]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-predcom.c
Add source_location support to PHI arguments.
[thirdparty/gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
30
31 Let us demonstrate what is done on an example:
32
33 for (i = 0; i < 100; i++)
34 {
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
39 }
40
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
46
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
51
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
66
67 In our example, we get the following chains (the chain for c is invalid).
68
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
72
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
83
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
86
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
92
93 e[i] + f[i+1] + e[i+1] + f[i]
94
95 can be reassociated as
96
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
98
99 and we can combine the chains for e and f into one chain.
100
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 upto RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
111
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
115
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
118 {
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
122
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
127 }
128
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
135
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
139
140 In our case, F = 2 and the (main loop of the) result is
141
142 for (i = 0; i < ...; i += 2)
143 {
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
147
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
152
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
157 }
158
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
161 {
162 a[i] = 1;
163 a[i+2] = 2;
164 }
165
166 can be replaced with
167
168 t0 = a[0];
169 t1 = a[1];
170 for (i = 0; i < n; i++)
171 {
172 a[i] = 1;
173 t2 = 2;
174 t0 = t1;
175 t1 = t2;
176 }
177 a[n] = t0;
178 a[n+1] = t1;
179
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
182
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
186
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "tree.h"
192 #include "tm_p.h"
193 #include "cfgloop.h"
194 #include "tree-flow.h"
195 #include "ggc.h"
196 #include "tree-data-ref.h"
197 #include "tree-scalar-evolution.h"
198 #include "tree-chrec.h"
199 #include "params.h"
200 #include "diagnostic.h"
201 #include "tree-pass.h"
202 #include "tree-affine.h"
203 #include "tree-inline.h"
204
205 /* The maximum number of iterations between the considered memory
206 references. */
207
208 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
209
210 /* Data references (or phi nodes that carry data reference values across
211 loop iterations). */
212
213 typedef struct dref_d
214 {
215 /* The reference itself. */
216 struct data_reference *ref;
217
218 /* The statement in that the reference appears. */
219 gimple stmt;
220
221 /* In case that STMT is a phi node, this field is set to the SSA name
222 defined by it in replace_phis_by_defined_names (in order to avoid
223 pointing to phi node that got reallocated in the meantime). */
224 tree name_defined_by_phi;
225
226 /* Distance of the reference from the root of the chain (in number of
227 iterations of the loop). */
228 unsigned distance;
229
230 /* Number of iterations offset from the first reference in the component. */
231 double_int offset;
232
233 /* Number of the reference in a component, in dominance ordering. */
234 unsigned pos;
235
236 /* True if the memory reference is always accessed when the loop is
237 entered. */
238 unsigned always_accessed : 1;
239 } *dref;
240
241 DEF_VEC_P (dref);
242 DEF_VEC_ALLOC_P (dref, heap);
243
244 /* Type of the chain of the references. */
245
246 enum chain_type
247 {
248 /* The addresses of the references in the chain are constant. */
249 CT_INVARIANT,
250
251 /* There are only loads in the chain. */
252 CT_LOAD,
253
254 /* Root of the chain is store, the rest are loads. */
255 CT_STORE_LOAD,
256
257 /* A combination of two chains. */
258 CT_COMBINATION
259 };
260
261 /* Chains of data references. */
262
263 typedef struct chain
264 {
265 /* Type of the chain. */
266 enum chain_type type;
267
268 /* For combination chains, the operator and the two chains that are
269 combined, and the type of the result. */
270 enum tree_code op;
271 tree rslt_type;
272 struct chain *ch1, *ch2;
273
274 /* The references in the chain. */
275 VEC(dref,heap) *refs;
276
277 /* The maximum distance of the reference in the chain from the root. */
278 unsigned length;
279
280 /* The variables used to copy the value throughout iterations. */
281 VEC(tree,heap) *vars;
282
283 /* Initializers for the variables. */
284 VEC(tree,heap) *inits;
285
286 /* True if there is a use of a variable with the maximal distance
287 that comes after the root in the loop. */
288 unsigned has_max_use_after : 1;
289
290 /* True if all the memory references in the chain are always accessed. */
291 unsigned all_always_accessed : 1;
292
293 /* True if this chain was combined together with some other chain. */
294 unsigned combined : 1;
295 } *chain_p;
296
297 DEF_VEC_P (chain_p);
298 DEF_VEC_ALLOC_P (chain_p, heap);
299
300 /* Describes the knowledge about the step of the memory references in
301 the component. */
302
303 enum ref_step_type
304 {
305 /* The step is zero. */
306 RS_INVARIANT,
307
308 /* The step is nonzero. */
309 RS_NONZERO,
310
311 /* The step may or may not be nonzero. */
312 RS_ANY
313 };
314
315 /* Components of the data dependence graph. */
316
317 struct component
318 {
319 /* The references in the component. */
320 VEC(dref,heap) *refs;
321
322 /* What we know about the step of the references in the component. */
323 enum ref_step_type comp_step;
324
325 /* Next component in the list. */
326 struct component *next;
327 };
328
329 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
330
331 static bitmap looparound_phis;
332
333 /* Cache used by tree_to_aff_combination_expand. */
334
335 static struct pointer_map_t *name_expansions;
336
337 /* Dumps data reference REF to FILE. */
338
339 extern void dump_dref (FILE *, dref);
340 void
341 dump_dref (FILE *file, dref ref)
342 {
343 if (ref->ref)
344 {
345 fprintf (file, " ");
346 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
347 fprintf (file, " (id %u%s)\n", ref->pos,
348 DR_IS_READ (ref->ref) ? "" : ", write");
349
350 fprintf (file, " offset ");
351 dump_double_int (file, ref->offset, false);
352 fprintf (file, "\n");
353
354 fprintf (file, " distance %u\n", ref->distance);
355 }
356 else
357 {
358 if (gimple_code (ref->stmt) == GIMPLE_PHI)
359 fprintf (file, " looparound ref\n");
360 else
361 fprintf (file, " combination ref\n");
362 fprintf (file, " in statement ");
363 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
364 fprintf (file, "\n");
365 fprintf (file, " distance %u\n", ref->distance);
366 }
367
368 }
369
370 /* Dumps CHAIN to FILE. */
371
372 extern void dump_chain (FILE *, chain_p);
373 void
374 dump_chain (FILE *file, chain_p chain)
375 {
376 dref a;
377 const char *chain_type;
378 unsigned i;
379 tree var;
380
381 switch (chain->type)
382 {
383 case CT_INVARIANT:
384 chain_type = "Load motion";
385 break;
386
387 case CT_LOAD:
388 chain_type = "Loads-only";
389 break;
390
391 case CT_STORE_LOAD:
392 chain_type = "Store-loads";
393 break;
394
395 case CT_COMBINATION:
396 chain_type = "Combination";
397 break;
398
399 default:
400 gcc_unreachable ();
401 }
402
403 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
404 chain->combined ? " (combined)" : "");
405 if (chain->type != CT_INVARIANT)
406 fprintf (file, " max distance %u%s\n", chain->length,
407 chain->has_max_use_after ? "" : ", may reuse first");
408
409 if (chain->type == CT_COMBINATION)
410 {
411 fprintf (file, " equal to %p %s %p in type ",
412 (void *) chain->ch1, op_symbol_code (chain->op),
413 (void *) chain->ch2);
414 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
415 fprintf (file, "\n");
416 }
417
418 if (chain->vars)
419 {
420 fprintf (file, " vars");
421 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
422 {
423 fprintf (file, " ");
424 print_generic_expr (file, var, TDF_SLIM);
425 }
426 fprintf (file, "\n");
427 }
428
429 if (chain->inits)
430 {
431 fprintf (file, " inits");
432 for (i = 0; VEC_iterate (tree, chain->inits, i, var); i++)
433 {
434 fprintf (file, " ");
435 print_generic_expr (file, var, TDF_SLIM);
436 }
437 fprintf (file, "\n");
438 }
439
440 fprintf (file, " references:\n");
441 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
442 dump_dref (file, a);
443
444 fprintf (file, "\n");
445 }
446
447 /* Dumps CHAINS to FILE. */
448
449 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
450 void
451 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
452 {
453 chain_p chain;
454 unsigned i;
455
456 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
457 dump_chain (file, chain);
458 }
459
460 /* Dumps COMP to FILE. */
461
462 extern void dump_component (FILE *, struct component *);
463 void
464 dump_component (FILE *file, struct component *comp)
465 {
466 dref a;
467 unsigned i;
468
469 fprintf (file, "Component%s:\n",
470 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
471 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
