]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-parloops.c
[openacc, parloops] Fix SIGSEGV in oacc_entry_exit_ok_1
[thirdparty/gcc.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "gimple-pretty-print.h"
33 #include "fold-const.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "gimplify-me.h"
37 #include "gimple-walk.h"
38 #include "stor-layout.h"
39 #include "tree-nested.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "tree-into-ssa.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "langhooks.h"
49 #include "tree-vectorizer.h"
50 #include "tree-hasher.h"
51 #include "tree-parloops.h"
52 #include "omp-general.h"
53 #include "omp-low.h"
54 #include "tree-ssa.h"
55 #include "params.h"
56 #include "params-enum.h"
57 #include "tree-ssa-alias.h"
58 #include "tree-eh.h"
59 #include "gomp-constants.h"
60 #include "tree-dfa.h"
61 #include "stringpool.h"
62 #include "attribs.h"
63
64 /* This pass tries to distribute iterations of loops into several threads.
65 The implementation is straightforward -- for each loop we test whether its
66 iterations are independent, and if it is the case (and some additional
67 conditions regarding profitability and correctness are satisfied), we
68 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
69 machinery do its job.
70
71 The most of the complexity is in bringing the code into shape expected
72 by the omp expanders:
73 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
74 variable and that the exit test is at the start of the loop body
75 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
76 variables by accesses through pointers, and breaking up ssa chains
77 by storing the values incoming to the parallelized loop to a structure
78 passed to the new function as an argument (something similar is done
79 in omp gimplification, unfortunately only a small part of the code
80 can be shared).
81
82 TODO:
83 -- if there are several parallelizable loops in a function, it may be
84 possible to generate the threads just once (using synchronization to
85 ensure that cross-loop dependences are obeyed).
86 -- handling of common reduction patterns for outer loops.
87
88 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
89 /*
90 Reduction handling:
91 currently we use vect_force_simple_reduction() to detect reduction patterns.
92 The code transformation will be introduced by an example.
93
94
95 parloop
96 {
97 int sum=1;
98
99 for (i = 0; i < N; i++)
100 {
101 x[i] = i + 3;
102 sum+=x[i];
103 }
104 }
105
106 gimple-like code:
107 header_bb:
108
109 # sum_29 = PHI <sum_11(5), 1(3)>
110 # i_28 = PHI <i_12(5), 0(3)>
111 D.1795_8 = i_28 + 3;
112 x[i_28] = D.1795_8;
113 sum_11 = D.1795_8 + sum_29;
114 i_12 = i_28 + 1;
115 if (N_6(D) > i_12)
116 goto header_bb;
117
118
119 exit_bb:
120
121 # sum_21 = PHI <sum_11(4)>
122 printf (&"%d"[0], sum_21);
123
124
125 after reduction transformation (only relevant parts):
126
127 parloop
128 {
129
130 ....
131
132
133 # Storing the initial value given by the user. #
134
135 .paral_data_store.32.sum.27 = 1;
136
137 #pragma omp parallel num_threads(4)
138
139 #pragma omp for schedule(static)
140
141 # The neutral element corresponding to the particular
142 reduction's operation, e.g. 0 for PLUS_EXPR,
143 1 for MULT_EXPR, etc. replaces the user's initial value. #
144
145 # sum.27_29 = PHI <sum.27_11, 0>
146
147 sum.27_11 = D.1827_8 + sum.27_29;
148
149 GIMPLE_OMP_CONTINUE
150
151 # Adding this reduction phi is done at create_phi_for_local_result() #
152 # sum.27_56 = PHI <sum.27_11, 0>
153 GIMPLE_OMP_RETURN
154
155 # Creating the atomic operation is done at
156 create_call_for_reduction_1() #
157
158 #pragma omp atomic_load
159 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
160 D.1840_60 = sum.27_56 + D.1839_59;
161 #pragma omp atomic_store (D.1840_60);
162
163 GIMPLE_OMP_RETURN
164
165 # collecting the result after the join of the threads is done at
166 create_loads_for_reductions().
167 The value computed by the threads is loaded from the
168 shared struct. #
169
170
171 .paral_data_load.33_52 = &.paral_data_store.32;
172 sum_37 = .paral_data_load.33_52->sum.27;
173 sum_43 = D.1795_41 + sum_37;
174
175 exit bb:
176 # sum_21 = PHI <sum_43, sum_26>
177 printf (&"%d"[0], sum_21);
178
179 ...
180
181 }
182
183 */
184
185 /* Minimal number of iterations of a loop that should be executed in each
186 thread. */
187 #define MIN_PER_THREAD PARAM_VALUE (PARAM_PARLOOPS_MIN_PER_THREAD)
188
189 /* Element of the hashtable, representing a
190 reduction in the current loop. */
191 struct reduction_info
192 {
193 gimple *reduc_stmt; /* reduction statement. */
194 gimple *reduc_phi; /* The phi node defining the reduction. */
195 enum tree_code reduction_code;/* code for the reduction operation. */
196 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
197 result. */
198 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value
199 of the reduction variable when existing the loop. */
200 tree initial_value; /* The initial value of the reduction var before entering the loop. */
201 tree field; /* the name of the field in the parloop data structure intended for reduction. */
202 tree reduc_addr; /* The address of the reduction variable for
203 openacc reductions. */
204 tree init; /* reduction initialization value. */
205 gphi *new_phi; /* (helper field) Newly created phi node whose result
206 will be passed to the atomic operation. Represents
207 the local result each thread computed for the reduction
208 operation. */
209 };
210
211 /* Reduction info hashtable helpers. */
212
213 struct reduction_hasher : free_ptr_hash <reduction_info>
214 {
215 static inline hashval_t hash (const reduction_info *);
216 static inline bool equal (const reduction_info *, const reduction_info *);
217 };
218
219 /* Equality and hash functions for hashtab code. */
220
221 inline bool
222 reduction_hasher::equal (const reduction_info *a, const reduction_info *b)
223 {
224 return (a->reduc_phi == b->reduc_phi);
225 }
226
227 inline hashval_t
228 reduction_hasher::hash (const reduction_info *a)
229 {
230 return a->reduc_version;
231 }
232
233 typedef hash_table<reduction_hasher> reduction_info_table_type;
234
235
236 static struct reduction_info *
237 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi)
238 {
239 struct reduction_info tmpred, *red;
240
241 if (reduction_list->is_empty () || phi == NULL)
242 return NULL;
243
244 if (gimple_uid (phi) == (unsigned int)-1
245 || gimple_uid (phi) == 0)
246 return NULL;
247
248 tmpred.reduc_phi = phi;
249 tmpred.reduc_version = gimple_uid (phi);
250 red = reduction_list->find (&tmpred);
251 gcc_assert (red == NULL || red->reduc_phi == phi);
252
253 return red;
254 }
255
256 /* Element of hashtable of names to copy. */
257
258 struct name_to_copy_elt
259 {
260 unsigned version; /* The version of the name to copy. */
261 tree new_name; /* The new name used in the copy. */
262 tree field; /* The field of the structure used to pass the
263 value. */
264 };
265
266 /* Name copies hashtable helpers. */
267
268 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt>
269 {
270 static inline hashval_t hash (const name_to_copy_elt *);
271 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *);
272 };
273
274 /* Equality and hash functions for hashtab code. */
275
276 inline bool
277 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b)
278 {
279 return a->version == b->version;
280 }
281
282 inline hashval_t
283 name_to_copy_hasher::hash (const name_to_copy_elt *a)
284 {
285 return (hashval_t) a->version;
286 }
287
288 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
289
290 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
291 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
292 represents the denominator for every element in the matrix. */
293 typedef struct lambda_trans_matrix_s
294 {
295 lambda_matrix matrix;
296 int rowsize;
297 int colsize;
298 int denominator;
299 } *lambda_trans_matrix;
300 #define LTM_MATRIX(T) ((T)->matrix)
301 #define LTM_ROWSIZE(T) ((T)->rowsize)
302 #define LTM_COLSIZE(T) ((T)->colsize)
303 #define LTM_DENOMINATOR(T) ((T)->denominator)
304
305 /* Allocate a new transformation matrix. */
306
307 static lambda_trans_matrix
308 lambda_trans_matrix_new (int colsize, int rowsize,
309 struct obstack * lambda_obstack)
310 {
311 lambda_trans_matrix ret;
312
313 ret = (lambda_trans_matrix)
314 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
315 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
316 LTM_ROWSIZE (ret) = rowsize;
317 LTM_COLSIZE (ret) = colsize;
318 LTM_DENOMINATOR (ret) = 1;
319 return ret;
320 }
321
322 /* Multiply a vector VEC by a matrix MAT.
323 MAT is an M*N matrix, and VEC is a vector with length N. The result
324 is stored in DEST which must be a vector of length M. */
325
326 static void
327 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
328 lambda_vector vec, lambda_vector dest)
329 {
330 int i, j;
331
332 lambda_vector_clear (dest, m);
333 for (i = 0; i < m; i++)
334 for (j = 0; j < n; j++)
335 dest[i] += matrix[i][j] * vec[j];
336 }
337
338 /* Return true if TRANS is a legal transformation matrix that respects
339 the dependence vectors in DISTS and DIRS. The conservative answer
340 is false.
341
342 "Wolfe proves that a unimodular transformation represented by the
343 matrix T is legal when applied to a loop nest with a set of
344 lexicographically non-negative distance vectors RDG if and only if
345 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
346 i.e.: if and only if it transforms the lexicographically positive
347 distance vectors to lexicographically positive vectors. Note that
348 a unimodular matrix must transform the zero vector (and only it) to
349 the zero vector." S.Muchnick. */
350
351 static bool
352 lambda_transform_legal_p (lambda_trans_matrix trans,
353 int nb_loops,
354 vec<ddr_p> dependence_relations)
355 {
356 unsigned int i, j;
357 lambda_vector distres;
358 struct data_dependence_relation *ddr;
359
360 gcc_assert (LTM_COLSIZE (trans) == nb_loops
361 && LTM_ROWSIZE (trans) == nb_loops);
362
363 /* When there are no dependences, the transformation is correct. */
364 if (dependence_relations.length () == 0)
365 return true;
366
367 ddr = dependence_relations[0];
368 if (ddr == NULL)
369 return true;
370
371 /* When there is an unknown relation in the dependence_relations, we
372 know that it is no worth looking at this loop nest: give up. */
373 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
374 return false;
375
376 distres = lambda_vector_new (nb_loops);
377
378 /* For each distance vector in the dependence graph. */
379 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
380 {
381 /* Don't care about relations for which we know that there is no
382 dependence, nor about read-read (aka. output-dependences):
383 these data accesses can happen in any order. */
384 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
385 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
386 continue;
387
388 /* Conservatively answer: "this transformation is not valid". */
389 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
390 return false;
391
392 /* If the dependence could not be captured by a distance vector,
393 conservatively answer that the transform is not valid. */
394 if (DDR_NUM_DIST_VECTS (ddr) == 0)
395 return false;
396
397 /* Compute trans.dist_vect */
398 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
399 {
400 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
401 DDR_DIST_VECT (ddr, j), distres);
402
403 if (!lambda_vector_lexico_pos (distres, nb_loops))
404 return false;
405 }
406 }
407 return true;
408 }
409
410 /* Data dependency analysis. Returns true if the iterations of LOOP
411 are independent on each other (that is, if we can execute them
412 in parallel). */
413
414 static bool
415 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
416 {
417 vec<ddr_p> dependence_relations;
418 vec<data_reference_p> datarefs;
419 lambda_trans_matrix trans;
420 bool ret = false;
421
422 if (dump_file && (dump_flags & TDF_DETAILS))
423 {
424 fprintf (dump_file, "Considering loop %d\n", loop->num);
425 if (!loop->inner)
426 fprintf (dump_file, "loop is innermost\n");
427 else
428 fprintf (dump_file, "loop NOT innermost\n");
429 }
430
431 /* Check for problems with dependences. If the loop can be reversed,
432 the iterations are independent. */
433 auto_vec<loop_p, 3> loop_nest;
434 datarefs.create (10);
435 dependence_relations.create (100);
436 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
437 &dependence_relations))
438 {
439 if (dump_file && (dump_flags & TDF_DETAILS))
440 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
441 ret = false;
442 goto end;
443 }
444 if (dump_file && (dump_flags & TDF_DETAILS))
445 dump_data_dependence_relations (dump_file, dependence_relations);
446
447 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
448 LTM_MATRIX (trans)[0][0] = -1;
449
450 if (lambda_transform_legal_p (trans, 1, dependence_relations))
451 {
452 ret = true;
453 if (dump_file && (dump_flags & TDF_DETAILS))
454 fprintf (dump_file, " SUCCESS: may be parallelized\n");
455 }
456 else if (dump_file && (dump_flags & TDF_DETAILS))
457 fprintf (dump_file,
458 " FAILED: data dependencies exist across iterations\n");
459
460 end:
461 free_dependence_relations (dependence_relations);
462 free_data_refs (datarefs);
463
464 return ret;
465 }
466
467 /* Return true when LOOP contains basic blocks marked with the
468 BB_IRREDUCIBLE_LOOP flag. */
469
470 static inline bool
471 loop_has_blocks_with_irreducible_flag (struct loop *loop)
472 {
473 unsigned i;
474 basic_block *bbs = get_loop_body_in_dom_order (loop);
475 bool res = true;
476
477 for (i = 0; i < loop->num_nodes; i++)
478 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
479 goto end;
480
481 res = false;
482 end:
483 free (bbs);
484 return res;
485 }
486
487 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
488 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
489 to their addresses that can be reused. The address of OBJ is known to
490 be invariant in the whole function. Other needed statements are placed
491 right before GSI. */
492
493 static tree
494 take_address_of (tree obj, tree type, edge entry,
495 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
496 {
497 int uid;
498 tree *var_p, name, addr;
499 gassign *stmt;
500 gimple_seq stmts;
501
502 /* Since the address of OBJ is invariant, the trees may be shared.
