]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-predcom.c
gcc/
[thirdparty/gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
206
207 /* The maximum number of iterations between the considered memory
208 references. */
209
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
214
215 typedef struct dref_d
216 {
217 /* The reference itself. */
218 struct data_reference *ref;
219
220 /* The statement in that the reference appears. */
221 gimple stmt;
222
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
227
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
231
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
234
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
237
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
242
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
245
246 /* Type of the chain of the references. */
247
248 enum chain_type
249 {
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
252
253 /* There are only loads in the chain. */
254 CT_LOAD,
255
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
258
259 /* A combination of two chains. */
260 CT_COMBINATION
261 };
262
263 /* Chains of data references. */
264
265 typedef struct chain
266 {
267 /* Type of the chain. */
268 enum chain_type type;
269
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
275
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
278
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
281
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
284
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
287
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
291
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
294
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
298
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
301
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
304
305 enum ref_step_type
306 {
307 /* The step is zero. */
308 RS_INVARIANT,
309
310 /* The step is nonzero. */
311 RS_NONZERO,
312
313 /* The step may or may not be nonzero. */
314 RS_ANY
315 };
316
317 /* Components of the data dependence graph. */
318
319 struct component
320 {
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
323
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
326
327 /* Next component in the list. */
328 struct component *next;
329 };
330
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
332
333 static bitmap looparound_phis;
334
335 /* Cache used by tree_to_aff_combination_expand. */
336
337 static struct pointer_map_t *name_expansions;
338
339 /* Dumps data reference REF to FILE. */
340
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
344 {
345 if (ref->ref)
346 {
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
351
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
355
356 fprintf (file, " distance %u\n", ref->distance);
357 }
358 else
359 {
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
368 }
369
370 }
371
372 /* Dumps CHAIN to FILE. */
373
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
377 {
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
382
383 switch (chain->type)
384 {
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
388
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
392
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
396
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
400
401 default:
402 gcc_unreachable ();
403 }
404
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
410
411 if (chain->type == CT_COMBINATION)
412 {
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
418 }
419
420 if (chain->vars)
421 {
422 fprintf (file, " vars");
423 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
424 {
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
427 }
428 fprintf (file, "\n");
429 }
430
431 if (chain->inits)
432 {
433 fprintf (file, " inits");
434 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
435 {
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
438 }
439 fprintf (file, "\n");
440 }
441
442 fprintf (file, " references:\n");
443 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
444 dump_dref (file, a);
445
446 fprintf (file, "\n");
447 }
448
449 /* Dumps CHAINS to FILE. */
450
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
454 {
455 chain_p chain;
456 unsigned i;
457
458 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
459 dump_chain (file, chain);
460 }
461
462 /* Dumps COMP to FILE. */
463
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
467 {
468 dref a;
469 unsigned i;
470
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
474 dump_dref (file, a);
475 fprintf (file, "\n");
476 }
477
478 /* Dumps COMPS to FILE. */
479
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
483 {
484 struct component *comp;
485
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
488 }
489
490 /* Frees a chain CHAIN. */
491
492 static void
493 release_chain (chain_p chain)
494 {
495 dref ref;
496 unsigned i;
497
498 if (chain == NULL)
499 return;
500
501 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
502 free (ref);
503
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
507
508 free (chain);
509 }
510
511 /* Frees CHAINS. */
512
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
515 {
516 unsigned i;
517 chain_p chain;
518
519 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
522 }
523
524 /* Frees a component COMP. */
525
526 static void
527 release_component (struct component *comp)
528 {
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
531 }
532
533 /* Frees list of components COMPS. */
534
535 static void
536 release_components (struct component *comps)
537 {
538 struct component *act, *next;
539
540 for (act = comps; act; act = next)
541 {
542 next = act->next;
543 release_component (act);
544 }
545 }
546
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
549
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
552 {
553 unsigned root, n;
554
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
557
558 for (; a != root; a = n)
559 {
560 n = fathers[a];
561 fathers[a] = root;
562 }
563
564 return root;
565 }
566
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
569
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
572 {
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
575
576 if (ca == cb)
577 return;
578
579 if (sizes[ca] < sizes[cb])
580 {
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
583 }
584 else
585 {
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
588 }
589 }
590
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
594
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
597 {
598 tree ref = DR_REF (a), step = DR_STEP (a);
599
600 if (!step
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613 }
614
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619 {
620 aff_tree delta;
621
622 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
623 &name_expansions);
624 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
625 aff_combination_add (offset, &delta);
626 }
627
628 /* Determines number of iterations of the innermost enclosing loop before B
629 refers to exactly the same location as A and stores it to OFF. If A and
630 B do not have the same step, they never meet, or anything else fails,
631 returns false, otherwise returns true. Both A and B are assumed to
632 satisfy suitable_reference_p. */
633
634 static bool
635 determine_offset (struct data_reference *a, struct data_reference *b,
636 double_int *off)
637 {
638 aff_tree diff, baseb, step;
639 tree typea, typeb;
640
641 /* Check that both the references access the location in the same type. */
642 typea = TREE_TYPE (DR_REF (a));
643 typeb = TREE_TYPE (DR_REF (b));
644 if (!useless_type_conversion_p (typeb, typea))
645 return false;
646
647 /* Check whether the base address and the step of both references is the
648 same. */
649 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
650 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
651 return false;
652
