]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-scalar-evolution.cc
PR middle-end/105604 - ICE: in tree_to_shwi with vla in struct and sprintf
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.cc
1 /* Scalar evolution detector.
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /*
22 Description:
23
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
44
45 A short sketch of the algorithm is:
46
47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
49
50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
51 (RHS) of the definition cannot be statically analyzed, the answer
52 of the analyzer is: "don't know".
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
74
75 Example 1: Illustration of the basic algorithm.
76
77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
83
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
114
115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
118
119 or in terms of a C program:
120
121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
127
128 Example 2a: Illustration of the algorithm on nested loops.
129
130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
138
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
141 loop-phi-node, and its analysis as in Example 1, gives:
142
143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
145
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
152 equal to "+32", and the result is:
153
154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
179
180 Example 3: Higher degree polynomials.
181
182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
188
189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
193
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
196
197 Example 4: Lucas, Fibonacci, or mixers in general.
198
199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
205
206 a -> (1, c)_1
207 c -> {3, +, a}_1
208
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
214
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
217
218 Example 5: Flip-flops, or exchangers.
219
220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
226
227 a -> (1, c)_1
228 c -> (3, a)_1
229
230 Based on these symbolic chrecs, it is possible to refine this
231 information into the more precise PERIODIC_CHRECs:
232
233 a -> |1, 3|_1
234 c -> |3, 1|_1
235
236 This transformation is not yet implemented.
237
238 Further readings:
239
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
247
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254 */
255
256 #include "config.h"
257 #include "system.h"
258 #include "coretypes.h"
259 #include "backend.h"
260 #include "target.h"
261 #include "rtl.h"
262 #include "optabs-query.h"
263 #include "tree.h"
264 #include "gimple.h"
265 #include "ssa.h"
266 #include "gimple-pretty-print.h"
267 #include "fold-const.h"
268 #include "gimplify.h"
269 #include "gimple-iterator.h"
270 #include "gimplify-me.h"
271 #include "tree-cfg.h"
272 #include "tree-ssa-loop-ivopts.h"
273 #include "tree-ssa-loop-manip.h"
274 #include "tree-ssa-loop-niter.h"
275 #include "tree-ssa-loop.h"
276 #include "tree-ssa.h"
277 #include "cfgloop.h"
278 #include "tree-chrec.h"
279 #include "tree-affine.h"
280 #include "tree-scalar-evolution.h"
281 #include "dumpfile.h"
282 #include "tree-ssa-propagate.h"
283 #include "gimple-fold.h"
284 #include "tree-into-ssa.h"
285 #include "builtins.h"
286 #include "case-cfn-macros.h"
287
288 static tree analyze_scalar_evolution_1 (class loop *, tree);
289 static tree analyze_scalar_evolution_for_address_of (class loop *loop,
290 tree var);
291
292 /* The cached information about an SSA name with version NAME_VERSION,
293 claiming that below basic block with index INSTANTIATED_BELOW, the
294 value of the SSA name can be expressed as CHREC. */
295
296 struct GTY((for_user)) scev_info_str {
297 unsigned int name_version;
298 int instantiated_below;
299 tree chrec;
300 };
301
302 /* Counters for the scev database. */
303 static unsigned nb_set_scev = 0;
304 static unsigned nb_get_scev = 0;
305
306 struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
307 {
308 static hashval_t hash (scev_info_str *i);
309 static bool equal (const scev_info_str *a, const scev_info_str *b);
310 };
311
312 static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
313
314 \f
315 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
316
317 static inline struct scev_info_str *
318 new_scev_info_str (basic_block instantiated_below, tree var)
319 {
320 struct scev_info_str *res;
321
322 res = ggc_alloc<scev_info_str> ();
323 res->name_version = SSA_NAME_VERSION (var);
324 res->chrec = chrec_not_analyzed_yet;
325 res->instantiated_below = instantiated_below->index;
326
327 return res;
328 }
329
330 /* Computes a hash function for database element ELT. */
331
332 hashval_t
333 scev_info_hasher::hash (scev_info_str *elt)
334 {
335 return elt->name_version ^ elt->instantiated_below;
336 }
337
338 /* Compares database elements E1 and E2. */
339
340 bool
341 scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
342 {
343 return (elt1->name_version == elt2->name_version
344 && elt1->instantiated_below == elt2->instantiated_below);
345 }
346
347 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
348 A first query on VAR returns chrec_not_analyzed_yet. */
349
350 static tree *
351 find_var_scev_info (basic_block instantiated_below, tree var)
352 {
353 struct scev_info_str *res;
354 struct scev_info_str tmp;
355
356 tmp.name_version = SSA_NAME_VERSION (var);
357 tmp.instantiated_below = instantiated_below->index;
358 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
359
360 if (!*slot)
361 *slot = new_scev_info_str (instantiated_below, var);
362 res = *slot;
363
364 return &res->chrec;
365 }
366
367
368 /* Hashtable helpers for a temporary hash-table used when
369 analyzing a scalar evolution, instantiating a CHREC or
370 resolving mixers. */
371
372 class instantiate_cache_type
373 {
374 public:
375 htab_t map;
376 vec<scev_info_str> entries;
377
378 instantiate_cache_type () : map (NULL), entries (vNULL) {}
379 ~instantiate_cache_type ();
380 tree get (unsigned slot) { return entries[slot].chrec; }
381 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
382 };
383
384 instantiate_cache_type::~instantiate_cache_type ()
385 {
386 if (map != NULL)
387 {
388 htab_delete (map);
389 entries.release ();
390 }
391 }
392
393 /* Cache to avoid infinite recursion when instantiating an SSA name.
394 Live during the outermost analyze_scalar_evolution, instantiate_scev
395 or resolve_mixers call. */
396 static instantiate_cache_type *global_cache;
397
398
399 /* Return true when PHI is a loop-phi-node. */
400
401 static bool
402 loop_phi_node_p (gimple *phi)
403 {
404 /* The implementation of this function is based on the following
405 property: "all the loop-phi-nodes of a loop are contained in the
406 loop's header basic block". */
407
408 return loop_containing_stmt (phi)->header == gimple_bb (phi);
409 }
410
411 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
412 In general, in the case of multivariate evolutions we want to get
413 the evolution in different loops. LOOP specifies the level for
414 which to get the evolution.
415
416 Example:
417
418 | for (j = 0; j < 100; j++)
419 | {
420 | for (k = 0; k < 100; k++)
421 | {
422 | i = k + j; - Here the value of i is a function of j, k.
423 | }
424 | ... = i - Here the value of i is a function of j.
425 | }
426 | ... = i - Here the value of i is a scalar.
427
428 Example:
429
430 | i_0 = ...
431 | loop_1 10 times
432 | i_1 = phi (i_0, i_2)
433 | i_2 = i_1 + 2
434 | endloop
435
436 This loop has the same effect as:
437 LOOP_1 has the same effect as:
438
439 | i_1 = i_0 + 20
440
441 The overall effect of the loop, "i_0 + 20" in the previous example,
442 is obtained by passing in the parameters: LOOP = 1,
443 EVOLUTION_FN = {i_0, +, 2}_1.
444 */
445
446 tree
447 compute_overall_effect_of_inner_loop (class loop *loop, tree evolution_fn)
448 {
449 bool val = false;
450
451 if (evolution_fn == chrec_dont_know)
452 return chrec_dont_know;
453
454 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
455 {
456 class loop *inner_loop = get_chrec_loop (evolution_fn);
457
458 if (inner_loop == loop
459 || flow_loop_nested_p (loop, inner_loop))
460 {
461 tree nb_iter = number_of_latch_executions (inner_loop);
462
463 if (nb_iter == chrec_dont_know)
464 return chrec_dont_know;
465 else
466 {
467 tree res;
468
469 /* evolution_fn is the evolution function in LOOP. Get
470 its value in the nb_iter-th iteration. */
471 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
472
473 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
474 res = instantiate_parameters (loop, res);
475
476 /* Continue the computation until ending on a parent of LOOP. */
477 return compute_overall_effect_of_inner_loop (loop, res);
478 }
479 }
480 else
481 return evolution_fn;
482 }
483
484 /* If the evolution function is an invariant, there is nothing to do. */
485 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
486 return evolution_fn;
487
488 else
489 return chrec_dont_know;
490 }
491
492 /* Associate CHREC to SCALAR. */
493
494 static void
495 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
496 {
497 tree *scalar_info;
498
499 if (TREE_CODE (scalar) != SSA_NAME)
500 return;
501
502 scalar_info = find_var_scev_info (instantiated_below, scalar);
503
504 if (dump_file)
505 {
506 if (dump_flags & TDF_SCEV)
507 {
508 fprintf (dump_file, "(set_scalar_evolution \n");
509 fprintf (dump_file, " instantiated_below = %d \n",
510 instantiated_below->index);
511 fprintf (dump_file, " (scalar = ");
512 print_generic_expr (dump_file, scalar);
513 fprintf (dump_file, ")\n (scalar_evolution = ");
514 print_generic_expr (dump_file, chrec);
515 fprintf (dump_file, "))\n");
516 }
517 if (dump_flags & TDF_STATS)
518 nb_set_scev++;
519 }
520
521 *scalar_info = chrec;
522 }
523
524 /* Retrieve the chrec associated to SCALAR instantiated below
525 INSTANTIATED_BELOW block. */
526
527 static tree
528 get_scalar_evolution (basic_block instantiated_below, tree scalar)
529 {
530 tree res;
531
532 if (dump_file)
533 {
534 if (dump_flags & TDF_SCEV)
535 {
536 fprintf (dump_file, "(get_scalar_evolution \n");
537 fprintf (dump_file, " (scalar = ");
538 print_generic_expr (dump_file, scalar);
539 fprintf (dump_file, ")\n");
540 }
541 if (dump_flags & TDF_STATS)
542 nb_get_scev++;
543 }
544
545 if (VECTOR_TYPE_P (TREE_TYPE (scalar))
546 || TREE_CODE (TREE_TYPE (scalar)) == COMPLEX_TYPE)
547 /* For chrec_dont_know we keep the symbolic form. */
548 res = scalar;
549 else
550 switch (TREE_CODE (scalar))
551 {
552 case SSA_NAME:
553 if (SSA_NAME_IS_DEFAULT_DEF (scalar))
554 res = scalar;
555 else
556 res = *find_var_scev_info (instantiated_below, scalar);
557 break;
558
559 case REAL_CST:
560 case FIXED_CST:
561 case INTEGER_CST:
562 res = scalar;
563 break;
564
565 default:
566 res = chrec_not_analyzed_yet;
567 break;
568 }
569
570 if (dump_file && (dump_flags & TDF_SCEV))
571 {
572 fprintf (dump_file, " (scalar_evolution = ");
573 print_generic_expr (dump_file, res);
574 fprintf (dump_file, "))\n");
575 }
576
577 return res;
578 }
579
580 /* Helper function for add_to_evolution. Returns the evolution
581 function for an assignment of the form "a = b + c", where "a" and
582 "b" are on the strongly connected component. CHREC_BEFORE is the
583 information that we already have collected up to this point.
584 TO_ADD is the evolution of "c".
585
586 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
587 evolution the expression TO_ADD, otherwise construct an evolution
588 part for this loop. */
589
590 static tree
591 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
592 gimple *at_stmt)
593 {
594 tree type, left, right;
595 class loop *loop = get_loop (cfun, loop_nb), *chloop;
596
597 switch (TREE_CODE (chrec_before))
598 {
599 case POLYNOMIAL_CHREC:
600 chloop = get_chrec_loop (chrec_before);
601 if (chloop == loop
602 || flow_loop_nested_p (chloop, loop))
603 {
604 unsigned var;
605
606 type = chrec_type (chrec_before);
607
608 /* When there is no evolution part in this loop, build it. */
609 if (chloop != loop)
610 {
611 var = loop_nb;
612 left = chrec_before;
613 right = SCALAR_FLOAT_TYPE_P (type)
614 ? build_real (type, dconst0)
615 : build_int_cst (type, 0);
616 }
617 else
618 {
619 var = CHREC_VARIABLE (chrec_before);
620 left = CHREC_LEFT (chrec_before);
621 right = CHREC_RIGHT (chrec_before);
622 }
623
624 to_add = chrec_convert (type, to_add, at_stmt);
625 right = chrec_convert_rhs (type, right, at_stmt);
626 right = chrec_fold_plus (chrec_type (right), right, to_add);
627 return build_polynomial_chrec (var, left, right);
628 }
629 else
630 {
631 gcc_assert (flow_loop_nested_p (loop, chloop));
632
633 /* Search the evolution in LOOP_NB. */
634 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
635 to_add, at_stmt);
636 right = CHREC_RIGHT (chrec_before);
637 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
638 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
639 left, right);
640 }
641
642 default:
643 /* These nodes do not depend on a loop. */
644 if (chrec_before == chrec_dont_know)
645 return chrec_dont_know;
646
647 left = chrec_before;
648 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
649 return build_polynomial_chrec (loop_nb, left, right);
650 }
651 }
652
653 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
654 of LOOP_NB.
655
656 Description (provided for completeness, for those who read code in
657 a plane, and for my poor 62 bytes brain that would have forgotten
658 all this in the next two or three months):
659
660 The algorithm of translation of programs from the SSA representation
661 into the chrecs syntax is based on a pattern matching. After having
662 reconstructed the overall tree expression for a loop, there are only
663 two cases that can arise:
664
665 1. a = loop-phi (init, a + expr)
666 2. a = loop-phi (init, expr)
667
668 where EXPR is either a scalar constant with respect to the analyzed
669 loop (this is a degree 0 polynomial), or an expression containing
670 other loop-phi definitions (these are higher degree polynomials).
671
672 Examples:
673
674 1.
675 | init = ...
676 | loop_1
677 | a = phi (init, a + 5)
678 | endloop
679
680 2.
681 | inita = ...
682 | initb = ...
683 | loop_1
684 | a = phi (inita, 2 * b + 3)
685 | b = phi (initb, b + 1)
686 | endloop
687
688 For the first case, the semantics of the SSA representation is:
689
690 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
691
692 that is, there is a loop index "x" that determines the scalar value
693 of the variable during the loop execution. During the first
694 iteration, the value is that of the initial condition INIT, while
695 during the subsequent iterations, it is the sum of the initial
696 condition with the sum of all the values of EXPR from the initial
697 iteration to the before last considered iteration.
698
699 For the second case, the semantics of the SSA program is:
700
701 | a (x) = init, if x = 0;
702 | expr (x - 1), otherwise.
