]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-predcom.c
2012-08-03 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 up to RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "gimple-pretty-print.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
205
206 /* The maximum number of iterations between the considered memory
207 references. */
208
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210
211 /* Data references (or phi nodes that carry data reference values across
212 loop iterations). */
213
214 typedef struct dref_d
215 {
216 /* The reference itself. */
217 struct data_reference *ref;
218
219 /* The statement in that the reference appears. */
220 gimple stmt;
221
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi;
226
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
229 unsigned distance;
230
231 /* Number of iterations offset from the first reference in the component. */
232 double_int offset;
233
234 /* Number of the reference in a component, in dominance ordering. */
235 unsigned pos;
236
237 /* True if the memory reference is always accessed when the loop is
238 entered. */
239 unsigned always_accessed : 1;
240 } *dref;
241
242 DEF_VEC_P (dref);
243 DEF_VEC_ALLOC_P (dref, heap);
244
245 /* Type of the chain of the references. */
246
247 enum chain_type
248 {
249 /* The addresses of the references in the chain are constant. */
250 CT_INVARIANT,
251
252 /* There are only loads in the chain. */
253 CT_LOAD,
254
255 /* Root of the chain is store, the rest are loads. */
256 CT_STORE_LOAD,
257
258 /* A combination of two chains. */
259 CT_COMBINATION
260 };
261
262 /* Chains of data references. */
263
264 typedef struct chain
265 {
266 /* Type of the chain. */
267 enum chain_type type;
268
269 /* For combination chains, the operator and the two chains that are
270 combined, and the type of the result. */
271 enum tree_code op;
272 tree rslt_type;
273 struct chain *ch1, *ch2;
274
275 /* The references in the chain. */
276 VEC(dref,heap) *refs;
277
278 /* The maximum distance of the reference in the chain from the root. */
279 unsigned length;
280
281 /* The variables used to copy the value throughout iterations. */
282 VEC(tree,heap) *vars;
283
284 /* Initializers for the variables. */
285 VEC(tree,heap) *inits;
286
287 /* True if there is a use of a variable with the maximal distance
288 that comes after the root in the loop. */
289 unsigned has_max_use_after : 1;
290
291 /* True if all the memory references in the chain are always accessed. */
292 unsigned all_always_accessed : 1;
293
294 /* True if this chain was combined together with some other chain. */
295 unsigned combined : 1;
296 } *chain_p;
297
298 DEF_VEC_P (chain_p);
299 DEF_VEC_ALLOC_P (chain_p, heap);
300
301 /* Describes the knowledge about the step of the memory references in
302 the component. */
303
304 enum ref_step_type
305 {
306 /* The step is zero. */
307 RS_INVARIANT,
308
309 /* The step is nonzero. */
310 RS_NONZERO,
311
312 /* The step may or may not be nonzero. */
313 RS_ANY
314 };
315
316 /* Components of the data dependence graph. */
317
318 struct component
319 {
320 /* The references in the component. */
321 VEC(dref,heap) *refs;
322
323 /* What we know about the step of the references in the component. */
324 enum ref_step_type comp_step;
325
326 /* Next component in the list. */
327 struct component *next;
328 };
329
330 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331
332 static bitmap looparound_phis;
333
334 /* Cache used by tree_to_aff_combination_expand. */
335
336 static struct pointer_map_t *name_expansions;
337
338 /* Dumps data reference REF to FILE. */
339
340 extern void dump_dref (FILE *, dref);
341 void
342 dump_dref (FILE *file, dref ref)
343 {
344 if (ref->ref)
345 {
346 fprintf (file, " ");
347 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
348 fprintf (file, " (id %u%s)\n", ref->pos,
349 DR_IS_READ (ref->ref) ? "" : ", write");
350
351 fprintf (file, " offset ");
352 dump_double_int (file, ref->offset, false);
353 fprintf (file, "\n");
354
355 fprintf (file, " distance %u\n", ref->distance);
356 }
357 else
358 {
359 if (gimple_code (ref->stmt) == GIMPLE_PHI)
360 fprintf (file, " looparound ref\n");
361 else
362 fprintf (file, " combination ref\n");
363 fprintf (file, " in statement ");
364 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
365 fprintf (file, "\n");
366 fprintf (file, " distance %u\n", ref->distance);
367 }
368
369 }
370
371 /* Dumps CHAIN to FILE. */
372
373 extern void dump_chain (FILE *, chain_p);
374 void
375 dump_chain (FILE *file, chain_p chain)
376 {
377 dref a;
378 const char *chain_type;
379 unsigned i;
380 tree var;
381
382 switch (chain->type)
383 {
384 case CT_INVARIANT:
385 chain_type = "Load motion";
386 break;
387
388 case CT_LOAD:
389 chain_type = "Loads-only";
390 break;
391
392 case CT_STORE_LOAD:
393 chain_type = "Store-loads";
394 break;
395
396 case CT_COMBINATION:
397 chain_type = "Combination";
398 break;
399
400 default:
401 gcc_unreachable ();
402 }
403
404 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
405 chain->combined ? " (combined)" : "");
406 if (chain->type != CT_INVARIANT)
407 fprintf (file, " max distance %u%s\n", chain->length,
408 chain->has_max_use_after ? "" : ", may reuse first");
409
410 if (chain->type == CT_COMBINATION)
411 {
412 fprintf (file, " equal to %p %s %p in type ",
413 (void *) chain->ch1, op_symbol_code (chain->op),
414 (void *) chain->ch2);
415 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
416 fprintf (file, "\n");
417 }
418
419 if (chain->vars)
420 {
421 fprintf (file, " vars");
422 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
423 {
424 fprintf (file, " ");
425 print_generic_expr (file, var, TDF_SLIM);
426 }
427 fprintf (file, "\n");
428 }
429
430 if (chain->inits)
431 {
432 fprintf (file, " inits");
433 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
434 {
435 fprintf (file, " ");
436 print_generic_expr (file, var, TDF_SLIM);
437 }
438 fprintf (file, "\n");
439 }
440
441 fprintf (file, " references:\n");
442 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
443 dump_dref (file, a);
444
445 fprintf (file, "\n");
446 }
447
448 /* Dumps CHAINS to FILE. */
449
450 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
451 void
452 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453 {
454 chain_p chain;
455 unsigned i;
456
457 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
458 dump_chain (file, chain);
459 }
460
461 /* Dumps COMP to FILE. */
462
463 extern void dump_component (FILE *, struct component *);
464 void
465 dump_component (FILE *file, struct component *comp)
466 {
467 dref a;
468 unsigned i;
469
470 fprintf (file, "Component%s:\n",
471 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
472 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
473 dump_dref (file, a);
474 fprintf (file, "\n");
475 }
476
477 /* Dumps COMPS to FILE. */
478
479 extern void dump_components (FILE *, struct component *);
480 void
481 dump_components (FILE *file, struct component *comps)
482 {
483 struct component *comp;
484
485 for (comp = comps; comp; comp = comp->next)
486 dump_component (file, comp);
487 }
488
489 /* Frees a chain CHAIN. */
490
491 static void
492 release_chain (chain_p chain)
493 {
494 dref ref;
495 unsigned i;
496
497 if (chain == NULL)
498 return;
499
500 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
501 free (ref);
502
503 VEC_free (dref, heap, chain->refs);
504 VEC_free (tree, heap, chain->vars);
505 VEC_free (tree, heap, chain->inits);
506
507 free (chain);
508 }
509
510 /* Frees CHAINS. */
511
512 static void
513 release_chains (VEC (chain_p, heap) *chains)
514 {
515 unsigned i;
516 chain_p chain;
517
518 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
519 release_chain (chain);
520 VEC_free (chain_p, heap, chains);
521 }
522
523 /* Frees a component COMP. */
524
525 static void
526 release_component (struct component *comp)
527 {
528 VEC_free (dref, heap, comp->refs);
529 free (comp);
530 }
531
532 /* Frees list of components COMPS. */
533
534 static void
535 release_components (struct component *comps)
536 {
537 struct component *act, *next;
538
539 for (act = comps; act; act = next)
540 {
541 next = act->next;
542 release_component (act);
543 }
544 }
545
546 /* Finds a root of tree given by FATHERS containing A, and performs path
547 shortening. */
548
549 static unsigned
