]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-parloops.c
Make create_parallel_loop return void
[thirdparty/gcc.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-low.h"
53 #include "tree-ssa.h"
54 #include "params.h"
55 #include "params-enum.h"
56
57 /* This pass tries to distribute iterations of loops into several threads.
58 The implementation is straightforward -- for each loop we test whether its
59 iterations are independent, and if it is the case (and some additional
60 conditions regarding profitability and correctness are satisfied), we
61 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
62 machinery do its job.
63
64 The most of the complexity is in bringing the code into shape expected
65 by the omp expanders:
66 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
67 variable and that the exit test is at the start of the loop body
68 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
69 variables by accesses through pointers, and breaking up ssa chains
70 by storing the values incoming to the parallelized loop to a structure
71 passed to the new function as an argument (something similar is done
72 in omp gimplification, unfortunately only a small part of the code
73 can be shared).
74
75 TODO:
76 -- if there are several parallelizable loops in a function, it may be
77 possible to generate the threads just once (using synchronization to
78 ensure that cross-loop dependences are obeyed).
79 -- handling of common reduction patterns for outer loops.
80
81 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
82 /*
83 Reduction handling:
84 currently we use vect_force_simple_reduction() to detect reduction patterns.
85 The code transformation will be introduced by an example.
86
87
88 parloop
89 {
90 int sum=1;
91
92 for (i = 0; i < N; i++)
93 {
94 x[i] = i + 3;
95 sum+=x[i];
96 }
97 }
98
99 gimple-like code:
100 header_bb:
101
102 # sum_29 = PHI <sum_11(5), 1(3)>
103 # i_28 = PHI <i_12(5), 0(3)>
104 D.1795_8 = i_28 + 3;
105 x[i_28] = D.1795_8;
106 sum_11 = D.1795_8 + sum_29;
107 i_12 = i_28 + 1;
108 if (N_6(D) > i_12)
109 goto header_bb;
110
111
112 exit_bb:
113
114 # sum_21 = PHI <sum_11(4)>
115 printf (&"%d"[0], sum_21);
116
117
118 after reduction transformation (only relevant parts):
119
120 parloop
121 {
122
123 ....
124
125
126 # Storing the initial value given by the user. #
127
128 .paral_data_store.32.sum.27 = 1;
129
130 #pragma omp parallel num_threads(4)
131
132 #pragma omp for schedule(static)
133
134 # The neutral element corresponding to the particular
135 reduction's operation, e.g. 0 for PLUS_EXPR,
136 1 for MULT_EXPR, etc. replaces the user's initial value. #
137
138 # sum.27_29 = PHI <sum.27_11, 0>
139
140 sum.27_11 = D.1827_8 + sum.27_29;
141
142 GIMPLE_OMP_CONTINUE
143
144 # Adding this reduction phi is done at create_phi_for_local_result() #
145 # sum.27_56 = PHI <sum.27_11, 0>
146 GIMPLE_OMP_RETURN
147
148 # Creating the atomic operation is done at
149 create_call_for_reduction_1() #
150
151 #pragma omp atomic_load
152 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
153 D.1840_60 = sum.27_56 + D.1839_59;
154 #pragma omp atomic_store (D.1840_60);
155
156 GIMPLE_OMP_RETURN
157
158 # collecting the result after the join of the threads is done at
159 create_loads_for_reductions().
160 The value computed by the threads is loaded from the
161 shared struct. #
162
163
164 .paral_data_load.33_52 = &.paral_data_store.32;
165 sum_37 = .paral_data_load.33_52->sum.27;
166 sum_43 = D.1795_41 + sum_37;
167
168 exit bb:
169 # sum_21 = PHI <sum_43, sum_26>
170 printf (&"%d"[0], sum_21);
171
172 ...
173
174 }
175
176 */
177
178 /* Minimal number of iterations of a loop that should be executed in each
179 thread. */
180 #define MIN_PER_THREAD 100
181
182 /* Element of the hashtable, representing a
183 reduction in the current loop. */
184 struct reduction_info
185 {
186 gimple *reduc_stmt; /* reduction statement. */
187 gimple *reduc_phi; /* The phi node defining the reduction. */
188 enum tree_code reduction_code;/* code for the reduction operation. */
189 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
190 result. */
191 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
192 of the reduction variable when existing the loop. */
193 tree initial_value; /* The initial value of the reduction var before entering the loop. */
194 tree field; /* the name of the field in the parloop data structure intended for reduction. */
195 tree init; /* reduction initialization value. */
196 gphi *new_phi; /* (helper field) Newly created phi node whose result
197 will be passed to the atomic operation. Represents
198 the local result each thread computed for the reduction
199 operation. */
200 };
201
202 /* Reduction info hashtable helpers. */
203
204 struct reduction_hasher : free_ptr_hash <reduction_info>
205 {
206 static inline hashval_t hash (const reduction_info *);
207 static inline bool equal (const reduction_info *, const reduction_info *);
208 };
209
210 /* Equality and hash functions for hashtab code. */
211
212 inline bool
213 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
214 {
215 return (a->reduc_phi == b->reduc_phi);
216 }
217
218 inline hashval_t
219 reduction_hasher::hash (const reduction_info *a)
220 {
221 return a->reduc_version;
222 }
223
224 typedef hash_table<reduction_hasher> reduction_info_table_type;
225
226
227 static struct reduction_info *
228 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
229 {
230 struct reduction_info tmpred, *red;
231
232 if (reduction_list->elements () == 0 || phi == NULL)
233 return NULL;
234
235 if (gimple_uid (phi) == (unsigned int)-1
236 || gimple_uid (phi) == 0)
237 return NULL;
238
239 tmpred.reduc_phi = phi;
240 tmpred.reduc_version = gimple_uid (phi);
241 red = reduction_list->find (&tmpred);
242 gcc_assert (red == NULL || red->reduc_phi == phi);
243
244 return red;
245 }
246
247 /* Element of hashtable of names to copy. */
248
249 struct name_to_copy_elt
250 {
251 unsigned version; /* The version of the name to copy. */
252 tree new_name; /* The new name used in the copy. */
253 tree field; /* The field of the structure used to pass the
254 value. */
255 };
256
257 /* Name copies hashtable helpers. */
258
259 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
260 {
261 static inline hashval_t hash (const name_to_copy_elt *);
262 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
263 };
264
265 /* Equality and hash functions for hashtab code. */
266
267 inline bool
268 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
269 {
270 return a->version == b->version;
271 }
272
273 inline hashval_t
274 name_to_copy_hasher::hash (const name_to_copy_elt *a)
275 {
276 return (hashval_t) a->version;
277 }
278
279 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
280
281 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
282 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
283 represents the denominator for every element in the matrix. */
284 typedef struct lambda_trans_matrix_s
285 {
286 lambda_matrix matrix;
287 int rowsize;
288 int colsize;
289 int denominator;
290 } *lambda_trans_matrix;
291 #define LTM_MATRIX(T) ((T)->matrix)
292 #define LTM_ROWSIZE(T) ((T)->rowsize)
293 #define LTM_COLSIZE(T) ((T)->colsize)
294 #define LTM_DENOMINATOR(T) ((T)->denominator)
295
296 /* Allocate a new transformation matrix. */
297
298 static lambda_trans_matrix
299 lambda_trans_matrix_new (int colsize, int rowsize,
300 struct obstack * lambda_obstack)
301 {
302 lambda_trans_matrix ret;
303
304 ret = (lambda_trans_matrix)
305 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
306 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
307 LTM_ROWSIZE (ret) = rowsize;
308 LTM_COLSIZE (ret) = colsize;
309 LTM_DENOMINATOR (ret) = 1;
310 return ret;
311 }
312
313 /* Multiply a vector VEC by a matrix MAT.
314 MAT is an M*N matrix, and VEC is a vector with length N. The result
315 is stored in DEST which must be a vector of length M. */
316
317 static void
318 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
319 lambda_vector vec, lambda_vector dest)
320 {
321 int i, j;
322
323 lambda_vector_clear (dest, m);
324 for (i = 0; i < m; i++)
325 for (j = 0; j < n; j++)
326 dest[i] += matrix[i][j] * vec[j];
327 }
328
329 /* Return true if TRANS is a legal transformation matrix that respects
330 the dependence vectors in DISTS and DIRS. The conservative answer
331 is false.
