 goto <bb latch>;
2277
2278 <bb newheader>:
2279 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
2280 sum_c = PHI <sum_init (preheader), sum_b (latch)>
2281 if (ivtmp_c < n + 1)
2282 goto <bb header>;
2283 else
2284 goto <bb newexit>;
2285
2286 <bb latch>:
2287 ivtmp_b = ivtmp_a + 1;
2288 goto <bb newheader>
2289
2290 <bb newexit>:
2291 sum_y = PHI <sum_c (newheader)>
2292
2293 <bb exit>:
2294 sum_z = PHI <sum_y (newexit), ...>
2295
2296
2297 In unified diff format:
2298
2299 <bb preheader>:
2300 ...
2301 - goto <bb header>
2302 + goto <bb newheader>
2303
2304 <bb header>:
2305 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
2306 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
2307 + ivtmp_a = PHI <ivtmp_c (latch)>
2308 + sum_a = PHI <sum_c (latch)>
2309 ...
2310 use (ivtmp_a)
2311 ...
2312 sum_b = sum_a + sum_update
2313 ...
2314 - if (ivtmp_a < n)
2315 - goto <bb latch>;
2316 + goto <bb latch>;
2317 +
2318 + <bb newheader>:
2319 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
2320 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
2321 + if (ivtmp_c < n + 1)
2322 + goto <bb header>;
2323 else
2324 goto <bb exit>;
2325
2326 <bb latch>:
2327 ivtmp_b = ivtmp_a + 1;
2328 - goto <bb header>
2329 + goto <bb newheader>
2330
2331 + <bb newexit>:
2332 + sum_y = PHI <sum_c (newheader)>
2333
2334 <bb exit>:
2335 - sum_z = PHI <sum_b (cond[1]), ...>
2336 + sum_z = PHI <sum_y (newexit), ...>
2337
2338 Note: the example does not show any virtual phis, but these are handled more
2339 or less as reductions.
2340
2341
2342 Moves the exit condition of LOOP to the beginning of its header.
2343 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
2344 bound. */
2345
2346 static void
2347 transform_to_exit_first_loop_alt (class loop *loop,
2348 reduction_info_table_type *reduction_list,
2349 tree bound)
2350 {
2351 basic_block header = loop->header;
2352 basic_block latch = loop->latch;
2353 edge exit = single_dom_exit (loop);
2354 basic_block exit_block = exit->dest;
2355 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
2356 tree control = gimple_cond_lhs (cond_stmt);
2357 edge e;
2358
2359 /* Rewriting virtuals into loop-closed ssa normal form makes this
2360 transformation simpler. It also ensures that the virtuals are in
2361 loop-closed ssa normal from after the transformation, which is required by
2362 create_parallel_loop. */
2363 rewrite_virtuals_into_loop_closed_ssa (loop);
2364
2365 /* Create the new_header block. */
2366 basic_block new_header = split_block_before_cond_jump (exit->src);
2367 edge edge_at_split = single_pred_edge (new_header);
2368
2369 /* Redirect entry edge to new_header. */
2370 edge entry = loop_preheader_edge (loop);
2371 e = redirect_edge_and_branch (entry, new_header);
2372 gcc_assert (e == entry);
2373
2374 /* Redirect post_inc_edge to new_header. */
2375 edge post_inc_edge = single_succ_edge (latch);
2376 e = redirect_edge_and_branch (post_inc_edge, new_header);
2377 gcc_assert (e == post_inc_edge);
2378
2379 /* Redirect post_cond_edge to header. */
2380 edge post_cond_edge = single_pred_edge (latch);
2381 e = redirect_edge_and_branch (post_cond_edge, header);
2382 gcc_assert (e == post_cond_edge);
2383
2384 /* Redirect edge_at_split to latch. */
2385 e = redirect_edge_and_branch (edge_at_split, latch);
2386 gcc_assert (e == edge_at_split);
2387
2388 /* Set the new loop bound. */
2389 gimple_cond_set_rhs (cond_stmt, bound);
2390 update_stmt (cond_stmt);
2391
2392 /* Repair the ssa. */
2393 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
2394 edge_var_map *vm;
2395 gphi_iterator gsi;
2396 int i;
2397 for (gsi = gsi_start_phis (header), i = 0;
2398 !gsi_end_p (gsi) && v->iterate (i, &vm);
2399 gsi_next (&gsi), i++)
2400 {
2401 gphi *phi = gsi.phi ();
2402 tree res_a = PHI_RESULT (phi);
2403
2404 /* Create new phi. */
2405 tree res_c = copy_ssa_name (res_a, phi);
2406 gphi *nphi = create_phi_node (res_c, new_header);
2407
2408 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
2409 replace_uses_in_bb_by (res_a, res_c, new_header);
2410
2411 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
2412 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
2413
2414 /* Replace sum_b with sum_c in exit phi. */
2415 tree res_b = redirect_edge_var_map_def (vm);
2416 replace_uses_in_bb_by (res_b, res_c, exit_block);
2417
2418 struct reduction_info *red = reduction_phi (reduction_list, phi);
2419 gcc_assert (virtual_operand_p (res_a)
2420 || res_a == control
2421 || red != NULL);
2422
2423 if (red)
2424 {
2425 /* Register the new reduction phi. */
2426 red->reduc_phi = nphi;
2427 gimple_set_uid (red->reduc_phi, red->reduc_version);
2428 }
2429 }
2430 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
2431
2432 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
2433 flush_pending_stmts (entry);
2434
2435 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
2436 flush_pending_stmts (post_inc_edge);
2437
2438
2439 basic_block new_exit_block = NULL;
2440 if (!single_pred_p (exit->dest))
2441 {
2442 /* Create a new empty exit block, inbetween the new loop header and the
2443 old exit block. The function separate_decls_in_region needs this block
2444 to insert code that is active on loop exit, but not any other path. */
2445 new_exit_block = split_edge (exit);
2446 }
2447
2448 /* Insert and register the reduction exit phis. */
2449 for (gphi_iterator gsi = gsi_start_phis (exit_block);
2450 !gsi_end_p (gsi);
2451 gsi_next (&gsi))
2452 {
2453 gphi *phi = gsi.phi ();
2454 gphi *nphi = NULL;
2455 tree res_z = PHI_RESULT (phi);
2456 tree res_c;
2457
2458 if (new_exit_block != NULL)
2459 {
2460 /* Now that we have a new exit block, duplicate the phi of the old
2461 exit block in the new exit block to preserve loop-closed ssa. */
2462 edge succ_new_exit_block = single_succ_edge (new_exit_block);
2463 edge pred_new_exit_block = single_pred_edge (new_exit_block);
2464 tree res_y = copy_ssa_name (res_z, phi);
2465 nphi = create_phi_node (res_y, new_exit_block);
2466 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
2467 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
2468 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
2469 }
2470 else
2471 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2472
2473 if (virtual_operand_p (res_z))
2474 continue;
2475
2476 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
2477 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
2478 if (red != NULL)
2479 red->keep_res = (nphi != NULL
2480 ? nphi
2481 : phi);
2482 }
2483
2484 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
2485 then we're still using some fields, so only bother about fields that are
2486 still used: header and latch.