703
704 The second case corresponds to the PEELED_CHREC, whose syntax is
705 close to the syntax of a loop-phi-node:
706
707 | phi (init, expr) vs. (init, expr)_x
708
709 The proof of the translation algorithm for the first case is a
710 proof by structural induction based on the degree of EXPR.
711
712 Degree 0:
713 When EXPR is a constant with respect to the analyzed loop, or in
714 other words when EXPR is a polynomial of degree 0, the evolution of
715 the variable A in the loop is an affine function with an initial
716 condition INIT, and a step EXPR. In order to show this, we start
717 from the semantics of the SSA representation:
718
719 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
720
721 and since "expr (j)" is a constant with respect to "j",
722
723 f (x) = init + x * expr
724
725 Finally, based on the semantics of the pure sum chrecs, by
726 identification we get the corresponding chrecs syntax:
727
728 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
729 f (x) -> {init, +, expr}_x
730
731 Higher degree:
732 Suppose that EXPR is a polynomial of degree N with respect to the
733 analyzed loop_x for which we have already determined that it is
734 written under the chrecs syntax:
735
736 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
737
738 We start from the semantics of the SSA program:
739
740 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
741 |
742 | f (x) = init + \sum_{j = 0}^{x - 1}
743 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
744 |
745 | f (x) = init + \sum_{j = 0}^{x - 1}
746 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
747 |
748 | f (x) = init + \sum_{k = 0}^{n - 1}
749 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
750 |
751 | f (x) = init + \sum_{k = 0}^{n - 1}
752 | (b_k * \binom{x}{k + 1})
753 |
754 | f (x) = init + b_0 * \binom{x}{1} + ...
755 | + b_{n-1} * \binom{x}{n}
756 |
757 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
758 | + b_{n-1} * \binom{x}{n}
759 |
760
761 And finally from the definition of the chrecs syntax, we identify:
762 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
763
764 This shows the mechanism that stands behind the add_to_evolution
765 function. An important point is that the use of symbolic
766 parameters avoids the need of an analysis schedule.
767
768 Example:
769
770 | inita = ...
771 | initb = ...
772 | loop_1
773 | a = phi (inita, a + 2 + b)
774 | b = phi (initb, b + 1)
775 | endloop
776
777 When analyzing "a", the algorithm keeps "b" symbolically:
778
779 | a -> {inita, +, 2 + b}_1
780
781 Then, after instantiation, the analyzer ends on the evolution:
782
783 | a -> {inita, +, 2 + initb, +, 1}_1
784
785 */
786
787 static tree
788 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
789 tree to_add, gimple *at_stmt)
790 {
791 tree type = chrec_type (to_add);
792 tree res = NULL_TREE;
793
794 if (to_add == NULL_TREE)
795 return chrec_before;
796
797 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
798 instantiated at this point. */
799 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
800 /* This should not happen. */
801 return chrec_dont_know;
802
803 if (dump_file && (dump_flags & TDF_SCEV))
804 {
805 fprintf (dump_file, "(add_to_evolution \n");
806 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
807 fprintf (dump_file, " (chrec_before = ");
808 print_generic_expr (dump_file, chrec_before);
809 fprintf (dump_file, ")\n (to_add = ");
810 print_generic_expr (dump_file, to_add);
811 fprintf (dump_file, ")\n");
812 }
813
814 if (code == MINUS_EXPR)
815 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
816 ? build_real (type, dconstm1)
817 : build_int_cst_type (type, -1));
818
819 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
820
821 if (dump_file && (dump_flags & TDF_SCEV))
822 {
823 fprintf (dump_file, " (res = ");
824 print_generic_expr (dump_file, res);
825 fprintf (dump_file, "))\n");
826 }
827
828 return res;
829 }
830
831 \f
832
833 /* This section selects the loops that will be good candidates for the
834 scalar evolution analysis. For the moment, greedily select all the
835 loop nests we could analyze. */
836
837 /* For a loop with a single exit edge, return the COND_EXPR that
838 guards the exit edge. If the expression is too difficult to
839 analyze, then give up. */
840
841 gcond *
842 get_loop_exit_condition (const class loop *loop)
843 {
844 gcond *res = NULL;
845 edge exit_edge = single_exit (loop);
846
847 if (dump_file && (dump_flags & TDF_SCEV))
848 fprintf (dump_file, "(get_loop_exit_condition \n ");
849
850 if (exit_edge)
851 {
852 gimple *stmt;
853
854 stmt = last_stmt (exit_edge->src);
855 if (gcond *cond_stmt = safe_dyn_cast <gcond *> (stmt))
856 res = cond_stmt;
857 }
858
859 if (dump_file && (dump_flags & TDF_SCEV))
860 {
861 print_gimple_stmt (dump_file, res, 0);
862 fprintf (dump_file, ")\n");
863 }
864
865 return res;
866 }
867
868 \f
869 /* Depth first search algorithm. */
870
871 enum t_bool {
872 t_false,
873 t_true,
874 t_dont_know
875 };
876
877
878 static t_bool follow_ssa_edge_expr (class loop *loop, gimple *, tree, gphi *,
879 tree *, int);
880
881 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
882 Return true if the strongly connected component has been found. */
883
884 static t_bool
885 follow_ssa_edge_binary (class loop *loop, gimple *at_stmt,
886 tree type, tree rhs0, enum tree_code code, tree rhs1,
887 gphi *halting_phi, tree *evolution_of_loop,
888 int limit)
889 {
890 t_bool res = t_false;
891 tree evol;
892
893 switch (code)
894 {
895 case POINTER_PLUS_EXPR:
896 case PLUS_EXPR:
897 if (TREE_CODE (rhs0) == SSA_NAME)
898 {
899 if (TREE_CODE (rhs1) == SSA_NAME)
900 {
901 /* Match an assignment under the form:
902 "a = b + c". */
903
904 /* We want only assignments of form "name + name" contribute to
905 LIMIT, as the other cases do not necessarily contribute to
906 the complexity of the expression. */
907 limit++;
908
909 evol = *evolution_of_loop;
910 evol = add_to_evolution
911 (loop->num,
912 chrec_convert (type, evol, at_stmt),
913 code, rhs1, at_stmt);
914 res = follow_ssa_edge_expr
915 (loop, at_stmt, rhs0, halting_phi, &evol, limit);
916 if (res == t_true)
917 *evolution_of_loop = evol;
918 else if (res == t_false)
919 {
920 *evolution_of_loop = add_to_evolution
921 (loop->num,
922 chrec_convert (type, *evolution_of_loop, at_stmt),
923 code, rhs0, at_stmt);
924 res = follow_ssa_edge_expr
925 (loop, at_stmt, rhs1, halting_phi,
926 evolution_of_loop, limit);
927 }
928 }
929
930 else
931 gcc_unreachable (); /* Handled in caller. */
932 }
933
934 else if (TREE_CODE (rhs1) == SSA_NAME)
935 {
936 /* Match an assignment under the form:
937 "a = ... + c". */
938 *evolution_of_loop = add_to_evolution
939 (loop->num, chrec_convert (type, *evolution_of_loop,
940 at_stmt),
941 code, rhs0, at_stmt);
942 res = follow_ssa_edge_expr
943 (loop, at_stmt, rhs1, halting_phi,
944 evolution_of_loop, limit);
945 }
946
947 else
948 /* Otherwise, match an assignment under the form:
949 "a = ... + ...". */
950 /* And there is nothing to do. */
951 res = t_false;
952 break;
953
954 case MINUS_EXPR:
955 /* This case is under the form "opnd0 = rhs0 - rhs1". */
956 if (TREE_CODE (rhs0) == SSA_NAME)
957 gcc_unreachable (); /* Handled in caller. */
958 else
959 /* Otherwise, match an assignment under the form:
960 "a = ... - ...". */
961 /* And there is nothing to do. */
962 res = t_false;
963 break;
964
965 default:
966 res = t_false;
967 }
968
969 return res;
970 }
971
972 /* Checks whether the I-th argument of a PHI comes from a backedge. */
973
974 static bool
975 backedge_phi_arg_p (gphi *phi, int i)
976 {
977 const_edge e = gimple_phi_arg_edge (phi, i);
978
979 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
980 about updating it anywhere, and this should work as well most of the
981 time. */
982 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
983 return true;
984
985 return false;
986 }
987
988 /* Helper function for one branch of the condition-phi-node. Return
989 true if the strongly connected component has been found following
990 this path. */
991
992 static inline t_bool
993 follow_ssa_edge_in_condition_phi_branch (int i,
994 class loop *loop,
995 gphi *condition_phi,
996 gphi *halting_phi,
997 tree *evolution_of_branch,
998 tree init_cond, int limit)
999 {
1000 tree branch = PHI_ARG_DEF (condition_phi, i);
1001 *evolution_of_branch = chrec_dont_know;
1002
1003 /* Do not follow back edges (they must belong to an irreducible loop, which
1004 we really do not want to worry about). */
1005 if (backedge_phi_arg_p (condition_phi, i))
1006 return t_false;
1007
1008 if (TREE_CODE (branch) == SSA_NAME)
1009 {
1010 *evolution_of_branch = init_cond;
1011 return follow_ssa_edge_expr (loop, condition_phi, branch, halting_phi,
1012 evolution_of_branch, limit);
1013 }
1014
1015 /* This case occurs when one of the condition branches sets
1016 the variable to a constant: i.e. a phi-node like
1017 "a_2 = PHI <a_7(5), 2(6)>;".
1018
1019 FIXME: This case have to be refined correctly:
1020 in some cases it is possible to say something better than
1021 chrec_dont_know, for example using a wrap-around notation. */
1022 return t_false;
1023 }
1024
1025 /* This function merges the branches of a condition-phi-node in a
1026 loop. */
1027
1028 static t_bool
1029 follow_ssa_edge_in_condition_phi (class loop *loop,
1030 gphi *condition_phi,
1031 gphi *halting_phi,
1032 tree *evolution_of_loop, int limit)
1033 {
1034 int i, n;
1035 tree init = *evolution_of_loop;
1036 tree evolution_of_branch;
1037 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1038 halting_phi,
1039 &evolution_of_branch,
1040 init, limit);
1041 if (res == t_false || res == t_dont_know)
1042 return res;
1043
1044 *evolution_of_loop = evolution_of_branch;
1045
1046 n = gimple_phi_num_args (condition_phi);
1047 for (i = 1; i < n; i++)
1048 {
1049 /* Quickly give up when the evolution of one of the branches is
1050 not known. */
1051 if (*evolution_of_loop == chrec_dont_know)
1052 return t_true;
1053
1054 /* Increase the limit by the PHI argument number to avoid exponential
1055 time and memory complexity. */
1056 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1057 halting_phi,
1058 &evolution_of_branch,
1059 init, limit + i);
1060 if (res == t_false || res == t_dont_know)
1061 return res;
1062
1063 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1064 evolution_of_branch);
1065 }
1066
1067 return t_true;
1068 }
1069
1070 /* Follow an SSA edge in an inner loop. It computes the overall
1071 effect of the loop, and following the symbolic initial conditions,
1072 it follows the edges in the parent loop. The inner loop is
1073 considered as a single statement. */
1074
1075 static t_bool
1076 follow_ssa_edge_inner_loop_phi (class loop *outer_loop,
1077 gphi *loop_phi_node,
1078 gphi *halting_phi,
1079 tree *evolution_of_loop, int limit)
1080 {
1081 class loop *loop = loop_containing_stmt (loop_phi_node);
1082 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1083
1084 /* Sometimes, the inner loop is too difficult to analyze, and the
1085 result of the analysis is a symbolic parameter. */
1086 if (ev == PHI_RESULT (loop_phi_node))
1087 {
1088 t_bool res = t_false;
1089 int i, n = gimple_phi_num_args (loop_phi_node);
1090
1091 for (i = 0; i < n; i++)
1092 {
1093 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1094 basic_block bb;
1095
1096 /* Follow the edges that exit the inner loop. */
1097 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1098 if (!flow_bb_inside_loop_p (loop, bb))
1099 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1100 arg, halting_phi,
1101 evolution_of_loop, limit);
1102 if (res == t_true)
1103 break;
1104 }
1105
1106 /* If the path crosses this loop-phi, give up. */
1107 if (res == t_true)
1108 *evolution_of_loop = chrec_dont_know;
1109
1110 return res;
1111 }
1112
1113 /* Otherwise, compute the overall effect of the inner loop. */
1114 ev = compute_overall_effect_of_inner_loop (loop, ev);
1115 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1116 evolution_of_loop, limit);
1117 }
1118
1119 /* Follow the ssa edge into the expression EXPR.
