]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-scalar-evolution.c
re PR testsuite/27476 (ACATS: Ada testsuite Bourne shell compatibility problem on...
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
255
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257 static tree resolve_mixers (struct loop *, tree);
258
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
261
262 struct scev_info_str
263 {
264 tree var;
265 tree chrec;
266 };
267
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev = 0;
270 static unsigned nb_get_scev = 0;
271
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
275
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet;
278
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know;
282
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285 tree chrec_known;
286
287 static bitmap already_instantiated;
288
289 static htab_t scalar_evolution_info;
290
291 \f
292 /* Constructs a new SCEV_INFO_STR structure. */
293
294 static inline struct scev_info_str *
295 new_scev_info_str (tree var)
296 {
297 struct scev_info_str *res;
298
299 res = XNEW (struct scev_info_str);
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
302
303 return res;
304 }
305
306 /* Computes a hash function for database element ELT. */
307
308 static hashval_t
309 hash_scev_info (const void *elt)
310 {
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312 }
313
314 /* Compares database elements E1 and E2. */
315
316 static int
317 eq_scev_info (const void *e1, const void *e2)
318 {
319 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
321
322 return elt1->var == elt2->var;
323 }
324
325 /* Deletes database element E. */
326
327 static void
328 del_scev_info (void *e)
329 {
330 free (e);
331 }
332
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
336
337 static tree *
338 find_var_scev_info (tree var)
339 {
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
343
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346
347 if (!*slot)
348 *slot = new_scev_info_str (var);
349 res = (struct scev_info_str *) *slot;
350
351 return &res->chrec;
352 }
353
354 /* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
356
357 bool
358 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359 {
360 if (chrec == NULL_TREE)
361 return false;
362
363 if (TREE_INVARIANT (chrec))
364 return false;
365
366 if (TREE_CODE (chrec) == VAR_DECL
367 || TREE_CODE (chrec) == PARM_DECL
368 || TREE_CODE (chrec) == FUNCTION_DECL
369 || TREE_CODE (chrec) == LABEL_DECL
370 || TREE_CODE (chrec) == RESULT_DECL
371 || TREE_CODE (chrec) == FIELD_DECL)
372 return true;
373
374 if (TREE_CODE (chrec) == SSA_NAME)
375 {
376 tree def = SSA_NAME_DEF_STMT (chrec);
377 struct loop *def_loop = loop_containing_stmt (def);
378 struct loop *loop = current_loops->parray[loop_nb];
379
380 if (def_loop == NULL)
381 return false;
382
383 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384 return true;
385
386 return false;
387 }
388
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
390 {
391 case 3:
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393 loop_nb))
394 return true;
395
396 case 2:
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398 loop_nb))
399 return true;
400
401 case 1:
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403 loop_nb))
404 return true;
405
406 default:
407 return false;
408 }
409 }
410
411 /* Return true when PHI is a loop-phi-node. */
412
413 static bool
414 loop_phi_node_p (tree phi)
415 {
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
419
420 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
421 }
422
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
427
428 Example:
429
430 | for (j = 0; j < 100; j++)
431 | {
432 | for (k = 0; k < 100; k++)
433 | {
434 | i = k + j; - Here the value of i is a function of j, k.
435 | }
436 | ... = i - Here the value of i is a function of j.
437 | }
438 | ... = i - Here the value of i is a scalar.
439
440 Example:
441
442 | i_0 = ...
443 | loop_1 10 times
444 | i_1 = phi (i_0, i_2)
445 | i_2 = i_1 + 2
446 | endloop
447
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
450
451 | i_1 = i_0 + 20
452
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
456 */
457
458 static tree
459 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
460 {
461 bool val = false;
462
463 if (evolution_fn == chrec_dont_know)
464 return chrec_dont_know;
465
466 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
467 {
468 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
469 {
470 struct loop *inner_loop =
471 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
472 tree nb_iter = number_of_iterations_in_loop (inner_loop);
473
474 if (nb_iter == chrec_dont_know)
475 return chrec_dont_know;
476 else
477 {
478 tree res;
479 tree type = chrec_type (nb_iter);
480
481 /* Number of iterations is off by one (the ssa name we
482 analyze must be defined before the exit). */
483 nb_iter = chrec_fold_minus (type, nb_iter,
484 build_int_cst (type, 1));
485
486 /* evolution_fn is the evolution function in LOOP. Get
487 its value in the nb_iter-th iteration. */
488 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
489
490 /* Continue the computation until ending on a parent of LOOP. */
491 return compute_overall_effect_of_inner_loop (loop, res);
492 }
493 }
494 else
495 return evolution_fn;
496 }
497
498 /* If the evolution function is an invariant, there is nothing to do. */
499 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
500 return evolution_fn;
501
502 else
503 return chrec_dont_know;
504 }
505
506 /* Determine whether the CHREC is always positive/negative. If the expression
507 cannot be statically analyzed, return false, otherwise set the answer into
508 VALUE. */
509
510 bool
511 chrec_is_positive (tree chrec, bool *value)
512 {
513 bool value0, value1, value2;
514 tree type, end_value, nb_iter;
515
516 switch (TREE_CODE (chrec))
517 {
518 case POLYNOMIAL_CHREC:
519 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
520 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
521 return false;
522
523 /* FIXME -- overflows. */
524 if (value0 == value1)
525 {
526 *value = value0;
527 return true;
528 }
529
530 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
531 and the proof consists in showing that the sign never
532 changes during the execution of the loop, from 0 to
533 loop->nb_iterations. */
534 if (!evolution_function_is_affine_p (chrec))
535 return false;
536
537 nb_iter = number_of_iterations_in_loop
538 (current_loops->parray[CHREC_VARIABLE (chrec)]);
539
540 if (chrec_contains_undetermined (nb_iter))
541 return false;
542
543 type = chrec_type (nb_iter);
544 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
545
546 #if 0
547 /* TODO -- If the test is after the exit, we may decrease the number of
548 iterations by one. */
549 if (after_exit)
550 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
551 #endif
552
553 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
554
555 if (!chrec_is_positive (end_value, &value2))
556 return false;
557
558 *value = value0;
559 return value0 == value1;
560
561 case INTEGER_CST:
562 *value = (tree_int_cst_sgn (chrec) == 1);
563 return true;
564
565 default:
566 return false;
567 }
568 }
569
570 /* Associate CHREC to SCALAR. */
571
572 static void
573 set_scalar_evolution (tree scalar, tree chrec)
574 {
575 tree *scalar_info;
576
577 if (TREE_CODE (scalar) != SSA_NAME)
578 return;
579
580 scalar_info = find_var_scev_info (scalar);
581
582 if (dump_file)
583 {
584 if (dump_flags & TDF_DETAILS)
585 {
586 fprintf (dump_file, "(set_scalar_evolution \n");
587 fprintf (dump_file, " (scalar = ");
588 print_generic_expr (dump_file, scalar, 0);
589 fprintf (dump_file, ")\n (scalar_evolution = ");
590 print_generic_expr (dump_file, chrec, 0);
591 fprintf (dump_file, "))\n");
592 }
593 if (dump_flags & TDF_STATS)
594 nb_set_scev++;
595 }
596
597 *scalar_info = chrec;
598 }
599
600 /* Retrieve the chrec associated to SCALAR in the LOOP. */
601
602 static tree
603 get_scalar_evolution (tree scalar)
604 {
605 tree res;
606
607 if (dump_file)
608 {
609 if (dump_flags & TDF_DETAILS)
610 {
611 fprintf (dump_file, "(get_scalar_evolution \n");
612 fprintf (dump_file, " (scalar = ");
613 print_generic_expr (dump_file, scalar, 0);
614 fprintf (dump_file, ")\n");
615 }
616 if (dump_flags & TDF_STATS)
617 nb_get_scev++;
618 }
619
620 switch (TREE_CODE (scalar))
621 {
622 case SSA_NAME:
623 res = *find_var_scev_info (scalar);
624 break;
625
626 case REAL_CST:
627 case INTEGER_CST:
628 res = scalar;
629 break;
630
631 default:
632 res = chrec_not_analyzed_yet;
633 break;
634 }
635
636 if (dump_file && (dump_flags & TDF_DETAILS))
637 {
638 fprintf (dump_file, " (scalar_evolution = ");
639 print_generic_expr (dump_file, res, 0);
640 fprintf (dump_file, "))\n");
641 }
642
643 return res;
644 }
645
646 /* Helper function for add_to_evolution. Returns the evolution
647 function for an assignment of the form "a = b + c", where "a" and
648 "b" are on the strongly connected component. CHREC_BEFORE is the
649 information that we already have collected up to this point.