503 Avoid rewriting unrelated parts of the code. */
504 obj = unshare_expr (obj);
505 for (var_p = &obj;
506 handled_component_p (*var_p);
507 var_p = &TREE_OPERAND (*var_p, 0))
508 continue;
509
510 /* Canonicalize the access to base on a MEM_REF. */
511 if (DECL_P (*var_p))
512 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
513
514 /* Assign a canonical SSA name to the address of the base decl used
515 in the address and share it for all accesses and addresses based
516 on it. */
517 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
518 int_tree_map elt;
519 elt.uid = uid;
520 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
521 if (!slot->to)
522 {
523 if (gsi == NULL)
524 return NULL;
525 addr = TREE_OPERAND (*var_p, 0);
526 const char *obj_name
527 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
528 if (obj_name)
529 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
530 else
531 name = make_ssa_name (TREE_TYPE (addr));
532 stmt = gimple_build_assign (name, addr);
533 gsi_insert_on_edge_immediate (entry, stmt);
534
535 slot->uid = uid;
536 slot->to = name;
537 }
538 else
539 name = slot->to;
540
541 /* Express the address in terms of the canonical SSA name. */
542 TREE_OPERAND (*var_p, 0) = name;
543 if (gsi == NULL)
544 return build_fold_addr_expr_with_type (obj, type);
545
546 name = force_gimple_operand (build_addr (obj),
547 &stmts, true, NULL_TREE);
548 if (!gimple_seq_empty_p (stmts))
549 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
550
551 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
552 {
553 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
554 NULL_TREE);
555 if (!gimple_seq_empty_p (stmts))
556 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
557 }
558
559 return name;
560 }
561
562 static tree
563 reduc_stmt_res (gimple *stmt)
564 {
565 return (gimple_code (stmt) == GIMPLE_PHI
566 ? gimple_phi_result (stmt)
567 : gimple_assign_lhs (stmt));
568 }
569
570 /* Callback for htab_traverse. Create the initialization statement
571 for reduction described in SLOT, and place it at the preheader of
572 the loop described in DATA. */
573
574 int
575 initialize_reductions (reduction_info **slot, struct loop *loop)
576 {
577 tree init;
578 tree type, arg;
579 edge e;
580
581 struct reduction_info *const reduc = *slot;
582
583 /* Create initialization in preheader:
584 reduction_variable = initialization value of reduction. */
585
586 /* In the phi node at the header, replace the argument coming
587 from the preheader with the reduction initialization value. */
588
589 /* Initialize the reduction. */
590 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
591 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt),
592 reduc->reduction_code, type);
593 reduc->init = init;
594
595 /* Replace the argument representing the initialization value
596 with the initialization value for the reduction (neutral
597 element for the particular operation, e.g. 0 for PLUS_EXPR,
598 1 for MULT_EXPR, etc).
599 Keep the old value in a new variable "reduction_initial",
600 that will be taken in consideration after the parallel
601 computing is done. */
602
603 e = loop_preheader_edge (loop);
604 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
605 /* Create new variable to hold the initial value. */
606
607 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
608 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
609 reduc->initial_value = arg;
610 return 1;
611 }
612
613 struct elv_data
614 {
615 struct walk_stmt_info info;
616 edge entry;
617 int_tree_htab_type *decl_address;
618 gimple_stmt_iterator *gsi;
619 bool changed;
620 bool reset;
621 };
622
623 /* Eliminates references to local variables in *TP out of the single
624 entry single exit region starting at DTA->ENTRY.
625 DECL_ADDRESS contains addresses of the references that had their
626 address taken already. If the expression is changed, CHANGED is
627 set to true. Callback for walk_tree. */
628
629 static tree
630 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
631 {
632 struct elv_data *const dta = (struct elv_data *) data;
633 tree t = *tp, var, addr, addr_type, type, obj;
634
635 if (DECL_P (t))
636 {
637 *walk_subtrees = 0;
638
639 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
640 return NULL_TREE;
641
642 type = TREE_TYPE (t);
643 addr_type = build_pointer_type (type);
644 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
645 dta->gsi);
646 if (dta->gsi == NULL && addr == NULL_TREE)
647 {
648 dta->reset = true;
649 return NULL_TREE;
650 }
651
652 *tp = build_simple_mem_ref (addr);
653
654 dta->changed = true;
655 return NULL_TREE;
656 }
657
658 if (TREE_CODE (t) == ADDR_EXPR)
659 {
660 /* ADDR_EXPR may appear in two contexts:
661 -- as a gimple operand, when the address taken is a function invariant
662 -- as gimple rhs, when the resulting address in not a function
663 invariant
664 We do not need to do anything special in the latter case (the base of
665 the memory reference whose address is taken may be replaced in the
666 DECL_P case). The former case is more complicated, as we need to
667 ensure that the new address is still a gimple operand. Thus, it
668 is not sufficient to replace just the base of the memory reference --
669 we need to move the whole computation of the address out of the
670 loop. */
671 if (!is_gimple_val (t))
672 return NULL_TREE;
673
674 *walk_subtrees = 0;
675 obj = TREE_OPERAND (t, 0);
676 var = get_base_address (obj);
677 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
678 return NULL_TREE;
679
680 addr_type = TREE_TYPE (t);
681 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
682 dta->gsi);
683 if (dta->gsi == NULL && addr == NULL_TREE)
684 {
685 dta->reset = true;
686 return NULL_TREE;
687 }
688 *tp = addr;
689
690 dta->changed = true;
691 return NULL_TREE;
692 }
693
694 if (!EXPR_P (t))
695 *walk_subtrees = 0;
696
697 return NULL_TREE;
698 }
699
700 /* Moves the references to local variables in STMT at *GSI out of the single
701 entry single exit region starting at ENTRY. DECL_ADDRESS contains
702 addresses of the references that had their address taken
703 already. */
704
705 static void
706 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
707 int_tree_htab_type *decl_address)
708 {
709 struct elv_data dta;
710 gimple *stmt = gsi_stmt (*gsi);
711
712 memset (&dta.info, '\0', sizeof (dta.info));
713 dta.entry = entry;
714 dta.decl_address = decl_address;
715 dta.changed = false;
716 dta.reset = false;
717
718 if (gimple_debug_bind_p (stmt))
719 {
720 dta.gsi = NULL;
721 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
722 eliminate_local_variables_1, &dta.info, NULL);
723 if (dta.reset)
724 {
725 gimple_debug_bind_reset_value (stmt);
726 dta.changed = true;
727 }
728 }
729 else if (gimple_clobber_p (stmt))
730 {
731 unlink_stmt_vdef (stmt);
732 stmt = gimple_build_nop ();
733 gsi_replace (gsi, stmt, false);
734 dta.changed = true;
735 }
736 else
737 {
738 dta.gsi = gsi;
739 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
740 }
741
742 if (dta.changed)
743 update_stmt (stmt);
744 }
745
746 /* Eliminates the references to local variables from the single entry
747 single exit region between the ENTRY and EXIT edges.
748
749 This includes:
750 1) Taking address of a local variable -- these are moved out of the
751 region (and temporary variable is created to hold the address if
752 necessary).
753
754 2) Dereferencing a local variable -- these are replaced with indirect
755 references. */
756
757 static void
758 eliminate_local_variables (edge entry, edge exit)
759 {
760 basic_block bb;
761 auto_vec<basic_block, 3> body;
762 unsigned i;
763 gimple_stmt_iterator gsi;
764 bool has_debug_stmt = false;
765 int_tree_htab_type decl_address (10);
766 basic_block entry_bb = entry->src;
767 basic_block exit_bb = exit->dest;
768
769 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
770
771 FOR_EACH_VEC_ELT (body, i, bb)
772 if (bb != entry_bb && bb != exit_bb)
773 {
774 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
775 if (is_gimple_debug (gsi_stmt (gsi)))
776 {
777 if (gimple_debug_bind_p (gsi_stmt (gsi)))
778 has_debug_stmt = true;
779 }
780 else
781 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
782 }
783
784 if (has_debug_stmt)
785 FOR_EACH_VEC_ELT (body, i, bb)
786 if (bb != entry_bb && bb != exit_bb)
787 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
788 if (gimple_debug_bind_p (gsi_stmt (gsi)))
789 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
790 }
791
792 /* Returns true if expression EXPR is not defined between ENTRY and
793 EXIT, i.e. if all its operands are defined outside of the region. */
794
795 static bool
796 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
797 {
798 basic_block entry_bb = entry->src;
799 basic_block exit_bb = exit->dest;
800 basic_block def_bb;
801
802 if (is_gimple_min_invariant (expr))
803 return true;
804
805 if (TREE_CODE (expr) == SSA_NAME)
806 {
807 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
808 if (def_bb
809 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
810 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
811 return false;
812
813 return true;
814 }
815
816 return false;
817 }
818
819 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
820 The copies are stored to NAME_COPIES, if NAME was already duplicated,
821 its duplicate stored in NAME_COPIES is returned.
822
823 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
824 duplicated, storing the copies in DECL_COPIES. */
825
826 static tree
827 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
828 int_tree_htab_type *decl_copies,
829 bool copy_name_p)
830 {
831 tree copy, var, var_copy;
832 unsigned idx, uid, nuid;
833 struct int_tree_map ielt;
834 struct name_to_copy_elt elt, *nelt;
835 name_to_copy_elt **slot;
836 int_tree_map *dslot;
837
838 if (TREE_CODE (name) != SSA_NAME)
839 return name;
840
841 idx = SSA_NAME_VERSION (name);
842 elt.version = idx;
843 slot = name_copies->find_slot_with_hash (&elt, idx,
844 copy_name_p ? INSERT : NO_INSERT);
845 if (slot && *slot)
846 return (*slot)->new_name;
847
848 if (copy_name_p)
849 {
850 copy = duplicate_ssa_name (name, NULL);
851 nelt = XNEW (struct name_to_copy_elt);
852 nelt->version = idx;
853 nelt->new_name = copy;
854 nelt->field = NULL_TREE;
855 *slot = nelt;
856 }
857 else
858 {
859 gcc_assert (!slot);
860 copy = name;
861 }
862
863 var = SSA_NAME_VAR (name);
864 if (!var)
865 return copy;
866
867 uid = DECL_UID (var);
868 ielt.uid = uid;
869 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
870 if (!dslot->to)
871 {
872 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
873 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
874 dslot->uid = uid;
875 dslot->to = var_copy;
876
877 /* Ensure that when we meet this decl next time, we won't duplicate
878 it again. */
879 nuid = DECL_UID (var_copy);
880 ielt.uid = nuid;
881 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
882 gcc_assert (!dslot->to);
883 dslot->uid = nuid;
884 dslot->to = var_copy;
885 }
886 else
887 var_copy = dslot->to;
888
889 replace_ssa_name_symbol (copy, var_copy);
890 return copy;
891 }
892
893 /* Finds the ssa names used in STMT that are defined outside the
894 region between ENTRY and EXIT and replaces such ssa names with
895 their duplicates. The duplicates are stored to NAME_COPIES. Base
896 decls of all ssa names used in STMT (including those defined in
897 LOOP) are replaced with the new temporary variables; the
898 replacement decls are stored in DECL_COPIES. */
899
900 static void
901 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt,
902 name_to_copy_table_type *name_copies,
903 int_tree_htab_type *decl_copies)
904 {
905 use_operand_p use;
906 def_operand_p def;
907 ssa_op_iter oi;
908 tree name, copy;
909 bool copy_name_p;
910
911 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
912 {
913 name = DEF_FROM_PTR (def);
914 gcc_assert (TREE_CODE (name) == SSA_NAME);
915 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
916 false);
917 gcc_assert (copy == name);
918 }
919
920 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
921 {
922 name = USE_FROM_PTR (use);
923 if (TREE_CODE (name) != SSA_NAME)
924 continue;
925
926 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
927 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
928 copy_name_p);
929 SET_USE (use, copy);
930 }
931 }
932
933 /* Finds the ssa names used in STMT that are defined outside the
934 region between ENTRY and EXIT and replaces such ssa names with
935 their duplicates. The duplicates are stored to NAME_COPIES. Base
936 decls of all ssa names used in STMT (including those defined in
937 LOOP) are replaced with the new temporary variables; the
938 replacement decls are stored in DECL_COPIES. */
939
940 static bool
941 separate_decls_in_region_debug (gimple *stmt,
942 name_to_copy_table_type *name_copies,
943 int_tree_htab_type *decl_copies)
944 {
945 use_operand_p use;
946 ssa_op_iter oi;
947 tree var, name;
948 struct int_tree_map ielt;
949 struct name_to_copy_elt elt;
950 name_to_copy_elt **slot;
951 int_tree_map *dslot;
952
953 if (gimple_debug_bind_p (stmt))
954 var = gimple_debug_bind_get_var (stmt);
955 else if (gimple_debug_source_bind_p (stmt))
956 var = gimple_debug_source_bind_get_var (stmt);
957 else
958 return true;
959 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
960 return true;
961 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
962 ielt.uid = DECL_UID (var);
963 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
964 if (!dslot)
965 return true;
966 if (gimple_debug_bind_p (stmt))
967 gimple_debug_bind_set_var (stmt, dslot->to);
968 else if (gimple_debug_source_bind_p (stmt))
969 gimple_debug_source_bind_set_var (stmt, dslot->to);
970
971 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
972 {
973 name = USE_FROM_PTR (use);
974 if (TREE_CODE (name) != SSA_NAME)
975 continue;
976
977 elt.version = SSA_NAME_VERSION (name);
978 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
979 if (!slot)
980 {
981 gimple_debug_bind_reset_value (stmt);
982 update_stmt (stmt);
983 break;
984 }
985
986 SET_USE (use, (*slot)->new_name);
987 }
988
989 return false;
990 }
991
992 /* Callback for htab_traverse. Adds a field corresponding to the reduction
993 specified in SLOT. The type is passed in DATA. */
994
995 int
996 add_field_for_reduction (reduction_info **slot, tree type)
997 {
998
999 struct reduction_info *const red = *slot;
1000 tree var = reduc_stmt_res (red->reduc_stmt);
1001 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1002 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1003
1004 insert_field_into_struct (type, field);
1005
1006 red->field = field;
1007
1008 return 1;
1009 }
1010
1011 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1012 described in SLOT. The type is passed in DATA. */
1013
1014 int
1015 add_field_for_name (name_to_copy_elt **slot, tree type)
1016 {
1017 struct name_to_copy_elt *const elt = *slot;
1018 tree name = ssa_name (elt->version);
1019 tree field = build_decl (UNKNOWN_LOCATION,
1020 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1021 TREE_TYPE (name));
1022
1023 insert_field_into_struct (type, field);
1024 elt->field = field;
1025
1026 return 1;
1027 }
1028
1029 /* Callback for htab_traverse. A local result is the intermediate result
1030 computed by a single
1031 thread, or the initial value in case no iteration was executed.