332
333 "Wolfe proves that a unimodular transformation represented by the
334 matrix T is legal when applied to a loop nest with a set of
335 lexicographically non-negative distance vectors RDG if and only if
336 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
337 i.e.: if and only if it transforms the lexicographically positive
338 distance vectors to lexicographically positive vectors. Note that
339 a unimodular matrix must transform the zero vector (and only it) to
340 the zero vector." S.Muchnick. */
341
342 static bool
343 lambda_transform_legal_p (lambda_trans_matrix trans,
344 int nb_loops,
345 vec<ddr_p> dependence_relations)
346 {
347 unsigned int i, j;
348 lambda_vector distres;
349 struct data_dependence_relation *ddr;
350
351 gcc_assert (LTM_COLSIZE (trans) == nb_loops
352 && LTM_ROWSIZE (trans) == nb_loops);
353
354 /* When there are no dependences, the transformation is correct. */
355 if (dependence_relations.length () == 0)
356 return true;
357
358 ddr = dependence_relations[0];
359 if (ddr == NULL)
360 return true;
361
362 /* When there is an unknown relation in the dependence_relations, we
363 know that it is no worth looking at this loop nest: give up. */
364 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
365 return false;
366
367 distres = lambda_vector_new (nb_loops);
368
369 /* For each distance vector in the dependence graph. */
370 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
371 {
372 /* Don't care about relations for which we know that there is no
373 dependence, nor about read-read (aka. output-dependences):
374 these data accesses can happen in any order. */
375 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
376 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
377 continue;
378
379 /* Conservatively answer: "this transformation is not valid". */
380 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
381 return false;
382
383 /* If the dependence could not be captured by a distance vector,
384 conservatively answer that the transform is not valid. */
385 if (DDR_NUM_DIST_VECTS (ddr) == 0)
386 return false;
387
388 /* Compute trans.dist_vect */
389 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
390 {
391 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
392 DDR_DIST_VECT (ddr, j), distres);
393
394 if (!lambda_vector_lexico_pos (distres, nb_loops))
395 return false;
396 }
397 }
398 return true;
399 }
400
401 /* Data dependency analysis. Returns true if the iterations of LOOP
402 are independent on each other (that is, if we can execute them
403 in parallel). */
404
405 static bool
406 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
407 {
408 vec<ddr_p> dependence_relations;
409 vec<data_reference_p> datarefs;
410 lambda_trans_matrix trans;
411 bool ret = false;
412
413 if (dump_file && (dump_flags & TDF_DETAILS))
414 {
415 fprintf (dump_file, "Considering loop %d\n", loop->num);
416 if (!loop->inner)
417 fprintf (dump_file, "loop is innermost\n");
418 else
419 fprintf (dump_file, "loop NOT innermost\n");
420 }
421
422 /* Check for problems with dependences. If the loop can be reversed,
423 the iterations are independent. */
424 auto_vec<loop_p, 3> loop_nest;
425 datarefs.create (10);
426 dependence_relations.create (100);
427 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
428 &dependence_relations))
429 {
430 if (dump_file && (dump_flags & TDF_DETAILS))
431 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
432 ret = false;
433 goto end;
434 }
435 if (dump_file && (dump_flags & TDF_DETAILS))
436 dump_data_dependence_relations (dump_file, dependence_relations);
437
438 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
439 LTM_MATRIX (trans)[0][0] = -1;
440
441 if (lambda_transform_legal_p (trans, 1, dependence_relations))
442 {
443 ret = true;
444 if (dump_file && (dump_flags & TDF_DETAILS))
445 fprintf (dump_file, " SUCCESS: may be parallelized\n");
446 }
447 else if (dump_file && (dump_flags & TDF_DETAILS))
448 fprintf (dump_file,
449 " FAILED: data dependencies exist across iterations\n");
450
451 end:
452 free_dependence_relations (dependence_relations);
453 free_data_refs (datarefs);
454
455 return ret;
456 }
457
458 /* Return true when LOOP contains basic blocks marked with the
459 BB_IRREDUCIBLE_LOOP flag. */
460
461 static inline bool
462 loop_has_blocks_with_irreducible_flag (struct loop *loop)
463 {
464 unsigned i;
465 basic_block *bbs = get_loop_body_in_dom_order (loop);
466 bool res = true;
467
468 for (i = 0; i < loop->num_nodes; i++)
469 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
470 goto end;
471
472 res = false;
473 end:
474 free (bbs);
475 return res;
476 }
477
478 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
479 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
480 to their addresses that can be reused. The address of OBJ is known to
481 be invariant in the whole function. Other needed statements are placed
482 right before GSI. */
483
484 static tree
485 take_address_of (tree obj, tree type, edge entry,
486 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
487 {
488 int uid;
489 tree *var_p, name, addr;
490 gassign *stmt;
491 gimple_seq stmts;
492
493 /* Since the address of OBJ is invariant, the trees may be shared.
494 Avoid rewriting unrelated parts of the code. */
495 obj = unshare_expr (obj);
496 for (var_p = &obj;
497 handled_component_p (*var_p);
498 var_p = &TREE_OPERAND (*var_p, 0))
499 continue;
500
501 /* Canonicalize the access to base on a MEM_REF. */
502 if (DECL_P (*var_p))
503 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
504
505 /* Assign a canonical SSA name to the address of the base decl used
506 in the address and share it for all accesses and addresses based
507 on it. */
508 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
509 int_tree_map elt;
510 elt.uid = uid;
511 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
512 if (!slot->to)
513 {
514 if (gsi == NULL)
515 return NULL;
516 addr = TREE_OPERAND (*var_p, 0);
517 const char *obj_name
518 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
519 if (obj_name)
520 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
521 else
522 name = make_ssa_name (TREE_TYPE (addr));
523 stmt = gimple_build_assign (name, addr);
524 gsi_insert_on_edge_immediate (entry, stmt);
525
526 slot->uid = uid;
527 slot->to = name;
528 }
529 else
530 name = slot->to;
531
532 /* Express the address in terms of the canonical SSA name. */
533 TREE_OPERAND (*var_p, 0) = name;
534 if (gsi == NULL)
535 return build_fold_addr_expr_with_type (obj, type);
536
537 name = force_gimple_operand (build_addr (obj),
538 &stmts, true, NULL_TREE);
539 if (!gimple_seq_empty_p (stmts))
540 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
541
542 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
543 {
544 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
545 NULL_TREE);
546 if (!gimple_seq_empty_p (stmts))
547 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
548 }
549
550 return name;
551 }
552
553 static tree
554 reduc_stmt_res (gimple *stmt)
555 {
556 return (gimple_code (stmt) == GIMPLE_PHI
557 ? gimple_phi_result (stmt)
558 : gimple_assign_lhs (stmt));
559 }
560
561 /* Callback for htab_traverse. Create the initialization statement
562 for reduction described in SLOT, and place it at the preheader of
563 the loop described in DATA. */
564
565 int
566 initialize_reductions (reduction_info **slot, struct loop *loop)
567 {
568 tree init;
569 tree type, arg;
570 edge e;
571
572 struct reduction_info *const reduc = *slot;
573
574 /* Create initialization in preheader:
575 reduction_variable = initialization value of reduction. */
576
577 /* In the phi node at the header, replace the argument coming
578 from the preheader with the reduction initialization value. */
579
580 /* Initialize the reduction. */
581 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
582 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
583 reduc->reduction_code, type);
584 reduc->init = init;
585
586 /* Replace the argument representing the initialization value
587 with the initialization value for the reduction (neutral
588 element for the particular operation, e.g. 0 for PLUS_EXPR,
589 1 for MULT_EXPR, etc).
590 Keep the old value in a new variable "reduction_initial",
591 that will be taken in consideration after the parallel
592 computing is done. */
593
594 e = loop_preheader_edge (loop);
595 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
596 /* Create new variable to hold the initial value. */
597
598 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
599 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
600 reduc->initial_value = arg;
601 return 1;
602 }
603
604 struct elv_data
605 {
606 struct walk_stmt_info info;
607 edge entry;
608 int_tree_htab_type *decl_address;
609 gimple_stmt_iterator *gsi;
610 bool changed;
611 bool reset;
612 };
613
614 /* Eliminates references to local variables in *TP out of the single
615 entry single exit region starting at DTA->ENTRY.
616 DECL_ADDRESS contains addresses of the references that had their
617 address taken already. If the expression is changed, CHANGED is
618 set to true. Callback for walk_tree. */
619
620 static tree
621 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
622 {
623 struct elv_data *const dta = (struct elv_data *) data;
624 tree t = *tp, var, addr, addr_type, type, obj;
625
626 if (DECL_P (t))
627 {
628 *walk_subtrees = 0;
629
630 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
631 return NULL_TREE;
632
633 type = TREE_TYPE (t);
634 addr_type = build_pointer_type (type);
635 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
636 dta->gsi);
637 if (dta->gsi == NULL && addr == NULL_TREE)
638 {
639 dta->reset = true;
640 return NULL_TREE;
641 }
642
643 *tp = build_simple_mem_ref (addr);
644
645 dta->changed = true;
646 return NULL_TREE;
647 }
648
649 if (TREE_CODE (t) == ADDR_EXPR)
650 {
651 /* ADDR_EXPR may appear in two contexts:
652 -- as a gimple operand, when the address taken is a function invariant
653 -- as gimple rhs, when the resulting address in not a function
654 invariant
655 We do not need to do anything special in the latter case (the base of
656 the memory reference whose address is taken may be replaced in the
657 DECL_P case). The former case is more complicated, as we need to
658 ensure that the new address is still a gimple operand. Thus, it
659 is not sufficient to replace just the base of the memory reference --
660 we need to move the whole computation of the address out of the
661 loop. */
662 if (!is_gimple_val (t))
663 return NULL_TREE;
664
665 *walk_subtrees = 0;
666 obj = TREE_OPERAND (t, 0);
667 var = get_base_address (obj);
668 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
669 return NULL_TREE;
670
671 addr_type = TREE_TYPE (t);
672 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
673 dta->gsi);
674 if (dta->gsi == NULL && addr == NULL_TREE)
675 {
676 dta->reset = true;
677 return NULL_TREE;
678 }
679 *tp = addr;
680
681 dta->changed = true;
682 return NULL_TREE;
683 }
684
685 if (!EXPR_P (t))
686 *walk_subtrees = 0;
687
688 return NULL_TREE;
689 }
690
691 /* Moves the references to local variables in STMT at *GSI out of the single
692 entry single exit region starting at ENTRY. DECL_ADDRESS contains
693 addresses of the references that had their address taken
694 already. */
695
696 static void
697 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
698 int_tree_htab_type *decl_address)
699 {
700 struct elv_data dta;
701 gimple *stmt = gsi_stmt (*gsi);
702
703 memset (&dta.info, '\0', sizeof (dta.info));
704 dta.entry = entry;
705 dta.decl_address = decl_address;
706 dta.changed = false;
707 dta.reset = false;
708
709 if (gimple_debug_bind_p (stmt))
710 {
711 dta.gsi = NULL;
712 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
713 eliminate_local_variables_1, &dta.info, NULL);
714 if (dta.reset)
715 {
716 gimple_debug_bind_reset_value (stmt);
717 dta.changed = true;
718 }
719 }
720 else if (gimple_clobber_p (stmt))
721 {
722 stmt = gimple_build_nop ();
723 gsi_replace (gsi, stmt, false);
724 dta.changed = true;
725 }
726 else
727 {
728 dta.gsi = gsi;
729 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
730 }
731
732 if (dta.changed)
733 update_stmt (stmt);
734 }
735
736 /* Eliminates the references to local variables from the single entry
737 single exit region between the ENTRY and EXIT edges.
738
739 This includes:
740 1) Taking address of a local variable -- these are moved out of the
741 region (and temporary variable is created to hold the address if
742 necessary).