650 TO_ADD is the evolution of "c".
651
652 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
653 evolution the expression TO_ADD, otherwise construct an evolution
654 part for this loop. */
655
656 static tree
657 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
658 tree at_stmt)
659 {
660 tree type, left, right;
661
662 switch (TREE_CODE (chrec_before))
663 {
664 case POLYNOMIAL_CHREC:
665 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
666 {
667 unsigned var;
668
669 type = chrec_type (chrec_before);
670
671 /* When there is no evolution part in this loop, build it. */
672 if (CHREC_VARIABLE (chrec_before) < loop_nb)
673 {
674 var = loop_nb;
675 left = chrec_before;
676 right = SCALAR_FLOAT_TYPE_P (type)
677 ? build_real (type, dconst0)
678 : build_int_cst (type, 0);
679 }
680 else
681 {
682 var = CHREC_VARIABLE (chrec_before);
683 left = CHREC_LEFT (chrec_before);
684 right = CHREC_RIGHT (chrec_before);
685 }
686
687 to_add = chrec_convert (type, to_add, at_stmt);
688 right = chrec_convert (type, right, at_stmt);
689 right = chrec_fold_plus (type, right, to_add);
690 return build_polynomial_chrec (var, left, right);
691 }
692 else
693 {
694 /* Search the evolution in LOOP_NB. */
695 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
696 to_add, at_stmt);
697 right = CHREC_RIGHT (chrec_before);
698 right = chrec_convert (chrec_type (left), right, at_stmt);
699 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
700 left, right);
701 }
702
703 default:
704 /* These nodes do not depend on a loop. */
705 if (chrec_before == chrec_dont_know)
706 return chrec_dont_know;
707
708 left = chrec_before;
709 right = chrec_convert (chrec_type (left), to_add, at_stmt);
710 return build_polynomial_chrec (loop_nb, left, right);
711 }
712 }
713
714 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
715 of LOOP_NB.
716
717 Description (provided for completeness, for those who read code in
718 a plane, and for my poor 62 bytes brain that would have forgotten
719 all this in the next two or three months):
720
721 The algorithm of translation of programs from the SSA representation
722 into the chrecs syntax is based on a pattern matching. After having
723 reconstructed the overall tree expression for a loop, there are only
724 two cases that can arise:
725
726 1. a = loop-phi (init, a + expr)
727 2. a = loop-phi (init, expr)
728
729 where EXPR is either a scalar constant with respect to the analyzed
730 loop (this is a degree 0 polynomial), or an expression containing
731 other loop-phi definitions (these are higher degree polynomials).
732
733 Examples:
734
735 1.
736 | init = ...
737 | loop_1
738 | a = phi (init, a + 5)
739 | endloop
740
741 2.
742 | inita = ...
743 | initb = ...
744 | loop_1
745 | a = phi (inita, 2 * b + 3)
746 | b = phi (initb, b + 1)
747 | endloop
748
749 For the first case, the semantics of the SSA representation is:
750
751 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
752
753 that is, there is a loop index "x" that determines the scalar value
754 of the variable during the loop execution. During the first
755 iteration, the value is that of the initial condition INIT, while
756 during the subsequent iterations, it is the sum of the initial
757 condition with the sum of all the values of EXPR from the initial
758 iteration to the before last considered iteration.
759
760 For the second case, the semantics of the SSA program is:
761
762 | a (x) = init, if x = 0;
763 | expr (x - 1), otherwise.
764
765 The second case corresponds to the PEELED_CHREC, whose syntax is
766 close to the syntax of a loop-phi-node:
767
768 | phi (init, expr) vs. (init, expr)_x
769
770 The proof of the translation algorithm for the first case is a
771 proof by structural induction based on the degree of EXPR.
772
773 Degree 0:
774 When EXPR is a constant with respect to the analyzed loop, or in
775 other words when EXPR is a polynomial of degree 0, the evolution of
776 the variable A in the loop is an affine function with an initial
777 condition INIT, and a step EXPR. In order to show this, we start
778 from the semantics of the SSA representation:
779
780 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
781
782 and since "expr (j)" is a constant with respect to "j",
783
784 f (x) = init + x * expr
785
786 Finally, based on the semantics of the pure sum chrecs, by
787 identification we get the corresponding chrecs syntax:
788
789 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
790 f (x) -> {init, +, expr}_x
791
792 Higher degree:
793 Suppose that EXPR is a polynomial of degree N with respect to the
794 analyzed loop_x for which we have already determined that it is
795 written under the chrecs syntax:
796
797 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
798
799 We start from the semantics of the SSA program:
800
801 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
802 |
803 | f (x) = init + \sum_{j = 0}^{x - 1}
804 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
805 |
806 | f (x) = init + \sum_{j = 0}^{x - 1}
807 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
808 |
809 | f (x) = init + \sum_{k = 0}^{n - 1}
810 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
811 |
812 | f (x) = init + \sum_{k = 0}^{n - 1}
813 | (b_k * \binom{x}{k + 1})
814 |
815 | f (x) = init + b_0 * \binom{x}{1} + ...
816 | + b_{n-1} * \binom{x}{n}
817 |
818 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
819 | + b_{n-1} * \binom{x}{n}
820 |
821
822 And finally from the definition of the chrecs syntax, we identify:
823 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
824
825 This shows the mechanism that stands behind the add_to_evolution
826 function. An important point is that the use of symbolic
827 parameters avoids the need of an analysis schedule.
828
829 Example:
830
831 | inita = ...
832 | initb = ...
833 | loop_1
834 | a = phi (inita, a + 2 + b)
835 | b = phi (initb, b + 1)
836 | endloop
837
838 When analyzing "a", the algorithm keeps "b" symbolically:
839
840 | a -> {inita, +, 2 + b}_1
841
842 Then, after instantiation, the analyzer ends on the evolution:
843
844 | a -> {inita, +, 2 + initb, +, 1}_1
845
846 */
847
848 static tree
849 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
850 tree to_add, tree at_stmt)
851 {
852 tree type = chrec_type (to_add);
853 tree res = NULL_TREE;
854
855 if (to_add == NULL_TREE)
856 return chrec_before;
857
858 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
859 instantiated at this point. */
860 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
861 /* This should not happen. */
862 return chrec_dont_know;
863
864 if (dump_file && (dump_flags & TDF_DETAILS))
865 {
866 fprintf (dump_file, "(add_to_evolution \n");
867 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
868 fprintf (dump_file, " (chrec_before = ");
869 print_generic_expr (dump_file, chrec_before, 0);
870 fprintf (dump_file, ")\n (to_add = ");
871 print_generic_expr (dump_file, to_add, 0);
872 fprintf (dump_file, ")\n");
873 }
874
875 if (code == MINUS_EXPR)
876 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
877 ? build_real (type, dconstm1)
878 : build_int_cst_type (type, -1));
879
880 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
881
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 {
884 fprintf (dump_file, " (res = ");
885 print_generic_expr (dump_file, res, 0);
886 fprintf (dump_file, "))\n");
887 }
888
889 return res;
890 }
891
892 /* Helper function. */
893
894 static inline tree
895 set_nb_iterations_in_loop (struct loop *loop,
896 tree res)
897 {
898 tree type = chrec_type (res);
899
900 res = chrec_fold_plus (type, res, build_int_cst (type, 1));
901
902 /* FIXME HWI: However we want to store one iteration less than the
903 count of the loop in order to be compatible with the other
904 nb_iter computations in loop-iv. This also allows the
905 representation of nb_iters that are equal to MAX_INT. */
906 if (TREE_CODE (res) == INTEGER_CST
907 && (TREE_INT_CST_LOW (res) == 0
908 || TREE_OVERFLOW (res)))
909 res = chrec_dont_know;
910
911 if (dump_file && (dump_flags & TDF_DETAILS))
912 {
913 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
914 print_generic_expr (dump_file, res, 0);
915 fprintf (dump_file, "))\n");
916 }
917
918 loop->nb_iterations = res;
919 return res;
920 }
921
922 \f
923
924 /* This section selects the loops that will be good candidates for the
925 scalar evolution analysis. For the moment, greedily select all the
926 loop nests we could analyze. */
927
928 /* Return true when it is possible to analyze the condition expression
929 EXPR. */
930
931 static bool
932 analyzable_condition (tree expr)
933 {
934 tree condition;
935
936 if (TREE_CODE (expr) != COND_EXPR)
937 return false;
938
939 condition = TREE_OPERAND (expr, 0);
940
941 switch (TREE_CODE (condition))
942 {
943 case SSA_NAME:
944 return true;
945
946 case LT_EXPR:
947 case LE_EXPR:
948 case GT_EXPR:
949 case GE_EXPR:
950 case EQ_EXPR:
951 case NE_EXPR:
952 return true;
953
954 default:
955 return false;
956 }
957
958 return false;
959 }
960
961 /* For a loop with a single exit edge, return the COND_EXPR that
962 guards the exit edge. If the expression is too difficult to
963 analyze, then give up. */
964
965 tree
966 get_loop_exit_condition (struct loop *loop)
967 {
968 tree res = NULL_TREE;
969 edge exit_edge = loop->single_exit;
970
971
972 if (dump_file && (dump_flags & TDF_DETAILS))
973 fprintf (dump_file, "(get_loop_exit_condition \n ");
974
975 if (exit_edge)
976 {
977 tree expr;
978
979 expr = last_stmt (exit_edge->src);
980 if (analyzable_condition (expr))
981 res = expr;
982 }
983
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 {
986 print_generic_expr (dump_file, res, 0);
987 fprintf (dump_file, ")\n");
988 }
989
990 return res;
991 }
992
993 /* Recursively determine and enqueue the exit conditions for a loop. */
994
995 static void
996 get_exit_conditions_rec (struct loop *loop,
997 VEC(tree,heap) **exit_conditions)
998 {
999 if (!loop)
1000 return;
1001
1002 /* Recurse on the inner loops, then on the next (sibling) loops. */
1003 get_exit_conditions_rec (loop->inner, exit_conditions);
1004 get_exit_conditions_rec (loop->next, exit_conditions);
1005
1006 if (loop->single_exit)
1007 {
1008 tree loop_condition = get_loop_exit_condition (loop);
1009
1010 if (loop_condition)
1011 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1012 }
1013 }
1014
1015 /* Select the candidate loop nests for the analysis. This function
1016 initializes the EXIT_CONDITIONS array. */
1017
1018 static void
1019 select_loops_exit_conditions (struct loops *loops,
1020 VEC(tree,heap) **exit_conditions)
1021 {
1022 struct loop *function_body = loops->parray[0];
1023
1024 get_exit_conditions_rec (function_body->inner, exit_conditions);
1025 }
1026
1027 \f
1028 /* Depth first search algorithm. */
1029
1030 typedef enum t_bool {
1031 t_false,
1032 t_true,
1033 t_dont_know
1034 } t_bool;
1035
1036
1037 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1038
1039 /* Follow the ssa edge into the right hand side RHS of an assignment.