550 component_of (unsigned fathers[], unsigned a)
551 {
552 unsigned root, n;
553
554 for (root = a; root != fathers[root]; root = fathers[root])
555 continue;
556
557 for (; a != root; a = n)
558 {
559 n = fathers[a];
560 fathers[a] = root;
561 }
562
563 return root;
564 }
565
566 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
567 components, A and B are components to merge. */
568
569 static void
570 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571 {
572 unsigned ca = component_of (fathers, a);
573 unsigned cb = component_of (fathers, b);
574
575 if (ca == cb)
576 return;
577
578 if (sizes[ca] < sizes[cb])
579 {
580 sizes[cb] += sizes[ca];
581 fathers[ca] = cb;
582 }
583 else
584 {
585 sizes[ca] += sizes[cb];
586 fathers[cb] = ca;
587 }
588 }
589
590 /* Returns true if A is a reference that is suitable for predictive commoning
591 in the innermost loop that contains it. REF_STEP is set according to the
592 step of the reference A. */
593
594 static bool
595 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596 {
597 tree ref = DR_REF (a), step = DR_STEP (a);
598
599 if (!step
600 || TREE_THIS_VOLATILE (ref)
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613 }
614
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619 {
620 tree type = TREE_TYPE (DR_OFFSET (dr));
621 aff_tree delta;
622
623 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
624 &name_expansions);
625 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
626 aff_combination_add (offset, &delta);
627 }
628
629 /* Determines number of iterations of the innermost enclosing loop before B
630 refers to exactly the same location as A and stores it to OFF. If A and
631 B do not have the same step, they never meet, or anything else fails,
632 returns false, otherwise returns true. Both A and B are assumed to
633 satisfy suitable_reference_p. */
634
635 static bool
636 determine_offset (struct data_reference *a, struct data_reference *b,
637 double_int *off)
638 {
639 aff_tree diff, baseb, step;
640 tree typea, typeb;
641
642 /* Check that both the references access the location in the same type. */
643 typea = TREE_TYPE (DR_REF (a));
644 typeb = TREE_TYPE (DR_REF (b));
645 if (!useless_type_conversion_p (typeb, typea))
646 return false;
647
648 /* Check whether the base address and the step of both references is the
649 same. */
650 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
651 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
652 return false;
653
654 if (integer_zerop (DR_STEP (a)))
655 {
656 /* If the references have loop invariant address, check that they access
657 exactly the same location. */
658 *off = double_int_zero;
659 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
660 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
661 }
662
663 /* Compare the offsets of the addresses, and check whether the difference
664 is a multiple of step. */
665 aff_combination_dr_offset (a, &diff);
666 aff_combination_dr_offset (b, &baseb);
667 aff_combination_scale (&baseb, double_int_minus_one);
668 aff_combination_add (&diff, &baseb);
669
670 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
671 &step, &name_expansions);
672 return aff_combination_constant_multiple_p (&diff, &step, off);
673 }
674
675 /* Returns the last basic block in LOOP for that we are sure that
676 it is executed whenever the loop is entered. */
677
678 static basic_block
679 last_always_executed_block (struct loop *loop)
680 {
681 unsigned i;
682 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
683 edge ex;
684 basic_block last = loop->latch;
685
686 FOR_EACH_VEC_ELT (edge, exits, i, ex)
687 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
688 VEC_free (edge, heap, exits);
689
690 return last;
691 }
692
693 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
694
695 static struct component *
696 split_data_refs_to_components (struct loop *loop,
697 VEC (data_reference_p, heap) *datarefs,
698 VEC (ddr_p, heap) *depends)
699 {
700 unsigned i, n = VEC_length (data_reference_p, datarefs);
701 unsigned ca, ia, ib, bad;
702 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
703 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
704 struct component **comps;
705 struct data_reference *dr, *dra, *drb;
706 struct data_dependence_relation *ddr;
707 struct component *comp_list = NULL, *comp;
708 dref dataref;
709 basic_block last_always_executed = last_always_executed_block (loop);
710
711 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
712 {
713 if (!DR_REF (dr))
714 {
715 /* A fake reference for call or asm_expr that may clobber memory;
716 just fail. */
717 goto end;
718 }
719 dr->aux = (void *) (size_t) i;
720 comp_father[i] = i;
721 comp_size[i] = 1;
722 }
723
724 /* A component reserved for the "bad" data references. */
725 comp_father[n] = n;
726 comp_size[n] = 1;
727
728 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
729 {
730 enum ref_step_type dummy;
731
732 if (!suitable_reference_p (dr, &dummy))
733 {
734 ia = (unsigned) (size_t) dr->aux;
735 merge_comps (comp_father, comp_size, n, ia);
736 }
737 }
738
739 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
740 {
741 double_int dummy_off;
742
743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
744 continue;
745
746 dra = DDR_A (ddr);
747 drb = DDR_B (ddr);
748 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
749 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
750 if (ia == ib)
751 continue;
752
753 bad = component_of (comp_father, n);
754
755 /* If both A and B are reads, we may ignore unsuitable dependences. */
756 if (DR_IS_READ (dra) && DR_IS_READ (drb)
757 && (ia == bad || ib == bad
758 || !determine_offset (dra, drb, &dummy_off)))
759 continue;
760
761 merge_comps (comp_father, comp_size, ia, ib);
762 }
763
764 comps = XCNEWVEC (struct component *, n);
765 bad = component_of (comp_father, n);
766 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
767 {
768 ia = (unsigned) (size_t) dr->aux;
769 ca = component_of (comp_father, ia);
770 if (ca == bad)
771 continue;
772
773 comp = comps[ca];
774 if (!comp)
775 {
776 comp = XCNEW (struct component);
777 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
778 comps[ca] = comp;
779 }
780
781 dataref = XCNEW (struct dref_d);
782 dataref->ref = dr;
783 dataref->stmt = DR_STMT (dr);
784 dataref->offset = double_int_zero;
785 dataref->distance = 0;
786
787 dataref->always_accessed
788 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
789 gimple_bb (dataref->stmt));
790 dataref->pos = VEC_length (dref, comp->refs);
791 VEC_quick_push (dref, comp->refs, dataref);
792 }
793
794 for (i = 0; i < n; i++)
795 {
796 comp = comps[i];
797 if (comp)
798 {
799 comp->next = comp_list;
800 comp_list = comp;
801 }
802 }
803 free (comps);
804
805 end:
806 free (comp_father);
807 free (comp_size);
808 return comp_list;
809 }
810
811 /* Returns true if the component COMP satisfies the conditions
812 described in 2) at the beginning of this file. LOOP is the current
813 loop. */
814
815 static bool
816 suitable_component_p (struct loop *loop, struct component *comp)
817 {
818 unsigned i;
819 dref a, first;
820 basic_block ba, bp = loop->header;
821 bool ok, has_write = false;
822
823 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
824 {
825 ba = gimple_bb (a->stmt);
826
827 if (!just_once_each_iteration_p (loop, ba))
828 return false;
829
830 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
831 bp = ba;
832
833 if (DR_IS_WRITE (a->ref))
834 has_write = true;
835 }
836
837 first = VEC_index (dref, comp->refs, 0);
838 ok = suitable_reference_p (first->ref, &comp->comp_step);
839 gcc_assert (ok);
840 first->offset = double_int_zero;
841
842 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
843 {
844 if (!determine_offset (first->ref, a->ref, &a->offset))
845 return false;
846
847 #ifdef ENABLE_CHECKING
848 {
849 enum ref_step_type a_step;
850 ok = suitable_reference_p (a->ref, &a_step);
851 gcc_assert (ok && a_step == comp->comp_step);
852 }
853 #endif
854 }
855
856 /* If there is a write inside the component, we must know whether the
857 step is nonzero or not -- we would not otherwise be able to recognize
858 whether the value accessed by reads comes from the OFFSET-th iteration
859 or the previous one. */
860 if (has_write && comp->comp_step == RS_ANY)
861 return false;
862
863 return true;
864 }
865
866 /* Check the conditions on references inside each of components COMPS,