743
744 2) Dereferencing a local variable -- these are replaced with indirect
745 references. */
746
747 static void
748 eliminate_local_variables (edge entry, edge exit)
749 {
750 basic_block bb;
751 auto_vec<basic_block, 3> body;
752 unsigned i;
753 gimple_stmt_iterator gsi;
754 bool has_debug_stmt = false;
755 int_tree_htab_type decl_address (10);
756 basic_block entry_bb = entry->src;
757 basic_block exit_bb = exit->dest;
758
759 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
760
761 FOR_EACH_VEC_ELT (body, i, bb)
762 if (bb != entry_bb && bb != exit_bb)
763 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
764 if (is_gimple_debug (gsi_stmt (gsi)))
765 {
766 if (gimple_debug_bind_p (gsi_stmt (gsi)))
767 has_debug_stmt = true;
768 }
769 else
770 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
771
772 if (has_debug_stmt)
773 FOR_EACH_VEC_ELT (body, i, bb)
774 if (bb != entry_bb && bb != exit_bb)
775 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
776 if (gimple_debug_bind_p (gsi_stmt (gsi)))
777 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
778 }
779
780 /* Returns true if expression EXPR is not defined between ENTRY and
781 EXIT, i.e. if all its operands are defined outside of the region. */
782
783 static bool
784 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
785 {
786 basic_block entry_bb = entry->src;
787 basic_block exit_bb = exit->dest;
788 basic_block def_bb;
789
790 if (is_gimple_min_invariant (expr))
791 return true;
792
793 if (TREE_CODE (expr) == SSA_NAME)
794 {
795 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
796 if (def_bb
797 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
798 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
799 return false;
800
801 return true;
802 }
803
804 return false;
805 }
806
807 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
808 The copies are stored to NAME_COPIES, if NAME was already duplicated,
809 its duplicate stored in NAME_COPIES is returned.
810
811 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
812 duplicated, storing the copies in DECL_COPIES. */
813
814 static tree
815 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
816 int_tree_htab_type *decl_copies,
817 bool copy_name_p)
818 {
819 tree copy, var, var_copy;
820 unsigned idx, uid, nuid;
821 struct int_tree_map ielt;
822 struct name_to_copy_elt elt, *nelt;
823 name_to_copy_elt **slot;
824 int_tree_map *dslot;
825
826 if (TREE_CODE (name) != SSA_NAME)
827 return name;
828
829 idx = SSA_NAME_VERSION (name);
830 elt.version = idx;
831 slot = name_copies->find_slot_with_hash (&elt, idx,
832 copy_name_p ? INSERT : NO_INSERT);
833 if (slot && *slot)
834 return (*slot)->new_name;
835
836 if (copy_name_p)
837 {
838 copy = duplicate_ssa_name (name, NULL);
839 nelt = XNEW (struct name_to_copy_elt);
840 nelt->version = idx;
841 nelt->new_name = copy;
842 nelt->field = NULL_TREE;
843 *slot = nelt;
844 }
845 else
846 {
847 gcc_assert (!slot);
848 copy = name;
849 }
850
851 var = SSA_NAME_VAR (name);
852 if (!var)
853 return copy;
854
855 uid = DECL_UID (var);
856 ielt.uid = uid;
857 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
858 if (!dslot->to)
859 {
860 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
861 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
862 dslot->uid = uid;
863 dslot->to = var_copy;
864
865 /* Ensure that when we meet this decl next time, we won't duplicate
866 it again. */
867 nuid = DECL_UID (var_copy);
868 ielt.uid = nuid;
869 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
870 gcc_assert (!dslot->to);
871 dslot->uid = nuid;
872 dslot->to = var_copy;
873 }
874 else
875 var_copy = dslot->to;
876
877 replace_ssa_name_symbol (copy, var_copy);
878 return copy;
879 }
880
881 /* Finds the ssa names used in STMT that are defined outside the
882 region between ENTRY and EXIT and replaces such ssa names with
883 their duplicates. The duplicates are stored to NAME_COPIES. Base
884 decls of all ssa names used in STMT (including those defined in
885 LOOP) are replaced with the new temporary variables; the
886 replacement decls are stored in DECL_COPIES. */
887
888 static void
889 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
890 name_to_copy_table_type *name_copies,
891 int_tree_htab_type *decl_copies)
892 {
893 use_operand_p use;
894 def_operand_p def;
895 ssa_op_iter oi;
896 tree name, copy;
897 bool copy_name_p;
898
899 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
900 {
901 name = DEF_FROM_PTR (def);
902 gcc_assert (TREE_CODE (name) == SSA_NAME);
903 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
904 false);
905 gcc_assert (copy == name);
906 }
907
908 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
909 {
910 name = USE_FROM_PTR (use);
911 if (TREE_CODE (name) != SSA_NAME)
912 continue;
913
914 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
915 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
916 copy_name_p);
917 SET_USE (use, copy);
918 }
919 }
920
921 /* Finds the ssa names used in STMT that are defined outside the
922 region between ENTRY and EXIT and replaces such ssa names with
923 their duplicates. The duplicates are stored to NAME_COPIES. Base
924 decls of all ssa names used in STMT (including those defined in
925 LOOP) are replaced with the new temporary variables; the
926 replacement decls are stored in DECL_COPIES. */
927
928 static bool
929 separate_decls_in_region_debug (gimple *stmt,
930 name_to_copy_table_type *name_copies,
931 int_tree_htab_type *decl_copies)
932 {
933 use_operand_p use;
934 ssa_op_iter oi;
935 tree var, name;
936 struct int_tree_map ielt;
937 struct name_to_copy_elt elt;
938 name_to_copy_elt **slot;
939 int_tree_map *dslot;
940
941 if (gimple_debug_bind_p (stmt))
942 var = gimple_debug_bind_get_var (stmt);
943 else if (gimple_debug_source_bind_p (stmt))
944 var = gimple_debug_source_bind_get_var (stmt);
945 else
946 return true;
947 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
948 return true;
949 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
950 ielt.uid = DECL_UID (var);
951 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
952 if (!dslot)
953 return true;
954 if (gimple_debug_bind_p (stmt))
955 gimple_debug_bind_set_var (stmt, dslot->to);
956 else if (gimple_debug_source_bind_p (stmt))
957 gimple_debug_source_bind_set_var (stmt, dslot->to);
958
959 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
960 {
961 name = USE_FROM_PTR (use);
962 if (TREE_CODE (name) != SSA_NAME)
963 continue;
964
965 elt.version = SSA_NAME_VERSION (name);
966 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
967 if (!slot)
968 {
969 gimple_debug_bind_reset_value (stmt);
970 update_stmt (stmt);
971 break;
972 }
973
974 SET_USE (use, (*slot)->new_name);
975 }
976
977 return false;
978 }
979
980 /* Callback for htab_traverse. Adds a field corresponding to the reduction
981 specified in SLOT. The type is passed in DATA. */
982
983 int
984 add_field_for_reduction (reduction_info **slot, tree type)
985 {
986
987 struct reduction_info *const red = *slot;
988 tree var = reduc_stmt_res (red->reduc_stmt);
989 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
990 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
991
992 insert_field_into_struct (type, field);
993
994 red->field = field;
995
996 return 1;
997 }
998
999 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1000 described in SLOT. The type is passed in DATA. */
1001
1002 int
1003 add_field_for_name (name_to_copy_elt **slot, tree type)
1004 {
1005 struct name_to_copy_elt *const elt = *slot;
1006 tree name = ssa_name (elt->version);
1007 tree field = build_decl (UNKNOWN_LOCATION,
1008 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1009 TREE_TYPE (name));
1010
1011 insert_field_into_struct (type, field);
1012 elt->field = field;
1013
1014 return 1;
1015 }
1016
1017 /* Callback for htab_traverse. A local result is the intermediate result
1018 computed by a single
1019 thread, or the initial value in case no iteration was executed.
1020 This function creates a phi node reflecting these values.
1021 The phi's result will be stored in NEW_PHI field of the
1022 reduction's data structure. */
1023
1024 int
1025 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1026 {
1027 struct reduction_info *const reduc = *slot;
1028 edge e;
1029 gphi *new_phi;
1030 basic_block store_bb, continue_bb;
1031 tree local_res;
1032 source_location locus;
1033
1034 /* STORE_BB is the block where the phi
1035 should be stored. It is the destination of the loop exit.
1036 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1037 continue_bb = single_pred (loop->latch);
1038 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1039
1040 /* STORE_BB has two predecessors. One coming from the loop
1041 (the reduction's result is computed at the loop),
1042 and another coming from a block preceding the loop,
1043 when no iterations
1044 are executed (the initial value should be taken). */
1045 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1046 e = EDGE_PRED (store_bb, 1);
1047 else
1048 e = EDGE_PRED (store_bb, 0);
1049 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1050 local_res = copy_ssa_name (lhs);
1051 locus = gimple_location (reduc->reduc_stmt);
1052 new_phi = create_phi_node (local_res, store_bb);
1053 add_phi_arg (new_phi, reduc->init, e, locus);
1054 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1055 reduc->new_phi = new_phi;
1056
1057 return 1;
1058 }
1059
1060 struct clsn_data
1061 {
1062 tree store;
1063 tree load;
1064
1065 basic_block store_bb;
1066 basic_block load_bb;
1067 };
1068
1069 /* Callback for htab_traverse. Create an atomic instruction for the
1070 reduction described in SLOT.
1071 DATA annotates the place in memory the atomic operation relates to,
1072 and the basic block it needs to be generated in. */
1073
1074 int
1075 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1076 {
1077 struct reduction_info *const reduc = *slot;
1078 gimple_stmt_iterator gsi;
1079 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1080 tree load_struct;
1081 basic_block bb;
1082 basic_block new_bb;
1083 edge e;
1084 tree t, addr, ref, x;
1085 tree tmp_load, name;
1086 gimple *load;
1087
1088 load_struct = build_simple_mem_ref (clsn_data->load);
1089 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1090
1091 addr = build_addr (t);
1092
1093 /* Create phi node. */
1094 bb = clsn_data->load_bb;
1095
1096 gsi = gsi_last_bb (bb);
1097 e = split_block (bb, gsi_stmt (gsi));
1098 new_bb = e->dest;
1099
1100 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1101 tmp_load = make_ssa_name (tmp_load);
1102 load = gimple_build_omp_atomic_load (tmp_load, addr);
1103 SSA_NAME_DEF_STMT (tmp_load) = load;
1104 gsi = gsi_start_bb (new_bb);
1105 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1106
1107 e = split_block (new_bb, load);
1108 new_bb = e->dest;
1109 gsi = gsi_start_bb (new_bb);
1110 ref = tmp_load;
1111 x = fold_build2 (reduc->reduction_code,
1112 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1113 PHI_RESULT (reduc->new_phi));
1114
1115 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1116 GSI_CONTINUE_LINKING);
1117
1118 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1119 return 1;
1120 }
1121
1122 /* Create the atomic operation at the join point of the threads.