1120 Return true if the strongly connected component has been found. */
1121
1122 static t_bool
1123 follow_ssa_edge_expr (class loop *loop, gimple *at_stmt, tree expr,
1124 gphi *halting_phi, tree *evolution_of_loop,
1125 int limit)
1126 {
1127 enum tree_code code;
1128 tree type, rhs0, rhs1 = NULL_TREE;
1129
1130 /* The EXPR is one of the following cases:
1131 - an SSA_NAME,
1132 - an INTEGER_CST,
1133 - a PLUS_EXPR,
1134 - a POINTER_PLUS_EXPR,
1135 - a MINUS_EXPR,
1136 - an ASSERT_EXPR,
1137 - other cases are not yet handled. */
1138
1139 /* For SSA_NAME look at the definition statement, handling
1140 PHI nodes and otherwise expand appropriately for the expression
1141 handling below. */
1142 tail_recurse:
1143 if (TREE_CODE (expr) == SSA_NAME)
1144 {
1145 gimple *def = SSA_NAME_DEF_STMT (expr);
1146
1147 if (gimple_nop_p (def))
1148 return t_false;
1149
1150 /* Give up if the path is longer than the MAX that we allow. */
1151 if (limit > param_scev_max_expr_complexity)
1152 {
1153 *evolution_of_loop = chrec_dont_know;
1154 return t_dont_know;
1155 }
1156
1157 if (gphi *phi = dyn_cast <gphi *>(def))
1158 {
1159 if (!loop_phi_node_p (phi))
1160 /* DEF is a condition-phi-node. Follow the branches, and
1161 record their evolutions. Finally, merge the collected
1162 information and set the approximation to the main
1163 variable. */
1164 return follow_ssa_edge_in_condition_phi
1165 (loop, phi, halting_phi, evolution_of_loop, limit);
1166
1167 /* When the analyzed phi is the halting_phi, the
1168 depth-first search is over: we have found a path from
1169 the halting_phi to itself in the loop. */
1170 if (phi == halting_phi)
1171 return t_true;
1172
1173 /* Otherwise, the evolution of the HALTING_PHI depends
1174 on the evolution of another loop-phi-node, i.e. the
1175 evolution function is a higher degree polynomial. */
1176 class loop *def_loop = loop_containing_stmt (def);
1177 if (def_loop == loop)
1178 return t_false;
1179
1180 /* Inner loop. */
1181 if (flow_loop_nested_p (loop, def_loop))
1182 return follow_ssa_edge_inner_loop_phi
1183 (loop, phi, halting_phi, evolution_of_loop,
1184 limit + 1);
1185
1186 /* Outer loop. */
1187 return t_false;
1188 }
1189
1190 /* At this level of abstraction, the program is just a set
1191 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1192 other def to be handled. */
1193 if (!is_gimple_assign (def))
1194 return t_false;
1195
1196 code = gimple_assign_rhs_code (def);
1197 switch (get_gimple_rhs_class (code))
1198 {
1199 case GIMPLE_BINARY_RHS:
1200 rhs0 = gimple_assign_rhs1 (def);
1201 rhs1 = gimple_assign_rhs2 (def);
1202 break;
1203 case GIMPLE_UNARY_RHS:
1204 case GIMPLE_SINGLE_RHS:
1205 rhs0 = gimple_assign_rhs1 (def);
1206 break;
1207 default:
1208 return t_false;
1209 }
1210 type = TREE_TYPE (gimple_assign_lhs (def));
1211 at_stmt = def;
1212 }
1213 else
1214 {
1215 code = TREE_CODE (expr);
1216 type = TREE_TYPE (expr);
1217 switch (code)
1218 {
1219 CASE_CONVERT:
1220 rhs0 = TREE_OPERAND (expr, 0);
1221 break;
1222 case POINTER_PLUS_EXPR:
1223 case PLUS_EXPR:
1224 case MINUS_EXPR:
1225 rhs0 = TREE_OPERAND (expr, 0);
1226 rhs1 = TREE_OPERAND (expr, 1);
1227 break;
1228 default:
1229 rhs0 = expr;
1230 }
1231 }
1232
1233 switch (code)
1234 {
1235 CASE_CONVERT:
1236 {
1237 /* This assignment is under the form "a_1 = (cast) rhs. */
1238 t_bool res = follow_ssa_edge_expr (loop, at_stmt, rhs0, halting_phi,
1239 evolution_of_loop, limit);
1240 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1241 return res;
1242 }
1243
1244 case INTEGER_CST:
1245 /* This assignment is under the form "a_1 = 7". */
1246 return t_false;
1247
1248 case ADDR_EXPR:
1249 {
1250 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1251 if (TREE_CODE (TREE_OPERAND (rhs0, 0)) != MEM_REF)
1252 return t_false;
1253 tree mem = TREE_OPERAND (rhs0, 0);
1254 rhs0 = TREE_OPERAND (mem, 0);
1255 rhs1 = TREE_OPERAND (mem, 1);
1256 code = POINTER_PLUS_EXPR;
1257 }
1258 /* Fallthru. */
1259 case POINTER_PLUS_EXPR:
1260 case PLUS_EXPR:
1261 case MINUS_EXPR:
1262 /* This case is under the form "rhs0 +- rhs1". */
1263 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1264 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1265 if (TREE_CODE (rhs0) == SSA_NAME
1266 && (TREE_CODE (rhs1) != SSA_NAME || code == MINUS_EXPR))
1267 {
1268 /* Match an assignment under the form:
1269 "a = b +- ...".
1270 Use tail-recursion for the simple case. */
1271 *evolution_of_loop = add_to_evolution
1272 (loop->num, chrec_convert (type, *evolution_of_loop,
1273 at_stmt),
1274 code, rhs1, at_stmt);
1275 expr = rhs0;
1276 goto tail_recurse;
1277 }
1278 /* Else search for the SCC in both rhs0 and rhs1. */
1279 return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1280 halting_phi, evolution_of_loop, limit);
1281
1282 case ASSERT_EXPR:
1283 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1284 It must be handled as a copy assignment of the form a_1 = a_2. */
1285 expr = ASSERT_EXPR_VAR (rhs0);
1286 goto tail_recurse;
1287
1288 default:
1289 return t_false;
1290 }
1291 }
1292
1293 \f
1294 /* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1295 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1296
1297 # i_17 = PHI <i_13(5), 0(3)>
1298 # _20 = PHI <_5(5), start_4(D)(3)>
1299 ...
1300 i_13 = i_17 + 1;
1301 _5 = start_4(D) + i_13;
1302
1303 Though variable _20 appears as a PEELED_CHREC in the form of
1304 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1305
1306 See PR41488. */
1307
1308 static tree
1309 simplify_peeled_chrec (class loop *loop, tree arg, tree init_cond)
1310 {
1311 aff_tree aff1, aff2;
1312 tree ev, left, right, type, step_val;
1313 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
1314
1315 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1316 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1317 return chrec_dont_know;
1318
1319 left = CHREC_LEFT (ev);
1320 right = CHREC_RIGHT (ev);
1321 type = TREE_TYPE (left);
1322 step_val = chrec_fold_plus (type, init_cond, right);
1323
1324 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1325 if "left" equals to "init + right". */
1326 if (operand_equal_p (left, step_val, 0))
1327 {
1328 if (dump_file && (dump_flags & TDF_SCEV))
1329 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1330
1331 return build_polynomial_chrec (loop->num, init_cond, right);
1332 }
1333
1334 /* The affine code only deals with pointer and integer types. */
1335 if (!POINTER_TYPE_P (type)
1336 && !INTEGRAL_TYPE_P (type))
1337 return chrec_dont_know;
1338
1339 /* Try harder to check if they are equal. */
1340 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1341 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1342 free_affine_expand_cache (&peeled_chrec_map);
1343 aff_combination_scale (&aff2, -1);
1344 aff_combination_add (&aff1, &aff2);
1345
1346 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1347 if "left" equals to "init + right". */
1348 if (aff_combination_zero_p (&aff1))
1349 {
1350 if (dump_file && (dump_flags & TDF_SCEV))
1351 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1352
1353 return build_polynomial_chrec (loop->num, init_cond, right);
1354 }
1355 return chrec_dont_know;
1356 }
1357
1358 /* Given a LOOP_PHI_NODE, this function determines the evolution
1359 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1360
1361 static tree
1362 analyze_evolution_in_loop (gphi *loop_phi_node,
1363 tree init_cond)
1364 {
1365 int i, n = gimple_phi_num_args (loop_phi_node);
1366 tree evolution_function = chrec_not_analyzed_yet;
1367 class loop *loop = loop_containing_stmt (loop_phi_node);
1368 basic_block bb;
1369 static bool simplify_peeled_chrec_p = true;
1370
1371 if (dump_file && (dump_flags & TDF_SCEV))
1372 {
1373 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1374 fprintf (dump_file, " (loop_phi_node = ");
1375 print_gimple_stmt (dump_file, loop_phi_node, 0);
1376 fprintf (dump_file, ")\n");
1377 }
1378
1379 for (i = 0; i < n; i++)
1380 {
1381 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1382 tree ev_fn;
1383 t_bool res;
1384
1385 /* Select the edges that enter the loop body. */
1386 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1387 if (!flow_bb_inside_loop_p (loop, bb))
1388 continue;
1389
1390 if (TREE_CODE (arg) == SSA_NAME)
1391 {
1392 bool val = false;
1393
1394 /* Pass in the initial condition to the follow edge function. */
1395 ev_fn = init_cond;
1396 res = follow_ssa_edge_expr (loop, loop_phi_node, arg,
1397 loop_phi_node, &ev_fn, 0);
1398
1399 /* If ev_fn has no evolution in the inner loop, and the
1400 init_cond is not equal to ev_fn, then we have an
1401 ambiguity between two possible values, as we cannot know
1402 the number of iterations at this point. */
1403 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1404 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1405 && !operand_equal_p (init_cond, ev_fn, 0))
1406 ev_fn = chrec_dont_know;
1407 }
1408 else
1409 res = t_false;
1410
1411 /* When it is impossible to go back on the same
1412 loop_phi_node by following the ssa edges, the
1413 evolution is represented by a peeled chrec, i.e. the
1414 first iteration, EV_FN has the value INIT_COND, then
1415 all the other iterations it has the value of ARG.
1416 For the moment, PEELED_CHREC nodes are not built. */
1417 if (res != t_true)
1418 {
1419 ev_fn = chrec_dont_know;
1420 /* Try to recognize POLYNOMIAL_CHREC which appears in
1421 the form of PEELED_CHREC, but guard the process with
1422 a bool variable to keep the analyzer from infinite
1423 recurrence for real PEELED_RECs. */
1424 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1425 {
1426 simplify_peeled_chrec_p = false;
1427 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1428 simplify_peeled_chrec_p = true;
1429 }
1430 }
1431
1432 /* When there are multiple back edges of the loop (which in fact never
1433 happens currently, but nevertheless), merge their evolutions. */
1434 evolution_function = chrec_merge (evolution_function, ev_fn);
1435
1436 if (evolution_function == chrec_dont_know)
1437 break;
1438 }
1439
1440 if (dump_file && (dump_flags & TDF_SCEV))
1441 {
1442 fprintf (dump_file, " (evolution_function = ");
1443 print_generic_expr (dump_file, evolution_function);
1444 fprintf (dump_file, "))\n");
1445 }
1446
1447 return evolution_function;
1448 }
1449
1450 /* Looks to see if VAR is a copy of a constant (via straightforward assignments
1451 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1452
1453 static tree
1454 follow_copies_to_constant (tree var)
1455 {
1456 tree res = var;
1457 while (TREE_CODE (res) == SSA_NAME
1458 /* We face not updated SSA form in multiple places and this walk
1459 may end up in sibling loops so we have to guard it. */
1460 && !name_registered_for_update_p (res))
1461 {
1462 gimple *def = SSA_NAME_DEF_STMT (res);
1463 if (gphi *phi = dyn_cast <gphi *> (def))
1464 {
1465 if (tree rhs = degenerate_phi_result (phi))
1466 res = rhs;
1467 else
1468 break;
1469 }
1470 else if (gimple_assign_single_p (def))
1471 /* Will exit loop if not an SSA_NAME. */
1472 res = gimple_assign_rhs1 (def);
1473 else
1474 break;
1475 }
1476 if (CONSTANT_CLASS_P (res))
1477 return res;
1478 return var;
1479 }
1480
1481 /* Given a loop-phi-node, return the initial conditions of the
1482 variable on entry of the loop. When the CCP has propagated
1483 constants into the loop-phi-node, the initial condition is
1484 instantiated, otherwise the initial condition is kept symbolic.