1040 Return true if the strongly connected component has been found. */
1041
1042 static t_bool
1043 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1044 tree halting_phi, tree *evolution_of_loop, int limit)
1045 {
1046 t_bool res = t_false;
1047 tree rhs0, rhs1;
1048 tree type_rhs = TREE_TYPE (rhs);
1049 tree evol;
1050
1051 /* The RHS is one of the following cases:
1052 - an SSA_NAME,
1053 - an INTEGER_CST,
1054 - a PLUS_EXPR,
1055 - a MINUS_EXPR,
1056 - an ASSERT_EXPR,
1057 - other cases are not yet handled. */
1058 switch (TREE_CODE (rhs))
1059 {
1060 case NOP_EXPR:
1061 /* This assignment is under the form "a_1 = (cast) rhs. */
1062 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1063 halting_phi, evolution_of_loop, limit);
1064 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1065 *evolution_of_loop, at_stmt);
1066 break;
1067
1068 case INTEGER_CST:
1069 /* This assignment is under the form "a_1 = 7". */
1070 res = t_false;
1071 break;
1072
1073 case SSA_NAME:
1074 /* This assignment is under the form: "a_1 = b_2". */
1075 res = follow_ssa_edge
1076 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1077 break;
1078
1079 case PLUS_EXPR:
1080 /* This case is under the form "rhs0 + rhs1". */
1081 rhs0 = TREE_OPERAND (rhs, 0);
1082 rhs1 = TREE_OPERAND (rhs, 1);
1083 STRIP_TYPE_NOPS (rhs0);
1084 STRIP_TYPE_NOPS (rhs1);
1085
1086 if (TREE_CODE (rhs0) == SSA_NAME)
1087 {
1088 if (TREE_CODE (rhs1) == SSA_NAME)
1089 {
1090 /* Match an assignment under the form:
1091 "a = b + c". */
1092 evol = *evolution_of_loop;
1093 res = follow_ssa_edge
1094 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1095 &evol, limit);
1096
1097 if (res == t_true)
1098 *evolution_of_loop = add_to_evolution
1099 (loop->num,
1100 chrec_convert (type_rhs, evol, at_stmt),
1101 PLUS_EXPR, rhs1, at_stmt);
1102
1103 else if (res == t_false)
1104 {
1105 res = follow_ssa_edge
1106 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1107 evolution_of_loop, limit);
1108
1109 if (res == t_true)
1110 *evolution_of_loop = add_to_evolution
1111 (loop->num,
1112 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1113 PLUS_EXPR, rhs0, at_stmt);
1114
1115 else if (res == t_dont_know)
1116 *evolution_of_loop = chrec_dont_know;
1117 }
1118
1119 else if (res == t_dont_know)
1120 *evolution_of_loop = chrec_dont_know;
1121 }
1122
1123 else
1124 {
1125 /* Match an assignment under the form:
1126 "a = b + ...". */
1127 res = follow_ssa_edge
1128 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1129 evolution_of_loop, limit);
1130 if (res == t_true)
1131 *evolution_of_loop = add_to_evolution
1132 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1133 at_stmt),
1134 PLUS_EXPR, rhs1, at_stmt);
1135
1136 else if (res == t_dont_know)
1137 *evolution_of_loop = chrec_dont_know;
1138 }
1139 }
1140
1141 else if (TREE_CODE (rhs1) == SSA_NAME)
1142 {
1143 /* Match an assignment under the form:
1144 "a = ... + c". */
1145 res = follow_ssa_edge
1146 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1147 evolution_of_loop, limit);
1148 if (res == t_true)
1149 *evolution_of_loop = add_to_evolution
1150 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1151 at_stmt),
1152 PLUS_EXPR, rhs0, at_stmt);
1153
1154 else if (res == t_dont_know)
1155 *evolution_of_loop = chrec_dont_know;
1156 }
1157
1158 else
1159 /* Otherwise, match an assignment under the form:
1160 "a = ... + ...". */
1161 /* And there is nothing to do. */
1162 res = t_false;
1163
1164 break;
1165
1166 case MINUS_EXPR:
1167 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1168 rhs0 = TREE_OPERAND (rhs, 0);
1169 rhs1 = TREE_OPERAND (rhs, 1);
1170 STRIP_TYPE_NOPS (rhs0);
1171 STRIP_TYPE_NOPS (rhs1);
1172
1173 if (TREE_CODE (rhs0) == SSA_NAME)
1174 {
1175 /* Match an assignment under the form:
1176 "a = b - ...". */
1177 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1178 evolution_of_loop, limit);
1179 if (res == t_true)
1180 *evolution_of_loop = add_to_evolution
1181 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1182 MINUS_EXPR, rhs1, at_stmt);
1183
1184 else if (res == t_dont_know)
1185 *evolution_of_loop = chrec_dont_know;
1186 }
1187 else
1188 /* Otherwise, match an assignment under the form:
1189 "a = ... - ...". */
1190 /* And there is nothing to do. */
1191 res = t_false;
1192
1193 break;
1194
1195 case ASSERT_EXPR:
1196 {
1197 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1198 It must be handled as a copy assignment of the form a_1 = a_2. */
1199 tree op0 = ASSERT_EXPR_VAR (rhs);
1200 if (TREE_CODE (op0) == SSA_NAME)
1201 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1202 halting_phi, evolution_of_loop, limit);
1203 else
1204 res = t_false;
1205 break;
1206 }
1207
1208
1209 default:
1210 res = t_false;
1211 break;
1212 }
1213
1214 return res;
1215 }
1216
1217 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1218
1219 static bool
1220 backedge_phi_arg_p (tree phi, int i)
1221 {
1222 edge e = PHI_ARG_EDGE (phi, i);
1223
1224 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1225 about updating it anywhere, and this should work as well most of the
1226 time. */
1227 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1228 return true;
1229
1230 return false;
1231 }
1232
1233 /* Helper function for one branch of the condition-phi-node. Return
1234 true if the strongly connected component has been found following
1235 this path. */
1236
1237 static inline t_bool
1238 follow_ssa_edge_in_condition_phi_branch (int i,
1239 struct loop *loop,
1240 tree condition_phi,
1241 tree halting_phi,
1242 tree *evolution_of_branch,
1243 tree init_cond, int limit)
1244 {
1245 tree branch = PHI_ARG_DEF (condition_phi, i);
1246 *evolution_of_branch = chrec_dont_know;
1247
1248 /* Do not follow back edges (they must belong to an irreducible loop, which
1249 we really do not want to worry about). */
1250 if (backedge_phi_arg_p (condition_phi, i))
1251 return t_false;
1252
1253 if (TREE_CODE (branch) == SSA_NAME)
1254 {
1255 *evolution_of_branch = init_cond;
1256 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1257 evolution_of_branch, limit);
1258 }
1259
1260 /* This case occurs when one of the condition branches sets
1261 the variable to a constant: i.e. a phi-node like
1262 "a_2 = PHI <a_7(5), 2(6)>;".