472 dump_dref (file, a);
473 fprintf (file, "\n");
474 }
475
476 /* Dumps COMPS to FILE. */
477
478 extern void dump_components (FILE *, struct component *);
479 void
480 dump_components (FILE *file, struct component *comps)
481 {
482 struct component *comp;
483
484 for (comp = comps; comp; comp = comp->next)
485 dump_component (file, comp);
486 }
487
488 /* Frees a chain CHAIN. */
489
490 static void
491 release_chain (chain_p chain)
492 {
493 dref ref;
494 unsigned i;
495
496 if (chain == NULL)
497 return;
498
499 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
500 free (ref);
501
502 VEC_free (dref, heap, chain->refs);
503 VEC_free (tree, heap, chain->vars);
504 VEC_free (tree, heap, chain->inits);
505
506 free (chain);
507 }
508
509 /* Frees CHAINS. */
510
511 static void
512 release_chains (VEC (chain_p, heap) *chains)
513 {
514 unsigned i;
515 chain_p chain;
516
517 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
518 release_chain (chain);
519 VEC_free (chain_p, heap, chains);
520 }
521
522 /* Frees a component COMP. */
523
524 static void
525 release_component (struct component *comp)
526 {
527 VEC_free (dref, heap, comp->refs);
528 free (comp);
529 }
530
531 /* Frees list of components COMPS. */
532
533 static void
534 release_components (struct component *comps)
535 {
536 struct component *act, *next;
537
538 for (act = comps; act; act = next)
539 {
540 next = act->next;
541 release_component (act);
542 }
543 }
544
545 /* Finds a root of tree given by FATHERS containing A, and performs path
546 shortening. */
547
548 static unsigned
549 component_of (unsigned fathers[], unsigned a)
550 {
551 unsigned root, n;
552
553 for (root = a; root != fathers[root]; root = fathers[root])
554 continue;
555
556 for (; a != root; a = n)
557 {
558 n = fathers[a];
559 fathers[a] = root;
560 }
561
562 return root;
563 }
564
565 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
566 components, A and B are components to merge. */
567
568 static void
569 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
570 {
571 unsigned ca = component_of (fathers, a);
572 unsigned cb = component_of (fathers, b);
573
574 if (ca == cb)
575 return;
576
577 if (sizes[ca] < sizes[cb])
578 {
579 sizes[cb] += sizes[ca];
580 fathers[ca] = cb;
581 }
582 else
583 {
584 sizes[ca] += sizes[cb];
585 fathers[cb] = ca;
586 }
587 }
588
589 /* Returns true if A is a reference that is suitable for predictive commoning
590 in the innermost loop that contains it. REF_STEP is set according to the
591 step of the reference A. */
592
593 static bool
594 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
595 {
596 tree ref = DR_REF (a), step = DR_STEP (a);
597
598 if (!step
599 || !is_gimple_reg_type (TREE_TYPE (ref))
600 || tree_could_throw_p (ref))
601 return false;
602
603 if (integer_zerop (step))
604 *ref_step = RS_INVARIANT;
605 else if (integer_nonzerop (step))
606 *ref_step = RS_NONZERO;
607 else
608 *ref_step = RS_ANY;
609
610 return true;
611 }
612
613 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
614
615 static void
616 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
617 {
618 aff_tree delta;
619
620 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
621 &name_expansions);
622 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
623 aff_combination_add (offset, &delta);
624 }
625
626 /* Determines number of iterations of the innermost enclosing loop before B
627 refers to exactly the same location as A and stores it to OFF. If A and
628 B do not have the same step, they never meet, or anything else fails,
629 returns false, otherwise returns true. Both A and B are assumed to
630 satisfy suitable_reference_p. */
631
632 static bool
633 determine_offset (struct data_reference *a, struct data_reference *b,
634 double_int *off)
635 {
636 aff_tree diff, baseb, step;
637 tree typea, typeb;
638
639 /* Check that both the references access the location in the same type. */
640 typea = TREE_TYPE (DR_REF (a));
641 typeb = TREE_TYPE (DR_REF (b));
642 if (!useless_type_conversion_p (typeb, typea))
643 return false;
644
645 /* Check whether the base address and the step of both references is the
646 same. */
647 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
648 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
649 return false;
650
651 if (integer_zerop (DR_STEP (a)))
652 {
653 /* If the references have loop invariant address, check that they access
654 exactly the same location. */
655 *off = double_int_zero;
656 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
657 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
658 }
659
660 /* Compare the offsets of the addresses, and check whether the difference
661 is a multiple of step. */
662 aff_combination_dr_offset (a, &diff);
663 aff_combination_dr_offset (b, &baseb);
664 aff_combination_scale (&baseb, double_int_minus_one);
665 aff_combination_add (&diff, &baseb);
666
667 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
668 &step, &name_expansions);
669 return aff_combination_constant_multiple_p (&diff, &step, off);
670 }
671
672 /* Returns the last basic block in LOOP for that we are sure that
673 it is executed whenever the loop is entered. */
674
675 static basic_block
676 last_always_executed_block (struct loop *loop)
677 {
678 unsigned i;
679 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
680 edge ex;
681 basic_block last = loop->latch;
682
683 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
684 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
685 VEC_free (edge, heap, exits);
686
687 return last;
688 }
689
690 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
691
692 static struct component *
693 split_data_refs_to_components (struct loop *loop,
694 VEC (data_reference_p, heap) *datarefs,
695 VEC (ddr_p, heap) *depends)
696 {
697 unsigned i, n = VEC_length (data_reference_p, datarefs);
698 unsigned ca, ia, ib, bad;
699 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
700 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
701 struct component **comps;
702 struct data_reference *dr, *dra, *drb;
703 struct data_dependence_relation *ddr;
704 struct component *comp_list = NULL, *comp;
705 dref dataref;
706 basic_block last_always_executed = last_always_executed_block (loop);
707
708 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
709 {
710 if (!DR_REF (dr))
711 {
712 /* A fake reference for call or asm_expr that may clobber memory;
713 just fail. */
714 goto end;
715 }
716 dr->aux = (void *) (size_t) i;
717 comp_father[i] = i;
718 comp_size[i] = 1;
719 }
720
721 /* A component reserved for the "bad" data references. */
722 comp_father[n] = n;
723 comp_size[n] = 1;
724
725 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
726 {
727 enum ref_step_type dummy;
728
729 if (!suitable_reference_p (dr, &dummy))
730 {
731 ia = (unsigned) (size_t) dr->aux;
732 merge_comps (comp_father, comp_size, n, ia);
733 }
734 }
735
736 for (i = 0; VEC_iterate (ddr_p, depends, i, ddr); i++)
737 {
738 double_int dummy_off;
739
740 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
741 continue;
742
743 dra = DDR_A (ddr);
744 drb = DDR_B (ddr);
745 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
746 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
747 if (ia == ib)
748 continue;
749
750 bad = component_of (comp_father, n);
751
752 /* If both A and B are reads, we may ignore unsuitable dependences. */
753 if (DR_IS_READ (dra) && DR_IS_READ (drb)
754 && (ia == bad || ib == bad
755 || !determine_offset (dra, drb, &dummy_off)))
756 continue;
757
758 merge_comps (comp_father, comp_size, ia, ib);
759 }
760
761 comps = XCNEWVEC (struct component *, n);
762 bad = component_of (comp_father, n);
763 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
764 {
765 ia = (unsigned) (size_t) dr->aux;
766 ca = component_of (comp_father, ia);
767 if (ca == bad)
768 continue;
769
770 comp = comps[ca];
771 if (!comp)
772 {
773 comp = XCNEW (struct component);
774 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
775 comps[ca] = comp;
776 }
777
778 dataref = XCNEW (struct dref_d);
779 dataref->ref = dr;
780 dataref->stmt = DR_STMT (dr);
781 dataref->offset = double_int_zero;
782 dataref->distance = 0;
783
784 dataref->always_accessed
785 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
786 gimple_bb (dataref->stmt));
787 dataref->pos = VEC_length (dref, comp->refs);
788 VEC_quick_push (dref, comp->refs, dataref);
789 }
790
791 for (i = 0; i < n; i++)
792 {
793 comp = comps[i];
794 if (comp)
795 {
796 comp->next = comp_list;
797 comp_list = comp;
798 }
799 }
800 free (comps);
801
802 end:
803 free (comp_father);
804 free (comp_size);
805 return comp_list;
806 }
807
808 /* Returns true if the component COMP satisfies the conditions
809 described in 2) at the beginning of this file. LOOP is the current
810 loop. */
811
812 static bool
813 suitable_component_p (struct loop *loop, struct component *comp)
814 {
815 unsigned i;
816 dref a, first;
817 basic_block ba, bp = loop->header;
818 bool ok, has_write = false;
819
820 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
821 {
822 ba = gimple_bb (a->stmt);
823
824 if (!just_once_each_iteration_p (loop, ba))
825 return false;
826
827 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
828 bp = ba;
829
830 if (!DR_IS_READ (a->ref))
831 has_write = true;