1485 This analyzer does not analyze the evolution outside the current
1486 loop, and leaves this task to the on-demand tree reconstructor. */
1487
1488 static tree
1489 analyze_initial_condition (gphi *loop_phi_node)
1490 {
1491 int i, n;
1492 tree init_cond = chrec_not_analyzed_yet;
1493 class loop *loop = loop_containing_stmt (loop_phi_node);
1494
1495 if (dump_file && (dump_flags & TDF_SCEV))
1496 {
1497 fprintf (dump_file, "(analyze_initial_condition \n");
1498 fprintf (dump_file, " (loop_phi_node = \n");
1499 print_gimple_stmt (dump_file, loop_phi_node, 0);
1500 fprintf (dump_file, ")\n");
1501 }
1502
1503 n = gimple_phi_num_args (loop_phi_node);
1504 for (i = 0; i < n; i++)
1505 {
1506 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1507 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1508
1509 /* When the branch is oriented to the loop's body, it does
1510 not contribute to the initial condition. */
1511 if (flow_bb_inside_loop_p (loop, bb))
1512 continue;
1513
1514 if (init_cond == chrec_not_analyzed_yet)
1515 {
1516 init_cond = branch;
1517 continue;
1518 }
1519
1520 if (TREE_CODE (branch) == SSA_NAME)
1521 {
1522 init_cond = chrec_dont_know;
1523 break;
1524 }
1525
1526 init_cond = chrec_merge (init_cond, branch);
1527 }
1528
1529 /* Ooops -- a loop without an entry??? */
1530 if (init_cond == chrec_not_analyzed_yet)
1531 init_cond = chrec_dont_know;
1532
1533 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1534 to not miss important early loop unrollings. */
1535 init_cond = follow_copies_to_constant (init_cond);
1536
1537 if (dump_file && (dump_flags & TDF_SCEV))
1538 {
1539 fprintf (dump_file, " (init_cond = ");
1540 print_generic_expr (dump_file, init_cond);
1541 fprintf (dump_file, "))\n");
1542 }
1543
1544 return init_cond;
1545 }
1546
1547 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1548
1549 static tree
1550 interpret_loop_phi (class loop *loop, gphi *loop_phi_node)
1551 {
1552 tree res;
1553 class loop *phi_loop = loop_containing_stmt (loop_phi_node);
1554 tree init_cond;
1555
1556 gcc_assert (phi_loop == loop);
1557
1558 /* Otherwise really interpret the loop phi. */
1559 init_cond = analyze_initial_condition (loop_phi_node);
1560 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1561
1562 /* Verify we maintained the correct initial condition throughout
1563 possible conversions in the SSA chain. */
1564 if (res != chrec_dont_know)
1565 {
1566 tree new_init = res;
1567 if (CONVERT_EXPR_P (res)
1568 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1569 new_init = fold_convert (TREE_TYPE (res),
1570 CHREC_LEFT (TREE_OPERAND (res, 0)));
1571 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1572 new_init = CHREC_LEFT (res);
1573 STRIP_USELESS_TYPE_CONVERSION (new_init);
1574 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1575 || !operand_equal_p (init_cond, new_init, 0))
1576 return chrec_dont_know;
1577 }
1578
1579 return res;
1580 }
1581
1582 /* This function merges the branches of a condition-phi-node,
1583 contained in the outermost loop, and whose arguments are already
1584 analyzed. */
1585
1586 static tree
1587 interpret_condition_phi (class loop *loop, gphi *condition_phi)
1588 {
1589 int i, n = gimple_phi_num_args (condition_phi);
1590 tree res = chrec_not_analyzed_yet;
1591
1592 for (i = 0; i < n; i++)
1593 {
1594 tree branch_chrec;
1595
1596 if (backedge_phi_arg_p (condition_phi, i))
1597 {
1598 res = chrec_dont_know;
1599 break;
1600 }
1601
1602 branch_chrec = analyze_scalar_evolution
1603 (loop, PHI_ARG_DEF (condition_phi, i));
1604
1605 res = chrec_merge (res, branch_chrec);
1606 if (res == chrec_dont_know)
1607 break;
1608 }
1609
1610 return res;
1611 }
1612
1613 /* Interpret the operation RHS1 OP RHS2. If we didn't
1614 analyze this node before, follow the definitions until ending
1615 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1616 return path, this function propagates evolutions (ala constant copy
1617 propagation). OPND1 is not a GIMPLE expression because we could
1618 analyze the effect of an inner loop: see interpret_loop_phi. */
1619
1620 static tree
1621 interpret_rhs_expr (class loop *loop, gimple *at_stmt,
1622 tree type, tree rhs1, enum tree_code code, tree rhs2)
1623 {
1624 tree res, chrec1, chrec2, ctype;
1625 gimple *def;
1626
1627 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1628 {
1629 if (is_gimple_min_invariant (rhs1))
1630 return chrec_convert (type, rhs1, at_stmt);
1631
1632 if (code == SSA_NAME)
1633 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1634 at_stmt);
1635
1636 if (code == ASSERT_EXPR)
1637 {
1638 rhs1 = ASSERT_EXPR_VAR (rhs1);
1639 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1640 at_stmt);
1641 }
1642 }
1643
1644 switch (code)
1645 {
1646 case ADDR_EXPR:
1647 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1648 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1649 {
1650 machine_mode mode;
1651 poly_int64 bitsize, bitpos;
1652 int unsignedp, reversep;
1653 int volatilep = 0;
1654 tree base, offset;
1655 tree chrec3;
1656 tree unitpos;
1657
1658 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
1659 &bitsize, &bitpos, &offset, &mode,
1660 &unsignedp, &reversep, &volatilep);
1661
1662 if (TREE_CODE (base) == MEM_REF)
1663 {
1664 rhs2 = TREE_OPERAND (base, 1);
1665 rhs1 = TREE_OPERAND (base, 0);
1666
1667 chrec1 = analyze_scalar_evolution (loop, rhs1);
1668 chrec2 = analyze_scalar_evolution (loop, rhs2);
1669 chrec1 = chrec_convert (type, chrec1, at_stmt);
1670 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
1671 chrec1 = instantiate_parameters (loop, chrec1);
1672 chrec2 = instantiate_parameters (loop, chrec2);
1673 res = chrec_fold_plus (type, chrec1, chrec2);
1674 }
1675 else
1676 {
1677 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1678 chrec1 = chrec_convert (type, chrec1, at_stmt);
1679 res = chrec1;
1680 }
1681
1682 if (offset != NULL_TREE)
1683 {
1684 chrec2 = analyze_scalar_evolution (loop, offset);
1685 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
1686 chrec2 = instantiate_parameters (loop, chrec2);
1687 res = chrec_fold_plus (type, res, chrec2);
1688 }
1689
1690 if (maybe_ne (bitpos, 0))
1691 {
1692 unitpos = size_int (exact_div (bitpos, BITS_PER_UNIT));
1693 chrec3 = analyze_scalar_evolution (loop, unitpos);
1694 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
1695 chrec3 = instantiate_parameters (loop, chrec3);
1696 res = chrec_fold_plus (type, res, chrec3);
1697 }
1698 }
1699 else
1700 res = chrec_dont_know;
1701 break;
1702
1703 case POINTER_PLUS_EXPR:
1704 chrec1 = analyze_scalar_evolution (loop, rhs1);
1705 chrec2 = analyze_scalar_evolution (loop, rhs2);
1706 chrec1 = chrec_convert (type, chrec1, at_stmt);
1707 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
1708 chrec1 = instantiate_parameters (loop, chrec1);
1709 chrec2 = instantiate_parameters (loop, chrec2);
1710 res = chrec_fold_plus (type, chrec1, chrec2);
1711 break;
1712
1713 case PLUS_EXPR:
1714 chrec1 = analyze_scalar_evolution (loop, rhs1);
1715 chrec2 = analyze_scalar_evolution (loop, rhs2);
1716 ctype = type;
1717 /* When the stmt is conditionally executed re-write the CHREC
1718 into a form that has well-defined behavior on overflow. */
1719 if (at_stmt
1720 && INTEGRAL_TYPE_P (type)
1721 && ! TYPE_OVERFLOW_WRAPS (type)
1722 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1723 gimple_bb (at_stmt)))
1724 ctype = unsigned_type_for (type);
1725 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1726 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
1727 chrec1 = instantiate_parameters (loop, chrec1);
1728 chrec2 = instantiate_parameters (loop, chrec2);
1729 res = chrec_fold_plus (ctype, chrec1, chrec2);
1730 if (type != ctype)
1731 res = chrec_convert (type, res, at_stmt);
1732 break;
1733
1734 case MINUS_EXPR:
1735 chrec1 = analyze_scalar_evolution (loop, rhs1);
1736 chrec2 = analyze_scalar_evolution (loop, rhs2);
1737 ctype = type;
1738 /* When the stmt is conditionally executed re-write the CHREC
1739 into a form that has well-defined behavior on overflow. */
1740 if (at_stmt
1741 && INTEGRAL_TYPE_P (type)
1742 && ! TYPE_OVERFLOW_WRAPS (type)
1743 && ! dominated_by_p (CDI_DOMINATORS,
1744 loop->latch, gimple_bb (at_stmt)))
1745 ctype = unsigned_type_for (type);
1746 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1747 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
1748 chrec1 = instantiate_parameters (loop, chrec1);
1749 chrec2 = instantiate_parameters (loop, chrec2);
1750 res = chrec_fold_minus (ctype, chrec1, chrec2);
1751 if (type != ctype)
1752 res = chrec_convert (type, res, at_stmt);
1753 break;
1754
1755 case NEGATE_EXPR:
1756 chrec1 = analyze_scalar_evolution (loop, rhs1);
1757 ctype = type;
1758 /* When the stmt is conditionally executed re-write the CHREC
1759 into a form that has well-defined behavior on overflow. */
1760 if (at_stmt
1761 && INTEGRAL_TYPE_P (type)
1762 && ! TYPE_OVERFLOW_WRAPS (type)
1763 && ! dominated_by_p (CDI_DOMINATORS,
1764 loop->latch, gimple_bb (at_stmt)))
1765 ctype = unsigned_type_for (type);
1766 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1767 /* TYPE may be integer, real or complex, so use fold_convert. */
1768 chrec1 = instantiate_parameters (loop, chrec1);
1769 res = chrec_fold_multiply (ctype, chrec1,
1770 fold_convert (ctype, integer_minus_one_node));
1771 if (type != ctype)
1772 res = chrec_convert (type, res, at_stmt);
1773 break;
1774
1775 case BIT_NOT_EXPR:
1776 /* Handle ~X as -1 - X. */
1777 chrec1 = analyze_scalar_evolution (loop, rhs1);
1778 chrec1 = chrec_convert (type, chrec1, at_stmt);
1779 chrec1 = instantiate_parameters (loop, chrec1);
1780 res = chrec_fold_minus (type,
1781 fold_convert (type, integer_minus_one_node),
1782 chrec1);
1783 break;
1784
1785 case MULT_EXPR:
1786 chrec1 = analyze_scalar_evolution (loop, rhs1);
1787 chrec2 = analyze_scalar_evolution (loop, rhs2);
1788 ctype = type;
1789 /* When the stmt is conditionally executed re-write the CHREC
1790 into a form that has well-defined behavior on overflow. */
1791 if (at_stmt
1792 && INTEGRAL_TYPE_P (type)
1793 && ! TYPE_OVERFLOW_WRAPS (type)
1794 && ! dominated_by_p (CDI_DOMINATORS,
1795 loop->latch, gimple_bb (at_stmt)))
1796 ctype = unsigned_type_for (type);
1797 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1798 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
1799 chrec1 = instantiate_parameters (loop, chrec1);
1800 chrec2 = instantiate_parameters (loop, chrec2);
1801 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1802 if (type != ctype)
1803 res = chrec_convert (type, res, at_stmt);
1804 break;
1805
1806 case LSHIFT_EXPR:
1807 {
1808 /* Handle A<<B as A * (1<<B). */
1809 tree uns = unsigned_type_for (type);
1810 chrec1 = analyze_scalar_evolution (loop, rhs1);
1811 chrec2 = analyze_scalar_evolution (loop, rhs2);
1812 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1813 chrec1 = instantiate_parameters (loop, chrec1);
1814 chrec2 = instantiate_parameters (loop, chrec2);
1815
1816 tree one = build_int_cst (uns, 1);
1817 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1818 res = chrec_fold_multiply (uns, chrec1, chrec2);
1819 res = chrec_convert (type, res, at_stmt);
1820 }
1821 break;
1822
1823 CASE_CONVERT:
1824 /* In case we have a truncation of a widened operation that in
1825 the truncated type has undefined overflow behavior analyze
1826 the operation done in an unsigned type of the same precision
1827 as the final truncation. We cannot derive a scalar evolution
1828 for the widened operation but for the truncated result. */
1829 if (TREE_CODE (type) == INTEGER_TYPE
1830 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1831 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1832 && TYPE_OVERFLOW_UNDEFINED (type)
1833 && TREE_CODE (rhs1) == SSA_NAME
1834 && (def = SSA_NAME_DEF_STMT (rhs1))
1835 && is_gimple_assign (def)
1836 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1837 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1838 {
1839 tree utype = unsigned_type_for (type);
1840 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1841 gimple_assign_rhs1 (def),
1842 gimple_assign_rhs_code (def),
1843 gimple_assign_rhs2 (def));
1844 }
1845 else
1846 chrec1 = analyze_scalar_evolution (loop, rhs1);
1847 res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
1848 break;
1849
1850 case BIT_AND_EXPR:
1851 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1852 If A is SCEV and its value is in the range of representable set
1853 of type unsigned short, the result expression is a (no-overflow)
1854 SCEV. */
1855 res = chrec_dont_know;
1856 if (tree_fits_uhwi_p (rhs2))
1857 {
1858 int precision;
1859 unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
1860
1861 val ++;
1862 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1863 it's not the maximum value of a smaller type than rhs1. */
1864 if (val != 0
1865 && (precision = exact_log2 (val)) > 0
1866 && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
1867 {
1868 tree utype = build_nonstandard_integer_type (precision, 1);
1869
1870 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
1871 {
1872 chrec1 = analyze_scalar_evolution (loop, rhs1);
1873 chrec1 = chrec_convert (utype, chrec1, at_stmt);
1874 res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
1875 }
1876 }
1877 }
1878 break;
1879
1880 default:
1881 res = chrec_dont_know;
1882 break;
1883 }
1884
1885 return res;
1886 }
1887
1888 /* Interpret the expression EXPR. */
1889
1890 static tree
1891 interpret_expr (class loop *loop, gimple *at_stmt, tree expr)
1892 {
1893 enum tree_code code;
1894 tree type = TREE_TYPE (expr), op0, op1;
1895
1896 if (automatically_generated_chrec_p (expr))
1897 return expr;
1898
1899 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1900 || TREE_CODE (expr) == CALL_EXPR
1901 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
1902 return chrec_dont_know;
1903
1904 extract_ops_from_tree (expr, &code, &op0, &op1);
1905
1906 return interpret_rhs_expr (loop, at_stmt, type,
1907 op0, code, op1);
1908 }
1909
1910 /* Interpret the rhs of the assignment STMT. */
1911
1912 static tree
1913 interpret_gimple_assign (class loop *loop, gimple *stmt)
1914 {
1915 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1916 enum tree_code code = gimple_assign_rhs_code (stmt);
1917
1918 return interpret_rhs_expr (loop, stmt, type,
1919 gimple_assign_rhs1 (stmt), code,
1920 gimple_assign_rhs2 (stmt));
1921 }
1922
1923 \f
1924
1925 /* This section contains all the entry points:
1926 - number_of_iterations_in_loop,
1927 - analyze_scalar_evolution,
1928 - instantiate_parameters.
1929 */
1930
1931 /* Helper recursive function. */
1932
1933 static tree
1934 analyze_scalar_evolution_1 (class loop *loop, tree var)
1935 {
1936 gimple *def;
1937 basic_block bb;
1938 class loop *def_loop;
1939 tree res;
1940
1941 if (TREE_CODE (var) != SSA_NAME)
1942 return interpret_expr (loop, NULL, var);
1943
1944 def = SSA_NAME_DEF_STMT (var);
1945 bb = gimple_bb (def);
1946 def_loop = bb->loop_father;
1947
1948 if (!flow_bb_inside_loop_p (loop, bb))
1949 {
1950 /* Keep symbolic form, but look through obvious copies for constants. */
1951 res = follow_copies_to_constant (var);
1952 goto set_and_end;
1953 }
1954
1955 if (loop != def_loop)
1956 {
1957 res = analyze_scalar_evolution_1 (def_loop, var);
1958 class loop *loop_to_skip = superloop_at_depth (def_loop,
1959 loop_depth (loop) + 1);
1960 res = compute_overall_effect_of_inner_loop (loop_to_skip, res);
1961 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
1962 res = analyze_scalar_evolution_1 (loop, res);
1963 goto set_and_end;
1964 }
1965
1966 switch (gimple_code (def))
1967 {
1968 case GIMPLE_ASSIGN:
1969 res = interpret_gimple_assign (loop, def);
1970 break;
1971
1972 case GIMPLE_PHI:
1973 if (loop_phi_node_p (def))
1974 res = interpret_loop_phi (loop, as_a <gphi *> (def));
1975 else
1976 res = interpret_condition_phi (loop, as_a <gphi *> (def));
1977 break;
1978
1979 default:
1980 res = chrec_dont_know;
1981 break;
1982 }
1983
1984 set_and_end:
1985
1986 /* Keep the symbolic form. */
1987 if (res == chrec_dont_know)
1988 res = var;
1989
1990 if (loop == def_loop)
1991 set_scalar_evolution (block_before_loop (loop), var, res);
1992
1993 return res;
1994 }
1995
1996 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
1997 LOOP. LOOP is the loop in which the variable is used.
1998
1999 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2000 pointer to the statement that uses this variable, in order to
2001 determine the evolution function of the variable, use the following
2002 calls:
2003
2004 loop_p loop = loop_containing_stmt (stmt);
2005 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
2006 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
2007 */
2008
2009 tree
2010 analyze_scalar_evolution (class loop *loop, tree var)
2011 {
2012 tree res;
2013
2014 /* ??? Fix callers. */
2015 if (! loop)
2016 return var;
2017
2018 if (dump_file && (dump_flags & TDF_SCEV))
2019 {
2020 fprintf (dump_file, "(analyze_scalar_evolution \n");
2021 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2022 fprintf (dump_file, " (scalar = ");
2023 print_generic_expr (dump_file, var);
2024 fprintf (dump_file, ")\n");
2025 }
2026
2027 res = get_scalar_evolution (block_before_loop (loop), var);
2028 if (res == chrec_not_analyzed_yet)
2029 {
2030 /* We'll recurse into instantiate_scev, avoid tearing down the
2031 instantiate cache repeatedly and keep it live from here. */
2032 bool destr = false;
2033 if (!global_cache)
2034 {
2035 global_cache = new instantiate_cache_type;
2036 destr = true;
2037 }
2038 res = analyze_scalar_evolution_1 (loop, var);
2039 if (destr)
2040 {
2041 delete global_cache;
2042 global_cache = NULL;
2043 }
2044 }
2045
2046 if (dump_file && (dump_flags & TDF_SCEV))
2047 fprintf (dump_file, ")\n");
2048
2049 return res;
2050 }
2051
2052 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2053
2054 static tree
2055 analyze_scalar_evolution_for_address_of (class loop *loop, tree var)
2056 {
2057 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2058 }
2059
2060 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2061 WRTO_LOOP (which should be a superloop of USE_LOOP)
2062
2063 FOLDED_CASTS is set to true if resolve_mixers used
2064 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2065 at the moment in order to keep things simple).