2487 The loop has a new header bb, so we update it. The latch bb stays the
2488 same. */
2489 loop->header = new_header;
2490
2491 /* Recalculate dominance info. */
2492 free_dominance_info (CDI_DOMINATORS);
2493 calculate_dominance_info (CDI_DOMINATORS);
2494
2495 checking_verify_ssa (true, true);
2496 }
2497
2498 /* Tries to moves the exit condition of LOOP to the beginning of its header
2499 without duplication of the loop body. NIT is the number of iterations of the
2500 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
2501 transformation is successful. */
2502
2503 static bool
2504 try_transform_to_exit_first_loop_alt (class loop *loop,
2505 reduction_info_table_type *reduction_list,
2506 tree nit)
2507 {
2508 /* Check whether the latch contains a single statement. */
2509 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
2510 return false;
2511
2512 /* Check whether the latch contains no phis. */
2513 if (phi_nodes (loop->latch) != NULL)
2514 return false;
2515
2516 /* Check whether the latch contains the loop iv increment. */
2517 edge back = single_succ_edge (loop->latch);
2518 edge exit = single_dom_exit (loop);
2519 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
2520 tree control = gimple_cond_lhs (cond_stmt);
2521 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
2522 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
2523 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
2524 return false;
2525
2526 /* Check whether there's no code between the loop condition and the latch. */
2527 if (!single_pred_p (loop->latch)
2528 || single_pred (loop->latch) != exit->src)
2529 return false;
2530
2531 tree alt_bound = NULL_TREE;
2532 tree nit_type = TREE_TYPE (nit);
2533
2534 /* Figure out whether nit + 1 overflows. */
2535 if (TREE_CODE (nit) == INTEGER_CST)
2536 {
2537 if (!tree_int_cst_equal (nit, TYPE_MAX_VALUE (nit_type)))
2538 {
2539 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
2540 nit, build_one_cst (nit_type));
2541
2542 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
2543 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
2544 return true;
2545 }
2546 else
2547 {
2548 /* Todo: Figure out if we can trigger this, if it's worth to handle
2549 optimally, and if we can handle it optimally. */
2550 return false;
2551 }
2552 }
2553
2554 gcc_assert (TREE_CODE (nit) == SSA_NAME);
2555
2556 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
2557 iv with base 0 and step 1 that is incremented in the latch, like this:
2558
2559 <bb header>:
2560 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
2561 ...
2562 if (iv_1 < nit)
2563 goto <bb latch>;
2564 else
2565 goto <bb exit>;
2566
2567 <bb latch>:
2568 iv_2 = iv_1 + 1;
2569 goto <bb header>;
2570
2571 The range of iv_1 is [0, nit]. The latch edge is taken for
2572 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
2573 number of latch executions is equal to nit.
2574
2575 The function max_loop_iterations gives us the maximum number of latch
2576 executions, so it gives us the maximum value of nit. */
2577 widest_int nit_max;
2578 if (!max_loop_iterations (loop, &nit_max))
2579 return false;
2580
2581 /* Check if nit + 1 overflows. */
2582 widest_int type_max = wi::to_widest (TYPE_MAX_VALUE (nit_type));
2583 if (nit_max >= type_max)
2584 return false;
2585
2586 gimple *def = SSA_NAME_DEF_STMT (nit);
2587
2588 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
2589 if (def
2590 && is_gimple_assign (def)
2591 && gimple_assign_rhs_code (def) == PLUS_EXPR)
2592 {
2593 tree op1 = gimple_assign_rhs1 (def);
2594 tree op2 = gimple_assign_rhs2 (def);
2595 if (integer_minus_onep (op1))
2596 alt_bound = op2;
2597 else if (integer_minus_onep (op2))
2598 alt_bound = op1;
2599 }
2600
2601 /* If not found, insert nit + 1. */
2602 if (alt_bound == NULL_TREE)
2603 {
2604 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
2605 build_int_cst_type (nit_type, 1));
2606
2607 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
2608
2609 alt_bound
2610 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
2611 GSI_CONTINUE_LINKING);
2612 }
2613
2614 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
2615 return true;
2616 }
2617
2618 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
2619 number of iterations of the loop. REDUCTION_LIST describes the reductions in
2620 LOOP. */
2621
2622 static void
2623 transform_to_exit_first_loop (class loop *loop,
2624 reduction_info_table_type *reduction_list,
2625 tree nit)
2626 {
2627 basic_block *bbs, *nbbs, ex_bb, orig_header;
2628 unsigned n;
2629 bool ok;
2630 edge exit = single_dom_exit (loop), hpred;
2631 tree control, control_name, res, t;
2632 gphi *phi, *nphi;
2633 gassign *stmt;
2634 gcond *cond_stmt, *cond_nit;
2635 tree nit_1;
2636
2637 split_block_after_labels (loop->header);
2638 orig_header = single_succ (loop->header);
2639 hpred = single_succ_edge (loop->header);
2640
2641 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
2642 control = gimple_cond_lhs (cond_stmt);
2643 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
2644
2645 /* Make sure that we have phi nodes on exit for all loop header phis
2646 (create_parallel_loop requires that). */
2647 for (gphi_iterator gsi = gsi_start_phis (loop->header);
2648 !gsi_end_p (gsi);
2649 gsi_next (&gsi))
2650 {
2651 phi = gsi.phi ();
2652 res = PHI_RESULT (phi);
2653 t = copy_ssa_name (res, phi);
2654 SET_PHI_RESULT (phi, t);
2655 nphi = create_phi_node (res, orig_header);
2656 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
2657
2658 if (res == control)
2659 {
2660 gimple_cond_set_lhs (cond_stmt, t);
2661 update_stmt (cond_stmt);
2662 control = t;
2663 }
2664 }
2665
2666 bbs = get_loop_body_in_dom_order (loop);
2667
2668 for (n = 0; bbs[n] != exit->src; n++)
2669 continue;
2670 nbbs = XNEWVEC (basic_block, n);
2671 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
2672 bbs + 1, n, nbbs);
2673 gcc_assert (ok);
2674 free (bbs);
2675 ex_bb = nbbs[0];
2676 free (nbbs);
2677
2678 /* Other than reductions, the only gimple reg that should be copied
2679 out of the loop is the control variable. */
2680 exit = single_dom_exit (loop);
2681 control_name = NULL_TREE;
2682 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
2683 !gsi_end_p (gsi); )
2684 {
2685 phi = gsi.phi ();
2686 res = PHI_RESULT (phi);
2687 if (virtual_operand_p (res))
2688 {
2689 gsi_next (&gsi);
2690 continue;
2691 }
2692
2693 /* Check if it is a part of reduction. If it is,
2694 keep the phi at the reduction's keep_res field. The
2695 PHI_RESULT of this phi is the resulting value of the reduction
2696 variable when exiting the loop. */
2697
2698 if (!reduction_list->is_empty ())
2699 {
2700 struct reduction_info *red;
2701
2702 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2703 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
2704 if (red)
2705 {
2706 red->keep_res = phi;
2707 gsi_next (&gsi);
2708 continue;
2709 }
2710 }
2711 gcc_assert (control_name == NULL_TREE
2712 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
2713 control_name = res;
2714 remove_phi_node (&gsi, false);
2715 }
2716 gcc_assert (control_name != NULL_TREE);
2717
2718 /* Initialize the control variable to number of iterations
2719 according to the rhs of the exit condition. */
2720 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2721 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2722 nit_1 = gimple_cond_rhs (cond_nit);
2723 nit_1 = force_gimple_operand_gsi (&gsi,
2724 fold_convert (TREE_TYPE (control_name), nit_1),
2725 false, NULL_TREE, false, GSI_SAME_STMT);
2726 stmt = gimple_build_assign (control_name, nit_1);
2727 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2728 }
2729
2730 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2731 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2732 NEW_DATA is the variable that should be initialized from the argument
2733 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2734 that number is to be determined later. */
2735
2736 static void
2737 create_parallel_loop (class loop *loop, tree loop_fn, tree data,
2738 tree new_data, unsigned n_threads, location_t loc,
2739 bool oacc_kernels_p)
2740 {
2741 gimple_stmt_iterator gsi;
2742 basic_block for_bb, ex_bb, continue_bb;
2743 tree t, param;
2744 gomp_parallel *omp_par_stmt;
2745 gimple *omp_return_stmt1, *omp_return_stmt2;
2746 gimple *phi;
2747 gcond *cond_stmt;
2748 gomp_for *for_stmt;
2749 gomp_continue *omp_cont_stmt;
2750 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2751 edge exit, nexit, guard, end, e;
2752
2753 if (oacc_kernels_p)
2754 {
2755 gcc_checking_assert (lookup_attribute ("oacc kernels",
2756 DECL_ATTRIBUTES (cfun->decl)));
