]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-parloops.c
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-general.h"
53 #include "omp-low.h"
54 #include "tree-ssa.h"
55 #include "params.h"
56 #include "params-enum.h"
57 #include "tree-ssa-alias.h"
58 #include "tree-eh.h"
59 #include "gomp-constants.h"
60 #include "tree-dfa.h"
61
62 /* This pass tries to distribute iterations of loops into several threads.
63 The implementation is straightforward -- for each loop we test whether its
64 iterations are independent, and if it is the case (and some additional
65 conditions regarding profitability and correctness are satisfied), we
66 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
67 machinery do its job.
68
69 The most of the complexity is in bringing the code into shape expected
70 by the omp expanders:
71 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
72 variable and that the exit test is at the start of the loop body
73 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
74 variables by accesses through pointers, and breaking up ssa chains
75 by storing the values incoming to the parallelized loop to a structure
76 passed to the new function as an argument (something similar is done
77 in omp gimplification, unfortunately only a small part of the code
78 can be shared).
79
80 TODO:
81 -- if there are several parallelizable loops in a function, it may be
82 possible to generate the threads just once (using synchronization to
83 ensure that cross-loop dependences are obeyed).
84 -- handling of common reduction patterns for outer loops.
85
86 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
87 /*
88 Reduction handling:
89 currently we use vect_force_simple_reduction() to detect reduction patterns.
90 The code transformation will be introduced by an example.
91
92
93 parloop
94 {
95 int sum=1;
96
97 for (i = 0; i < N; i++)
98 {
99 x[i] = i + 3;
100 sum+=x[i];
101 }
102 }
103
104 gimple-like code:
105 header_bb:
106
107 # sum_29 = PHI <sum_11(5), 1(3)>
108 # i_28 = PHI <i_12(5), 0(3)>
109 D.1795_8 = i_28 + 3;
110 x[i_28] = D.1795_8;
111 sum_11 = D.1795_8 + sum_29;
112 i_12 = i_28 + 1;
113 if (N_6(D) > i_12)
114 goto header_bb;
115
116
117 exit_bb:
118
119 # sum_21 = PHI <sum_11(4)>
120 printf (&"%d"[0], sum_21);
121
122
123 after reduction transformation (only relevant parts):
124
125 parloop
126 {
127
128 ....
129
130
131 # Storing the initial value given by the user. #
132
133 .paral_data_store.32.sum.27 = 1;
134
135 #pragma omp parallel num_threads(4)
136
137 #pragma omp for schedule(static)
138
139 # The neutral element corresponding to the particular
140 reduction's operation, e.g. 0 for PLUS_EXPR,
141 1 for MULT_EXPR, etc. replaces the user's initial value. #
142
143 # sum.27_29 = PHI <sum.27_11, 0>
144
145 sum.27_11 = D.1827_8 + sum.27_29;
146
147 GIMPLE_OMP_CONTINUE
148
149 # Adding this reduction phi is done at create_phi_for_local_result() #
150 # sum.27_56 = PHI <sum.27_11, 0>
151 GIMPLE_OMP_RETURN
152
153 # Creating the atomic operation is done at
154 create_call_for_reduction_1() #
155
156 #pragma omp atomic_load
157 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
158 D.1840_60 = sum.27_56 + D.1839_59;
159 #pragma omp atomic_store (D.1840_60);
160
161 GIMPLE_OMP_RETURN
162
163 # collecting the result after the join of the threads is done at
164 create_loads_for_reductions().
165 The value computed by the threads is loaded from the
166 shared struct. #
167
168
169 .paral_data_load.33_52 = &.paral_data_store.32;
170 sum_37 = .paral_data_load.33_52->sum.27;
171 sum_43 = D.1795_41 + sum_37;
172
173 exit bb:
174 # sum_21 = PHI <sum_43, sum_26>
175 printf (&"%d"[0], sum_21);
176
177 ...
178
179 }
180
181 */
182
183 /* Minimal number of iterations of a loop that should be executed in each
184 thread. */
185 #define MIN_PER_THREAD 100
186
187 /* Element of the hashtable, representing a
188 reduction in the current loop. */
189 struct reduction_info
190 {
191 gimple *reduc_stmt; /* reduction statement. */
192 gimple *reduc_phi; /* The phi node defining the reduction. */
193 enum tree_code reduction_code;/* code for the reduction operation. */
194 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
195 result. */
196 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
197 of the reduction variable when existing the loop. */
198 tree initial_value; /* The initial value of the reduction var before entering the loop. */
199 tree field; /* the name of the field in the parloop data structure intended for reduction. */
200 tree reduc_addr; /* The address of the reduction variable for
201 openacc reductions. */
202 tree init; /* reduction initialization value. */
203 gphi *new_phi; /* (helper field) Newly created phi node whose result
204 will be passed to the atomic operation. Represents
205 the local result each thread computed for the reduction
206 operation. */
207 };
208
209 /* Reduction info hashtable helpers. */
210
211 struct reduction_hasher : free_ptr_hash <reduction_info>
212 {
213 static inline hashval_t hash (const reduction_info *);
214 static inline bool equal (const reduction_info *, const reduction_info *);
215 };
216
217 /* Equality and hash functions for hashtab code. */
218
219 inline bool
220 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
221 {
222 return (a->reduc_phi == b->reduc_phi);
223 }
224
225 inline hashval_t
226 reduction_hasher::hash (const reduction_info *a)
227 {
228 return a->reduc_version;
229 }
230
231 typedef hash_table<reduction_hasher> reduction_info_table_type;
232
233
234 static struct reduction_info *
235 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
236 {
237 struct reduction_info tmpred, *red;
238
239 if (reduction_list->elements () == 0 || phi == NULL)
240 return NULL;
241
242 if (gimple_uid (phi) == (unsigned int)-1
243 || gimple_uid (phi) == 0)
244 return NULL;
245
246 tmpred.reduc_phi = phi;
247 tmpred.reduc_version = gimple_uid (phi);
248 red = reduction_list->find (&tmpred);
249 gcc_assert (red == NULL || red->reduc_phi == phi);
250
251 return red;
252 }
253
254 /* Element of hashtable of names to copy. */
255
256 struct name_to_copy_elt
257 {
258 unsigned version; /* The version of the name to copy. */
259 tree new_name; /* The new name used in the copy. */
260 tree field; /* The field of the structure used to pass the
261 value. */
262 };
263
264 /* Name copies hashtable helpers. */
265
266 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
267 {
268 static inline hashval_t hash (const name_to_copy_elt *);
269 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
270 };
271
272 /* Equality and hash functions for hashtab code. */
273
274 inline bool
275 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
276 {
277 return a->version == b->version;
278 }
279
280 inline hashval_t
281 name_to_copy_hasher::hash (const name_to_copy_elt *a)
282 {
283 return (hashval_t) a->version;
284 }
285
286 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
287
288 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
289 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
290 represents the denominator for every element in the matrix. */
291 typedef struct lambda_trans_matrix_s
292 {
293 lambda_matrix matrix;
294 int rowsize;
295 int colsize;
296 int denominator;
297 } *lambda_trans_matrix;
298 #define LTM_MATRIX(T) ((T)->matrix)
299 #define LTM_ROWSIZE(T) ((T)->rowsize)
300 #define LTM_COLSIZE(T) ((T)->colsize)
301 #define LTM_DENOMINATOR(T) ((T)->denominator)
302
303 /* Allocate a new transformation matrix. */
304
305 static lambda_trans_matrix
306 lambda_trans_matrix_new (int colsize, int rowsize,
307 struct obstack * lambda_obstack)
308 {
309 lambda_trans_matrix ret;
310
311 ret = (lambda_trans_matrix)
312 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
313 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
314 LTM_ROWSIZE (ret) = rowsize;
315 LTM_COLSIZE (ret) = colsize;
316 LTM_DENOMINATOR (ret) = 1;
317 return ret;
318 }
319
320 /* Multiply a vector VEC by a matrix MAT.
321 MAT is an M*N matrix, and VEC is a vector with length N. The result
322 is stored in DEST which must be a vector of length M. */
323
324 static void
325 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
326 lambda_vector vec, lambda_vector dest)
327 {
328 int i, j;
329
330 lambda_vector_clear (dest, m);
331 for (i = 0; i < m; i++)
332 for (j = 0; j < n; j++)
333 dest[i] += matrix[i][j] * vec[j];
334 }
335
336 /* Return true if TRANS is a legal transformation matrix that respects
337 the dependence vectors in DISTS and DIRS. The conservative answer
338 is false.
339
340 "Wolfe proves that a unimodular transformation represented by the
341 matrix T is legal when applied to a loop nest with a set of
342 lexicographically non-negative distance vectors RDG if and only if
343 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
344 i.e.: if and only if it transforms the lexicographically positive
345 distance vectors to lexicographically positive vectors. Note that
346 a unimodular matrix must transform the zero vector (and only it) to
347 the zero vector." S.Muchnick. */
348
349 static bool
350 lambda_transform_legal_p (lambda_trans_matrix trans,
351 int nb_loops,
352 vec<ddr_p> dependence_relations)
353 {
354 unsigned int i, j;
355 lambda_vector distres;
356 struct data_dependence_relation *ddr;
357
358 gcc_assert (LTM_COLSIZE (trans) == nb_loops
359 && LTM_ROWSIZE (trans) == nb_loops);
360
361 /* When there are no dependences, the transformation is correct. */
362 if (dependence_relations.length () == 0)
363 return true;
364
365 ddr = dependence_relations[0];
366 if (ddr == NULL)
367 return true;
368
369 /* When there is an unknown relation in the dependence_relations, we
370 know that it is no worth looking at this loop nest: give up. */
371 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
372 return false;
373
374 distres = lambda_vector_new (nb_loops);
375
376 /* For each distance vector in the dependence graph. */
377 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
378 {
379 /* Don't care about relations for which we know that there is no
380 dependence, nor about read-read (aka. output-dependences):
381 these data accesses can happen in any order. */
382 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
383 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
384 continue;
385
386 /* Conservatively answer: "this transformation is not valid". */
387 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
388 return false;
389
390 /* If the dependence could not be captured by a distance vector,
391 conservatively answer that the transform is not valid. */
392 if (DDR_NUM_DIST_VECTS (ddr) == 0)
393 return false;
394
395 /* Compute trans.dist_vect */
396 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
397 {
398 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
399 DDR_DIST_VECT (ddr, j), distres);
400
401 if (!lambda_vector_lexico_pos (distres, nb_loops))
402 return false;
403 }
404 }
405 return true;
406 }
407
408 /* Data dependency analysis. Returns true if the iterations of LOOP
409 are independent on each other (that is, if we can execute them
410 in parallel). */
411
412 static bool
413 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
414 {
415 vec<ddr_p> dependence_relations;
416 vec<data_reference_p> datarefs;
417 lambda_trans_matrix trans;
418 bool ret = false;
419
420 if (dump_file && (dump_flags & TDF_DETAILS))
421 {
422 fprintf (dump_file, "Considering loop %d\n", loop->num);
423 if (!loop->inner)
424 fprintf (dump_file, "loop is innermost\n");
425 else
426 fprintf (dump_file, "loop NOT innermost\n");
427 }
428
429 /* Check for problems with dependences. If the loop can be reversed,
430 the iterations are independent. */
431 auto_vec<loop_p, 3> loop_nest;
432 datarefs.create (10);
433 dependence_relations.create (100);
434 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
435 &dependence_relations))
436 {
437 if (dump_file && (dump_flags & TDF_DETAILS))
438 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
439 ret = false;
440 goto end;
441 }
442 if (dump_file && (dump_flags & TDF_DETAILS))
443 dump_data_dependence_relations (dump_file, dependence_relations);
444
445 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
446 LTM_MATRIX (trans)[0][0] = -1;
447
448 if (lambda_transform_legal_p (trans, 1, dependence_relations))
449 {
450 ret = true;
451 if (dump_file && (dump_flags & TDF_DETAILS))
452 fprintf (dump_file, " SUCCESS: may be parallelized\n");
453 }
454 else if (dump_file && (dump_flags & TDF_DETAILS))
455 fprintf (dump_file,
456 " FAILED: data dependencies exist across iterations\n");
457
458 end:
459 free_dependence_relations (dependence_relations);
460 free_data_refs (datarefs);
461
462 return ret;
463 }
464
465 /* Return true when LOOP contains basic blocks marked with the
466 BB_IRREDUCIBLE_LOOP flag. */
467
468 static inline bool
469 loop_has_blocks_with_irreducible_flag (struct loop *loop)
470 {
471 unsigned i;
472 basic_block *bbs = get_loop_body_in_dom_order (loop);
473 bool res = true;
474
475 for (i = 0; i < loop->num_nodes; i++)
476 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
477 goto end;
478
479 res = false;
480 end:
481 free (bbs);
482 return res;
483 }
484
485 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
486 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
487 to their addresses that can be reused. The address of OBJ is known to
488 be invariant in the whole function. Other needed statements are placed
489 right before GSI. */
490
491 static tree
492 take_address_of (tree obj, tree type, edge entry,
493 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
494 {
495 int uid;
496 tree *var_p, name, addr;
497 gassign *stmt;
498 gimple_seq stmts;
499
500 /* Since the address of OBJ is invariant, the trees may be shared.