832 }
833
834 first = VEC_index (dref, comp->refs, 0);
835 ok = suitable_reference_p (first->ref, &comp->comp_step);
836 gcc_assert (ok);
837 first->offset = double_int_zero;
838
839 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
840 {
841 if (!determine_offset (first->ref, a->ref, &a->offset))
842 return false;
843
844 #ifdef ENABLE_CHECKING
845 {
846 enum ref_step_type a_step;
847 ok = suitable_reference_p (a->ref, &a_step);
848 gcc_assert (ok && a_step == comp->comp_step);
849 }
850 #endif
851 }
852
853 /* If there is a write inside the component, we must know whether the
854 step is nonzero or not -- we would not otherwise be able to recognize
855 whether the value accessed by reads comes from the OFFSET-th iteration
856 or the previous one. */
857 if (has_write && comp->comp_step == RS_ANY)
858 return false;
859
860 return true;
861 }
862
863 /* Check the conditions on references inside each of components COMPS,
864 and remove the unsuitable components from the list. The new list
865 of components is returned. The conditions are described in 2) at
866 the beginning of this file. LOOP is the current loop. */
867
868 static struct component *
869 filter_suitable_components (struct loop *loop, struct component *comps)
870 {
871 struct component **comp, *act;
872
873 for (comp = &comps; *comp; )
874 {
875 act = *comp;
876 if (suitable_component_p (loop, act))
877 comp = &act->next;
878 else
879 {
880 dref ref;
881 unsigned i;
882
883 *comp = act->next;
884 for (i = 0; VEC_iterate (dref, act->refs, i, ref); i++)
885 free (ref);
886 release_component (act);
887 }
888 }
889
890 return comps;
891 }
892
893 /* Compares two drefs A and B by their offset and position. Callback for
894 qsort. */
895
896 static int
897 order_drefs (const void *a, const void *b)
898 {
899 const dref *const da = (const dref *) a;
900 const dref *const db = (const dref *) b;
901 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
902
903 if (offcmp != 0)
904 return offcmp;
905
906 return (*da)->pos - (*db)->pos;
907 }
908
909 /* Returns root of the CHAIN. */
910
911 static inline dref
912 get_chain_root (chain_p chain)
913 {
914 return VEC_index (dref, chain->refs, 0);
915 }
916
917 /* Adds REF to the chain CHAIN. */
918
919 static void
920 add_ref_to_chain (chain_p chain, dref ref)
921 {
922 dref root = get_chain_root (chain);
923 double_int dist;
924
925 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
926 dist = double_int_add (ref->offset, double_int_neg (root->offset));
927 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
928 {
929 free (ref);
930 return;
931 }
932 gcc_assert (double_int_fits_in_uhwi_p (dist));
933
934 VEC_safe_push (dref, heap, chain->refs, ref);
935
936 ref->distance = double_int_to_uhwi (dist);
937
938 if (ref->distance >= chain->length)
939 {
940 chain->length = ref->distance;
941 chain->has_max_use_after = false;
942 }
943
944 if (ref->distance == chain->length
945 && ref->pos > root->pos)
946 chain->has_max_use_after = true;
947
948 chain->all_always_accessed &= ref->always_accessed;
949 }
950
951 /* Returns the chain for invariant component COMP. */
952
953 static chain_p
954 make_invariant_chain (struct component *comp)
955 {
956 chain_p chain = XCNEW (struct chain);
957 unsigned i;
958 dref ref;
959
960 chain->type = CT_INVARIANT;
961
962 chain->all_always_accessed = true;
963
964 for (i = 0; VEC_iterate (dref, comp->refs, i, ref); i++)
965 {
966 VEC_safe_push (dref, heap, chain->refs, ref);
967 chain->all_always_accessed &= ref->always_accessed;
968 }
969
970 return chain;
971 }
972
973 /* Make a new chain rooted at REF. */
974
975 static chain_p
976 make_rooted_chain (dref ref)
977 {
978 chain_p chain = XCNEW (struct chain);
979
980 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
981
982 VEC_safe_push (dref, heap, chain->refs, ref);
983 chain->all_always_accessed = ref->always_accessed;
984
985 ref->distance = 0;
986
987 return chain;
988 }
989
990 /* Returns true if CHAIN is not trivial. */
991
992 static bool
993 nontrivial_chain_p (chain_p chain)
994 {
995 return chain != NULL && VEC_length (dref, chain->refs) > 1;
996 }
997
998 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
999 is no such name. */
1000
1001 static tree
1002 name_for_ref (dref ref)
1003 {
1004 tree name;
1005
1006 if (is_gimple_assign (ref->stmt))
1007 {
1008 if (!ref->ref || DR_IS_READ (ref->ref))
1009 name = gimple_assign_lhs (ref->stmt);
1010 else
1011 name = gimple_assign_rhs1 (ref->stmt);
1012 }
1013 else
1014 name = PHI_RESULT (ref->stmt);
1015
1016 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1017 }
1018
1019 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1020 iterations of the innermost enclosing loop). */
1021
1022 static bool
1023 valid_initializer_p (struct data_reference *ref,
1024 unsigned distance, struct data_reference *root)
1025 {
1026 aff_tree diff, base, step;
1027 double_int off;
1028
1029 /* Both REF and ROOT must be accessing the same object. */
1030 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1031 return false;
1032
1033 /* The initializer is defined outside of loop, hence its address must be
1034 invariant inside the loop. */
1035 gcc_assert (integer_zerop (DR_STEP (ref)));
1036
1037 /* If the address of the reference is invariant, initializer must access
1038 exactly the same location. */
1039 if (integer_zerop (DR_STEP (root)))
1040 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1041 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1042
1043 /* Verify that this index of REF is equal to the root's index at
1044 -DISTANCE-th iteration. */
1045 aff_combination_dr_offset (root, &diff);
1046 aff_combination_dr_offset (ref, &base);
1047 aff_combination_scale (&base, double_int_minus_one);
1048 aff_combination_add (&diff, &base);
1049
1050 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1051 &name_expansions);
1052 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1053 return false;
1054
1055 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1056 return false;
1057
1058 return true;
1059 }
1060
1061 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1062 initial value is correct (equal to initial value of REF shifted by one
1063 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1064 is the root of the current chain. */
1065
1066 static gimple
1067 find_looparound_phi (struct loop *loop, dref ref, dref root)
1068 {
1069 tree name, init, init_ref;
1070 gimple phi = NULL, init_stmt;
1071 edge latch = loop_latch_edge (loop);
1072 struct data_reference init_dr;
1073 gimple_stmt_iterator psi;
1074
1075 if (is_gimple_assign (ref->stmt))
1076 {
1077 if (DR_IS_READ (ref->ref))
1078 name = gimple_assign_lhs (ref->stmt);
1079 else
1080 name = gimple_assign_rhs1 (ref->stmt);
1081 }
1082 else
1083 name = PHI_RESULT (ref->stmt);
1084 if (!name)
1085 return NULL;
1086
1087 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1088 {
1089 phi = gsi_stmt (psi);
1090 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1091 break;
1092 }
1093
1094 if (gsi_end_p (psi))
1095 return NULL;
1096
1097 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1098 if (TREE_CODE (init) != SSA_NAME)
1099 return NULL;
1100 init_stmt = SSA_NAME_DEF_STMT (init);
1101 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1102 return NULL;
1103 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1104
1105 init_ref = gimple_assign_rhs1 (init_stmt);
1106 if (!REFERENCE_CLASS_P (init_ref)
1107 && !DECL_P (init_ref))
1108 return NULL;
1109
1110 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1111 loop enclosing PHI). */
1112 memset (&init_dr, 0, sizeof (struct data_reference));
1113 DR_REF (&init_dr) = init_ref;
1114 DR_STMT (&init_dr) = phi;
1115 if (!dr_analyze_innermost (&init_dr))
1116 return NULL;
1117
1118 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1119 return NULL;
1120
1121 return phi;
1122 }
1123
1124 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1125
1126 static void
1127 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1128 {
1129 dref nw = XCNEW (struct dref_d), aref;
1130 unsigned i;
1131
1132 nw->stmt = phi;
1133 nw->distance = ref->distance + 1;
1134 nw->always_accessed = 1;
1135
1136 for (i = 0; VEC_iterate (dref, chain->refs, i, aref); i++)
1137 if (aref->distance >= nw->distance)
1138 break;
1139 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1140
1141 if (nw->distance > chain->length)
1142 {
1143 chain->length = nw->distance;
1144 chain->has_max_use_after = false;
1145 }
1146 }
1147
1148 /* For references in CHAIN that are copied around the LOOP (created previously
1149 by PRE, or by user), add the results of such copies to the chain. This
1150 enables us to remove the copies by unrolling, and may need less registers
1151 (also, it may allow us to combine chains together). */
1152
1153 static void
1154 add_looparound_copies (struct loop *loop, chain_p chain)
1155 {
1156 unsigned i;
1157 dref ref, root = get_chain_root (chain);
1158 gimple phi;
1159
1160 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
1161 {
1162 phi = find_looparound_phi (loop, ref, root);
1163 if (!phi)
1164 continue;
1165
1166 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1167 insert_looparound_copy (chain, ref, phi);
1168 }
1169 }
1170
1171 /* Find roots of the values and determine distances in the component COMP.