2757 /* Indicate to later processing that this is a parallelized OpenACC
2758 kernels construct. */
2759 DECL_ATTRIBUTES (cfun->decl)
2760 = tree_cons (get_identifier ("oacc kernels parallelized"),
2761 NULL_TREE, DECL_ATTRIBUTES (cfun->decl));
2762 }
2763 else
2764 {
2765 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2766
2767 basic_block bb = loop_preheader_edge (loop)->src;
2768 basic_block paral_bb = single_pred (bb);
2769 gsi = gsi_last_bb (paral_bb);
2770
2771 gcc_checking_assert (n_threads != 0);
2772 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2773 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2774 = build_int_cst (integer_type_node, n_threads);
2775 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2776 gimple_set_location (omp_par_stmt, loc);
2777
2778 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2779
2780 /* Initialize NEW_DATA. */
2781 if (data)
2782 {
2783 gassign *assign_stmt;
2784
2785 gsi = gsi_after_labels (bb);
2786
2787 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2788 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2789 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2790
2791 assign_stmt = gimple_build_assign (new_data,
2792 fold_convert (TREE_TYPE (new_data), param));
2793 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2794 }
2795
2796 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2797 bb = split_loop_exit_edge (single_dom_exit (loop));
2798 gsi = gsi_last_bb (bb);
2799 omp_return_stmt1 = gimple_build_omp_return (false);
2800 gimple_set_location (omp_return_stmt1, loc);
2801 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2802 }
2803
2804 /* Extract data for GIMPLE_OMP_FOR. */
2805 gcc_assert (loop->header == single_dom_exit (loop)->src);
2806 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2807
2808 cvar = gimple_cond_lhs (cond_stmt);
2809 cvar_base = SSA_NAME_VAR (cvar);
2810 phi = SSA_NAME_DEF_STMT (cvar);
2811 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2812 initvar = copy_ssa_name (cvar);
2813 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2814 initvar);
2815 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2816
2817 gsi = gsi_last_nondebug_bb (loop->latch);
2818 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2819 gsi_remove (&gsi, true);
2820
2821 /* Prepare cfg. */
2822 for_bb = split_edge (loop_preheader_edge (loop));
2823 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2824 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2825 gcc_assert (exit == single_dom_exit (loop));
2826
2827 guard = make_edge (for_bb, ex_bb, 0);
2828 /* FIXME: What is the probability? */
2829 guard->probability = profile_probability::guessed_never ();
2830 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2831 loop->latch = split_edge (single_succ_edge (loop->latch));
2832 single_pred_edge (loop->latch)->flags = 0;
2833 end = make_single_succ_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2834 rescan_loop_exit (end, true, false);
2835
2836 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2837 !gsi_end_p (gpi); gsi_next (&gpi))
2838 {
2839 location_t locus;
2840 gphi *phi = gpi.phi ();
2841 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2842 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2843
2844 /* If the exit phi is not connected to a header phi in the same loop, this
2845 value is not modified in the loop, and we're done with this phi. */
2846 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2847 && gimple_bb (def_stmt) == loop->header))
2848 {
2849 locus = gimple_phi_arg_location_from_edge (phi, exit);
2850 add_phi_arg (phi, def, guard, locus);
2851 add_phi_arg (phi, def, end, locus);
2852 continue;
2853 }
2854
2855 gphi *stmt = as_a <gphi *> (def_stmt);
2856 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2857 locus = gimple_phi_arg_location_from_edge (stmt,
2858 loop_preheader_edge (loop));
2859 add_phi_arg (phi, def, guard, locus);
2860
2861 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2862 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2863 add_phi_arg (phi, def, end, locus);
2864 }
2865 e = redirect_edge_and_branch (exit, nexit->dest);
2866 PENDING_STMT (e) = NULL;
2867
2868 /* Emit GIMPLE_OMP_FOR. */
2869 if (oacc_kernels_p)
2870 /* Parallelized OpenACC kernels constructs use gang parallelism. See also
2871 omp-offload.c:execute_oacc_device_lower. */
2872 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2873 else
2874 {
2875 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2876 int chunk_size = param_parloops_chunk_size;
2877 switch (param_parloops_schedule)
2878 {
2879 case PARLOOPS_SCHEDULE_STATIC:
2880 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2881 break;
2882 case PARLOOPS_SCHEDULE_DYNAMIC:
2883 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2884 break;
2885 case PARLOOPS_SCHEDULE_GUIDED:
2886 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2887 break;
2888 case PARLOOPS_SCHEDULE_AUTO:
2889 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2890 chunk_size = 0;
2891 break;
2892 case PARLOOPS_SCHEDULE_RUNTIME:
2893 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2894 chunk_size = 0;
2895 break;
2896 default:
2897 gcc_unreachable ();
2898 }
2899 if (chunk_size != 0)
2900 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2901 = build_int_cst (integer_type_node, chunk_size);
2902 }
2903
2904 for_stmt = gimple_build_omp_for (NULL,
2905 (oacc_kernels_p
2906 ? GF_OMP_FOR_KIND_OACC_LOOP
2907 : GF_OMP_FOR_KIND_FOR),
2908 t, 1, NULL);
2909
2910 gimple_cond_set_lhs (cond_stmt, cvar_base);
2911 type = TREE_TYPE (cvar);
2912 gimple_set_location (for_stmt, loc);
2913 gimple_omp_for_set_index (for_stmt, 0, initvar);
2914 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2915 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2916 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2917 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2918 cvar_base,
2919 build_int_cst (type, 1)));
2920
2921 gsi = gsi_last_bb (for_bb);
2922 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2923 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2924
2925 /* Emit GIMPLE_OMP_CONTINUE. */
2926 continue_bb = single_pred (loop->latch);
2927 gsi = gsi_last_bb (continue_bb);
2928 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2929 gimple_set_location (omp_cont_stmt, loc);
2930 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2931 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2932
2933 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2934 gsi = gsi_last_bb (ex_bb);
2935 omp_return_stmt2 = gimple_build_omp_return (true);
2936 gimple_set_location (omp_return_stmt2, loc);
2937 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2938
2939 /* After the above dom info is hosed. Re-compute it. */
2940 free_dominance_info (CDI_DOMINATORS);
2941 calculate_dominance_info (CDI_DOMINATORS);
2942 }
2943
2944 /* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the
2945 virtual phi. */
2946
2947 static unsigned int
2948 num_phis (basic_block bb, bool count_virtual_p)
2949 {
2950 unsigned int nr_phis = 0;
2951 gphi_iterator gsi;
2952 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2953 {
2954 if (!count_virtual_p && virtual_operand_p (PHI_RESULT (gsi.phi ())))
2955 continue;
2956
2957 nr_phis++;
2958 }
2959
2960 return nr_phis;
2961 }
2962
2963 /* Generates code to execute the iterations of LOOP in N_THREADS
2964 threads in parallel, which can be 0 if that number is to be determined
2965 later.
2966
2967 NITER describes number of iterations of LOOP.
2968 REDUCTION_LIST describes the reductions existent in the LOOP. */
2969
2970 static void
2971 gen_parallel_loop (class loop *loop,
2972 reduction_info_table_type *reduction_list,
2973 unsigned n_threads, class tree_niter_desc *niter,
2974 bool oacc_kernels_p)
2975 {
2976 tree many_iterations_cond, type, nit;
2977 tree arg_struct, new_arg_struct;
2978 gimple_seq stmts;
2979 edge entry, exit;
2980 struct clsn_data clsn_data;
2981 location_t loc;
2982 gimple *cond_stmt;
2983 unsigned int m_p_thread=2;
2984
2985 /* From
2986
2987 ---------------------------------------------------------------------
2988 loop
2989 {
2990 IV = phi (INIT, IV + STEP)
2991 BODY1;
2992 if (COND)
2993 break;
2994 BODY2;
2995 }
2996 ---------------------------------------------------------------------
2997
2998 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2999 we generate the following code:
3000
3001 ---------------------------------------------------------------------
3002
3003 if (MAY_BE_ZERO
3004 || NITER < MIN_PER_THREAD * N_THREADS)
3005 goto original;
3006
3007 BODY1;
3008 store all local loop-invariant variables used in body of the loop to DATA.