867 and remove the unsuitable components from the list. The new list
868 of components is returned. The conditions are described in 2) at
869 the beginning of this file. LOOP is the current loop. */
870
871 static struct component *
872 filter_suitable_components (struct loop *loop, struct component *comps)
873 {
874 struct component **comp, *act;
875
876 for (comp = &comps; *comp; )
877 {
878 act = *comp;
879 if (suitable_component_p (loop, act))
880 comp = &act->next;
881 else
882 {
883 dref ref;
884 unsigned i;
885
886 *comp = act->next;
887 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
888 free (ref);
889 release_component (act);
890 }
891 }
892
893 return comps;
894 }
895
896 /* Compares two drefs A and B by their offset and position. Callback for
897 qsort. */
898
899 static int
900 order_drefs (const void *a, const void *b)
901 {
902 const dref *const da = (const dref *) a;
903 const dref *const db = (const dref *) b;
904 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
905
906 if (offcmp != 0)
907 return offcmp;
908
909 return (*da)->pos - (*db)->pos;
910 }
911
912 /* Returns root of the CHAIN. */
913
914 static inline dref
915 get_chain_root (chain_p chain)
916 {
917 return VEC_index (dref, chain->refs, 0);
918 }
919
920 /* Adds REF to the chain CHAIN. */
921
922 static void
923 add_ref_to_chain (chain_p chain, dref ref)
924 {
925 dref root = get_chain_root (chain);
926 double_int dist;
927
928 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
929 dist = double_int_sub (ref->offset, root->offset);
930 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
931 {
932 free (ref);
933 return;
934 }
935 gcc_assert (double_int_fits_in_uhwi_p (dist));
936
937 VEC_safe_push (dref, heap, chain->refs, ref);
938
939 ref->distance = double_int_to_uhwi (dist);
940
941 if (ref->distance >= chain->length)
942 {
943 chain->length = ref->distance;
944 chain->has_max_use_after = false;
945 }
946
947 if (ref->distance == chain->length
948 && ref->pos > root->pos)
949 chain->has_max_use_after = true;
950
951 chain->all_always_accessed &= ref->always_accessed;
952 }
953
954 /* Returns the chain for invariant component COMP. */
955
956 static chain_p
957 make_invariant_chain (struct component *comp)
958 {
959 chain_p chain = XCNEW (struct chain);
960 unsigned i;
961 dref ref;
962
963 chain->type = CT_INVARIANT;
964
965 chain->all_always_accessed = true;
966
967 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
968 {
969 VEC_safe_push (dref, heap, chain->refs, ref);
970 chain->all_always_accessed &= ref->always_accessed;
971 }
972
973 return chain;
974 }
975
976 /* Make a new chain rooted at REF. */
977
978 static chain_p
979 make_rooted_chain (dref ref)
980 {
981 chain_p chain = XCNEW (struct chain);
982
983 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
984
985 VEC_safe_push (dref, heap, chain->refs, ref);
986 chain->all_always_accessed = ref->always_accessed;
987
988 ref->distance = 0;
989
990 return chain;
991 }
992
993 /* Returns true if CHAIN is not trivial. */
994
995 static bool
996 nontrivial_chain_p (chain_p chain)
997 {
998 return chain != NULL && VEC_length (dref, chain->refs) > 1;
999 }
1000
1001 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 is no such name. */
1003
1004 static tree
1005 name_for_ref (dref ref)
1006 {
1007 tree name;
1008
1009 if (is_gimple_assign (ref->stmt))
1010 {
1011 if (!ref->ref || DR_IS_READ (ref->ref))
1012 name = gimple_assign_lhs (ref->stmt);
1013 else
1014 name = gimple_assign_rhs1 (ref->stmt);
1015 }
1016 else
1017 name = PHI_RESULT (ref->stmt);
1018
1019 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1020 }
1021
1022 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1023 iterations of the innermost enclosing loop). */
1024
1025 static bool
1026 valid_initializer_p (struct data_reference *ref,
1027 unsigned distance, struct data_reference *root)
1028 {
1029 aff_tree diff, base, step;
1030 double_int off;
1031
1032 /* Both REF and ROOT must be accessing the same object. */
1033 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1034 return false;
1035
1036 /* The initializer is defined outside of loop, hence its address must be
1037 invariant inside the loop. */
1038 gcc_assert (integer_zerop (DR_STEP (ref)));
1039
1040 /* If the address of the reference is invariant, initializer must access
1041 exactly the same location. */
1042 if (integer_zerop (DR_STEP (root)))
1043 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1044 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1045
1046 /* Verify that this index of REF is equal to the root's index at
1047 -DISTANCE-th iteration. */
1048 aff_combination_dr_offset (root, &diff);
1049 aff_combination_dr_offset (ref, &base);
1050 aff_combination_scale (&base, double_int_minus_one);
1051 aff_combination_add (&diff, &base);
1052
1053 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1054 &step, &name_expansions);
1055 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1056 return false;
1057
1058 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1059 return false;
1060
1061 return true;
1062 }
1063
1064 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1065 initial value is correct (equal to initial value of REF shifted by one
1066 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1067 is the root of the current chain. */
1068
1069 static gimple
1070 find_looparound_phi (struct loop *loop, dref ref, dref root)
1071 {
1072 tree name, init, init_ref;
1073 gimple phi = NULL, init_stmt;
1074 edge latch = loop_latch_edge (loop);
1075 struct data_reference init_dr;
1076 gimple_stmt_iterator psi;
1077
1078 if (is_gimple_assign (ref->stmt))
1079 {
1080 if (DR_IS_READ (ref->ref))
1081 name = gimple_assign_lhs (ref->stmt);
1082 else
1083 name = gimple_assign_rhs1 (ref->stmt);
1084 }
1085 else
1086 name = PHI_RESULT (ref->stmt);
1087 if (!name)
1088 return NULL;
1089
1090 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1091 {
1092 phi = gsi_stmt (psi);
1093 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1094 break;
1095 }
1096
1097 if (gsi_end_p (psi))
1098 return NULL;
1099
1100 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1101 if (TREE_CODE (init) != SSA_NAME)
1102 return NULL;
1103 init_stmt = SSA_NAME_DEF_STMT (init);
1104 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1105 return NULL;
1106 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1107
1108 init_ref = gimple_assign_rhs1 (init_stmt);
1109 if (!REFERENCE_CLASS_P (init_ref)
1110 && !DECL_P (init_ref))
1111 return NULL;
1112
1113 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1114 loop enclosing PHI). */
1115 memset (&init_dr, 0, sizeof (struct data_reference));
1116 DR_REF (&init_dr) = init_ref;
1117 DR_STMT (&init_dr) = phi;
1118 if (!dr_analyze_innermost (&init_dr, loop))
1119 return NULL;
1120
1121 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1122 return NULL;
1123
1124 return phi;
1125 }
1126
1127 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1128
1129 static void
1130 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1131 {
1132 dref nw = XCNEW (struct dref_d), aref;
1133 unsigned i;
1134
1135 nw->stmt = phi;
1136 nw->distance = ref->distance + 1;
1137 nw->always_accessed = 1;
1138
1139 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1140 if (aref->distance >= nw->distance)
1141 break;
1142 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1143
1144 if (nw->distance > chain->length)
1145 {
1146 chain->length = nw->distance;
1147 chain->has_max_use_after = false;
1148 }
1149 }
1150
1151 /* For references in CHAIN that are copied around the LOOP (created previously
1152 by PRE, or by user), add the results of such copies to the chain. This
1153 enables us to remove the copies by unrolling, and may need less registers
1154 (also, it may allow us to combine chains together). */
1155
1156 static void
1157 add_looparound_copies (struct loop *loop, chain_p chain)
1158 {
1159 unsigned i;
1160 dref ref, root = get_chain_root (chain);
1161 gimple phi;
1162
1163 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1164 {
1165 phi = find_looparound_phi (loop, ref, root);
1166 if (!phi)
1167 continue;
1168
1169 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1170 insert_looparound_copy (chain, ref, phi);
1171 }
1172 }
1173
1174 /* Find roots of the values and determine distances in the component COMP.