1032 This function creates a phi node reflecting these values.
1033 The phi's result will be stored in NEW_PHI field of the
1034 reduction's data structure. */
1035
1036 int
1037 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1038 {
1039 struct reduction_info *const reduc = *slot;
1040 edge e;
1041 gphi *new_phi;
1042 basic_block store_bb, continue_bb;
1043 tree local_res;
1044 location_t locus;
1045
1046 /* STORE_BB is the block where the phi
1047 should be stored. It is the destination of the loop exit.
1048 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1049 continue_bb = single_pred (loop->latch);
1050 store_bb = FALLTHRU_EDGE (continue_bb)->dest;
1051
1052 /* STORE_BB has two predecessors. One coming from the loop
1053 (the reduction's result is computed at the loop),
1054 and another coming from a block preceding the loop,
1055 when no iterations
1056 are executed (the initial value should be taken). */
1057 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb))
1058 e = EDGE_PRED (store_bb, 1);
1059 else
1060 e = EDGE_PRED (store_bb, 0);
1061 tree lhs = reduc_stmt_res (reduc->reduc_stmt);
1062 local_res = copy_ssa_name (lhs);
1063 locus = gimple_location (reduc->reduc_stmt);
1064 new_phi = create_phi_node (local_res, store_bb);
1065 add_phi_arg (new_phi, reduc->init, e, locus);
1066 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus);
1067 reduc->new_phi = new_phi;
1068
1069 return 1;
1070 }
1071
1072 struct clsn_data
1073 {
1074 tree store;
1075 tree load;
1076
1077 basic_block store_bb;
1078 basic_block load_bb;
1079 };
1080
1081 /* Callback for htab_traverse. Create an atomic instruction for the
1082 reduction described in SLOT.
1083 DATA annotates the place in memory the atomic operation relates to,
1084 and the basic block it needs to be generated in. */
1085
1086 int
1087 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1088 {
1089 struct reduction_info *const reduc = *slot;
1090 gimple_stmt_iterator gsi;
1091 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1092 tree load_struct;
1093 basic_block bb;
1094 basic_block new_bb;
1095 edge e;
1096 tree t, addr, ref, x;
1097 tree tmp_load, name;
1098 gimple *load;
1099
1100 if (reduc->reduc_addr == NULL_TREE)
1101 {
1102 load_struct = build_simple_mem_ref (clsn_data->load);
1103 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1104
1105 addr = build_addr (t);
1106 }
1107 else
1108 {
1109 /* Set the address for the atomic store. */
1110 addr = reduc->reduc_addr;
1111
1112 /* Remove the non-atomic store '*addr = sum'. */
1113 tree res = PHI_RESULT (reduc->keep_res);
1114 use_operand_p use_p;
1115 gimple *stmt;
1116 bool single_use_p = single_imm_use (res, &use_p, &stmt);
1117 gcc_assert (single_use_p);
1118 replace_uses_by (gimple_vdef (stmt),
1119 gimple_vuse (stmt));
1120 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1121 gsi_remove (&gsi, true);
1122 }
1123
1124 /* Create phi node. */
1125 bb = clsn_data->load_bb;
1126
1127 gsi = gsi_last_bb (bb);
1128 e = split_block (bb, gsi_stmt (gsi));
1129 new_bb = e->dest;
1130
1131 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1132 tmp_load = make_ssa_name (tmp_load);
1133 load = gimple_build_omp_atomic_load (tmp_load, addr,
1134 OMP_MEMORY_ORDER_RELAXED);
1135 SSA_NAME_DEF_STMT (tmp_load) = load;
1136 gsi = gsi_start_bb (new_bb);
1137 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1138
1139 e = split_block (new_bb, load);
1140 new_bb = e->dest;
1141 gsi = gsi_start_bb (new_bb);
1142 ref = tmp_load;
1143 x = fold_build2 (reduc->reduction_code,
1144 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1145 PHI_RESULT (reduc->new_phi));
1146
1147 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1148 GSI_CONTINUE_LINKING);
1149
1150 gimple *store = gimple_build_omp_atomic_store (name,
1151 OMP_MEMORY_ORDER_RELAXED);
1152 gsi_insert_after (&gsi, store, GSI_NEW_STMT);
1153 return 1;
1154 }
1155
1156 /* Create the atomic operation at the join point of the threads.
1157 REDUCTION_LIST describes the reductions in the LOOP.
1158 LD_ST_DATA describes the shared data structure where
1159 shared data is stored in and loaded from. */
1160 static void
1161 create_call_for_reduction (struct loop *loop,
1162 reduction_info_table_type *reduction_list,
1163 struct clsn_data *ld_st_data)
1164 {
1165 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1166 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1167 basic_block continue_bb = single_pred (loop->latch);
1168 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest;
1169 reduction_list
1170 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1171 }
1172
1173 /* Callback for htab_traverse. Loads the final reduction value at the
1174 join point of all threads, and inserts it in the right place. */
1175
1176 int
1177 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1178 {
1179 struct reduction_info *const red = *slot;
1180 gimple *stmt;
1181 gimple_stmt_iterator gsi;
1182 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1183 tree load_struct;
1184 tree name;
1185 tree x;
1186
1187 /* If there's no exit phi, the result of the reduction is unused. */
1188 if (red->keep_res == NULL)
1189 return 1;
1190
1191 gsi = gsi_after_labels (clsn_data->load_bb);
1192 load_struct = build_simple_mem_ref (clsn_data->load);
1193 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1194 NULL_TREE);
1195
1196 x = load_struct;
1197 name = PHI_RESULT (red->keep_res);
1198 stmt = gimple_build_assign (name, x);
1199
1200 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1201
1202 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1203 !gsi_end_p (gsi); gsi_next (&gsi))
1204 if (gsi_stmt (gsi) == red->keep_res)
1205 {
1206 remove_phi_node (&gsi, false);
1207 return 1;
1208 }
1209 gcc_unreachable ();
1210 }
1211
1212 /* Load the reduction result that was stored in LD_ST_DATA.
1213 REDUCTION_LIST describes the list of reductions that the
1214 loads should be generated for. */
1215 static void
1216 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1217 struct clsn_data *ld_st_data)
1218 {
1219 gimple_stmt_iterator gsi;
1220 tree t;
1221 gimple *stmt;
1222
1223 gsi = gsi_after_labels (ld_st_data->load_bb);
1224 t = build_fold_addr_expr (ld_st_data->store);
1225 stmt = gimple_build_assign (ld_st_data->load, t);
1226
1227 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1228
1229 reduction_list
1230 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1231
1232 }
1233
1234 /* Callback for htab_traverse. Store the neutral value for the
1235 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1236 1 for MULT_EXPR, etc. into the reduction field.
1237 The reduction is specified in SLOT. The store information is
1238 passed in DATA. */
1239
1240 int
1241 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1242 {
1243 struct reduction_info *const red = *slot;
1244 tree t;
1245 gimple *stmt;
1246 gimple_stmt_iterator gsi;
1247 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt));
1248
1249 gsi = gsi_last_bb (clsn_data->store_bb);
1250 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1251 stmt = gimple_build_assign (t, red->initial_value);
1252 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1253
1254 return 1;
1255 }
1256
1257 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1258 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1259 specified in SLOT. */
1260
1261 int
1262 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1263 struct clsn_data *clsn_data)
1264 {
1265 struct name_to_copy_elt *const elt = *slot;
1266 tree t;
1267 gimple *stmt;
1268 gimple_stmt_iterator gsi;
1269 tree type = TREE_TYPE (elt->new_name);
1270 tree load_struct;
1271
1272 gsi = gsi_last_bb (clsn_data->store_bb);
1273 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1274 stmt = gimple_build_assign (t, ssa_name (elt->version));
1275 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1276
1277 gsi = gsi_last_bb (clsn_data->load_bb);
1278 load_struct = build_simple_mem_ref (clsn_data->load);
1279 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1280 stmt = gimple_build_assign (elt->new_name, t);
1281 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1282
1283 return 1;
1284 }
1285
1286 /* Moves all the variables used in LOOP and defined outside of it (including
1287 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1288 name) to a structure created for this purpose. The code
1289
1290 while (1)
1291 {
1292 use (a);
1293 use (b);
1294 }
1295
1296 is transformed this way:
1297
1298 bb0:
1299 old.a = a;
1300 old.b = b;
1301
1302 bb1:
1303 a' = new->a;
1304 b' = new->b;
1305 while (1)
1306 {
1307 use (a');
1308 use (b');
1309 }
1310
1311 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1312 pointer `new' is intentionally not initialized (the loop will be split to a
1313 separate function later, and `new' will be initialized from its arguments).
1314 LD_ST_DATA holds information about the shared data structure used to pass
1315 information among the threads. It is initialized here, and
1316 gen_parallel_loop will pass it to create_call_for_reduction that
1317 needs this information. REDUCTION_LIST describes the reductions
1318 in LOOP. */
1319
1320 static void
1321 separate_decls_in_region (edge entry, edge exit,
1322 reduction_info_table_type *reduction_list,
1323 tree *arg_struct, tree *new_arg_struct,
1324 struct clsn_data *ld_st_data)
1325
1326 {
1327 basic_block bb1 = split_edge (entry);
1328 basic_block bb0 = single_pred (bb1);
1329 name_to_copy_table_type name_copies (10);
1330 int_tree_htab_type decl_copies (10);
1331 unsigned i;
1332 tree type, type_name, nvar;
1333 gimple_stmt_iterator gsi;
1334 struct clsn_data clsn_data;
1335 auto_vec<basic_block, 3> body;
1336 basic_block bb;
1337 basic_block entry_bb = bb1;
1338 basic_block exit_bb = exit->dest;
1339 bool has_debug_stmt = false;
1340
1341 entry = single_succ_edge (entry_bb);
1342 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1343
1344 FOR_EACH_VEC_ELT (body, i, bb)
1345 {
1346 if (bb != entry_bb && bb != exit_bb)
1347 {
1348 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1349 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1350 &name_copies, &decl_copies);
1351
1352 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1353 {
1354 gimple *stmt = gsi_stmt (gsi);
1355
1356 if (is_gimple_debug (stmt))
1357 has_debug_stmt = true;
1358 else
1359 separate_decls_in_region_stmt (entry, exit, stmt,
1360 &name_copies, &decl_copies);
1361 }
1362 }
1363 }
1364
1365 /* Now process debug bind stmts. We must not create decls while
1366 processing debug stmts, so we defer their processing so as to
1367 make sure we will have debug info for as many variables as
1368 possible (all of those that were dealt with in the loop above),
1369 and discard those for which we know there's nothing we can
1370 do. */
1371 if (has_debug_stmt)
1372 FOR_EACH_VEC_ELT (body, i, bb)
1373 if (bb != entry_bb && bb != exit_bb)
1374 {
1375 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1376 {
1377 gimple *stmt = gsi_stmt (gsi);
1378
1379 if (is_gimple_debug (stmt))
1380 {
1381 if (separate_decls_in_region_debug (stmt, &name_copies,
1382 &decl_copies))
1383 {
1384 gsi_remove (&gsi, true);
1385 continue;
1386 }
1387 }
1388
1389 gsi_next (&gsi);
1390 }
1391 }
1392
1393 if (name_copies.is_empty () && reduction_list->is_empty ())
1394 {
1395 /* It may happen that there is nothing to copy (if there are only
1396 loop carried and external variables in the loop). */
1397 *arg_struct = NULL;
1398 *new_arg_struct = NULL;
1399 }
1400 else
1401 {
1402 /* Create the type for the structure to store the ssa names to. */
1403 type = lang_hooks.types.make_type (RECORD_TYPE);
1404 type_name = build_decl (UNKNOWN_LOCATION,
1405 TYPE_DECL, create_tmp_var_name (".paral_data"),
1406 type);
1407 TYPE_NAME (type) = type_name;
1408
1409 name_copies.traverse <tree, add_field_for_name> (type);
1410 if (reduction_list && !reduction_list->is_empty ())
1411 {
1412 /* Create the fields for reductions. */
1413 reduction_list->traverse <tree, add_field_for_reduction> (type);
1414 }
1415 layout_type (type);
1416
1417 /* Create the loads and stores. */
1418 *arg_struct = create_tmp_var (type, ".paral_data_store");
1419 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1420 *new_arg_struct = make_ssa_name (nvar);
1421
1422 ld_st_data->store = *arg_struct;
1423 ld_st_data->load = *new_arg_struct;
1424 ld_st_data->store_bb = bb0;
1425 ld_st_data->load_bb = bb1;
1426
1427 name_copies
1428 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1429 (ld_st_data);
1430
1431 /* Load the calculation from memory (after the join of the threads). */
1432
1433 if (reduction_list && !reduction_list->is_empty ())
1434 {
1435 reduction_list
1436 ->traverse <struct clsn_data *, create_stores_for_reduction>
1437 (ld_st_data);
1438 clsn_data.load = make_ssa_name (nvar);
1439 clsn_data.load_bb = exit->dest;
1440 clsn_data.store = ld_st_data->store;
1441 create_final_loads_for_reduction (reduction_list, &clsn_data);
1442 }
1443 }
1444 }
1445
1446 /* Returns true if FN was created to run in parallel. */
1447
1448 bool
1449 parallelized_function_p (tree fndecl)
1450 {
1451 cgraph_node *node = cgraph_node::get (fndecl);
1452 gcc_assert (node != NULL);
1453 return node->parallelized_function;
1454 }
1455
1456 /* Creates and returns an empty function that will receive the body of
1457 a parallelized loop. */
1458
1459 static tree
1460 create_loop_fn (location_t loc)
1461 {
1462 char buf[100];
1463 char *tname;
1464 tree decl, type, name, t;
1465 struct function *act_cfun = cfun;
1466 static unsigned loopfn_num;
1467
1468 loc = LOCATION_LOCUS (loc);
1469 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1470 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1471 clean_symbol_name (tname);
1472 name = get_identifier (tname);
1473 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1474
1475 decl = build_decl (loc, FUNCTION_DECL, name, type);
1476 TREE_STATIC (decl) = 1;
1477 TREE_USED (decl) = 1;
1478 DECL_ARTIFICIAL (decl) = 1;
1479 DECL_IGNORED_P (decl) = 0;
1480 TREE_PUBLIC (decl) = 0;
1481 DECL_UNINLINABLE (decl) = 1;
1482 DECL_EXTERNAL (decl) = 0;
1483 DECL_CONTEXT (decl) = NULL_TREE;
1484 DECL_INITIAL (decl) = make_node (BLOCK);
1485 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl;
1486
1487 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1488 DECL_ARTIFICIAL (t) = 1;
1489 DECL_IGNORED_P (t) = 1;
1490 DECL_RESULT (decl) = t;
1491
1492 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1493 ptr_type_node);
1494 DECL_ARTIFICIAL (t) = 1;
1495 DECL_ARG_TYPE (t) = ptr_type_node;
1496 DECL_CONTEXT (t) = decl;
1497 TREE_USED (t) = 1;
1498 DECL_ARGUMENTS (decl) = t;
1499
1500 allocate_struct_function (decl, false);
1501 DECL_STRUCT_FUNCTION (decl)->last_clique = act_cfun->last_clique;
1502
1503 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1504 it. */
1505 set_cfun (act_cfun);
1506
1507 return decl;
1508 }
1509
1510 /* Replace uses of NAME by VAL in block BB. */
1511
1512 static void
1513 replace_uses_in_bb_by (tree name, tree val, basic_block bb)
1514 {
1515 gimple *use_stmt;
1516 imm_use_iterator imm_iter;
1517
1518 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name)
1519 {
1520 if (gimple_bb (use_stmt) != bb)
1521 continue;
1522
1523 use_operand_p use_p;
1524 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1525 SET_USE (use_p, val);
1526 }
1527 }
1528
1529 /* Do transformation from:
1530
1531 <bb preheader>:
1532 ...