2066
2067 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2068 example:
2069
2070 for (i = 0; i < 100; i++) -- loop 1
2071 {
2072 for (j = 0; j < 100; j++) -- loop 2
2073 {
2074 k1 = i;
2075 k2 = j;
2076
2077 use2 (k1, k2);
2078
2079 for (t = 0; t < 100; t++) -- loop 3
2080 use3 (k1, k2);
2081
2082 }
2083 use1 (k1, k2);
2084 }
2085
2086 Both k1 and k2 are invariants in loop3, thus
2087 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2088 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2089
2090 As they are invariant, it does not matter whether we consider their
2091 usage in loop 3 or loop 2, hence
2092 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2093 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2094 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2095 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2096
2097 Similarly for their evolutions with respect to loop 1. The values of K2
2098 in the use in loop 2 vary independently on loop 1, thus we cannot express
2099 the evolution with respect to loop 1:
2100 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2101 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2102 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2103 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2104
2105 The value of k2 in the use in loop 1 is known, though:
2106 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2107 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2108 */
2109
2110 static tree
2111 analyze_scalar_evolution_in_loop (class loop *wrto_loop, class loop *use_loop,
2112 tree version, bool *folded_casts)
2113 {
2114 bool val = false;
2115 tree ev = version, tmp;
2116
2117 /* We cannot just do
2118
2119 tmp = analyze_scalar_evolution (use_loop, version);
2120 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
2121
2122 as resolve_mixers would query the scalar evolution with respect to
2123 wrto_loop. For example, in the situation described in the function
2124 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2125 version = k2. Then
2126
2127 analyze_scalar_evolution (use_loop, version) = k2
2128
2129 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2130 k2 in loop 1 is 100, which is a wrong result, since we are interested
2131 in the value in loop 3.
2132
2133 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2134 each time checking that there is no evolution in the inner loop. */
2135
2136 if (folded_casts)
2137 *folded_casts = false;
2138 while (1)
2139 {
2140 tmp = analyze_scalar_evolution (use_loop, ev);
2141 ev = resolve_mixers (use_loop, tmp, folded_casts);
2142
2143 if (use_loop == wrto_loop)
2144 return ev;
2145
2146 /* If the value of the use changes in the inner loop, we cannot express
2147 its value in the outer loop (we might try to return interval chrec,
2148 but we do not have a user for it anyway) */
2149 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2150 || !val)
2151 return chrec_dont_know;
2152
2153 use_loop = loop_outer (use_loop);
2154 }
2155 }
2156
2157
2158 /* Computes a hash function for database element ELT. */
2159
2160 static inline hashval_t
2161 hash_idx_scev_info (const void *elt_)
2162 {
2163 unsigned idx = ((size_t) elt_) - 2;
2164 return scev_info_hasher::hash (&global_cache->entries[idx]);
2165 }
2166
2167 /* Compares database elements E1 and E2. */
2168
2169 static inline int
2170 eq_idx_scev_info (const void *e1, const void *e2)
2171 {
2172 unsigned idx1 = ((size_t) e1) - 2;
2173 return scev_info_hasher::equal (&global_cache->entries[idx1],
2174 (const scev_info_str *) e2);
2175 }
2176
2177 /* Returns from CACHE the slot number of the cached chrec for NAME. */
2178
2179 static unsigned
2180 get_instantiated_value_entry (instantiate_cache_type &cache,
2181 tree name, edge instantiate_below)
2182 {
2183 if (!cache.map)
2184 {
2185 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
2186 cache.entries.create (10);
2187 }
2188
2189 scev_info_str e;
2190 e.name_version = SSA_NAME_VERSION (name);
2191 e.instantiated_below = instantiate_below->dest->index;
2192 void **slot = htab_find_slot_with_hash (cache.map, &e,
2193 scev_info_hasher::hash (&e), INSERT);
2194 if (!*slot)
2195 {
2196 e.chrec = chrec_not_analyzed_yet;
2197 *slot = (void *)(size_t)(cache.entries.length () + 2);
2198 cache.entries.safe_push (e);
2199 }
2200
2201 return ((size_t)*slot) - 2;
2202 }
2203
2204
2205 /* Return the closed_loop_phi node for VAR. If there is none, return
2206 NULL_TREE. */
2207
2208 static tree
2209 loop_closed_phi_def (tree var)
2210 {
2211 class loop *loop;
2212 edge exit;
2213 gphi *phi;
2214 gphi_iterator psi;
2215
2216 if (var == NULL_TREE
2217 || TREE_CODE (var) != SSA_NAME)
2218 return NULL_TREE;
2219
2220 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2221 exit = single_exit (loop);
2222 if (!exit)
2223 return NULL_TREE;
2224
2225 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2226 {
2227 phi = psi.phi ();
2228 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2229 return PHI_RESULT (phi);
2230 }
2231
2232 return NULL_TREE;
2233 }
2234
2235 static tree instantiate_scev_r (edge, class loop *, class loop *,
2236 tree, bool *, int);
2237
2238 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2239 and EVOLUTION_LOOP, that were left under a symbolic form.
2240
2241 CHREC is an SSA_NAME to be instantiated.
2242
2243 CACHE is the cache of already instantiated values.
2244
2245 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2246 conversions that may wrap in signed/pointer type are folded, as long
2247 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2248 then we don't do such fold.
2249
2250 SIZE_EXPR is used for computing the size of the expression to be
2251 instantiated, and to stop if it exceeds some limit. */
2252
2253 static tree
2254 instantiate_scev_name (edge instantiate_below,
2255 class loop *evolution_loop, class loop *inner_loop,
2256 tree chrec,
2257 bool *fold_conversions,
2258 int size_expr)
2259 {
2260 tree res;
2261 class loop *def_loop;
2262 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2263
2264 /* A parameter, nothing to do. */
2265 if (!def_bb
2266 || !dominated_by_p (CDI_DOMINATORS, def_bb, instantiate_below->dest))
2267 return chrec;
2268
2269 /* We cache the value of instantiated variable to avoid exponential
2270 time complexity due to reevaluations. We also store the convenient
2271 value in the cache in order to prevent infinite recursion -- we do
2272 not want to instantiate the SSA_NAME if it is in a mixer
2273 structure. This is used for avoiding the instantiation of
2274 recursively defined functions, such as:
2275
2276 | a_2 -> {0, +, 1, +, a_2}_1 */
2277
2278 unsigned si = get_instantiated_value_entry (*global_cache,
2279 chrec, instantiate_below);
2280 if (global_cache->get (si) != chrec_not_analyzed_yet)
2281 return global_cache->get (si);
2282
2283 /* On recursion return chrec_dont_know. */
2284 global_cache->set (si, chrec_dont_know);
2285
2286 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2287
2288 if (! dominated_by_p (CDI_DOMINATORS,
2289 def_loop->header, instantiate_below->dest))
2290 {
2291 gimple *def = SSA_NAME_DEF_STMT (chrec);
2292 if (gassign *ass = dyn_cast <gassign *> (def))
2293 {
2294 switch (gimple_assign_rhs_class (ass))
2295 {
2296 case GIMPLE_UNARY_RHS:
2297 {
2298 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2299 inner_loop, gimple_assign_rhs1 (ass),
2300 fold_conversions, size_expr);
2301 if (op0 == chrec_dont_know)
2302 return chrec_dont_know;
2303 res = fold_build1 (gimple_assign_rhs_code (ass),
2304 TREE_TYPE (chrec), op0);
2305 break;
2306 }
2307 case GIMPLE_BINARY_RHS:
2308 {
2309 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2310 inner_loop, gimple_assign_rhs1 (ass),
2311 fold_conversions, size_expr);
2312 if (op0 == chrec_dont_know)
2313 return chrec_dont_know;
2314 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2315 inner_loop, gimple_assign_rhs2 (ass),
2316 fold_conversions, size_expr);
2317 if (op1 == chrec_dont_know)
2318 return chrec_dont_know;
2319 res = fold_build2 (gimple_assign_rhs_code (ass),
2320 TREE_TYPE (chrec), op0, op1);
2321 break;
2322 }
2323 default:
2324 res = chrec_dont_know;
2325 }
2326 }
2327 else
2328 res = chrec_dont_know;
2329 global_cache->set (si, res);
2330 return res;
2331 }
2332
2333 /* If the analysis yields a parametric chrec, instantiate the
2334 result again. */
2335 res = analyze_scalar_evolution (def_loop, chrec);
2336
2337 /* Don't instantiate default definitions. */
2338 if (TREE_CODE (res) == SSA_NAME
2339 && SSA_NAME_IS_DEFAULT_DEF (res))
2340 ;
2341
2342 /* Don't instantiate loop-closed-ssa phi nodes. */
2343 else if (TREE_CODE (res) == SSA_NAME
2344 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2345 > loop_depth (def_loop))
2346 {
2347 if (res == chrec)
2348 res = loop_closed_phi_def (chrec);
2349 else
2350 res = chrec;
2351
2352 /* When there is no loop_closed_phi_def, it means that the
2353 variable is not used after the loop: try to still compute the
2354 value of the variable when exiting the loop. */
2355 if (res == NULL_TREE)
2356 {
2357 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2358 res = analyze_scalar_evolution (loop, chrec);
2359 res = compute_overall_effect_of_inner_loop (loop, res);
2360 res = instantiate_scev_r (instantiate_below, evolution_loop,
2361 inner_loop, res,
2362 fold_conversions, size_expr);
2363 }
2364 else if (dominated_by_p (CDI_DOMINATORS,
2365 gimple_bb (SSA_NAME_DEF_STMT (res)),
2366 instantiate_below->dest))
2367 res = chrec_dont_know;
2368 }
2369
2370 else if (res != chrec_dont_know)
2371 {
2372 if (inner_loop
2373 && def_bb->loop_father != inner_loop
2374 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2375 /* ??? We could try to compute the overall effect of the loop here. */
2376 res = chrec_dont_know;
2377 else
2378 res = instantiate_scev_r (instantiate_below, evolution_loop,
2379 inner_loop, res,
2380 fold_conversions, size_expr);
2381 }
2382
2383 /* Store the correct value to the cache. */
2384 global_cache->set (si, res);
2385 return res;
2386 }
2387
2388 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2389 and EVOLUTION_LOOP, that were left under a symbolic form.
2390
2391 CHREC is a polynomial chain of recurrence to be instantiated.
2392
2393 CACHE is the cache of already instantiated values.
2394
2395 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2396 conversions that may wrap in signed/pointer type are folded, as long
2397 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2398 then we don't do such fold.
2399
2400 SIZE_EXPR is used for computing the size of the expression to be
2401 instantiated, and to stop if it exceeds some limit. */
2402
2403 static tree
2404 instantiate_scev_poly (edge instantiate_below,
2405 class loop *evolution_loop, class loop *,
2406 tree chrec, bool *fold_conversions, int size_expr)
2407 {
2408 tree op1;
2409 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2410 get_chrec_loop (chrec),
2411 CHREC_LEFT (chrec), fold_conversions,
2412 size_expr);
2413 if (op0 == chrec_dont_know)
2414 return chrec_dont_know;
2415
2416 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2417 get_chrec_loop (chrec),
2418 CHREC_RIGHT (chrec), fold_conversions,
2419 size_expr);
2420 if (op1 == chrec_dont_know)
2421 return chrec_dont_know;
2422
2423 if (CHREC_LEFT (chrec) != op0
2424 || CHREC_RIGHT (chrec) != op1)
2425 {
2426 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2427 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2428 }
2429
2430 return chrec;
2431 }
2432
2433 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2434 and EVOLUTION_LOOP, that were left under a symbolic form.
2435
2436 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2437
2438 CACHE is the cache of already instantiated values.
2439
2440 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2441 conversions that may wrap in signed/pointer type are folded, as long
2442 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2443 then we don't do such fold.
2444
2445 SIZE_EXPR is used for computing the size of the expression to be
2446 instantiated, and to stop if it exceeds some limit. */
2447
2448 static tree
2449 instantiate_scev_binary (edge instantiate_below,
2450 class loop *evolution_loop, class loop *inner_loop,
2451 tree chrec, enum tree_code code,
2452 tree type, tree c0, tree c1,
2453 bool *fold_conversions, int size_expr)
2454 {
2455 tree op1;
2456 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
2457 c0, fold_conversions, size_expr);
2458 if (op0 == chrec_dont_know)
2459 return chrec_dont_know;
2460
2461 /* While we eventually compute the same op1 if c0 == c1 the process
2462 of doing this is expensive so the following short-cut prevents
2463 exponential compile-time behavior. */
2464 if (c0 != c1)
2465 {
2466 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
2467 c1, fold_conversions, size_expr);
2468 if (op1 == chrec_dont_know)
2469 return chrec_dont_know;
2470 }
2471 else
2472 op1 = op0;
2473
2474 if (c0 != op0
2475 || c1 != op1)
2476 {
2477 op0 = chrec_convert (type, op0, NULL);
2478 op1 = chrec_convert_rhs (type, op1, NULL);
2479
2480 switch (code)
2481 {
2482 case POINTER_PLUS_EXPR:
2483 case PLUS_EXPR:
2484 return chrec_fold_plus (type, op0, op1);
2485
2486 case MINUS_EXPR:
2487 return chrec_fold_minus (type, op0, op1);
2488
2489 case MULT_EXPR:
2490 return chrec_fold_multiply (type, op0, op1);
2491
2492 default:
2493 gcc_unreachable ();
2494 }
2495 }
2496
2497 return chrec ? chrec : fold_build2 (code, type, c0, c1);
2498 }
2499
2500 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2501 and EVOLUTION_LOOP, that were left under a symbolic form.