501 Avoid rewriting unrelated parts of the code. */
502 obj = unshare_expr (obj);
503 for (var_p = &obj;
504 handled_component_p (*var_p);
505 var_p = &TREE_OPERAND (*var_p, 0))
506 continue;
507
508 /* Canonicalize the access to base on a MEM_REF. */
509 if (DECL_P (*var_p))
510 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
511
512 /* Assign a canonical SSA name to the address of the base decl used
513 in the address and share it for all accesses and addresses based
514 on it. */
515 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
516 int_tree_map elt;
517 elt.uid = uid;
518 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
519 if (!slot->to)
520 {
521 if (gsi == NULL)
522 return NULL;
523 addr = TREE_OPERAND (*var_p, 0);
524 const char *obj_name
525 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
526 if (obj_name)
527 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
528 else
529 name = make_ssa_name (TREE_TYPE (addr));
530 stmt = gimple_build_assign (name, addr);
531 gsi_insert_on_edge_immediate (entry, stmt);
532
533 slot->uid = uid;
534 slot->to = name;
535 }
536 else
537 name = slot->to;
538
539 /* Express the address in terms of the canonical SSA name. */
540 TREE_OPERAND (*var_p, 0) = name;
541 if (gsi == NULL)
542 return build_fold_addr_expr_with_type (obj, type);
543
544 name = force_gimple_operand (build_addr (obj),
545 &stmts, true, NULL_TREE);
546 if (!gimple_seq_empty_p (stmts))
547 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
548
549 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
550 {
551 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
552 NULL_TREE);
553 if (!gimple_seq_empty_p (stmts))
554 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
555 }
556
557 return name;
558 }
559
560 static tree
561 reduc_stmt_res (gimple *stmt)
562 {
563 return (gimple_code (stmt) == GIMPLE_PHI
564 ? gimple_phi_result (stmt)
565 : gimple_assign_lhs (stmt));
566 }
567
568 /* Callback for htab_traverse. Create the initialization statement
569 for reduction described in SLOT, and place it at the preheader of
570 the loop described in DATA. */
571
572 int
573 initialize_reductions (reduction_info **slot, struct loop *loop)
574 {
575 tree init;
576 tree type, arg;
577 edge e;
578
579 struct reduction_info *const reduc = *slot;
580
581 /* Create initialization in preheader:
582 reduction_variable = initialization value of reduction. */
583
584 /* In the phi node at the header, replace the argument coming
585 from the preheader with the reduction initialization value. */
586
587 /* Initialize the reduction. */
588 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
589 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
590 reduc->reduction_code, type);
591 reduc->init = init;
592
593 /* Replace the argument representing the initialization value
594 with the initialization value for the reduction (neutral
595 element for the particular operation, e.g. 0 for PLUS_EXPR,
596 1 for MULT_EXPR, etc).
597 Keep the old value in a new variable "reduction_initial",
598 that will be taken in consideration after the parallel
599 computing is done. */
600
601 e = loop_preheader_edge (loop);
602 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
603 /* Create new variable to hold the initial value. */
604
605 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
606 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
607 reduc->initial_value = arg;
608 return 1;
609 }
610
611 struct elv_data
612 {
613 struct walk_stmt_info info;
614 edge entry;
615 int_tree_htab_type *decl_address;
616 gimple_stmt_iterator *gsi;
617 bool changed;
618 bool reset;
619 };
620
621 /* Eliminates references to local variables in *TP out of the single
622 entry single exit region starting at DTA->ENTRY.
623 DECL_ADDRESS contains addresses of the references that had their
624 address taken already. If the expression is changed, CHANGED is
625 set to true. Callback for walk_tree. */
626
627 static tree
628 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
629 {
630 struct elv_data *const dta = (struct elv_data *) data;
631 tree t = *tp, var, addr, addr_type, type, obj;
632
633 if (DECL_P (t))
634 {
635 *walk_subtrees = 0;
636
637 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
638 return NULL_TREE;
639
640 type = TREE_TYPE (t);
641 addr_type = build_pointer_type (type);
642 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
643 dta->gsi);
644 if (dta->gsi == NULL && addr == NULL_TREE)
645 {
646 dta->reset = true;
647 return NULL_TREE;
648 }
649
650 *tp = build_simple_mem_ref (addr);
651
652 dta->changed = true;
653 return NULL_TREE;
654 }
655
656 if (TREE_CODE (t) == ADDR_EXPR)
657 {
658 /* ADDR_EXPR may appear in two contexts:
659 -- as a gimple operand, when the address taken is a function invariant
660 -- as gimple rhs, when the resulting address in not a function
661 invariant
662 We do not need to do anything special in the latter case (the base of
663 the memory reference whose address is taken may be replaced in the
664 DECL_P case). The former case is more complicated, as we need to
665 ensure that the new address is still a gimple operand. Thus, it
666 is not sufficient to replace just the base of the memory reference --
667 we need to move the whole computation of the address out of the
668 loop. */
669 if (!is_gimple_val (t))
670 return NULL_TREE;
671
672 *walk_subtrees = 0;
673 obj = TREE_OPERAND (t, 0);
674 var = get_base_address (obj);
675 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
676 return NULL_TREE;
677
678 addr_type = TREE_TYPE (t);
679 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
680 dta->gsi);
681 if (dta->gsi == NULL && addr == NULL_TREE)
682 {
683 dta->reset = true;
684 return NULL_TREE;
685 }
686 *tp = addr;
687
688 dta->changed = true;
689 return NULL_TREE;
690 }
691
692 if (!EXPR_P (t))
693 *walk_subtrees = 0;
694
695 return NULL_TREE;
696 }
697
698 /* Moves the references to local variables in STMT at *GSI out of the single
699 entry single exit region starting at ENTRY. DECL_ADDRESS contains
700 addresses of the references that had their address taken
701 already. */
702
703 static void
704 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
705 int_tree_htab_type *decl_address)
706 {
707 struct elv_data dta;
708 gimple *stmt = gsi_stmt (*gsi);
709
710 memset (&dta.info, '\0', sizeof (dta.info));
711 dta.entry = entry;
712 dta.decl_address = decl_address;
713 dta.changed = false;
714 dta.reset = false;
715
716 if (gimple_debug_bind_p (stmt))
717 {
718 dta.gsi = NULL;
719 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
720 eliminate_local_variables_1, &dta.info, NULL);
721 if (dta.reset)
722 {
723 gimple_debug_bind_reset_value (stmt);
724 dta.changed = true;
725 }
726 }
727 else if (gimple_clobber_p (stmt))
728 {
729 unlink_stmt_vdef (stmt);
730 stmt = gimple_build_nop ();
731 gsi_replace (gsi, stmt, false);
732 dta.changed = true;
733 }
734 else
735 {
736 dta.gsi = gsi;
737 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
738 }
739
740 if (dta.changed)
741 update_stmt (stmt);
742 }
743
744 /* Eliminates the references to local variables from the single entry
745 single exit region between the ENTRY and EXIT edges.
746
747 This includes:
748 1) Taking address of a local variable -- these are moved out of the
749 region (and temporary variable is created to hold the address if
750 necessary).
751
752 2) Dereferencing a local variable -- these are replaced with indirect
753 references. */
754
755 static void
756 eliminate_local_variables (edge entry, edge exit)
757 {
758 basic_block bb;
759 auto_vec<basic_block, 3> body;
760 unsigned i;
761 gimple_stmt_iterator gsi;
762 bool has_debug_stmt = false;
763 int_tree_htab_type decl_address (10);
764 basic_block entry_bb = entry->src;
765 basic_block exit_bb = exit->dest;
766
767 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
768
769 FOR_EACH_VEC_ELT (body, i, bb)
770 if (bb != entry_bb && bb != exit_bb)
771 {
772 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
773 if (is_gimple_debug (gsi_stmt (gsi)))
774 {
775 if (gimple_debug_bind_p (gsi_stmt (gsi)))
776 has_debug_stmt = true;
777 }
778 else
779 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
780 }
781
782 if (has_debug_stmt)
783 FOR_EACH_VEC_ELT (body, i, bb)
784 if (bb != entry_bb && bb != exit_bb)
785 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
786 if (gimple_debug_bind_p (gsi_stmt (gsi)))
787 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
788 }
789
790 /* Returns true if expression EXPR is not defined between ENTRY and
791 EXIT, i.e. if all its operands are defined outside of the region. */
792
793 static bool
794 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
795 {
796 basic_block entry_bb = entry->src;
797 basic_block exit_bb = exit->dest;
798 basic_block def_bb;
799
800 if (is_gimple_min_invariant (expr))
801 return true;
802
803 if (TREE_CODE (expr) == SSA_NAME)
804 {
805 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
806 if (def_bb
807 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
808 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
809 return false;
810
811 return true;
812 }
813
814 return false;
815 }
816
817 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
818 The copies are stored to NAME_COPIES, if NAME was already duplicated,
819 its duplicate stored in NAME_COPIES is returned.
820
821 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
822 duplicated, storing the copies in DECL_COPIES. */
823
824 static tree
825 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
826 int_tree_htab_type *decl_copies,
827 bool copy_name_p)
828 {
829 tree copy, var, var_copy;
830 unsigned idx, uid, nuid;
831 struct int_tree_map ielt;
832 struct name_to_copy_elt elt, *nelt;
833 name_to_copy_elt **slot;
834 int_tree_map *dslot;
835
836 if (TREE_CODE (name) != SSA_NAME)
837 return name;
838
839 idx = SSA_NAME_VERSION (name);
840 elt.version = idx;
841 slot = name_copies->find_slot_with_hash (&elt, idx,
842 copy_name_p ? INSERT : NO_INSERT);
843 if (slot && *slot)
844 return (*slot)->new_name;
845
846 if (copy_name_p)
847 {
848 copy = duplicate_ssa_name (name, NULL);
849 nelt = XNEW (struct name_to_copy_elt);
850 nelt->version = idx;
851 nelt->new_name = copy;
852 nelt->field = NULL_TREE;
853 *slot = nelt;
854 }
855 else
856 {
857 gcc_assert (!slot);
858 copy = name;
859 }
860
861 var = SSA_NAME_VAR (name);
862 if (!var)
863 return copy;
864
865 uid = DECL_UID (var);
866 ielt.uid = uid;
867 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
868 if (!dslot->to)
869 {
870 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
871 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
872 dslot->uid = uid;
873 dslot->to = var_copy;
874
875 /* Ensure that when we meet this decl next time, we won't duplicate
876 it again. */
877 nuid = DECL_UID (var_copy);
878 ielt.uid = nuid;
879 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
880 gcc_assert (!dslot->to);
881 dslot->uid = nuid;
882 dslot->to = var_copy;
883 }
884 else
885 var_copy = dslot->to;
886
887 replace_ssa_name_symbol (copy, var_copy);
888 return copy;
889 }
890
891 /* Finds the ssa names used in STMT that are defined outside the
892 region between ENTRY and EXIT and replaces such ssa names with
893 their duplicates. The duplicates are stored to NAME_COPIES. Base
894 decls of all ssa names used in STMT (including those defined in
895 LOOP) are replaced with the new temporary variables; the
896 replacement decls are stored in DECL_COPIES. */
897
898 static void
899 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
900 name_to_copy_table_type *name_copies,
901 int_tree_htab_type *decl_copies)
902 {
903 use_operand_p use;
904 def_operand_p def;
905 ssa_op_iter oi;
906 tree name, copy;
907 bool copy_name_p;
908
909 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
910 {
911 name = DEF_FROM_PTR (def);
912 gcc_assert (TREE_CODE (name) == SSA_NAME);
913 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
914 false);
915 gcc_assert (copy == name);
916 }
917
918 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
919 {
920 name = USE_FROM_PTR (use);
921 if (TREE_CODE (name) != SSA_NAME)
922 continue;
923
924 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
925 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
926 copy_name_p);
927 SET_USE (use, copy);
928 }
929 }
930
931 /* Finds the ssa names used in STMT that are defined outside the
932 region between ENTRY and EXIT and replaces such ssa names with
933 their duplicates. The duplicates are stored to NAME_COPIES. Base
934 decls of all ssa names used in STMT (including those defined in
935 LOOP) are replaced with the new temporary variables; the
936 replacement decls are stored in DECL_COPIES. */
937
938 static bool
939 separate_decls_in_region_debug (gimple *stmt,
940 name_to_copy_table_type *name_copies,
941 int_tree_htab_type *decl_copies)
942 {
943 use_operand_p use;
944 ssa_op_iter oi;
945 tree var, name;
946 struct int_tree_map ielt;
947 struct name_to_copy_elt elt;
948 name_to_copy_elt **slot;
949 int_tree_map *dslot;
950
951 if (gimple_debug_bind_p (stmt))
952 var = gimple_debug_bind_get_var (stmt);
953 else if (gimple_debug_source_bind_p (stmt))
954 var = gimple_debug_source_bind_get_var (stmt);
955 else
956 return true;
957 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
958 return true;
959 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
960 ielt.uid = DECL_UID (var);
961 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
962 if (!dslot)
963 return true;
964 if (gimple_debug_bind_p (stmt))
965 gimple_debug_bind_set_var (stmt, dslot->to);
966 else if (gimple_debug_source_bind_p (stmt))
967 gimple_debug_source_bind_set_var (stmt, dslot->to);
968
969 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
970 {
971 name = USE_FROM_PTR (use);
972 if (TREE_CODE (name) != SSA_NAME)
973 continue;
974
975 elt.version = SSA_NAME_VERSION (name);
976 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
977 if (!slot)
978 {
979 gimple_debug_bind_reset_value (stmt);
980 update_stmt (stmt);
981 break;
982 }
983
984 SET_USE (use, (*slot)->new_name);
985 }
986
987 return false;
988 }
989
990 /* Callback for htab_traverse. Adds a field corresponding to the reduction
991 specified in SLOT. The type is passed in DATA. */
992
993 int
994 add_field_for_reduction (reduction_info **slot, tree type)
995 {
996
997 struct reduction_info *const red = *slot;
998 tree var = reduc_stmt_res (red->reduc_stmt);
999 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1000 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1001
1002 insert_field_into_struct (type, field);
1003
1004 red->field = field;
1005
1006 return 1;
1007 }
1008
1009 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1010 described in SLOT. The type is passed in DATA. */
1011
1012 int
1013 add_field_for_name (name_to_copy_elt **slot, tree type)
1014 {
1015 struct name_to_copy_elt *const elt = *slot;
1016 tree name = ssa_name (elt->version);
1017 tree field = build_decl (UNKNOWN_LOCATION,
1018 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1019 TREE_TYPE (name));
1020
1021 insert_field_into_struct (type, field);
1022 elt->field = field;
1023
1024 return 1;
1025 }
1026
1027 /* Callback for htab_traverse. A local result is the intermediate result
1028 computed by a single
1029 thread, or the initial value in case no iteration was executed.