1263
1264 FIXME: This case have to be refined correctly:
1265 in some cases it is possible to say something better than
1266 chrec_dont_know, for example using a wrap-around notation. */
1267 return t_false;
1268 }
1269
1270 /* This function merges the branches of a condition-phi-node in a
1271 loop. */
1272
1273 static t_bool
1274 follow_ssa_edge_in_condition_phi (struct loop *loop,
1275 tree condition_phi,
1276 tree halting_phi,
1277 tree *evolution_of_loop, int limit)
1278 {
1279 int i;
1280 tree init = *evolution_of_loop;
1281 tree evolution_of_branch;
1282 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1283 halting_phi,
1284 &evolution_of_branch,
1285 init, limit);
1286 if (res == t_false || res == t_dont_know)
1287 return res;
1288
1289 *evolution_of_loop = evolution_of_branch;
1290
1291 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1292 {
1293 /* Quickly give up when the evolution of one of the branches is
1294 not known. */
1295 if (*evolution_of_loop == chrec_dont_know)
1296 return t_true;
1297
1298 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1299 halting_phi,
1300 &evolution_of_branch,
1301 init, limit);
1302 if (res == t_false || res == t_dont_know)
1303 return res;
1304
1305 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1306 evolution_of_branch);
1307 }
1308
1309 return t_true;
1310 }
1311
1312 /* Follow an SSA edge in an inner loop. It computes the overall
1313 effect of the loop, and following the symbolic initial conditions,
1314 it follows the edges in the parent loop. The inner loop is
1315 considered as a single statement. */
1316
1317 static t_bool
1318 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1319 tree loop_phi_node,
1320 tree halting_phi,
1321 tree *evolution_of_loop, int limit)
1322 {
1323 struct loop *loop = loop_containing_stmt (loop_phi_node);
1324 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1325
1326 /* Sometimes, the inner loop is too difficult to analyze, and the
1327 result of the analysis is a symbolic parameter. */
1328 if (ev == PHI_RESULT (loop_phi_node))
1329 {
1330 t_bool res = t_false;
1331 int i;
1332
1333 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1334 {
1335 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1336 basic_block bb;
1337
1338 /* Follow the edges that exit the inner loop. */
1339 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1340 if (!flow_bb_inside_loop_p (loop, bb))
1341 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1342 arg, halting_phi,
1343 evolution_of_loop, limit);
1344 if (res == t_true)
1345 break;
1346 }
1347
1348 /* If the path crosses this loop-phi, give up. */
1349 if (res == t_true)
1350 *evolution_of_loop = chrec_dont_know;
1351
1352 return res;
1353 }
1354
1355 /* Otherwise, compute the overall effect of the inner loop. */
1356 ev = compute_overall_effect_of_inner_loop (loop, ev);
1357 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1358 evolution_of_loop, limit);
1359 }
1360
1361 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1362 path that is analyzed on the return walk. */
1363
1364 static t_bool
1365 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1366 tree *evolution_of_loop, int limit)
1367 {
1368 struct loop *def_loop;
1369
1370 if (TREE_CODE (def) == NOP_EXPR)
1371 return t_false;
1372
1373 /* Give up if the path is longer than the MAX that we allow. */
1374 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1375 return t_dont_know;
1376
1377 def_loop = loop_containing_stmt (def);
1378
1379 switch (TREE_CODE (def))
1380 {
1381 case PHI_NODE:
1382 if (!loop_phi_node_p (def))
1383 /* DEF is a condition-phi-node. Follow the branches, and
1384 record their evolutions. Finally, merge the collected
1385 information and set the approximation to the main
1386 variable. */
1387 return follow_ssa_edge_in_condition_phi
1388 (loop, def, halting_phi, evolution_of_loop, limit);
1389
1390 /* When the analyzed phi is the halting_phi, the
1391 depth-first search is over: we have found a path from
1392 the halting_phi to itself in the loop. */
1393 if (def == halting_phi)
1394 return t_true;
1395
1396 /* Otherwise, the evolution of the HALTING_PHI depends
1397 on the evolution of another loop-phi-node, i.e. the
1398 evolution function is a higher degree polynomial. */
1399 if (def_loop == loop)
1400 return t_false;
1401
1402 /* Inner loop. */
1403 if (flow_loop_nested_p (loop, def_loop))
1404 return follow_ssa_edge_inner_loop_phi
1405 (loop, def, halting_phi, evolution_of_loop, limit);
1406
1407 /* Outer loop. */
1408 return t_false;
1409
1410 case MODIFY_EXPR:
1411 return follow_ssa_edge_in_rhs (loop, def,
1412 TREE_OPERAND (def, 1),
1413 halting_phi,
1414 evolution_of_loop, limit);
1415
1416 default:
1417 /* At this level of abstraction, the program is just a set
1418 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1419 other node to be handled. */
1420 return t_false;
1421 }
1422 }
1423
1424 \f
1425
1426 /* Given a LOOP_PHI_NODE, this function determines the evolution
1427 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1428
1429 static tree
1430 analyze_evolution_in_loop (tree loop_phi_node,
1431 tree init_cond)
1432 {
1433 int i;
1434 tree evolution_function = chrec_not_analyzed_yet;
1435 struct loop *loop = loop_containing_stmt (loop_phi_node);
1436 basic_block bb;
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 {
1440 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1441 fprintf (dump_file, " (loop_phi_node = ");
1442 print_generic_expr (dump_file, loop_phi_node, 0);
1443 fprintf (dump_file, ")\n");
1444 }
1445
1446 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1447 {
1448 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1449 tree ssa_chain, ev_fn;
1450 t_bool res;
1451
1452 /* Select the edges that enter the loop body. */
1453 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1454 if (!flow_bb_inside_loop_p (loop, bb))
1455 continue;
1456
1457 if (TREE_CODE (arg) == SSA_NAME)
1458 {
1459 ssa_chain = SSA_NAME_DEF_STMT (arg);
1460
1461 /* Pass in the initial condition to the follow edge function. */
1462 ev_fn = init_cond;
1463 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1464 }
1465 else
1466 res = t_false;
1467
1468 /* When it is impossible to go back on the same
1469 loop_phi_node by following the ssa edges, the
1470 evolution is represented by a peeled chrec, i.e. the
1471 first iteration, EV_FN has the value INIT_COND, then
1472 all the other iterations it has the value of ARG.
1473 For the moment, PEELED_CHREC nodes are not built. */
1474 if (res != t_true)
1475 ev_fn = chrec_dont_know;
1476
1477 /* When there are multiple back edges of the loop (which in fact never
1478 happens currently, but nevertheless), merge their evolutions. */
1479 evolution_function = chrec_merge (evolution_function, ev_fn);
1480 }
1481
1482 if (dump_file && (dump_flags & TDF_DETAILS))
1483 {
1484 fprintf (dump_file, " (evolution_function = ");
1485 print_generic_expr (dump_file, evolution_function, 0);
1486 fprintf (dump_file, "))\n");
1487 }
1488
1489 return evolution_function;
1490 }
1491
1492 /* Given a loop-phi-node, return the initial conditions of the
1493 variable on entry of the loop. When the CCP has propagated
1494 constants into the loop-phi-node, the initial condition is
1495 instantiated, otherwise the initial condition is kept symbolic.
1496 This analyzer does not analyze the evolution outside the current
1497 loop, and leaves this task to the on-demand tree reconstructor. */
1498
1499 static tree
1500 analyze_initial_condition (tree loop_phi_node)
1501 {
1502 int i;
1503 tree init_cond = chrec_not_analyzed_yet;
1504 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1505
1506 if (dump_file && (dump_flags & TDF_DETAILS))
1507 {
1508 fprintf (dump_file, "(analyze_initial_condition \n");
1509 fprintf (dump_file, " (loop_phi_node = \n");
1510 print_generic_expr (dump_file, loop_phi_node, 0);
1511 fprintf (dump_file, ")\n");
1512 }
1513
1514 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1515 {
1516 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1517 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1518
1519 /* When the branch is oriented to the loop's body, it does
1520 not contribute to the initial condition. */
1521 if (flow_bb_inside_loop_p (loop, bb))
1522 continue;
1523
1524 if (init_cond == chrec_not_analyzed_yet)
1525 {
1526 init_cond = branch;
1527 continue;
1528 }
1529
1530 if (TREE_CODE (branch) == SSA_NAME)
1531 {
1532 init_cond = chrec_dont_know;
1533 break;
1534 }
1535