2502
2503 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2504 instantiated.
2505
2506 CACHE is the cache of already instantiated values.
2507
2508 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2509 conversions that may wrap in signed/pointer type are folded, as long
2510 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2511 then we don't do such fold.
2512
2513 SIZE_EXPR is used for computing the size of the expression to be
2514 instantiated, and to stop if it exceeds some limit. */
2515
2516 static tree
2517 instantiate_scev_convert (edge instantiate_below,
2518 class loop *evolution_loop, class loop *inner_loop,
2519 tree chrec, tree type, tree op,
2520 bool *fold_conversions, int size_expr)
2521 {
2522 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2523 inner_loop, op,
2524 fold_conversions, size_expr);
2525
2526 if (op0 == chrec_dont_know)
2527 return chrec_dont_know;
2528
2529 if (fold_conversions)
2530 {
2531 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
2532 if (tmp)
2533 return tmp;
2534
2535 /* If we used chrec_convert_aggressive, we can no longer assume that
2536 signed chrecs do not overflow, as chrec_convert does, so avoid
2537 calling it in that case. */
2538 if (*fold_conversions)
2539 {
2540 if (chrec && op0 == op)
2541 return chrec;
2542
2543 return fold_convert (type, op0);
2544 }
2545 }
2546
2547 return chrec_convert (type, op0, NULL);
2548 }
2549
2550 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2551 and EVOLUTION_LOOP, that were left under a symbolic form.
2552
2553 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2554 Handle ~X as -1 - X.
2555 Handle -X as -1 * X.
2556
2557 CACHE is the cache of already instantiated values.
2558
2559 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2560 conversions that may wrap in signed/pointer type are folded, as long
2561 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2562 then we don't do such fold.
2563
2564 SIZE_EXPR is used for computing the size of the expression to be
2565 instantiated, and to stop if it exceeds some limit. */
2566
2567 static tree
2568 instantiate_scev_not (edge instantiate_below,
2569 class loop *evolution_loop, class loop *inner_loop,
2570 tree chrec,
2571 enum tree_code code, tree type, tree op,
2572 bool *fold_conversions, int size_expr)
2573 {
2574 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2575 inner_loop, op,
2576 fold_conversions, size_expr);
2577
2578 if (op0 == chrec_dont_know)
2579 return chrec_dont_know;
2580
2581 if (op != op0)
2582 {
2583 op0 = chrec_convert (type, op0, NULL);
2584
2585 switch (code)
2586 {
2587 case BIT_NOT_EXPR:
2588 return chrec_fold_minus
2589 (type, fold_convert (type, integer_minus_one_node), op0);
2590
2591 case NEGATE_EXPR:
2592 return chrec_fold_multiply
2593 (type, fold_convert (type, integer_minus_one_node), op0);
2594
2595 default:
2596 gcc_unreachable ();
2597 }
2598 }
2599
2600 return chrec ? chrec : fold_build1 (code, type, op0);
2601 }
2602
2603 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2604 and EVOLUTION_LOOP, that were left under a symbolic form.
2605
2606 CHREC is the scalar evolution to instantiate.
2607
2608 CACHE is the cache of already instantiated values.
2609
2610 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2611 conversions that may wrap in signed/pointer type are folded, as long
2612 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2613 then we don't do such fold.
2614
2615 SIZE_EXPR is used for computing the size of the expression to be
2616 instantiated, and to stop if it exceeds some limit. */
2617
2618 static tree
2619 instantiate_scev_r (edge instantiate_below,
2620 class loop *evolution_loop, class loop *inner_loop,
2621 tree chrec,
2622 bool *fold_conversions, int size_expr)
2623 {
2624 /* Give up if the expression is larger than the MAX that we allow. */
2625 if (size_expr++ > param_scev_max_expr_size)
2626 return chrec_dont_know;
2627
2628 if (chrec == NULL_TREE
2629 || automatically_generated_chrec_p (chrec)
2630 || is_gimple_min_invariant (chrec))
2631 return chrec;
2632
2633 switch (TREE_CODE (chrec))
2634 {
2635 case SSA_NAME:
2636 return instantiate_scev_name (instantiate_below, evolution_loop,
2637 inner_loop, chrec,
2638 fold_conversions, size_expr);
2639
2640 case POLYNOMIAL_CHREC:
2641 return instantiate_scev_poly (instantiate_below, evolution_loop,
2642 inner_loop, chrec,
2643 fold_conversions, size_expr);
2644
2645 case POINTER_PLUS_EXPR:
2646 case PLUS_EXPR:
2647 case MINUS_EXPR:
2648 case MULT_EXPR:
2649 return instantiate_scev_binary (instantiate_below, evolution_loop,
2650 inner_loop, chrec,
2651 TREE_CODE (chrec), chrec_type (chrec),
2652 TREE_OPERAND (chrec, 0),
2653 TREE_OPERAND (chrec, 1),
2654 fold_conversions, size_expr);
2655
2656 CASE_CONVERT:
2657 return instantiate_scev_convert (instantiate_below, evolution_loop,
2658 inner_loop, chrec,
2659 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
2660 fold_conversions, size_expr);
2661
2662 case NEGATE_EXPR:
2663 case BIT_NOT_EXPR:
2664 return instantiate_scev_not (instantiate_below, evolution_loop,
2665 inner_loop, chrec,
2666 TREE_CODE (chrec), TREE_TYPE (chrec),
2667 TREE_OPERAND (chrec, 0),
2668 fold_conversions, size_expr);
2669
2670 case ADDR_EXPR:
2671 if (is_gimple_min_invariant (chrec))
2672 return chrec;
2673 /* Fallthru. */
2674 case SCEV_NOT_KNOWN:
2675 return chrec_dont_know;
2676
2677 case SCEV_KNOWN:
2678 return chrec_known;
2679
2680 default:
2681 if (CONSTANT_CLASS_P (chrec))
2682 return chrec;
2683 return chrec_dont_know;
2684 }
2685 }
2686
2687 /* Analyze all the parameters of the chrec that were left under a
2688 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2689 recursive instantiation of parameters: a parameter is a variable
2690 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2691 a function parameter. */
2692
2693 tree
2694 instantiate_scev (edge instantiate_below, class loop *evolution_loop,
2695 tree chrec)
2696 {
2697 tree res;
2698
2699 if (dump_file && (dump_flags & TDF_SCEV))
2700 {
2701 fprintf (dump_file, "(instantiate_scev \n");
2702 fprintf (dump_file, " (instantiate_below = %d -> %d)\n",
2703 instantiate_below->src->index, instantiate_below->dest->index);
2704 if (evolution_loop)
2705 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2706 fprintf (dump_file, " (chrec = ");
2707 print_generic_expr (dump_file, chrec);
2708 fprintf (dump_file, ")\n");
2709 }
2710
2711 bool destr = false;
2712 if (!global_cache)
2713 {
2714 global_cache = new instantiate_cache_type;
2715 destr = true;
2716 }
2717
2718 res = instantiate_scev_r (instantiate_below, evolution_loop,
2719 NULL, chrec, NULL, 0);
2720
2721 if (destr)
2722 {
2723 delete global_cache;
2724 global_cache = NULL;
2725 }
2726
2727 if (dump_file && (dump_flags & TDF_SCEV))
2728 {
2729 fprintf (dump_file, " (res = ");
2730 print_generic_expr (dump_file, res);
2731 fprintf (dump_file, "))\n");
2732 }
2733
2734 return res;
2735 }
2736
2737 /* Similar to instantiate_parameters, but does not introduce the
2738 evolutions in outer loops for LOOP invariants in CHREC, and does not
2739 care about causing overflows, as long as they do not affect value
2740 of an expression. */
2741
2742 tree
2743 resolve_mixers (class loop *loop, tree chrec, bool *folded_casts)
2744 {
2745 bool destr = false;
2746 bool fold_conversions = false;
2747 if (!global_cache)
2748 {
2749 global_cache = new instantiate_cache_type;
2750 destr = true;
2751 }
2752
2753 tree ret = instantiate_scev_r (loop_preheader_edge (loop), loop, NULL,
2754 chrec, &fold_conversions, 0);
2755
2756 if (folded_casts && !*folded_casts)
2757 *folded_casts = fold_conversions;
2758
2759 if (destr)
2760 {
2761 delete global_cache;
2762 global_cache = NULL;
2763 }
2764
2765 return ret;
2766 }
2767
2768 /* Entry point for the analysis of the number of iterations pass.
2769 This function tries to safely approximate the number of iterations
2770 the loop will run. When this property is not decidable at compile
2771 time, the result is chrec_dont_know. Otherwise the result is a
2772 scalar or a symbolic parameter. When the number of iterations may
2773 be equal to zero and the property cannot be determined at compile
2774 time, the result is a COND_EXPR that represents in a symbolic form
2775 the conditions under which the number of iterations is not zero.
2776
2777 Example of analysis: suppose that the loop has an exit condition:
2778
2779 "if (b > 49) goto end_loop;"
2780
2781 and that in a previous analysis we have determined that the
2782 variable 'b' has an evolution function:
2783
2784 "EF = {23, +, 5}_2".
2785
2786 When we evaluate the function at the point 5, i.e. the value of the
2787 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2788 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2789 the loop body has been executed 6 times. */
2790
2791 tree
2792 number_of_latch_executions (class loop *loop)
2793 {
2794 edge exit;
2795 class tree_niter_desc niter_desc;
2796 tree may_be_zero;
2797 tree res;
2798
2799 /* Determine whether the number of iterations in loop has already
2800 been computed. */
2801 res = loop->nb_iterations;
2802 if (res)
2803 return res;
2804
2805 may_be_zero = NULL_TREE;
2806
2807 if (dump_file && (dump_flags & TDF_SCEV))
2808 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
2809
2810 res = chrec_dont_know;
2811 exit = single_exit (loop);
2812
2813 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2814 {
2815 may_be_zero = niter_desc.may_be_zero;
2816 res = niter_desc.niter;
2817 }
2818
2819 if (res == chrec_dont_know
2820 || !may_be_zero
2821 || integer_zerop (may_be_zero))
2822 ;
2823 else if (integer_nonzerop (may_be_zero))
2824 res = build_int_cst (TREE_TYPE (res), 0);
2825
2826 else if (COMPARISON_CLASS_P (may_be_zero))
2827 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2828 build_int_cst (TREE_TYPE (res), 0), res);
2829 else
2830 res = chrec_dont_know;
2831
2832 if (dump_file && (dump_flags & TDF_SCEV))
2833 {
2834 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
2835 print_generic_expr (dump_file, res);
2836 fprintf (dump_file, "))\n");
2837 }
2838
2839 loop->nb_iterations = res;
2840 return res;
2841 }
2842 \f
2843
2844 /* Counters for the stats. */
2845
2846 struct chrec_stats
2847 {
2848 unsigned nb_chrecs;
2849 unsigned nb_affine;
2850 unsigned nb_affine_multivar;
2851 unsigned nb_higher_poly;
2852 unsigned nb_chrec_dont_know;
2853 unsigned nb_undetermined;
2854 };
2855
2856 /* Reset the counters. */
2857
2858 static inline void
2859 reset_chrecs_counters (struct chrec_stats *stats)
2860 {
2861 stats->nb_chrecs = 0;
2862 stats->nb_affine = 0;
2863 stats->nb_affine_multivar = 0;
2864 stats->nb_higher_poly = 0;
2865 stats->nb_chrec_dont_know = 0;
2866 stats->nb_undetermined = 0;
2867 }
2868
2869 /* Dump the contents of a CHREC_STATS structure. */
2870
2871 static void
2872 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2873 {
2874 fprintf (file, "\n(\n");
2875 fprintf (file, "-----------------------------------------\n");
2876 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2877 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2878 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2879 stats->nb_higher_poly);
2880 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2881 fprintf (file, "-----------------------------------------\n");
2882 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2883 fprintf (file, "%d\twith undetermined coefficients\n",
2884 stats->nb_undetermined);
2885 fprintf (file, "-----------------------------------------\n");
2886 fprintf (file, "%d\tchrecs in the scev database\n",
2887 (int) scalar_evolution_info->elements ());
2888 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2889 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2890 fprintf (file, "-----------------------------------------\n");
2891 fprintf (file, ")\n\n");
2892 }
2893
2894 /* Gather statistics about CHREC. */
2895
2896 static void
2897 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2898 {
2899 if (dump_file && (dump_flags & TDF_STATS))
2900 {
2901 fprintf (dump_file, "(classify_chrec ");
2902 print_generic_expr (dump_file, chrec);
2903 fprintf (dump_file, "\n");
2904 }
2905
2906 stats->nb_chrecs++;
2907
2908 if (chrec == NULL_TREE)
2909 {
2910 stats->nb_undetermined++;
2911 return;
2912 }
2913
2914 switch (TREE_CODE (chrec))
2915 {
2916 case POLYNOMIAL_CHREC:
2917 if (evolution_function_is_affine_p (chrec))
2918 {
2919 if (dump_file && (dump_flags & TDF_STATS))
2920 fprintf (dump_file, " affine_univariate\n");
2921 stats->nb_affine++;
2922 }
2923 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2924 {
2925 if (dump_file && (dump_flags & TDF_STATS))
2926 fprintf (dump_file, " affine_multivariate\n");
2927 stats->nb_affine_multivar++;
2928 }
2929 else
2930 {
2931 if (dump_file && (dump_flags & TDF_STATS))
2932 fprintf (dump_file, " higher_degree_polynomial\n");
2933 stats->nb_higher_poly++;
2934 }
2935
2936 break;
2937
2938 default:
2939 break;
2940 }
2941
2942 if (chrec_contains_undetermined (chrec))
2943 {
2944 if (dump_file && (dump_flags & TDF_STATS))
2945 fprintf (dump_file, " undetermined\n");
2946 stats->nb_undetermined++;
2947 }
2948
2949 if (dump_file && (dump_flags & TDF_STATS))
2950 fprintf (dump_file, ")\n");
2951 }
2952
2953 /* Classify the chrecs of the whole database. */
2954
2955 void
2956 gather_stats_on_scev_database (void)
2957 {
2958 struct chrec_stats stats;
2959
2960 if (!dump_file)
2961 return;
2962
2963 reset_chrecs_counters (&stats);
2964
2965 hash_table<scev_info_hasher>::iterator iter;
2966 scev_info_str *elt;
2967 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
2968 iter)
2969 gather_chrec_stats (elt->chrec, &stats);
2970
2971 dump_chrecs_stats (dump_file, &stats);
2972 }
2973
2974 \f
2975 /* Initialize the analysis of scalar evolutions for LOOPS. */
2976
2977 void
2978 scev_initialize (void)
2979 {
2980 gcc_assert (! scev_initialized_p ()
2981 && loops_state_satisfies_p (cfun, LOOPS_NORMAL));
2982
2983 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
2984
2985 for (auto loop : loops_list (cfun, 0))
2986 loop->nb_iterations = NULL_TREE;
2987 }
2988
2989 /* Return true if SCEV is initialized. */
2990
2991 bool
2992 scev_initialized_p (void)
2993 {
2994 return scalar_evolution_info != NULL;
2995 }
2996
2997 /* Cleans up the information cached by the scalar evolutions analysis
2998 in the hash table. */
2999
3000 void
3001 scev_reset_htab (void)
3002 {
3003 if (!scalar_evolution_info)
3004 return;
3005
3006 scalar_evolution_info->empty ();
3007 }
3008
3009 /* Cleans up the information cached by the scalar evolutions analysis
3010 in the hash table and in the loop->nb_iterations. */
3011
3012 void
3013 scev_reset (void)
3014 {
3015 scev_reset_htab ();
3016
3017 for (auto loop : loops_list (cfun, 0))
3018 loop->nb_iterations = NULL_TREE;
3019 }
3020
3021 /* Return true if the IV calculation in TYPE can overflow based on the knowledge
3022 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3023 of IV.