1030 This function creates a phi node reflecting these values.
1031 The phi's result will be stored in NEW_PHI field of the
1032 reduction's data structure. */
1033
1034 int
1035 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1036 {
1037 struct reduction_info *const reduc = *slot;
1038 edge e;
1039 gphi *new_phi;
1040 basic_block store_bb, continue_bb;
1041 tree local_res;
1042 source_location locus;
1043
1044 /* STORE_BB is the block where the phi
1045 should be stored. It is the destination of the loop exit.
1046 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1047 continue_bb = single_pred (loop->latch);
1048 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1049
1050 /* STORE_BB has two predecessors. One coming from the loop
1051 (the reduction's result is computed at the loop),
1052 and another coming from a block preceding the loop,
1053 when no iterations
1054 are executed (the initial value should be taken). */
1055 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1056 e = EDGE_PRED (store_bb, 1);
1057 else
1058 e = EDGE_PRED (store_bb, 0);
1059 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1060 local_res = copy_ssa_name (lhs);
1061 locus = gimple_location (reduc->reduc_stmt);
1062 new_phi = create_phi_node (local_res, store_bb);
1063 add_phi_arg (new_phi, reduc->init, e, locus);
1064 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1065 reduc->new_phi = new_phi;
1066
1067 return 1;
1068 }
1069
1070 struct clsn_data
1071 {
1072 tree store;
1073 tree load;
1074
1075 basic_block store_bb;
1076 basic_block load_bb;
1077 };
1078
1079 /* Callback for htab_traverse. Create an atomic instruction for the
1080 reduction described in SLOT.
1081 DATA annotates the place in memory the atomic operation relates to,
1082 and the basic block it needs to be generated in. */
1083
1084 int
1085 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1086 {
1087 struct reduction_info *const reduc = *slot;
1088 gimple_stmt_iterator gsi;
1089 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1090 tree load_struct;
1091 basic_block bb;
1092 basic_block new_bb;
1093 edge e;
1094 tree t, addr, ref, x;
1095 tree tmp_load, name;
1096 gimple *load;
1097
1098 if (reduc->reduc_addr == NULL_TREE)
1099 {
1100 load_struct = build_simple_mem_ref (clsn_data->load);
1101 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1102
1103 addr = build_addr (t);
1104 }
1105 else
1106 {
1107 /* Set the address for the atomic store. */
1108 addr = reduc->reduc_addr;
1109
1110 /* Remove the non-atomic store '*addr = sum'. */
1111 tree res = PHI_RESULT (reduc->keep_res);
1112 use_operand_p use_p;
1113 gimple *stmt;
1114 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1115 gcc_assert (single_use_p);
1116 replace_uses_by (gimple_vdef (stmt),
1117 gimple_vuse (stmt));
1118 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1119 gsi_remove (&gsi, true);
1120 }
1121
1122 /* Create phi node. */
1123 bb = clsn_data->load_bb;
1124
1125 gsi = gsi_last_bb (bb);
1126 e = split_block (bb, gsi_stmt (gsi));
1127 new_bb = e->dest;
1128
1129 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1130 tmp_load = make_ssa_name (tmp_load);
1131 load = gimple_build_omp_atomic_load (tmp_load, addr);
1132 SSA_NAME_DEF_STMT (tmp_load) = load;
1133 gsi = gsi_start_bb (new_bb);
1134 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1135
1136 e = split_block (new_bb, load);
1137 new_bb = e->dest;
1138 gsi = gsi_start_bb (new_bb);
1139 ref = tmp_load;
1140 x = fold_build2 (reduc->reduction_code,
1141 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1142 PHI_RESULT (reduc->new_phi));
1143
1144 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1145 GSI_CONTINUE_LINKING);
1146
1147 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1148 return 1;
1149 }
1150
1151 /* Create the atomic operation at the join point of the threads.
1152 REDUCTION_LIST describes the reductions in the LOOP.
1153 LD_ST_DATA describes the shared data structure where
1154 shared data is stored in and loaded from. */
1155 static void
1156 create_call_for_reduction (struct loop *loop,
1157 reduction_info_table_type *reduction_list,
1158 struct clsn_data *ld_st_data)
1159 {
1160 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1161 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1162 basic_block continue_bb = single_pred (loop->latch);
1163 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1164 reduction_list
1165 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1166 }
1167
1168 /* Callback for htab_traverse. Loads the final reduction value at the
1169 join point of all threads, and inserts it in the right place. */
1170
1171 int
1172 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1173 {
1174 struct reduction_info *const red = *slot;
1175 gimple *stmt;
1176 gimple_stmt_iterator gsi;
1177 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1178 tree load_struct;
1179 tree name;
1180 tree x;
1181
1182 /* If there's no exit phi, the result of the reduction is unused. */
1183 if (red->keep_res == NULL)
1184 return 1;
1185
1186 gsi = gsi_after_labels (clsn_data->load_bb);
1187 load_struct = build_simple_mem_ref (clsn_data->load);
1188 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1189 NULL_TREE);
1190
1191 x = load_struct;
1192 name = PHI_RESULT (red->keep_res);
1193 stmt = gimple_build_assign (name, x);
1194
1195 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1196
1197 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1198 !gsi_end_p (gsi); gsi_next (&gsi))
1199 if (gsi_stmt (gsi) == red->keep_res)
1200 {
1201 remove_phi_node (&gsi, false);
1202 return 1;
1203 }
1204 gcc_unreachable ();
1205 }
1206
1207 /* Load the reduction result that was stored in LD_ST_DATA.
1208 REDUCTION_LIST describes the list of reductions that the
1209 loads should be generated for. */
1210 static void
1211 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1212 struct clsn_data *ld_st_data)
1213 {
1214 gimple_stmt_iterator gsi;
1215 tree t;
1216 gimple *stmt;
1217
1218 gsi = gsi_after_labels (ld_st_data->load_bb);
1219 t = build_fold_addr_expr (ld_st_data->store);
1220 stmt = gimple_build_assign (ld_st_data->load, t);
1221
1222 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1223
1224 reduction_list
1225 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1226
1227 }
1228
1229 /* Callback for htab_traverse. Store the neutral value for the
1230 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1231 1 for MULT_EXPR, etc. into the reduction field.
1232 The reduction is specified in SLOT. The store information is
1233 passed in DATA. */
1234
1235 int
1236 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1237 {
1238 struct reduction_info *const red = *slot;
1239 tree t;
1240 gimple *stmt;
1241 gimple_stmt_iterator gsi;
1242 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1243
1244 gsi = gsi_last_bb (clsn_data->store_bb);
1245 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1246 stmt = gimple_build_assign (t, red->initial_value);
1247 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1248
1249 return 1;
1250 }
1251
1252 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1253 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1254 specified in SLOT. */
1255
1256 int
1257 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1258 struct clsn_data *clsn_data)
1259 {
1260 struct name_to_copy_elt *const elt = *slot;
1261 tree t;
1262 gimple *stmt;
1263 gimple_stmt_iterator gsi;
1264 tree type = TREE_TYPE (elt->new_name);
1265 tree load_struct;
1266
1267 gsi = gsi_last_bb (clsn_data->store_bb);
1268 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1269 stmt = gimple_build_assign (t, ssa_name (elt->version));
1270 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1271
1272 gsi = gsi_last_bb (clsn_data->load_bb);
1273 load_struct = build_simple_mem_ref (clsn_data->load);
1274 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1275 stmt = gimple_build_assign (elt->new_name, t);
1276 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1277
1278 return 1;
1279 }
1280
1281 /* Moves all the variables used in LOOP and defined outside of it (including
1282 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1283 name) to a structure created for this purpose. The code
1284
1285 while (1)
1286 {
1287 use (a);
1288 use (b);
1289 }
1290
1291 is transformed this way:
1292
1293 bb0:
1294 old.a = a;
1295 old.b = b;
1296
1297 bb1:
1298 a' = new->a;
1299 b' = new->b;
1300 while (1)
1301 {
1302 use (a');
1303 use (b');
1304 }
1305
1306 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1307 pointer `new' is intentionally not initialized (the loop will be split to a
1308 separate function later, and `new' will be initialized from its arguments).