1175 The references are redistributed into CHAINS. LOOP is the current
1176 loop. */
1177
1178 static void
1179 determine_roots_comp (struct loop *loop,
1180 struct component *comp,
1181 VEC (chain_p, heap) **chains)
1182 {
1183 unsigned i;
1184 dref a;
1185 chain_p chain = NULL;
1186 double_int last_ofs = double_int_zero;
1187
1188 /* Invariants are handled specially. */
1189 if (comp->comp_step == RS_INVARIANT)
1190 {
1191 chain = make_invariant_chain (comp);
1192 VEC_safe_push (chain_p, heap, *chains, chain);
1193 return;
1194 }
1195
1196 VEC_qsort (dref, comp->refs, order_drefs);
1197
1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1199 {
1200 if (!chain || DR_IS_WRITE (a->ref)
1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1202 double_int_sub (a->offset, last_ofs)) <= 0)
1203 {
1204 if (nontrivial_chain_p (chain))
1205 {
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1208 }
1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
1212 last_ofs = a->offset;
1213 continue;
1214 }
1215
1216 add_ref_to_chain (chain, a);
1217 }
1218
1219 if (nontrivial_chain_p (chain))
1220 {
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1223 }
1224 else
1225 release_chain (chain);
1226 }
1227
1228 /* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1230
1231 static void
1232 determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1234 {
1235 struct component *comp;
1236
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1239 }
1240
1241 /* Replace the reference in statement STMT with temporary variable
1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1245
1246 static void
1247 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1248 {
1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
1252
1253 if (gimple_code (stmt) == GIMPLE_PHI)
1254 {
1255 gcc_assert (!in_lhs && !set);
1256
1257 val = PHI_RESULT (stmt);
1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
1261
1262 /* Turn the phi node into GIMPLE_ASSIGN. */
1263 new_stmt = gimple_build_assign (val, new_tree);
1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1265 return;
1266 }
1267
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
1270 gcc_assert (is_gimple_assign (stmt));
1271
1272 bsi = gsi_for_stmt (stmt);
1273
1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1275 if (!set)
1276 {
1277 gcc_assert (!in_lhs);
1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1279 stmt = gsi_stmt (bsi);
1280 update_stmt (stmt);
1281 return;
1282 }
1283
1284 if (in_lhs)
1285 {
1286 /* We have statement
1287
1288 OLD = VAL
1289
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
1292
1293 OLD = VAL
1294 NEW = VAL
1295
1296 Otherwise, we are replacing a combination chain,
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1299
1300 OLD = VAL
1301 NEW = OLD
1302
1303 */
1304
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1307 {
1308 val = gimple_assign_rhs1 (stmt);
1309 gcc_assert (gimple_assign_single_p (stmt));
1310 if (TREE_CLOBBER_P (val))
1311 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1312 else
1313 gcc_assert (gimple_assign_copy_p (stmt));
1314 }
1315 }
1316 else
1317 {
1318 /* VAL = OLD
1319
1320 is transformed to
1321
1322 VAL = OLD
1323 NEW = VAL */
1324
1325 val = gimple_assign_lhs (stmt);
1326 }
1327
1328 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1329 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1330 }
1331
1332 /* Returns the reference to the address of REF in the ITER-th iteration of
1333 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1334 try to preserve the original shape of the reference (not rewrite it
1335 as an indirect ref to the address), to make tree_could_trap_p in
1336 prepare_initializers_chain return false more often. */
1337
1338 static tree
1339 ref_at_iteration (struct loop *loop, tree ref, int iter)
1340 {
1341 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1342 affine_iv iv;
1343 bool ok;
1344
1345 if (handled_component_p (ref))
1346 {
1347 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1348 if (!op0)
1349 return NULL_TREE;
1350 }
1351 else if (!INDIRECT_REF_P (ref)
1352 && TREE_CODE (ref) != MEM_REF)
1353 return unshare_expr (ref);
1354
1355 if (TREE_CODE (ref) == MEM_REF)
1356 {
1357 ret = unshare_expr (ref);
1358 idx = TREE_OPERAND (ref, 0);
1359 idx_p = &TREE_OPERAND (ret, 0);
1360 }
1361 else if (TREE_CODE (ref) == COMPONENT_REF)
1362 {
1363 /* Check that the offset is loop invariant. */
1364 if (TREE_OPERAND (ref, 2)
1365 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1366 return NULL_TREE;
1367
1368 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1369 unshare_expr (TREE_OPERAND (ref, 1)),
1370 unshare_expr (TREE_OPERAND (ref, 2)));
1371 }
1372 else if (TREE_CODE (ref) == ARRAY_REF)
1373 {
1374 /* Check that the lower bound and the step are loop invariant. */
1375 if (TREE_OPERAND (ref, 2)
1376 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1377 return NULL_TREE;
1378 if (TREE_OPERAND (ref, 3)
1379 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1380 return NULL_TREE;
1381
1382 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1383 unshare_expr (TREE_OPERAND (ref, 2)),
1384 unshare_expr (TREE_OPERAND (ref, 3)));
1385 idx = TREE_OPERAND (ref, 1);
1386 idx_p = &TREE_OPERAND (ret, 1);
1387 }
1388 else
1389 return NULL_TREE;
1390
1391 ok = simple_iv (loop, loop, idx, &iv, true);
1392 if (!ok)
1393 return NULL_TREE;
1394 iv.base = expand_simple_operations (iv.base);
1395 if (integer_zerop (iv.step))
1396 *idx_p = unshare_expr (iv.base);
1397 else
1398 {
1399 type = TREE_TYPE (iv.base);
1400 if (POINTER_TYPE_P (type))
1401 {
1402 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1403 size_int (iter));
1404 val = fold_build_pointer_plus (iv.base, val);
1405 }
1406 else
1407 {
1408 val = fold_build2 (MULT_EXPR, type, iv.step,
1409 build_int_cst_type (type, iter));
1410 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1411 }
1412 *idx_p = unshare_expr (val);
1413 }
1414
1415 return ret;
1416 }
1417
1418 /* Get the initialization expression for the INDEX-th temporary variable
1419 of CHAIN. */
1420
1421 static tree
1422 get_init_expr (chain_p chain, unsigned index)
1423 {
1424 if (chain->type == CT_COMBINATION)
1425 {
1426 tree e1 = get_init_expr (chain->ch1, index);
1427 tree e2 = get_init_expr (chain->ch2, index);
1428
1429 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1430 }
1431 else
1432 return VEC_index (tree, chain->inits, index);
1433 }
1434
1435 /* Returns a new temporary variable used for the I-th variable carrying
1436 value of REF. The variable's uid is marked in TMP_VARS. */
1437
1438 static tree
1439 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1440 {
1441 tree type = TREE_TYPE (ref);
1442 /* We never access the components of the temporary variable in predictive
1443 commoning. */
1444 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1445 bitmap_set_bit (tmp_vars, DECL_UID (var));
1446 return var;
1447 }
1448
1449 /* Creates the variables for CHAIN, as well as phi nodes for them and
1450 initialization on entry to LOOP. Uids of the newly created
1451 temporary variables are marked in TMP_VARS. */
1452
1453 static void
1454 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1455 {
1456 unsigned i;
1457 unsigned n = chain->length;
1458 dref root = get_chain_root (chain);
1459 bool reuse_first = !chain->has_max_use_after;
1460 tree ref, init, var, next;
1461 gimple phi;
1462 gimple_seq stmts;
1463 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1464
1465 /* If N == 0, then all the references are within the single iteration. And
1466 since this is an nonempty chain, reuse_first cannot be true. */
1467 gcc_assert (n > 0 || !reuse_first);
1468
1469 chain->vars = VEC_alloc (tree, heap, n + 1);
1470
1471 if (chain->type == CT_COMBINATION)
1472 ref = gimple_assign_lhs (root->stmt);
1473 else
1474 ref = DR_REF (root->ref);
1475
1476 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1477 {
1478 var = predcom_tmp_var (ref, i, tmp_vars);
1479 VEC_quick_push (tree, chain->vars, var);
1480 }
1481 if (reuse_first)
1482 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1483