1533 goto <bb header>
1534
1535 <bb header>:
1536 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1537 sum_a = PHI <sum_init (preheader), sum_b (latch)>
1538 ...
1539 use (ivtmp_a)
1540 ...
1541 sum_b = sum_a + sum_update
1542 ...
1543 if (ivtmp_a < n)
1544 goto <bb latch>;
1545 else
1546 goto <bb exit>;
1547
1548 <bb latch>:
1549 ivtmp_b = ivtmp_a + 1;
1550 goto <bb header>
1551
1552 <bb exit>:
1553 sum_z = PHI <sum_b (cond[1]), ...>
1554
1555 [1] Where <bb cond> is single_pred (bb latch); In the simplest case,
1556 that's <bb header>.
1557
1558 to:
1559
1560 <bb preheader>:
1561 ...
1562 goto <bb newheader>
1563
1564 <bb header>:
1565 ivtmp_a = PHI <ivtmp_c (latch)>
1566 sum_a = PHI <sum_c (latch)>
1567 ...
1568 use (ivtmp_a)
1569 ...
1570 sum_b = sum_a + sum_update
1571 ...
1572 goto <bb latch>;
1573
1574 <bb newheader>:
1575 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1576 sum_c = PHI <sum_init (preheader), sum_b (latch)>
1577 if (ivtmp_c < n + 1)
1578 goto <bb header>;
1579 else
1580 goto <bb newexit>;
1581
1582 <bb latch>:
1583 ivtmp_b = ivtmp_a + 1;
1584 goto <bb newheader>
1585
1586 <bb newexit>:
1587 sum_y = PHI <sum_c (newheader)>
1588
1589 <bb exit>:
1590 sum_z = PHI <sum_y (newexit), ...>
1591
1592
1593 In unified diff format:
1594
1595 <bb preheader>:
1596 ...
1597 - goto <bb header>
1598 + goto <bb newheader>
1599
1600 <bb header>:
1601 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1602 - sum_a = PHI <sum_init (preheader), sum_b (latch)>
1603 + ivtmp_a = PHI <ivtmp_c (latch)>
1604 + sum_a = PHI <sum_c (latch)>
1605 ...
1606 use (ivtmp_a)
1607 ...
1608 sum_b = sum_a + sum_update
1609 ...
1610 - if (ivtmp_a < n)
1611 - goto <bb latch>;
1612 + goto <bb latch>;
1613 +
1614 + <bb newheader>:
1615 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)>
1616 + sum_c = PHI <sum_init (preheader), sum_b (latch)>
1617 + if (ivtmp_c < n + 1)
1618 + goto <bb header>;
1619 else
1620 goto <bb exit>;
1621
1622 <bb latch>:
1623 ivtmp_b = ivtmp_a + 1;
1624 - goto <bb header>
1625 + goto <bb newheader>
1626
1627 + <bb newexit>:
1628 + sum_y = PHI <sum_c (newheader)>
1629
1630 <bb exit>:
1631 - sum_z = PHI <sum_b (cond[1]), ...>
1632 + sum_z = PHI <sum_y (newexit), ...>
1633
1634 Note: the example does not show any virtual phis, but these are handled more
1635 or less as reductions.
1636
1637
1638 Moves the exit condition of LOOP to the beginning of its header.
1639 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop
1640 bound. */
1641
1642 static void
1643 transform_to_exit_first_loop_alt (struct loop *loop,
1644 reduction_info_table_type *reduction_list,
1645 tree bound)
1646 {
1647 basic_block header = loop->header;
1648 basic_block latch = loop->latch;
1649 edge exit = single_dom_exit (loop);
1650 basic_block exit_block = exit->dest;
1651 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1652 tree control = gimple_cond_lhs (cond_stmt);
1653 edge e;
1654
1655 /* Rewriting virtuals into loop-closed ssa normal form makes this
1656 transformation simpler. It also ensures that the virtuals are in
1657 loop-closed ssa normal from after the transformation, which is required by
1658 create_parallel_loop. */
1659 rewrite_virtuals_into_loop_closed_ssa (loop);
1660
1661 /* Create the new_header block. */
1662 basic_block new_header = split_block_before_cond_jump (exit->src);
1663 edge edge_at_split = single_pred_edge (new_header);
1664
1665 /* Redirect entry edge to new_header. */
1666 edge entry = loop_preheader_edge (loop);
1667 e = redirect_edge_and_branch (entry, new_header);
1668 gcc_assert (e == entry);
1669
1670 /* Redirect post_inc_edge to new_header. */
1671 edge post_inc_edge = single_succ_edge (latch);
1672 e = redirect_edge_and_branch (post_inc_edge, new_header);
1673 gcc_assert (e == post_inc_edge);
1674
1675 /* Redirect post_cond_edge to header. */
1676 edge post_cond_edge = single_pred_edge (latch);
1677 e = redirect_edge_and_branch (post_cond_edge, header);
1678 gcc_assert (e == post_cond_edge);
1679
1680 /* Redirect edge_at_split to latch. */
1681 e = redirect_edge_and_branch (edge_at_split, latch);
1682 gcc_assert (e == edge_at_split);
1683
1684 /* Set the new loop bound. */
1685 gimple_cond_set_rhs (cond_stmt, bound);
1686 update_stmt (cond_stmt);
1687
1688 /* Repair the ssa. */
1689 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge);
1690 edge_var_map *vm;
1691 gphi_iterator gsi;
1692 int i;
1693 for (gsi = gsi_start_phis (header), i = 0;
1694 !gsi_end_p (gsi) && v->iterate (i, &vm);
1695 gsi_next (&gsi), i++)
1696 {
1697 gphi *phi = gsi.phi ();
1698 tree res_a = PHI_RESULT (phi);
1699
1700 /* Create new phi. */
1701 tree res_c = copy_ssa_name (res_a, phi);
1702 gphi *nphi = create_phi_node (res_c, new_header);
1703
1704 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */
1705 replace_uses_in_bb_by (res_a, res_c, new_header);
1706
1707 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */
1708 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION);
1709
1710 /* Replace sum_b with sum_c in exit phi. */
1711 tree res_b = redirect_edge_var_map_def (vm);
1712 replace_uses_in_bb_by (res_b, res_c, exit_block);
1713
1714 struct reduction_info *red = reduction_phi (reduction_list, phi);
1715 gcc_assert (virtual_operand_p (res_a)
1716 || res_a == control
1717 || red != NULL);
1718
1719 if (red)
1720 {
1721 /* Register the new reduction phi. */
1722 red->reduc_phi = nphi;
1723 gimple_set_uid (red->reduc_phi, red->reduc_version);
1724 }
1725 }
1726 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm));
1727
1728 /* Set the preheader argument of the new phis to ivtmp/sum_init. */
1729 flush_pending_stmts (entry);
1730
1731 /* Set the latch arguments of the new phis to ivtmp/sum_b. */
1732 flush_pending_stmts (post_inc_edge);
1733
1734
1735 basic_block new_exit_block = NULL;
1736 if (!single_pred_p (exit->dest))
1737 {
1738 /* Create a new empty exit block, inbetween the new loop header and the
1739 old exit block. The function separate_decls_in_region needs this block
1740 to insert code that is active on loop exit, but not any other path. */
1741 new_exit_block = split_edge (exit);
1742 }
1743
1744 /* Insert and register the reduction exit phis. */
1745 for (gphi_iterator gsi = gsi_start_phis (exit_block);
1746 !gsi_end_p (gsi);
1747 gsi_next (&gsi))
1748 {
1749 gphi *phi = gsi.phi ();
1750 gphi *nphi = NULL;
1751 tree res_z = PHI_RESULT (phi);
1752 tree res_c;
1753
1754 if (new_exit_block != NULL)
1755 {
1756 /* Now that we have a new exit block, duplicate the phi of the old
1757 exit block in the new exit block to preserve loop-closed ssa. */
1758 edge succ_new_exit_block = single_succ_edge (new_exit_block);
1759 edge pred_new_exit_block = single_pred_edge (new_exit_block);
1760 tree res_y = copy_ssa_name (res_z, phi);
1761 nphi = create_phi_node (res_y, new_exit_block);
1762 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block);
1763 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION);
1764 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION);
1765 }
1766 else
1767 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1768
1769 if (virtual_operand_p (res_z))
1770 continue;
1771
1772 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c);
1773 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi);
1774 if (red != NULL)
1775 red->keep_res = (nphi != NULL
1776 ? nphi
1777 : phi);
1778 }
1779
1780 /* We're going to cancel the loop at the end of gen_parallel_loop, but until
1781 then we're still using some fields, so only bother about fields that are
1782 still used: header and latch.
1783 The loop has a new header bb, so we update it. The latch bb stays the
1784 same. */
1785 loop->header = new_header;
1786
1787 /* Recalculate dominance info. */
1788 free_dominance_info (CDI_DOMINATORS);
1789 calculate_dominance_info (CDI_DOMINATORS);
1790
1791 checking_verify_ssa (true, true);
1792 }
1793
1794 /* Tries to moves the exit condition of LOOP to the beginning of its header
1795 without duplication of the loop body. NIT is the number of iterations of the
1796 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if
1797 transformation is successful. */
1798
1799 static bool
1800 try_transform_to_exit_first_loop_alt (struct loop *loop,
1801 reduction_info_table_type *reduction_list,
1802 tree nit)
1803 {
1804 /* Check whether the latch contains a single statement. */
1805 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch)))
1806 return false;
1807
1808 /* Check whether the latch contains no phis. */
1809 if (phi_nodes (loop->latch) != NULL)
1810 return false;
1811
1812 /* Check whether the latch contains the loop iv increment. */
1813 edge back = single_succ_edge (loop->latch);
1814 edge exit = single_dom_exit (loop);
1815 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1816 tree control = gimple_cond_lhs (cond_stmt);
1817 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control));
1818 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx);
1819 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch)
1820 return false;
1821
1822 /* Check whether there's no code between the loop condition and the latch. */
1823 if (!single_pred_p (loop->latch)
1824 || single_pred (loop->latch) != exit->src)
1825 return false;
1826
1827 tree alt_bound = NULL_TREE;
1828 tree nit_type = TREE_TYPE (nit);
1829
1830 /* Figure out whether nit + 1 overflows. */
1831 if (TREE_CODE (nit) == INTEGER_CST)
1832 {
1833 if (!tree_int_cst_equal (nit, TYPE_MAX_VALUE (nit_type)))
1834 {
1835 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type,
1836 nit, build_one_cst (nit_type));
1837
1838 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST);
1839 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1840 return true;
1841 }
1842 else
1843 {
1844 /* Todo: Figure out if we can trigger this, if it's worth to handle
1845 optimally, and if we can handle it optimally. */
1846 return false;
1847 }
1848 }
1849
1850 gcc_assert (TREE_CODE (nit) == SSA_NAME);
1851
1852 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an
1853 iv with base 0 and step 1 that is incremented in the latch, like this:
1854
1855 <bb header>:
1856 # iv_1 = PHI <0 (preheader), iv_2 (latch)>
1857 ...