1123 REDUCTION_LIST describes the reductions in the LOOP.
1124 LD_ST_DATA describes the shared data structure where
1125 shared data is stored in and loaded from. */
1126 static void
1127 create_call_for_reduction (struct loop *loop,
1128 reduction_info_table_type *reduction_list,
1129 struct clsn_data *ld_st_data)
1130 {
1131 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1132 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1133 basic_block continue_bb = single_pred (loop->latch);
1134 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1135 reduction_list
1136 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1137 }
1138
1139 /* Callback for htab_traverse. Loads the final reduction value at the
1140 join point of all threads, and inserts it in the right place. */
1141
1142 int
1143 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1144 {
1145 struct reduction_info *const red = *slot;
1146 gimple *stmt;
1147 gimple_stmt_iterator gsi;
1148 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1149 tree load_struct;
1150 tree name;
1151 tree x;
1152
1153 /* If there's no exit phi, the result of the reduction is unused. */
1154 if (red->keep_res == NULL)
1155 return 1;
1156
1157 gsi = gsi_after_labels (clsn_data->load_bb);
1158 load_struct = build_simple_mem_ref (clsn_data->load);
1159 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1160 NULL_TREE);
1161
1162 x = load_struct;
1163 name = PHI_RESULT (red->keep_res);
1164 stmt = gimple_build_assign (name, x);
1165
1166 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1167
1168 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1169 !gsi_end_p (gsi); gsi_next (&gsi))
1170 if (gsi_stmt (gsi) == red->keep_res)
1171 {
1172 remove_phi_node (&gsi, false);
1173 return 1;
1174 }
1175 gcc_unreachable ();
1176 }
1177
1178 /* Load the reduction result that was stored in LD_ST_DATA.
1179 REDUCTION_LIST describes the list of reductions that the
1180 loads should be generated for. */
1181 static void
1182 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1183 struct clsn_data *ld_st_data)
1184 {
1185 gimple_stmt_iterator gsi;
1186 tree t;
1187 gimple *stmt;
1188
1189 gsi = gsi_after_labels (ld_st_data->load_bb);
1190 t = build_fold_addr_expr (ld_st_data->store);
1191 stmt = gimple_build_assign (ld_st_data->load, t);
1192
1193 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1194
1195 reduction_list
1196 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1197
1198 }
1199
1200 /* Callback for htab_traverse. Store the neutral value for the
1201 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1202 1 for MULT_EXPR, etc. into the reduction field.
1203 The reduction is specified in SLOT. The store information is
1204 passed in DATA. */
1205
1206 int
1207 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1208 {
1209 struct reduction_info *const red = *slot;
1210 tree t;
1211 gimple *stmt;
1212 gimple_stmt_iterator gsi;
1213 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1214
1215 gsi = gsi_last_bb (clsn_data->store_bb);
1216 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1217 stmt = gimple_build_assign (t, red->initial_value);
1218 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1219
1220 return 1;
1221 }
1222
1223 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1224 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1225 specified in SLOT. */
1226
1227 int
1228 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1229 struct clsn_data *clsn_data)
1230 {
1231 struct name_to_copy_elt *const elt = *slot;
1232 tree t;
1233 gimple *stmt;
1234 gimple_stmt_iterator gsi;
1235 tree type = TREE_TYPE (elt->new_name);
1236 tree load_struct;
1237
1238 gsi = gsi_last_bb (clsn_data->store_bb);
1239 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1240 stmt = gimple_build_assign (t, ssa_name (elt->version));
1241 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1242
1243 gsi = gsi_last_bb (clsn_data->load_bb);
1244 load_struct = build_simple_mem_ref (clsn_data->load);
1245 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1246 stmt = gimple_build_assign (elt->new_name, t);
1247 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1248
1249 return 1;
1250 }
1251
1252 /* Moves all the variables used in LOOP and defined outside of it (including
1253 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1254 name) to a structure created for this purpose. The code
1255
1256 while (1)
1257 {
1258 use (a);
1259 use (b);
1260 }
1261
1262 is transformed this way:
1263
1264 bb0:
1265 old.a = a;
1266 old.b = b;
1267
1268 bb1:
1269 a' = new->a;
1270 b' = new->b;
1271 while (1)
1272 {
1273 use (a');
1274 use (b');
1275 }
1276
1277 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1278 pointer `new' is intentionally not initialized (the loop will be split to a
1279 separate function later, and `new' will be initialized from its arguments).
1280 LD_ST_DATA holds information about the shared data structure used to pass
1281 information among the threads. It is initialized here, and
1282 gen_parallel_loop will pass it to create_call_for_reduction that
1283 needs this information. REDUCTION_LIST describes the reductions
1284 in LOOP. */
1285
1286 static void
1287 separate_decls_in_region (edge entry, edge exit,
1288 reduction_info_table_type *reduction_list,
1289 tree *arg_struct, tree *new_arg_struct,
1290 struct clsn_data *ld_st_data)
1291
1292 {
1293 basic_block bb1 = split_edge (entry);
1294 basic_block bb0 = single_pred (bb1);
1295 name_to_copy_table_type name_copies (10);
1296 int_tree_htab_type decl_copies (10);
1297 unsigned i;
1298 tree type, type_name, nvar;
1299 gimple_stmt_iterator gsi;
1300 struct clsn_data clsn_data;
1301 auto_vec<basic_block, 3> body;
1302 basic_block bb;
1303 basic_block entry_bb = bb1;
1304 basic_block exit_bb = exit->dest;
1305 bool has_debug_stmt = false;
1306
1307 entry = single_succ_edge (entry_bb);
1308 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1309
1310 FOR_EACH_VEC_ELT (body, i, bb)
1311 {
1312 if (bb != entry_bb && bb != exit_bb)
1313 {
1314 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1315 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1316 &name_copies, &decl_copies);
1317
1318 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1319 {
1320 gimple *stmt = gsi_stmt (gsi);
1321
1322 if (is_gimple_debug (stmt))
1323 has_debug_stmt = true;
1324 else
1325 separate_decls_in_region_stmt (entry, exit, stmt,
1326 &name_copies, &decl_copies);
1327 }
1328 }
1329 }
1330
1331 /* Now process debug bind stmts. We must not create decls while
1332 processing debug stmts, so we defer their processing so as to
1333 make sure we will have debug info for as many variables as
1334 possible (all of those that were dealt with in the loop above),
1335 and discard those for which we know there's nothing we can
1336 do. */
1337 if (has_debug_stmt)
1338 FOR_EACH_VEC_ELT (body, i, bb)
1339 if (bb != entry_bb && bb != exit_bb)
1340 {
1341 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1342 {
1343 gimple *stmt = gsi_stmt (gsi);
1344
1345 if (is_gimple_debug (stmt))
1346 {
1347 if (separate_decls_in_region_debug (stmt, &name_copies,
1348 &decl_copies))
1349 {
1350 gsi_remove (&gsi, true);
1351 continue;
1352 }
1353 }
1354
1355 gsi_next (&gsi);
1356 }
1357 }
1358
1359 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1360 {
1361 /* It may happen that there is nothing to copy (if there are only
1362 loop carried and external variables in the loop). */
1363 *arg_struct = NULL;
1364 *new_arg_struct = NULL;
1365 }
1366 else
1367 {
1368 /* Create the type for the structure to store the ssa names to. */
1369 type = lang_hooks.types.make_type (RECORD_TYPE);
1370 type_name = build_decl (UNKNOWN_LOCATION,
1371 TYPE_DECL, create_tmp_var_name (".paral_data"),
1372 type);
1373 TYPE_NAME (type) = type_name;
1374
1375 name_copies.traverse <tree, add_field_for_name> (type);
1376 if (reduction_list && reduction_list->elements () > 0)
1377 {
1378 /* Create the fields for reductions. */
1379 reduction_list->traverse <tree, add_field_for_reduction> (type);
1380 }
1381 layout_type (type);
1382
1383 /* Create the loads and stores. */
1384 *arg_struct = create_tmp_var (type, ".paral_data_store");
1385 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1386 *new_arg_struct = make_ssa_name (nvar);
1387
1388 ld_st_data->store = *arg_struct;
1389 ld_st_data->load = *new_arg_struct;
1390 ld_st_data->store_bb = bb0;
1391 ld_st_data->load_bb = bb1;
1392
1393 name_copies
1394 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1395 (ld_st_data);
1396
1397 /* Load the calculation from memory (after the join of the threads). */
1398
1399 if (reduction_list && reduction_list->elements () > 0)
1400 {
1401 reduction_list
1402 ->traverse <struct clsn_data *, create_stores_for_reduction>
1403 (ld_st_data);
1404 clsn_data.load = make_ssa_name (nvar);
1405 clsn_data.load_bb = exit->dest;
1406 clsn_data.store = ld_st_data->store;
1407 create_final_loads_for_reduction (reduction_list, &clsn_data);
1408 }
1409 }
1410 }
1411
1412 /* Returns true if FN was created to run in parallel. */
1413
1414 bool
1415 parallelized_function_p (tree fndecl)
1416 {
1417 cgraph_node *node = cgraph_node::get (fndecl);
1418 gcc_assert (node != NULL);
1419 return node->parallelized_function;
1420 }
1421
1422 /* Creates and returns an empty function that will receive the body of
1423 a parallelized loop. */
1424
1425 static tree
1426 create_loop_fn (location_t loc)
1427 {
1428 char buf[100];
1429 char *tname;
1430 tree decl, type, name, t;
1431 struct function *act_cfun = cfun;
1432 static unsigned loopfn_num;
1433
1434 loc = LOCATION_LOCUS (loc);
1435 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1436 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1437 clean_symbol_name (tname);
1438 name = get_identifier (tname);
1439 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1440
1441 decl = build_decl (loc, FUNCTION_DECL, name, type);
1442 TREE_STATIC (decl) = 1;
1443 TREE_USED (decl) = 1;
1444 DECL_ARTIFICIAL (decl) = 1;
1445 DECL_IGNORED_P (decl) = 0;
1446 TREE_PUBLIC (decl) = 0;
1447 DECL_UNINLINABLE (decl) = 1;
1448 DECL_EXTERNAL (decl) = 0;
1449 DECL_CONTEXT (decl) = NULL_TREE;
1450 DECL_INITIAL (decl) = make_node (BLOCK);
1451
1452 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1453 DECL_ARTIFICIAL (t) = 1;
1454 DECL_IGNORED_P (t) = 1;
1455 DECL_RESULT (decl) = t;
1456
1457 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1458 ptr_type_node);
1459 DECL_ARTIFICIAL (t) = 1;
1460 DECL_ARG_TYPE (t) = ptr_type_node;
1461 DECL_CONTEXT (t) = decl;
1462 TREE_USED (t) = 1;
1463 DECL_ARGUMENTS (decl) = t;
1464
1465 allocate_struct_function (decl, false);
1466
1467 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1468 it. */
1469 set_cfun (act_cfun);
1470
1471 return decl;
1472 }
1473
1474 /* Replace uses of NAME by VAL in block BB. */
1475
1476 static void
1477 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1478 {
1479 gimple *use_stmt;
1480 imm_use_iterator imm_iter;
1481
1482 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1483 {
1484 if (gimple_bb (use_stmt) != bb)
1485 continue;
1486
1487 use_operand_p use_p;
1488 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1489 SET_USE (use_p, val);
1490 }
1491 }
1492
1493 /* Do transformation from:
1494
1495 <bb preheader>:
1496 ...