653 if (integer_zerop (DR_STEP (a)))
654 {
655 /* If the references have loop invariant address, check that they access
656 exactly the same location. */
657 *off = double_int_zero;
658 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
659 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
660 }
661
662 /* Compare the offsets of the addresses, and check whether the difference
663 is a multiple of step. */
664 aff_combination_dr_offset (a, &diff);
665 aff_combination_dr_offset (b, &baseb);
666 aff_combination_scale (&baseb, double_int_minus_one);
667 aff_combination_add (&diff, &baseb);
668
669 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
670 &step, &name_expansions);
671 return aff_combination_constant_multiple_p (&diff, &step, off);
672 }
673
674 /* Returns the last basic block in LOOP for that we are sure that
675 it is executed whenever the loop is entered. */
676
677 static basic_block
678 last_always_executed_block (struct loop *loop)
679 {
680 unsigned i;
681 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
682 edge ex;
683 basic_block last = loop->latch;
684
685 FOR_EACH_VEC_ELT (edge, exits, i, ex)
686 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
687 VEC_free (edge, heap, exits);
688
689 return last;
690 }
691
692 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
693
694 static struct component *
695 split_data_refs_to_components (struct loop *loop,
696 VEC (data_reference_p, heap) *datarefs,
697 VEC (ddr_p, heap) *depends)
698 {
699 unsigned i, n = VEC_length (data_reference_p, datarefs);
700 unsigned ca, ia, ib, bad;
701 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
702 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
703 struct component **comps;
704 struct data_reference *dr, *dra, *drb;
705 struct data_dependence_relation *ddr;
706 struct component *comp_list = NULL, *comp;
707 dref dataref;
708 basic_block last_always_executed = last_always_executed_block (loop);
709
710 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
711 {
712 if (!DR_REF (dr))
713 {
714 /* A fake reference for call or asm_expr that may clobber memory;
715 just fail. */
716 goto end;
717 }
718 dr->aux = (void *) (size_t) i;
719 comp_father[i] = i;
720 comp_size[i] = 1;
721 }
722
723 /* A component reserved for the "bad" data references. */
724 comp_father[n] = n;
725 comp_size[n] = 1;
726
727 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
728 {
729 enum ref_step_type dummy;
730
731 if (!suitable_reference_p (dr, &dummy))
732 {
733 ia = (unsigned) (size_t) dr->aux;
734 merge_comps (comp_father, comp_size, n, ia);
735 }
736 }
737
738 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
739 {
740 double_int dummy_off;
741
742 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
743 continue;
744
745 dra = DDR_A (ddr);
746 drb = DDR_B (ddr);
747 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
748 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
749 if (ia == ib)
750 continue;
751
752 bad = component_of (comp_father, n);
753
754 /* If both A and B are reads, we may ignore unsuitable dependences. */
755 if (DR_IS_READ (dra) && DR_IS_READ (drb)
756 && (ia == bad || ib == bad
757 || !determine_offset (dra, drb, &dummy_off)))
758 continue;
759
760 merge_comps (comp_father, comp_size, ia, ib);
761 }
762
763 comps = XCNEWVEC (struct component *, n);
764 bad = component_of (comp_father, n);
765 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
766 {
767 ia = (unsigned) (size_t) dr->aux;
768 ca = component_of (comp_father, ia);
769 if (ca == bad)
770 continue;
771
772 comp = comps[ca];
773 if (!comp)
774 {
775 comp = XCNEW (struct component);
776 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
777 comps[ca] = comp;
778 }
779
780 dataref = XCNEW (struct dref_d);
781 dataref->ref = dr;
782 dataref->stmt = DR_STMT (dr);
783 dataref->offset = double_int_zero;
784 dataref->distance = 0;
785
786 dataref->always_accessed
787 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
788 gimple_bb (dataref->stmt));
789 dataref->pos = VEC_length (dref, comp->refs);
790 VEC_quick_push (dref, comp->refs, dataref);
791 }
792
793 for (i = 0; i < n; i++)
794 {
795 comp = comps[i];
796 if (comp)
797 {
798 comp->next = comp_list;
799 comp_list = comp;
800 }
801 }
802 free (comps);
803
804 end:
805 free (comp_father);
806 free (comp_size);
807 return comp_list;
808 }
809
810 /* Returns true if the component COMP satisfies the conditions
811 described in 2) at the beginning of this file. LOOP is the current
812 loop. */
813
814 static bool
815 suitable_component_p (struct loop *loop, struct component *comp)
816 {
817 unsigned i;
818 dref a, first;
819 basic_block ba, bp = loop->header;
820 bool ok, has_write = false;
821
822 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
823 {
824 ba = gimple_bb (a->stmt);
825
826 if (!just_once_each_iteration_p (loop, ba))
827 return false;
828
829 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
830 bp = ba;
831
832 if (DR_IS_WRITE (a->ref))
833 has_write = true;
834 }
835
836 first = VEC_index (dref, comp->refs, 0);
837 ok = suitable_reference_p (first->ref, &comp->comp_step);
838 gcc_assert (ok);
839 first->offset = double_int_zero;
840
841 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
842 {
843 if (!determine_offset (first->ref, a->ref, &a->offset))
844 return false;
845
846 #ifdef ENABLE_CHECKING
847 {
848 enum ref_step_type a_step;
849 ok = suitable_reference_p (a->ref, &a_step);
850 gcc_assert (ok && a_step == comp->comp_step);
851 }
852 #endif
853 }
854
855 /* If there is a write inside the component, we must know whether the
856 step is nonzero or not -- we would not otherwise be able to recognize
857 whether the value accessed by reads comes from the OFFSET-th iteration
858 or the previous one. */
859 if (has_write && comp->comp_step == RS_ANY)
860 return false;
861
862 return true;
863 }
864
865 /* Check the conditions on references inside each of components COMPS,
866 and remove the unsuitable components from the list. The new list
867 of components is returned. The conditions are described in 2) at
868 the beginning of this file. LOOP is the current loop. */
869
870 static struct component *
871 filter_suitable_components (struct loop *loop, struct component *comps)
872 {
873 struct component **comp, *act;
874
875 for (comp = &comps; *comp; )
876 {
877 act = *comp;
878 if (suitable_component_p (loop, act))
879 comp = &act->next;
880 else
881 {
882 dref ref;
883 unsigned i;
884
885 *comp = act->next;
886 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
887 free (ref);
888 release_component (act);
889 }
890 }
891
892 return comps;
893 }
894
895 /* Compares two drefs A and B by their offset and position. Callback for
896 qsort. */
897
898 static int
899 order_drefs (const void *a, const void *b)
900 {
901 const dref *const da = (const dref *) a;
902 const dref *const db = (const dref *) b;
903 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
904
905 if (offcmp != 0)
906 return offcmp;
907
908 return (*da)->pos - (*db)->pos;
909 }
910
911 /* Returns root of the CHAIN. */
912
913 static inline dref
914 get_chain_root (chain_p chain)
915 {
916 return VEC_index (dref, chain->refs, 0);
917 }
918
919 /* Adds REF to the chain CHAIN. */
920
921 static void
922 add_ref_to_chain (chain_p chain, dref ref)
923 {
924 dref root = get_chain_root (chain);
925 double_int dist;
926
927 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
928 dist = double_int_sub (ref->offset, root->offset);
929 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
930 {
931 free (ref);
932 return;
933 }
934 gcc_assert (double_int_fits_in_uhwi_p (dist));
935
936 VEC_safe_push (dref, heap, chain->refs, ref);
937
938 ref->distance = double_int_to_uhwi (dist);
939
940 if (ref->distance >= chain->length)
941 {
942 chain->length = ref->distance;
943 chain->has_max_use_after = false;
944 }
945
946 if (ref->distance == chain->length
947 && ref->pos > root->pos)
948 chain->has_max_use_after = true;
949