1858 if (iv_1 < nit)
1859 goto <bb latch>;
1860 else
1861 goto <bb exit>;
1862
1863 <bb latch>:
1864 iv_2 = iv_1 + 1;
1865 goto <bb header>;
1866
1867 The range of iv_1 is [0, nit]. The latch edge is taken for
1868 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the
1869 number of latch executions is equal to nit.
1870
1871 The function max_loop_iterations gives us the maximum number of latch
1872 executions, so it gives us the maximum value of nit. */
1873 widest_int nit_max;
1874 if (!max_loop_iterations (loop, &nit_max))
1875 return false;
1876
1877 /* Check if nit + 1 overflows. */
1878 widest_int type_max = wi::to_widest (TYPE_MAX_VALUE (nit_type));
1879 if (nit_max >= type_max)
1880 return false;
1881
1882 gimple *def = SSA_NAME_DEF_STMT (nit);
1883
1884 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */
1885 if (def
1886 && is_gimple_assign (def)
1887 && gimple_assign_rhs_code (def) == PLUS_EXPR)
1888 {
1889 tree op1 = gimple_assign_rhs1 (def);
1890 tree op2 = gimple_assign_rhs2 (def);
1891 if (integer_minus_onep (op1))
1892 alt_bound = op2;
1893 else if (integer_minus_onep (op2))
1894 alt_bound = op1;
1895 }
1896
1897 /* If not found, insert nit + 1. */
1898 if (alt_bound == NULL_TREE)
1899 {
1900 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit,
1901 build_int_cst_type (nit_type, 1));
1902
1903 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1904
1905 alt_bound
1906 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false,
1907 GSI_CONTINUE_LINKING);
1908 }
1909
1910 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound);
1911 return true;
1912 }
1913
1914 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the
1915 number of iterations of the loop. REDUCTION_LIST describes the reductions in
1916 LOOP. */
1917
1918 static void
1919 transform_to_exit_first_loop (struct loop *loop,
1920 reduction_info_table_type *reduction_list,
1921 tree nit)
1922 {
1923 basic_block *bbs, *nbbs, ex_bb, orig_header;
1924 unsigned n;
1925 bool ok;
1926 edge exit = single_dom_exit (loop), hpred;
1927 tree control, control_name, res, t;
1928 gphi *phi, *nphi;
1929 gassign *stmt;
1930 gcond *cond_stmt, *cond_nit;
1931 tree nit_1;
1932
1933 split_block_after_labels (loop->header);
1934 orig_header = single_succ (loop->header);
1935 hpred = single_succ_edge (loop->header);
1936
1937 cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1938 control = gimple_cond_lhs (cond_stmt);
1939 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1940
1941 /* Make sure that we have phi nodes on exit for all loop header phis
1942 (create_parallel_loop requires that). */
1943 for (gphi_iterator gsi = gsi_start_phis (loop->header);
1944 !gsi_end_p (gsi);
1945 gsi_next (&gsi))
1946 {
1947 phi = gsi.phi ();
1948 res = PHI_RESULT (phi);
1949 t = copy_ssa_name (res, phi);
1950 SET_PHI_RESULT (phi, t);
1951 nphi = create_phi_node (res, orig_header);
1952 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1953
1954 if (res == control)
1955 {
1956 gimple_cond_set_lhs (cond_stmt, t);
1957 update_stmt (cond_stmt);
1958 control = t;
1959 }
1960 }
1961
1962 bbs = get_loop_body_in_dom_order (loop);
1963
1964 for (n = 0; bbs[n] != exit->src; n++)
1965 continue;
1966 nbbs = XNEWVEC (basic_block, n);
1967 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1968 bbs + 1, n, nbbs);
1969 gcc_assert (ok);
1970 free (bbs);
1971 ex_bb = nbbs[0];
1972 free (nbbs);
1973
1974 /* Other than reductions, the only gimple reg that should be copied
1975 out of the loop is the control variable. */
1976 exit = single_dom_exit (loop);
1977 control_name = NULL_TREE;
1978 for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1979 !gsi_end_p (gsi); )
1980 {
1981 phi = gsi.phi ();
1982 res = PHI_RESULT (phi);
1983 if (virtual_operand_p (res))
1984 {
1985 gsi_next (&gsi);
1986 continue;
1987 }
1988
1989 /* Check if it is a part of reduction. If it is,
1990 keep the phi at the reduction's keep_res field. The
1991 PHI_RESULT of this phi is the resulting value of the reduction
1992 variable when exiting the loop. */
1993
1994 if (!reduction_list->is_empty ())
1995 {
1996 struct reduction_info *red;
1997
1998 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1999 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
2000 if (red)
2001 {
2002 red->keep_res = phi;
2003 gsi_next (&gsi);
2004 continue;
2005 }
2006 }
2007 gcc_assert (control_name == NULL_TREE
2008 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
2009 control_name = res;
2010 remove_phi_node (&gsi, false);
2011 }
2012 gcc_assert (control_name != NULL_TREE);
2013
2014 /* Initialize the control variable to number of iterations
2015 according to the rhs of the exit condition. */
2016 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
2017 cond_nit = as_a <gcond *> (last_stmt (exit->src));
2018 nit_1 = gimple_cond_rhs (cond_nit);
2019 nit_1 = force_gimple_operand_gsi (&gsi,
2020 fold_convert (TREE_TYPE (control_name), nit_1),
2021 false, NULL_TREE, false, GSI_SAME_STMT);
2022 stmt = gimple_build_assign (control_name, nit_1);
2023 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2024 }
2025
2026 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
2027 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
2028 NEW_DATA is the variable that should be initialized from the argument
2029 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if
2030 that number is to be determined later. */
2031
2032 static void
2033 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
2034 tree new_data, unsigned n_threads, location_t loc,
2035 bool oacc_kernels_p)
2036 {
2037 gimple_stmt_iterator gsi;
2038 basic_block for_bb, ex_bb, continue_bb;
2039 tree t, param;
2040 gomp_parallel *omp_par_stmt;
2041 gimple *omp_return_stmt1, *omp_return_stmt2;
2042 gimple *phi;
2043 gcond *cond_stmt;
2044 gomp_for *for_stmt;
2045 gomp_continue *omp_cont_stmt;
2046 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
2047 edge exit, nexit, guard, end, e;
2048
2049 if (oacc_kernels_p)
2050 {
2051 gcc_checking_assert (lookup_attribute ("oacc kernels",
2052 DECL_ATTRIBUTES (cfun->decl)));
2053 /* Indicate to later processing that this is a parallelized OpenACC
2054 kernels construct. */
2055 DECL_ATTRIBUTES (cfun->decl)
2056 = tree_cons (get_identifier ("oacc kernels parallelized"),
2057 NULL_TREE, DECL_ATTRIBUTES (cfun->decl));
2058 }
2059 else
2060 {
2061 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
2062
2063 basic_block bb = loop_preheader_edge (loop)->src;
2064 basic_block paral_bb = single_pred (bb);
2065 gsi = gsi_last_bb (paral_bb);
2066
2067 gcc_checking_assert (n_threads != 0);
2068 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
2069 OMP_CLAUSE_NUM_THREADS_EXPR (t)
2070 = build_int_cst (integer_type_node, n_threads);
2071 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
2072 gimple_set_location (omp_par_stmt, loc);
2073
2074 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
2075
2076 /* Initialize NEW_DATA. */
2077 if (data)
2078 {
2079 gassign *assign_stmt;
2080
2081 gsi = gsi_after_labels (bb);
2082
2083 param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
2084 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
2085 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2086
2087 assign_stmt = gimple_build_assign (new_data,
2088 fold_convert (TREE_TYPE (new_data), param));
2089 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
2090 }
2091
2092 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
2093 bb = split_loop_exit_edge (single_dom_exit (loop));
2094 gsi = gsi_last_bb (bb);
2095 omp_return_stmt1 = gimple_build_omp_return (false);
2096 gimple_set_location (omp_return_stmt1, loc);
2097 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
2098 }
2099
2100 /* Extract data for GIMPLE_OMP_FOR. */
2101 gcc_assert (loop->header == single_dom_exit (loop)->src);
2102 cond_stmt = as_a <gcond *> (last_stmt (loop->header));
2103
2104 cvar = gimple_cond_lhs (cond_stmt);
2105 cvar_base = SSA_NAME_VAR (cvar);
2106 phi = SSA_NAME_DEF_STMT (cvar);
2107 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2108 initvar = copy_ssa_name (cvar);
2109 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
2110 initvar);
2111 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2112
2113 gsi = gsi_last_nondebug_bb (loop->latch);
2114 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
2115 gsi_remove (&gsi, true);
2116
2117 /* Prepare cfg. */
2118 for_bb = split_edge (loop_preheader_edge (loop));
2119 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
2120 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
2121 gcc_assert (exit == single_dom_exit (loop));
2122
2123 guard = make_edge (for_bb, ex_bb, 0);
2124 /* FIXME: What is the probability? */
2125 guard->probability = profile_probability::guessed_never ();
2126 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */
2127 loop->latch = split_edge (single_succ_edge (loop->latch));
2128 single_pred_edge (loop->latch)->flags = 0;
2129 end = make_single_succ_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU);
2130 rescan_loop_exit (end, true, false);
2131
2132 for (gphi_iterator gpi = gsi_start_phis (ex_bb);
2133 !gsi_end_p (gpi); gsi_next (&gpi))
2134 {
2135 location_t locus;
2136 gphi *phi = gpi.phi ();
2137 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2138 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
2139
2140 /* If the exit phi is not connected to a header phi in the same loop, this
2141 value is not modified in the loop, and we're done with this phi. */
2142 if (!(gimple_code (def_stmt) == GIMPLE_PHI
2143 && gimple_bb (def_stmt) == loop->header))
2144 {
2145 locus = gimple_phi_arg_location_from_edge (phi, exit);
2146 add_phi_arg (phi, def, guard, locus);
2147 add_phi_arg (phi, def, end, locus);
2148 continue;
2149 }
2150
2151 gphi *stmt = as_a <gphi *> (def_stmt);
2152 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2153 locus = gimple_phi_arg_location_from_edge (stmt,
2154 loop_preheader_edge (loop));
2155 add_phi_arg (phi, def, guard, locus);
2156
2157 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
2158 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
2159 add_phi_arg (phi, def, end, locus);
2160 }
2161 e = redirect_edge_and_branch (exit, nexit->dest);
2162 PENDING_STMT (e) = NULL;
2163
2164 /* Emit GIMPLE_OMP_FOR. */
2165 if (oacc_kernels_p)
2166 /* Parallelized OpenACC kernels constructs use gang parallelism. See also
2167 omp-offload.c:execute_oacc_device_lower. */
2168 t = build_omp_clause (loc, OMP_CLAUSE_GANG);
2169 else
2170 {
2171 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
2172 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE);
2173 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \
2174 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE);
2175 switch (schedule_type)
2176 {
2177 case PARAM_PARLOOPS_SCHEDULE_KIND_static:
2178 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
2179 break;
2180 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic:
2181 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
2182 break;
2183 case PARAM_PARLOOPS_SCHEDULE_KIND_guided:
2184 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED;
2185 break;
2186 case PARAM_PARLOOPS_SCHEDULE_KIND_auto:
2187 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO;
2188 chunk_size = 0;
2189 break;
2190 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime:
2191 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME;
2192 chunk_size = 0;
2193 break;
2194 default:
2195 gcc_unreachable ();
2196 }
2197 if (chunk_size != 0)
2198 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t)
2199 = build_int_cst (integer_type_node, chunk_size);
2200 }
2201
2202 for_stmt = gimple_build_omp_for (NULL,
2203 (oacc_kernels_p
2204 ? GF_OMP_FOR_KIND_OACC_LOOP
2205 : GF_OMP_FOR_KIND_FOR),
2206 t, 1, NULL);
2207
2208 gimple_cond_set_lhs (cond_stmt, cvar_base);
2209 type = TREE_TYPE (cvar);
2210 gimple_set_location (for_stmt, loc);
2211 gimple_omp_for_set_index (for_stmt, 0, initvar);
2212 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
2213 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
2214 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
2215 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
2216 cvar_base,
2217 build_int_cst (type, 1)));
2218
2219 gsi = gsi_last_bb (for_bb);
2220 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
2221 SSA_NAME_DEF_STMT (initvar) = for_stmt;
2222
2223 /* Emit GIMPLE_OMP_CONTINUE. */
2224 continue_bb = single_pred (loop->latch);
2225 gsi = gsi_last_bb (continue_bb);
2226 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
2227 gimple_set_location (omp_cont_stmt, loc);
2228 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
2229 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
2230
2231 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
2232 gsi = gsi_last_bb (ex_bb);
2233 omp_return_stmt2 = gimple_build_omp_return (true);
2234 gimple_set_location (omp_return_stmt2, loc);
2235 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
2236
2237 /* After the above dom info is hosed. Re-compute it. */
2238 free_dominance_info (CDI_DOMINATORS);
2239 calculate_dominance_info (CDI_DOMINATORS);
2240 }
2241
2242 /* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the
2243 virtual phi. */
2244
2245 static unsigned int
2246 num_phis (basic_block bb, bool count_virtual_p)
2247 {
2248 unsigned int nr_phis = 0;
2249 gphi_iterator gsi;
2250 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2251 {
2252 if (!count_virtual_p && virtual_operand_p (PHI_RESULT (gsi.phi ())))
2253 continue;
2254
2255 nr_phis++;
2256 }
2257
2258 return nr_phis;
2259 }
2260
2261 /* Generates code to execute the iterations of LOOP in N_THREADS
2262 threads in parallel, which can be 0 if that number is to be determined
2263 later.