1484 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1485 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1486
1487 for (i = 0; i < n; i++)
1488 {
1489 var = VEC_index (tree, chain->vars, i);
1490 next = VEC_index (tree, chain->vars, i + 1);
1491 init = get_init_expr (chain, i);
1492
1493 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1494 if (stmts)
1495 gsi_insert_seq_on_edge_immediate (entry, stmts);
1496
1497 phi = create_phi_node (var, loop->header);
1498 SSA_NAME_DEF_STMT (var) = phi;
1499 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1500 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1501 }
1502 }
1503
1504 /* Create the variables and initialization statement for root of chain
1505 CHAIN. Uids of the newly created temporary variables are marked
1506 in TMP_VARS. */
1507
1508 static void
1509 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1510 {
1511 dref root = get_chain_root (chain);
1512 bool in_lhs = (chain->type == CT_STORE_LOAD
1513 || chain->type == CT_COMBINATION);
1514
1515 initialize_root_vars (loop, chain, tmp_vars);
1516 replace_ref_with (root->stmt,
1517 VEC_index (tree, chain->vars, chain->length),
1518 true, in_lhs);
1519 }
1520
1521 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1522 initialization on entry to LOOP if necessary. The ssa name for the variable
1523 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1524 around the loop is created. Uid of the newly created temporary variable
1525 is marked in TMP_VARS. INITS is the list containing the (single)
1526 initializer. */
1527
1528 static void
1529 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1530 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1531 bitmap tmp_vars)
1532 {
1533 unsigned i;
1534 tree ref = DR_REF (root->ref), init, var, next;
1535 gimple_seq stmts;
1536 gimple phi;
1537 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1538
1539 /* Find the initializer for the variable, and check that it cannot
1540 trap. */
1541 init = VEC_index (tree, inits, 0);
1542
1543 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1544 var = predcom_tmp_var (ref, 0, tmp_vars);
1545 VEC_quick_push (tree, *vars, var);
1546 if (written)
1547 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1548
1549 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1550 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1551
1552 var = VEC_index (tree, *vars, 0);
1553
1554 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1555 if (stmts)
1556 gsi_insert_seq_on_edge_immediate (entry, stmts);
1557
1558 if (written)
1559 {
1560 next = VEC_index (tree, *vars, 1);
1561 phi = create_phi_node (var, loop->header);
1562 SSA_NAME_DEF_STMT (var) = phi;
1563 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1564 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1565 }
1566 else
1567 {
1568 gimple init_stmt = gimple_build_assign (var, init);
1569 gsi_insert_on_edge_immediate (entry, init_stmt);
1570 }
1571 }
1572
1573
1574 /* Execute load motion for references in chain CHAIN. Uids of the newly
1575 created temporary variables are marked in TMP_VARS. */
1576
1577 static void
1578 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1579 {
1580 VEC (tree, heap) *vars;
1581 dref a;
1582 unsigned n_writes = 0, ridx, i;
1583 tree var;
1584
1585 gcc_assert (chain->type == CT_INVARIANT);
1586 gcc_assert (!chain->combined);
1587 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1588 if (DR_IS_WRITE (a->ref))
1589 n_writes++;
1590
1591 /* If there are no reads in the loop, there is nothing to do. */
1592 if (n_writes == VEC_length (dref, chain->refs))
1593 return;
1594
1595 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1596 &vars, chain->inits, tmp_vars);
1597
1598 ridx = 0;
1599 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1600 {
1601 bool is_read = DR_IS_READ (a->ref);
1602
1603 if (DR_IS_WRITE (a->ref))
1604 {
1605 n_writes--;
1606 if (n_writes)
1607 {
1608 var = VEC_index (tree, vars, 0);
1609 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1610 VEC_replace (tree, vars, 0, var);
1611 }
1612 else
1613 ridx = 1;
1614 }
1615
1616 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1617 !is_read, !is_read);
1618 }
1619
1620 VEC_free (tree, heap, vars);
1621 }
1622
1623 /* Returns the single statement in that NAME is used, excepting
1624 the looparound phi nodes contained in one of the chains. If there is no
1625 such statement, or more statements, NULL is returned. */
1626
1627 static gimple
1628 single_nonlooparound_use (tree name)
1629 {
1630 use_operand_p use;
1631 imm_use_iterator it;
1632 gimple stmt, ret = NULL;
1633
1634 FOR_EACH_IMM_USE_FAST (use, it, name)
1635 {
1636 stmt = USE_STMT (use);
1637
1638 if (gimple_code (stmt) == GIMPLE_PHI)
1639 {
1640 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1641 could not be processed anyway, so just fail for them. */
1642 if (bitmap_bit_p (looparound_phis,
1643 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1644 continue;
1645
1646 return NULL;
1647 }
1648 else if (is_gimple_debug (stmt))
1649 continue;
1650 else if (ret != NULL)
1651 return NULL;
1652 else
1653 ret = stmt;
1654 }
1655
1656 return ret;
1657 }
1658
1659 /* Remove statement STMT, as well as the chain of assignments in that it is
1660 used. */
1661
1662 static void
1663 remove_stmt (gimple stmt)
1664 {
1665 tree name;
1666 gimple next;
1667 gimple_stmt_iterator psi;
1668
1669 if (gimple_code (stmt) == GIMPLE_PHI)
1670 {
1671 name = PHI_RESULT (stmt);
1672 next = single_nonlooparound_use (name);
1673 reset_debug_uses (stmt);
1674 psi = gsi_for_stmt (stmt);
1675 remove_phi_node (&psi, true);
1676
1677 if (!next
1678 || !gimple_assign_ssa_name_copy_p (next)
1679 || gimple_assign_rhs1 (next) != name)
1680 return;
1681
1682 stmt = next;
1683 }
1684
1685 while (1)
1686 {
1687 gimple_stmt_iterator bsi;
1688
1689 bsi = gsi_for_stmt (stmt);
1690
1691 name = gimple_assign_lhs (stmt);
1692 gcc_assert (TREE_CODE (name) == SSA_NAME);
1693
1694 next = single_nonlooparound_use (name);
1695 reset_debug_uses (stmt);
1696
1697 unlink_stmt_vdef (stmt);
1698 gsi_remove (&bsi, true);
1699 release_defs (stmt);
1700
1701 if (!next
1702 || !gimple_assign_ssa_name_copy_p (next)
1703 || gimple_assign_rhs1 (next) != name)
1704 return;
1705
1706 stmt = next;
1707 }
1708 }
1709
1710 /* Perform the predictive commoning optimization for a chain CHAIN.
1711 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1712
1713 static void
1714 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1715 bitmap tmp_vars)
1716 {
1717 unsigned i;
1718 dref a;
1719 tree var;
1720
1721 if (chain->combined)
1722 {
1723 /* For combined chains, just remove the statements that are used to
1724 compute the values of the expression (except for the root one). */
1725 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1726 remove_stmt (a->stmt);
1727 }
1728 else
1729 {
1730 /* For non-combined chains, set up the variables that hold its value,
1731 and replace the uses of the original references by these
1732 variables. */
1733 initialize_root (loop, chain, tmp_vars);
1734 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1735 {
1736 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1737 replace_ref_with (a->stmt, var, false, false);
1738 }
1739 }
1740 }
1741
1742 /* Determines the unroll factor necessary to remove as many temporary variable
1743 copies as possible. CHAINS is the list of chains that will be
1744 optimized. */
1745
1746 static unsigned
1747 determine_unroll_factor (VEC (chain_p, heap) *chains)
1748 {
1749 chain_p chain;
1750 unsigned factor = 1, af, nfactor, i;
1751 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1752
1753 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1754 {
1755 if (chain->type == CT_INVARIANT || chain->combined)
1756 continue;
1757
1758 /* The best unroll factor for this chain is equal to the number of
1759 temporary variables that we create for it. */
1760 af = chain->length;
1761 if (chain->has_max_use_after)
1762 af++;
1763
1764 nfactor = factor * af / gcd (factor, af);
1765 if (nfactor <= max)
1766 factor = nfactor;
1767 }
1768
1769 return factor;
1770 }
1771
1772 /* Perform the predictive commoning optimization for CHAINS.