3009 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
3010 load the variables from DATA.
3011 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
3012 BODY2;
3013 BODY1;
3014 GIMPLE_OMP_CONTINUE;
3015 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
3016 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
3017 goto end;
3018
3019 original:
3020 loop
3021 {
3022 IV = phi (INIT, IV + STEP)
3023 BODY1;
3024 if (COND)
3025 break;
3026 BODY2;
3027 }
3028
3029 end:
3030
3031 */
3032
3033 /* Create two versions of the loop -- in the old one, we know that the
3034 number of iterations is large enough, and we will transform it into the
3035 loop that will be split to loop_fn, the new one will be used for the
3036 remaining iterations. */
3037
3038 /* We should compute a better number-of-iterations value for outer loops.
3039 That is, if we have
3040
3041 for (i = 0; i < n; ++i)
3042 for (j = 0; j < m; ++j)
3043 ...
3044
3045 we should compute nit = n * m, not nit = n.
3046 Also may_be_zero handling would need to be adjusted. */
3047
3048 type = TREE_TYPE (niter->niter);
3049 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
3050 NULL_TREE);
3051 if (stmts)
3052 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
3053
3054 if (!oacc_kernels_p)
3055 {
3056 if (loop->inner)
3057 m_p_thread=2;
3058 else
3059 m_p_thread=MIN_PER_THREAD;
3060
3061 gcc_checking_assert (n_threads != 0);
3062 many_iterations_cond =
3063 fold_build2 (GE_EXPR, boolean_type_node,
3064 nit, build_int_cst (type, m_p_thread * n_threads - 1));
3065
3066 many_iterations_cond
3067 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3068 invert_truthvalue (unshare_expr (niter->may_be_zero)),
3069 many_iterations_cond);
3070 many_iterations_cond
3071 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
3072 if (stmts)
3073 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
3074 if (!is_gimple_condexpr (many_iterations_cond))
3075 {
3076 many_iterations_cond
3077 = force_gimple_operand (many_iterations_cond, &stmts,
3078 true, NULL_TREE);
3079 if (stmts)
3080 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
3081 stmts);
3082 }
3083
3084 initialize_original_copy_tables ();
3085
3086 /* We assume that the loop usually iterates a lot. */
3087 loop_version (loop, many_iterations_cond, NULL,
3088 profile_probability::likely (),
3089 profile_probability::unlikely (),
3090 profile_probability::likely (),
3091 profile_probability::unlikely (), true);
3092 update_ssa (TODO_update_ssa);
3093 free_original_copy_tables ();
3094 }
3095
3096 /* Base all the induction variables in LOOP on a single control one. */
3097 canonicalize_loop_ivs (loop, &nit, true);
3098 if (num_phis (loop->header, false) != reduction_list->elements () + 1)
3099 {
3100 /* The call to canonicalize_loop_ivs above failed to "base all the
3101 induction variables in LOOP on a single control one". Do damage
3102 control. */
3103 basic_block preheader = loop_preheader_edge (loop)->src;
3104 basic_block cond_bb = single_pred (preheader);
3105 gcond *cond = as_a <gcond *> (gsi_stmt (gsi_last_bb (cond_bb)));
3106 gimple_cond_make_true (cond);
3107 update_stmt (cond);
3108 /* We've gotten rid of the duplicate loop created by loop_version, but
3109 we can't undo whatever canonicalize_loop_ivs has done.
3110 TODO: Fix this properly by ensuring that the call to
3111 canonicalize_loop_ivs succeeds. */
3112 if (dump_file
3113 && (dump_flags & TDF_DETAILS))
3114 fprintf (dump_file, "canonicalize_loop_ivs failed for loop %d,"
3115 " aborting transformation\n", loop->num);
3116 return;
3117 }
3118
3119 /* Ensure that the exit condition is the first statement in the loop.
3120 The common case is that latch of the loop is empty (apart from the
3121 increment) and immediately follows the loop exit test. Attempt to move the
3122 entry of the loop directly before the exit check and increase the number of
3123 iterations of the loop by one. */
3124 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
3125 {
3126 if (dump_file
3127 && (dump_flags & TDF_DETAILS))
3128 fprintf (dump_file,
3129 "alternative exit-first loop transform succeeded"
3130 " for loop %d\n", loop->num);
3131 }
3132 else
3133 {
3134 if (oacc_kernels_p)
3135 n_threads = 1;
3136
3137 /* Fall back on the method that handles more cases, but duplicates the
3138 loop body: move the exit condition of LOOP to the beginning of its
3139 header, and duplicate the part of the last iteration that gets disabled
3140 to the exit of the loop. */
3141 transform_to_exit_first_loop (loop, reduction_list, nit);
3142 }
3143
3144 /* Generate initializations for reductions. */
3145 if (!reduction_list->is_empty ())
3146 reduction_list->traverse <class loop *, initialize_reductions> (loop);
3147
3148 /* Eliminate the references to local variables from the loop. */
3149 gcc_assert (single_exit (loop));
3150 entry = loop_preheader_edge (loop);
3151 exit = single_dom_exit (loop);
3152
3153 /* This rewrites the body in terms of new variables. This has already
3154 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
3155 if (!oacc_kernels_p)
3156 {
3157 eliminate_local_variables (entry, exit);
3158 /* In the old loop, move all variables non-local to the loop to a
3159 structure and back, and create separate decls for the variables used in
3160 loop. */
3161 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
3162 &new_arg_struct, &clsn_data);
3163 }
3164 else
3165 {
3166 arg_struct = NULL_TREE;
3167 new_arg_struct = NULL_TREE;
3168 clsn_data.load = NULL_TREE;
3169 clsn_data.load_bb = exit->dest;
3170 clsn_data.store = NULL_TREE;
3171 clsn_data.store_bb = NULL;
3172 }
3173
3174 /* Create the parallel constructs. */
3175 loc = UNKNOWN_LOCATION;
3176 cond_stmt = last_stmt (loop->header);
3177 if (cond_stmt)
3178 loc = gimple_location (cond_stmt);
3179 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
3180 n_threads, loc, oacc_kernels_p);
3181 if (!reduction_list->is_empty ())
3182 create_call_for_reduction (loop, reduction_list, &clsn_data);
3183
3184 scev_reset ();
3185
3186 /* Free loop bound estimations that could contain references to
3187 removed statements. */
3188 free_numbers_of_iterations_estimates (cfun);
3189 }
3190
3191 /* Returns true when LOOP contains vector phi nodes. */
3192
3193 static bool
3194 loop_has_vector_phi_nodes (class loop *loop ATTRIBUTE_UNUSED)
3195 {
3196 unsigned i;
3197 basic_block *bbs = get_loop_body_in_dom_order (loop);
3198 gphi_iterator gsi;
3199 bool res = true;
3200
3201 for (i = 0; i < loop->num_nodes; i++)
3202 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3203 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
3204 goto end;
3205
3206 res = false;
3207 end:
3208 free (bbs);
3209 return res;
3210 }
3211
3212 /* Create a reduction_info struct, initialize it with REDUC_STMT
3213 and PHI, insert it to the REDUCTION_LIST. */
3214
3215 static void
3216 build_new_reduction (reduction_info_table_type *reduction_list,
3217 gimple *reduc_stmt, gphi *phi)
3218 {
3219 reduction_info **slot;
3220 struct reduction_info *new_reduction;
3221 enum tree_code reduction_code;
3222
3223 gcc_assert (reduc_stmt);
3224
3225 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