950 chain->all_always_accessed &= ref->always_accessed;
951 }
952
953 /* Returns the chain for invariant component COMP. */
954
955 static chain_p
956 make_invariant_chain (struct component *comp)
957 {
958 chain_p chain = XCNEW (struct chain);
959 unsigned i;
960 dref ref;
961
962 chain->type = CT_INVARIANT;
963
964 chain->all_always_accessed = true;
965
966 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
967 {
968 VEC_safe_push (dref, heap, chain->refs, ref);
969 chain->all_always_accessed &= ref->always_accessed;
970 }
971
972 return chain;
973 }
974
975 /* Make a new chain rooted at REF. */
976
977 static chain_p
978 make_rooted_chain (dref ref)
979 {
980 chain_p chain = XCNEW (struct chain);
981
982 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
983
984 VEC_safe_push (dref, heap, chain->refs, ref);
985 chain->all_always_accessed = ref->always_accessed;
986
987 ref->distance = 0;
988
989 return chain;
990 }
991
992 /* Returns true if CHAIN is not trivial. */
993
994 static bool
995 nontrivial_chain_p (chain_p chain)
996 {
997 return chain != NULL && VEC_length (dref, chain->refs) > 1;
998 }
999
1000 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1001 is no such name. */
1002
1003 static tree
1004 name_for_ref (dref ref)
1005 {
1006 tree name;
1007
1008 if (is_gimple_assign (ref->stmt))
1009 {
1010 if (!ref->ref || DR_IS_READ (ref->ref))
1011 name = gimple_assign_lhs (ref->stmt);
1012 else
1013 name = gimple_assign_rhs1 (ref->stmt);
1014 }
1015 else
1016 name = PHI_RESULT (ref->stmt);
1017
1018 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1019 }
1020
1021 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1022 iterations of the innermost enclosing loop). */
1023
1024 static bool
1025 valid_initializer_p (struct data_reference *ref,
1026 unsigned distance, struct data_reference *root)
1027 {
1028 aff_tree diff, base, step;
1029 double_int off;
1030
1031 /* Both REF and ROOT must be accessing the same object. */
1032 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1033 return false;
1034
1035 /* The initializer is defined outside of loop, hence its address must be
1036 invariant inside the loop. */
1037 gcc_assert (integer_zerop (DR_STEP (ref)));
1038
1039 /* If the address of the reference is invariant, initializer must access
1040 exactly the same location. */
1041 if (integer_zerop (DR_STEP (root)))
1042 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1043 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1044
1045 /* Verify that this index of REF is equal to the root's index at
1046 -DISTANCE-th iteration. */
1047 aff_combination_dr_offset (root, &diff);
1048 aff_combination_dr_offset (ref, &base);
1049 aff_combination_scale (&base, double_int_minus_one);
1050 aff_combination_add (&diff, &base);
1051
1052 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1053 &name_expansions);
1054 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1055 return false;
1056
1057 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1058 return false;
1059
1060 return true;
1061 }
1062
1063 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1064 initial value is correct (equal to initial value of REF shifted by one
1065 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1066 is the root of the current chain. */
1067
1068 static gimple
1069 find_looparound_phi (struct loop *loop, dref ref, dref root)
1070 {
1071 tree name, init, init_ref;
1072 gimple phi = NULL, init_stmt;
1073 edge latch = loop_latch_edge (loop);
1074 struct data_reference init_dr;
1075 gimple_stmt_iterator psi;
1076
1077 if (is_gimple_assign (ref->stmt))
1078 {
1079 if (DR_IS_READ (ref->ref))
1080 name = gimple_assign_lhs (ref->stmt);
1081 else
1082 name = gimple_assign_rhs1 (ref->stmt);
1083 }
1084 else
1085 name = PHI_RESULT (ref->stmt);
1086 if (!name)
1087 return NULL;
1088
1089 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1090 {
1091 phi = gsi_stmt (psi);
1092 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1093 break;
1094 }
1095
1096 if (gsi_end_p (psi))
1097 return NULL;
1098
1099 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1100 if (TREE_CODE (init) != SSA_NAME)
1101 return NULL;
1102 init_stmt = SSA_NAME_DEF_STMT (init);
1103 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1104 return NULL;
1105 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1106
1107 init_ref = gimple_assign_rhs1 (init_stmt);
1108 if (!REFERENCE_CLASS_P (init_ref)
1109 && !DECL_P (init_ref))
1110 return NULL;
1111
1112 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1113 loop enclosing PHI). */
1114 memset (&init_dr, 0, sizeof (struct data_reference));
1115 DR_REF (&init_dr) = init_ref;
1116 DR_STMT (&init_dr) = phi;
1117 if (!dr_analyze_innermost (&init_dr))
1118 return NULL;
1119
1120 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1121 return NULL;
1122
1123 return phi;
1124 }
1125
1126 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1127
1128 static void
1129 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1130 {
1131 dref nw = XCNEW (struct dref_d), aref;
1132 unsigned i;
1133
1134 nw->stmt = phi;
1135 nw->distance = ref->distance + 1;
1136 nw->always_accessed = 1;
1137
1138 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1139 if (aref->distance >= nw->distance)
1140 break;
1141 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1142
1143 if (nw->distance > chain->length)
1144 {
1145 chain->length = nw->distance;
1146 chain->has_max_use_after = false;
1147 }
1148 }
1149
1150 /* For references in CHAIN that are copied around the LOOP (created previously
1151 by PRE, or by user), add the results of such copies to the chain. This
1152 enables us to remove the copies by unrolling, and may need less registers
1153 (also, it may allow us to combine chains together). */
1154
1155 static void
1156 add_looparound_copies (struct loop *loop, chain_p chain)
1157 {
1158 unsigned i;
1159 dref ref, root = get_chain_root (chain);
1160 gimple phi;
1161
1162 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1163 {
1164 phi = find_looparound_phi (loop, ref, root);
1165 if (!phi)
1166 continue;
1167
1168 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1169 insert_looparound_copy (chain, ref, phi);
1170 }
1171 }
1172
1173 /* Find roots of the values and determine distances in the component COMP.
1174 The references are redistributed into CHAINS. LOOP is the current
1175 loop. */
1176
1177 static void
1178 determine_roots_comp (struct loop *loop,
1179 struct component *comp,
1180 VEC (chain_p, heap) **chains)
1181 {
1182 unsigned i;
1183 dref a;
1184 chain_p chain = NULL;
1185 double_int last_ofs = double_int_zero;
1186
1187 /* Invariants are handled specially. */
1188 if (comp->comp_step == RS_INVARIANT)
1189 {
1190 chain = make_invariant_chain (comp);
1191 VEC_safe_push (chain_p, heap, *chains, chain);
1192 return;
1193 }
1194
1195 VEC_qsort (dref, comp->refs, order_drefs);
1196
1197 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1198 {
1199 if (!chain || DR_IS_WRITE (a->ref)
1200 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1201 double_int_sub (a->offset, last_ofs)) <= 0)
1202 {
1203 if (nontrivial_chain_p (chain))
1204 {
1205 add_looparound_copies (loop, chain);
1206 VEC_safe_push (chain_p, heap, *chains, chain);
1207 }
1208 else
1209 release_chain (chain);
1210 chain = make_rooted_chain (a);
1211 last_ofs = a->offset;
1212 continue;
1213 }
1214
1215 add_ref_to_chain (chain, a);
1216 }
1217
1218 if (nontrivial_chain_p (chain))
1219 {
1220 add_looparound_copies (loop, chain);
1221 VEC_safe_push (chain_p, heap, *chains, chain);
1222 }
1223 else
1224 release_chain (chain);
1225 }
1226
1227 /* Find roots of the values and determine distances in components COMPS, and
1228 separates the references to CHAINS. LOOP is the current loop. */
1229
1230 static void
1231 determine_roots (struct loop *loop,
1232 struct component *comps, VEC (chain_p, heap) **chains)
1233 {
1234 struct component *comp;
1235