1773 Uids of the newly created temporary variables are marked in TMP_VARS. */
1774
1775 static void
1776 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1777 bitmap tmp_vars)
1778 {
1779 chain_p chain;
1780 unsigned i;
1781
1782 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1783 {
1784 if (chain->type == CT_INVARIANT)
1785 execute_load_motion (loop, chain, tmp_vars);
1786 else
1787 execute_pred_commoning_chain (loop, chain, tmp_vars);
1788 }
1789
1790 update_ssa (TODO_update_ssa_only_virtuals);
1791 }
1792
1793 /* For each reference in CHAINS, if its defining statement is
1794 phi node, record the ssa name that is defined by it. */
1795
1796 static void
1797 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1798 {
1799 chain_p chain;
1800 dref a;
1801 unsigned i, j;
1802
1803 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1804 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1805 {
1806 if (gimple_code (a->stmt) == GIMPLE_PHI)
1807 {
1808 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1809 a->stmt = NULL;
1810 }
1811 }
1812 }
1813
1814 /* For each reference in CHAINS, if name_defined_by_phi is not
1815 NULL, use it to set the stmt field. */
1816
1817 static void
1818 replace_names_by_phis (VEC (chain_p, heap) *chains)
1819 {
1820 chain_p chain;
1821 dref a;
1822 unsigned i, j;
1823
1824 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1825 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1826 if (a->stmt == NULL)
1827 {
1828 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1829 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1830 a->name_defined_by_phi = NULL_TREE;
1831 }
1832 }
1833
1834 /* Wrapper over execute_pred_commoning, to pass it as a callback
1835 to tree_transform_and_unroll_loop. */
1836
1837 struct epcc_data
1838 {
1839 VEC (chain_p, heap) *chains;
1840 bitmap tmp_vars;
1841 };
1842
1843 static void
1844 execute_pred_commoning_cbck (struct loop *loop, void *data)
1845 {
1846 struct epcc_data *const dta = (struct epcc_data *) data;
1847
1848 /* Restore phi nodes that were replaced by ssa names before
1849 tree_transform_and_unroll_loop (see detailed description in
1850 tree_predictive_commoning_loop). */
1851 replace_names_by_phis (dta->chains);
1852 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1853 }
1854
1855 /* Base NAME and all the names in the chain of phi nodes that use it
1856 on variable VAR. The phi nodes are recognized by being in the copies of
1857 the header of the LOOP. */
1858
1859 static void
1860 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1861 {
1862 gimple stmt, phi;
1863 imm_use_iterator iter;
1864
1865 replace_ssa_name_symbol (name, var);
1866
1867 while (1)
1868 {
1869 phi = NULL;
1870 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1871 {
1872 if (gimple_code (stmt) == GIMPLE_PHI
1873 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1874 {
1875 phi = stmt;
1876 BREAK_FROM_IMM_USE_STMT (iter);
1877 }
1878 }
1879 if (!phi)
1880 return;
1881
1882 name = PHI_RESULT (phi);
1883 replace_ssa_name_symbol (name, var);
1884 }
1885 }
1886
1887 /* Given an unrolled LOOP after predictive commoning, remove the
1888 register copies arising from phi nodes by changing the base
1889 variables of SSA names. TMP_VARS is the set of the temporary variables
1890 for those we want to perform this. */
1891
1892 static void
1893 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1894 {
1895 edge e;
1896 gimple phi, stmt;
1897 tree name, use, var;
1898 gimple_stmt_iterator psi;
1899
1900 e = loop_latch_edge (loop);
1901 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1902 {
1903 phi = gsi_stmt (psi);
1904 name = PHI_RESULT (phi);
1905 var = SSA_NAME_VAR (name);
1906 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1907 continue;
1908 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1909 gcc_assert (TREE_CODE (use) == SSA_NAME);
1910
1911 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1912 stmt = SSA_NAME_DEF_STMT (use);
1913 while (gimple_code (stmt) == GIMPLE_PHI
1914 /* In case we could not unroll the loop enough to eliminate
1915 all copies, we may reach the loop header before the defining
1916 statement (in that case, some register copies will be present
1917 in loop latch in the final code, corresponding to the newly
1918 created looparound phi nodes). */
1919 && gimple_bb (stmt) != loop->header)
1920 {
1921 gcc_assert (single_pred_p (gimple_bb (stmt)));
1922 use = PHI_ARG_DEF (stmt, 0);
1923 stmt = SSA_NAME_DEF_STMT (use);
1924 }
1925
1926 base_names_in_chain_on (loop, use, var);
1927 }
1928 }
1929
1930 /* Returns true if CHAIN is suitable to be combined. */
1931
1932 static bool
1933 chain_can_be_combined_p (chain_p chain)
1934 {
1935 return (!chain->combined
1936 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1937 }
1938
1939 /* Returns the modify statement that uses NAME. Skips over assignment
1940 statements, NAME is replaced with the actual name used in the returned
1941 statement. */
1942
1943 static gimple
1944 find_use_stmt (tree *name)
1945 {
1946 gimple stmt;
1947 tree rhs, lhs;
1948
1949 /* Skip over assignments. */
1950 while (1)
1951 {
1952 stmt = single_nonlooparound_use (*name);
1953 if (!stmt)
1954 return NULL;
1955
1956 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1957 return NULL;
1958
1959 lhs = gimple_assign_lhs (stmt);
1960 if (TREE_CODE (lhs) != SSA_NAME)
1961 return NULL;
1962
1963 if (gimple_assign_copy_p (stmt))
1964 {
1965 rhs = gimple_assign_rhs1 (stmt);
1966 if (rhs != *name)
1967 return NULL;
1968
1969 *name = lhs;
1970 }
1971 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1972 == GIMPLE_BINARY_RHS)
1973 return stmt;
1974 else
1975 return NULL;
1976 }
1977 }
1978
1979 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1980
1981 static bool
1982 may_reassociate_p (tree type, enum tree_code code)
1983 {
1984 if (FLOAT_TYPE_P (type)
1985 && !flag_unsafe_math_optimizations)
1986 return false;
1987
1988 return (commutative_tree_code (code)
1989 && associative_tree_code (code));
1990 }
1991
1992 /* If the operation used in STMT is associative and commutative, go through the
1993 tree of the same operations and returns its root. Distance to the root
1994 is stored in DISTANCE. */
1995
1996 static gimple
1997 find_associative_operation_root (gimple stmt, unsigned *distance)
1998 {
1999 tree lhs;
2000 gimple next;
2001 enum tree_code code = gimple_assign_rhs_code (stmt);
2002 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2003 unsigned dist = 0;
2004
2005 if (!may_reassociate_p (type, code))
2006 return NULL;
2007
2008 while (1)
2009 {
2010 lhs = gimple_assign_lhs (stmt);
2011 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2012
2013 next = find_use_stmt (&lhs);
2014 if (!next
2015 || gimple_assign_rhs_code (next) != code)
2016 break;
2017
2018 stmt = next;
2019 dist++;
2020 }
2021
2022 if (distance)
2023 *distance = dist;
2024 return stmt;
2025 }
2026
2027 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2028 is no such statement, returns NULL_TREE. In case the operation used on
2029 NAME1 and NAME2 is associative and commutative, returns the root of the
2030 tree formed by this operation instead of the statement that uses NAME1 or
2031 NAME2. */
2032
2033 static gimple
2034 find_common_use_stmt (tree *name1, tree *name2)
2035 {
2036 gimple stmt1, stmt2;
2037
2038 stmt1 = find_use_stmt (name1);
2039 if (!stmt1)
2040 return NULL;
2041
2042 stmt2 = find_use_stmt (name2);
2043 if (!stmt2)
2044 return NULL;
2045
2046 if (stmt1 == stmt2)