3226 {
3227 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
3228 gimple *def1 = SSA_NAME_DEF_STMT (op1);
3229 reduction_code = gimple_assign_rhs_code (def1);
3230 }
3231 else
3232 reduction_code = gimple_assign_rhs_code (reduc_stmt);
3233 /* Check for OpenMP supported reduction. */
3234 switch (reduction_code)
3235 {
3236 case PLUS_EXPR:
3237 case MULT_EXPR:
3238 case MAX_EXPR:
3239 case MIN_EXPR:
3240 case BIT_IOR_EXPR:
3241 case BIT_XOR_EXPR:
3242 case BIT_AND_EXPR:
3243 case TRUTH_OR_EXPR:
3244 case TRUTH_XOR_EXPR:
3245 case TRUTH_AND_EXPR:
3246 break;
3247 default:
3248 return;
3249 }
3250
3251 if (dump_file && (dump_flags & TDF_DETAILS))
3252 {
3253 fprintf (dump_file,
3254 "Detected reduction. reduction stmt is:\n");
3255 print_gimple_stmt (dump_file, reduc_stmt, 0);
3256 fprintf (dump_file, "\n");
3257 }
3258
3259 new_reduction = XCNEW (struct reduction_info);
3260
3261 new_reduction->reduc_stmt = reduc_stmt;
3262 new_reduction->reduc_phi = phi;
3263 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
3264 new_reduction->reduction_code = reduction_code;
3265 slot = reduction_list->find_slot (new_reduction, INSERT);
3266 *slot = new_reduction;
3267 }
3268
3269 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
3270
3271 int
3272 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
3273 {
3274 struct reduction_info *const red = *slot;
3275 gimple_set_uid (red->reduc_phi, red->reduc_version);
3276 return 1;
3277 }
3278
3279 /* Return true if the type of reduction performed by STMT_INFO is suitable
3280 for this pass. */
3281
3282 static bool
3283 valid_reduction_p (stmt_vec_info stmt_info)
3284 {
3285 /* Parallelization would reassociate the operation, which isn't
3286 allowed for in-order reductions. */
3287 vect_reduction_type reduc_type = STMT_VINFO_REDUC_TYPE (stmt_info);
3288 return reduc_type != FOLD_LEFT_REDUCTION;
3289 }
3290
3291 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
3292
3293 static void
3294 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
3295 {
3296 gphi_iterator gsi;
3297 loop_vec_info simple_loop_info;
3298 auto_vec<gphi *, 4> double_reduc_phis;
3299 auto_vec<gimple *, 4> double_reduc_stmts;
3300
3301 vec_info_shared shared;
3302 simple_loop_info = vect_analyze_loop_form (loop, &shared);
3303 if (simple_loop_info == NULL)
3304 goto gather_done;
3305
3306 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
3307 {
3308 gphi *phi = gsi.phi ();
3309 affine_iv iv;
3310 tree res = PHI_RESULT (phi);
3311 bool double_reduc;
3312
3313 if (virtual_operand_p (res))
3314 continue;
3315
3316 if (simple_iv (loop, loop, res, &iv, true))
3317 continue;
3318
3319 stmt_vec_info reduc_stmt_info
3320 = parloops_force_simple_reduction (simple_loop_info,
3321 simple_loop_info->lookup_stmt (phi),
3322 &double_reduc, true);
3323 if (!reduc_stmt_info || !valid_reduction_p (reduc_stmt_info))
3324 continue;
3325
3326 if (double_reduc)
3327 {
3328 if (loop->inner->inner != NULL)
3329 continue;
3330
3331 double_reduc_phis.safe_push (phi);
3332 double_reduc_stmts.safe_push (reduc_stmt_info->stmt);
3333 continue;
3334 }
3335
3336 build_new_reduction (reduction_list, reduc_stmt_info->stmt, phi);
3337 }
3338 delete simple_loop_info;
3339
3340 if (!double_reduc_phis.is_empty ())
3341 {
3342 vec_info_shared shared;
3343 simple_loop_info = vect_analyze_loop_form (loop->inner, &shared);
3344 if (simple_loop_info)
3345 {
3346 gphi *phi;
3347 unsigned int i;
3348
3349 FOR_EACH_VEC_ELT (double_reduc_phis, i, phi)
3350 {
3351 affine_iv iv;
3352 tree res = PHI_RESULT (phi);
3353 bool double_reduc;
3354
3355 use_operand_p use_p;
3356 gimple *inner_stmt;
3357 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
3358 gcc_assert (single_use_p);
3359 if (gimple_code (inner_stmt) != GIMPLE_PHI)
3360 continue;
3361 gphi *inner_phi = as_a <gphi *> (inner_stmt);
3362 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
3363 &iv, true))
3364 continue;
3365
3366 stmt_vec_info inner_phi_info
3367 = simple_loop_info->lookup_stmt (inner_phi);
3368 stmt_vec_info inner_reduc_stmt_info
3369 = parloops_force_simple_reduction (simple_loop_info,
3370 inner_phi_info,
3371 &double_reduc, true);
3372 gcc_assert (!double_reduc);
3373 if (!inner_reduc_stmt_info
3374 || !valid_reduction_p (inner_reduc_stmt_info))
3375 continue;
3376
3377 build_new_reduction (reduction_list, double_reduc_stmts[i], phi);
3378 }
3379 delete simple_loop_info;
3380 }
3381 }
3382
3383 gather_done:
3384 if (reduction_list->is_empty ())
3385 return;
3386
3387 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
3388 and delete simple_loop_info, we can set gimple_uid of reduc_phi stmts only
3389 now. */
3390 basic_block bb;
3391 FOR_EACH_BB_FN (bb, cfun)
3392 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3393 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
3394 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
3395 }
3396
3397 /* Try to initialize NITER for code generation part. */
3398
3399 static bool
3400 try_get_loop_niter (loop_p loop, class tree_niter_desc *niter)
3401 {
3402 edge exit = single_dom_exit (loop);
3403
3404 gcc_assert (exit);
3405
3406 /* We need to know # of iterations, and there should be no uses of values
3407 defined inside loop outside of it, unless the values are invariants of
3408 the loop. */
3409 if (!number_of_iterations_exit (loop, exit, niter, false))
3410 {
3411 if (dump_file && (dump_flags & TDF_DETAILS))
3412 fprintf (dump_file, " FAILED: number of iterations not known\n");
3413 return false;
3414 }
3415
3416 return true;
3417 }
3418
3419 /* Return the default def of the first function argument. */
3420
3421 static tree
3422 get_omp_data_i_param (void)
3423 {
3424 tree decl = DECL_ARGUMENTS (cfun->decl);
3425 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
3426 return ssa_default_def (cfun, decl);
3427 }
3428
3429 /* For PHI in loop header of LOOP, look for pattern:
3430
3431 <bb preheader>
3432 .omp_data_i = &.omp_data_arr;
3433 addr = .omp_data_i->sum;
3434 sum_a = *addr;
3435
3436 <bb header>:
3437 sum_b = PHI <sum_a (preheader), sum_c (latch)>
3438
3439 and return addr. Otherwise, return NULL_TREE. */
3440
3441 static tree
3442 find_reduc_addr (class loop *loop, gphi *phi)
3443 {
3444 edge e = loop_preheader_edge (loop);
3445 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
3446 gimple *stmt = SSA_NAME_DEF_STMT (arg);
3447 if (!gimple_assign_single_p (stmt))
3448 return NULL_TREE;
3449 tree memref = gimple_assign_rhs1 (stmt);
3450 if (TREE_CODE (memref) != MEM_REF)
3451 return NULL_TREE;
3452 tree addr = TREE_OPERAND (memref, 0);
3453
3454 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
3455 if (!gimple_assign_single_p (stmt2))
3456 return NULL_TREE;
3457 tree compref = gimple_assign_rhs1 (stmt2);
3458 if (TREE_CODE (compref) != COMPONENT_REF)
3459 return NULL_TREE;
3460 tree addr2 = TREE_OPERAND (compref, 0);
3461 if (TREE_CODE (addr2) != MEM_REF)
3462 return NULL_TREE;
3463 addr2 = TREE_OPERAND (addr2, 0);
3464 if (TREE_CODE (addr2) != SSA_NAME
3465 || addr2 != get_omp_data_i_param ())
3466 return NULL_TREE;
3467
3468 return addr;
3469 }
3470
3471 /* Try to initialize REDUCTION_LIST for code generation part.