1497 goto <bb header>
1498
1499 <bb header>:
1500 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1501 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1502 ...
1503 use (ivtmp_a)
1504 ...
1505 sum_b = sum_a + sum_update
1506 ...
1507 if (ivtmp_a < n)
1508 goto <bb latch>;
1509 else
1510 goto <bb exit>;
1511
1512 <bb latch>:
1513 ivtmp_b = ivtmp_a + 1;
1514 goto <bb header>
1515
1516 <bb exit>:
1517 sum_z = PHI <sum_b (cond[1]), ...>
1518
1519 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1520 that's <bb header>.
1521
1522 to:
1523
1524 <bb preheader>:
1525 ...
1526 goto <bb newheader>
1527
1528 <bb header>:
1529 ivtmp_a = PHI <ivtmp_c (latch)>
1530 sum_a = PHI <sum_c (latch)>
1531 ...
1532 use (ivtmp_a)
1533 ...
1534 sum_b = sum_a + sum_update
1535 ...
1536 goto <bb latch>;
1537
1538 <bb newheader>:
1539 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1540 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1541 if (ivtmp_c < n + 1)
1542 goto <bb header>;
1543 else
1544 goto <bb newexit>;
1545
1546 <bb latch>:
1547 ivtmp_b = ivtmp_a + 1;
1548 goto <bb newheader>
1549
1550 <bb newexit>:
1551 sum_y = PHI <sum_c (newheader)>
1552
1553 <bb exit>:
1554 sum_z = PHI <sum_y (newexit), ...>
1555
1556
1557 In unified diff format:
1558
1559 <bb preheader>:
1560 ...
1561 - goto <bb header>
1562 + goto <bb newheader>
1563
1564 <bb header>:
1565 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1566 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1567 + ivtmp_a = PHI <ivtmp_c (latch)>
1568 + sum_a = PHI <sum_c (latch)>
1569 ...
1570 use (ivtmp_a)
1571 ...
1572 sum_b = sum_a + sum_update
1573 ...
1574 - if (ivtmp_a < n)
1575 - goto <bb latch>;
1576 + goto <bb latch>;
1577 +
1578 + <bb newheader>:
1579 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1580 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1581 + if (ivtmp_c < n + 1)
1582 + goto <bb header>;
1583 else
1584 goto <bb exit>;
1585
1586 <bb latch>:
1587 ivtmp_b = ivtmp_a + 1;
1588 - goto <bb header>
1589 + goto <bb newheader>
1590
1591 + <bb newexit>:
1592 + sum_y = PHI <sum_c (newheader)>
1593
1594 <bb exit>:
1595 - sum_z = PHI <sum_b (cond[1]), ...>
1596 + sum_z = PHI <sum_y (newexit), ...>
1597
1598 Note: the example does not show any virtual phis, but these are handled more
1599 or less as reductions.
1600
1601
1602 Moves the exit condition of LOOP to the beginning of its header.
1603 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1604 bound. */
1605
1606 static void
1607 transform_to_exit_first_loop_alt (struct loop *loop,
1608 reduction_info_table_type *reduction_list,
1609 tree bound)
1610 {
1611 basic_block header = loop->header;
1612 basic_block latch = loop->latch;
1613 edge exit = single_dom_exit (loop);
1614 basic_block exit_block = exit->dest;
1615 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1616 tree control = gimple_cond_lhs (cond_stmt);
1617 edge e;
1618
1619 /* Rewriting virtuals into loop-closed ssa normal form makes this
1620 transformation simpler. It also ensures that the virtuals are in
1621 loop-closed ssa normal from after the transformation, which is required by
1622 create_parallel_loop. */
1623 rewrite_virtuals_into_loop_closed_ssa (loop);
1624
1625 /* Create the new_header block. */
1626 basic_block new_header = split_block_before_cond_jump (exit->src);
1627 edge edge_at_split = single_pred_edge (new_header);
1628
1629 /* Redirect entry edge to new_header. */
1630 edge entry = loop_preheader_edge (loop);
1631 e = redirect_edge_and_branch (entry, new_header);
1632 gcc_assert (e == entry);
1633
1634 /* Redirect post_inc_edge to new_header. */
1635 edge post_inc_edge = single_succ_edge (latch);
1636 e = redirect_edge_and_branch (post_inc_edge, new_header);
1637 gcc_assert (e == post_inc_edge);
1638
1639 /* Redirect post_cond_edge to header. */
1640 edge post_cond_edge = single_pred_edge (latch);
1641 e = redirect_edge_and_branch (post_cond_edge, header);
1642 gcc_assert (e == post_cond_edge);
1643
1644 /* Redirect edge_at_split to latch. */
1645 e = redirect_edge_and_branch (edge_at_split, latch);
1646 gcc_assert (e == edge_at_split);
1647
1648 /* Set the new loop bound. */
1649 gimple_cond_set_rhs (cond_stmt, bound);
1650 update_stmt (cond_stmt);
1651
1652 /* Repair the ssa. */
1653 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1654 edge_var_map *vm;
1655 gphi_iterator gsi;
1656 int i;
1657 for (gsi = gsi_start_phis (header), i = 0;
1658 !gsi_end_p (gsi) && v->iterate (i, &vm);
1659 gsi_next (&gsi), i++)
1660 {
1661 gphi *phi = gsi.phi ();
1662 tree res_a = PHI_RESULT (phi);
1663
1664 /* Create new phi. */
1665 tree res_c = copy_ssa_name (res_a, phi);
1666 gphi *nphi = create_phi_node (res_c, new_header);
1667
1668 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1669 replace_uses_in_bb_by (res_a, res_c, new_header);
1670
1671 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1672 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1673
1674 /* Replace sum_b with sum_c in exit phi. */
1675 tree res_b = redirect_edge_var_map_def (vm);
1676 replace_uses_in_bb_by (res_b, res_c, exit_block);
1677
1678 struct reduction_info *red = reduction_phi (reduction_list, phi);
1679 gcc_assert (virtual_operand_p (res_a)
1680 || res_a == control
1681 || red != NULL);
1682
1683 if (red)
1684 {
1685 /* Register the new reduction phi. */
1686 red->reduc_phi = nphi;
1687 gimple_set_uid (red->reduc_phi, red->reduc_version);
1688 }
1689 }
1690 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1691
1692 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1693 flush_pending_stmts (entry);
1694
1695 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1696 flush_pending_stmts (post_inc_edge);
1697
1698
1699 basic_block new_exit_block = NULL;
1700 if (!single_pred_p (exit->dest))
1701 {
1702 /* Create a new empty exit block, inbetween the new loop header and the
1703 old exit block. The function separate_decls_in_region needs this block
1704 to insert code that is active on loop exit, but not any other path. */
1705 new_exit_block = split_edge (exit);
1706 }
1707
1708 /* Insert and register the reduction exit phis. */
1709 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1710 !gsi_end_p (gsi);
1711 gsi_next (&gsi))
1712 {
1713 gphi *phi = gsi.phi ();
1714 gphi *nphi = NULL;
1715 tree res_z = PHI_RESULT (phi);
1716 tree res_c;
1717
1718 if (new_exit_block != NULL)
1719 {
1720 /* Now that we have a new exit block, duplicate the phi of the old
1721 exit block in the new exit block to preserve loop-closed ssa. */
1722 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1723 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1724 tree res_y = copy_ssa_name (res_z, phi);
1725 nphi = create_phi_node (res_y, new_exit_block);
1726 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1727 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1728 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1729 }
1730 else
1731 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1732
1733 if (virtual_operand_p (res_z))
1734 continue;
1735
1736 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1737 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1738 if (red != NULL)
1739 red->keep_res = (nphi != NULL
1740 ? nphi
1741 : phi);
1742 }
1743
1744 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1745 then we're still using some fields, so only bother about fields that are
1746 still used: header and latch.
1747 The loop has a new header bb, so we update it. The latch bb stays the
1748 same. */
1749 loop->header = new_header;
1750
1751 /* Recalculate dominance info. */
1752 free_dominance_info (CDI_DOMINATORS);
1753 calculate_dominance_info (CDI_DOMINATORS);
1754
1755 checking_verify_ssa (true, true);
1756 }
1757
1758 /* Tries to moves the exit condition of LOOP to the beginning of its header
1759 without duplication of the loop body. NIT is the number of iterations of the
1760 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1761 transformation is successful. */
1762
1763 static bool
1764 try_transform_to_exit_first_loop_alt (struct loop *loop,
1765 reduction_info_table_type *reduction_list,
1766 tree nit)
1767 {
1768 /* Check whether the latch contains a single statement. */
1769 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1770 return false;
1771
1772 /* Check whether the latch contains the loop iv increment. */
1773 edge back = single_succ_edge (loop->latch);
1774 edge exit = single_dom_exit (loop);
1775 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1776 tree control = gimple_cond_lhs (cond_stmt);
1777 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1778 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1779 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1780 return false;
1781
1782 /* Check whether there's no code between the loop condition and the latch. */
1783 if (!single_pred_p (loop->latch)
1784 || single_pred (loop->latch) != exit->src)
1785 return false;
1786
1787 tree alt_bound = NULL_TREE;
1788 tree nit_type = TREE_TYPE (nit);
1789
1790 /* Figure out whether nit + 1 overflows. */
1791 if (TREE_CODE (nit) == INTEGER_CST)
1792 {
1793 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1794 {
1795 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1796 nit, build_one_cst (nit_type));
1797
1798 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1799 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1800 return true;
1801 }
1802 else
1803 {
1804 /* Todo: Figure out if we can trigger this, if it's worth to handle
1805 optimally, and if we can handle it optimally. */
1806 return false;
1807 }
1808 }
1809
1810 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1811
1812 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1813 iv with base 0 and step 1 that is incremented in the latch, like this:
1814
1815 <bb header>:
1816 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1817 ...