1309 LD_ST_DATA holds information about the shared data structure used to pass
1310 information among the threads. It is initialized here, and
1311 gen_parallel_loop will pass it to create_call_for_reduction that
1312 needs this information. REDUCTION_LIST describes the reductions
1313 in LOOP. */
1314
1315 static void
1316 separate_decls_in_region (edge entry, edge exit,
1317 reduction_info_table_type *reduction_list,
1318 tree *arg_struct, tree *new_arg_struct,
1319 struct clsn_data *ld_st_data)
1320
1321 {
1322 basic_block bb1 = split_edge (entry);
1323 basic_block bb0 = single_pred (bb1);
1324 name_to_copy_table_type name_copies (10);
1325 int_tree_htab_type decl_copies (10);
1326 unsigned i;
1327 tree type, type_name, nvar;
1328 gimple_stmt_iterator gsi;
1329 struct clsn_data clsn_data;
1330 auto_vec<basic_block, 3> body;
1331 basic_block bb;
1332 basic_block entry_bb = bb1;
1333 basic_block exit_bb = exit->dest;
1334 bool has_debug_stmt = false;
1335
1336 entry = single_succ_edge (entry_bb);
1337 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1338
1339 FOR_EACH_VEC_ELT (body, i, bb)
1340 {
1341 if (bb != entry_bb && bb != exit_bb)
1342 {
1343 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1344 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1345 &name_copies, &decl_copies);
1346
1347 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1348 {
1349 gimple *stmt = gsi_stmt (gsi);
1350
1351 if (is_gimple_debug (stmt))
1352 has_debug_stmt = true;
1353 else
1354 separate_decls_in_region_stmt (entry, exit, stmt,
1355 &name_copies, &decl_copies);
1356 }
1357 }
1358 }
1359
1360 /* Now process debug bind stmts. We must not create decls while
1361 processing debug stmts, so we defer their processing so as to
1362 make sure we will have debug info for as many variables as
1363 possible (all of those that were dealt with in the loop above),
1364 and discard those for which we know there's nothing we can
1365 do. */
1366 if (has_debug_stmt)
1367 FOR_EACH_VEC_ELT (body, i, bb)
1368 if (bb != entry_bb && bb != exit_bb)
1369 {
1370 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1371 {
1372 gimple *stmt = gsi_stmt (gsi);
1373
1374 if (is_gimple_debug (stmt))
1375 {
1376 if (separate_decls_in_region_debug (stmt, &name_copies,
1377 &decl_copies))
1378 {
1379 gsi_remove (&gsi, true);
1380 continue;
1381 }
1382 }
1383
1384 gsi_next (&gsi);
1385 }
1386 }
1387
1388 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1389 {
1390 /* It may happen that there is nothing to copy (if there are only
1391 loop carried and external variables in the loop). */
1392 *arg_struct = NULL;
1393 *new_arg_struct = NULL;
1394 }
1395 else
1396 {
1397 /* Create the type for the structure to store the ssa names to. */
1398 type = lang_hooks.types.make_type (RECORD_TYPE);
1399 type_name = build_decl (UNKNOWN_LOCATION,
1400 TYPE_DECL, create_tmp_var_name (".paral_data"),
1401 type);
1402 TYPE_NAME (type) = type_name;
1403
1404 name_copies.traverse <tree, add_field_for_name> (type);
1405 if (reduction_list && reduction_list->elements () > 0)
1406 {
1407 /* Create the fields for reductions. */
1408 reduction_list->traverse <tree, add_field_for_reduction> (type);
1409 }
1410 layout_type (type);
1411
1412 /* Create the loads and stores. */
1413 *arg_struct = create_tmp_var (type, ".paral_data_store");
1414 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1415 *new_arg_struct = make_ssa_name (nvar);
1416
1417 ld_st_data->store = *arg_struct;
1418 ld_st_data->load = *new_arg_struct;
1419 ld_st_data->store_bb = bb0;
1420 ld_st_data->load_bb = bb1;
1421
1422 name_copies
1423 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1424 (ld_st_data);
1425
1426 /* Load the calculation from memory (after the join of the threads). */
1427
1428 if (reduction_list && reduction_list->elements () > 0)
1429 {
1430 reduction_list
1431 ->traverse <struct clsn_data *, create_stores_for_reduction>
1432 (ld_st_data);
1433 clsn_data.load = make_ssa_name (nvar);
1434 clsn_data.load_bb = exit->dest;
1435 clsn_data.store = ld_st_data->store;
1436 create_final_loads_for_reduction (reduction_list, &clsn_data);
1437 }
1438 }
1439 }
1440
1441 /* Returns true if FN was created to run in parallel. */
1442
1443 bool
1444 parallelized_function_p (tree fndecl)
1445 {
1446 cgraph_node *node = cgraph_node::get (fndecl);
1447 gcc_assert (node != NULL);
1448 return node->parallelized_function;
1449 }
1450
1451 /* Creates and returns an empty function that will receive the body of
1452 a parallelized loop. */
1453
1454 static tree
1455 create_loop_fn (location_t loc)
1456 {
1457 char buf[100];
1458 char *tname;
1459 tree decl, type, name, t;
1460 struct function *act_cfun = cfun;
1461 static unsigned loopfn_num;
1462
1463 loc = LOCATION_LOCUS (loc);
1464 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1465 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1466 clean_symbol_name (tname);
1467 name = get_identifier (tname);
1468 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1469
1470 decl = build_decl (loc, FUNCTION_DECL, name, type);
1471 TREE_STATIC (decl) = 1;
1472 TREE_USED (decl) = 1;
1473 DECL_ARTIFICIAL (decl) = 1;
1474 DECL_IGNORED_P (decl) = 0;
1475 TREE_PUBLIC (decl) = 0;
1476 DECL_UNINLINABLE (decl) = 1;
1477 DECL_EXTERNAL (decl) = 0;
1478 DECL_CONTEXT (decl) = NULL_TREE;
1479 DECL_INITIAL (decl) = make_node (BLOCK);
1480 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
1481
1482 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1483 DECL_ARTIFICIAL (t) = 1;
1484 DECL_IGNORED_P (t) = 1;
1485 DECL_RESULT (decl) = t;
1486
1487 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1488 ptr_type_node);
1489 DECL_ARTIFICIAL (t) = 1;
1490 DECL_ARG_TYPE (t) = ptr_type_node;
1491 DECL_CONTEXT (t) = decl;
1492 TREE_USED (t) = 1;
1493 DECL_ARGUMENTS (decl) = t;
1494
1495 allocate_struct_function (decl, false);
1496
1497 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1498 it. */
1499 set_cfun (act_cfun);
1500
1501 return decl;
1502 }
1503
1504 /* Replace uses of NAME by VAL in block BB. */
1505
1506 static void
1507 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1508 {
1509 gimple *use_stmt;
1510 imm_use_iterator imm_iter;
1511
1512 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1513 {
1514 if (gimple_bb (use_stmt) != bb)
1515 continue;
1516
1517 use_operand_p use_p;
1518 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1519 SET_USE (use_p, val);
1520 }
1521 }
1522
1523 /* Do transformation from:
1524
1525 <bb preheader>:
1526 ...
1527 goto <bb header>
1528
1529 <bb header>:
1530 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1531 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1532 ...
1533 use (ivtmp_a)
1534 ...
1535 sum_b = sum_a + sum_update
1536 ...
1537 if (ivtmp_a < n)
1538 goto <bb latch>;
1539 else
1540 goto <bb exit>;
1541
1542 <bb latch>:
1543 ivtmp_b = ivtmp_a + 1;
1544 goto <bb header>
1545
1546 <bb exit>:
1547 sum_z = PHI <sum_b (cond[1]), ...>
1548
1549 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1550 that's <bb header>.
1551
1552 to:
1553
1554 <bb preheader>:
1555 ...
1556 goto <bb newheader>
1557
1558 <bb header>:
1559 ivtmp_a = PHI <ivtmp_c (latch)>
1560 sum_a = PHI <sum_c (latch)>
1561 ...
1562 use (ivtmp_a)
1563 ...
1564 sum_b = sum_a + sum_update
1565 ...
1566 goto <bb latch>;
1567
1568 <bb newheader>:
1569 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1570 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1571 if (ivtmp_c < n + 1)
1572 goto <bb header>;
1573 else
1574 goto <bb newexit>;
1575
1576 <bb latch>:
1577 ivtmp_b = ivtmp_a + 1;
1578 goto <bb newheader>
1579
1580 <bb newexit>:
1581 sum_y = PHI <sum_c (newheader)>
1582
1583 <bb exit>:
1584 sum_z = PHI <sum_y (newexit), ...>
1585
1586
1587 In unified diff format:
1588
1589 <bb preheader>:
1590 ...
1591 - goto <bb header>
1592 + goto <bb newheader>
1593
1594 <bb header>:
1595 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1596 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1597 + ivtmp_a = PHI <ivtmp_c (latch)>
1598 + sum_a = PHI <sum_c (latch)>
1599 ...
1600 use (ivtmp_a)
1601 ...
1602 sum_b = sum_a + sum_update
1603 ...
1604 - if (ivtmp_a < n)
1605 - goto <bb latch>;
1606 + goto <bb latch>;
1607 +
1608 + <bb newheader>:
1609 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1610 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1611 + if (ivtmp_c < n + 1)
1612 + goto <bb header>;
1613 else
1614 goto <bb exit>;
1615
1616 <bb latch>:
1617 ivtmp_b = ivtmp_a + 1;
1618 - goto <bb header>
1619 + goto <bb newheader>
1620
1621 + <bb newexit>:
1622 + sum_y = PHI <sum_c (newheader)>
1623
1624 <bb exit>:
1625 - sum_z = PHI <sum_b (cond[1]), ...>
1626 + sum_z = PHI <sum_y (newexit), ...>
1627
1628 Note: the example does not show any virtual phis, but these are handled more
1629 or less as reductions.
1630
1631
1632 Moves the exit condition of LOOP to the beginning of its header.
1633 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1634 bound. */
1635
1636 static void
1637 transform_to_exit_first_loop_alt (struct loop *loop,
1638 reduction_info_table_type *reduction_list,
1639 tree bound)
1640 {
1641 basic_block header = loop->header;
1642 basic_block latch = loop->latch;
1643 edge exit = single_dom_exit (loop);
1644 basic_block exit_block = exit->dest;
1645 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1646 tree control = gimple_cond_lhs (cond_stmt);
1647 edge e;
1648
1649 /* Rewriting virtuals into loop-closed ssa normal form makes this
1650 transformation simpler. It also ensures that the virtuals are in
1651 loop-closed ssa normal from after the transformation, which is required by
1652 create_parallel_loop. */
1653 rewrite_virtuals_into_loop_closed_ssa (loop);
1654
1655 /* Create the new_header block. */
1656 basic_block new_header = split_block_before_cond_jump (exit->src);
1657 edge edge_at_split = single_pred_edge (new_header);
1658
1659 /* Redirect entry edge to new_header. */
1660 edge entry = loop_preheader_edge (loop);
1661 e = redirect_edge_and_branch (entry, new_header);
1662 gcc_assert (e == entry);
1663
1664 /* Redirect post_inc_edge to new_header. */
1665 edge post_inc_edge = single_succ_edge (latch);
1666 e = redirect_edge_and_branch (post_inc_edge, new_header);
1667 gcc_assert (e == post_inc_edge);
1668
1669 /* Redirect post_cond_edge to header. */
1670 edge post_cond_edge = single_pred_edge (latch);
1671 e = redirect_edge_and_branch (post_cond_edge, header);
1672 gcc_assert (e == post_cond_edge);
1673
1674 /* Redirect edge_at_split to latch. */
1675 e = redirect_edge_and_branch (edge_at_split, latch);
1676 gcc_assert (e == edge_at_split);
1677
1678 /* Set the new loop bound. */
1679 gimple_cond_set_rhs (cond_stmt, bound);
1680 update_stmt (cond_stmt);
1681
1682 /* Repair the ssa. */
1683 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1684 edge_var_map *vm;
1685 gphi_iterator gsi;
1686 int i;
1687 for (gsi = gsi_start_phis (header), i = 0;
1688 !gsi_end_p (gsi) && v->iterate (i, &vm);
1689 gsi_next (&gsi), i++)
1690 {
1691 gphi *phi = gsi.phi ();
1692 tree res_a = PHI_RESULT (phi);
1693
1694 /* Create new phi. */
1695 tree res_c = copy_ssa_name (res_a, phi);
1696 gphi *nphi = create_phi_node (res_c, new_header);
1697
1698 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1699 replace_uses_in_bb_by (res_a, res_c, new_header);
1700
1701 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1702 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1703
1704 /* Replace sum_b with sum_c in exit phi. */
1705 tree res_b = redirect_edge_var_map_def (vm);
1706 replace_uses_in_bb_by (res_b, res_c, exit_block);
1707
1708 struct reduction_info *red = reduction_phi (reduction_list, phi);
1709 gcc_assert (virtual_operand_p (res_a)
1710 || res_a == control
1711 || red != NULL);
1712
1713 if (red)
1714 {
1715 /* Register the new reduction phi. */
1716 red->reduc_phi = nphi;
1717 gimple_set_uid (red->reduc_phi, red->reduc_version);
1718 }
1719 }
1720 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1721
1722 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1723 flush_pending_stmts (entry);
1724
1725 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1726 flush_pending_stmts (post_inc_edge);
1727
1728
1729 basic_block new_exit_block = NULL;
1730 if (!single_pred_p (exit->dest))
1731 {
1732 /* Create a new empty exit block, inbetween the new loop header and the
1733 old exit block. The function separate_decls_in_region needs this block
1734 to insert code that is active on loop exit, but not any other path. */
1735 new_exit_block = split_edge (exit);
1736 }
1737
1738 /* Insert and register the reduction exit phis. */
1739 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1740 !gsi_end_p (gsi);
1741 gsi_next (&gsi))
1742 {
1743 gphi *phi = gsi.phi ();
1744 gphi *nphi = NULL;
1745 tree res_z = PHI_RESULT (phi);
1746 tree res_c;
1747
1748 if (new_exit_block != NULL)
1749 {
1750 /* Now that we have a new exit block, duplicate the phi of the old
1751 exit block in the new exit block to preserve loop-closed ssa. */
1752 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1753 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1754 tree res_y = copy_ssa_name (res_z, phi);
1755 nphi = create_phi_node (res_y, new_exit_block);
1756 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1757 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1758 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1759 }
1760 else
1761 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1762
1763 if (virtual_operand_p (res_z))
1764 continue;
1765
1766 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1767 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1768 if (red != NULL)
1769 red->keep_res = (nphi != NULL
1770 ? nphi
1771 : phi);
1772 }
1773
1774 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1775 then we're still using some fields, so only bother about fields that are
1776 still used: header and latch.