3472 REDUCTION_LIST describes the reductions. */
3473
3474 static bool
3475 try_create_reduction_list (loop_p loop,
3476 reduction_info_table_type *reduction_list,
3477 bool oacc_kernels_p)
3478 {
3479 edge exit = single_dom_exit (loop);
3480 gphi_iterator gsi;
3481
3482 gcc_assert (exit);
3483
3484 /* Try to get rid of exit phis. */
3485 final_value_replacement_loop (loop);
3486
3487 gather_scalar_reductions (loop, reduction_list);
3488
3489
3490 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3491 {
3492 gphi *phi = gsi.phi ();
3493 struct reduction_info *red;
3494 imm_use_iterator imm_iter;
3495 use_operand_p use_p;
3496 gimple *reduc_phi;
3497 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3498
3499 if (!virtual_operand_p (val))
3500 {
3501 if (TREE_CODE (val) != SSA_NAME)
3502 {
3503 if (dump_file && (dump_flags & TDF_DETAILS))
3504 fprintf (dump_file,
3505 " FAILED: exit PHI argument invariant.\n");
3506 return false;
3507 }
3508
3509 if (dump_file && (dump_flags & TDF_DETAILS))
3510 {
3511 fprintf (dump_file, "phi is ");
3512 print_gimple_stmt (dump_file, phi, 0);
3513 fprintf (dump_file, "arg of phi to exit: value ");
3514 print_generic_expr (dump_file, val);
3515 fprintf (dump_file, " used outside loop\n");
3516 fprintf (dump_file,
3517 " checking if it is part of reduction pattern:\n");
3518 }
3519 if (reduction_list->is_empty ())
3520 {
3521 if (dump_file && (dump_flags & TDF_DETAILS))
3522 fprintf (dump_file,
3523 " FAILED: it is not a part of reduction.\n");
3524 return false;
3525 }
3526 reduc_phi = NULL;
3527 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
3528 {
3529 if (!gimple_debug_bind_p (USE_STMT (use_p))
3530 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3531 {
3532 reduc_phi = USE_STMT (use_p);
3533 break;
3534 }
3535 }
3536 red = reduction_phi (reduction_list, reduc_phi);
3537 if (red == NULL)
3538 {
3539 if (dump_file && (dump_flags & TDF_DETAILS))
3540 fprintf (dump_file,
3541 " FAILED: it is not a part of reduction.\n");
3542 return false;
3543 }
3544 if (red->keep_res != NULL)
3545 {
3546 if (dump_file && (dump_flags & TDF_DETAILS))
3547 fprintf (dump_file,
3548 " FAILED: reduction has multiple exit phis.\n");
3549 return false;
3550 }
3551 red->keep_res = phi;
3552 if (dump_file && (dump_flags & TDF_DETAILS))
3553 {
3554 fprintf (dump_file, "reduction phi is ");
3555 print_gimple_stmt (dump_file, red->reduc_phi, 0);
3556 fprintf (dump_file, "reduction stmt is ");
3557 print_gimple_stmt (dump_file, red->reduc_stmt, 0);
3558 }
3559 }
3560 }
3561
3562 /* The iterations of the loop may communicate only through bivs whose
3563 iteration space can be distributed efficiently. */
3564 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
3565 {
3566 gphi *phi = gsi.phi ();
3567 tree def = PHI_RESULT (phi);
3568 affine_iv iv;
3569
3570 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
3571 {
3572 struct reduction_info *red;
3573
3574 red = reduction_phi (reduction_list, phi);
3575 if (red == NULL)
3576 {
3577 if (dump_file && (dump_flags & TDF_DETAILS))
3578 fprintf (dump_file,
3579 " FAILED: scalar dependency between iterations\n");
3580 return false;
3581 }
3582 }
3583 }
3584
3585 if (oacc_kernels_p)
3586 {
3587 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
3588 gsi_next (&gsi))
3589 {
3590 gphi *phi = gsi.phi ();
3591 tree def = PHI_RESULT (phi);
3592 affine_iv iv;
3593
3594 if (!virtual_operand_p (def)
3595 && !simple_iv (loop, loop, def, &iv, true))
3596 {
3597 tree addr = find_reduc_addr (loop, phi);
3598 if (addr == NULL_TREE)
3599 return false;
3600 struct reduction_info *red = reduction_phi (reduction_list, phi);
3601 red->reduc_addr = addr;
3602 }
3603 }
3604 }
3605
3606 return true;
3607 }
3608
3609 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
3610
3611 static bool
3612 loop_has_phi_with_address_arg (class loop *loop)
3613 {
3614 basic_block *bbs = get_loop_body (loop);
3615 bool res = false;
3616
3617 unsigned i, j;
3618 gphi_iterator gsi;
3619 for (i = 0; i < loop->num_nodes; i++)
3620 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3621 {
3622 gphi *phi = gsi.phi ();
3623 for (j = 0; j < gimple_phi_num_args (phi); j++)
3624 {
3625 tree arg = gimple_phi_arg_def (phi, j);
3626 if (TREE_CODE (arg) == ADDR_EXPR)
3627 {
3628 /* This should be handled by eliminate_local_variables, but that
3629 function currently ignores phis. */
3630 res = true;
3631 goto end;
3632 }
3633 }
3634 }
3635 end:
3636 free (bbs);
3637
3638 return res;
3639 }
3640
3641 /* Return true if memory ref REF (corresponding to the stmt at GSI in
3642 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
3643 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
3644 store. Ignore conflicts with SKIP_STMT. */
3645
3646 static bool
3647 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
3648 bool ref_is_store, vec<basic_block> region_bbs,
3649 unsigned int i, gimple *skip_stmt)
3650 {
3651 basic_block bb = region_bbs[i];
3652 gsi_next (&gsi);
3653
3654 while (true)
3655 {
3656 for (; !gsi_end_p (gsi);
3657 gsi_next (&gsi))
3658 {
3659 gimple *stmt = gsi_stmt (gsi);
3660 if (stmt == skip_stmt)
3661 {
3662 if (dump_file)
3663 {
3664 fprintf (dump_file, "skipping reduction store: ");
3665 print_gimple_stmt (dump_file, stmt, 0);
3666 }
3667 continue;
3668 }
3669
3670 if (!gimple_vdef (stmt)
3671 && !gimple_vuse (stmt))
3672 continue;
3673
3674 if (gimple_code (stmt) == GIMPLE_RETURN)
3675 continue;
3676
3677 if (ref_is_store)
3678 {
3679 if (ref_maybe_used_by_stmt_p (stmt, ref))
3680 {
3681 if (dump_file)
3682 {
3683 fprintf (dump_file, "Stmt ");
3684 print_gimple_stmt (dump_file, stmt, 0);
3685 }
3686 return true;
3687 }
3688 }
3689 else
3690 {
3691 if (stmt_may_clobber_ref_p_1 (stmt, ref))
3692 {
3693 if (dump_file)
3694 {
3695 fprintf (dump_file, "Stmt ");
3696 print_gimple_stmt (dump_file, stmt, 0);
3697 }
3698 return true;
3699 }
3700 }
3701 }
3702 i++;
3703 if (i == region_bbs.length ())
3704 break;
3705 bb = region_bbs[i];
3706 gsi = gsi_start_bb (bb);
3707 }
3708
3709 return false;
3710 }
3711
3712 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
3713 in parallel with REGION_BBS containing the loop. Return the stores of
3714 reduction results in REDUCTION_STORES. */
3715
3716 static bool
3717 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3718 reduction_info_table_type *reduction_list,
3719 bitmap reduction_stores)
3720 {
3721 tree omp_data_i = get_omp_data_i_param ();
3722
3723 unsigned i;
3724 basic_block bb;
3725 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3726 {
3727 if (bitmap_bit_p (in_loop_bbs, bb->index))
3728 continue;
3729
3730 gimple_stmt_iterator gsi;
3731 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3732 gsi_next (&gsi))
3733 {
3734 gimple *stmt = gsi_stmt (gsi);
3735 gimple *skip_stmt = NULL;
3736
3737 if (is_gimple_debug (stmt)