1172 The references are redistributed into CHAINS. LOOP is the current
1173 loop. */
1174
1175 static void
1176 determine_roots_comp (struct loop *loop,
1177 struct component *comp,
1178 VEC (chain_p, heap) **chains)
1179 {
1180 unsigned i;
1181 dref a;
1182 chain_p chain = NULL;
1183
1184 /* Invariants are handled specially. */
1185 if (comp->comp_step == RS_INVARIANT)
1186 {
1187 chain = make_invariant_chain (comp);
1188 VEC_safe_push (chain_p, heap, *chains, chain);
1189 return;
1190 }
1191
1192 qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
1193 sizeof (dref), order_drefs);
1194
1195 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
1196 {
1197 if (!chain || !DR_IS_READ (a->ref))
1198 {
1199 if (nontrivial_chain_p (chain))
1200 VEC_safe_push (chain_p, heap, *chains, chain);
1201 else
1202 release_chain (chain);
1203 chain = make_rooted_chain (a);
1204 continue;
1205 }
1206
1207 add_ref_to_chain (chain, a);
1208 }
1209
1210 if (nontrivial_chain_p (chain))
1211 {
1212 add_looparound_copies (loop, chain);
1213 VEC_safe_push (chain_p, heap, *chains, chain);
1214 }
1215 else
1216 release_chain (chain);
1217 }
1218
1219 /* Find roots of the values and determine distances in components COMPS, and
1220 separates the references to CHAINS. LOOP is the current loop. */
1221
1222 static void
1223 determine_roots (struct loop *loop,
1224 struct component *comps, VEC (chain_p, heap) **chains)
1225 {
1226 struct component *comp;
1227
1228 for (comp = comps; comp; comp = comp->next)
1229 determine_roots_comp (loop, comp, chains);
1230 }
1231
1232 /* Replace the reference in statement STMT with temporary variable
1233 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1234 the reference in the statement. IN_LHS is true if the reference
1235 is in the lhs of STMT, false if it is in rhs. */
1236
1237 static void
1238 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1239 {
1240 tree val;
1241 gimple new_stmt;
1242 gimple_stmt_iterator bsi, psi;
1243
1244 if (gimple_code (stmt) == GIMPLE_PHI)
1245 {
1246 gcc_assert (!in_lhs && !set);
1247
1248 val = PHI_RESULT (stmt);
1249 bsi = gsi_after_labels (gimple_bb (stmt));
1250 psi = gsi_for_stmt (stmt);
1251 remove_phi_node (&psi, false);
1252
1253 /* Turn the phi node into GIMPLE_ASSIGN. */
1254 new_stmt = gimple_build_assign (val, new_tree);
1255 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1256 return;
1257 }
1258
1259 /* Since the reference is of gimple_reg type, it should only
1260 appear as lhs or rhs of modify statement. */
1261 gcc_assert (is_gimple_assign (stmt));
1262
1263 bsi = gsi_for_stmt (stmt);
1264
1265 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1266 if (!set)
1267 {
1268 gcc_assert (!in_lhs);
1269 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1270 stmt = gsi_stmt (bsi);
1271 update_stmt (stmt);
1272 return;
1273 }
1274
1275 if (in_lhs)
1276 {
1277 /* We have statement
1278
1279 OLD = VAL
1280
1281 If OLD is a memory reference, then VAL is gimple_val, and we transform
1282 this to
1283
1284 OLD = VAL
1285 NEW = VAL
1286
1287 Otherwise, we are replacing a combination chain,
1288 VAL is the expression that performs the combination, and OLD is an
1289 SSA name. In this case, we transform the assignment to
1290
1291 OLD = VAL
1292 NEW = OLD
1293
1294 */
1295
1296 val = gimple_assign_lhs (stmt);
1297 if (TREE_CODE (val) != SSA_NAME)
1298 {
1299 gcc_assert (gimple_assign_copy_p (stmt));
1300 val = gimple_assign_rhs1 (stmt);
1301 }
1302 }
1303 else
1304 {
1305 /* VAL = OLD
1306
1307 is transformed to
1308
1309 VAL = OLD
1310 NEW = VAL */
1311
1312 val = gimple_assign_lhs (stmt);
1313 }
1314
1315 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1316 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1317 }
1318
1319 /* Returns the reference to the address of REF in the ITER-th iteration of
1320 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1321 try to preserve the original shape of the reference (not rewrite it
1322 as an indirect ref to the address), to make tree_could_trap_p in
1323 prepare_initializers_chain return false more often. */
1324
1325 static tree
1326 ref_at_iteration (struct loop *loop, tree ref, int iter)
1327 {
1328 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1329 affine_iv iv;
1330 bool ok;
1331
1332 if (handled_component_p (ref))
1333 {
1334 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1335 if (!op0)
1336 return NULL_TREE;
1337 }
1338 else if (!INDIRECT_REF_P (ref))
1339 return unshare_expr (ref);
1340
1341 if (TREE_CODE (ref) == INDIRECT_REF)
1342 {
1343 ret = build1 (INDIRECT_REF, TREE_TYPE (ref), NULL_TREE);
1344 idx = TREE_OPERAND (ref, 0);
1345 idx_p = &TREE_OPERAND (ret, 0);
1346 }
1347 else if (TREE_CODE (ref) == COMPONENT_REF)
1348 {
1349 /* Check that the offset is loop invariant. */
1350 if (TREE_OPERAND (ref, 2)
1351 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1352 return NULL_TREE;
1353
1354 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1355 unshare_expr (TREE_OPERAND (ref, 1)),
1356 unshare_expr (TREE_OPERAND (ref, 2)));
1357 }
1358 else if (TREE_CODE (ref) == ARRAY_REF)
1359 {
1360 /* Check that the lower bound and the step are loop invariant. */
1361 if (TREE_OPERAND (ref, 2)
1362 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1363 return NULL_TREE;
1364 if (TREE_OPERAND (ref, 3)
1365 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1366 return NULL_TREE;
1367
1368 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1369 unshare_expr (TREE_OPERAND (ref, 2)),
1370 unshare_expr (TREE_OPERAND (ref, 3)));
1371 idx = TREE_OPERAND (ref, 1);
1372 idx_p = &TREE_OPERAND (ret, 1);
1373 }
1374 else
1375 return NULL_TREE;
1376
1377 ok = simple_iv (loop, loop, idx, &iv, true);
1378 if (!ok)
1379 return NULL_TREE;
1380 iv.base = expand_simple_operations (iv.base);
1381 if (integer_zerop (iv.step))
1382 *idx_p = unshare_expr (iv.base);
1383 else
1384 {
1385 type = TREE_TYPE (iv.base);
1386 if (POINTER_TYPE_P (type))
1387 {
1388 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1389 size_int (iter));
1390 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1391 }
1392 else
1393 {
1394 val = fold_build2 (MULT_EXPR, type, iv.step,
1395 build_int_cst_type (type, iter));
1396 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1397 }
1398 *idx_p = unshare_expr (val);
1399 }
1400
1401 return ret;
1402 }
1403
1404 /* Get the initialization expression for the INDEX-th temporary variable
1405 of CHAIN. */
1406
1407 static tree
1408 get_init_expr (chain_p chain, unsigned index)
1409 {
1410 if (chain->type == CT_COMBINATION)
1411 {
1412 tree e1 = get_init_expr (chain->ch1, index);
1413 tree e2 = get_init_expr (chain->ch2, index);
1414
1415 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1416 }
1417 else
1418 return VEC_index (tree, chain->inits, index);
1419 }
1420
1421 /* Marks all virtual operands of statement STMT for renaming. */
1422
1423 void
1424 mark_virtual_ops_for_renaming (gimple stmt)
1425 {
1426 tree var;
1427
1428 if (gimple_code (stmt) == GIMPLE_PHI)
1429 {
1430 var = PHI_RESULT (stmt);
1431 if (is_gimple_reg (var))
1432 return;
1433
1434 if (TREE_CODE (var) == SSA_NAME)
1435 var = SSA_NAME_VAR (var);
1436 mark_sym_for_renaming (var);
1437 return;
1438 }
1439
1440 update_stmt (stmt);
1441 if (gimple_vuse (stmt))
1442 mark_sym_for_renaming (gimple_vop (cfun));
1443 }
1444
1445 /* Returns a new temporary variable used for the I-th variable carrying
1446 value of REF. The variable's uid is marked in TMP_VARS. */
1447
1448 static tree
1449 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1450 {
1451 tree type = TREE_TYPE (ref);
1452 tree var = create_tmp_var (type, get_lsm_tmp_name (ref, i));
1453
1454 /* We never access the components of the temporary variable in predictive
1455 commoning. */