1777 The loop has a new header bb, so we update it. The latch bb stays the
1778 same. */
1779 loop->header = new_header;
1780
1781 /* Recalculate dominance info. */
1782 free_dominance_info (CDI_DOMINATORS);
1783 calculate_dominance_info (CDI_DOMINATORS);
1784
1785 checking_verify_ssa (true, true);
1786 }
1787
1788 /* Tries to moves the exit condition of LOOP to the beginning of its header
1789 without duplication of the loop body. NIT is the number of iterations of the
1790 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1791 transformation is successful. */
1792
1793 static bool
1794 try_transform_to_exit_first_loop_alt (struct loop *loop,
1795 reduction_info_table_type *reduction_list,
1796 tree nit)
1797 {
1798 /* Check whether the latch contains a single statement. */
1799 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1800 return false;
1801
1802 /* Check whether the latch contains no phis. */
1803 if (phi_nodes (loop->latch) != NULL)
1804 return false;
1805
1806 /* Check whether the latch contains the loop iv increment. */
1807 edge back = single_succ_edge (loop->latch);
1808 edge exit = single_dom_exit (loop);
1809 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1810 tree control = gimple_cond_lhs (cond_stmt);
1811 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1812 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1813 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1814 return false;
1815
1816 /* Check whether there's no code between the loop condition and the latch. */
1817 if (!single_pred_p (loop->latch)
1818 || single_pred (loop->latch) != exit->src)
1819 return false;
1820
1821 tree alt_bound = NULL_TREE;
1822 tree nit_type = TREE_TYPE (nit);
1823
1824 /* Figure out whether nit + 1 overflows. */
1825 if (TREE_CODE (nit) == INTEGER_CST)
1826 {
1827 if (!tree_int_cst_equal (nit, TYPE_MAXVAL (nit_type)))
1828 {
1829 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1830 nit, build_one_cst (nit_type));
1831
1832 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1833 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1834 return true;
1835 }
1836 else
1837 {
1838 /* Todo: Figure out if we can trigger this, if it's worth to handle
1839 optimally, and if we can handle it optimally. */
1840 return false;
1841 }
1842 }
1843
1844 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1845
1846 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1847 iv with base 0 and step 1 that is incremented in the latch, like this:
1848
1849 <bb header>:
1850 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1851 ...
1852 if (iv_1 < nit)
1853 goto <bb latch>;
1854 else
1855 goto <bb exit>;
1856
1857 <bb latch>:
1858 iv_2 = iv_1 + 1;
1859 goto <bb header>;
1860
1861 The range of iv_1 is [0, nit]. The latch edge is taken for
1862 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1863 number of latch executions is equal to nit.
1864
1865 The function max_loop_iterations gives us the maximum number of latch
1866 executions, so it gives us the maximum value of nit. */
1867 widest_int nit_max;
1868 if (!max_loop_iterations (loop, &nit_max))
1869 return false;
1870
1871 /* Check if nit + 1 overflows. */
1872 widest_int type_max = wi::to_widest (TYPE_MAXVAL (nit_type));
1873 if (nit_max >= type_max)
1874 return false;
1875
1876 gimple *def = SSA_NAME_DEF_STMT (nit);
1877
1878 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1879 if (def
1880 && is_gimple_assign (def)
1881 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1882 {
1883 tree op1 = gimple_assign_rhs1 (def);
1884 tree op2 = gimple_assign_rhs2 (def);
1885 if (integer_minus_onep (op1))
1886 alt_bound = op2;
1887 else if (integer_minus_onep (op2))
1888 alt_bound = op1;
1889 }
1890
1891 /* If not found, insert nit + 1. */
1892 if (alt_bound == NULL_TREE)
1893 {
1894 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1895 build_int_cst_type (nit_type, 1));
1896
1897 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1898
1899 alt_bound
1900 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1901 GSI_CONTINUE_LINKING);
1902 }
1903
1904 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1905 return true;
1906 }
1907
1908 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1909 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1910 LOOP. */
1911
1912 static void
1913 transform_to_exit_first_loop (struct loop *loop,
1914 reduction_info_table_type *reduction_list,
1915 tree nit)
1916 {
1917 basic_block *bbs, *nbbs, ex_bb, orig_header;
1918 unsigned n;
1919 bool ok;
1920 edge exit = single_dom_exit (loop), hpred;
1921 tree control, control_name, res, t;
1922 gphi *phi, *nphi;
1923 gassign *stmt;
1924 gcond *cond_stmt, *cond_nit;
1925 tree nit_1;
1926
1927 split_block_after_labels (loop->header);
1928 orig_header = single_succ (loop->header);
1929 hpred = single_succ_edge (loop->header);
1930
1931 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1932 control = gimple_cond_lhs (cond_stmt);
1933 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1934
1935 /* Make sure that we have phi nodes on exit for all loop header phis
1936 (create_parallel_loop requires that). */
1937 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1938 !gsi_end_p (gsi);
1939 gsi_next (&gsi))
1940 {
1941 phi = gsi.phi ();
1942 res = PHI_RESULT (phi);
1943 t = copy_ssa_name (res, phi);
1944 SET_PHI_RESULT (phi, t);
1945 nphi = create_phi_node (res, orig_header);
1946 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1947
1948 if (res == control)
1949 {
1950 gimple_cond_set_lhs (cond_stmt, t);
1951 update_stmt (cond_stmt);
1952 control = t;
1953 }
1954 }
1955
1956 bbs = get_loop_body_in_dom_order (loop);
1957
1958 for (n = 0; bbs[n] != exit->src; n++)
1959 continue;
1960 nbbs = XNEWVEC (basic_block, n);
1961 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1962 bbs + 1, n, nbbs);
1963 gcc_assert (ok);
1964 free (bbs);
1965 ex_bb = nbbs[0];
1966 free (nbbs);
1967
1968 /* Other than reductions, the only gimple reg that should be copied
1969 out of the loop is the control variable. */
1970 exit = single_dom_exit (loop);
1971 control_name = NULL_TREE;
1972 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1973 !gsi_end_p (gsi); )
1974 {
1975 phi = gsi.phi ();
1976 res = PHI_RESULT (phi);
1977 if (virtual_operand_p (res))
1978 {
1979 gsi_next (&gsi);
1980 continue;
1981 }
1982
1983 /* Check if it is a part of reduction. If it is,
1984 keep the phi at the reduction's keep_res field. The
1985 PHI_RESULT of this phi is the resulting value of the reduction
1986 variable when exiting the loop. */
1987
1988 if (reduction_list->elements () > 0)
1989 {
1990 struct reduction_info *red;
1991
1992 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1993 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1994 if (red)
1995 {
1996 red->keep_res = phi;
1997 gsi_next (&gsi);
1998 continue;
1999 }
2000 }
2001 gcc_assert (control_name == NULL_TREE
2002 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
2003 control_name = res;
2004 remove_phi_node (&gsi, false);
2005 }
2006 gcc_assert (control_name != NULL_TREE);
2007
2008 /* Initialize the control variable to number of iterations
2009 according to the rhs of the exit condition. */
2010 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2011 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2012 nit_1 = gimple_cond_rhs (cond_nit);
2013 nit_1 = force_gimple_operand_gsi (&gsi,
2014 fold_convert (TREE_TYPE (control_name), nit_1),
2015 false, NULL_TREE, false, GSI_SAME_STMT);
2016 stmt = gimple_build_assign (control_name, nit_1);
2017 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2018 }
2019
2020 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2021 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2022 NEW_DATA is the variable that should be initialized from the argument
2023 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2024 that number is to be determined later. */
2025
2026 static void
2027 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
2028 tree new_data, unsigned n_threads, location_t loc,
2029 bool oacc_kernels_p)
2030 {
2031 gimple_stmt_iterator gsi;
2032 basic_block for_bb, ex_bb, continue_bb;
2033 tree t, param;
2034 gomp_parallel *omp_par_stmt;
2035 gimple *omp_return_stmt1, *omp_return_stmt2;
2036 gimple *phi;
2037 gcond *cond_stmt;
2038 gomp_for *for_stmt;
2039 gomp_continue *omp_cont_stmt;
2040 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2041 edge exit, nexit, guard, end, e;
2042
2043 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2044 if (oacc_kernels_p)
2045 {
2046 tree clause = build_omp_clause (loc, OMP_CLAUSE_NUM_GANGS);
2047 OMP_CLAUSE_NUM_GANGS_EXPR (clause)
2048 = build_int_cst (integer_type_node, n_threads);
2049 oacc_set_fn_attrib (cfun->decl, clause, true, NULL);
2050 }
2051 else
2052 {
2053 basic_block bb = loop_preheader_edge (loop)->src;
2054 basic_block paral_bb = single_pred (bb);
2055 gsi = gsi_last_bb (paral_bb);
2056
2057 gcc_checking_assert (n_threads != 0);
2058 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2059 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2060 = build_int_cst (integer_type_node, n_threads);
2061 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2062 gimple_set_location (omp_par_stmt, loc);
2063
2064 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2065
2066 /* Initialize NEW_DATA. */
2067 if (data)
2068 {
2069 gassign *assign_stmt;
2070
2071 gsi = gsi_after_labels (bb);
2072
2073 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2074 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2075 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2076
2077 assign_stmt = gimple_build_assign (new_data,
2078 fold_convert (TREE_TYPE (new_data), param));
2079 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2080 }
2081
2082 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2083 bb = split_loop_exit_edge (single_dom_exit (loop));
2084 gsi = gsi_last_bb (bb);
2085 omp_return_stmt1 = gimple_build_omp_return (false);
2086 gimple_set_location (omp_return_stmt1, loc);
2087 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2088 }
2089
2090 /* Extract data for GIMPLE_OMP_FOR. */
2091 gcc_assert (loop->header == single_dom_exit (loop)->src);
2092 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2093
2094 cvar = gimple_cond_lhs (cond_stmt);
2095 cvar_base = SSA_NAME_VAR (cvar);
2096 phi = SSA_NAME_DEF_STMT (cvar);
2097 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2098 initvar = copy_ssa_name (cvar);
2099 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2100 initvar);
2101 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2102
2103 gsi = gsi_last_nondebug_bb (loop->latch);
2104 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2105 gsi_remove (&gsi, true);
2106
2107 /* Prepare cfg. */
2108 for_bb = split_edge (loop_preheader_edge (loop));
2109 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2110 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2111 gcc_assert (exit == single_dom_exit (loop));
2112
2113 guard = make_edge (for_bb, ex_bb, 0);
2114 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2115 loop->latch = split_edge (single_succ_edge (loop->latch));
2116 single_pred_edge (loop->latch)->flags = 0;
2117 end = make_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2118 rescan_loop_exit (end, true, false);
2119
2120 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2121 !gsi_end_p (gpi); gsi_next (&gpi))
2122 {
2123 source_location locus;
2124 gphi *phi = gpi.phi ();
2125 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2126 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2127
2128 /* If the exit phi is not connected to a header phi in the same loop, this
2129 value is not modified in the loop, and we're done with this phi. */
2130 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2131 && gimple_bb (def_stmt) == loop->header))
2132 {
2133 locus = gimple_phi_arg_location_from_edge (phi, exit);
2134 add_phi_arg (phi, def, guard, locus);
2135 add_phi_arg (phi, def, end, locus);
2136 continue;
2137 }
2138
2139 gphi *stmt = as_a <gphi *> (def_stmt);
2140 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2141 locus = gimple_phi_arg_location_from_edge (stmt,
2142 loop_preheader_edge (loop));
2143 add_phi_arg (phi, def, guard, locus);
2144
2145 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2146 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2147 add_phi_arg (phi, def, end, locus);
2148 }
2149 e = redirect_edge_and_branch (exit, nexit->dest);
2150 PENDING_STMT (e) = NULL;
2151
2152 /* Emit GIMPLE_OMP_FOR. */
2153 if (oacc_kernels_p)
2154 /* In combination with the NUM_GANGS on the parallel. */
2155 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2156 else
2157 {
2158 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2159 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2160 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2161 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2162 switch (schedule_type)
2163 {
2164 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2165 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2166 break;
2167 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2168 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2169 break;
2170 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2171 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2172 break;
2173 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2174 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2175 chunk_size = 0;
2176 break;
2177 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2178 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2179 chunk_size = 0;
2180 break;
2181 default:
2182 gcc_unreachable ();
2183 }
2184 if (chunk_size != 0)
2185 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2186 = build_int_cst (integer_type_node, chunk_size);
2187 }
2188
2189 for_stmt = gimple_build_omp_for (NULL,
2190 (oacc_kernels_p
2191 ? GF_OMP_FOR_KIND_OACC_LOOP
2192 : GF_OMP_FOR_KIND_FOR),
2193 t, 1, NULL);
2194
2195 gimple_cond_set_lhs (cond_stmt, cvar_base);
2196 type = TREE_TYPE (cvar);
2197 gimple_set_location (for_stmt, loc);
2198 gimple_omp_for_set_index (for_stmt, 0, initvar);
2199 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2200 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2201 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2202 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2203 cvar_base,
2204 build_int_cst (type, 1)));
2205
2206 gsi = gsi_last_bb (for_bb);
2207 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2208 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2209
2210 /* Emit GIMPLE_OMP_CONTINUE. */
2211 continue_bb = single_pred (loop->latch);
2212 gsi = gsi_last_bb (continue_bb);
2213 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2214 gimple_set_location (omp_cont_stmt, loc);
2215 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2216 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2217
2218 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2219 gsi = gsi_last_bb (ex_bb);
2220 omp_return_stmt2 = gimple_build_omp_return (true);
2221 gimple_set_location (omp_return_stmt2, loc);
2222 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2223
2224 /* After the above dom info is hosed. Re-compute it. */
2225 free_dominance_info (CDI_DOMINATORS);
2226 calculate_dominance_info (CDI_DOMINATORS);
2227 }
2228
2229 /* Generates code to execute the iterations of LOOP in N_THREADS
2230 threads in parallel, which can be 0 if that number is to be determined
2231 later.