2264
2265 NITER describes number of iterations of LOOP.
2266 REDUCTION_LIST describes the reductions existent in the LOOP. */
2267
2268 static void
2269 gen_parallel_loop (struct loop *loop,
2270 reduction_info_table_type *reduction_list,
2271 unsigned n_threads, struct tree_niter_desc *niter,
2272 bool oacc_kernels_p)
2273 {
2274 tree many_iterations_cond, type, nit;
2275 tree arg_struct, new_arg_struct;
2276 gimple_seq stmts;
2277 edge entry, exit;
2278 struct clsn_data clsn_data;
2279 location_t loc;
2280 gimple *cond_stmt;
2281 unsigned int m_p_thread=2;
2282
2283 /* From
2284
2285 ---------------------------------------------------------------------
2286 loop
2287 {
2288 IV = phi (INIT, IV + STEP)
2289 BODY1;
2290 if (COND)
2291 break;
2292 BODY2;
2293 }
2294 ---------------------------------------------------------------------
2295
2296 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
2297 we generate the following code:
2298
2299 ---------------------------------------------------------------------
2300
2301 if (MAY_BE_ZERO
2302 || NITER < MIN_PER_THREAD * N_THREADS)
2303 goto original;
2304
2305 BODY1;
2306 store all local loop-invariant variables used in body of the loop to DATA.
2307 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
2308 load the variables from DATA.
2309 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
2310 BODY2;
2311 BODY1;
2312 GIMPLE_OMP_CONTINUE;
2313 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
2314 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
2315 goto end;
2316
2317 original:
2318 loop
2319 {
2320 IV = phi (INIT, IV + STEP)
2321 BODY1;
2322 if (COND)
2323 break;
2324 BODY2;
2325 }
2326
2327 end:
2328
2329 */
2330
2331 /* Create two versions of the loop -- in the old one, we know that the
2332 number of iterations is large enough, and we will transform it into the
2333 loop that will be split to loop_fn, the new one will be used for the
2334 remaining iterations. */
2335
2336 /* We should compute a better number-of-iterations value for outer loops.
2337 That is, if we have
2338
2339 for (i = 0; i < n; ++i)
2340 for (j = 0; j < m; ++j)
2341 ...
2342
2343 we should compute nit = n * m, not nit = n.
2344 Also may_be_zero handling would need to be adjusted. */
2345
2346 type = TREE_TYPE (niter->niter);
2347 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
2348 NULL_TREE);
2349 if (stmts)
2350 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2351
2352 if (!oacc_kernels_p)
2353 {
2354 if (loop->inner)
2355 m_p_thread=2;
2356 else
2357 m_p_thread=MIN_PER_THREAD;
2358
2359 gcc_checking_assert (n_threads != 0);
2360 many_iterations_cond =
2361 fold_build2 (GE_EXPR, boolean_type_node,
2362 nit, build_int_cst (type, m_p_thread * n_threads - 1));
2363
2364 many_iterations_cond
2365 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2366 invert_truthvalue (unshare_expr (niter->may_be_zero)),
2367 many_iterations_cond);
2368 many_iterations_cond
2369 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
2370 if (stmts)
2371 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2372 if (!is_gimple_condexpr (many_iterations_cond))
2373 {
2374 many_iterations_cond
2375 = force_gimple_operand (many_iterations_cond, &stmts,
2376 true, NULL_TREE);
2377 if (stmts)
2378 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
2379 stmts);
2380 }
2381
2382 initialize_original_copy_tables ();
2383
2384 /* We assume that the loop usually iterates a lot. */
2385 loop_version (loop, many_iterations_cond, NULL,
2386 profile_probability::likely (),
2387 profile_probability::unlikely (),
2388 profile_probability::likely (),
2389 profile_probability::unlikely (), true);
2390 update_ssa (TODO_update_ssa);
2391 free_original_copy_tables ();
2392 }
2393
2394 /* Base all the induction variables in LOOP on a single control one. */
2395 canonicalize_loop_ivs (loop, &nit, true);
2396 if (num_phis (loop->header, false) != reduction_list->elements () + 1)
2397 {
2398 /* The call to canonicalize_loop_ivs above failed to "base all the
2399 induction variables in LOOP on a single control one". Do damage
2400 control. */
2401 basic_block preheader = loop_preheader_edge (loop)->src;
2402 basic_block cond_bb = single_pred (preheader);
2403 gcond *cond = as_a <gcond *> (gsi_stmt (gsi_last_bb (cond_bb)));
2404 gimple_cond_make_true (cond);
2405 update_stmt (cond);
2406 /* We've gotten rid of the duplicate loop created by loop_version, but
2407 we can't undo whatever canonicalize_loop_ivs has done.
2408 TODO: Fix this properly by ensuring that the call to
2409 canonicalize_loop_ivs succeeds. */
2410 if (dump_file
2411 && (dump_flags & TDF_DETAILS))
2412 fprintf (dump_file, "canonicalize_loop_ivs failed for loop %d,"
2413 " aborting transformation\n", loop->num);
2414 return;
2415 }
2416
2417 /* Ensure that the exit condition is the first statement in the loop.
2418 The common case is that latch of the loop is empty (apart from the
2419 increment) and immediately follows the loop exit test. Attempt to move the
2420 entry of the loop directly before the exit check and increase the number of
2421 iterations of the loop by one. */
2422 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit))
2423 {
2424 if (dump_file
2425 && (dump_flags & TDF_DETAILS))
2426 fprintf (dump_file,
2427 "alternative exit-first loop transform succeeded"
2428 " for loop %d\n", loop->num);
2429 }
2430 else
2431 {
2432 if (oacc_kernels_p)
2433 n_threads = 1;
2434
2435 /* Fall back on the method that handles more cases, but duplicates the
2436 loop body: move the exit condition of LOOP to the beginning of its
2437 header, and duplicate the part of the last iteration that gets disabled
2438 to the exit of the loop. */
2439 transform_to_exit_first_loop (loop, reduction_list, nit);
2440 }
2441
2442 /* Generate initializations for reductions. */
2443 if (!reduction_list->is_empty ())
2444 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
2445
2446 /* Eliminate the references to local variables from the loop. */
2447 gcc_assert (single_exit (loop));
2448 entry = loop_preheader_edge (loop);
2449 exit = single_dom_exit (loop);
2450
2451 /* This rewrites the body in terms of new variables. This has already
2452 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */
2453 if (!oacc_kernels_p)
2454 {
2455 eliminate_local_variables (entry, exit);
2456 /* In the old loop, move all variables non-local to the loop to a
2457 structure and back, and create separate decls for the variables used in
2458 loop. */
2459 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
2460 &new_arg_struct, &clsn_data);
2461 }
2462 else
2463 {
2464 arg_struct = NULL_TREE;
2465 new_arg_struct = NULL_TREE;
2466 clsn_data.load = NULL_TREE;
2467 clsn_data.load_bb = exit->dest;
2468 clsn_data.store = NULL_TREE;
2469 clsn_data.store_bb = NULL;
2470 }
2471
2472 /* Create the parallel constructs. */
2473 loc = UNKNOWN_LOCATION;
2474 cond_stmt = last_stmt (loop->header);
2475 if (cond_stmt)
2476 loc = gimple_location (cond_stmt);
2477 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct,
2478 n_threads, loc, oacc_kernels_p);
2479 if (!reduction_list->is_empty ())
2480 create_call_for_reduction (loop, reduction_list, &clsn_data);
2481
2482 scev_reset ();
2483
2484 /* Free loop bound estimations that could contain references to
2485 removed statements. */
2486 free_numbers_of_iterations_estimates (cfun);
2487 }
2488
2489 /* Returns true when LOOP contains vector phi nodes. */
2490
2491 static bool
2492 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
2493 {
2494 unsigned i;
2495 basic_block *bbs = get_loop_body_in_dom_order (loop);
2496 gphi_iterator gsi;
2497 bool res = true;
2498
2499 for (i = 0; i < loop->num_nodes; i++)
2500 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2501 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
2502 goto end;
2503
2504 res = false;
2505 end:
2506 free (bbs);
2507 return res;
2508 }
2509
2510 /* Create a reduction_info struct, initialize it with REDUC_STMT
2511 and PHI, insert it to the REDUCTION_LIST. */
2512
2513 static void
2514 build_new_reduction (reduction_info_table_type *reduction_list,
2515 gimple *reduc_stmt, gphi *phi)
2516 {
2517 reduction_info **slot;
2518 struct reduction_info *new_reduction;
2519 enum tree_code reduction_code;
2520
2521 gcc_assert (reduc_stmt);
2522
2523 if (gimple_code (reduc_stmt) == GIMPLE_PHI)
2524 {
2525 tree op1 = PHI_ARG_DEF (reduc_stmt, 0);
2526 gimple *def1 = SSA_NAME_DEF_STMT (op1);
2527 reduction_code = gimple_assign_rhs_code (def1);
2528 }
2529 else
2530 reduction_code = gimple_assign_rhs_code (reduc_stmt);
2531 /* Check for OpenMP supported reduction. */
2532 switch (reduction_code)
2533 {
2534 case PLUS_EXPR:
2535 case MULT_EXPR:
2536 case MAX_EXPR:
2537 case MIN_EXPR:
2538 case BIT_IOR_EXPR:
2539 case BIT_XOR_EXPR:
2540 case BIT_AND_EXPR:
2541 case TRUTH_OR_EXPR:
2542 case TRUTH_XOR_EXPR:
2543 case TRUTH_AND_EXPR:
2544 break;
2545 default:
2546 return;
2547 }
2548
2549 if (dump_file && (dump_flags & TDF_DETAILS))
2550 {
2551 fprintf (dump_file,
2552 "Detected reduction. reduction stmt is:\n");
2553 print_gimple_stmt (dump_file, reduc_stmt, 0);
2554 fprintf (dump_file, "\n");
2555 }
2556
2557 new_reduction = XCNEW (struct reduction_info);
2558
2559 new_reduction->reduc_stmt = reduc_stmt;
2560 new_reduction->reduc_phi = phi;
2561 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
2562 new_reduction->reduction_code = reduction_code;
2563 slot = reduction_list->find_slot (new_reduction, INSERT);
2564 *slot = new_reduction;
2565 }
2566
2567 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
2568
2569 int
2570 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
2571 {
2572 struct reduction_info *const red = *slot;
2573 gimple_set_uid (red->reduc_phi, red->reduc_version);
2574 return 1;
2575 }
2576
2577 /* Return true if the type of reduction performed by STMT_INFO is suitable
2578 for this pass. */
2579
2580 static bool
2581 valid_reduction_p (stmt_vec_info stmt_info)
2582 {
2583 /* Parallelization would reassociate the operation, which isn't
2584 allowed for in-order reductions. */
2585 vect_reduction_type reduc_type = STMT_VINFO_REDUC_TYPE (stmt_info);
2586 return reduc_type != FOLD_LEFT_REDUCTION;
2587 }
2588
2589 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
2590
2591 static void
2592 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
2593 {
2594 gphi_iterator gsi;
2595 loop_vec_info simple_loop_info;
2596 auto_vec<gphi *, 4> double_reduc_phis;
2597 auto_vec<gimple *, 4> double_reduc_stmts;
2598
2599 vec_info_shared shared;
2600 simple_loop_info = vect_analyze_loop_form (loop, &shared);
2601 if (simple_loop_info == NULL)
2602 goto gather_done;
2603
2604 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2605 {
2606 gphi *phi = gsi.phi ();
2607 affine_iv iv;
2608 tree res = PHI_RESULT (phi);
2609 bool double_reduc;
2610
2611 if (virtual_operand_p (res))
2612 continue;
2613
2614 if (simple_iv (loop, loop, res, &iv, true))
2615 continue;
2616
2617 stmt_vec_info reduc_stmt_info
2618 = vect_force_simple_reduction (simple_loop_info,
2619 simple_loop_info->lookup_stmt (phi),
2620 &double_reduc, true);
2621 if (!reduc_stmt_info || !valid_reduction_p (reduc_stmt_info))
2622 continue;
2623
2624 if (double_reduc)
2625 {
2626 if (loop->inner->inner != NULL)
2627 continue;
2628
2629 double_reduc_phis.safe_push (phi);
2630 double_reduc_stmts.safe_push (reduc_stmt_info->stmt);
2631 continue;
2632 }
2633
2634 build_new_reduction (reduction_list, reduc_stmt_info->stmt, phi);
2635 }
2636 delete simple_loop_info;
2637
2638 if (!double_reduc_phis.is_empty ())
2639 {
2640 vec_info_shared shared;
2641 simple_loop_info = vect_analyze_loop_form (loop->inner, &shared);
2642 if (simple_loop_info)
2643 {
2644 gphi *phi;
2645 unsigned int i;
2646
2647 FOR_EACH_VEC_ELT (double_reduc_phis, i, phi)
2648 {
2649 affine_iv iv;
2650 tree res = PHI_RESULT (phi);
2651 bool double_reduc;
2652
2653 use_operand_p use_p;
2654 gimple *inner_stmt;
2655 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt);
2656 gcc_assert (single_use_p);
2657 if (gimple_code (inner_stmt) != GIMPLE_PHI)
2658 continue;
2659 gphi *inner_phi = as_a <gphi *> (inner_stmt);
2660 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi),
2661 &iv, true))
2662 continue;
2663
2664 stmt_vec_info inner_phi_info
2665 = simple_loop_info->lookup_stmt (inner_phi);
2666 stmt_vec_info inner_reduc_stmt_info
2667 = vect_force_simple_reduction (simple_loop_info,
2668 inner_phi_info,
2669 &double_reduc, true);
2670 gcc_assert (!double_reduc);
2671 if (!inner_reduc_stmt_info
2672 || !valid_reduction_p (inner_reduc_stmt_info))
2673 continue;
2674
2675 build_new_reduction (reduction_list, double_reduc_stmts[i], phi);
2676 }
2677 delete simple_loop_info;
2678 }
2679 }
2680
2681 gather_done:
2682 if (reduction_list->is_empty ())
2683 return;
2684
2685 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2686 and delete simple_loop_info, we can set gimple_uid of reduc_phi stmts only
2687 now. */
2688 basic_block bb;
2689 FOR_EACH_BB_FN (bb, cfun)
2690 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2691 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1);
2692 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2693 }
2694
2695 /* Try to initialize NITER for code generation part. */
2696
2697 static bool
2698 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2699 {
2700 edge exit = single_dom_exit (loop);
2701
2702 gcc_assert (exit);
2703
2704 /* We need to know # of iterations, and there should be no uses of values
2705 defined inside loop outside of it, unless the values are invariants of
2706 the loop. */
2707 if (!number_of_iterations_exit (loop, exit, niter, false))
2708 {
2709 if (dump_file && (dump_flags & TDF_DETAILS))
2710 fprintf (dump_file, " FAILED: number of iterations not known\n");
2711 return false;
2712 }
2713
2714 return true;
2715 }
2716
2717 /* Return the default def of the first function argument. */
2718
2719 static tree
2720 get_omp_data_i_param (void)
2721 {
2722 tree decl = DECL_ARGUMENTS (cfun->decl);
2723 gcc_assert (DECL_CHAIN (decl) == NULL_TREE);
2724 return ssa_default_def (cfun, decl);
2725 }
2726
2727 /* For PHI in loop header of LOOP, look for pattern:
2728
2729 <bb preheader>
2730 .omp_data_i = &.omp_data_arr;
2731 addr = .omp_data_i->sum;
2732 sum_a = *addr;
2733
2734 <bb header>:
2735 sum_b = PHI <sum_a (preheader), sum_c (latch)>
2736
2737 and return addr. Otherwise, return NULL_TREE. */
2738
2739 static tree
2740 find_reduc_addr (struct loop *loop, gphi *phi)
2741 {
2742 edge e = loop_preheader_edge (loop);
2743 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
2744 gimple *stmt = SSA_NAME_DEF_STMT (arg);
2745 if (!gimple_assign_single_p (stmt))
2746 return NULL_TREE;
2747 tree memref = gimple_assign_rhs1 (stmt);
2748 if (TREE_CODE (memref) != MEM_REF)
2749 return NULL_TREE;
2750 tree addr = TREE_OPERAND (memref, 0);
2751
2752 gimple *stmt2 = SSA_NAME_DEF_STMT (addr);
2753 if (!gimple_assign_single_p (stmt2))
2754 return NULL_TREE;
2755 tree compref = gimple_assign_rhs1 (stmt2);
2756 if (TREE_CODE (compref) != COMPONENT_REF)
2757 return NULL_TREE;
2758 tree addr2 = TREE_OPERAND (compref, 0);
2759 if (TREE_CODE (addr2) != MEM_REF)
2760 return NULL_TREE;
2761 addr2 = TREE_OPERAND (addr2, 0);
2762 if (TREE_CODE (addr2) != SSA_NAME
2763 || addr2 != get_omp_data_i_param ())
2764 return NULL_TREE;
2765
2766 return addr;
2767 }
2768
2769 /* Try to initialize REDUCTION_LIST for code generation part.