1456 if (TREE_CODE (type) == COMPLEX_TYPE
1457 || TREE_CODE (type) == VECTOR_TYPE)
1458 DECL_GIMPLE_REG_P (var) = 1;
1459
1460 add_referenced_var (var);
1461 bitmap_set_bit (tmp_vars, DECL_UID (var));
1462 return var;
1463 }
1464
1465 /* Creates the variables for CHAIN, as well as phi nodes for them and
1466 initialization on entry to LOOP. Uids of the newly created
1467 temporary variables are marked in TMP_VARS. */
1468
1469 static void
1470 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1471 {
1472 unsigned i;
1473 unsigned n = chain->length;
1474 dref root = get_chain_root (chain);
1475 bool reuse_first = !chain->has_max_use_after;
1476 tree ref, init, var, next;
1477 gimple phi;
1478 gimple_seq stmts;
1479 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1480
1481 /* If N == 0, then all the references are within the single iteration. And
1482 since this is an nonempty chain, reuse_first cannot be true. */
1483 gcc_assert (n > 0 || !reuse_first);
1484
1485 chain->vars = VEC_alloc (tree, heap, n + 1);
1486
1487 if (chain->type == CT_COMBINATION)
1488 ref = gimple_assign_lhs (root->stmt);
1489 else
1490 ref = DR_REF (root->ref);
1491
1492 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1493 {
1494 var = predcom_tmp_var (ref, i, tmp_vars);
1495 VEC_quick_push (tree, chain->vars, var);
1496 }
1497 if (reuse_first)
1498 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1499
1500 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
1501 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1502
1503 for (i = 0; i < n; i++)
1504 {
1505 var = VEC_index (tree, chain->vars, i);
1506 next = VEC_index (tree, chain->vars, i + 1);
1507 init = get_init_expr (chain, i);
1508
1509 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1510 if (stmts)
1511 gsi_insert_seq_on_edge_immediate (entry, stmts);
1512
1513 phi = create_phi_node (var, loop->header);
1514 SSA_NAME_DEF_STMT (var) = phi;
1515 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1516 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1517 }
1518 }
1519
1520 /* Create the variables and initialization statement for root of chain
1521 CHAIN. Uids of the newly created temporary variables are marked
1522 in TMP_VARS. */
1523
1524 static void
1525 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1526 {
1527 dref root = get_chain_root (chain);
1528 bool in_lhs = (chain->type == CT_STORE_LOAD
1529 || chain->type == CT_COMBINATION);
1530
1531 initialize_root_vars (loop, chain, tmp_vars);
1532 replace_ref_with (root->stmt,
1533 VEC_index (tree, chain->vars, chain->length),
1534 true, in_lhs);
1535 }
1536
1537 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1538 initialization on entry to LOOP if necessary. The ssa name for the variable
1539 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1540 around the loop is created. Uid of the newly created temporary variable
1541 is marked in TMP_VARS. INITS is the list containing the (single)
1542 initializer. */
1543
1544 static void
1545 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1546 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1547 bitmap tmp_vars)
1548 {
1549 unsigned i;
1550 tree ref = DR_REF (root->ref), init, var, next;
1551 gimple_seq stmts;
1552 gimple phi;
1553 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1554
1555 /* Find the initializer for the variable, and check that it cannot
1556 trap. */
1557 init = VEC_index (tree, inits, 0);
1558
1559 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1560 var = predcom_tmp_var (ref, 0, tmp_vars);
1561 VEC_quick_push (tree, *vars, var);
1562 if (written)
1563 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1564
1565 for (i = 0; VEC_iterate (tree, *vars, i, var); i++)
1566 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1567
1568 var = VEC_index (tree, *vars, 0);
1569
1570 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1571 if (stmts)
1572 gsi_insert_seq_on_edge_immediate (entry, stmts);
1573
1574 if (written)
1575 {
1576 next = VEC_index (tree, *vars, 1);
1577 phi = create_phi_node (var, loop->header);
1578 SSA_NAME_DEF_STMT (var) = phi;
1579 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1580 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1581 }
1582 else
1583 {
1584 gimple init_stmt = gimple_build_assign (var, init);
1585 mark_virtual_ops_for_renaming (init_stmt);
1586 gsi_insert_on_edge_immediate (entry, init_stmt);
1587 }
1588 }
1589
1590
1591 /* Execute load motion for references in chain CHAIN. Uids of the newly
1592 created temporary variables are marked in TMP_VARS. */
1593
1594 static void
1595 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1596 {
1597 VEC (tree, heap) *vars;
1598 dref a;
1599 unsigned n_writes = 0, ridx, i;
1600 tree var;
1601
1602 gcc_assert (chain->type == CT_INVARIANT);
1603 gcc_assert (!chain->combined);
1604 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1605 if (!DR_IS_READ (a->ref))
1606 n_writes++;
1607
1608 /* If there are no reads in the loop, there is nothing to do. */
1609 if (n_writes == VEC_length (dref, chain->refs))
1610 return;
1611
1612 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1613 &vars, chain->inits, tmp_vars);
1614
1615 ridx = 0;
1616 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1617 {
1618 bool is_read = DR_IS_READ (a->ref);
1619 mark_virtual_ops_for_renaming (a->stmt);
1620
1621 if (!DR_IS_READ (a->ref))
1622 {
1623 n_writes--;
1624 if (n_writes)
1625 {
1626 var = VEC_index (tree, vars, 0);
1627 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1628 VEC_replace (tree, vars, 0, var);
1629 }
1630 else
1631 ridx = 1;
1632 }
1633
1634 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1635 !is_read, !is_read);
1636 }
1637
1638 VEC_free (tree, heap, vars);
1639 }
1640
1641 /* Returns the single statement in that NAME is used, excepting
1642 the looparound phi nodes contained in one of the chains. If there is no
1643 such statement, or more statements, NULL is returned. */
1644
1645 static gimple
1646 single_nonlooparound_use (tree name)
1647 {
1648 use_operand_p use;
1649 imm_use_iterator it;
1650 gimple stmt, ret = NULL;
1651
1652 FOR_EACH_IMM_USE_FAST (use, it, name)
1653 {
1654 stmt = USE_STMT (use);
1655
1656 if (gimple_code (stmt) == GIMPLE_PHI)
1657 {
1658 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1659 could not be processed anyway, so just fail for them. */
1660 if (bitmap_bit_p (looparound_phis,
1661 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1662 continue;
1663
1664 return NULL;
1665 }
1666 else if (ret != NULL)
1667 return NULL;
1668 else
1669 ret = stmt;
1670 }
1671
1672 return ret;
1673 }
1674
1675 /* Remove statement STMT, as well as the chain of assignments in that it is
1676 used. */
1677
1678 static void
1679 remove_stmt (gimple stmt)
1680 {
1681 tree name;
1682 gimple next;
1683 gimple_stmt_iterator psi;
1684
1685 if (gimple_code (stmt) == GIMPLE_PHI)
1686 {
1687 name = PHI_RESULT (stmt);
1688 next = single_nonlooparound_use (name);
1689 psi = gsi_for_stmt (stmt);
1690 remove_phi_node (&psi, true);
1691
1692 if (!next
1693 || !gimple_assign_ssa_name_copy_p (next)
1694 || gimple_assign_rhs1 (next) != name)
1695 return;
1696
1697 stmt = next;
1698 }
1699
1700 while (1)
1701 {
1702 gimple_stmt_iterator bsi;
1703
1704 bsi = gsi_for_stmt (stmt);
1705
1706 name = gimple_assign_lhs (stmt);
1707 gcc_assert (TREE_CODE (name) == SSA_NAME);
1708
1709 next = single_nonlooparound_use (name);
1710
1711 mark_virtual_ops_for_renaming (stmt);
1712 gsi_remove (&bsi, true);
1713 release_defs (stmt);
1714
1715 if (!next
1716 || !gimple_assign_ssa_name_copy_p (next)
1717 || gimple_assign_rhs1 (next) != name)
1718 return;
1719
1720 stmt = next;
1721 }
1722 }
1723
1724 /* Perform the predictive commoning optimization for a chain CHAIN.