2232
2233 NITER describes number of iterations of LOOP.
2234 REDUCTION_LIST describes the reductions existent in the LOOP. */
2235
2236 static void
2237 gen_parallel_loop (struct loop *loop,
2238 reduction_info_table_type *reduction_list,
2239 unsigned n_threads, struct tree_niter_desc *niter,
2240 bool oacc_kernels_p)
2241 {
2242 tree many_iterations_cond, type, nit;
2243 tree arg_struct, new_arg_struct;
2244 gimple_seq stmts;
2245 edge entry, exit;
2246 struct clsn_data clsn_data;
2247 unsigned prob;
2248 location_t loc;
2249 gimple *cond_stmt;
2250 unsigned int m_p_thread=2;
2251
2252 /* From
2253
2254 ---------------------------------------------------------------------
2255 loop
2256 {
2257 IV = phi (INIT, IV + STEP)
2258 BODY1;
2259 if (COND)
2260 break;
2261 BODY2;
2262 }
2263 ---------------------------------------------------------------------
2264
2265 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2266 we generate the following code:
2267
2268 ---------------------------------------------------------------------
2269
2270 if (MAY_BE_ZERO
2271 || NITER < MIN_PER_THREAD * N_THREADS)
2272 goto original;
2273
2274 BODY1;
2275 store all local loop-invariant variables used in body of the loop to DATA.
2276 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2277 load the variables from DATA.
2278 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2279 BODY2;
2280 BODY1;
2281 GIMPLE_OMP_CONTINUE;
2282 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2283 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2284 goto end;
2285
2286 original:
2287 loop
2288 {
2289 IV = phi (INIT, IV + STEP)
2290 BODY1;
2291 if (COND)
2292 break;
2293 BODY2;
2294 }
2295
2296 end:
2297
2298 */
2299
2300 /* Create two versions of the loop -- in the old one, we know that the
2301 number of iterations is large enough, and we will transform it into the
2302 loop that will be split to loop_fn, the new one will be used for the
2303 remaining iterations. */
2304
2305 /* We should compute a better number-of-iterations value for outer loops.
2306 That is, if we have
2307
2308 for (i = 0; i < n; ++i)
2309 for (j = 0; j < m; ++j)
2310 ...
2311
2312 we should compute nit = n * m, not nit = n.
2313 Also may_be_zero handling would need to be adjusted. */
2314
2315 type = TREE_TYPE (niter->niter);
2316 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2317 NULL_TREE);
2318 if (stmts)
2319 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2320
2321 if (!oacc_kernels_p)
2322 {
2323 if (loop->inner)
2324 m_p_thread=2;
2325 else
2326 m_p_thread=MIN_PER_THREAD;
2327
2328 gcc_checking_assert (n_threads != 0);
2329 many_iterations_cond =
2330 fold_build2 (GE_EXPR, boolean_type_node,
2331 nit, build_int_cst (type, m_p_thread * n_threads));
2332
2333 many_iterations_cond
2334 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2335 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2336 many_iterations_cond);
2337 many_iterations_cond
2338 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2339 if (stmts)
2340 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2341 if (!is_gimple_condexpr (many_iterations_cond))
2342 {
2343 many_iterations_cond
2344 = force_gimple_operand (many_iterations_cond, &stmts,
2345 true, NULL_TREE);
2346 if (stmts)
2347 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2348 stmts);
2349 }
2350
2351 initialize_original_copy_tables ();
2352
2353 /* We assume that the loop usually iterates a lot. */
2354 prob = 4 * REG_BR_PROB_BASE / 5;
2355 loop_version (loop, many_iterations_cond, NULL,
2356 prob, prob, REG_BR_PROB_BASE - prob, true);
2357 update_ssa (TODO_update_ssa);
2358 free_original_copy_tables ();
2359 }
2360
2361 /* Base all the induction variables in LOOP on a single control one. */
2362 canonicalize_loop_ivs (loop, &nit, true);
2363
2364 /* Ensure that the exit condition is the first statement in the loop.
2365 The common case is that latch of the loop is empty (apart from the
2366 increment) and immediately follows the loop exit test. Attempt to move the
2367 entry of the loop directly before the exit check and increase the number of
2368 iterations of the loop by one. */
2369 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2370 {
2371 if (dump_file
2372 && (dump_flags & TDF_DETAILS))
2373 fprintf (dump_file,
2374 "alternative exit-first loop transform succeeded"
2375 " for loop %d\n", loop->num);
2376 }
2377 else
2378 {
2379 if (oacc_kernels_p)
2380 n_threads = 1;
2381
2382 /* Fall back on the method that handles more cases, but duplicates the
2383 loop body: move the exit condition of LOOP to the beginning of its
2384 header, and duplicate the part of the last iteration that gets disabled
2385 to the exit of the loop. */
2386 transform_to_exit_first_loop (loop, reduction_list, nit);
2387 }
2388
2389 /* Generate initializations for reductions. */
2390 if (reduction_list->elements () > 0)
2391 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2392
2393 /* Eliminate the references to local variables from the loop. */
2394 gcc_assert (single_exit (loop));
2395 entry = loop_preheader_edge (loop);
2396 exit = single_dom_exit (loop);
2397
2398 /* This rewrites the body in terms of new variables. This has already
2399 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2400 if (!oacc_kernels_p)
2401 {
2402 eliminate_local_variables (entry, exit);
2403 /* In the old loop, move all variables non-local to the loop to a
2404 structure and back, and create separate decls for the variables used in
2405 loop. */
2406 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2407 &new_arg_struct, &clsn_data);
2408 }
2409 else
2410 {
2411 arg_struct = NULL_TREE;
2412 new_arg_struct = NULL_TREE;
2413 clsn_data.load = NULL_TREE;
2414 clsn_data.load_bb = exit->dest;
2415 clsn_data.store = NULL_TREE;
2416 clsn_data.store_bb = NULL;
2417 }
2418
2419 /* Create the parallel constructs. */
2420 loc = UNKNOWN_LOCATION;
2421 cond_stmt = last_stmt (loop->header);
2422 if (cond_stmt)
2423 loc = gimple_location (cond_stmt);
2424 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2425 n_threads, loc, oacc_kernels_p);
2426 if (reduction_list->elements () > 0)
2427 create_call_for_reduction (loop, reduction_list, &clsn_data);
2428
2429 scev_reset ();
2430
2431 /* Free loop bound estimations that could contain references to
2432 removed statements. */
2433 FOR_EACH_LOOP (loop, 0)
2434 free_numbers_of_iterations_estimates_loop (loop);
2435 }
2436
2437 /* Returns true when LOOP contains vector phi nodes. */
2438
2439 static bool
2440 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2441 {
2442 unsigned i;
2443 basic_block *bbs = get_loop_body_in_dom_order (loop);
2444 gphi_iterator gsi;
2445 bool res = true;
2446
2447 for (i = 0; i < loop->num_nodes; i++)
2448 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2449 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2450 goto end;
2451
2452 res = false;
2453 end:
2454 free (bbs);
2455 return res;
2456 }
2457
2458 /* Create a reduction_info struct, initialize it with REDUC_STMT
2459 and PHI, insert it to the REDUCTION_LIST. */
2460
2461 static void
2462 build_new_reduction (reduction_info_table_type *reduction_list,
2463 gimple *reduc_stmt, gphi *phi)
2464 {
2465 reduction_info **slot;
2466 struct reduction_info *new_reduction;
2467 enum tree_code reduction_code;
2468
2469 gcc_assert (reduc_stmt);
2470
2471 if (dump_file && (dump_flags & TDF_DETAILS))
2472 {
2473 fprintf (dump_file,
2474 "Detected reduction. reduction stmt is:\n");
2475 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
2476 fprintf (dump_file, "\n");
2477 }
2478
2479 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2480 {
2481 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2482 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2483 reduction_code = gimple_assign_rhs_code (def1);
2484 }
2485
2486 else
2487 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2488
2489 new_reduction = XCNEW (struct reduction_info);
2490
2491 new_reduction->reduc_stmt = reduc_stmt;
2492 new_reduction->reduc_phi = phi;
2493 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2494 new_reduction->reduction_code = reduction_code;
2495 slot = reduction_list->find_slot (new_reduction, INSERT);
2496 *slot = new_reduction;
2497 }
2498
2499 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2500
2501 int
2502 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2503 {
2504 struct reduction_info *const red = *slot;
2505 gimple_set_uid (red->reduc_phi, red->reduc_version);
2506 return 1;
2507 }
2508
2509 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2510
2511 static void
2512 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2513 {
2514 gphi_iterator gsi;
2515 loop_vec_info simple_loop_info;
2516 loop_vec_info simple_inner_loop_info = NULL;
2517 bool allow_double_reduc = true;
2518
2519 if (!stmt_vec_info_vec.exists ())
2520 init_stmt_vec_info_vec ();
2521
2522 simple_loop_info = vect_analyze_loop_form (loop);
2523 if (simple_loop_info == NULL)
2524 goto gather_done;
2525
2526 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2527 {
2528 gphi *phi = gsi.phi ();
2529 affine_iv iv;
2530 tree res = PHI_RESULT (phi);
2531 bool double_reduc;
2532
2533 if (virtual_operand_p (res))
2534 continue;
2535
2536 if (simple_iv (loop, loop, res, &iv, true))
2537 continue;
2538
2539 gimple *reduc_stmt
2540 = vect_force_simple_reduction (simple_loop_info, phi, true,
2541 &double_reduc, true);
2542 if (!reduc_stmt)
2543 continue;
2544
2545 if (double_reduc)
2546 {
2547 if (!allow_double_reduc
2548 || loop->inner->inner != NULL)
2549 continue;
2550
2551 if (!simple_inner_loop_info)
2552 {
2553 simple_inner_loop_info = vect_analyze_loop_form (loop->inner);
2554 if (!simple_inner_loop_info)
2555 {
2556 allow_double_reduc = false;
2557 continue;
2558 }
2559 }
2560
2561 use_operand_p use_p;
2562 gimple *inner_stmt;
2563 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2564 gcc_assert (single_use_p);
2565 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2566 continue;
2567 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2568 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2569 &iv, true))
2570 continue;
2571
2572 gimple *inner_reduc_stmt
2573 = vect_force_simple_reduction (simple_inner_loop_info, inner_phi,
2574 true, &double_reduc, true);
2575 gcc_assert (!double_reduc);
2576 if (inner_reduc_stmt == NULL)
2577 continue;
2578 }
2579
2580 build_new_reduction (reduction_list, reduc_stmt, phi);
2581 }
2582 destroy_loop_vec_info (simple_loop_info, true);
2583 destroy_loop_vec_info (simple_inner_loop_info, true);
2584
2585 gather_done:
2586 /* Release the claim on gimple_uid. */
2587 free_stmt_vec_info_vec ();
2588
2589 if (reduction_list->elements () == 0)
2590 return;
2591
2592 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2593 and free_stmt_vec_info_vec, we can set gimple_uid of reduc_phi stmts only
2594 now. */
2595 basic_block bb;
2596 FOR_EACH_BB_FN (bb, cfun)
2597 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2598 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2599 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2600 }
2601
2602 /* Try to initialize NITER for code generation part. */
2603
2604 static bool
2605 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2606 {
2607 edge exit = single_dom_exit (loop);
2608
2609 gcc_assert (exit);
2610
2611 /* We need to know # of iterations, and there should be no uses of values
2612 defined inside loop outside of it, unless the values are invariants of
2613 the loop. */
2614 if (!number_of_iterations_exit (loop, exit, niter, false))
2615 {
2616 if (dump_file && (dump_flags & TDF_DETAILS))
2617 fprintf (dump_file, " FAILED: number of iterations not known\n");
2618 return false;
2619 }
2620
2621 return true;
2622 }
2623
2624 /* Return the default def of the first function argument. */
2625
2626 static tree
2627 get_omp_data_i_param (void)
2628 {
2629 tree decl = DECL_ARGUMENTS (cfun->decl);
2630 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2631 return ssa_default_def (cfun, decl);
2632 }
2633
2634 /* For PHI in loop header of LOOP, look for pattern:
2635
2636 <bb preheader>
2637 .omp_data_i = &.omp_data_arr;
2638 addr = .omp_data_i->sum;
2639 sum_a = *addr;
2640
2641 <bb header>:
2642 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2643
2644 and return addr. Otherwise, return NULL_TREE. */
2645
2646 static tree
2647 find_reduc_addr (struct loop *loop, gphi *phi)
2648 {
2649 edge e = loop_preheader_edge (loop);
2650 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2651 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2652 if (!gimple_assign_single_p (stmt))
2653 return NULL_TREE;
2654 tree memref = gimple_assign_rhs1 (stmt);
2655 if (TREE_CODE (memref) != MEM_REF)
2656 return NULL_TREE;
2657 tree addr = TREE_OPERAND (memref, 0);
2658
2659 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2660 if (!gimple_assign_single_p (stmt2))
2661 return NULL_TREE;
2662 tree compref = gimple_assign_rhs1 (stmt2);
2663 if (TREE_CODE (compref) != COMPONENT_REF)
2664 return NULL_TREE;
2665 tree addr2 = TREE_OPERAND (compref, 0);
2666 if (TREE_CODE (addr2) != MEM_REF)
2667 return NULL_TREE;
2668 addr2 = TREE_OPERAND (addr2, 0);
2669 if (TREE_CODE (addr2) != SSA_NAME
2670 || addr2 != get_omp_data_i_param ())
2671 return NULL_TREE;
2672
2673 return addr;
2674 }
2675
2676 /* Try to initialize REDUCTION_LIST for code generation part.