1818 if (iv_1 < nit)
1819 goto <bb latch>;
1820 else
1821 goto <bb exit>;
1822
1823 <bb latch>:
1824 iv_2 = iv_1 + 1;
1825 goto <bb header>;
1826
1827 The range of iv_1 is [0, nit]. The latch edge is taken for
1828 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1829 number of latch executions is equal to nit.
1830
1831 The function max_loop_iterations gives us the maximum number of latch
1832 executions, so it gives us the maximum value of nit. */
1833 widest_int nit_max;
1834 if (!max_loop_iterations (loop, &nit_max))
1835 return false;
1836
1837 /* Check if nit + 1 overflows. */
1838 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1839 if (!wi::lts_p (nit_max, type_max))
1840 return false;
1841
1842 gimple *def = SSA_NAME_DEF_STMT (nit);
1843
1844 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1845 if (def
1846 && is_gimple_assign (def)
1847 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1848 {
1849 tree op1 = gimple_assign_rhs1 (def);
1850 tree op2 = gimple_assign_rhs2 (def);
1851 if (integer_minus_onep (op1))
1852 alt_bound = op2;
1853 else if (integer_minus_onep (op2))
1854 alt_bound = op1;
1855 }
1856
1857 /* If not found, insert nit + 1. */
1858 if (alt_bound == NULL_TREE)
1859 {
1860 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1861 build_int_cst_type (nit_type, 1));
1862
1863 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1864
1865 alt_bound
1866 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1867 GSI_CONTINUE_LINKING);
1868 }
1869
1870 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1871 return true;
1872 }
1873
1874 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1875 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1876 LOOP. */
1877
1878 static void
1879 transform_to_exit_first_loop (struct loop *loop,
1880 reduction_info_table_type *reduction_list,
1881 tree nit)
1882 {
1883 basic_block *bbs, *nbbs, ex_bb, orig_header;
1884 unsigned n;
1885 bool ok;
1886 edge exit = single_dom_exit (loop), hpred;
1887 tree control, control_name, res, t;
1888 gphi *phi, *nphi;
1889 gassign *stmt;
1890 gcond *cond_stmt, *cond_nit;
1891 tree nit_1;
1892
1893 split_block_after_labels (loop->header);
1894 orig_header = single_succ (loop->header);
1895 hpred = single_succ_edge (loop->header);
1896
1897 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1898 control = gimple_cond_lhs (cond_stmt);
1899 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1900
1901 /* Make sure that we have phi nodes on exit for all loop header phis
1902 (create_parallel_loop requires that). */
1903 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1904 !gsi_end_p (gsi);
1905 gsi_next (&gsi))
1906 {
1907 phi = gsi.phi ();
1908 res = PHI_RESULT (phi);
1909 t = copy_ssa_name (res, phi);
1910 SET_PHI_RESULT (phi, t);
1911 nphi = create_phi_node (res, orig_header);
1912 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1913
1914 if (res == control)
1915 {
1916 gimple_cond_set_lhs (cond_stmt, t);
1917 update_stmt (cond_stmt);
1918 control = t;
1919 }
1920 }
1921
1922 bbs = get_loop_body_in_dom_order (loop);
1923
1924 for (n = 0; bbs[n] != exit->src; n++)
1925 continue;
1926 nbbs = XNEWVEC (basic_block, n);
1927 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1928 bbs + 1, n, nbbs);
1929 gcc_assert (ok);
1930 free (bbs);
1931 ex_bb = nbbs[0];
1932 free (nbbs);
1933
1934 /* Other than reductions, the only gimple reg that should be copied
1935 out of the loop is the control variable. */
1936 exit = single_dom_exit (loop);
1937 control_name = NULL_TREE;
1938 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1939 !gsi_end_p (gsi); )
1940 {
1941 phi = gsi.phi ();
1942 res = PHI_RESULT (phi);
1943 if (virtual_operand_p (res))
1944 {
1945 gsi_next (&gsi);
1946 continue;
1947 }
1948
1949 /* Check if it is a part of reduction. If it is,
1950 keep the phi at the reduction's keep_res field. The
1951 PHI_RESULT of this phi is the resulting value of the reduction
1952 variable when exiting the loop. */
1953
1954 if (reduction_list->elements () > 0)
1955 {
1956 struct reduction_info *red;
1957
1958 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1959 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1960 if (red)
1961 {
1962 red->keep_res = phi;
1963 gsi_next (&gsi);
1964 continue;
1965 }
1966 }
1967 gcc_assert (control_name == NULL_TREE
1968 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1969 control_name = res;
1970 remove_phi_node (&gsi, false);
1971 }
1972 gcc_assert (control_name != NULL_TREE);
1973
1974 /* Initialize the control variable to number of iterations
1975 according to the rhs of the exit condition. */
1976 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1977 cond_nit = as_a <gcond *> (last_stmt (exit->src));
1978 nit_1 = gimple_cond_rhs (cond_nit);
1979 nit_1 = force_gimple_operand_gsi (&gsi,
1980 fold_convert (TREE_TYPE (control_name), nit_1),
1981 false, NULL_TREE, false, GSI_SAME_STMT);
1982 stmt = gimple_build_assign (control_name, nit_1);
1983 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1984 }
1985
1986 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1987 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1988 NEW_DATA is the variable that should be initialized from the argument
1989 of LOOP_FN. N_THREADS is the requested number of threads. */
1990
1991 static void
1992 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1993 tree new_data, unsigned n_threads, location_t loc)
1994 {
1995 gimple_stmt_iterator gsi;
1996 basic_block bb, paral_bb, for_bb, ex_bb, continue_bb;
1997 tree t, param;
1998 gomp_parallel *omp_par_stmt;
1999 gimple *omp_return_stmt1, *omp_return_stmt2;
2000 gimple *phi;
2001 gcond *cond_stmt;
2002 gomp_for *for_stmt;
2003 gomp_continue *omp_cont_stmt;
2004 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2005 edge exit, nexit, guard, end, e;
2006
2007 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2008 bb = loop_preheader_edge (loop)->src;
2009 paral_bb = single_pred (bb);
2010 gsi = gsi_last_bb (paral_bb);
2011
2012 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2013 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2014 = build_int_cst (integer_type_node, n_threads);
2015 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2016 gimple_set_location (omp_par_stmt, loc);
2017
2018 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2019
2020 /* Initialize NEW_DATA. */
2021 if (data)
2022 {
2023 gassign *assign_stmt;
2024
2025 gsi = gsi_after_labels (bb);
2026
2027 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2028 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2029 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2030
2031 assign_stmt = gimple_build_assign (new_data,
2032 fold_convert (TREE_TYPE (new_data), param));
2033 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2034 }
2035
2036 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2037 bb = split_loop_exit_edge (single_dom_exit (loop));
2038 gsi = gsi_last_bb (bb);
2039 omp_return_stmt1 = gimple_build_omp_return (false);
2040 gimple_set_location (omp_return_stmt1, loc);
2041 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2042
2043 /* Extract data for GIMPLE_OMP_FOR. */
2044 gcc_assert (loop->header == single_dom_exit (loop)->src);
2045 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2046
2047 cvar = gimple_cond_lhs (cond_stmt);
2048 cvar_base = SSA_NAME_VAR (cvar);
2049 phi = SSA_NAME_DEF_STMT (cvar);
2050 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2051 initvar = copy_ssa_name (cvar);
2052 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2053 initvar);
2054 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2055
2056 gsi = gsi_last_nondebug_bb (loop->latch);
2057 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2058 gsi_remove (&gsi, true);
2059
2060 /* Prepare cfg. */
2061 for_bb = split_edge (loop_preheader_edge (loop));
2062 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2063 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2064 gcc_assert (exit == single_dom_exit (loop));
2065
2066 guard = make_edge (for_bb, ex_bb, 0);
2067 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2068 loop->latch = split_edge (single_succ_edge (loop->latch));
2069 single_pred_edge (loop->latch)->flags = 0;
2070 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2071 rescan_loop_exit (end, true, false);
2072
2073 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2074 !gsi_end_p (gpi); gsi_next (&gpi))
2075 {
2076 source_location locus;
2077 gphi *phi = gpi.phi ();
2078 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2079 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2080
2081 /* If the exit phi is not connected to a header phi in the same loop, this
2082 value is not modified in the loop, and we're done with this phi. */
2083 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2084 && gimple_bb (def_stmt) == loop->header))
2085 continue;
2086
2087 gphi *stmt = as_a <gphi *> (def_stmt);
2088 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2089 locus = gimple_phi_arg_location_from_edge (stmt,
2090 loop_preheader_edge (loop));
2091 add_phi_arg (phi, def, guard, locus);
2092
2093 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2094 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2095 add_phi_arg (phi, def, end, locus);
2096 }
2097 e = redirect_edge_and_branch (exit, nexit->dest);
2098 PENDING_STMT (e) = NULL;
2099
2100 /* Emit GIMPLE_OMP_FOR. */
2101 gimple_cond_set_lhs (cond_stmt, cvar_base);
2102 type = TREE_TYPE (cvar);
2103 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2104 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2105 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2106 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2107 switch (schedule_type)
2108 {
2109 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2110 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2111 break;
2112 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2113 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2114 break;
2115 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2116 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2117 break;
2118 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2119 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2120 chunk_size = 0;
2121 break;
2122 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2123 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2124 chunk_size = 0;
2125 break;
2126 default:
2127 gcc_unreachable ();
2128 }
2129 if (chunk_size != 0)
2130 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2131 = build_int_cst (integer_type_node, chunk_size);
2132
2133 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
2134 gimple_set_location (for_stmt, loc);
2135 gimple_omp_for_set_index (for_stmt, 0, initvar);
2136 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2137 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2138 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2139 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2140 cvar_base,
2141 build_int_cst (type, 1)));
2142
2143 gsi = gsi_last_bb (for_bb);
2144 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2145 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2146
2147 /* Emit GIMPLE_OMP_CONTINUE. */
2148 continue_bb = single_pred (loop->latch);
2149 gsi = gsi_last_bb (continue_bb);
2150 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2151 gimple_set_location (omp_cont_stmt, loc);
2152 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2153 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2154
2155 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2156 gsi = gsi_last_bb (ex_bb);
2157 omp_return_stmt2 = gimple_build_omp_return (true);
2158 gimple_set_location (omp_return_stmt2, loc);
2159 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2160
2161 /* After the above dom info is hosed. Re-compute it. */
2162 free_dominance_info (CDI_DOMINATORS);
2163 calculate_dominance_info (CDI_DOMINATORS);
2164 }
2165
2166 /* Generates code to execute the iterations of LOOP in N_THREADS
2167 threads in parallel.