1536 init_cond = chrec_merge (init_cond, branch);
1537 }
1538
1539 /* Ooops -- a loop without an entry??? */
1540 if (init_cond == chrec_not_analyzed_yet)
1541 init_cond = chrec_dont_know;
1542
1543 if (dump_file && (dump_flags & TDF_DETAILS))
1544 {
1545 fprintf (dump_file, " (init_cond = ");
1546 print_generic_expr (dump_file, init_cond, 0);
1547 fprintf (dump_file, "))\n");
1548 }
1549
1550 return init_cond;
1551 }
1552
1553 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1554
1555 static tree
1556 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1557 {
1558 tree res;
1559 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1560 tree init_cond;
1561
1562 if (phi_loop != loop)
1563 {
1564 struct loop *subloop;
1565 tree evolution_fn = analyze_scalar_evolution
1566 (phi_loop, PHI_RESULT (loop_phi_node));
1567
1568 /* Dive one level deeper. */
1569 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1570
1571 /* Interpret the subloop. */
1572 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1573 return res;
1574 }
1575
1576 /* Otherwise really interpret the loop phi. */
1577 init_cond = analyze_initial_condition (loop_phi_node);
1578 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1579
1580 return res;
1581 }
1582
1583 /* This function merges the branches of a condition-phi-node,
1584 contained in the outermost loop, and whose arguments are already
1585 analyzed. */
1586
1587 static tree
1588 interpret_condition_phi (struct loop *loop, tree condition_phi)
1589 {
1590 int i;
1591 tree res = chrec_not_analyzed_yet;
1592
1593 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1594 {
1595 tree branch_chrec;
1596
1597 if (backedge_phi_arg_p (condition_phi, i))
1598 {
1599 res = chrec_dont_know;
1600 break;
1601 }
1602
1603 branch_chrec = analyze_scalar_evolution
1604 (loop, PHI_ARG_DEF (condition_phi, i));
1605
1606 res = chrec_merge (res, branch_chrec);
1607 }
1608
1609 return res;
1610 }
1611
1612 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1613 analyze this node before, follow the definitions until ending
1614 either on an analyzed modify_expr, or on a loop-phi-node. On the
1615 return path, this function propagates evolutions (ala constant copy
1616 propagation). OPND1 is not a GIMPLE expression because we could
1617 analyze the effect of an inner loop: see interpret_loop_phi. */
1618
1619 static tree
1620 interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
1621 tree opnd1, tree type)
1622 {
1623 tree res, opnd10, opnd11, chrec10, chrec11;
1624
1625 if (is_gimple_min_invariant (opnd1))
1626 return chrec_convert (type, opnd1, at_stmt);
1627
1628 switch (TREE_CODE (opnd1))
1629 {
1630 case PLUS_EXPR:
1631 opnd10 = TREE_OPERAND (opnd1, 0);
1632 opnd11 = TREE_OPERAND (opnd1, 1);
1633 chrec10 = analyze_scalar_evolution (loop, opnd10);
1634 chrec11 = analyze_scalar_evolution (loop, opnd11);
1635 chrec10 = chrec_convert (type, chrec10, at_stmt);
1636 chrec11 = chrec_convert (type, chrec11, at_stmt);
1637 res = chrec_fold_plus (type, chrec10, chrec11);
1638 break;
1639
1640 case MINUS_EXPR:
1641 opnd10 = TREE_OPERAND (opnd1, 0);
1642 opnd11 = TREE_OPERAND (opnd1, 1);
1643 chrec10 = analyze_scalar_evolution (loop, opnd10);
1644 chrec11 = analyze_scalar_evolution (loop, opnd11);
1645 chrec10 = chrec_convert (type, chrec10, at_stmt);
1646 chrec11 = chrec_convert (type, chrec11, at_stmt);
1647 res = chrec_fold_minus (type, chrec10, chrec11);
1648 break;
1649
1650 case NEGATE_EXPR:
1651 opnd10 = TREE_OPERAND (opnd1, 0);
1652 chrec10 = analyze_scalar_evolution (loop, opnd10);
1653 chrec10 = chrec_convert (type, chrec10, at_stmt);
1654 /* TYPE may be integer, real or complex, so use fold_convert. */
1655 res = chrec_fold_multiply (type, chrec10,
1656 fold_convert (type, integer_minus_one_node));
1657 break;
1658
1659 case MULT_EXPR:
1660 opnd10 = TREE_OPERAND (opnd1, 0);
1661 opnd11 = TREE_OPERAND (opnd1, 1);
1662 chrec10 = analyze_scalar_evolution (loop, opnd10);
1663 chrec11 = analyze_scalar_evolution (loop, opnd11);
1664 chrec10 = chrec_convert (type, chrec10, at_stmt);
1665 chrec11 = chrec_convert (type, chrec11, at_stmt);
1666 res = chrec_fold_multiply (type, chrec10, chrec11);
1667 break;
1668
1669 case SSA_NAME:
1670 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1671 at_stmt);
1672 break;
1673
1674 case ASSERT_EXPR:
1675 opnd10 = ASSERT_EXPR_VAR (opnd1);
1676 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1677 at_stmt);
1678 break;
1679
1680 case NOP_EXPR:
1681 case CONVERT_EXPR:
1682 opnd10 = TREE_OPERAND (opnd1, 0);
1683 chrec10 = analyze_scalar_evolution (loop, opnd10);
1684 res = chrec_convert (type, chrec10, at_stmt);
1685 break;
1686
1687 default:
1688 res = chrec_dont_know;
1689 break;
1690 }
1691
1692 return res;
1693 }
1694
1695 \f
1696
1697 /* This section contains all the entry points:
1698 - number_of_iterations_in_loop,
1699 - analyze_scalar_evolution,
1700 - instantiate_parameters.
1701 */
1702
1703 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1704 common ancestor of DEF_LOOP and USE_LOOP. */
1705
1706 static tree
1707 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1708 struct loop *def_loop,
1709 tree ev)
1710 {
1711 tree res;
1712 if (def_loop == wrto_loop)
1713 return ev;
1714
1715 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1716 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1717
1718 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1719 }
1720
1721 /* Helper recursive function. */
1722
1723 static tree
1724 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1725 {
1726 tree def, type = TREE_TYPE (var);
1727 basic_block bb;
1728 struct loop *def_loop;
1729
1730 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1731 return chrec_dont_know;
1732
1733 if (TREE_CODE (var) != SSA_NAME)
1734 return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
1735
1736 def = SSA_NAME_DEF_STMT (var);
1737 bb = bb_for_stmt (def);
1738 def_loop = bb ? bb->loop_father : NULL;
1739
1740 if (bb == NULL
1741 || !flow_bb_inside_loop_p (loop, bb))
1742 {
1743 /* Keep the symbolic form. */
1744 res = var;
1745 goto set_and_end;
1746 }
1747
1748 if (res != chrec_not_analyzed_yet)
1749 {
1750 if (loop != bb->loop_father)
1751 res = compute_scalar_evolution_in_loop
1752 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1753
1754 goto set_and_end;
1755 }
1756
1757 if (loop != def_loop)
1758 {
1759 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1760 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1761
1762 goto set_and_end;
1763 }
1764
1765 switch (TREE_CODE (def))
1766 {
1767 case MODIFY_EXPR:
1768 res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
1769 break;
1770
1771 case PHI_NODE:
1772 if (loop_phi_node_p (def))
1773 res = interpret_loop_phi (loop, def);
1774 else
1775 res = interpret_condition_phi (loop, def);
1776 break;
1777
1778 default:
1779 res = chrec_dont_know;
1780 break;
1781 }
1782
1783 set_and_end:
1784
1785 /* Keep the symbolic form. */
1786 if (res == chrec_dont_know)
1787 res = var;
1788
1789 if (loop == def_loop)
1790 set_scalar_evolution (var, res);
1791
1792 return res;
1793 }
1794
1795 /* Entry point for the scalar evolution analyzer.
1796 Analyzes and returns the scalar evolution of the ssa_name VAR.
1797 LOOP_NB is the identifier number of the loop in which the variable
1798 is used.
1799
1800 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1801 pointer to the statement that uses this variable, in order to
1802 determine the evolution function of the variable, use the following
1803 calls:
1804
1805 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1806 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1807 tree chrec_instantiated = instantiate_parameters
1808 (loop_nb, chrec_with_symbols);
1809 */
1810
1811 tree
1812 analyze_scalar_evolution (struct loop *loop, tree var)
1813 {
1814 tree res;
1815
1816 if (dump_file && (dump_flags & TDF_DETAILS))
1817 {
1818 fprintf (dump_file, "(analyze_scalar_evolution \n");
1819 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1820 fprintf (dump_file, " (scalar = ");
1821 print_generic_expr (dump_file, var, 0);
1822 fprintf (dump_file, ")\n");
1823 }
1824
1825 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1826
1827 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1828 res = var;
1829
1830 if (dump_file && (dump_flags & TDF_DETAILS))
1831 fprintf (dump_file, ")\n");
1832
1833 return res;
1834 }
1835
1836 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1837 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1838 of VERSION).