1236 for (comp = comps; comp; comp = comp->next)
1237 determine_roots_comp (loop, comp, chains);
1238 }
1239
1240 /* Replace the reference in statement STMT with temporary variable
1241 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1242 the reference in the statement. IN_LHS is true if the reference
1243 is in the lhs of STMT, false if it is in rhs. */
1244
1245 static void
1246 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1247 {
1248 tree val;
1249 gimple new_stmt;
1250 gimple_stmt_iterator bsi, psi;
1251
1252 if (gimple_code (stmt) == GIMPLE_PHI)
1253 {
1254 gcc_assert (!in_lhs && !set);
1255
1256 val = PHI_RESULT (stmt);
1257 bsi = gsi_after_labels (gimple_bb (stmt));
1258 psi = gsi_for_stmt (stmt);
1259 remove_phi_node (&psi, false);
1260
1261 /* Turn the phi node into GIMPLE_ASSIGN. */
1262 new_stmt = gimple_build_assign (val, new_tree);
1263 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1264 return;
1265 }
1266
1267 /* Since the reference is of gimple_reg type, it should only
1268 appear as lhs or rhs of modify statement. */
1269 gcc_assert (is_gimple_assign (stmt));
1270
1271 bsi = gsi_for_stmt (stmt);
1272
1273 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1274 if (!set)
1275 {
1276 gcc_assert (!in_lhs);
1277 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1278 stmt = gsi_stmt (bsi);
1279 update_stmt (stmt);
1280 return;
1281 }
1282
1283 if (in_lhs)
1284 {
1285 /* We have statement
1286
1287 OLD = VAL
1288
1289 If OLD is a memory reference, then VAL is gimple_val, and we transform
1290 this to
1291
1292 OLD = VAL
1293 NEW = VAL
1294
1295 Otherwise, we are replacing a combination chain,
1296 VAL is the expression that performs the combination, and OLD is an
1297 SSA name. In this case, we transform the assignment to
1298
1299 OLD = VAL
1300 NEW = OLD
1301
1302 */
1303
1304 val = gimple_assign_lhs (stmt);
1305 if (TREE_CODE (val) != SSA_NAME)
1306 {
1307 gcc_assert (gimple_assign_copy_p (stmt));
1308 val = gimple_assign_rhs1 (stmt);
1309 }
1310 }
1311 else
1312 {
1313 /* VAL = OLD
1314
1315 is transformed to
1316
1317 VAL = OLD
1318 NEW = VAL */
1319
1320 val = gimple_assign_lhs (stmt);
1321 }
1322
1323 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1324 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1325 }
1326
1327 /* Returns the reference to the address of REF in the ITER-th iteration of
1328 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1329 try to preserve the original shape of the reference (not rewrite it
1330 as an indirect ref to the address), to make tree_could_trap_p in
1331 prepare_initializers_chain return false more often. */
1332
1333 static tree
1334 ref_at_iteration (struct loop *loop, tree ref, int iter)
1335 {
1336 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1337 affine_iv iv;
1338 bool ok;
1339
1340 if (handled_component_p (ref))
1341 {
1342 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1343 if (!op0)
1344 return NULL_TREE;
1345 }
1346 else if (!INDIRECT_REF_P (ref)
1347 && TREE_CODE (ref) != MEM_REF)
1348 return unshare_expr (ref);
1349
1350 if (TREE_CODE (ref) == MEM_REF)
1351 {
1352 ret = unshare_expr (ref);
1353 idx = TREE_OPERAND (ref, 0);
1354 idx_p = &TREE_OPERAND (ret, 0);
1355 }
1356 else if (TREE_CODE (ref) == COMPONENT_REF)
1357 {
1358 /* Check that the offset is loop invariant. */
1359 if (TREE_OPERAND (ref, 2)
1360 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1361 return NULL_TREE;
1362
1363 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1364 unshare_expr (TREE_OPERAND (ref, 1)),
1365 unshare_expr (TREE_OPERAND (ref, 2)));
1366 }
1367 else if (TREE_CODE (ref) == ARRAY_REF)
1368 {
1369 /* Check that the lower bound and the step are loop invariant. */
1370 if (TREE_OPERAND (ref, 2)
1371 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1372 return NULL_TREE;
1373 if (TREE_OPERAND (ref, 3)
1374 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1375 return NULL_TREE;
1376
1377 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1378 unshare_expr (TREE_OPERAND (ref, 2)),
1379 unshare_expr (TREE_OPERAND (ref, 3)));
1380 idx = TREE_OPERAND (ref, 1);
1381 idx_p = &TREE_OPERAND (ret, 1);
1382 }
1383 else
1384 return NULL_TREE;
1385
1386 ok = simple_iv (loop, loop, idx, &iv, true);
1387 if (!ok)
1388 return NULL_TREE;
1389 iv.base = expand_simple_operations (iv.base);
1390 if (integer_zerop (iv.step))
1391 *idx_p = unshare_expr (iv.base);
1392 else
1393 {
1394 type = TREE_TYPE (iv.base);
1395 if (POINTER_TYPE_P (type))
1396 {
1397 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1398 size_int (iter));
1399 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1400 }
1401 else
1402 {
1403 val = fold_build2 (MULT_EXPR, type, iv.step,
1404 build_int_cst_type (type, iter));
1405 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1406 }
1407 *idx_p = unshare_expr (val);
1408 }
1409
1410 return ret;
1411 }
1412
1413 /* Get the initialization expression for the INDEX-th temporary variable
1414 of CHAIN. */
1415
1416 static tree
1417 get_init_expr (chain_p chain, unsigned index)
1418 {
1419 if (chain->type == CT_COMBINATION)
1420 {
1421 tree e1 = get_init_expr (chain->ch1, index);
1422 tree e2 = get_init_expr (chain->ch2, index);
1423
1424 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1425 }
1426 else
1427 return VEC_index (tree, chain->inits, index);
1428 }
1429
1430 /* Marks all virtual operands of statement STMT for renaming. */
1431
1432 void
1433 mark_virtual_ops_for_renaming (gimple stmt)
1434 {
1435 tree var;
1436
1437 if (gimple_code (stmt) == GIMPLE_PHI)
1438 {
1439 var = PHI_RESULT (stmt);
1440 if (is_gimple_reg (var))
1441 return;
1442
1443 if (TREE_CODE (var) == SSA_NAME)
1444 var = SSA_NAME_VAR (var);
1445 mark_sym_for_renaming (var);
1446 return;
1447 }
1448
1449 update_stmt (stmt);
1450 if (gimple_vuse (stmt))
1451 mark_sym_for_renaming (gimple_vop (cfun));
1452 }
1453
1454 /* Returns a new temporary variable used for the I-th variable carrying
1455 value of REF. The variable's uid is marked in TMP_VARS. */
1456
1457 static tree
1458 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1459 {
1460 tree type = TREE_TYPE (ref);
1461 /* We never access the components of the temporary variable in predictive
1462 commoning. */
1463 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1464
1465 add_referenced_var (var);
1466 bitmap_set_bit (tmp_vars, DECL_UID (var));
1467 return var;
1468 }
1469
1470 /* Creates the variables for CHAIN, as well as phi nodes for them and
1471 initialization on entry to LOOP. Uids of the newly created
1472 temporary variables are marked in TMP_VARS. */
1473
1474 static void
1475 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1476 {
1477 unsigned i;
1478 unsigned n = chain->length;
1479 dref root = get_chain_root (chain);
1480 bool reuse_first = !chain->has_max_use_after;
1481 tree ref, init, var, next;
1482 gimple phi;
1483 gimple_seq stmts;
1484 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1485
1486 /* If N == 0, then all the references are within the single iteration. And
1487 since this is an nonempty chain, reuse_first cannot be true. */
1488 gcc_assert (n > 0 || !reuse_first);
1489
1490 chain->vars = VEC_alloc (tree, heap, n + 1);
1491
1492 if (chain->type == CT_COMBINATION)
1493 ref = gimple_assign_lhs (root->stmt);
1494 else
1495 ref = DR_REF (root->ref);
1496
1497 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1498 {
1499 var = predcom_tmp_var (ref, i, tmp_vars);
1500 VEC_quick_push (tree, chain->vars, var);
1501 }
1502 if (reuse_first)
1503 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1504
1505 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1506 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1507
1508 for (i = 0; i < n; i++)
1509 {
1510 var = VEC_index (tree, chain->vars, i);
1511 next = VEC_index (tree, chain->vars, i + 1);
1512 init = get_init_expr (chain, i);
1513
1514 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1515 if (stmts)