2770 REDUCTION_LIST describes the reductions. */
2771
2772 static bool
2773 try_create_reduction_list (loop_p loop,
2774 reduction_info_table_type *reduction_list,
2775 bool oacc_kernels_p)
2776 {
2777 edge exit = single_dom_exit (loop);
2778 gphi_iterator gsi;
2779
2780 gcc_assert (exit);
2781
2782 /* Try to get rid of exit phis. */
2783 final_value_replacement_loop (loop);
2784
2785 gather_scalar_reductions (loop, reduction_list);
2786
2787
2788 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2789 {
2790 gphi *phi = gsi.phi ();
2791 struct reduction_info *red;
2792 imm_use_iterator imm_iter;
2793 use_operand_p use_p;
2794 gimple *reduc_phi;
2795 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2796
2797 if (!virtual_operand_p (val))
2798 {
2799 if (TREE_CODE (val) != SSA_NAME)
2800 {
2801 if (dump_file && (dump_flags & TDF_DETAILS))
2802 fprintf (dump_file,
2803 " FAILED: exit PHI argument invariant.\n");
2804 return false;
2805 }
2806
2807 if (dump_file && (dump_flags & TDF_DETAILS))
2808 {
2809 fprintf (dump_file, "phi is ");
2810 print_gimple_stmt (dump_file, phi, 0);
2811 fprintf (dump_file, "arg of phi to exit: value ");
2812 print_generic_expr (dump_file, val);
2813 fprintf (dump_file, " used outside loop\n");
2814 fprintf (dump_file,
2815 " checking if it is part of reduction pattern:\n");
2816 }
2817 if (reduction_list->is_empty ())
2818 {
2819 if (dump_file && (dump_flags & TDF_DETAILS))
2820 fprintf (dump_file,
2821 " FAILED: it is not a part of reduction.\n");
2822 return false;
2823 }
2824 reduc_phi = NULL;
2825 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2826 {
2827 if (!gimple_debug_bind_p (USE_STMT (use_p))
2828 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2829 {
2830 reduc_phi = USE_STMT (use_p);
2831 break;
2832 }
2833 }
2834 red = reduction_phi (reduction_list, reduc_phi);
2835 if (red == NULL)
2836 {
2837 if (dump_file && (dump_flags & TDF_DETAILS))
2838 fprintf (dump_file,
2839 " FAILED: it is not a part of reduction.\n");
2840 return false;
2841 }
2842 if (red->keep_res != NULL)
2843 {
2844 if (dump_file && (dump_flags & TDF_DETAILS))
2845 fprintf (dump_file,
2846 " FAILED: reduction has multiple exit phis.\n");
2847 return false;
2848 }
2849 red->keep_res = phi;
2850 if (dump_file && (dump_flags & TDF_DETAILS))
2851 {
2852 fprintf (dump_file, "reduction phi is ");
2853 print_gimple_stmt (dump_file, red->reduc_phi, 0);
2854 fprintf (dump_file, "reduction stmt is ");
2855 print_gimple_stmt (dump_file, red->reduc_stmt, 0);
2856 }
2857 }
2858 }
2859
2860 /* The iterations of the loop may communicate only through bivs whose
2861 iteration space can be distributed efficiently. */
2862 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2863 {
2864 gphi *phi = gsi.phi ();
2865 tree def = PHI_RESULT (phi);
2866 affine_iv iv;
2867
2868 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2869 {
2870 struct reduction_info *red;
2871
2872 red = reduction_phi (reduction_list, phi);
2873 if (red == NULL)
2874 {
2875 if (dump_file && (dump_flags & TDF_DETAILS))
2876 fprintf (dump_file,
2877 " FAILED: scalar dependency between iterations\n");
2878 return false;
2879 }
2880 }
2881 }
2882
2883 if (oacc_kernels_p)
2884 {
2885 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi);
2886 gsi_next (&gsi))
2887 {
2888 gphi *phi = gsi.phi ();
2889 tree def = PHI_RESULT (phi);
2890 affine_iv iv;
2891
2892 if (!virtual_operand_p (def)
2893 && !simple_iv (loop, loop, def, &iv, true))
2894 {
2895 tree addr = find_reduc_addr (loop, phi);
2896 if (addr == NULL_TREE)
2897 return false;
2898 struct reduction_info *red = reduction_phi (reduction_list, phi);
2899 red->reduc_addr = addr;
2900 }
2901 }
2902 }
2903
2904 return true;
2905 }
2906
2907 /* Return true if LOOP contains phis with ADDR_EXPR in args. */
2908
2909 static bool
2910 loop_has_phi_with_address_arg (struct loop *loop)
2911 {
2912 basic_block *bbs = get_loop_body (loop);
2913 bool res = false;
2914
2915 unsigned i, j;
2916 gphi_iterator gsi;
2917 for (i = 0; i < loop->num_nodes; i++)
2918 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
2919 {
2920 gphi *phi = gsi.phi ();
2921 for (j = 0; j < gimple_phi_num_args (phi); j++)
2922 {
2923 tree arg = gimple_phi_arg_def (phi, j);
2924 if (TREE_CODE (arg) == ADDR_EXPR)
2925 {
2926 /* This should be handled by eliminate_local_variables, but that
2927 function currently ignores phis. */
2928 res = true;
2929 goto end;
2930 }
2931 }
2932 }
2933 end:
2934 free (bbs);
2935
2936 return res;
2937 }
2938
2939 /* Return true if memory ref REF (corresponding to the stmt at GSI in
2940 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi,
2941 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a
2942 store. Ignore conflicts with SKIP_STMT. */
2943
2944 static bool
2945 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref,
2946 bool ref_is_store, vec<basic_block> region_bbs,
2947 unsigned int i, gimple *skip_stmt)
2948 {
2949 basic_block bb = region_bbs[i];
2950 gsi_next (&gsi);
2951
2952 while (true)
2953 {
2954 for (; !gsi_end_p (gsi);
2955 gsi_next (&gsi))
2956 {
2957 gimple *stmt = gsi_stmt (gsi);
2958 if (stmt == skip_stmt)
2959 {
2960 if (dump_file)
2961 {
2962 fprintf (dump_file, "skipping reduction store: ");
2963 print_gimple_stmt (dump_file, stmt, 0);
2964 }
2965 continue;
2966 }
2967
2968 if (!gimple_vdef (stmt)
2969 && !gimple_vuse (stmt))
2970 continue;
2971
2972 if (gimple_code (stmt) == GIMPLE_RETURN)
2973 continue;
2974
2975 if (ref_is_store)
2976 {
2977 if (ref_maybe_used_by_stmt_p (stmt, ref))
2978 {
2979 if (dump_file)
2980 {
2981 fprintf (dump_file, "Stmt ");
2982 print_gimple_stmt (dump_file, stmt, 0);
2983 }
2984 return true;
2985 }
2986 }
2987 else
2988 {
2989 if (stmt_may_clobber_ref_p_1 (stmt, ref))
2990 {
2991 if (dump_file)
2992 {
2993 fprintf (dump_file, "Stmt ");
2994 print_gimple_stmt (dump_file, stmt, 0);
2995 }
2996 return true;
2997 }
2998 }
2999 }
3000 i++;
3001 if (i == region_bbs.length ())
3002 break;
3003 bb = region_bbs[i];
3004 gsi = gsi_start_bb (bb);
3005 }
3006
3007 return false;
3008 }
3009
3010 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed
3011 in parallel with REGION_BBS containing the loop. Return the stores of
3012 reduction results in REDUCTION_STORES. */
3013
3014 static bool
3015 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3016 reduction_info_table_type *reduction_list,
3017 bitmap reduction_stores)
3018 {
3019 tree omp_data_i = get_omp_data_i_param ();
3020
3021 unsigned i;
3022 basic_block bb;
3023 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3024 {
3025 if (bitmap_bit_p (in_loop_bbs, bb->index))
3026 continue;
3027
3028 gimple_stmt_iterator gsi;
3029 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
3030 gsi_next (&gsi))
3031 {
3032 gimple *stmt = gsi_stmt (gsi);
3033 gimple *skip_stmt = NULL;
3034
3035 if (is_gimple_debug (stmt)
3036 || gimple_code (stmt) == GIMPLE_COND)
3037 continue;
3038
3039 ao_ref ref;
3040 bool ref_is_store = false;
3041 if (gimple_assign_load_p (stmt))
3042 {
3043 tree rhs = gimple_assign_rhs1 (stmt);
3044 tree base = get_base_address (rhs);
3045 if (TREE_CODE (base) == MEM_REF
3046 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0))
3047 continue;
3048
3049 tree lhs = gimple_assign_lhs (stmt);
3050 if (TREE_CODE (lhs) == SSA_NAME
3051 && has_single_use (lhs))
3052 {
3053 use_operand_p use_p;
3054 gimple *use_stmt;
3055 struct reduction_info *red;
3056 single_imm_use (lhs, &use_p, &use_stmt);
3057 if (gimple_code (use_stmt) == GIMPLE_PHI
3058 && (red = reduction_phi (reduction_list, use_stmt)))
3059 {
3060 tree val = PHI_RESULT (red->keep_res);
3061 if (has_single_use (val))
3062 {
3063 single_imm_use (val, &use_p, &use_stmt);
3064 if (gimple_store_p (use_stmt))
3065 {
3066 unsigned int id
3067 = SSA_NAME_VERSION (gimple_vdef (use_stmt));
3068 bitmap_set_bit (reduction_stores, id);
3069 skip_stmt = use_stmt;
3070 if (dump_file)
3071 {
3072 fprintf (dump_file, "found reduction load: ");
3073 print_gimple_stmt (dump_file, stmt, 0);
3074 }
3075 }
3076 }
3077 }
3078 }
3079
3080 ao_ref_init (&ref, rhs);
3081 }
3082 else if (gimple_store_p (stmt))
3083 {
3084 ao_ref_init (&ref, gimple_assign_lhs (stmt));
3085 ref_is_store = true;
3086 }
3087 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN)
3088 continue;
3089 else if (!gimple_has_side_effects (stmt)
3090 && !gimple_could_trap_p (stmt)
3091 && !stmt_could_throw_p (cfun, stmt)
3092 && !gimple_vdef (stmt)
3093 && !gimple_vuse (stmt))
3094 continue;
3095 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS))
3096 continue;
3097 else if (gimple_code (stmt) == GIMPLE_RETURN)
3098 continue;
3099 else
3100 {
3101 if (dump_file)
3102 {
3103 fprintf (dump_file, "Unhandled stmt in entry/exit: ");
3104 print_gimple_stmt (dump_file, stmt, 0);
3105 }
3106 return false;
3107 }
3108
3109 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs,
3110 i, skip_stmt))
3111 {
3112 if (dump_file)
3113 {
3114 fprintf (dump_file, "conflicts with entry/exit stmt: ");
3115 print_gimple_stmt (dump_file, stmt, 0);
3116 }
3117 return false;
3118 }
3119 }
3120 }
3121
3122 return true;
3123 }
3124
3125 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with
3126 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true
3127 if any changes were made. */
3128
3129 static bool
3130 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs,
3131 bitmap reduction_stores)
3132 {
3133 tree gang_pos = NULL_TREE;
3134 bool changed = false;
3135
3136 unsigned i;
3137 basic_block bb;
3138 FOR_EACH_VEC_ELT (region_bbs, i, bb)
3139 {
3140 if (bitmap_bit_p (in_loop_bbs, bb->index))
3141 continue;
3142
3143 gimple_stmt_iterator gsi;
3144 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
3145 {
3146 gimple *stmt = gsi_stmt (gsi);
3147
3148 if (!gimple_store_p (stmt))
3149 {
3150 /* Update gsi to point to next stmt. */
3151 gsi_next (&gsi);
3152 continue;
3153 }
3154
3155 if (bitmap_bit_p (reduction_stores,
3156 SSA_NAME_VERSION (gimple_vdef (stmt))))
3157 {
3158 if (dump_file)
3159 {
3160 fprintf (dump_file,
3161 "skipped reduction store for single-gang"
3162 " neutering: ");
3163 print_gimple_stmt (dump_file, stmt, 0);
3164 }
3165
3166 /* Update gsi to point to next stmt. */
3167 gsi_next (&gsi);
3168 continue;
3169 }
3170
3171 changed = true;
3172
3173 if (gang_pos == NULL_TREE)
3174 {