2168
2169 NITER describes number of iterations of LOOP.
2170 REDUCTION_LIST describes the reductions existent in the LOOP. */
2171
2172 static void
2173 gen_parallel_loop (struct loop *loop,
2174 reduction_info_table_type *reduction_list,
2175 unsigned n_threads, struct tree_niter_desc *niter)
2176 {
2177 tree many_iterations_cond, type, nit;
2178 tree arg_struct, new_arg_struct;
2179 gimple_seq stmts;
2180 edge entry, exit;
2181 struct clsn_data clsn_data;
2182 unsigned prob;
2183 location_t loc;
2184 gimple *cond_stmt;
2185 unsigned int m_p_thread=2;
2186
2187 /* From
2188
2189 ---------------------------------------------------------------------
2190 loop
2191 {
2192 IV = phi (INIT, IV + STEP)
2193 BODY1;
2194 if (COND)
2195 break;
2196 BODY2;
2197 }
2198 ---------------------------------------------------------------------
2199
2200 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2201 we generate the following code:
2202
2203 ---------------------------------------------------------------------
2204
2205 if (MAY_BE_ZERO
2206 || NITER < MIN_PER_THREAD * N_THREADS)
2207 goto original;
2208
2209 BODY1;
2210 store all local loop-invariant variables used in body of the loop to DATA.
2211 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2212 load the variables from DATA.
2213 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2214 BODY2;
2215 BODY1;
2216 GIMPLE_OMP_CONTINUE;
2217 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2218 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2219 goto end;
2220
2221 original:
2222 loop
2223 {
2224 IV = phi (INIT, IV + STEP)
2225 BODY1;
2226 if (COND)
2227 break;
2228 BODY2;
2229 }
2230
2231 end:
2232
2233 */
2234
2235 /* Create two versions of the loop -- in the old one, we know that the
2236 number of iterations is large enough, and we will transform it into the
2237 loop that will be split to loop_fn, the new one will be used for the
2238 remaining iterations. */
2239
2240 /* We should compute a better number-of-iterations value for outer loops.
2241 That is, if we have
2242
2243 for (i = 0; i < n; ++i)
2244 for (j = 0; j < m; ++j)
2245 ...
2246
2247 we should compute nit = n * m, not nit = n.
2248 Also may_be_zero handling would need to be adjusted. */
2249
2250 type = TREE_TYPE (niter->niter);
2251 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2252 NULL_TREE);
2253 if (stmts)
2254 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2255
2256 if (loop->inner)
2257 m_p_thread=2;
2258 else
2259 m_p_thread=MIN_PER_THREAD;
2260
2261 many_iterations_cond =
2262 fold_build2 (GE_EXPR, boolean_type_node,
2263 nit, build_int_cst (type, m_p_thread * n_threads));
2264
2265 many_iterations_cond
2266 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2267 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2268 many_iterations_cond);
2269 many_iterations_cond
2270 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2271 if (stmts)
2272 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2273 if (!is_gimple_condexpr (many_iterations_cond))
2274 {
2275 many_iterations_cond
2276 = force_gimple_operand (many_iterations_cond, &stmts,
2277 true, NULL_TREE);
2278 if (stmts)
2279 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2280 }
2281
2282 initialize_original_copy_tables ();
2283
2284 /* We assume that the loop usually iterates a lot. */
2285 prob = 4 * REG_BR_PROB_BASE / 5;
2286 loop_version (loop, many_iterations_cond, NULL,
2287 prob, prob, REG_BR_PROB_BASE - prob, true);
2288 update_ssa (TODO_update_ssa);
2289 free_original_copy_tables ();
2290
2291 /* Base all the induction variables in LOOP on a single control one. */
2292 canonicalize_loop_ivs (loop, &nit, true);
2293
2294 /* Ensure that the exit condition is the first statement in the loop.
2295 The common case is that latch of the loop is empty (apart from the
2296 increment) and immediately follows the loop exit test. Attempt to move the
2297 entry of the loop directly before the exit check and increase the number of
2298 iterations of the loop by one. */
2299 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2300 {
2301 if (dump_file
2302 && (dump_flags & TDF_DETAILS))
2303 fprintf (dump_file,
2304 "alternative exit-first loop transform succeeded"
2305 " for loop %d\n", loop->num);
2306 }
2307 else
2308 {
2309 /* Fall back on the method that handles more cases, but duplicates the
2310 loop body: move the exit condition of LOOP to the beginning of its
2311 header, and duplicate the part of the last iteration that gets disabled
2312 to the exit of the loop. */
2313 transform_to_exit_first_loop (loop, reduction_list, nit);
2314 }
2315
2316 /* Generate initializations for reductions. */
2317 if (reduction_list->elements () > 0)
2318 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2319
2320 /* Eliminate the references to local variables from the loop. */
2321 gcc_assert (single_exit (loop));
2322 entry = loop_preheader_edge (loop);
2323 exit = single_dom_exit (loop);
2324
2325 eliminate_local_variables (entry, exit);
2326 /* In the old loop, move all variables non-local to the loop to a structure
2327 and back, and create separate decls for the variables used in loop. */
2328 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2329 &new_arg_struct, &clsn_data);
2330
2331 /* Create the parallel constructs. */
2332 loc = UNKNOWN_LOCATION;
2333 cond_stmt = last_stmt (loop->header);
2334 if (cond_stmt)
2335 loc = gimple_location (cond_stmt);
2336 create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
2337 new_arg_struct, n_threads, loc);
2338 if (reduction_list->elements () > 0)
2339 create_call_for_reduction (loop, reduction_list, &clsn_data);
2340
2341 scev_reset ();
2342
2343 /* Free loop bound estimations that could contain references to
2344 removed statements. */
2345 FOR_EACH_LOOP (loop, 0)
2346 free_numbers_of_iterations_estimates_loop (loop);
2347 }
2348
2349 /* Returns true when LOOP contains vector phi nodes. */
2350
2351 static bool
2352 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2353 {
2354 unsigned i;
2355 basic_block *bbs = get_loop_body_in_dom_order (loop);
2356 gphi_iterator gsi;
2357 bool res = true;
2358
2359 for (i = 0; i < loop->num_nodes; i++)
2360 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2361 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2362 goto end;
2363
2364 res = false;
2365 end:
2366 free (bbs);
2367 return res;
2368 }
2369
2370 /* Create a reduction_info struct, initialize it with REDUC_STMT
2371 and PHI, insert it to the REDUCTION_LIST. */
2372
2373 static void
2374 build_new_reduction (reduction_info_table_type *reduction_list,
2375 gimple *reduc_stmt, gphi *phi)
2376 {
2377 reduction_info **slot;
2378 struct reduction_info *new_reduction;
2379 enum tree_code reduction_code;
2380
2381 gcc_assert (reduc_stmt);
2382
2383 if (dump_file && (dump_flags & TDF_DETAILS))
2384 {
2385 fprintf (dump_file,
2386 "Detected reduction. reduction stmt is: \n");
2387 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2388 fprintf (dump_file, "\n");
2389 }
2390
2391 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2392 {
2393 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2394 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2395 reduction_code = gimple_assign_rhs_code (def1);
2396 }
2397
2398 else
2399 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2400
2401 new_reduction = XCNEW (struct reduction_info);
2402
2403 new_reduction->reduc_stmt = reduc_stmt;
2404 new_reduction->reduc_phi = phi;
2405 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2406 new_reduction->reduction_code = reduction_code;
2407 slot = reduction_list->find_slot (new_reduction, INSERT);
2408 *slot = new_reduction;
2409 }
2410
2411 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2412
2413 int
2414 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2415 {
2416 struct reduction_info *const red = *slot;
2417 gimple_set_uid (red->reduc_phi, red->reduc_version);
2418 return 1;
2419 }
2420
2421 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2422
2423 static void
2424 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2425 {
2426 gphi_iterator gsi;
2427 loop_vec_info simple_loop_info;
2428 loop_vec_info simple_inner_loop_info = NULL;
2429 bool allow_double_reduc = true;
2430
2431 if (!stmt_vec_info_vec.exists ())
2432 init_stmt_vec_info_vec ();
2433
2434 simple_loop_info = vect_analyze_loop_form (loop);
2435 if (simple_loop_info == NULL)
2436 return;
2437
2438 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2439 {
2440 gphi *phi = gsi.phi ();
2441 affine_iv iv;
2442 tree res = PHI_RESULT (phi);
2443 bool double_reduc;
2444
2445 if (virtual_operand_p (res))
2446 continue;
2447
2448 if (simple_iv (loop, loop, res, &iv, true))
2449 continue;
2450
2451 gimple *reduc_stmt
2452 = vect_force_simple_reduction (simple_loop_info, phi, true,
2453 &double_reduc, true);
2454 if (!reduc_stmt)
2455 continue;
2456
2457 if (double_reduc)
2458 {
2459 if (!allow_double_reduc
2460 || loop->inner->inner != NULL)
2461 continue;
2462
2463 if (!simple_inner_loop_info)
2464 {
2465 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2466 if (!simple_inner_loop_info)
2467 {
2468 allow_double_reduc = false;
2469 continue;
2470 }
2471 }
2472
2473 use_operand_p use_p;
2474 gimple *inner_stmt;
2475 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2476 gcc_assert (single_use_p);
2477 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2478 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2479 &iv, true))
2480 continue;
2481
2482 gimple *inner_reduc_stmt
2483 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2484 true, &double_reduc, true);
2485 gcc_assert (!double_reduc);
2486 if (inner_reduc_stmt == NULL)
2487 continue;
2488 }
2489
2490 build_new_reduction (reduction_list, reduc_stmt, phi);
2491 }
2492 destroy_loop_vec_info (simple_loop_info, true);
2493 destroy_loop_vec_info (simple_inner_loop_info, true);
2494
2495 /* Release the claim on gimple_uid. */
2496 free_stmt_vec_info_vec ();
2497
2498 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2499 and free_stmt_vec_info_vec, we can set gimple_uid of reduc_phi stmts only
2500 now. */
2501 basic_block bb;
2502 FOR_EACH_BB_FN (bb, cfun)
2503 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2504 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2505 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2506 }
2507
2508 /* Try to initialize NITER for code generation part. */
2509
2510 static bool
2511 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2512 {
2513 edge exit = single_dom_exit (loop);
2514
2515 gcc_assert (exit);
2516
2517 /* We need to know # of iterations, and there should be no uses of values
2518 defined inside loop outside of it, unless the values are invariants of
2519 the loop. */
2520 if (!number_of_iterations_exit (loop, exit, niter, false))
2521 {
2522 if (dump_file && (dump_flags & TDF_DETAILS))
2523 fprintf (dump_file, " FAILED: number of iterations not known\n");
2524 return false;
2525 }
2526
2527 return true;
2528 }
2529
2530 /* Try to initialize REDUCTION_LIST for code generation part.