3738 || gimple_code (stmt) == GIMPLE_COND)
3739 continue;
3740
3741 ao_ref ref;
3742 bool ref_is_store = false;
3743 if (gimple_assign_load_p (stmt))
3744 {
3745 tree rhs = gimple_assign_rhs1 (stmt);
3746 tree base = get_base_address (rhs);
3747 if (TREE_CODE (base) == MEM_REF
3748 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
3749 continue;
3750
3751 tree lhs = gimple_assign_lhs (stmt);
3752 if (TREE_CODE (lhs) == SSA_NAME
3753 && has_single_use (lhs))
3754 {
3755 use_operand_p use_p;
3756 gimple *use_stmt;
3757 struct reduction_info *red;
3758 single_imm_use (lhs, &use_p, &use_stmt);
3759 if (gimple_code (use_stmt) == GIMPLE_PHI
3760 && (red = reduction_phi (reduction_list, use_stmt)))
3761 {
3762 tree val = PHI_RESULT (red->keep_res);
3763 if (has_single_use (val))
3764 {
3765 single_imm_use (val, &use_p, &use_stmt);
3766 if (gimple_store_p (use_stmt))
3767 {
3768 unsigned int id
3769 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
3770 bitmap_set_bit (reduction_stores, id);
3771 skip_stmt = use_stmt;
3772 if (dump_file)
3773 {
3774 fprintf (dump_file, "found reduction load: ");
3775 print_gimple_stmt (dump_file, stmt, 0);
3776 }
3777 }
3778 }
3779 }
3780 }
3781
3782 ao_ref_init (&ref, rhs);
3783 }
3784 else if (gimple_store_p (stmt))
3785 {
3786 ao_ref_init (&ref, gimple_assign_lhs (stmt));
3787 ref_is_store = true;
3788 }
3789 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
3790 continue;
3791 else if (!gimple_has_side_effects (stmt)
3792 && !gimple_could_trap_p (stmt)
3793 && !stmt_could_throw_p (cfun, stmt)
3794 && !gimple_vdef (stmt)
3795 && !gimple_vuse (stmt))
3796 continue;
3797 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
3798 continue;
3799 else if (gimple_code (stmt) == GIMPLE_RETURN)
3800 continue;
3801 else
3802 {
3803 if (dump_file)
3804 {
3805 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3806 print_gimple_stmt (dump_file, stmt, 0);
3807 }
3808 return false;
3809 }
3810
3811 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3812 i, skip_stmt))
3813 {
3814 if (dump_file)
3815 {
3816 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3817 print_gimple_stmt (dump_file, stmt, 0);
3818 }
3819 return false;
3820 }
3821 }
3822 }
3823
3824 return true;
3825 }
3826
3827 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3828 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3829 if any changes were made. */
3830
3831 static bool
3832 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3833 bitmap reduction_stores)
3834 {
3835 tree gang_pos = NULL_TREE;
3836 bool changed = false;
3837
3838 unsigned i;
3839 basic_block bb;
3840 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3841 {
3842 if (bitmap_bit_p (in_loop_bbs, bb->index))
3843 continue;
3844
3845 gimple_stmt_iterator gsi;
3846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3847 {
3848 gimple *stmt = gsi_stmt (gsi);
3849
3850 if (!gimple_store_p (stmt))
3851 {
3852 /* Update gsi to point to next stmt. */
3853 gsi_next (&gsi);
3854 continue;
3855 }
3856
3857 if (bitmap_bit_p (reduction_stores,
3858 SSA_NAME_VERSION (gimple_vdef (stmt))))
3859 {
3860 if (dump_file)
3861 {
3862 fprintf (dump_file,
3863 "skipped reduction store for single-gang"
3864 " neutering: ");
3865 print_gimple_stmt (dump_file, stmt, 0);
3866 }
3867
3868 /* Update gsi to point to next stmt. */
3869 gsi_next (&gsi);
3870 continue;
3871 }
3872
3873 changed = true;
3874
3875 if (gang_pos == NULL_TREE)
3876 {
3877 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3878 gcall *gang_single
3879 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3880 gang_pos = make_ssa_name (integer_type_node);
3881 gimple_call_set_lhs (gang_single, gang_pos);
3882 gimple_stmt_iterator start
3883 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3884 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3885 gimple_set_vuse (gang_single, vuse);
3886 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3887 }
3888
3889 if (dump_file)
3890 {
3891 fprintf (dump_file,
3892 "found store that needs single-gang neutering: ");
3893 print_gimple_stmt (dump_file, stmt, 0);
3894 }
3895
3896 {
3897 /* Split block before store. */
3898 gimple_stmt_iterator gsi2 = gsi;
3899 gsi_prev (&gsi2);
3900 edge e;
3901 if (gsi_end_p (gsi2))
3902 {
3903 e = split_block_after_labels (bb);
3904 gsi2 = gsi_last_bb (bb);
3905 }
3906 else
3907 e = split_block (bb, gsi_stmt (gsi2));
3908 basic_block bb2 = e->dest;
3909
3910 /* Split block after store. */
3911 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3912 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3913 basic_block bb3 = e2->dest;
3914
3915 gimple *cond
3916 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3917 NULL_TREE, NULL_TREE);
3918 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3919
3920 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3921 /* FIXME: What is the probability? */
3922 e3->probability = profile_probability::guessed_never ();
3923 e->flags = EDGE_TRUE_VALUE;
3924
3925 tree vdef = gimple_vdef (stmt);
3926 tree vuse = gimple_vuse (stmt);
3927
3928 tree phi_res = copy_ssa_name (vdef);
3929 gphi *new_phi = create_phi_node (phi_res, bb3);
3930 replace_uses_by (vdef, phi_res);
3931 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3932 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3933
3934 /* Update gsi to point to next stmt. */
3935 bb = bb3;
3936 gsi = gsi_start_bb (bb);
3937 }
3938 }
3939 }
3940
3941 return changed;
3942 }
3943
3944 /* Return true if the statements before and after the LOOP can be executed in
3945 parallel with the function containing the loop. Resolve conflicting stores
3946 outside LOOP by guarding them such that only a single gang executes them. */
3947
3948 static bool
3949 oacc_entry_exit_ok (class loop *loop,
3950 reduction_info_table_type *reduction_list)
3951 {
3952 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3953 vec<basic_block> region_bbs
3954 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3955
3956 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3957 bitmap_clear (in_loop_bbs);
3958 for (unsigned int i = 0; i < loop->num_nodes; i++)
3959 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3960
3961 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3962 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3963 reduction_stores);
3964
3965 if (res)
3966 {
3967 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3968 reduction_stores);
3969 if (changed)
3970 {
3971 free_dominance_info (CDI_DOMINATORS);
3972 calculate_dominance_info (CDI_DOMINATORS);
3973 }
3974 }
3975
3976 region_bbs.release ();
3977 free (loop_bbs);
3978
3979 BITMAP_FREE (in_loop_bbs);
3980 BITMAP_FREE (reduction_stores);
3981
3982 return res;
3983 }
3984
3985 /* Detect parallel loops and generate parallel code using libgomp
3986 primitives. Returns true if some loop was parallelized, false