3024
3025 We do not use information whether TYPE can overflow so it is safe to
3026 use this test even for derived IVs not computed every iteration or
3027 hypotetical IVs to be inserted into code. */
3028
3029 bool
3030 iv_can_overflow_p (class loop *loop, tree type, tree base, tree step)
3031 {
3032 widest_int nit;
3033 wide_int base_min, base_max, step_min, step_max, type_min, type_max;
3034 signop sgn = TYPE_SIGN (type);
3035 value_range r;
3036
3037 if (integer_zerop (step))
3038 return false;
3039
3040 if (!INTEGRAL_TYPE_P (TREE_TYPE (base))
3041 || !get_range_query (cfun)->range_of_expr (r, base)
3042 || r.kind () != VR_RANGE)
3043 return true;
3044
3045 base_min = r.lower_bound ();
3046 base_max = r.upper_bound ();
3047
3048 if (!INTEGRAL_TYPE_P (TREE_TYPE (step))
3049 || !get_range_query (cfun)->range_of_expr (r, step)
3050 || r.kind () != VR_RANGE)
3051 return true;
3052
3053 step_min = r.lower_bound ();
3054 step_max = r.upper_bound ();
3055
3056 if (!get_max_loop_iterations (loop, &nit))
3057 return true;
3058
3059 type_min = wi::min_value (type);
3060 type_max = wi::max_value (type);
3061
3062 /* Just sanity check that we don't see values out of the range of the type.
3063 In this case the arithmetics bellow would overflow. */
3064 gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
3065 && wi::le_p (base_max, type_max, sgn));
3066
3067 /* Account the possible increment in the last ieration. */
3068 wi::overflow_type overflow = wi::OVF_NONE;
3069 nit = wi::add (nit, 1, SIGNED, &overflow);
3070 if (overflow)
3071 return true;
3072
3073 /* NIT is typeless and can exceed the precision of the type. In this case
3074 overflow is always possible, because we know STEP is non-zero. */
3075 if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
3076 return true;
3077 wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
3078
3079 /* If step can be positive, check that nit*step <= type_max-base.
3080 This can be done by unsigned arithmetic and we only need to watch overflow
3081 in the multiplication. The right hand side can always be represented in
3082 the type. */
3083 if (sgn == UNSIGNED || !wi::neg_p (step_max))
3084 {
3085 wi::overflow_type overflow = wi::OVF_NONE;
3086 if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
3087 type_max - base_max)
3088 || overflow)
3089 return true;
3090 }
3091 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3092 if (sgn == SIGNED && wi::neg_p (step_min))
3093 {
3094 wi::overflow_type overflow, overflow2;
3095 overflow = overflow2 = wi::OVF_NONE;
3096 if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
3097 nit2, UNSIGNED, &overflow),
3098 base_min - type_min)
3099 || overflow || overflow2)
3100 return true;
3101 }
3102
3103 return false;
3104 }
3105
3106 /* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3107 function tries to derive condition under which it can be simplified
3108 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3109 the maximum number that inner iv can iterate. */
3110
3111 static tree
3112 derive_simple_iv_with_niters (tree ev, tree *niters)
3113 {
3114 if (!CONVERT_EXPR_P (ev))
3115 return ev;
3116
3117 tree inner_ev = TREE_OPERAND (ev, 0);
3118 if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
3119 return ev;
3120
3121 tree init = CHREC_LEFT (inner_ev);
3122 tree step = CHREC_RIGHT (inner_ev);
3123 if (TREE_CODE (init) != INTEGER_CST
3124 || TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3125 return ev;
3126
3127 tree type = TREE_TYPE (ev);
3128 tree inner_type = TREE_TYPE (inner_ev);
3129 if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
3130 return ev;
3131
3132 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3133 folded only if inner iv won't overflow. We compute the maximum
3134 number the inner iv can iterate before overflowing and return the
3135 simplified affine iv. */
3136 tree delta;
3137 init = fold_convert (type, init);
3138 step = fold_convert (type, step);
3139 ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
3140 if (tree_int_cst_sign_bit (step))
3141 {
3142 tree bound = lower_bound_in_type (inner_type, inner_type);
3143 delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
3144 step = fold_build1 (NEGATE_EXPR, type, step);
3145 }
3146 else
3147 {
3148 tree bound = upper_bound_in_type (inner_type, inner_type);
3149 delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
3150 }
3151 *niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
3152 return ev;
3153 }
3154
3155 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3156 respect to WRTO_LOOP and returns its base and step in IV if possible
3157 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3158 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3159 invariant in LOOP. Otherwise we require it to be an integer constant.
3160
3161 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3162 because it is computed in signed arithmetics). Consequently, adding an
3163 induction variable
3164
3165 for (i = IV->base; ; i += IV->step)
3166
3167 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3168 false for the type of the induction variable, or you can prove that i does
3169 not wrap by some other argument. Otherwise, this might introduce undefined
3170 behavior, and
3171
3172 i = iv->base;
3173 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3174
3175 must be used instead.
3176
3177 When IV_NITERS is not NULL, this function also checks case in which OP
3178 is a conversion of an inner simple iv of below form:
3179
3180 (outer_type){inner_base, inner_step}_loop.
3181
3182 If type of inner iv has smaller precision than outer_type, it can't be
3183 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3184 the inner iv could overflow/wrap. In this case, we derive a condition
3185 under which the inner iv won't overflow/wrap and do the simplification.
3186 The derived condition normally is the maximum number the inner iv can
3187 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3188 analysis, to derive break conditions when a loop must terminate, when is
3189 infinite. */
3190
3191 bool
3192 simple_iv_with_niters (class loop *wrto_loop, class loop *use_loop,
3193 tree op, affine_iv *iv, tree *iv_niters,
3194 bool allow_nonconstant_step)
3195 {
3196 enum tree_code code;
3197 tree type, ev, base, e;
3198 wide_int extreme;
3199 bool folded_casts;
3200
3201 iv->base = NULL_TREE;
3202 iv->step = NULL_TREE;
3203 iv->no_overflow = false;
3204
3205 type = TREE_TYPE (op);
3206 if (!POINTER_TYPE_P (type)
3207 && !INTEGRAL_TYPE_P (type))
3208 return false;
3209
3210 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
3211 &folded_casts);
3212 if (chrec_contains_undetermined (ev)
3213 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
3214 return false;
3215
3216 if (tree_does_not_contain_chrecs (ev))
3217 {
3218 iv->base = ev;
3219 iv->step = build_int_cst (TREE_TYPE (ev), 0);
3220 iv->no_overflow = true;
3221 return true;
3222 }
3223
3224 /* If we can derive valid scalar evolution with assumptions. */
3225 if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
3226 ev = derive_simple_iv_with_niters (ev, iv_niters);
3227
3228 if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
3229 return false;
3230
3231 if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
3232 return false;
3233
3234 iv->step = CHREC_RIGHT (ev);
3235 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3236 || tree_contains_chrecs (iv->step, NULL))
3237 return false;
3238
3239 iv->base = CHREC_LEFT (ev);
3240 if (tree_contains_chrecs (iv->base, NULL))
3241 return false;
3242
3243 iv->no_overflow = !folded_casts && nowrap_type_p (type);
3244
3245 if (!iv->no_overflow
3246 && !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
3247 iv->no_overflow = true;
3248
3249 /* Try to simplify iv base:
3250
3251 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3252 == (signed T)(unsigned T)base + step
3253 == base + step
3254
3255 If we can prove operation (base + step) doesn't overflow or underflow.
3256 Specifically, we try to prove below conditions are satisfied:
3257
3258 base <= UPPER_BOUND (type) - step ;;step > 0
3259 base >= LOWER_BOUND (type) - step ;;step < 0
3260
3261 This is done by proving the reverse conditions are false using loop's
3262 initial conditions.
3263
3264 The is necessary to make loop niter, or iv overflow analysis easier
3265 for below example:
3266
3267 int foo (int *a, signed char s, signed char l)
3268 {
3269 signed char i;
3270 for (i = s; i < l; i++)
3271 a[i] = 0;
3272 return 0;
3273 }
3274
3275 Note variable I is firstly converted to type unsigned char, incremented,
3276 then converted back to type signed char. */
3277
3278 if (wrto_loop->num != use_loop->num)
3279 return true;
3280
3281 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3282 return true;
3283
3284 type = TREE_TYPE (iv->base);
3285 e = TREE_OPERAND (iv->base, 0);
3286 if (TREE_CODE (e) != PLUS_EXPR
3287 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3288 || !tree_int_cst_equal (iv->step,
3289 fold_convert (type, TREE_OPERAND (e, 1))))
3290 return true;
3291 e = TREE_OPERAND (e, 0);
3292 if (!CONVERT_EXPR_P (e))
3293 return true;
3294 base = TREE_OPERAND (e, 0);
3295 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3296 return true;
3297
3298 if (tree_int_cst_sign_bit (iv->step))
3299 {
3300 code = LT_EXPR;
3301 extreme = wi::min_value (type);
3302 }
3303 else
3304 {
3305 code = GT_EXPR;
3306 extreme = wi::max_value (type);
3307 }
3308 wi::overflow_type overflow = wi::OVF_NONE;
3309 extreme = wi::sub (extreme, wi::to_wide (iv->step),
3310 TYPE_SIGN (type), &overflow);
3311 if (overflow)
3312 return true;
3313 e = fold_build2 (code, boolean_type_node, base,
3314 wide_int_to_tree (type, extreme));
3315 e = simplify_using_initial_conditions (use_loop, e);
3316 if (!integer_zerop (e))
3317 return true;
3318
3319 if (POINTER_TYPE_P (TREE_TYPE (base)))
3320 code = POINTER_PLUS_EXPR;
3321 else
3322 code = PLUS_EXPR;
3323
3324 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
3325 return true;
3326 }
3327
3328 /* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3329 affine iv unconditionally. */
3330
3331 bool
3332 simple_iv (class loop *wrto_loop, class loop *use_loop, tree op,
3333 affine_iv *iv, bool allow_nonconstant_step)
3334 {
3335 return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
3336 NULL, allow_nonconstant_step);
3337 }
3338
3339 /* Finalize the scalar evolution analysis. */
3340
3341 void
3342 scev_finalize (void)
3343 {
3344 if (!scalar_evolution_info)
3345 return;
3346 scalar_evolution_info->empty ();
3347 scalar_evolution_info = NULL;
3348 free_numbers_of_iterations_estimates (cfun);
3349 }
3350
3351 /* Returns true if the expression EXPR is considered to be too expensive
3352 for scev_const_prop. */
3353
3354 static bool
3355 expression_expensive_p (tree expr, hash_map<tree, uint64_t> &cache,
3356 uint64_t &cost)
3357 {
3358 enum tree_code code;
3359
3360 if (is_gimple_val (expr))
3361 return false;
3362
3363 code = TREE_CODE (expr);
3364 if (code == TRUNC_DIV_EXPR
3365 || code == CEIL_DIV_EXPR
3366 || code == FLOOR_DIV_EXPR
3367 || code == ROUND_DIV_EXPR
3368 || code == TRUNC_MOD_EXPR
3369 || code == CEIL_MOD_EXPR
3370 || code == FLOOR_MOD_EXPR
3371 || code == ROUND_MOD_EXPR
3372 || code == EXACT_DIV_EXPR)
3373 {
3374 /* Division by power of two is usually cheap, so we allow it.