2677 REDUCTION_LIST describes the reductions. */
2678
2679 static bool
2680 try_create_reduction_list (loop_p loop,
2681 reduction_info_table_type *reduction_list,
2682 bool oacc_kernels_p)
2683 {
2684 edge exit = single_dom_exit (loop);
2685 gphi_iterator gsi;
2686
2687 gcc_assert (exit);
2688
2689 /* Try to get rid of exit phis. */
2690 final_value_replacement_loop (loop);
2691
2692 gather_scalar_reductions (loop, reduction_list);
2693
2694
2695 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2696 {
2697 gphi *phi = gsi.phi ();
2698 struct reduction_info *red;
2699 imm_use_iterator imm_iter;
2700 use_operand_p use_p;
2701 gimple *reduc_phi;
2702 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2703
2704 if (!virtual_operand_p (val))
2705 {
2706 if (dump_file && (dump_flags & TDF_DETAILS))
2707 {
2708 fprintf (dump_file, "phi is ");
2709 print_gimple_stmt (dump_file, phi, 0, 0);
2710 fprintf (dump_file, "arg of phi to exit: value ");
2711 print_generic_expr (dump_file, val, 0);
2712 fprintf (dump_file, " used outside loop\n");
2713 fprintf (dump_file,
2714 " checking if it is part of reduction pattern:\n");
2715 }
2716 if (reduction_list->elements () == 0)
2717 {
2718 if (dump_file && (dump_flags & TDF_DETAILS))
2719 fprintf (dump_file,
2720 " FAILED: it is not a part of reduction.\n");
2721 return false;
2722 }
2723 reduc_phi = NULL;
2724 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2725 {
2726 if (!gimple_debug_bind_p (USE_STMT (use_p))
2727 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2728 {
2729 reduc_phi = USE_STMT (use_p);
2730 break;
2731 }
2732 }
2733 red = reduction_phi (reduction_list, reduc_phi);
2734 if (red == NULL)
2735 {
2736 if (dump_file && (dump_flags & TDF_DETAILS))
2737 fprintf (dump_file,
2738 " FAILED: it is not a part of reduction.\n");
2739 return false;
2740 }
2741 if (red->keep_res != NULL)
2742 {
2743 if (dump_file && (dump_flags & TDF_DETAILS))
2744 fprintf (dump_file,
2745 " FAILED: reduction has multiple exit phis.\n");
2746 return false;
2747 }
2748 red->keep_res = phi;
2749 if (dump_file && (dump_flags & TDF_DETAILS))
2750 {
2751 fprintf (dump_file, "reduction phi is ");
2752 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2753 fprintf (dump_file, "reduction stmt is ");
2754 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2755 }
2756 }
2757 }
2758
2759 /* The iterations of the loop may communicate only through bivs whose
2760 iteration space can be distributed efficiently. */
2761 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2762 {
2763 gphi *phi = gsi.phi ();
2764 tree def = PHI_RESULT (phi);
2765 affine_iv iv;
2766
2767 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2768 {
2769 struct reduction_info *red;
2770
2771 red = reduction_phi (reduction_list, phi);
2772 if (red == NULL)
2773 {
2774 if (dump_file && (dump_flags & TDF_DETAILS))
2775 fprintf (dump_file,
2776 " FAILED: scalar dependency between iterations\n");
2777 return false;
2778 }
2779 }
2780 }
2781
2782 if (oacc_kernels_p)
2783 {
2784 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2785 gsi_next (&gsi))
2786 {
2787 gphi *phi = gsi.phi ();
2788 tree def = PHI_RESULT (phi);
2789 affine_iv iv;
2790
2791 if (!virtual_operand_p (def)
2792 && !simple_iv (loop, loop, def, &iv, true))
2793 {
2794 tree addr = find_reduc_addr (loop, phi);
2795 if (addr == NULL_TREE)
2796 return false;
2797 struct reduction_info *red = reduction_phi (reduction_list, phi);
2798 red->reduc_addr = addr;
2799 }
2800 }
2801 }
2802
2803 return true;
2804 }
2805
2806 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2807
2808 static bool
2809 loop_has_phi_with_address_arg (struct loop *loop)
2810 {
2811 basic_block *bbs = get_loop_body (loop);
2812 bool res = false;
2813
2814 unsigned i, j;
2815 gphi_iterator gsi;
2816 for (i = 0; i < loop->num_nodes; i++)
2817 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2818 {
2819 gphi *phi = gsi.phi ();
2820 for (j = 0; j < gimple_phi_num_args (phi); j++)
2821 {
2822 tree arg = gimple_phi_arg_def (phi, j);
2823 if (TREE_CODE (arg) == ADDR_EXPR)
2824 {
2825 /* This should be handled by eliminate_local_variables, but that
2826 function currently ignores phis. */
2827 res = true;
2828 goto end;
2829 }
2830 }
2831 }
2832 end:
2833 free (bbs);
2834
2835 return res;
2836 }
2837
2838 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2839 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2840 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2841 store. Ignore conflicts with SKIP_STMT. */
2842
2843 static bool
2844 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2845 bool ref_is_store, vec<basic_block> region_bbs,
2846 unsigned int i, gimple *skip_stmt)
2847 {
2848 basic_block bb = region_bbs[i];
2849 gsi_next (&gsi);
2850
2851 while (true)
2852 {
2853 for (; !gsi_end_p (gsi);
2854 gsi_next (&gsi))
2855 {
2856 gimple *stmt = gsi_stmt (gsi);
2857 if (stmt == skip_stmt)
2858 {
2859 if (dump_file)
2860 {
2861 fprintf (dump_file, "skipping reduction store: ");
2862 print_gimple_stmt (dump_file, stmt, 0, 0);
2863 }
2864 continue;
2865 }
2866
2867 if (!gimple_vdef (stmt)
2868 && !gimple_vuse (stmt))
2869 continue;
2870
2871 if (gimple_code (stmt) == GIMPLE_RETURN)
2872 continue;
2873
2874 if (ref_is_store)
2875 {
2876 if (ref_maybe_used_by_stmt_p (stmt, ref))
2877 {
2878 if (dump_file)
2879 {
2880 fprintf (dump_file, "Stmt ");
2881 print_gimple_stmt (dump_file, stmt, 0, 0);
2882 }
2883 return true;
2884 }
2885 }
2886 else
2887 {
2888 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2889 {
2890 if (dump_file)
2891 {
2892 fprintf (dump_file, "Stmt ");
2893 print_gimple_stmt (dump_file, stmt, 0, 0);
2894 }
2895 return true;
2896 }
2897 }
2898 }
2899 i++;
2900 if (i == region_bbs.length ())
2901 break;
2902 bb = region_bbs[i];
2903 gsi = gsi_start_bb (bb);
2904 }
2905
2906 return false;
2907 }
2908
2909 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
2910 in parallel with REGION_BBS containing the loop. Return the stores of
2911 reduction results in REDUCTION_STORES. */
2912
2913 static bool
2914 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
2915 reduction_info_table_type *reduction_list,
2916 bitmap reduction_stores)
2917 {
2918 tree omp_data_i = get_omp_data_i_param ();
2919
2920 unsigned i;
2921 basic_block bb;
2922 FOR_EACH_VEC_ELT (region_bbs, i, bb)
2923 {
2924 if (bitmap_bit_p (in_loop_bbs, bb->index))
2925 continue;
2926
2927 gimple_stmt_iterator gsi;
2928 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2929 gsi_next (&gsi))
2930 {
2931 gimple *stmt = gsi_stmt (gsi);
2932 gimple *skip_stmt = NULL;
2933
2934 if (is_gimple_debug (stmt)
2935 || gimple_code (stmt) == GIMPLE_COND)
2936 continue;
2937
2938 ao_ref ref;
2939 bool ref_is_store = false;
2940 if (gimple_assign_load_p (stmt))
2941 {
2942 tree rhs = gimple_assign_rhs1 (stmt);
2943 tree base = get_base_address (rhs);
2944 if (TREE_CODE (base) == MEM_REF
2945 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
2946 continue;
2947
2948 tree lhs = gimple_assign_lhs (stmt);
2949 if (TREE_CODE (lhs) == SSA_NAME
2950 && has_single_use (lhs))
2951 {
2952 use_operand_p use_p;
2953 gimple *use_stmt;
2954 single_imm_use (lhs, &use_p, &use_stmt);
2955 if (gimple_code (use_stmt) == GIMPLE_PHI)
2956 {
2957 struct reduction_info *red;
2958 red = reduction_phi (reduction_list, use_stmt);
2959 tree val = PHI_RESULT (red->keep_res);
2960 if (has_single_use (val))
2961 {
2962 single_imm_use (val, &use_p, &use_stmt);
2963 if (gimple_store_p (use_stmt))
2964 {
2965 unsigned int id
2966 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
2967 bitmap_set_bit (reduction_stores, id);
2968 skip_stmt = use_stmt;
2969 if (dump_file)
2970 {
2971 fprintf (dump_file, "found reduction load: ");
2972 print_gimple_stmt (dump_file, stmt, 0, 0);
2973 }
2974 }
2975 }
2976 }
2977 }
2978
2979 ao_ref_init (&ref, rhs);
2980 }
2981 else if (gimple_store_p (stmt))
2982 {
2983 ao_ref_init (&ref, gimple_assign_lhs (stmt));
2984 ref_is_store = true;
2985 }
2986 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
2987 continue;
2988 else if (!gimple_has_side_effects (stmt)
2989 && !gimple_could_trap_p (stmt)
2990 && !stmt_could_throw_p (stmt)
2991 && !gimple_vdef (stmt)
2992 && !gimple_vuse (stmt))
2993 continue;
2994 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
2995 continue;
2996 else if (gimple_code (stmt) == GIMPLE_RETURN)
2997 continue;
2998 else
2999 {
3000 if (dump_file)
3001 {
3002 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3003 print_gimple_stmt (dump_file, stmt, 0, 0);
3004 }
3005 return false;
3006 }
3007
3008 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3009 i, skip_stmt))
3010 {
3011 if (dump_file)
3012 {
3013 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3014 print_gimple_stmt (dump_file, stmt, 0, 0);
3015 }
3016 return false;
3017 }
3018 }
3019 }
3020
3021 return true;
3022 }
3023
3024 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3025 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3026 if any changes were made. */
3027
3028 static bool
3029 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3030 bitmap reduction_stores)
3031 {
3032 tree gang_pos = NULL_TREE;
3033 bool changed = false;
3034
3035 unsigned i;
3036 basic_block bb;
3037 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3038 {
3039 if (bitmap_bit_p (in_loop_bbs, bb->index))
3040 continue;
3041
3042 gimple_stmt_iterator gsi;
3043 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3044 {
3045 gimple *stmt = gsi_stmt (gsi);
3046
3047 if (!gimple_store_p (stmt))
3048 {
3049 /* Update gsi to point to next stmt. */
3050 gsi_next (&gsi);
3051 continue;
3052 }
3053
3054 if (bitmap_bit_p (reduction_stores,
3055 SSA_NAME_VERSION (gimple_vdef (stmt))))
3056 {
3057 if (dump_file)
3058 {
3059 fprintf (dump_file,
3060 "skipped reduction store for single-gang"
3061 " neutering: ");
3062 print_gimple_stmt (dump_file, stmt, 0, 0);
3063 }
3064
3065 /* Update gsi to point to next stmt. */
3066 gsi_next (&gsi);
3067 continue;
3068 }
3069
3070 changed = true;
3071
3072 if (gang_pos == NULL_TREE)
3073 {
3074 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3075 gcall *gang_single
3076 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3077 gang_pos = make_ssa_name (integer_type_node);