3987 otherwise. */
3988
3989 static bool
3990 parallelize_loops (bool oacc_kernels_p)
3991 {
3992 unsigned n_threads;
3993 bool changed = false;
3994 class loop *loop;
3995 class loop *skip_loop = NULL;
3996 class tree_niter_desc niter_desc;
3997 struct obstack parloop_obstack;
3998 HOST_WIDE_INT estimated;
3999
4000 /* Do not parallelize loops in the functions created by parallelization. */
4001 if (!oacc_kernels_p
4002 && parallelized_function_p (cfun->decl))
4003 return false;
4004
4005 /* Do not parallelize loops in offloaded functions. */
4006 if (!oacc_kernels_p
4007 && oacc_get_fn_attrib (cfun->decl) != NULL)
4008 return false;
4009
4010 if (cfun->has_nonlocal_label)
4011 return false;
4012
4013 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
4014 the argument to -ftree-parallelize-loops. */
4015 if (oacc_kernels_p)
4016 n_threads = 0;
4017 else
4018 n_threads = flag_tree_parallelize_loops;
4019
4020 gcc_obstack_init (&parloop_obstack);
4021 reduction_info_table_type reduction_list (10);
4022
4023 calculate_dominance_info (CDI_DOMINATORS);
4024
4025 FOR_EACH_LOOP (loop, 0)
4026 {
4027 if (loop == skip_loop)
4028 {
4029 if (!loop->in_oacc_kernels_region
4030 && dump_file && (dump_flags & TDF_DETAILS))
4031 fprintf (dump_file,
4032 "Skipping loop %d as inner loop of parallelized loop\n",
4033 loop->num);
4034
4035 skip_loop = loop->inner;
4036 continue;
4037 }
4038 else
4039 skip_loop = NULL;
4040
4041 reduction_list.empty ();
4042
4043 if (oacc_kernels_p)
4044 {
4045 if (!loop->in_oacc_kernels_region)
4046 continue;
4047
4048 /* Don't try to parallelize inner loops in an oacc kernels region. */
4049 if (loop->inner)
4050 skip_loop = loop->inner;
4051
4052 if (dump_file && (dump_flags & TDF_DETAILS))
4053 fprintf (dump_file,
4054 "Trying loop %d with header bb %d in oacc kernels"
4055 " region\n", loop->num, loop->header->index);
4056 }
4057
4058 if (dump_file && (dump_flags & TDF_DETAILS))
4059 {
4060 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
4061 if (loop->inner)
4062 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
4063 else
4064 fprintf (dump_file, "loop %d is innermost\n",loop->num);
4065 }
4066
4067 if (!single_dom_exit (loop))
4068 {
4069
4070 if (dump_file && (dump_flags & TDF_DETAILS))
4071 fprintf (dump_file, "loop is !single_dom_exit\n");
4072
4073 continue;
4074 }
4075
4076 if (/* And of course, the loop must be parallelizable. */
4077 !can_duplicate_loop_p (loop)
4078 || loop_has_blocks_with_irreducible_flag (loop)
4079 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
4080 /* FIXME: the check for vector phi nodes could be removed. */
4081 || loop_has_vector_phi_nodes (loop))
4082 continue;
4083
4084 estimated = estimated_loop_iterations_int (loop);
4085 if (estimated == -1)
4086 estimated = get_likely_max_loop_iterations_int (loop);
4087 /* FIXME: Bypass this check as graphite doesn't update the
4088 count and frequency correctly now. */
4089 if (!flag_loop_parallelize_all
4090 && !oacc_kernels_p
4091 && ((estimated != -1
4092 && (estimated
4093 < ((HOST_WIDE_INT) n_threads
4094 * (loop->inner ? 2 : MIN_PER_THREAD) - 1)))
4095 /* Do not bother with loops in cold areas. */
4096 || optimize_loop_nest_for_size_p (loop)))
4097 continue;
4098
4099 if (!try_get_loop_niter (loop, &niter_desc))
4100 continue;
4101
4102 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
4103 continue;
4104
4105 if (loop_has_phi_with_address_arg (loop))
4106 continue;
4107
4108 if (!loop->can_be_parallel
4109 && !loop_parallel_p (loop, &parloop_obstack))
4110 continue;
4111
4112 if (oacc_kernels_p
4113 && !oacc_entry_exit_ok (loop, &reduction_list))
4114 {
4115 if (dump_file)
4116 fprintf (dump_file, "entry/exit not ok: FAILED\n");
4117 continue;
4118 }
4119
4120 changed = true;
4121 skip_loop = loop->inner;
4122
4123 if (dump_enabled_p ())
4124 {
4125 dump_user_location_t loop_loc = find_loop_location (loop);
4126 if (loop->inner)
4127 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
4128 "parallelizing outer loop %d\n", loop->num);
4129 else
4130 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
4131 "parallelizing inner loop %d\n", loop->num);
4132 }
4133
4134 gen_parallel_loop (loop, &reduction_list,
4135 n_threads, &niter_desc, oacc_kernels_p);
4136 }
4137
4138 obstack_free (&parloop_obstack, NULL);
4139
4140 /* Parallelization will cause new function calls to be inserted through
4141 which local variables will escape. Reset the points-to solution
4142 for ESCAPED. */
4143 if (changed)
4144 pt_solution_reset (&cfun->gimple_df->escaped);
4145
4146 return changed;
4147 }
4148
4149 /* Parallelization. */
4150
4151 namespace {
4152
4153 const pass_data pass_data_parallelize_loops =
4154 {
4155 GIMPLE_PASS, /* type */
4156 "parloops", /* name */
4157 OPTGROUP_LOOP, /* optinfo_flags */
4158 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
4159 ( PROP_cfg | PROP_ssa ), /* properties_required */
4160 0, /* properties_provided */
4161 0, /* properties_destroyed */
4162 0, /* todo_flags_start */
4163 0, /* todo_flags_finish */
4164 };
4165
4166 class pass_parallelize_loops : public gimple_opt_pass
4167 {
4168 public:
4169 pass_parallelize_loops (gcc::context *ctxt)
4170 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
4171 oacc_kernels_p (false)
4172 {}
4173
4174 /* opt_pass methods: */
4175 virtual bool gate (function *)
4176 {
4177 if (oacc_kernels_p)
4178 return flag_openacc;
4179 else
4180 return flag_tree_parallelize_loops > 1;
4181 }
4182 virtual unsigned int execute (function *);
4183 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
4184 void set_pass_param (unsigned int n, bool param)
4185 {
4186 gcc_assert (n == 0);
4187 oacc_kernels_p = param;
4188 }
4189
4190 private:
4191 bool oacc_kernels_p;
4192 }; // class pass_parallelize_loops
4193
4194 unsigned
4195 pass_parallelize_loops::execute (function *fun)
4196 {
4197 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
4198 if (nthreads == NULL_TREE)
4199 return 0;
4200
4201 bool in_loop_pipeline = scev_initialized_p ();
4202 if (!in_loop_pipeline)
4203 loop_optimizer_init (LOOPS_NORMAL
4204 | LOOPS_HAVE_RECORDED_EXITS);
4205
4206 if (number_of_loops (fun) <= 1)
4207 return 0;
4208
4209 if (!in_loop_pipeline)
4210 {
4211 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
4212 scev_initialize ();
4213 }
4214
4215 unsigned int todo = 0;
4216 if (parallelize_loops (oacc_kernels_p))
4217 {
4218 fun->curr_properties &= ~(PROP_gimple_eomp);
4219
4220 checking_verify_loop_structure ();
4221
4222 todo |= TODO_update_ssa;
4223 }
4224
4225 if (!in_loop_pipeline)
4226 {
4227 scev_finalize ();
4228 loop_optimizer_finalize ();
4229 }
4230
4231 return todo;
4232 }
4233
4234 } // anon namespace
4235
4236 gimple_opt_pass *
4237 make_pass_parallelize_loops (gcc::context *ctxt)
4238 {
4239 return new pass_parallelize_loops (ctxt);
4240 }