1839
1840 FOLDED_CASTS is set to true if resolve_mixers used
1841 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1842 at the moment in order to keep things simple). */
1843
1844 static tree
1845 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1846 tree version, bool *folded_casts)
1847 {
1848 bool val = false;
1849 tree ev = version, tmp;
1850
1851 if (folded_casts)
1852 *folded_casts = false;
1853 while (1)
1854 {
1855 tmp = analyze_scalar_evolution (use_loop, ev);
1856 ev = resolve_mixers (use_loop, tmp);
1857
1858 if (folded_casts && tmp != ev)
1859 *folded_casts = true;
1860
1861 if (use_loop == wrto_loop)
1862 return ev;
1863
1864 /* If the value of the use changes in the inner loop, we cannot express
1865 its value in the outer loop (we might try to return interval chrec,
1866 but we do not have a user for it anyway) */
1867 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1868 || !val)
1869 return chrec_dont_know;
1870
1871 use_loop = use_loop->outer;
1872 }
1873 }
1874
1875 /* Returns instantiated value for VERSION in CACHE. */
1876
1877 static tree
1878 get_instantiated_value (htab_t cache, tree version)
1879 {
1880 struct scev_info_str *info, pattern;
1881
1882 pattern.var = version;
1883 info = (struct scev_info_str *) htab_find (cache, &pattern);
1884
1885 if (info)
1886 return info->chrec;
1887 else
1888 return NULL_TREE;
1889 }
1890
1891 /* Sets instantiated value for VERSION to VAL in CACHE. */
1892
1893 static void
1894 set_instantiated_value (htab_t cache, tree version, tree val)
1895 {
1896 struct scev_info_str *info, pattern;
1897 PTR *slot;
1898
1899 pattern.var = version;
1900 slot = htab_find_slot (cache, &pattern, INSERT);
1901
1902 if (!*slot)
1903 *slot = new_scev_info_str (version);
1904 info = (struct scev_info_str *) *slot;
1905 info->chrec = val;
1906 }
1907
1908 /* Return the closed_loop_phi node for VAR. If there is none, return
1909 NULL_TREE. */
1910
1911 static tree
1912 loop_closed_phi_def (tree var)
1913 {
1914 struct loop *loop;
1915 edge exit;
1916 tree phi;
1917
1918 if (var == NULL_TREE
1919 || TREE_CODE (var) != SSA_NAME)
1920 return NULL_TREE;
1921
1922 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
1923 exit = loop->single_exit;
1924 if (!exit)
1925 return NULL_TREE;
1926
1927 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
1928 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
1929 return PHI_RESULT (phi);
1930
1931 return NULL_TREE;
1932 }
1933
1934 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1935 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
1936 of already instantiated values. FLAGS modify the way chrecs are
1937 instantiated. SIZE_EXPR is used for computing the size of the expression to
1938 be instantiated, and to stop if it exceeds some limit. */
1939
1940 /* Values for FLAGS. */
1941 enum
1942 {
1943 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
1944 in outer loops. */
1945 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
1946 signed/pointer type are folded, as long as the
1947 value of the chrec is preserved. */
1948 };
1949
1950 static tree
1951 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
1952 int size_expr)
1953 {
1954 tree res, op0, op1, op2;
1955 basic_block def_bb;
1956 struct loop *def_loop;
1957 tree type = chrec_type (chrec);
1958
1959 /* Give up if the expression is larger than the MAX that we allow. */
1960 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1961 return chrec_dont_know;
1962
1963 if (automatically_generated_chrec_p (chrec)
1964 || is_gimple_min_invariant (chrec))
1965 return chrec;
1966
1967 switch (TREE_CODE (chrec))
1968 {
1969 case SSA_NAME:
1970 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
1971
1972 /* A parameter (or loop invariant and we do not want to include
1973 evolutions in outer loops), nothing to do. */
1974 if (!def_bb
1975 || (!(flags & INSERT_SUPERLOOP_CHRECS)
1976 && !flow_bb_inside_loop_p (loop, def_bb)))
1977 return chrec;
1978
1979 /* We cache the value of instantiated variable to avoid exponential
1980 time complexity due to reevaluations. We also store the convenient
1981 value in the cache in order to prevent infinite recursion -- we do
1982 not want to instantiate the SSA_NAME if it is in a mixer
1983 structure. This is used for avoiding the instantiation of
1984 recursively defined functions, such as:
1985
1986 | a_2 -> {0, +, 1, +, a_2}_1 */
1987
1988 res = get_instantiated_value (cache, chrec);
1989 if (res)
1990 return res;
1991
1992 /* Store the convenient value for chrec in the structure. If it
1993 is defined outside of the loop, we may just leave it in symbolic
1994 form, otherwise we need to admit that we do not know its behavior
1995 inside the loop. */
1996 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
1997 set_instantiated_value (cache, chrec, res);
1998
1999 /* To make things even more complicated, instantiate_parameters_1
2000 calls analyze_scalar_evolution that may call # of iterations
2001 analysis that may in turn call instantiate_parameters_1 again.
2002 To prevent the infinite recursion, keep also the bitmap of
2003 ssa names that are being instantiated globally. */
2004 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2005 return res;
2006
2007 def_loop = find_common_loop (loop, def_bb->loop_father);
2008
2009 /* If the analysis yields a parametric chrec, instantiate the
2010 result again. */
2011 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2012 res = analyze_scalar_evolution (def_loop, chrec);
2013
2014 /* Don't instantiate loop-closed-ssa phi nodes. */
2015 if (TREE_CODE (res) == SSA_NAME
2016 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2017 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2018 > def_loop->depth)))
2019 {
2020 if (res == chrec)
2021 res = loop_closed_phi_def (chrec);
2022 else
2023 res = chrec;
2024
2025 if (res == NULL_TREE)
2026 res = chrec_dont_know;
2027 }
2028
2029 else if (res != chrec_dont_know)
2030 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2031
2032 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2033
2034 /* Store the correct value to the cache. */
2035 set_instantiated_value (cache, chrec, res);
2036 return res;
2037
2038 case POLYNOMIAL_CHREC:
2039 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2040 flags, cache, size_expr);
2041 if (op0 == chrec_dont_know)
2042 return chrec_dont_know;
2043
2044 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2045 flags, cache, size_expr);
2046 if (op1 == chrec_dont_know)
2047 return chrec_dont_know;
2048
2049 if (CHREC_LEFT (chrec) != op0
2050 || CHREC_RIGHT (chrec) != op1)
2051 {
2052 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2053 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2054 }
2055 return chrec;
2056
2057 case PLUS_EXPR:
2058 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2059 flags, cache, size_expr);
2060 if (op0 == chrec_dont_know)
2061 return chrec_dont_know;
2062
2063 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2064 flags, cache, size_expr);
2065 if (op1 == chrec_dont_know)
2066 return chrec_dont_know;
2067
2068 if (TREE_OPERAND (chrec, 0) != op0
2069 || TREE_OPERAND (chrec, 1) != op1)
2070 {
2071 op0 = chrec_convert (type, op0, NULL_TREE);
2072 op1 = chrec_convert (type, op1, NULL_TREE);
2073 chrec = chrec_fold_plus (type, op0, op1);
2074 }
2075 return chrec;
2076
2077 case MINUS_EXPR:
2078 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2079 flags, cache, size_expr);
2080 if (op0 == chrec_dont_know)
2081 return chrec_dont_know;
2082
2083 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2084 flags, cache, size_expr);
2085 if (op1 == chrec_dont_know)
2086 return chrec_dont_know;
2087
2088 if (TREE_OPERAND (chrec, 0) != op0
2089 || TREE_OPERAND (chrec, 1) != op1)
2090 {
2091 op0 = chrec_convert (type, op0, NULL_TREE);
2092 op1 = chrec_convert (type, op1, NULL_TREE);
2093 chrec = chrec_fold_minus (type, op0, op1);
2094 }
2095 return chrec;
2096
2097 case MULT_EXPR:
2098 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2099 flags, cache, size_expr);
2100 if (op0 == chrec_dont_know)
2101 return chrec_dont_know;
2102
2103 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2104 flags, cache, size_expr);
2105 if (op1 == chrec_dont_know)
2106 return chrec_dont_know;
2107
2108 if (TREE_OPERAND (chrec, 0) != op0
2109 || TREE_OPERAND (chrec, 1) != op1)
2110 {
2111 op0 = chrec_convert (type, op0, NULL_TREE);
2112 op1 = chrec_convert (type, op1, NULL_TREE);
2113 chrec = chrec_fold_multiply (type, op0, op1);
2114 }
2115 return chrec;
2116
2117 case NOP_EXPR:
2118 case CONVERT_EXPR:
2119 case NON_LVALUE_EXPR:
2120 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2121 flags, cache, size_expr);
2122 if (op0 == chrec_dont_know)
2123 return chrec_dont_know;
2124
2125 if (flags & FOLD_CONVERSIONS)
2126 {
2127 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2128 if (tmp)
2129 return tmp;
2130 }
2131
2132 if (op0 == TREE_OPERAND (chrec, 0))
2133 return chrec;
2134
2135 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2136
2137 case SCEV_NOT_KNOWN:
2138 return chrec_dont_know;
2139
2140 case SCEV_KNOWN:
2141 return chrec_known;
2142
2143 default:
2144 break;
2145 }
2146
2147 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2148 {
2149 case 3:
2150 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2151 flags, cache, size_expr);
2152 if (op0 == chrec_dont_know)
2153 return chrec_dont_know;
2154
2155 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2156 flags, cache, size_expr);
2157 if (op1 == chrec_dont_know)
2158 return chrec_dont_know;
2159
2160 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2161 flags, cache, size_expr);
2162 if (op2 == chrec_dont_know)
2163 return chrec_dont_know;
2164
2165 if (op0 == TREE_OPERAND (chrec, 0)
2166 && op1 == TREE_OPERAND (chrec, 1)
2167 && op2 == TREE_OPERAND (chrec, 2))
2168 return chrec;
2169
2170 return fold_build3 (TREE_CODE (chrec),
2171 TREE_TYPE (chrec), op0, op1, op2);
2172
2173 case 2:
2174 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2175 flags, cache, size_expr);
2176 if (op0 == chrec_dont_know)
2177 return chrec_dont_know;
2178
2179 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2180 flags, cache, size_expr);
2181 if (op1 == chrec_dont_know)
2182 return chrec_dont_know;
2183
2184 if (op0 == TREE_OPERAND (chrec, 0)
2185 && op1 == TREE_OPERAND (chrec, 1))
2186 return chrec;
2187 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2188
2189 case 1:
2190 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2191 flags, cache, size_expr);
2192 if (op0 == chrec_dont_know)
2193 return chrec_dont_know;
2194 if (op0 == TREE_OPERAND (chrec, 0))
2195 return chrec;
2196 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2197
2198 case 0:
2199 return chrec;
2200
2201 default:
2202 break;
2203 }
2204
2205 /* Too complicated to handle. */
2206 return chrec_dont_know;
2207 }
2208
2209 /* Analyze all the parameters of the chrec that were left under a
2210 symbolic form. LOOP is the loop in which symbolic names have to
2211 be analyzed and instantiated. */
2212
2213 tree
2214 instantiate_parameters (struct loop *loop,
2215 tree chrec)
2216 {
2217 tree res;
2218 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2219
2220 if (dump_file && (dump_flags & TDF_DETAILS))
2221 {
2222 fprintf (dump_file, "(instantiate_parameters \n");
2223 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2224 fprintf (dump_file, " (chrec = ");
2225 print_generic_expr (dump_file, chrec, 0);
2226 fprintf (dump_file, ")\n");
2227 }
2228
2229 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2230 0);
2231
2232 if (dump_file && (dump_flags & TDF_DETAILS))
2233 {
2234 fprintf (dump_file, " (res = ");
2235 print_generic_expr (dump_file, res, 0);
2236 fprintf (dump_file, "))\n");
2237 }
2238
2239 htab_delete (cache);
2240
2241 return res;
2242 }
2243
2244 /* Similar to instantiate_parameters, but does not introduce the
2245 evolutions in outer loops for LOOP invariants in CHREC, and does not
2246 care about causing overflows, as long as they do not affect value
2247 of an expression. */
2248
2249 static tree
2250 resolve_mixers (struct loop *loop, tree chrec)
2251 {
2252 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2253 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2254 htab_delete (cache);
2255 return ret;
2256 }
2257
2258 /* Entry point for the analysis of the number of iterations pass.