2047 return stmt1;
2048
2049 stmt1 = find_associative_operation_root (stmt1, NULL);
2050 if (!stmt1)
2051 return NULL;
2052 stmt2 = find_associative_operation_root (stmt2, NULL);
2053 if (!stmt2)
2054 return NULL;
2055
2056 return (stmt1 == stmt2 ? stmt1 : NULL);
2057 }
2058
2059 /* Checks whether R1 and R2 are combined together using CODE, with the result
2060 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2061 if it is true. If CODE is ERROR_MARK, set these values instead. */
2062
2063 static bool
2064 combinable_refs_p (dref r1, dref r2,
2065 enum tree_code *code, bool *swap, tree *rslt_type)
2066 {
2067 enum tree_code acode;
2068 bool aswap;
2069 tree atype;
2070 tree name1, name2;
2071 gimple stmt;
2072
2073 name1 = name_for_ref (r1);
2074 name2 = name_for_ref (r2);
2075 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2076
2077 stmt = find_common_use_stmt (&name1, &name2);
2078
2079 if (!stmt)
2080 return false;
2081
2082 acode = gimple_assign_rhs_code (stmt);
2083 aswap = (!commutative_tree_code (acode)
2084 && gimple_assign_rhs1 (stmt) != name1);
2085 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2086
2087 if (*code == ERROR_MARK)
2088 {
2089 *code = acode;
2090 *swap = aswap;
2091 *rslt_type = atype;
2092 return true;
2093 }
2094
2095 return (*code == acode
2096 && *swap == aswap
2097 && *rslt_type == atype);
2098 }
2099
2100 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2101 an assignment of the remaining operand. */
2102
2103 static void
2104 remove_name_from_operation (gimple stmt, tree op)
2105 {
2106 tree other_op;
2107 gimple_stmt_iterator si;
2108
2109 gcc_assert (is_gimple_assign (stmt));
2110
2111 if (gimple_assign_rhs1 (stmt) == op)
2112 other_op = gimple_assign_rhs2 (stmt);
2113 else
2114 other_op = gimple_assign_rhs1 (stmt);
2115
2116 si = gsi_for_stmt (stmt);
2117 gimple_assign_set_rhs_from_tree (&si, other_op);
2118
2119 /* We should not have reallocated STMT. */
2120 gcc_assert (gsi_stmt (si) == stmt);
2121
2122 update_stmt (stmt);
2123 }
2124
2125 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2126 are combined in a single statement, and returns this statement. */
2127
2128 static gimple
2129 reassociate_to_the_same_stmt (tree name1, tree name2)
2130 {
2131 gimple stmt1, stmt2, root1, root2, s1, s2;
2132 gimple new_stmt, tmp_stmt;
2133 tree new_name, tmp_name, var, r1, r2;
2134 unsigned dist1, dist2;
2135 enum tree_code code;
2136 tree type = TREE_TYPE (name1);
2137 gimple_stmt_iterator bsi;
2138
2139 stmt1 = find_use_stmt (&name1);
2140 stmt2 = find_use_stmt (&name2);
2141 root1 = find_associative_operation_root (stmt1, &dist1);
2142 root2 = find_associative_operation_root (stmt2, &dist2);
2143 code = gimple_assign_rhs_code (stmt1);
2144
2145 gcc_assert (root1 && root2 && root1 == root2
2146 && code == gimple_assign_rhs_code (stmt2));
2147
2148 /* Find the root of the nearest expression in that both NAME1 and NAME2
2149 are used. */
2150 r1 = name1;
2151 s1 = stmt1;
2152 r2 = name2;
2153 s2 = stmt2;
2154
2155 while (dist1 > dist2)
2156 {
2157 s1 = find_use_stmt (&r1);
2158 r1 = gimple_assign_lhs (s1);
2159 dist1--;
2160 }
2161 while (dist2 > dist1)
2162 {
2163 s2 = find_use_stmt (&r2);
2164 r2 = gimple_assign_lhs (s2);
2165 dist2--;
2166 }
2167
2168 while (s1 != s2)
2169 {
2170 s1 = find_use_stmt (&r1);
2171 r1 = gimple_assign_lhs (s1);
2172 s2 = find_use_stmt (&r2);
2173 r2 = gimple_assign_lhs (s2);
2174 }
2175
2176 /* Remove NAME1 and NAME2 from the statements in that they are used
2177 currently. */
2178 remove_name_from_operation (stmt1, name1);
2179 remove_name_from_operation (stmt2, name2);
2180
2181 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2182 combine it with the rhs of S1. */
2183 var = create_tmp_reg (type, "predreastmp");
2184 new_name = make_ssa_name (var, NULL);
2185 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2186
2187 var = create_tmp_reg (type, "predreastmp");
2188 tmp_name = make_ssa_name (var, NULL);
2189
2190 /* Rhs of S1 may now be either a binary expression with operation
2191 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2192 so that name1 or name2 was removed from it). */
2193 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2194 tmp_name,
2195 gimple_assign_rhs1 (s1),
2196 gimple_assign_rhs2 (s1));
2197
2198 bsi = gsi_for_stmt (s1);
2199 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2200 s1 = gsi_stmt (bsi);
2201 update_stmt (s1);
2202
2203 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2204 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2205
2206 return new_stmt;
2207 }
2208
2209 /* Returns the statement that combines references R1 and R2. In case R1
2210 and R2 are not used in the same statement, but they are used with an
2211 associative and commutative operation in the same expression, reassociate
2212 the expression so that they are used in the same statement. */
2213
2214 static gimple
2215 stmt_combining_refs (dref r1, dref r2)
2216 {
2217 gimple stmt1, stmt2;
2218 tree name1 = name_for_ref (r1);
2219 tree name2 = name_for_ref (r2);
2220
2221 stmt1 = find_use_stmt (&name1);
2222 stmt2 = find_use_stmt (&name2);
2223 if (stmt1 == stmt2)
2224 return stmt1;
2225
2226 return reassociate_to_the_same_stmt (name1, name2);
2227 }
2228
2229 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2230 description of the new chain is returned, otherwise we return NULL. */
2231
2232 static chain_p
2233 combine_chains (chain_p ch1, chain_p ch2)
2234 {
2235 dref r1, r2, nw;
2236 enum tree_code op = ERROR_MARK;
2237 bool swap = false;
2238 chain_p new_chain;
2239 unsigned i;
2240 gimple root_stmt;
2241 tree rslt_type = NULL_TREE;
2242
2243 if (ch1 == ch2)
2244 return NULL;
2245 if (ch1->length != ch2->length)
2246 return NULL;
2247
2248 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2249 return NULL;
2250
2251 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2252 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2253 {
2254 if (r1->distance != r2->distance)
2255 return NULL;
2256
2257 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2258 return NULL;
2259 }
2260
2261 if (swap)
2262 {
2263 chain_p tmp = ch1;
2264 ch1 = ch2;
2265 ch2 = tmp;
2266 }
2267
2268 new_chain = XCNEW (struct chain);
2269 new_chain->type = CT_COMBINATION;
2270 new_chain->op = op;
2271 new_chain->ch1 = ch1;
2272 new_chain->ch2 = ch2;
2273 new_chain->rslt_type = rslt_type;
2274 new_chain->length = ch1->length;
2275
2276 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2277 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2278 {
2279 nw = XCNEW (struct dref_d);
2280 nw->stmt = stmt_combining_refs (r1, r2);
2281 nw->distance = r1->distance;
2282
2283 VEC_safe_push (dref, heap, new_chain->refs, nw);
2284 }
2285
2286 new_chain->has_max_use_after = false;
2287 root_stmt = get_chain_root (new_chain)->stmt;
2288 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2289 {
2290 if (nw->distance == new_chain->length
2291 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2292 {
2293 new_chain->has_max_use_after = true;
2294 break;
2295 }
2296 }
2297
2298 ch1->combined = true;
2299 ch2->combined = true;
2300 return new_chain;
2301 }
2302
2303 /* Try to combine the CHAINS. */
2304
2305 static void
2306 try_combine_chains (VEC (chain_p, heap) **chains)
2307 {
2308 unsigned i, j;
2309 chain_p ch1, ch2, cch;
2310 VEC (chain_p, heap) *worklist = NULL;
2311
2312 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2313 if (chain_can_be_combined_p (ch1))
2314 VEC_safe_push (chain_p, heap, worklist, ch1);