1516 gsi_insert_seq_on_edge_immediate (entry, stmts);
1517
1518 phi = create_phi_node (var, loop->header);
1519 SSA_NAME_DEF_STMT (var) = phi;
1520 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1521 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1522 }
1523 }
1524
1525 /* Create the variables and initialization statement for root of chain
1526 CHAIN. Uids of the newly created temporary variables are marked
1527 in TMP_VARS. */
1528
1529 static void
1530 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1531 {
1532 dref root = get_chain_root (chain);
1533 bool in_lhs = (chain->type == CT_STORE_LOAD
1534 || chain->type == CT_COMBINATION);
1535
1536 initialize_root_vars (loop, chain, tmp_vars);
1537 replace_ref_with (root->stmt,
1538 VEC_index (tree, chain->vars, chain->length),
1539 true, in_lhs);
1540 }
1541
1542 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1543 initialization on entry to LOOP if necessary. The ssa name for the variable
1544 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1545 around the loop is created. Uid of the newly created temporary variable
1546 is marked in TMP_VARS. INITS is the list containing the (single)
1547 initializer. */
1548
1549 static void
1550 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1551 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1552 bitmap tmp_vars)
1553 {
1554 unsigned i;
1555 tree ref = DR_REF (root->ref), init, var, next;
1556 gimple_seq stmts;
1557 gimple phi;
1558 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1559
1560 /* Find the initializer for the variable, and check that it cannot
1561 trap. */
1562 init = VEC_index (tree, inits, 0);
1563
1564 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1565 var = predcom_tmp_var (ref, 0, tmp_vars);
1566 VEC_quick_push (tree, *vars, var);
1567 if (written)
1568 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1569
1570 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1571 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1572
1573 var = VEC_index (tree, *vars, 0);
1574
1575 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1576 if (stmts)
1577 gsi_insert_seq_on_edge_immediate (entry, stmts);
1578
1579 if (written)
1580 {
1581 next = VEC_index (tree, *vars, 1);
1582 phi = create_phi_node (var, loop->header);
1583 SSA_NAME_DEF_STMT (var) = phi;
1584 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1585 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1586 }
1587 else
1588 {
1589 gimple init_stmt = gimple_build_assign (var, init);
1590 mark_virtual_ops_for_renaming (init_stmt);
1591 gsi_insert_on_edge_immediate (entry, init_stmt);
1592 }
1593 }
1594
1595
1596 /* Execute load motion for references in chain CHAIN. Uids of the newly
1597 created temporary variables are marked in TMP_VARS. */
1598
1599 static void
1600 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1601 {
1602 VEC (tree, heap) *vars;
1603 dref a;
1604 unsigned n_writes = 0, ridx, i;
1605 tree var;
1606
1607 gcc_assert (chain->type == CT_INVARIANT);
1608 gcc_assert (!chain->combined);
1609 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1610 if (DR_IS_WRITE (a->ref))
1611 n_writes++;
1612
1613 /* If there are no reads in the loop, there is nothing to do. */
1614 if (n_writes == VEC_length (dref, chain->refs))
1615 return;
1616
1617 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1618 &vars, chain->inits, tmp_vars);
1619
1620 ridx = 0;
1621 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1622 {
1623 bool is_read = DR_IS_READ (a->ref);
1624 mark_virtual_ops_for_renaming (a->stmt);
1625
1626 if (DR_IS_WRITE (a->ref))
1627 {
1628 n_writes--;
1629 if (n_writes)
1630 {
1631 var = VEC_index (tree, vars, 0);
1632 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1633 VEC_replace (tree, vars, 0, var);
1634 }
1635 else
1636 ridx = 1;
1637 }
1638
1639 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1640 !is_read, !is_read);
1641 }
1642
1643 VEC_free (tree, heap, vars);
1644 }
1645
1646 /* Returns the single statement in that NAME is used, excepting
1647 the looparound phi nodes contained in one of the chains. If there is no
1648 such statement, or more statements, NULL is returned. */
1649
1650 static gimple
1651 single_nonlooparound_use (tree name)
1652 {
1653 use_operand_p use;
1654 imm_use_iterator it;
1655 gimple stmt, ret = NULL;
1656
1657 FOR_EACH_IMM_USE_FAST (use, it, name)
1658 {
1659 stmt = USE_STMT (use);
1660
1661 if (gimple_code (stmt) == GIMPLE_PHI)
1662 {
1663 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1664 could not be processed anyway, so just fail for them. */
1665 if (bitmap_bit_p (looparound_phis,
1666 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1667 continue;
1668
1669 return NULL;
1670 }
1671 else if (ret != NULL)
1672 return NULL;
1673 else
1674 ret = stmt;
1675 }
1676
1677 return ret;
1678 }
1679
1680 /* Remove statement STMT, as well as the chain of assignments in that it is
1681 used. */
1682
1683 static void
1684 remove_stmt (gimple stmt)
1685 {
1686 tree name;
1687 gimple next;
1688 gimple_stmt_iterator psi;
1689
1690 if (gimple_code (stmt) == GIMPLE_PHI)
1691 {
1692 name = PHI_RESULT (stmt);
1693 next = single_nonlooparound_use (name);
1694 psi = gsi_for_stmt (stmt);
1695 remove_phi_node (&psi, true);
1696
1697 if (!next
1698 || !gimple_assign_ssa_name_copy_p (next)
1699 || gimple_assign_rhs1 (next) != name)
1700 return;
1701
1702 stmt = next;
1703 }
1704
1705 while (1)
1706 {
1707 gimple_stmt_iterator bsi;
1708
1709 bsi = gsi_for_stmt (stmt);
1710
1711 name = gimple_assign_lhs (stmt);
1712 gcc_assert (TREE_CODE (name) == SSA_NAME);
1713
1714 next = single_nonlooparound_use (name);
1715
1716 mark_virtual_ops_for_renaming (stmt);
1717 gsi_remove (&bsi, true);
1718 release_defs (stmt);
1719
1720 if (!next
1721 || !gimple_assign_ssa_name_copy_p (next)
1722 || gimple_assign_rhs1 (next) != name)
1723 return;
1724
1725 stmt = next;
1726 }
1727 }
1728
1729 /* Perform the predictive commoning optimization for a chain CHAIN.
1730 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1731
1732 static void
1733 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1734 bitmap tmp_vars)
1735 {
1736 unsigned i;
1737 dref a, root;
1738 tree var;
1739
1740 if (chain->combined)
1741 {
1742 /* For combined chains, just remove the statements that are used to
1743 compute the values of the expression (except for the root one). */
1744 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1745 remove_stmt (a->stmt);
1746 }
1747 else
1748 {
1749 /* For non-combined chains, set up the variables that hold its value,
1750 and replace the uses of the original references by these
1751 variables. */
1752 root = get_chain_root (chain);
1753 mark_virtual_ops_for_renaming (root->stmt);
1754
1755 initialize_root (loop, chain, tmp_vars);
1756 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1757 {
1758 mark_virtual_ops_for_renaming (a->stmt);
1759 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1760 replace_ref_with (a->stmt, var, false, false);
1761 }
1762 }
1763 }
1764
1765 /* Determines the unroll factor necessary to remove as many temporary variable
1766 copies as possible. CHAINS is the list of chains that will be
1767 optimized. */
1768
1769 static unsigned
1770 determine_unroll_factor (VEC (chain_p, heap) *chains)
1771 {
1772 chain_p chain;
1773 unsigned factor = 1, af, nfactor, i;
1774 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1775
1776 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1777 {
1778 if (chain->type == CT_INVARIANT || chain->combined)
1779 continue;
1780
1781 /* The best unroll factor for this chain is equal to the number of
1782 temporary variables that we create for it. */
1783 af = chain->length;
1784 if (chain->has_max_use_after)
1785 af++;
1786
1787 nfactor = factor * af / gcd (factor, af);
1788 if (nfactor <= max)
1789 factor = nfactor;
1790 }
1791
1792 return factor;
1793 }
1794
1795 /* Perform the predictive commoning optimization for CHAINS.