2259 This function tries to safely approximate the number of iterations
2260 the loop will run. When this property is not decidable at compile
2261 time, the result is chrec_dont_know. Otherwise the result is
2262 a scalar or a symbolic parameter.
2263
2264 Example of analysis: suppose that the loop has an exit condition:
2265
2266 "if (b > 49) goto end_loop;"
2267
2268 and that in a previous analysis we have determined that the
2269 variable 'b' has an evolution function:
2270
2271 "EF = {23, +, 5}_2".
2272
2273 When we evaluate the function at the point 5, i.e. the value of the
2274 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2275 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2276 the loop body has been executed 6 times. */
2277
2278 tree
2279 number_of_iterations_in_loop (struct loop *loop)
2280 {
2281 tree res, type;
2282 edge exit;
2283 struct tree_niter_desc niter_desc;
2284
2285 /* Determine whether the number_of_iterations_in_loop has already
2286 been computed. */
2287 res = loop->nb_iterations;
2288 if (res)
2289 return res;
2290 res = chrec_dont_know;
2291
2292 if (dump_file && (dump_flags & TDF_DETAILS))
2293 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2294
2295 exit = loop->single_exit;
2296 if (!exit)
2297 goto end;
2298
2299 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2300 goto end;
2301
2302 type = TREE_TYPE (niter_desc.niter);
2303 if (integer_nonzerop (niter_desc.may_be_zero))
2304 res = build_int_cst (type, 0);
2305 else if (integer_zerop (niter_desc.may_be_zero))
2306 res = niter_desc.niter;
2307 else
2308 res = chrec_dont_know;
2309
2310 end:
2311 return set_nb_iterations_in_loop (loop, res);
2312 }
2313
2314 /* One of the drivers for testing the scalar evolutions analysis.
2315 This function computes the number of iterations for all the loops
2316 from the EXIT_CONDITIONS array. */
2317
2318 static void
2319 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2320 {
2321 unsigned int i;
2322 unsigned nb_chrec_dont_know_loops = 0;
2323 unsigned nb_static_loops = 0;
2324 tree cond;
2325
2326 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2327 {
2328 tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2329 if (chrec_contains_undetermined (res))
2330 nb_chrec_dont_know_loops++;
2331 else
2332 nb_static_loops++;
2333 }
2334
2335 if (dump_file)
2336 {
2337 fprintf (dump_file, "\n(\n");
2338 fprintf (dump_file, "-----------------------------------------\n");
2339 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2340 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2341 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2342 fprintf (dump_file, "-----------------------------------------\n");
2343 fprintf (dump_file, ")\n\n");
2344
2345 print_loop_ir (dump_file);
2346 }
2347 }
2348
2349 \f
2350
2351 /* Counters for the stats. */
2352
2353 struct chrec_stats
2354 {
2355 unsigned nb_chrecs;
2356 unsigned nb_affine;
2357 unsigned nb_affine_multivar;
2358 unsigned nb_higher_poly;
2359 unsigned nb_chrec_dont_know;
2360 unsigned nb_undetermined;
2361 };
2362
2363 /* Reset the counters. */
2364
2365 static inline void
2366 reset_chrecs_counters (struct chrec_stats *stats)
2367 {
2368 stats->nb_chrecs = 0;
2369 stats->nb_affine = 0;
2370 stats->nb_affine_multivar = 0;
2371 stats->nb_higher_poly = 0;
2372 stats->nb_chrec_dont_know = 0;
2373 stats->nb_undetermined = 0;
2374 }
2375
2376 /* Dump the contents of a CHREC_STATS structure. */
2377
2378 static void
2379 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2380 {
2381 fprintf (file, "\n(\n");
2382 fprintf (file, "-----------------------------------------\n");
2383 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2384 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2385 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2386 stats->nb_higher_poly);
2387 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2388 fprintf (file, "-----------------------------------------\n");
2389 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2390 fprintf (file, "%d\twith undetermined coefficients\n",
2391 stats->nb_undetermined);
2392 fprintf (file, "-----------------------------------------\n");
2393 fprintf (file, "%d\tchrecs in the scev database\n",
2394 (int) htab_elements (scalar_evolution_info));
2395 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2396 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2397 fprintf (file, "-----------------------------------------\n");
2398 fprintf (file, ")\n\n");
2399 }
2400
2401 /* Gather statistics about CHREC. */
2402
2403 static void
2404 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2405 {
2406 if (dump_file && (dump_flags & TDF_STATS))
2407 {
2408 fprintf (dump_file, "(classify_chrec ");
2409 print_generic_expr (dump_file, chrec, 0);
2410 fprintf (dump_file, "\n");
2411 }
2412
2413 stats->nb_chrecs++;
2414
2415 if (chrec == NULL_TREE)
2416 {
2417 stats->nb_undetermined++;
2418 return;
2419 }
2420
2421 switch (TREE_CODE (chrec))
2422 {
2423 case POLYNOMIAL_CHREC:
2424 if (evolution_function_is_affine_p (chrec))
2425 {
2426 if (dump_file && (dump_flags & TDF_STATS))
2427 fprintf (dump_file, " affine_univariate\n");
2428 stats->nb_affine++;
2429 }
2430 else if (evolution_function_is_affine_multivariate_p (chrec))
2431 {
2432 if (dump_file && (dump_flags & TDF_STATS))
2433 fprintf (dump_file, " affine_multivariate\n");
2434 stats->nb_affine_multivar++;
2435 }
2436 else
2437 {
2438 if (dump_file && (dump_flags & TDF_STATS))
2439 fprintf (dump_file, " higher_degree_polynomial\n");
2440 stats->nb_higher_poly++;
2441 }
2442
2443 break;
2444
2445 default:
2446 break;
2447 }
2448
2449 if (chrec_contains_undetermined (chrec))
2450 {
2451 if (dump_file && (dump_flags & TDF_STATS))
2452 fprintf (dump_file, " undetermined\n");
2453 stats->nb_undetermined++;
2454 }
2455
2456 if (dump_file && (dump_flags & TDF_STATS))
2457 fprintf (dump_file, ")\n");
2458 }
2459
2460 /* One of the drivers for testing the scalar evolutions analysis.