2315
2316 while (!VEC_empty (chain_p, worklist))
2317 {
2318 ch1 = VEC_pop (chain_p, worklist);
2319 if (!chain_can_be_combined_p (ch1))
2320 continue;
2321
2322 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2323 {
2324 if (!chain_can_be_combined_p (ch2))
2325 continue;
2326
2327 cch = combine_chains (ch1, ch2);
2328 if (cch)
2329 {
2330 VEC_safe_push (chain_p, heap, worklist, cch);
2331 VEC_safe_push (chain_p, heap, *chains, cch);
2332 break;
2333 }
2334 }
2335 }
2336 }
2337
2338 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2339 impossible because one of these initializers may trap, true otherwise. */
2340
2341 static bool
2342 prepare_initializers_chain (struct loop *loop, chain_p chain)
2343 {
2344 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2345 struct data_reference *dr = get_chain_root (chain)->ref;
2346 tree init;
2347 gimple_seq stmts;
2348 dref laref;
2349 edge entry = loop_preheader_edge (loop);
2350
2351 /* Find the initializers for the variables, and check that they cannot
2352 trap. */
2353 chain->inits = VEC_alloc (tree, heap, n);
2354 for (i = 0; i < n; i++)
2355 VEC_quick_push (tree, chain->inits, NULL_TREE);
2356
2357 /* If we have replaced some looparound phi nodes, use their initializers
2358 instead of creating our own. */
2359 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2360 {
2361 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2362 continue;
2363
2364 gcc_assert (laref->distance > 0);
2365 VEC_replace (tree, chain->inits, n - laref->distance,
2366 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2367 }
2368
2369 for (i = 0; i < n; i++)
2370 {
2371 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2372 continue;
2373
2374 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2375 if (!init)
2376 return false;
2377
2378 if (!chain->all_always_accessed && tree_could_trap_p (init))
2379 return false;
2380
2381 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2382 if (stmts)
2383 gsi_insert_seq_on_edge_immediate (entry, stmts);
2384
2385 VEC_replace (tree, chain->inits, i, init);
2386 }
2387
2388 return true;
2389 }
2390
2391 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2392 be used because the initializers might trap. */
2393
2394 static void
2395 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2396 {
2397 chain_p chain;
2398 unsigned i;
2399
2400 for (i = 0; i < VEC_length (chain_p, chains); )
2401 {
2402 chain = VEC_index (chain_p, chains, i);
2403 if (prepare_initializers_chain (loop, chain))
2404 i++;
2405 else
2406 {
2407 release_chain (chain);
2408 VEC_unordered_remove (chain_p, chains, i);
2409 }
2410 }
2411 }
2412
2413 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2414 unrolled. */
2415
2416 static bool
2417 tree_predictive_commoning_loop (struct loop *loop)
2418 {
2419 VEC (loop_p, heap) *loop_nest;
2420 VEC (data_reference_p, heap) *datarefs;
2421 VEC (ddr_p, heap) *dependences;
2422 struct component *components;
2423 VEC (chain_p, heap) *chains = NULL;
2424 unsigned unroll_factor;
2425 struct tree_niter_desc desc;
2426 bool unroll = false;
2427 edge exit;
2428 bitmap tmp_vars;
2429
2430 if (dump_file && (dump_flags & TDF_DETAILS))
2431 fprintf (dump_file, "Processing loop %d\n", loop->num);
2432
2433 /* Find the data references and split them into components according to their
2434 dependence relations. */
2435 datarefs = VEC_alloc (data_reference_p, heap, 10);
2436 dependences = VEC_alloc (ddr_p, heap, 10);
2437 loop_nest = VEC_alloc (loop_p, heap, 3);
2438 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2439 &dependences))
2440 {
2441 if (dump_file && (dump_flags & TDF_DETAILS))
2442 fprintf (dump_file, "Cannot analyze data dependencies\n");
2443 VEC_free (loop_p, heap, loop_nest);
2444 free_data_refs (datarefs);
2445 free_dependence_relations (dependences);
2446 return false;
2447 }
2448
2449 if (dump_file && (dump_flags & TDF_DETAILS))
2450 dump_data_dependence_relations (dump_file, dependences);
2451
2452 components = split_data_refs_to_components (loop, datarefs, dependences);
2453 VEC_free (loop_p, heap, loop_nest);
2454 free_dependence_relations (dependences);
2455 if (!components)
2456 {
2457 free_data_refs (datarefs);
2458 return false;
2459 }
2460
2461 if (dump_file && (dump_flags & TDF_DETAILS))
2462 {
2463 fprintf (dump_file, "Initial state:\n\n");
2464 dump_components (dump_file, components);
2465 }
2466
2467 /* Find the suitable components and split them into chains. */
2468 components = filter_suitable_components (loop, components);
2469
2470 tmp_vars = BITMAP_ALLOC (NULL);
2471 looparound_phis = BITMAP_ALLOC (NULL);
2472 determine_roots (loop, components, &chains);
2473 release_components (components);
2474
2475 if (!chains)
2476 {
2477 if (dump_file && (dump_flags & TDF_DETAILS))
2478 fprintf (dump_file,
2479 "Predictive commoning failed: no suitable chains\n");
2480 goto end;
2481 }
2482 prepare_initializers (loop, chains);
2483
2484 /* Try to combine the chains that are always worked with together. */
2485 try_combine_chains (&chains);
2486
2487 if (dump_file && (dump_flags & TDF_DETAILS))
2488 {
2489 fprintf (dump_file, "Before commoning:\n\n");
2490 dump_chains (dump_file, chains);
2491 }
2492
2493 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2494 that its number of iterations is divisible by the factor. */
2495 unroll_factor = determine_unroll_factor (chains);
2496 scev_reset ();
2497 unroll = (unroll_factor > 1
2498 && can_unroll_loop_p (loop, unroll_factor, &desc));
2499 exit = single_dom_exit (loop);
2500
2501 /* Execute the predictive commoning transformations, and possibly unroll the
2502 loop. */
2503 if (unroll)
2504 {
2505 struct epcc_data dta;
2506
2507 if (dump_file && (dump_flags & TDF_DETAILS))
2508 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2509
2510 dta.chains = chains;
2511 dta.tmp_vars = tmp_vars;
2512
2513 update_ssa (TODO_update_ssa_only_virtuals);
2514
2515 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2516 execute_pred_commoning_cbck is called may cause phi nodes to be
2517 reallocated, which is a problem since CHAINS may point to these
2518 statements. To fix this, we store the ssa names defined by the
2519 phi nodes here instead of the phi nodes themselves, and restore
2520 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2521 replace_phis_by_defined_names (chains);
2522
2523 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2524 execute_pred_commoning_cbck, &dta);
2525 eliminate_temp_copies (loop, tmp_vars);
2526 }
2527 else
2528 {
2529 if (dump_file && (dump_flags & TDF_DETAILS))
2530 fprintf (dump_file,
2531 "Executing predictive commoning without unrolling.\n");
2532 execute_pred_commoning (loop, chains, tmp_vars);
2533 }
2534
2535 end: ;
2536 release_chains (chains);
2537 free_data_refs (datarefs);
2538 BITMAP_FREE (tmp_vars);
2539 BITMAP_FREE (looparound_phis);
2540
2541 free_affine_expand_cache (&name_expansions);
2542
2543 return unroll;
2544 }
2545
2546 /* Runs predictive commoning. */
2547
2548 unsigned
2549 tree_predictive_commoning (void)
2550 {
2551 bool unrolled = false;
2552 struct loop *loop;
2553 loop_iterator li;
2554 unsigned ret = 0;
2555
2556 initialize_original_copy_tables ();
2557 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2558 if (optimize_loop_for_speed_p (loop))
2559 {
2560 unrolled |= tree_predictive_commoning_loop (loop);
2561 }
2562
2563 if (unrolled)
2564 {
2565 scev_reset ();
2566 ret = TODO_cleanup_cfg;
2567 }
2568 free_original_copy_tables ();
2569
2570 return ret;
2571 }