1796 Uids of the newly created temporary variables are marked in TMP_VARS. */
1797
1798 static void
1799 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1800 bitmap tmp_vars)
1801 {
1802 chain_p chain;
1803 unsigned i;
1804
1805 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1806 {
1807 if (chain->type == CT_INVARIANT)
1808 execute_load_motion (loop, chain, tmp_vars);
1809 else
1810 execute_pred_commoning_chain (loop, chain, tmp_vars);
1811 }
1812
1813 update_ssa (TODO_update_ssa_only_virtuals);
1814 }
1815
1816 /* For each reference in CHAINS, if its defining statement is
1817 phi node, record the ssa name that is defined by it. */
1818
1819 static void
1820 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1821 {
1822 chain_p chain;
1823 dref a;
1824 unsigned i, j;
1825
1826 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1827 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1828 {
1829 if (gimple_code (a->stmt) == GIMPLE_PHI)
1830 {
1831 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1832 a->stmt = NULL;
1833 }
1834 }
1835 }
1836
1837 /* For each reference in CHAINS, if name_defined_by_phi is not
1838 NULL, use it to set the stmt field. */
1839
1840 static void
1841 replace_names_by_phis (VEC (chain_p, heap) *chains)
1842 {
1843 chain_p chain;
1844 dref a;
1845 unsigned i, j;
1846
1847 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1848 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1849 if (a->stmt == NULL)
1850 {
1851 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1852 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1853 a->name_defined_by_phi = NULL_TREE;
1854 }
1855 }
1856
1857 /* Wrapper over execute_pred_commoning, to pass it as a callback
1858 to tree_transform_and_unroll_loop. */
1859
1860 struct epcc_data
1861 {
1862 VEC (chain_p, heap) *chains;
1863 bitmap tmp_vars;
1864 };
1865
1866 static void
1867 execute_pred_commoning_cbck (struct loop *loop, void *data)
1868 {
1869 struct epcc_data *const dta = (struct epcc_data *) data;
1870
1871 /* Restore phi nodes that were replaced by ssa names before
1872 tree_transform_and_unroll_loop (see detailed description in
1873 tree_predictive_commoning_loop). */
1874 replace_names_by_phis (dta->chains);
1875 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1876 }
1877
1878 /* Base NAME and all the names in the chain of phi nodes that use it
1879 on variable VAR. The phi nodes are recognized by being in the copies of
1880 the header of the LOOP. */
1881
1882 static void
1883 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1884 {
1885 gimple stmt, phi;
1886 imm_use_iterator iter;
1887
1888 SSA_NAME_VAR (name) = var;
1889
1890 while (1)
1891 {
1892 phi = NULL;
1893 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1894 {
1895 if (gimple_code (stmt) == GIMPLE_PHI
1896 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1897 {
1898 phi = stmt;
1899 BREAK_FROM_IMM_USE_STMT (iter);
1900 }
1901 }
1902 if (!phi)
1903 return;
1904
1905 name = PHI_RESULT (phi);
1906 SSA_NAME_VAR (name) = var;
1907 }
1908 }
1909
1910 /* Given an unrolled LOOP after predictive commoning, remove the
1911 register copies arising from phi nodes by changing the base
1912 variables of SSA names. TMP_VARS is the set of the temporary variables
1913 for those we want to perform this. */
1914
1915 static void
1916 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1917 {
1918 edge e;
1919 gimple phi, stmt;
1920 tree name, use, var;
1921 gimple_stmt_iterator psi;
1922
1923 e = loop_latch_edge (loop);
1924 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1925 {
1926 phi = gsi_stmt (psi);
1927 name = PHI_RESULT (phi);
1928 var = SSA_NAME_VAR (name);
1929 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1930 continue;
1931 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1932 gcc_assert (TREE_CODE (use) == SSA_NAME);
1933
1934 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1935 stmt = SSA_NAME_DEF_STMT (use);
1936 while (gimple_code (stmt) == GIMPLE_PHI
1937 /* In case we could not unroll the loop enough to eliminate
1938 all copies, we may reach the loop header before the defining
1939 statement (in that case, some register copies will be present
1940 in loop latch in the final code, corresponding to the newly
1941 created looparound phi nodes). */
1942 && gimple_bb (stmt) != loop->header)
1943 {
1944 gcc_assert (single_pred_p (gimple_bb (stmt)));
1945 use = PHI_ARG_DEF (stmt, 0);
1946 stmt = SSA_NAME_DEF_STMT (use);
1947 }
1948
1949 base_names_in_chain_on (loop, use, var);
1950 }
1951 }
1952
1953 /* Returns true if CHAIN is suitable to be combined. */
1954
1955 static bool
1956 chain_can_be_combined_p (chain_p chain)
1957 {
1958 return (!chain->combined
1959 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1960 }
1961
1962 /* Returns the modify statement that uses NAME. Skips over assignment
1963 statements, NAME is replaced with the actual name used in the returned
1964 statement. */
1965
1966 static gimple
1967 find_use_stmt (tree *name)
1968 {
1969 gimple stmt;
1970 tree rhs, lhs;
1971
1972 /* Skip over assignments. */
1973 while (1)
1974 {
1975 stmt = single_nonlooparound_use (*name);
1976 if (!stmt)
1977 return NULL;
1978
1979 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1980 return NULL;
1981
1982 lhs = gimple_assign_lhs (stmt);
1983 if (TREE_CODE (lhs) != SSA_NAME)
1984 return NULL;
1985
1986 if (gimple_assign_copy_p (stmt))
1987 {
1988 rhs = gimple_assign_rhs1 (stmt);
1989 if (rhs != *name)
1990 return NULL;
1991
1992 *name = lhs;
1993 }
1994 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1995 == GIMPLE_BINARY_RHS)
1996 return stmt;
1997 else
1998 return NULL;
1999 }
2000 }
2001
2002 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2003
2004 static bool
2005 may_reassociate_p (tree type, enum tree_code code)
2006 {
2007 if (FLOAT_TYPE_P (type)
2008 && !flag_unsafe_math_optimizations)
2009 return false;
2010
2011 return (commutative_tree_code (code)
2012 && associative_tree_code (code));
2013 }
2014
2015 /* If the operation used in STMT is associative and commutative, go through the
2016 tree of the same operations and returns its root. Distance to the root
2017 is stored in DISTANCE. */
2018
2019 static gimple
2020 find_associative_operation_root (gimple stmt, unsigned *distance)
2021 {
2022 tree lhs;
2023 gimple next;
2024 enum tree_code code = gimple_assign_rhs_code (stmt);
2025 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2026 unsigned dist = 0;
2027
2028 if (!may_reassociate_p (type, code))
2029 return NULL;
2030
2031 while (1)
2032 {
2033 lhs = gimple_assign_lhs (stmt);
2034 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2035
2036 next = find_use_stmt (&lhs);
2037 if (!next
2038 || gimple_assign_rhs_code (next) != code)
2039 break;
2040
2041 stmt = next;
2042 dist++;
2043 }
2044
2045 if (distance)
2046 *distance = dist;
2047 return stmt;
2048 }
2049
2050 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2051 is no such statement, returns NULL_TREE. In case the operation used on
2052 NAME1 and NAME2 is associative and commutative, returns the root of the
2053 tree formed by this operation instead of the statement that uses NAME1 or
2054 NAME2. */
2055
2056 static gimple
2057 find_common_use_stmt (tree *name1, tree *name2)
2058 {
2059 gimple stmt1, stmt2;
2060
2061 stmt1 = find_use_stmt (name1);
2062 if (!stmt1)
2063 return NULL;