3078 gimple_call_set_lhs (gang_single, gang_pos);
3079 gimple_stmt_iterator start
3080 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3081 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3082 gimple_set_vuse (gang_single, vuse);
3083 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3084 }
3085
3086 if (dump_file)
3087 {
3088 fprintf (dump_file,
3089 "found store that needs single-gang neutering: ");
3090 print_gimple_stmt (dump_file, stmt, 0, 0);
3091 }
3092
3093 {
3094 /* Split block before store. */
3095 gimple_stmt_iterator gsi2 = gsi;
3096 gsi_prev (&gsi2);
3097 edge e;
3098 if (gsi_end_p (gsi2))
3099 {
3100 e = split_block_after_labels (bb);
3101 gsi2 = gsi_last_bb (bb);
3102 }
3103 else
3104 e = split_block (bb, gsi_stmt (gsi2));
3105 basic_block bb2 = e->dest;
3106
3107 /* Split block after store. */
3108 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3109 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3110 basic_block bb3 = e2->dest;
3111
3112 gimple *cond
3113 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3114 NULL_TREE, NULL_TREE);
3115 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3116
3117 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3118 e->flags = EDGE_TRUE_VALUE;
3119
3120 tree vdef = gimple_vdef (stmt);
3121 tree vuse = gimple_vuse (stmt);
3122
3123 tree phi_res = copy_ssa_name (vdef);
3124 gphi *new_phi = create_phi_node (phi_res, bb3);
3125 replace_uses_by (vdef, phi_res);
3126 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3127 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3128
3129 /* Update gsi to point to next stmt. */
3130 bb = bb3;
3131 gsi = gsi_start_bb (bb);
3132 }
3133 }
3134 }
3135
3136 return changed;
3137 }
3138
3139 /* Return true if the statements before and after the LOOP can be executed in
3140 parallel with the function containing the loop. Resolve conflicting stores
3141 outside LOOP by guarding them such that only a single gang executes them. */
3142
3143 static bool
3144 oacc_entry_exit_ok (struct loop *loop,
3145 reduction_info_table_type *reduction_list)
3146 {
3147 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3148 vec<basic_block> region_bbs
3149 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3150
3151 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3152 bitmap_clear (in_loop_bbs);
3153 for (unsigned int i = 0; i < loop->num_nodes; i++)
3154 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3155
3156 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3157 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3158 reduction_stores);
3159
3160 if (res)
3161 {
3162 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3163 reduction_stores);
3164 if (changed)
3165 {
3166 free_dominance_info (CDI_DOMINATORS);
3167 calculate_dominance_info (CDI_DOMINATORS);
3168 }
3169 }
3170
3171 region_bbs.release ();
3172 free (loop_bbs);
3173
3174 BITMAP_FREE (in_loop_bbs);
3175 BITMAP_FREE (reduction_stores);
3176
3177 return res;
3178 }
3179
3180 /* Detect parallel loops and generate parallel code using libgomp
3181 primitives. Returns true if some loop was parallelized, false
3182 otherwise. */
3183
3184 static bool
3185 parallelize_loops (bool oacc_kernels_p)
3186 {
3187 unsigned n_threads;
3188 bool changed = false;
3189 struct loop *loop;
3190 struct loop *skip_loop = NULL;
3191 struct tree_niter_desc niter_desc;
3192 struct obstack parloop_obstack;
3193 HOST_WIDE_INT estimated;
3194 source_location loop_loc;
3195
3196 /* Do not parallelize loops in the functions created by parallelization. */
3197 if (!oacc_kernels_p
3198 && parallelized_function_p (cfun->decl))
3199 return false;
3200
3201 /* Do not parallelize loops in offloaded functions. */
3202 if (!oacc_kernels_p
3203 && oacc_get_fn_attrib (cfun->decl) != NULL)
3204 return false;
3205
3206 if (cfun->has_nonlocal_label)
3207 return false;
3208
3209 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3210 the argument to -ftree-parallelize-loops. */
3211 if (oacc_kernels_p)
3212 n_threads = 0;
3213 else
3214 n_threads = flag_tree_parallelize_loops;
3215
3216 gcc_obstack_init (&parloop_obstack);
3217 reduction_info_table_type reduction_list (10);
3218
3219 calculate_dominance_info (CDI_DOMINATORS);
3220
3221 FOR_EACH_LOOP (loop, 0)
3222 {
3223 if (loop == skip_loop)
3224 {
3225 if (!loop->in_oacc_kernels_region
3226 && dump_file && (dump_flags & TDF_DETAILS))
3227 fprintf (dump_file,
3228 "Skipping loop %d as inner loop of parallelized loop\n",
3229 loop->num);
3230
3231 skip_loop = loop->inner;
3232 continue;
3233 }
3234 else
3235 skip_loop = NULL;
3236
3237 reduction_list.empty ();
3238
3239 if (oacc_kernels_p)
3240 {
3241 if (!loop->in_oacc_kernels_region)
3242 continue;
3243
3244 /* Don't try to parallelize inner loops in an oacc kernels region. */
3245 if (loop->inner)
3246 skip_loop = loop->inner;
3247
3248 if (dump_file && (dump_flags & TDF_DETAILS))
3249 fprintf (dump_file,
3250 "Trying loop %d with header bb %d in oacc kernels"
3251 " region\n", loop->num, loop->header->index);
3252 }
3253
3254 if (dump_file && (dump_flags & TDF_DETAILS))
3255 {
3256 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3257 if (loop->inner)
3258 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3259 else
3260 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3261 }
3262
3263 /* If we use autopar in graphite pass, we use its marked dependency
3264 checking results. */
3265 if (flag_loop_parallelize_all && !loop->can_be_parallel)
3266 {
3267 if (dump_file && (dump_flags & TDF_DETAILS))
3268 fprintf (dump_file, "loop is not parallel according to graphite\n");
3269 continue;
3270 }
3271
3272 if (!single_dom_exit (loop))
3273 {
3274
3275 if (dump_file && (dump_flags & TDF_DETAILS))
3276 fprintf (dump_file, "loop is !single_dom_exit\n");
3277
3278 continue;
3279 }
3280
3281 if (/* And of course, the loop must be parallelizable. */
3282 !can_duplicate_loop_p (loop)
3283 || loop_has_blocks_with_irreducible_flag (loop)
3284 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
3285 /* FIXME: the check for vector phi nodes could be removed. */
3286 || loop_has_vector_phi_nodes (loop))
3287 continue;
3288
3289 estimated = estimated_stmt_executions_int (loop);
3290 if (estimated == -1)
3291 estimated = likely_max_stmt_executions_int (loop);
3292 /* FIXME: Bypass this check as graphite doesn't update the
3293 count and frequency correctly now. */
3294 if (!flag_loop_parallelize_all
3295 && !oacc_kernels_p
3296 && ((estimated != -1
3297 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
3298 /* Do not bother with loops in cold areas. */
3299 || optimize_loop_nest_for_size_p (loop)))
3300 continue;
3301
3302 if (!try_get_loop_niter (loop, &niter_desc))
3303 continue;
3304
3305 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
3306 continue;
3307
3308 if (loop_has_phi_with_address_arg (loop))
3309 continue;
3310
3311 if (!flag_loop_parallelize_all
3312 && !loop_parallel_p (loop, &parloop_obstack))
3313 continue;
3314
3315 if (oacc_kernels_p
3316 && !oacc_entry_exit_ok (loop, &reduction_list))
3317 {
3318 if (dump_file)
3319 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3320 continue;
3321 }
3322
3323 changed = true;
3324 skip_loop = loop->inner;
3325 if (dump_file && (dump_flags & TDF_DETAILS))
3326 {
3327 if (loop->inner)
3328 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
3329 else
3330 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
3331 loop_loc = find_loop_location (loop);
3332 if (loop_loc != UNKNOWN_LOCATION)
3333 fprintf (dump_file, "\nloop at %s:%d: ",
3334 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
3335 }
3336
3337 gen_parallel_loop (loop, &reduction_list,
3338 n_threads, &niter_desc, oacc_kernels_p);
3339 }
3340
3341 obstack_free (&parloop_obstack, NULL);
3342
3343 /* Parallelization will cause new function calls to be inserted through
3344 which local variables will escape. Reset the points-to solution
3345 for ESCAPED. */
3346 if (changed)
3347 pt_solution_reset (&cfun->gimple_df->escaped);
3348
3349 return changed;
3350 }
3351
3352 /* Parallelization. */
3353
3354 namespace {
3355
3356 const pass_data pass_data_parallelize_loops =
3357 {
3358 GIMPLE_PASS, /* type */
3359 "parloops", /* name */
3360 OPTGROUP_LOOP, /* optinfo_flags */
3361 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3362 ( PROP_cfg | PROP_ssa ), /* properties_required */
3363 0, /* properties_provided */
3364 0, /* properties_destroyed */
3365 0, /* todo_flags_start */
3366 0, /* todo_flags_finish */
3367 };
3368
3369 class pass_parallelize_loops : public gimple_opt_pass
3370 {
3371 public:
3372 pass_parallelize_loops (gcc::context *ctxt)
3373 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3374 oacc_kernels_p (false)
3375 {}
3376
3377 /* opt_pass methods: */
3378 virtual bool gate (function *)
3379 {
3380 if (oacc_kernels_p)
3381 return flag_openacc;
3382 else
3383 return flag_tree_parallelize_loops > 1;
3384 }
3385 virtual unsigned int execute (function *);
3386 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3387 void set_pass_param (unsigned int n, bool param)
3388 {
3389 gcc_assert (n == 0);
3390 oacc_kernels_p = param;
3391 }
3392
3393 private:
3394 bool oacc_kernels_p;
3395 }; // class pass_parallelize_loops
3396
3397 unsigned
3398 pass_parallelize_loops::execute (function *fun)
3399 {
3400 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3401 if (nthreads == NULL_TREE)
3402 return 0;
3403
3404 bool in_loop_pipeline = scev_initialized_p ();
3405 if (!in_loop_pipeline)
3406 loop_optimizer_init (LOOPS_NORMAL
3407 | LOOPS_HAVE_RECORDED_EXITS);
3408
3409 if (number_of_loops (fun) <= 1)
3410 return 0;
3411
3412 if (!in_loop_pipeline)
3413 {
3414 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3415 scev_initialize ();
3416 }
3417
3418 unsigned int todo = 0;
3419 if (parallelize_loops (oacc_kernels_p))
3420 {
3421 fun->curr_properties &= ~(PROP_gimple_eomp);
3422
3423 checking_verify_loop_structure ();
3424
3425 todo |= TODO_update_ssa;
3426 }
3427
3428 if (!in_loop_pipeline)
3429 {
3430 scev_finalize ();
3431 loop_optimizer_finalize ();
3432 }
3433
3434 return todo;
3435 }
3436
3437 } // anon namespace
3438
3439 gimple_opt_pass *
3440 make_pass_parallelize_loops (gcc::context *ctxt)
3441 {
3442 return new pass_parallelize_loops (ctxt);
3443 }