3175 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG);
3176 gcall *gang_single
3177 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg);
3178 gang_pos = make_ssa_name (integer_type_node);
3179 gimple_call_set_lhs (gang_single, gang_pos);
3180 gimple_stmt_iterator start
3181 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
3182 tree vuse = ssa_default_def (cfun, gimple_vop (cfun));
3183 gimple_set_vuse (gang_single, vuse);
3184 gsi_insert_before (&start, gang_single, GSI_SAME_STMT);
3185 }
3186
3187 if (dump_file)
3188 {
3189 fprintf (dump_file,
3190 "found store that needs single-gang neutering: ");
3191 print_gimple_stmt (dump_file, stmt, 0);
3192 }
3193
3194 {
3195 /* Split block before store. */
3196 gimple_stmt_iterator gsi2 = gsi;
3197 gsi_prev (&gsi2);
3198 edge e;
3199 if (gsi_end_p (gsi2))
3200 {
3201 e = split_block_after_labels (bb);
3202 gsi2 = gsi_last_bb (bb);
3203 }
3204 else
3205 e = split_block (bb, gsi_stmt (gsi2));
3206 basic_block bb2 = e->dest;
3207
3208 /* Split block after store. */
3209 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2);
3210 edge e2 = split_block (bb2, gsi_stmt (gsi3));
3211 basic_block bb3 = e2->dest;
3212
3213 gimple *cond
3214 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node,
3215 NULL_TREE, NULL_TREE);
3216 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT);
3217
3218 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE);
3219 /* FIXME: What is the probability? */
3220 e3->probability = profile_probability::guessed_never ();
3221 e->flags = EDGE_TRUE_VALUE;
3222
3223 tree vdef = gimple_vdef (stmt);
3224 tree vuse = gimple_vuse (stmt);
3225
3226 tree phi_res = copy_ssa_name (vdef);
3227 gphi *new_phi = create_phi_node (phi_res, bb3);
3228 replace_uses_by (vdef, phi_res);
3229 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION);
3230 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION);
3231
3232 /* Update gsi to point to next stmt. */
3233 bb = bb3;
3234 gsi = gsi_start_bb (bb);
3235 }
3236 }
3237 }
3238
3239 return changed;
3240 }
3241
3242 /* Return true if the statements before and after the LOOP can be executed in
3243 parallel with the function containing the loop. Resolve conflicting stores
3244 outside LOOP by guarding them such that only a single gang executes them. */
3245
3246 static bool
3247 oacc_entry_exit_ok (struct loop *loop,
3248 reduction_info_table_type *reduction_list)
3249 {
3250 basic_block *loop_bbs = get_loop_body_in_dom_order (loop);
3251 vec<basic_block> region_bbs
3252 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
3253
3254 bitmap in_loop_bbs = BITMAP_ALLOC (NULL);
3255 bitmap_clear (in_loop_bbs);
3256 for (unsigned int i = 0; i < loop->num_nodes; i++)
3257 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index);
3258
3259 bitmap reduction_stores = BITMAP_ALLOC (NULL);
3260 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list,
3261 reduction_stores);
3262
3263 if (res)
3264 {
3265 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs,
3266 reduction_stores);
3267 if (changed)
3268 {
3269 free_dominance_info (CDI_DOMINATORS);
3270 calculate_dominance_info (CDI_DOMINATORS);
3271 }
3272 }
3273
3274 region_bbs.release ();
3275 free (loop_bbs);
3276
3277 BITMAP_FREE (in_loop_bbs);
3278 BITMAP_FREE (reduction_stores);
3279
3280 return res;
3281 }
3282
3283 /* Detect parallel loops and generate parallel code using libgomp
3284 primitives. Returns true if some loop was parallelized, false
3285 otherwise. */
3286
3287 static bool
3288 parallelize_loops (bool oacc_kernels_p)
3289 {
3290 unsigned n_threads;
3291 bool changed = false;
3292 struct loop *loop;
3293 struct loop *skip_loop = NULL;
3294 struct tree_niter_desc niter_desc;
3295 struct obstack parloop_obstack;
3296 HOST_WIDE_INT estimated;
3297
3298 /* Do not parallelize loops in the functions created by parallelization. */
3299 if (!oacc_kernels_p
3300 && parallelized_function_p (cfun->decl))
3301 return false;
3302
3303 /* Do not parallelize loops in offloaded functions. */
3304 if (!oacc_kernels_p
3305 && oacc_get_fn_attrib (cfun->decl) != NULL)
3306 return false;
3307
3308 if (cfun->has_nonlocal_label)
3309 return false;
3310
3311 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's
3312 the argument to -ftree-parallelize-loops. */
3313 if (oacc_kernels_p)
3314 n_threads = 0;
3315 else
3316 n_threads = flag_tree_parallelize_loops;
3317
3318 gcc_obstack_init (&parloop_obstack);
3319 reduction_info_table_type reduction_list (10);
3320
3321 calculate_dominance_info (CDI_DOMINATORS);
3322
3323 FOR_EACH_LOOP (loop, 0)
3324 {
3325 if (loop == skip_loop)
3326 {
3327 if (!loop->in_oacc_kernels_region
3328 && dump_file && (dump_flags & TDF_DETAILS))
3329 fprintf (dump_file,
3330 "Skipping loop %d as inner loop of parallelized loop\n",
3331 loop->num);
3332
3333 skip_loop = loop->inner;
3334 continue;
3335 }
3336 else
3337 skip_loop = NULL;
3338
3339 reduction_list.empty ();
3340
3341 if (oacc_kernels_p)
3342 {
3343 if (!loop->in_oacc_kernels_region)
3344 continue;
3345
3346 /* Don't try to parallelize inner loops in an oacc kernels region. */
3347 if (loop->inner)
3348 skip_loop = loop->inner;
3349
3350 if (dump_file && (dump_flags & TDF_DETAILS))
3351 fprintf (dump_file,
3352 "Trying loop %d with header bb %d in oacc kernels"
3353 " region\n", loop->num, loop->header->index);
3354 }
3355
3356 if (dump_file && (dump_flags & TDF_DETAILS))
3357 {
3358 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
3359 if (loop->inner)
3360 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
3361 else
3362 fprintf (dump_file, "loop %d is innermost\n",loop->num);
3363 }
3364
3365 if (!single_dom_exit (loop))
3366 {
3367
3368 if (dump_file && (dump_flags & TDF_DETAILS))
3369 fprintf (dump_file, "loop is !single_dom_exit\n");
3370
3371 continue;
3372 }
3373
3374 if (/* And of course, the loop must be parallelizable. */
3375 !can_duplicate_loop_p (loop)
3376 || loop_has_blocks_with_irreducible_flag (loop)
3377 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
3378 /* FIXME: the check for vector phi nodes could be removed. */
3379 || loop_has_vector_phi_nodes (loop))
3380 continue;
3381
3382 estimated = estimated_loop_iterations_int (loop);
3383 if (estimated == -1)
3384 estimated = get_likely_max_loop_iterations_int (loop);
3385 /* FIXME: Bypass this check as graphite doesn't update the
3386 count and frequency correctly now. */
3387 if (!flag_loop_parallelize_all
3388 && !oacc_kernels_p
3389 && ((estimated != -1
3390 && (estimated
3391 < ((HOST_WIDE_INT) n_threads
3392 * (loop->inner ? 2 : MIN_PER_THREAD) - 1)))
3393 /* Do not bother with loops in cold areas. */
3394 || optimize_loop_nest_for_size_p (loop)))
3395 continue;
3396
3397 if (!try_get_loop_niter (loop, &niter_desc))
3398 continue;
3399
3400 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p))
3401 continue;
3402
3403 if (loop_has_phi_with_address_arg (loop))
3404 continue;
3405
3406 if (!loop->can_be_parallel
3407 && !loop_parallel_p (loop, &parloop_obstack))
3408 continue;
3409
3410 if (oacc_kernels_p
3411 && !oacc_entry_exit_ok (loop, &reduction_list))
3412 {
3413 if (dump_file)
3414 fprintf (dump_file, "entry/exit not ok: FAILED\n");
3415 continue;
3416 }
3417
3418 changed = true;
3419 skip_loop = loop->inner;
3420
3421 if (dump_enabled_p ())
3422 {
3423 dump_user_location_t loop_loc = find_loop_location (loop);
3424 if (loop->inner)
3425 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
3426 "parallelizing outer loop %d\n", loop->num);
3427 else
3428 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc,
3429 "parallelizing inner loop %d\n", loop->num);
3430 }
3431
3432 gen_parallel_loop (loop, &reduction_list,
3433 n_threads, &niter_desc, oacc_kernels_p);
3434 }
3435
3436 obstack_free (&parloop_obstack, NULL);
3437
3438 /* Parallelization will cause new function calls to be inserted through
3439 which local variables will escape. Reset the points-to solution
3440 for ESCAPED. */
3441 if (changed)
3442 pt_solution_reset (&cfun->gimple_df->escaped);
3443
3444 return changed;
3445 }
3446
3447 /* Parallelization. */
3448
3449 namespace {
3450
3451 const pass_data pass_data_parallelize_loops =
3452 {
3453 GIMPLE_PASS, /* type */
3454 "parloops", /* name */
3455 OPTGROUP_LOOP, /* optinfo_flags */
3456 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
3457 ( PROP_cfg | PROP_ssa ), /* properties_required */
3458 0, /* properties_provided */
3459 0, /* properties_destroyed */
3460 0, /* todo_flags_start */
3461 0, /* todo_flags_finish */
3462 };
3463
3464 class pass_parallelize_loops : public gimple_opt_pass
3465 {
3466 public:
3467 pass_parallelize_loops (gcc::context *ctxt)
3468 : gimple_opt_pass (pass_data_parallelize_loops, ctxt),
3469 oacc_kernels_p (false)
3470 {}
3471
3472 /* opt_pass methods: */
3473 virtual bool gate (function *)
3474 {
3475 if (oacc_kernels_p)
3476 return flag_openacc;
3477 else
3478 return flag_tree_parallelize_loops > 1;
3479 }
3480 virtual unsigned int execute (function *);
3481 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); }
3482 void set_pass_param (unsigned int n, bool param)
3483 {
3484 gcc_assert (n == 0);
3485 oacc_kernels_p = param;
3486 }
3487
3488 private:
3489 bool oacc_kernels_p;
3490 }; // class pass_parallelize_loops
3491
3492 unsigned
3493 pass_parallelize_loops::execute (function *fun)
3494 {
3495 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS);
3496 if (nthreads == NULL_TREE)
3497 return 0;
3498
3499 bool in_loop_pipeline = scev_initialized_p ();
3500 if (!in_loop_pipeline)
3501 loop_optimizer_init (LOOPS_NORMAL
3502 | LOOPS_HAVE_RECORDED_EXITS);
3503
3504 if (number_of_loops (fun) <= 1)
3505 return 0;
3506
3507 if (!in_loop_pipeline)
3508 {
3509 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3510 scev_initialize ();
3511 }
3512
3513 unsigned int todo = 0;
3514 if (parallelize_loops (oacc_kernels_p))
3515 {
3516 fun->curr_properties &= ~(PROP_gimple_eomp);
3517
3518 checking_verify_loop_structure ();
3519
3520 todo |= TODO_update_ssa;
3521 }
3522
3523 if (!in_loop_pipeline)
3524 {
3525 scev_finalize ();
3526 loop_optimizer_finalize ();
3527 }
3528
3529 return todo;
3530 }
3531
3532 } // anon namespace
3533
3534 gimple_opt_pass *
3535 make_pass_parallelize_loops (gcc::context *ctxt)
3536 {
3537 return new pass_parallelize_loops (ctxt);
3538 }