2064
2065 stmt2 = find_use_stmt (name2);
2066 if (!stmt2)
2067 return NULL;
2068
2069 if (stmt1 == stmt2)
2070 return stmt1;
2071
2072 stmt1 = find_associative_operation_root (stmt1, NULL);
2073 if (!stmt1)
2074 return NULL;
2075 stmt2 = find_associative_operation_root (stmt2, NULL);
2076 if (!stmt2)
2077 return NULL;
2078
2079 return (stmt1 == stmt2 ? stmt1 : NULL);
2080 }
2081
2082 /* Checks whether R1 and R2 are combined together using CODE, with the result
2083 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2084 if it is true. If CODE is ERROR_MARK, set these values instead. */
2085
2086 static bool
2087 combinable_refs_p (dref r1, dref r2,
2088 enum tree_code *code, bool *swap, tree *rslt_type)
2089 {
2090 enum tree_code acode;
2091 bool aswap;
2092 tree atype;
2093 tree name1, name2;
2094 gimple stmt;
2095
2096 name1 = name_for_ref (r1);
2097 name2 = name_for_ref (r2);
2098 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2099
2100 stmt = find_common_use_stmt (&name1, &name2);
2101
2102 if (!stmt)
2103 return false;
2104
2105 acode = gimple_assign_rhs_code (stmt);
2106 aswap = (!commutative_tree_code (acode)
2107 && gimple_assign_rhs1 (stmt) != name1);
2108 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2109
2110 if (*code == ERROR_MARK)
2111 {
2112 *code = acode;
2113 *swap = aswap;
2114 *rslt_type = atype;
2115 return true;
2116 }
2117
2118 return (*code == acode
2119 && *swap == aswap
2120 && *rslt_type == atype);
2121 }
2122
2123 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2124 an assignment of the remaining operand. */
2125
2126 static void
2127 remove_name_from_operation (gimple stmt, tree op)
2128 {
2129 tree other_op;
2130 gimple_stmt_iterator si;
2131
2132 gcc_assert (is_gimple_assign (stmt));
2133
2134 if (gimple_assign_rhs1 (stmt) == op)
2135 other_op = gimple_assign_rhs2 (stmt);
2136 else
2137 other_op = gimple_assign_rhs1 (stmt);
2138
2139 si = gsi_for_stmt (stmt);
2140 gimple_assign_set_rhs_from_tree (&si, other_op);
2141
2142 /* We should not have reallocated STMT. */
2143 gcc_assert (gsi_stmt (si) == stmt);
2144
2145 update_stmt (stmt);
2146 }
2147
2148 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2149 are combined in a single statement, and returns this statement. */
2150
2151 static gimple
2152 reassociate_to_the_same_stmt (tree name1, tree name2)
2153 {
2154 gimple stmt1, stmt2, root1, root2, s1, s2;
2155 gimple new_stmt, tmp_stmt;
2156 tree new_name, tmp_name, var, r1, r2;
2157 unsigned dist1, dist2;
2158 enum tree_code code;
2159 tree type = TREE_TYPE (name1);
2160 gimple_stmt_iterator bsi;
2161
2162 stmt1 = find_use_stmt (&name1);
2163 stmt2 = find_use_stmt (&name2);
2164 root1 = find_associative_operation_root (stmt1, &dist1);
2165 root2 = find_associative_operation_root (stmt2, &dist2);
2166 code = gimple_assign_rhs_code (stmt1);
2167
2168 gcc_assert (root1 && root2 && root1 == root2
2169 && code == gimple_assign_rhs_code (stmt2));
2170
2171 /* Find the root of the nearest expression in that both NAME1 and NAME2
2172 are used. */
2173 r1 = name1;
2174 s1 = stmt1;
2175 r2 = name2;
2176 s2 = stmt2;
2177
2178 while (dist1 > dist2)
2179 {
2180 s1 = find_use_stmt (&r1);
2181 r1 = gimple_assign_lhs (s1);
2182 dist1--;
2183 }
2184 while (dist2 > dist1)
2185 {
2186 s2 = find_use_stmt (&r2);
2187 r2 = gimple_assign_lhs (s2);
2188 dist2--;
2189 }
2190
2191 while (s1 != s2)
2192 {
2193 s1 = find_use_stmt (&r1);
2194 r1 = gimple_assign_lhs (s1);
2195 s2 = find_use_stmt (&r2);
2196 r2 = gimple_assign_lhs (s2);
2197 }
2198
2199 /* Remove NAME1 and NAME2 from the statements in that they are used
2200 currently. */
2201 remove_name_from_operation (stmt1, name1);
2202 remove_name_from_operation (stmt2, name2);
2203
2204 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2205 combine it with the rhs of S1. */
2206 var = create_tmp_reg (type, "predreastmp");
2207 add_referenced_var (var);
2208 new_name = make_ssa_name (var, NULL);
2209 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2210
2211 var = create_tmp_reg (type, "predreastmp");
2212 add_referenced_var (var);
2213 tmp_name = make_ssa_name (var, NULL);
2214
2215 /* Rhs of S1 may now be either a binary expression with operation
2216 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2217 so that name1 or name2 was removed from it). */
2218 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2219 tmp_name,
2220 gimple_assign_rhs1 (s1),
2221 gimple_assign_rhs2 (s1));
2222
2223 bsi = gsi_for_stmt (s1);
2224 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2225 s1 = gsi_stmt (bsi);
2226 update_stmt (s1);
2227
2228 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2229 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2230
2231 return new_stmt;
2232 }
2233
2234 /* Returns the statement that combines references R1 and R2. In case R1
2235 and R2 are not used in the same statement, but they are used with an
2236 associative and commutative operation in the same expression, reassociate
2237 the expression so that they are used in the same statement. */
2238
2239 static gimple
2240 stmt_combining_refs (dref r1, dref r2)
2241 {
2242 gimple stmt1, stmt2;
2243 tree name1 = name_for_ref (r1);
2244 tree name2 = name_for_ref (r2);
2245
2246 stmt1 = find_use_stmt (&name1);
2247 stmt2 = find_use_stmt (&name2);
2248 if (stmt1 == stmt2)
2249 return stmt1;
2250
2251 return reassociate_to_the_same_stmt (name1, name2);
2252 }
2253
2254 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2255 description of the new chain is returned, otherwise we return NULL. */
2256
2257 static chain_p
2258 combine_chains (chain_p ch1, chain_p ch2)
2259 {
2260 dref r1, r2, nw;
2261 enum tree_code op = ERROR_MARK;
2262 bool swap = false;
2263 chain_p new_chain;
2264 unsigned i;
2265 gimple root_stmt;
2266 tree rslt_type = NULL_TREE;
2267
2268 if (ch1 == ch2)
2269 return NULL;
2270 if (ch1->length != ch2->length)
2271 return NULL;
2272
2273 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2274 return NULL;
2275
2276 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2277 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2278 {
2279 if (r1->distance != r2->distance)
2280 return NULL;
2281
2282 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2283 return NULL;
2284 }
2285
2286 if (swap)
2287 {
2288 chain_p tmp = ch1;
2289 ch1 = ch2;
2290 ch2 = tmp;
2291 }
2292
2293 new_chain = XCNEW (struct chain);
2294 new_chain->type = CT_COMBINATION;
2295 new_chain->op = op;
2296 new_chain->ch1 = ch1;
2297 new_chain->ch2 = ch2;
2298 new_chain->rslt_type = rslt_type;
2299 new_chain->length = ch1->length;
2300
2301 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2302 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2303 {
2304 nw = XCNEW (struct dref_d);
2305 nw->stmt = stmt_combining_refs (r1, r2);
2306 nw->distance = r1->distance;
2307
2308 VEC_safe_push (dref, heap, new_chain->refs, nw);
2309 }
2310
2311 new_chain->has_max_use_after = false;
2312 root_stmt = get_chain_root (new_chain)->stmt;
2313 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2314 {
2315 if (nw->distance == new_chain->length
2316 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2317 {
2318 new_chain->has_max_use_after = true;
2319 break;
2320 }
2321 }
2322
2323 ch1->combined = true;
2324 ch2->combined = true;
2325 return new_chain;
2326 }
2327
2328 /* Try to combine the CHAINS. */
2329
2330 static void