1725 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1726
1727 static void
1728 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1729 bitmap tmp_vars)
1730 {
1731 unsigned i;
1732 dref a, root;
1733 tree var;
1734
1735 if (chain->combined)
1736 {
1737 /* For combined chains, just remove the statements that are used to
1738 compute the values of the expression (except for the root one). */
1739 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1740 remove_stmt (a->stmt);
1741 }
1742 else
1743 {
1744 /* For non-combined chains, set up the variables that hold its value,
1745 and replace the uses of the original references by these
1746 variables. */
1747 root = get_chain_root (chain);
1748 mark_virtual_ops_for_renaming (root->stmt);
1749
1750 initialize_root (loop, chain, tmp_vars);
1751 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1752 {
1753 mark_virtual_ops_for_renaming (a->stmt);
1754 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1755 replace_ref_with (a->stmt, var, false, false);
1756 }
1757 }
1758 }
1759
1760 /* Determines the unroll factor necessary to remove as many temporary variable
1761 copies as possible. CHAINS is the list of chains that will be
1762 optimized. */
1763
1764 static unsigned
1765 determine_unroll_factor (VEC (chain_p, heap) *chains)
1766 {
1767 chain_p chain;
1768 unsigned factor = 1, af, nfactor, i;
1769 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1770
1771 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1772 {
1773 if (chain->type == CT_INVARIANT || chain->combined)
1774 continue;
1775
1776 /* The best unroll factor for this chain is equal to the number of
1777 temporary variables that we create for it. */
1778 af = chain->length;
1779 if (chain->has_max_use_after)
1780 af++;
1781
1782 nfactor = factor * af / gcd (factor, af);
1783 if (nfactor <= max)
1784 factor = nfactor;
1785 }
1786
1787 return factor;
1788 }
1789
1790 /* Perform the predictive commoning optimization for CHAINS.
1791 Uids of the newly created temporary variables are marked in TMP_VARS. */
1792
1793 static void
1794 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1795 bitmap tmp_vars)
1796 {
1797 chain_p chain;
1798 unsigned i;
1799
1800 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1801 {
1802 if (chain->type == CT_INVARIANT)
1803 execute_load_motion (loop, chain, tmp_vars);
1804 else
1805 execute_pred_commoning_chain (loop, chain, tmp_vars);
1806 }
1807
1808 update_ssa (TODO_update_ssa_only_virtuals);
1809 }
1810
1811 /* For each reference in CHAINS, if its defining statement is
1812 phi node, record the ssa name that is defined by it. */
1813
1814 static void
1815 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1816 {
1817 chain_p chain;
1818 dref a;
1819 unsigned i, j;
1820
1821 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1822 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1823 {
1824 if (gimple_code (a->stmt) == GIMPLE_PHI)
1825 {
1826 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1827 a->stmt = NULL;
1828 }
1829 }
1830 }
1831
1832 /* For each reference in CHAINS, if name_defined_by_phi is not
1833 NULL, use it to set the stmt field. */
1834
1835 static void
1836 replace_names_by_phis (VEC (chain_p, heap) *chains)
1837 {
1838 chain_p chain;
1839 dref a;
1840 unsigned i, j;
1841
1842 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1843 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1844 if (a->stmt == NULL)
1845 {
1846 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1847 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1848 a->name_defined_by_phi = NULL_TREE;
1849 }
1850 }
1851
1852 /* Wrapper over execute_pred_commoning, to pass it as a callback
1853 to tree_transform_and_unroll_loop. */
1854
1855 struct epcc_data
1856 {
1857 VEC (chain_p, heap) *chains;
1858 bitmap tmp_vars;
1859 };
1860
1861 static void
1862 execute_pred_commoning_cbck (struct loop *loop, void *data)
1863 {
1864 struct epcc_data *const dta = (struct epcc_data *) data;
1865
1866 /* Restore phi nodes that were replaced by ssa names before
1867 tree_transform_and_unroll_loop (see detailed description in
1868 tree_predictive_commoning_loop). */
1869 replace_names_by_phis (dta->chains);
1870 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1871 }
1872
1873 /* Base NAME and all the names in the chain of phi nodes that use it
1874 on variable VAR. The phi nodes are recognized by being in the copies of
1875 the header of the LOOP. */
1876
1877 static void
1878 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1879 {
1880 gimple stmt, phi;
1881 imm_use_iterator iter;
1882 edge e;
1883
1884 SSA_NAME_VAR (name) = var;
1885
1886 while (1)
1887 {
1888 phi = NULL;
1889 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1890 {
1891 if (gimple_code (stmt) == GIMPLE_PHI
1892 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1893 {
1894 phi = stmt;
1895 BREAK_FROM_IMM_USE_STMT (iter);
1896 }
1897 }
1898 if (!phi)
1899 return;
1900
1901 if (gimple_bb (phi) == loop->header)
1902 e = loop_latch_edge (loop);
1903 else
1904 e = single_pred_edge (gimple_bb (stmt));
1905
1906 name = PHI_RESULT (phi);
1907 SSA_NAME_VAR (name) = var;
1908 }
1909 }
1910
1911 /* Given an unrolled LOOP after predictive commoning, remove the
1912 register copies arising from phi nodes by changing the base
1913 variables of SSA names. TMP_VARS is the set of the temporary variables
1914 for those we want to perform this. */
1915
1916 static void
1917 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1918 {
1919 edge e;
1920 gimple phi, stmt;
1921 tree name, use, var;
1922 gimple_stmt_iterator psi;
1923
1924 e = loop_latch_edge (loop);
1925 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1926 {
1927 phi = gsi_stmt (psi);
1928 name = PHI_RESULT (phi);
1929 var = SSA_NAME_VAR (name);
1930 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1931 continue;
1932 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1933 gcc_assert (TREE_CODE (use) == SSA_NAME);
1934
1935 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1936 stmt = SSA_NAME_DEF_STMT (use);
1937 while (gimple_code (stmt) == GIMPLE_PHI
1938 /* In case we could not unroll the loop enough to eliminate
1939 all copies, we may reach the loop header before the defining
1940 statement (in that case, some register copies will be present
1941 in loop latch in the final code, corresponding to the newly
1942 created looparound phi nodes). */
1943 && gimple_bb (stmt) != loop->header)
1944 {
1945 gcc_assert (single_pred_p (gimple_bb (stmt)));
1946 use = PHI_ARG_DEF (stmt, 0);
1947 stmt = SSA_NAME_DEF_STMT (use);
1948 }
1949
1950 base_names_in_chain_on (loop, use, var);
1951 }
1952 }
1953
1954 /* Returns true if CHAIN is suitable to be combined. */
1955
1956 static bool
1957 chain_can_be_combined_p (chain_p chain)
1958 {
1959 return (!chain->combined
1960 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1961 }
1962
1963 /* Returns the modify statement that uses NAME. Skips over assignment
1964 statements, NAME is replaced with the actual name used in the returned
1965 statement. */
1966
1967 static gimple
1968 find_use_stmt (tree *name)
1969 {
1970 gimple stmt;
1971 tree rhs, lhs;
1972
1973 /* Skip over assignments. */
1974 while (1)
1975 {
1976 stmt = single_nonlooparound_use (*name);
1977 if (!stmt)
1978 return NULL;
1979
1980 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1981 return NULL;
1982
1983 lhs = gimple_assign_lhs (stmt);
1984 if (TREE_CODE (lhs) != SSA_NAME)
1985 return NULL;
1986
1987 if (gimple_assign_copy_p (stmt))
1988 {
1989 rhs = gimple_assign_rhs1 (stmt);
1990 if (rhs != *name)
1991 return NULL;
1992
1993 *name = lhs;
1994 }
1995 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1996 == GIMPLE_BINARY_RHS)
1997 return stmt;
1998 else
1999 return NULL;
2000 }
2001 }
2002
2003 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2004
2005 static bool
2006 may_reassociate_p (tree type, enum tree_code code)
2007 {
2008 if (FLOAT_TYPE_P (type)
2009 && !flag_unsafe_math_optimizations)
2010 return false;
2011
2012 return (commutative_tree_code (code)