2461 This function analyzes the scalar evolution of all the scalars
2462 defined as loop phi nodes in one of the loops from the
2463 EXIT_CONDITIONS array.
2464
2465 TODO Optimization: A loop is in canonical form if it contains only
2466 a single scalar loop phi node. All the other scalars that have an
2467 evolution in the loop are rewritten in function of this single
2468 index. This allows the parallelization of the loop. */
2469
2470 static void
2471 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2472 {
2473 unsigned int i;
2474 struct chrec_stats stats;
2475 tree cond;
2476
2477 reset_chrecs_counters (&stats);
2478
2479 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2480 {
2481 struct loop *loop;
2482 basic_block bb;
2483 tree phi, chrec;
2484
2485 loop = loop_containing_stmt (cond);
2486 bb = loop->header;
2487
2488 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2489 if (is_gimple_reg (PHI_RESULT (phi)))
2490 {
2491 chrec = instantiate_parameters
2492 (loop,
2493 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2494
2495 if (dump_file && (dump_flags & TDF_STATS))
2496 gather_chrec_stats (chrec, &stats);
2497 }
2498 }
2499
2500 if (dump_file && (dump_flags & TDF_STATS))
2501 dump_chrecs_stats (dump_file, &stats);
2502 }
2503
2504 /* Callback for htab_traverse, gathers information on chrecs in the
2505 hashtable. */
2506
2507 static int
2508 gather_stats_on_scev_database_1 (void **slot, void *stats)
2509 {
2510 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2511
2512 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2513
2514 return 1;
2515 }
2516
2517 /* Classify the chrecs of the whole database. */
2518
2519 void
2520 gather_stats_on_scev_database (void)
2521 {
2522 struct chrec_stats stats;
2523
2524 if (!dump_file)
2525 return;
2526
2527 reset_chrecs_counters (&stats);
2528
2529 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2530 &stats);
2531
2532 dump_chrecs_stats (dump_file, &stats);
2533 }
2534
2535 \f
2536
2537 /* Initializer. */
2538
2539 static void
2540 initialize_scalar_evolutions_analyzer (void)
2541 {
2542 /* The elements below are unique. */
2543 if (chrec_dont_know == NULL_TREE)
2544 {
2545 chrec_not_analyzed_yet = NULL_TREE;
2546 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2547 chrec_known = make_node (SCEV_KNOWN);
2548 TREE_TYPE (chrec_dont_know) = void_type_node;
2549 TREE_TYPE (chrec_known) = void_type_node;
2550 }
2551 }
2552
2553 /* Initialize the analysis of scalar evolutions for LOOPS. */
2554
2555 void
2556 scev_initialize (struct loops *loops)
2557 {
2558 unsigned i;
2559 current_loops = loops;
2560
2561 scalar_evolution_info = htab_create (100, hash_scev_info,
2562 eq_scev_info, del_scev_info);
2563 already_instantiated = BITMAP_ALLOC (NULL);
2564
2565 initialize_scalar_evolutions_analyzer ();
2566
2567 for (i = 1; i < loops->num; i++)
2568 if (loops->parray[i])
2569 loops->parray[i]->nb_iterations = NULL_TREE;
2570 }
2571
2572 /* Cleans up the information cached by the scalar evolutions analysis. */
2573
2574 void
2575 scev_reset (void)
2576 {
2577 unsigned i;
2578 struct loop *loop;
2579
2580 if (!scalar_evolution_info || !current_loops)
2581 return;
2582
2583 htab_empty (scalar_evolution_info);
2584 for (i = 1; i < current_loops->num; i++)
2585 {
2586 loop = current_loops->parray[i];
2587 if (loop)
2588 loop->nb_iterations = NULL_TREE;
2589 }
2590 }
2591
2592 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2593 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2594 want step to be invariant in LOOP. Otherwise we require it to be an
2595 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2596 overflow (e.g. because it is computed in signed arithmetics). */
2597
2598 bool
2599 simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2600 bool allow_nonconstant_step)
2601 {
2602 basic_block bb = bb_for_stmt (stmt);
2603 tree type, ev;
2604 bool folded_casts;
2605
2606 iv->base = NULL_TREE;
2607 iv->step = NULL_TREE;
2608 iv->no_overflow = false;
2609
2610 type = TREE_TYPE (op);
2611 if (TREE_CODE (type) != INTEGER_TYPE
2612 && TREE_CODE (type) != POINTER_TYPE)
2613 return false;
2614
2615 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2616 &folded_casts);
2617 if (chrec_contains_undetermined (ev))
2618 return false;
2619
2620 if (tree_does_not_contain_chrecs (ev)
2621 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2622 {
2623 iv->base = ev;
2624 iv->no_overflow = true;
2625 return true;
2626 }
2627
2628 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2629 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2630 return false;
2631
2632 iv->step = CHREC_RIGHT (ev);
2633 if (allow_nonconstant_step)
2634 {
2635 if (tree_contains_chrecs (iv->step, NULL)
2636 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2637 return false;
2638 }
2639 else if (TREE_CODE (iv->step) != INTEGER_CST)
2640 return false;
2641
2642 iv->base = CHREC_LEFT (ev);
2643 if (tree_contains_chrecs (iv->base, NULL)
2644 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2645 return false;
2646
2647 iv->no_overflow = (!folded_casts
2648 && !flag_wrapv
2649 && !TYPE_UNSIGNED (type));
2650 return true;
2651 }
2652
2653 /* Runs the analysis of scalar evolutions. */
2654
2655 void
2656 scev_analysis (void)
2657 {
2658 VEC(tree,heap) *exit_conditions;
2659
2660 exit_conditions = VEC_alloc (tree, heap, 37);
2661 select_loops_exit_conditions (current_loops, &exit_conditions);
2662
2663 if (dump_file && (dump_flags & TDF_STATS))
2664 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2665
2666 number_of_iterations_for_all_loops (&exit_conditions);
2667 VEC_free (tree, heap, exit_conditions);
2668 }
2669
2670 /* Finalize the scalar evolution analysis. */
2671
2672 void
2673 scev_finalize (void)
2674 {
2675 htab_delete (scalar_evolution_info);
2676 BITMAP_FREE (already_instantiated);
2677 }
2678
2679 /* Returns true if EXPR looks expensive. */
2680
2681 static bool
2682 expression_expensive_p (tree expr)
2683 {
2684 return force_expr_to_var_cost (expr) >= target_spill_cost;
2685 }
2686
2687 /* Replace ssa names for that scev can prove they are constant by the
2688 appropriate constants. Also perform final value replacement in loops,
2689 in case the replacement expressions are cheap.
2690
2691 We only consider SSA names defined by phi nodes; rest is left to the
2692 ordinary constant propagation pass. */
2693
2694 unsigned int
2695 scev_const_prop (void)
2696 {
2697 basic_block bb;
2698 tree name, phi, next_phi, type, ev;
2699 struct loop *loop, *ex_loop;
2700 bitmap ssa_names_to_remove = NULL;
2701 unsigned i;
2702
2703 if (!current_loops)
2704 return 0;
2705
2706 FOR_EACH_BB (bb)
2707 {
2708 loop = bb->loop_father;
2709
2710 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2711 {
2712 name = PHI_RESULT (phi);
2713
2714 if (!is_gimple_reg (name))
2715 continue;
2716
2717 type = TREE_TYPE (name);
2718
2719 if (!POINTER_TYPE_P (type)
2720 && !INTEGRAL_TYPE_P (type))
2721 continue;
2722
2723 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2724 if (!is_gimple_min_invariant (ev)
2725 || !may_propagate_copy (name, ev))
2726 continue;
2727
2728 /* Replace the uses of the name. */
2729 if (name != ev)
2730 replace_uses_by (name, ev);
2731
2732 if (!ssa_names_to_remove)
2733 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2734 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2735 }
2736 }
2737
2738 /* Remove the ssa names that were replaced by constants. We do not remove them
2739 directly in the previous cycle, since this invalidates scev cache. */
2740 if (ssa_names_to_remove)
2741 {
2742 bitmap_iterator bi;
2743 unsigned i;
2744
2745 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2746 {
2747 name = ssa_name (i);
2748 phi = SSA_NAME_DEF_STMT (name);
2749
2750 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2751 remove_phi_node (phi, NULL);
2752 }
2753
2754 BITMAP_FREE (ssa_names_to_remove);
2755 scev_reset ();
2756 }
2757
2758 /* Now the regular final value replacement. */
2759 for (i = current_loops->num - 1; i > 0; i--)
2760 {
2761 edge exit;
2762 tree def, rslt, ass, niter;
2763 block_stmt_iterator bsi;
2764
2765 loop = current_loops->parray[i];
2766 if (!loop)
2767 continue;
2768
2769 /* If we do not know exact number of iterations of the loop, we cannot
2770 replace the final value. */
2771 exit = loop->single_exit;
2772 if (!exit)
2773 continue;
2774
2775 niter = number_of_iterations_in_loop (loop);
2776 if (niter == chrec_dont_know
2777 /* If computing the number of iterations is expensive, it may be
2778 better not to introduce computations involving it. */
2779 || expression_expensive_p (niter))
2780 continue;
2781
2782 /* Ensure that it is possible to insert new statements somewhere. */
2783 if (!single_pred_p (exit->dest))
2784 split_loop_exit_edge (exit);
2785 tree_block_label (exit->dest);
2786 bsi = bsi_after_labels (exit->dest);
2787
2788 ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
2789
2790 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2791 {
2792 next_phi = PHI_CHAIN (phi);
2793 rslt = PHI_RESULT (phi);
2794 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2795 if (!is_gimple_reg (def))
2796 continue;
2797
2798 if (!POINTER_TYPE_P (TREE_TYPE (def))
2799 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2800 continue;
2801
2802 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2803 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2804 if (!tree_does_not_contain_chrecs (def)
2805 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num))
2806 continue;
2807
2808 /* Eliminate the phi node and replace it by a computation outside
2809 the loop. */
2810 def = unshare_expr (def);
2811 SET_PHI_RESULT (phi, NULL_TREE);
2812 remove_phi_node (phi, NULL_TREE);
2813
2814 ass = build2 (MODIFY_EXPR, void_type_node, rslt, NULL_TREE);
2815 SSA_NAME_DEF_STMT (rslt) = ass;
2816 {
2817 block_stmt_iterator dest = bsi;
2818 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
2819 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
2820 }
2821 TREE_OPERAND (ass, 1) = def;
2822 update_stmt (ass);
2823 }
2824 }
2825 return 0;
2826 }