2531 REDUCTION_LIST describes the reductions. */
2532
2533 static bool
2534 try_create_reduction_list (loop_p loop,
2535 reduction_info_table_type *reduction_list)
2536 {
2537 edge exit = single_dom_exit (loop);
2538 gphi_iterator gsi;
2539
2540 gcc_assert (exit);
2541
2542 gather_scalar_reductions (loop, reduction_list);
2543
2544
2545 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2546 {
2547 gphi *phi = gsi.phi ();
2548 struct reduction_info *red;
2549 imm_use_iterator imm_iter;
2550 use_operand_p use_p;
2551 gimple *reduc_phi;
2552 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2553
2554 if (!virtual_operand_p (val))
2555 {
2556 if (dump_file && (dump_flags & TDF_DETAILS))
2557 {
2558 fprintf (dump_file, "phi is ");
2559 print_gimple_stmt (dump_file, phi, 0, 0);
2560 fprintf (dump_file, "arg of phi to exit: value ");
2561 print_generic_expr (dump_file, val, 0);
2562 fprintf (dump_file, " used outside loop\n");
2563 fprintf (dump_file,
2564 " checking if it a part of reduction pattern: \n");
2565 }
2566 if (reduction_list->elements () == 0)
2567 {
2568 if (dump_file && (dump_flags & TDF_DETAILS))
2569 fprintf (dump_file,
2570 " FAILED: it is not a part of reduction.\n");
2571 return false;
2572 }
2573 reduc_phi = NULL;
2574 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2575 {
2576 if (!gimple_debug_bind_p (USE_STMT (use_p))
2577 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2578 {
2579 reduc_phi = USE_STMT (use_p);
2580 break;
2581 }
2582 }
2583 red = reduction_phi (reduction_list, reduc_phi);
2584 if (red == NULL)
2585 {
2586 if (dump_file && (dump_flags & TDF_DETAILS))
2587 fprintf (dump_file,
2588 " FAILED: it is not a part of reduction.\n");
2589 return false;
2590 }
2591 if (dump_file && (dump_flags & TDF_DETAILS))
2592 {
2593 fprintf (dump_file, "reduction phi is ");
2594 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2595 fprintf (dump_file, "reduction stmt is ");
2596 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2597 }
2598 }
2599 }
2600
2601 /* The iterations of the loop may communicate only through bivs whose
2602 iteration space can be distributed efficiently. */
2603 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2604 {
2605 gphi *phi = gsi.phi ();
2606 tree def = PHI_RESULT (phi);
2607 affine_iv iv;
2608
2609 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2610 {
2611 struct reduction_info *red;
2612
2613 red = reduction_phi (reduction_list, phi);
2614 if (red == NULL)
2615 {
2616 if (dump_file && (dump_flags & TDF_DETAILS))
2617 fprintf (dump_file,
2618 " FAILED: scalar dependency between iterations\n");
2619 return false;
2620 }
2621 }
2622 }
2623
2624
2625 return true;
2626 }
2627
2628 /* Detect parallel loops and generate parallel code using libgomp
2629 primitives. Returns true if some loop was parallelized, false
2630 otherwise. */
2631
2632 static bool
2633 parallelize_loops (void)
2634 {
2635 unsigned n_threads = flag_tree_parallelize_loops;
2636 bool changed = false;
2637 struct loop *loop;
2638 struct loop *skip_loop = NULL;
2639 struct tree_niter_desc niter_desc;
2640 struct obstack parloop_obstack;
2641 HOST_WIDE_INT estimated;
2642 source_location loop_loc;
2643
2644 /* Do not parallelize loops in the functions created by parallelization. */
2645 if (parallelized_function_p (cfun->decl))
2646 return false;
2647 if (cfun->has_nonlocal_label)
2648 return false;
2649
2650 gcc_obstack_init (&parloop_obstack);
2651 reduction_info_table_type reduction_list (10);
2652
2653 FOR_EACH_LOOP (loop, 0)
2654 {
2655 if (loop == skip_loop)
2656 {
2657 if (dump_file && (dump_flags & TDF_DETAILS))
2658 fprintf (dump_file,
2659 "Skipping loop %d as inner loop of parallelized loop\n",
2660 loop->num);
2661
2662 skip_loop = loop->inner;
2663 continue;
2664 }
2665 else
2666 skip_loop = NULL;
2667
2668 reduction_list.empty ();
2669 if (dump_file && (dump_flags & TDF_DETAILS))
2670 {
2671 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2672 if (loop->inner)
2673 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2674 else
2675 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2676 }
2677
2678 /* If we use autopar in graphite pass, we use its marked dependency
2679 checking results. */
2680 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2681 {
2682 if (dump_file && (dump_flags & TDF_DETAILS))
2683 fprintf (dump_file, "loop is not parallel according to graphite\n");
2684 continue;
2685 }
2686
2687 if (!single_dom_exit (loop))
2688 {
2689
2690 if (dump_file && (dump_flags & TDF_DETAILS))
2691 fprintf (dump_file, "loop is !single_dom_exit\n");
2692
2693 continue;
2694 }
2695
2696 if (/* And of course, the loop must be parallelizable. */
2697 !can_duplicate_loop_p (loop)
2698 || loop_has_blocks_with_irreducible_flag (loop)
2699 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2700 /* FIXME: the check for vector phi nodes could be removed. */
2701 || loop_has_vector_phi_nodes (loop))
2702 continue;
2703
2704 estimated = estimated_stmt_executions_int (loop);
2705 if (estimated == -1)
2706 estimated = max_stmt_executions_int (loop);
2707 /* FIXME: Bypass this check as graphite doesn't update the
2708 count and frequency correctly now. */
2709 if (!flag_loop_parallelize_all
2710 && ((estimated != -1
2711 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2712 /* Do not bother with loops in cold areas. */
2713 || optimize_loop_nest_for_size_p (loop)))
2714 continue;
2715
2716 if (!try_get_loop_niter (loop, &niter_desc))
2717 continue;
2718
2719 if (!try_create_reduction_list (loop, &reduction_list))
2720 continue;
2721
2722 if (!flag_loop_parallelize_all
2723 && !loop_parallel_p (loop, &parloop_obstack))
2724 continue;
2725
2726 changed = true;
2727 skip_loop = loop->inner;
2728 if (dump_file && (dump_flags & TDF_DETAILS))
2729 {
2730 if (loop->inner)
2731 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2732 else
2733 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2734 loop_loc = find_loop_location (loop);
2735 if (loop_loc != UNKNOWN_LOCATION)
2736 fprintf (dump_file, "\nloop at %s:%d: ",
2737 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2738 }
2739 gen_parallel_loop (loop, &reduction_list,
2740 n_threads, &niter_desc);
2741 }
2742
2743 obstack_free (&parloop_obstack, NULL);
2744
2745 /* Parallelization will cause new function calls to be inserted through
2746 which local variables will escape. Reset the points-to solution
2747 for ESCAPED. */
2748 if (changed)
2749 pt_solution_reset (&cfun->gimple_df->escaped);
2750
2751 return changed;
2752 }
2753
2754 /* Parallelization. */
2755
2756 namespace {
2757
2758 const pass_data pass_data_parallelize_loops =
2759 {
2760 GIMPLE_PASS, /* type */
2761 "parloops", /* name */
2762 OPTGROUP_LOOP, /* optinfo_flags */
2763 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2764 ( PROP_cfg | PROP_ssa ), /* properties_required */
2765 0, /* properties_provided */
2766 0, /* properties_destroyed */
2767 0, /* todo_flags_start */
2768 0, /* todo_flags_finish */
2769 };
2770
2771 class pass_parallelize_loops : public gimple_opt_pass
2772 {
2773 public:
2774 pass_parallelize_loops (gcc::context *ctxt)
2775 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2776 {}
2777
2778 /* opt_pass methods: */
2779 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2780 virtual unsigned int execute (function *);
2781
2782 }; // class pass_parallelize_loops
2783
2784 unsigned
2785 pass_parallelize_loops::execute (function *fun)
2786 {
2787 if (number_of_loops (fun) <= 1)
2788 return 0;
2789
2790 if (parallelize_loops ())
2791 {
2792 fun->curr_properties &= ~(PROP_gimple_eomp);
2793
2794 checking_verify_loop_structure ();
2795
2796 return TODO_update_ssa;
2797 }
2798
2799 return 0;
2800 }
2801
2802 } // anon namespace
2803
2804 gimple_opt_pass *
2805 make_pass_parallelize_loops (gcc::context *ctxt)
2806 {
2807 return new pass_parallelize_loops (ctxt);
2808 }