2331 try_combine_chains (VEC (chain_p, heap) **chains)
2332 {
2333 unsigned i, j;
2334 chain_p ch1, ch2, cch;
2335 VEC (chain_p, heap) *worklist = NULL;
2336
2337 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2338 if (chain_can_be_combined_p (ch1))
2339 VEC_safe_push (chain_p, heap, worklist, ch1);
2340
2341 while (!VEC_empty (chain_p, worklist))
2342 {
2343 ch1 = VEC_pop (chain_p, worklist);
2344 if (!chain_can_be_combined_p (ch1))
2345 continue;
2346
2347 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2348 {
2349 if (!chain_can_be_combined_p (ch2))
2350 continue;
2351
2352 cch = combine_chains (ch1, ch2);
2353 if (cch)
2354 {
2355 VEC_safe_push (chain_p, heap, worklist, cch);
2356 VEC_safe_push (chain_p, heap, *chains, cch);
2357 break;
2358 }
2359 }
2360 }
2361 }
2362
2363 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2364 impossible because one of these initializers may trap, true otherwise. */
2365
2366 static bool
2367 prepare_initializers_chain (struct loop *loop, chain_p chain)
2368 {
2369 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2370 struct data_reference *dr = get_chain_root (chain)->ref;
2371 tree init;
2372 gimple_seq stmts;
2373 dref laref;
2374 edge entry = loop_preheader_edge (loop);
2375
2376 /* Find the initializers for the variables, and check that they cannot
2377 trap. */
2378 chain->inits = VEC_alloc (tree, heap, n);
2379 for (i = 0; i < n; i++)
2380 VEC_quick_push (tree, chain->inits, NULL_TREE);
2381
2382 /* If we have replaced some looparound phi nodes, use their initializers
2383 instead of creating our own. */
2384 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2385 {
2386 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2387 continue;
2388
2389 gcc_assert (laref->distance > 0);
2390 VEC_replace (tree, chain->inits, n - laref->distance,
2391 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2392 }
2393
2394 for (i = 0; i < n; i++)
2395 {
2396 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2397 continue;
2398
2399 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2400 if (!init)
2401 return false;
2402
2403 if (!chain->all_always_accessed && tree_could_trap_p (init))
2404 return false;
2405
2406 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2407 if (stmts)
2408 gsi_insert_seq_on_edge_immediate (entry, stmts);
2409
2410 VEC_replace (tree, chain->inits, i, init);
2411 }
2412
2413 return true;
2414 }
2415
2416 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2417 be used because the initializers might trap. */
2418
2419 static void
2420 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2421 {
2422 chain_p chain;
2423 unsigned i;
2424
2425 for (i = 0; i < VEC_length (chain_p, chains); )
2426 {
2427 chain = VEC_index (chain_p, chains, i);
2428 if (prepare_initializers_chain (loop, chain))
2429 i++;
2430 else
2431 {
2432 release_chain (chain);
2433 VEC_unordered_remove (chain_p, chains, i);
2434 }
2435 }
2436 }
2437
2438 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2439 unrolled. */
2440
2441 static bool
2442 tree_predictive_commoning_loop (struct loop *loop)
2443 {
2444 VEC (data_reference_p, heap) *datarefs;
2445 VEC (ddr_p, heap) *dependences;
2446 struct component *components;
2447 VEC (chain_p, heap) *chains = NULL;
2448 unsigned unroll_factor;
2449 struct tree_niter_desc desc;
2450 bool unroll = false;
2451 edge exit;
2452 bitmap tmp_vars;
2453
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "Processing loop %d\n", loop->num);
2456
2457 /* Find the data references and split them into components according to their
2458 dependence relations. */
2459 datarefs = VEC_alloc (data_reference_p, heap, 10);
2460 dependences = VEC_alloc (ddr_p, heap, 10);
2461 compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2462 if (dump_file && (dump_flags & TDF_DETAILS))
2463 dump_data_dependence_relations (dump_file, dependences);
2464
2465 components = split_data_refs_to_components (loop, datarefs, dependences);
2466 free_dependence_relations (dependences);
2467 if (!components)
2468 {
2469 free_data_refs (datarefs);
2470 return false;
2471 }
2472
2473 if (dump_file && (dump_flags & TDF_DETAILS))
2474 {
2475 fprintf (dump_file, "Initial state:\n\n");
2476 dump_components (dump_file, components);
2477 }
2478
2479 /* Find the suitable components and split them into chains. */
2480 components = filter_suitable_components (loop, components);
2481
2482 tmp_vars = BITMAP_ALLOC (NULL);
2483 looparound_phis = BITMAP_ALLOC (NULL);
2484 determine_roots (loop, components, &chains);
2485 release_components (components);
2486
2487 if (!chains)
2488 {
2489 if (dump_file && (dump_flags & TDF_DETAILS))
2490 fprintf (dump_file,
2491 "Predictive commoning failed: no suitable chains\n");
2492 goto end;
2493 }
2494 prepare_initializers (loop, chains);
2495
2496 /* Try to combine the chains that are always worked with together. */
2497 try_combine_chains (&chains);
2498
2499 if (dump_file && (dump_flags & TDF_DETAILS))
2500 {
2501 fprintf (dump_file, "Before commoning:\n\n");
2502 dump_chains (dump_file, chains);
2503 }
2504
2505 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2506 that its number of iterations is divisible by the factor. */
2507 unroll_factor = determine_unroll_factor (chains);
2508 scev_reset ();
2509 unroll = (unroll_factor > 1
2510 && can_unroll_loop_p (loop, unroll_factor, &desc));
2511 exit = single_dom_exit (loop);
2512
2513 /* Execute the predictive commoning transformations, and possibly unroll the
2514 loop. */
2515 if (unroll)
2516 {
2517 struct epcc_data dta;
2518
2519 if (dump_file && (dump_flags & TDF_DETAILS))
2520 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2521
2522 dta.chains = chains;
2523 dta.tmp_vars = tmp_vars;
2524
2525 update_ssa (TODO_update_ssa_only_virtuals);
2526
2527 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2528 execute_pred_commoning_cbck is called may cause phi nodes to be
2529 reallocated, which is a problem since CHAINS may point to these
2530 statements. To fix this, we store the ssa names defined by the
2531 phi nodes here instead of the phi nodes themselves, and restore
2532 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2533 replace_phis_by_defined_names (chains);
2534
2535 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2536 execute_pred_commoning_cbck, &dta);
2537 eliminate_temp_copies (loop, tmp_vars);
2538 }
2539 else
2540 {
2541 if (dump_file && (dump_flags & TDF_DETAILS))
2542 fprintf (dump_file,
2543 "Executing predictive commoning without unrolling.\n");
2544 execute_pred_commoning (loop, chains, tmp_vars);
2545 }
2546
2547 end: ;
2548 release_chains (chains);
2549 free_data_refs (datarefs);
2550 BITMAP_FREE (tmp_vars);
2551 BITMAP_FREE (looparound_phis);
2552
2553 free_affine_expand_cache (&name_expansions);
2554
2555 return unroll;
2556 }
2557
2558 /* Runs predictive commoning. */
2559
2560 unsigned
2561 tree_predictive_commoning (void)
2562 {
2563 bool unrolled = false;
2564 struct loop *loop;
2565 loop_iterator li;
2566 unsigned ret = 0;
2567
2568 initialize_original_copy_tables ();
2569 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2570 if (optimize_loop_for_speed_p (loop))
2571 {
2572 unrolled |= tree_predictive_commoning_loop (loop);
2573 }
2574
2575 if (unrolled)
2576 {
2577 scev_reset ();
2578 ret = TODO_cleanup_cfg;
2579 }
2580 free_original_copy_tables ();
2581
2582 return ret;
2583 }