2013 && associative_tree_code (code));
2014 }
2015
2016 /* If the operation used in STMT is associative and commutative, go through the
2017 tree of the same operations and returns its root. Distance to the root
2018 is stored in DISTANCE. */
2019
2020 static gimple
2021 find_associative_operation_root (gimple stmt, unsigned *distance)
2022 {
2023 tree lhs;
2024 gimple next;
2025 enum tree_code code = gimple_assign_rhs_code (stmt);
2026 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2027 unsigned dist = 0;
2028
2029 if (!may_reassociate_p (type, code))
2030 return NULL;
2031
2032 while (1)
2033 {
2034 lhs = gimple_assign_lhs (stmt);
2035 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2036
2037 next = find_use_stmt (&lhs);
2038 if (!next
2039 || gimple_assign_rhs_code (next) != code)
2040 break;
2041
2042 stmt = next;
2043 dist++;
2044 }
2045
2046 if (distance)
2047 *distance = dist;
2048 return stmt;
2049 }
2050
2051 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2052 is no such statement, returns NULL_TREE. In case the operation used on
2053 NAME1 and NAME2 is associative and commutative, returns the root of the
2054 tree formed by this operation instead of the statement that uses NAME1 or
2055 NAME2. */
2056
2057 static gimple
2058 find_common_use_stmt (tree *name1, tree *name2)
2059 {
2060 gimple stmt1, stmt2;
2061
2062 stmt1 = find_use_stmt (name1);
2063 if (!stmt1)
2064 return NULL;
2065
2066 stmt2 = find_use_stmt (name2);
2067 if (!stmt2)
2068 return NULL;
2069
2070 if (stmt1 == stmt2)
2071 return stmt1;
2072
2073 stmt1 = find_associative_operation_root (stmt1, NULL);
2074 if (!stmt1)
2075 return NULL;
2076 stmt2 = find_associative_operation_root (stmt2, NULL);
2077 if (!stmt2)
2078 return NULL;
2079
2080 return (stmt1 == stmt2 ? stmt1 : NULL);
2081 }
2082
2083 /* Checks whether R1 and R2 are combined together using CODE, with the result
2084 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2085 if it is true. If CODE is ERROR_MARK, set these values instead. */
2086
2087 static bool
2088 combinable_refs_p (dref r1, dref r2,
2089 enum tree_code *code, bool *swap, tree *rslt_type)
2090 {
2091 enum tree_code acode;
2092 bool aswap;
2093 tree atype;
2094 tree name1, name2;
2095 gimple stmt;
2096
2097 name1 = name_for_ref (r1);
2098 name2 = name_for_ref (r2);
2099 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2100
2101 stmt = find_common_use_stmt (&name1, &name2);
2102
2103 if (!stmt)
2104 return false;
2105
2106 acode = gimple_assign_rhs_code (stmt);
2107 aswap = (!commutative_tree_code (acode)
2108 && gimple_assign_rhs1 (stmt) != name1);
2109 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2110
2111 if (*code == ERROR_MARK)
2112 {
2113 *code = acode;
2114 *swap = aswap;
2115 *rslt_type = atype;
2116 return true;
2117 }
2118
2119 return (*code == acode
2120 && *swap == aswap
2121 && *rslt_type == atype);
2122 }
2123
2124 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2125 an assignment of the remaining operand. */
2126
2127 static void
2128 remove_name_from_operation (gimple stmt, tree op)
2129 {
2130 tree other_op;
2131 gimple_stmt_iterator si;
2132
2133 gcc_assert (is_gimple_assign (stmt));
2134
2135 if (gimple_assign_rhs1 (stmt) == op)
2136 other_op = gimple_assign_rhs2 (stmt);
2137 else
2138 other_op = gimple_assign_rhs1 (stmt);
2139
2140 si = gsi_for_stmt (stmt);
2141 gimple_assign_set_rhs_from_tree (&si, other_op);
2142
2143 /* We should not have reallocated STMT. */
2144 gcc_assert (gsi_stmt (si) == stmt);
2145
2146 update_stmt (stmt);
2147 }
2148
2149 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2150 are combined in a single statement, and returns this statement. */
2151
2152 static gimple
2153 reassociate_to_the_same_stmt (tree name1, tree name2)
2154 {
2155 gimple stmt1, stmt2, root1, root2, s1, s2;
2156 gimple new_stmt, tmp_stmt;
2157 tree new_name, tmp_name, var, r1, r2;
2158 unsigned dist1, dist2;
2159 enum tree_code code;
2160 tree type = TREE_TYPE (name1);
2161 gimple_stmt_iterator bsi;
2162
2163 stmt1 = find_use_stmt (&name1);
2164 stmt2 = find_use_stmt (&name2);
2165 root1 = find_associative_operation_root (stmt1, &dist1);
2166 root2 = find_associative_operation_root (stmt2, &dist2);
2167 code = gimple_assign_rhs_code (stmt1);
2168
2169 gcc_assert (root1 && root2 && root1 == root2
2170 && code == gimple_assign_rhs_code (stmt2));
2171
2172 /* Find the root of the nearest expression in that both NAME1 and NAME2
2173 are used. */
2174 r1 = name1;
2175 s1 = stmt1;
2176 r2 = name2;
2177 s2 = stmt2;
2178
2179 while (dist1 > dist2)
2180 {
2181 s1 = find_use_stmt (&r1);
2182 r1 = gimple_assign_lhs (s1);
2183 dist1--;
2184 }
2185 while (dist2 > dist1)
2186 {
2187 s2 = find_use_stmt (&r2);
2188 r2 = gimple_assign_lhs (s2);
2189 dist2--;
2190 }
2191
2192 while (s1 != s2)
2193 {
2194 s1 = find_use_stmt (&r1);
2195 r1 = gimple_assign_lhs (s1);
2196 s2 = find_use_stmt (&r2);
2197 r2 = gimple_assign_lhs (s2);
2198 }
2199
2200 /* Remove NAME1 and NAME2 from the statements in that they are used
2201 currently. */
2202 remove_name_from_operation (stmt1, name1);
2203 remove_name_from_operation (stmt2, name2);
2204
2205 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2206 combine it with the rhs of S1. */
2207 var = create_tmp_var (type, "predreastmp");
2208 add_referenced_var (var);
2209 new_name = make_ssa_name (var, NULL);
2210 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2211
2212 var = create_tmp_var (type, "predreastmp");
2213 add_referenced_var (var);
2214 tmp_name = make_ssa_name (var, NULL);
2215
2216 /* Rhs of S1 may now be either a binary expression with operation
2217 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2218 so that name1 or name2 was removed from it). */
2219 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2220 tmp_name,
2221 gimple_assign_rhs1 (s1),
2222 gimple_assign_rhs2 (s1));
2223
2224 bsi = gsi_for_stmt (s1);
2225 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2226 s1 = gsi_stmt (bsi);
2227 update_stmt (s1);
2228
2229 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2230 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2231
2232 return new_stmt;
2233 }
2234
2235 /* Returns the statement that combines references R1 and R2. In case R1
2236 and R2 are not used in the same statement, but they are used with an
2237 associative and commutative operation in the same expression, reassociate
2238 the expression so that they are used in the same statement. */
2239
2240 static gimple
2241 stmt_combining_refs (dref r1, dref r2)
2242 {
2243 gimple stmt1, stmt2;
2244 tree name1 = name_for_ref (r1);
2245 tree name2 = name_for_ref (r2);
2246
2247 stmt1 = find_use_stmt (&name1);
2248 stmt2 = find_use_stmt (&name2);
2249 if (stmt1 == stmt2)
2250 return stmt1;
2251
2252 return reassociate_to_the_same_stmt (name1, name2);
2253 }
2254
2255 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2256 description of the new chain is returned, otherwise we return NULL. */
2257
2258 static chain_p
2259 combine_chains (chain_p ch1, chain_p ch2)
2260 {
2261 dref r1, r2, nw;
2262 enum tree_code op = ERROR_MARK;
2263 bool swap = false;
2264 chain_p new_chain;
2265 unsigned i;
2266 gimple root_stmt;
2267 tree rslt_type = NULL_TREE;
2268
2269 if (ch1 == ch2)
2270 return false;
2271 if (ch1->length != ch2->length)
2272 return NULL;
2273
2274 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2275 return NULL;
2276
2277 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2278 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2279 {
2280 if (r1->distance != r2->distance)
2281 return NULL;
2282
2283 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2284 return NULL;
2285 }
2286
2287 if (swap)
2288 {
2289 chain_p tmp = ch1;
2290 ch1 = ch2;
2291 ch2 = tmp;
2292 }
2293
2294 new_chain = XCNEW (struct chain);
2295 new_chain->type = CT_COMBINATION;
2296 new_chain->op = op;
2297 new_chain->ch1 = ch1;
2298 new_chain->ch2 = ch2;
2299 new_chain->rslt_type = rslt_type;
2300 new_chain->length = ch1->length;
2301
2302 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2303 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2304 {