3375 Forbid anything else. */
3376 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3377 return true;
3378 }
3379
3380 bool visited_p;
3381 uint64_t &local_cost = cache.get_or_insert (expr, &visited_p);
3382 if (visited_p)
3383 {
3384 uint64_t tem = cost + local_cost;
3385 if (tem < cost)
3386 return true;
3387 cost = tem;
3388 return false;
3389 }
3390 local_cost = 1;
3391
3392 uint64_t op_cost = 0;
3393 if (code == CALL_EXPR)
3394 {
3395 tree arg;
3396 call_expr_arg_iterator iter;
3397 /* Even though is_inexpensive_builtin might say true, we will get a
3398 library call for popcount when backend does not have an instruction
3399 to do so. We consider this to be expensive and generate
3400 __builtin_popcount only when backend defines it. */
3401 combined_fn cfn = get_call_combined_fn (expr);
3402 switch (cfn)
3403 {
3404 CASE_CFN_POPCOUNT:
3405 /* Check if opcode for popcount is available in the mode required. */
3406 if (optab_handler (popcount_optab,
3407 TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0))))
3408 == CODE_FOR_nothing)
3409 {
3410 machine_mode mode;
3411 mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0)));
3412 scalar_int_mode int_mode;
3413
3414 /* If the mode is of 2 * UNITS_PER_WORD size, we can handle
3415 double-word popcount by emitting two single-word popcount
3416 instructions. */
3417 if (is_a <scalar_int_mode> (mode, &int_mode)
3418 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
3419 && (optab_handler (popcount_optab, word_mode)
3420 != CODE_FOR_nothing))
3421 break;
3422 return true;
3423 }
3424 break;
3425
3426 default:
3427 if (cfn == CFN_LAST
3428 || !is_inexpensive_builtin (get_callee_fndecl (expr)))
3429 return true;
3430 break;
3431 }
3432
3433 FOR_EACH_CALL_EXPR_ARG (arg, iter, expr)
3434 if (expression_expensive_p (arg, cache, op_cost))
3435 return true;
3436 *cache.get (expr) += op_cost;
3437 cost += op_cost + 1;
3438 return false;
3439 }
3440
3441 if (code == COND_EXPR)
3442 {
3443 if (expression_expensive_p (TREE_OPERAND (expr, 0), cache, op_cost)
3444 || (EXPR_P (TREE_OPERAND (expr, 1))
3445 && EXPR_P (TREE_OPERAND (expr, 2)))
3446 /* If either branch has side effects or could trap. */
3447 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
3448 || generic_expr_could_trap_p (TREE_OPERAND (expr, 1))
3449 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0))
3450 || generic_expr_could_trap_p (TREE_OPERAND (expr, 0))
3451 || expression_expensive_p (TREE_OPERAND (expr, 1),
3452 cache, op_cost)
3453 || expression_expensive_p (TREE_OPERAND (expr, 2),
3454 cache, op_cost))
3455 return true;
3456 *cache.get (expr) += op_cost;
3457 cost += op_cost + 1;
3458 return false;
3459 }
3460
3461 switch (TREE_CODE_CLASS (code))
3462 {
3463 case tcc_binary:
3464 case tcc_comparison:
3465 if (expression_expensive_p (TREE_OPERAND (expr, 1), cache, op_cost))
3466 return true;
3467
3468 /* Fallthru. */
3469 case tcc_unary:
3470 if (expression_expensive_p (TREE_OPERAND (expr, 0), cache, op_cost))
3471 return true;
3472 *cache.get (expr) += op_cost;
3473 cost += op_cost + 1;
3474 return false;
3475
3476 default:
3477 return true;
3478 }
3479 }
3480
3481 bool
3482 expression_expensive_p (tree expr)
3483 {
3484 hash_map<tree, uint64_t> cache;
3485 uint64_t expanded_size = 0;
3486 return (expression_expensive_p (expr, cache, expanded_size)
3487 || expanded_size > cache.elements ());
3488 }
3489
3490 /* Match.pd function to match bitwise inductive expression.
3491 .i.e.
3492 _2 = 1 << _1;
3493 _3 = ~_2;
3494 tmp_9 = _3 & tmp_12; */
3495 extern bool gimple_bitwise_induction_p (tree, tree *, tree (*)(tree));
3496
3497 /* Return the inductive expression of bitwise operation if possible,
3498 otherwise returns DEF. */
3499 static tree
3500 analyze_and_compute_bitwise_induction_effect (class loop* loop,
3501 tree phidef,
3502 unsigned HOST_WIDE_INT niter)
3503 {
3504 tree match_op[3],inv, bitwise_scev;
3505 tree type = TREE_TYPE (phidef);
3506 gphi* header_phi = NULL;
3507
3508 /* Match things like op2(MATCH_OP[2]), op1(MATCH_OP[1]), phidef(PHIDEF)
3509
3510 op2 = PHI <phidef, inv>
3511 _1 = (int) bit_17;
3512 _3 = 1 << _1;
3513 op1 = ~_3;
3514 phidef = op1 & op2; */
3515 if (!gimple_bitwise_induction_p (phidef, &match_op[0], NULL)
3516 || TREE_CODE (match_op[2]) != SSA_NAME
3517 || !(header_phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (match_op[2])))
3518 || gimple_phi_num_args (header_phi) != 2)
3519 return NULL_TREE;
3520
3521 if (PHI_ARG_DEF_FROM_EDGE (header_phi, loop_latch_edge (loop)) != phidef)
3522 return NULL_TREE;
3523
3524 bitwise_scev = analyze_scalar_evolution (loop, match_op[1]);
3525 bitwise_scev = instantiate_parameters (loop, bitwise_scev);
3526
3527 /* Make sure bits is in range of type precision. */
3528 if (TREE_CODE (bitwise_scev) != POLYNOMIAL_CHREC
3529 || !INTEGRAL_TYPE_P (TREE_TYPE (bitwise_scev))
3530 || !tree_fits_uhwi_p (CHREC_LEFT (bitwise_scev))
3531 || tree_to_uhwi (CHREC_LEFT (bitwise_scev)) >= TYPE_PRECISION (type)
3532 || !tree_fits_shwi_p (CHREC_RIGHT (bitwise_scev)))
3533 return NULL_TREE;
3534
3535 enum bit_op_kind
3536 {
3537 INDUCTION_BIT_CLEAR,
3538 INDUCTION_BIT_IOR,
3539 INDUCTION_BIT_XOR,
3540 INDUCTION_BIT_RESET,
3541 INDUCTION_ZERO,
3542 INDUCTION_ALL
3543 };
3544
3545 enum bit_op_kind induction_kind;
3546 enum tree_code code1
3547 = gimple_assign_rhs_code (SSA_NAME_DEF_STMT (phidef));
3548 enum tree_code code2
3549 = gimple_assign_rhs_code (SSA_NAME_DEF_STMT (match_op[0]));
3550
3551 /* BIT_CLEAR: A &= ~(1 << bit)
3552 BIT_RESET: A ^= (1 << bit).
3553 BIT_IOR: A |= (1 << bit)
3554 BIT_ZERO: A &= (1 << bit)
3555 BIT_ALL: A |= ~(1 << bit)
3556 BIT_XOR: A ^= ~(1 << bit).
3557 bit is induction variable. */
3558 switch (code1)
3559 {
3560 case BIT_AND_EXPR:
3561 induction_kind = code2 == BIT_NOT_EXPR
3562 ? INDUCTION_BIT_CLEAR
3563 : INDUCTION_ZERO;
3564 break;
3565 case BIT_IOR_EXPR:
3566 induction_kind = code2 == BIT_NOT_EXPR
3567 ? INDUCTION_ALL
3568 : INDUCTION_BIT_IOR;
3569 break;
3570 case BIT_XOR_EXPR:
3571 induction_kind = code2 == BIT_NOT_EXPR
3572 ? INDUCTION_BIT_XOR
3573 : INDUCTION_BIT_RESET;
3574 break;
3575 /* A ^ ~(1 << bit) is equal to ~(A ^ (1 << bit)). */
3576 case BIT_NOT_EXPR:
3577 gcc_assert (code2 == BIT_XOR_EXPR);
3578 induction_kind = INDUCTION_BIT_XOR;
3579 break;
3580 default:
3581 gcc_unreachable ();
3582 }
3583
3584 if (induction_kind == INDUCTION_ZERO)
3585 return build_zero_cst (type);
3586 if (induction_kind == INDUCTION_ALL)
3587 return build_all_ones_cst (type);
3588
3589 wide_int bits = wi::zero (TYPE_PRECISION (type));
3590 HOST_WIDE_INT bit_start = tree_to_shwi (CHREC_LEFT (bitwise_scev));
3591 HOST_WIDE_INT step = tree_to_shwi (CHREC_RIGHT (bitwise_scev));
3592 HOST_WIDE_INT bit_final = bit_start + step * niter;
3593
3594 /* bit_start, bit_final in range of [0,TYPE_PRECISION)
3595 implies all bits are set in range. */
3596 if (bit_final >= TYPE_PRECISION (type)
3597 || bit_final < 0)
3598 return NULL_TREE;
3599
3600 /* Loop tripcount should be niter + 1. */
3601 for (unsigned i = 0; i != niter + 1; i++)
3602 {
3603 bits = wi::set_bit (bits, bit_start);
3604 bit_start += step;
3605 }
3606
3607 bool inverted = false;
3608 switch (induction_kind)
3609 {
3610 case INDUCTION_BIT_CLEAR:
3611 code1 = BIT_AND_EXPR;
3612 inverted = true;
3613 break;
3614 case INDUCTION_BIT_IOR:
3615 code1 = BIT_IOR_EXPR;
3616 break;
3617 case INDUCTION_BIT_RESET:
3618 code1 = BIT_XOR_EXPR;
3619 break;
3620 /* A ^= ~(1 << bit) is special, when loop tripcount is even,
3621 it's equal to A ^= bits, else A ^= ~bits. */
3622 case INDUCTION_BIT_XOR:
3623 code1 = BIT_XOR_EXPR;
3624 if (niter % 2 == 0)
3625 inverted = true;
3626 break;
3627 default:
3628 gcc_unreachable ();
3629 }
3630
3631 if (inverted)
3632 bits = wi::bit_not (bits);
3633
3634 inv = PHI_ARG_DEF_FROM_EDGE (header_phi, loop_preheader_edge (loop));
3635 return fold_build2 (code1, type, inv, wide_int_to_tree (type, bits));
3636 }
3637
3638 /* Do final value replacement for LOOP, return true if we did anything. */
3639
3640 bool
3641 final_value_replacement_loop (class loop *loop)
3642 {
3643 /* If we do not know exact number of iterations of the loop, we cannot
3644 replace the final value. */
3645 edge exit = single_exit (loop);
3646 if (!exit)
3647 return false;
3648
3649 tree niter = number_of_latch_executions (loop);
3650 if (niter == chrec_dont_know)
3651 return false;
3652
3653 /* Ensure that it is possible to insert new statements somewhere. */
3654 if (!single_pred_p (exit->dest))
3655 split_loop_exit_edge (exit);
3656
3657 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3658 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3659
3660 class loop *ex_loop
3661 = superloop_at_depth (loop,
3662 loop_depth (exit->dest->loop_father) + 1);
3663
3664 bool any = false;
3665 gphi_iterator psi;
3666 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3667 {
3668 gphi *phi = psi.phi ();
3669 tree rslt = PHI_RESULT (phi);
3670 tree phidef = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3671 tree def = phidef;
3672 if (virtual_operand_p (def))
3673 {
3674 gsi_next (&psi);
3675 continue;
3676 }
3677
3678 if (!POINTER_TYPE_P (TREE_TYPE (def))
3679 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3680 {
3681 gsi_next (&psi);
3682 continue;
3683 }
3684
3685 bool folded_casts;
3686 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3687 &folded_casts);
3688 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3689
3690 /* Handle bitwise induction expression.
3691
3692 .i.e.
3693 for (int i = 0; i != 64; i+=3)
3694 res &= ~(1UL << i);
3695
3696 RES can't be analyzed out by SCEV because it is not polynomially
3697 expressible, but in fact final value of RES can be replaced by
3698 RES & CONSTANT where CONSTANT all ones with bit {0,3,6,9,... ,63}
3699 being cleared, similar for BIT_IOR_EXPR/BIT_XOR_EXPR. */
3700 unsigned HOST_WIDE_INT niter_num;
3701 tree bit_def;
3702 if (tree_fits_uhwi_p (niter)
3703 && (niter_num = tree_to_uhwi (niter)) != 0
3704 && niter_num < TYPE_PRECISION (TREE_TYPE (phidef))
3705 && (bit_def
3706 = analyze_and_compute_bitwise_induction_effect (loop,
3707 phidef,
3708 niter_num)))
3709 def = bit_def;
3710
3711 if (!tree_does_not_contain_chrecs (def)
3712 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3713 /* Moving the computation from the loop may prolong life range
3714 of some ssa names, which may cause problems if they appear
3715 on abnormal edges. */
3716 || contains_abnormal_ssa_name_p (def)
3717 /* Do not emit expensive expressions. The rationale is that
3718 when someone writes a code like
3719
3720 while (n > 45) n -= 45;
3721
3722 he probably knows that n is not large, and does not want it
3723 to be turned into n %= 45. */
3724 || expression_expensive_p (def))
3725 {
3726 if (dump_file && (dump_flags & TDF_DETAILS))
3727 {
3728 fprintf (dump_file, "not replacing:\n ");
3729 print_gimple_stmt (dump_file, phi, 0);
3730 fprintf (dump_file, "\n");
3731 }
3732 gsi_next (&psi);
3733 continue;
3734 }
3735
3736 /* Eliminate the PHI node and replace it by a computation outside
3737 the loop. */
3738 if (dump_file)
3739 {
3740 fprintf (dump_file, "\nfinal value replacement:\n ");
3741 print_gimple_stmt (dump_file, phi, 0);
3742 fprintf (dump_file, " with expr: ");
3743 print_generic_expr (dump_file, def);
3744 }
3745 any = true;
3746 def = unshare_expr (def);
3747 remove_phi_node (&psi, false);
3748
3749 /* If def's type has undefined overflow and there were folded
3750 casts, rewrite all stmts added for def into arithmetics
3751 with defined overflow behavior. */
3752 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3753 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3754 {
3755 gimple_seq stmts;
3756 gimple_stmt_iterator gsi2;
3757 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3758 gsi2 = gsi_start (stmts);
3759 while (!gsi_end_p (gsi2))
3760 {
3761 gimple *stmt = gsi_stmt (gsi2);
3762 gimple_stmt_iterator gsi3 = gsi2;
3763 gsi_next (&gsi2);
3764 gsi_remove (&gsi3, false);
3765 if (is_gimple_assign (stmt)
3766 && arith_code_with_undefined_signed_overflow
3767 (gimple_assign_rhs_code (stmt)))
3768 gsi_insert_seq_before (&gsi,
3769 rewrite_to_defined_overflow (stmt),
3770 GSI_SAME_STMT);
3771 else
3772 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3773 }
3774 }
3775 else
3776 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3777 true, GSI_SAME_STMT);
3778
3779 gassign *ass = gimple_build_assign (rslt, def);
3780 gimple_set_location (ass,
3781 gimple_phi_arg_location (phi, exit->dest_idx));
3782 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3783 if (dump_file)
3784 {
3785 fprintf (dump_file, "\n final stmt:\n ");
3786 print_gimple_stmt (dump_file, ass, 0);
3787 fprintf (dump_file, "\n");
3788 }
3789 }
3790
3791 return any;
3792 }
3793
3794 #include "gt-tree-scalar-evolution.h"