2305 nw = XCNEW (struct dref_d);
2306 nw->stmt = stmt_combining_refs (r1, r2);
2307 nw->distance = r1->distance;
2308
2309 VEC_safe_push (dref, heap, new_chain->refs, nw);
2310 }
2311
2312 new_chain->has_max_use_after = false;
2313 root_stmt = get_chain_root (new_chain)->stmt;
2314 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2315 {
2316 if (nw->distance == new_chain->length
2317 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2318 {
2319 new_chain->has_max_use_after = true;
2320 break;
2321 }
2322 }
2323
2324 ch1->combined = true;
2325 ch2->combined = true;
2326 return new_chain;
2327 }
2328
2329 /* Try to combine the CHAINS. */
2330
2331 static void
2332 try_combine_chains (VEC (chain_p, heap) **chains)
2333 {
2334 unsigned i, j;
2335 chain_p ch1, ch2, cch;
2336 VEC (chain_p, heap) *worklist = NULL;
2337
2338 for (i = 0; VEC_iterate (chain_p, *chains, i, ch1); i++)
2339 if (chain_can_be_combined_p (ch1))
2340 VEC_safe_push (chain_p, heap, worklist, ch1);
2341
2342 while (!VEC_empty (chain_p, worklist))
2343 {
2344 ch1 = VEC_pop (chain_p, worklist);
2345 if (!chain_can_be_combined_p (ch1))
2346 continue;
2347
2348 for (j = 0; VEC_iterate (chain_p, *chains, j, ch2); j++)
2349 {
2350 if (!chain_can_be_combined_p (ch2))
2351 continue;
2352
2353 cch = combine_chains (ch1, ch2);
2354 if (cch)
2355 {
2356 VEC_safe_push (chain_p, heap, worklist, cch);
2357 VEC_safe_push (chain_p, heap, *chains, cch);
2358 break;
2359 }
2360 }
2361 }
2362 }
2363
2364 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2365 impossible because one of these initializers may trap, true otherwise. */
2366
2367 static bool
2368 prepare_initializers_chain (struct loop *loop, chain_p chain)
2369 {
2370 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2371 struct data_reference *dr = get_chain_root (chain)->ref;
2372 tree init;
2373 gimple_seq stmts;
2374 dref laref;
2375 edge entry = loop_preheader_edge (loop);
2376
2377 /* Find the initializers for the variables, and check that they cannot
2378 trap. */
2379 chain->inits = VEC_alloc (tree, heap, n);
2380 for (i = 0; i < n; i++)
2381 VEC_quick_push (tree, chain->inits, NULL_TREE);
2382
2383 /* If we have replaced some looparound phi nodes, use their initializers
2384 instead of creating our own. */
2385 for (i = 0; VEC_iterate (dref, chain->refs, i, laref); i++)
2386 {
2387 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2388 continue;
2389
2390 gcc_assert (laref->distance > 0);
2391 VEC_replace (tree, chain->inits, n - laref->distance,
2392 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2393 }
2394
2395 for (i = 0; i < n; i++)
2396 {
2397 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2398 continue;
2399
2400 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2401 if (!init)
2402 return false;
2403
2404 if (!chain->all_always_accessed && tree_could_trap_p (init))
2405 return false;
2406
2407 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2408 if (stmts)
2409 gsi_insert_seq_on_edge_immediate (entry, stmts);
2410
2411 VEC_replace (tree, chain->inits, i, init);
2412 }
2413
2414 return true;
2415 }
2416
2417 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2418 be used because the initializers might trap. */
2419
2420 static void
2421 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2422 {
2423 chain_p chain;
2424 unsigned i;
2425
2426 for (i = 0; i < VEC_length (chain_p, chains); )
2427 {
2428 chain = VEC_index (chain_p, chains, i);
2429 if (prepare_initializers_chain (loop, chain))
2430 i++;
2431 else
2432 {
2433 release_chain (chain);
2434 VEC_unordered_remove (chain_p, chains, i);
2435 }
2436 }
2437 }
2438
2439 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2440 unrolled. */
2441
2442 static bool
2443 tree_predictive_commoning_loop (struct loop *loop)
2444 {
2445 VEC (data_reference_p, heap) *datarefs;
2446 VEC (ddr_p, heap) *dependences;
2447 struct component *components;
2448 VEC (chain_p, heap) *chains = NULL;
2449 unsigned unroll_factor;
2450 struct tree_niter_desc desc;
2451 bool unroll = false;
2452 edge exit;
2453 bitmap tmp_vars;
2454
2455 if (dump_file && (dump_flags & TDF_DETAILS))
2456 fprintf (dump_file, "Processing loop %d\n", loop->num);
2457
2458 /* Find the data references and split them into components according to their
2459 dependence relations. */
2460 datarefs = VEC_alloc (data_reference_p, heap, 10);
2461 dependences = VEC_alloc (ddr_p, heap, 10);
2462 compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2463 if (dump_file && (dump_flags & TDF_DETAILS))
2464 dump_data_dependence_relations (dump_file, dependences);
2465
2466 components = split_data_refs_to_components (loop, datarefs, dependences);
2467 free_dependence_relations (dependences);
2468 if (!components)
2469 {
2470 free_data_refs (datarefs);
2471 return false;
2472 }
2473
2474 if (dump_file && (dump_flags & TDF_DETAILS))
2475 {
2476 fprintf (dump_file, "Initial state:\n\n");
2477 dump_components (dump_file, components);
2478 }
2479
2480 /* Find the suitable components and split them into chains. */
2481 components = filter_suitable_components (loop, components);
2482
2483 tmp_vars = BITMAP_ALLOC (NULL);
2484 looparound_phis = BITMAP_ALLOC (NULL);
2485 determine_roots (loop, components, &chains);
2486 release_components (components);
2487
2488 if (!chains)
2489 {
2490 if (dump_file && (dump_flags & TDF_DETAILS))
2491 fprintf (dump_file,
2492 "Predictive commoning failed: no suitable chains\n");
2493 goto end;
2494 }
2495 prepare_initializers (loop, chains);
2496
2497 /* Try to combine the chains that are always worked with together. */
2498 try_combine_chains (&chains);
2499
2500 if (dump_file && (dump_flags & TDF_DETAILS))
2501 {
2502 fprintf (dump_file, "Before commoning:\n\n");
2503 dump_chains (dump_file, chains);
2504 }
2505
2506 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2507 that its number of iterations is divisible by the factor. */
2508 unroll_factor = determine_unroll_factor (chains);
2509 scev_reset ();
2510 unroll = (unroll_factor > 1
2511 && can_unroll_loop_p (loop, unroll_factor, &desc));
2512 exit = single_dom_exit (loop);
2513
2514 /* Execute the predictive commoning transformations, and possibly unroll the
2515 loop. */
2516 if (unroll)
2517 {
2518 struct epcc_data dta;
2519
2520 if (dump_file && (dump_flags & TDF_DETAILS))
2521 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2522
2523 dta.chains = chains;
2524 dta.tmp_vars = tmp_vars;
2525
2526 update_ssa (TODO_update_ssa_only_virtuals);
2527
2528 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2529 execute_pred_commoning_cbck is called may cause phi nodes to be
2530 reallocated, which is a problem since CHAINS may point to these
2531 statements. To fix this, we store the ssa names defined by the
2532 phi nodes here instead of the phi nodes themselves, and restore
2533 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2534 replace_phis_by_defined_names (chains);
2535
2536 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2537 execute_pred_commoning_cbck, &dta);
2538 eliminate_temp_copies (loop, tmp_vars);
2539 }
2540 else
2541 {
2542 if (dump_file && (dump_flags & TDF_DETAILS))
2543 fprintf (dump_file,
2544 "Executing predictive commoning without unrolling.\n");
2545 execute_pred_commoning (loop, chains, tmp_vars);
2546 }
2547
2548 end: ;
2549 release_chains (chains);
2550 free_data_refs (datarefs);
2551 BITMAP_FREE (tmp_vars);
2552 BITMAP_FREE (looparound_phis);
2553
2554 free_affine_expand_cache (&name_expansions);
2555
2556 return unroll;
2557 }
2558
2559 /* Runs predictive commoning. */
2560
2561 unsigned
2562 tree_predictive_commoning (void)
2563 {
2564 bool unrolled = false;
2565 struct loop *loop;
2566 loop_iterator li;
2567 unsigned ret = 0;
2568
2569 initialize_original_copy_tables ();
2570 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2571 if (optimize_loop_for_speed_p (loop))
2572 {
2573 unrolled |= tree_predictive_commoning_loop (loop);
2574 }
2575
2576 if (unrolled)
2577 {
2578 scev_reset ();
2579 ret = TODO_cleanup_cfg;
2580 }
2581 free_original_copy_tables ();
2582
2583 return ret;
2584 }