]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-address.c
tree-ssa-address.c (tree_mem_ref_addr): Convert offset to sizetype.
[thirdparty/gcc.git] / gcc / tree-ssa-address.c
1 /* Memory address lowering and addressing mode selection.
2 Copyright (C) 2004, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Utility functions for manipulation with TARGET_MEM_REFs -- tree expressions
22 that directly map to addressing modes of the target. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "timevar.h"
37 #include "flags.h"
38 #include "tree-inline.h"
39 #include "tree-affine.h"
40
41 /* FIXME: We compute address costs using RTL. */
42 #include "insn-config.h"
43 #include "rtl.h"
44 #include "recog.h"
45 #include "expr.h"
46 #include "ggc.h"
47 #include "target.h"
48
49 /* TODO -- handling of symbols (according to Richard Hendersons
50 comments, http://gcc.gnu.org/ml/gcc-patches/2005-04/msg00949.html):
51
52 There are at least 5 different kinds of symbols that we can run up against:
53
54 (1) binds_local_p, small data area.
55 (2) binds_local_p, eg local statics
56 (3) !binds_local_p, eg global variables
57 (4) thread local, local_exec
58 (5) thread local, !local_exec
59
60 Now, (1) won't appear often in an array context, but it certainly can.
61 All you have to do is set -GN high enough, or explicitly mark any
62 random object __attribute__((section (".sdata"))).
63
64 All of these affect whether or not a symbol is in fact a valid address.
65 The only one tested here is (3). And that result may very well
66 be incorrect for (4) or (5).
67
68 An incorrect result here does not cause incorrect results out the
69 back end, because the expander in expr.c validizes the address. However
70 it would be nice to improve the handling here in order to produce more
71 precise results. */
72
73 /* A "template" for memory address, used to determine whether the address is
74 valid for mode. */
75
76 typedef struct GTY (()) mem_addr_template {
77 rtx ref; /* The template. */
78 rtx * GTY ((skip)) step_p; /* The point in template where the step should be
79 filled in. */
80 rtx * GTY ((skip)) off_p; /* The point in template where the offset should
81 be filled in. */
82 } mem_addr_template;
83
84 DEF_VEC_O (mem_addr_template);
85 DEF_VEC_ALLOC_O (mem_addr_template, gc);
86
87 /* The templates. Each of the low five bits of the index corresponds to one
88 component of TARGET_MEM_REF being present, while the high bits identify
89 the address space. See TEMPL_IDX. */
90
91 static GTY(()) VEC (mem_addr_template, gc) *mem_addr_template_list;
92
93 #define TEMPL_IDX(AS, SYMBOL, BASE, INDEX, STEP, OFFSET) \
94 (((int) (AS) << 5) \
95 | ((SYMBOL != 0) << 4) \
96 | ((BASE != 0) << 3) \
97 | ((INDEX != 0) << 2) \
98 | ((STEP != 0) << 1) \
99 | (OFFSET != 0))
100
101 /* Stores address for memory reference with parameters SYMBOL, BASE, INDEX,
102 STEP and OFFSET to *ADDR using address mode ADDRESS_MODE. Stores pointers
103 to where step is placed to *STEP_P and offset to *OFFSET_P. */
104
105 static void
106 gen_addr_rtx (enum machine_mode address_mode,
107 rtx symbol, rtx base, rtx index, rtx step, rtx offset,
108 rtx *addr, rtx **step_p, rtx **offset_p)
109 {
110 rtx act_elem;
111
112 *addr = NULL_RTX;
113 if (step_p)
114 *step_p = NULL;
115 if (offset_p)
116 *offset_p = NULL;
117
118 if (index)
119 {
120 act_elem = index;
121 if (step)
122 {
123 act_elem = gen_rtx_MULT (address_mode, act_elem, step);
124
125 if (step_p)
126 *step_p = &XEXP (act_elem, 1);
127 }
128
129 *addr = act_elem;
130 }
131
132 if (base)
133 {
134 if (*addr)
135 *addr = simplify_gen_binary (PLUS, address_mode, base, *addr);
136 else
137 *addr = base;
138 }
139
140 if (symbol)
141 {
142 act_elem = symbol;
143 if (offset)
144 {
145 act_elem = gen_rtx_PLUS (address_mode, act_elem, offset);
146
147 if (offset_p)
148 *offset_p = &XEXP (act_elem, 1);
149
150 if (GET_CODE (symbol) == SYMBOL_REF
151 || GET_CODE (symbol) == LABEL_REF
152 || GET_CODE (symbol) == CONST)
153 act_elem = gen_rtx_CONST (address_mode, act_elem);
154 }
155
156 if (*addr)
157 *addr = gen_rtx_PLUS (address_mode, *addr, act_elem);
158 else
159 *addr = act_elem;
160 }
161 else if (offset)
162 {
163 if (*addr)
164 {
165 *addr = gen_rtx_PLUS (address_mode, *addr, offset);
166 if (offset_p)
167 *offset_p = &XEXP (*addr, 1);
168 }
169 else
170 {
171 *addr = offset;
172 if (offset_p)
173 *offset_p = addr;
174 }
175 }
176
177 if (!*addr)
178 *addr = const0_rtx;
179 }
180
181 /* Returns address for TARGET_MEM_REF with parameters given by ADDR
182 in address space AS.
183 If REALLY_EXPAND is false, just make fake registers instead
184 of really expanding the operands, and perform the expansion in-place
185 by using one of the "templates". */
186
187 rtx
188 addr_for_mem_ref (struct mem_address *addr, addr_space_t as,
189 bool really_expand)
190 {
191 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
192 rtx address, sym, bse, idx, st, off;
193 struct mem_addr_template *templ;
194
195 if (addr->step && !integer_onep (addr->step))
196 st = immed_double_int_const (tree_to_double_int (addr->step), address_mode);
197 else
198 st = NULL_RTX;
199
200 if (addr->offset && !integer_zerop (addr->offset))
201 off = immed_double_int_const
202 (double_int_sext (tree_to_double_int (addr->offset),
203 TYPE_PRECISION (TREE_TYPE (addr->offset))),
204 address_mode);
205 else
206 off = NULL_RTX;
207
208 if (!really_expand)
209 {
210 unsigned int templ_index
211 = TEMPL_IDX (as, addr->symbol, addr->base, addr->index, st, off);
212
213 if (templ_index
214 >= VEC_length (mem_addr_template, mem_addr_template_list))
215 VEC_safe_grow_cleared (mem_addr_template, gc, mem_addr_template_list,
216 templ_index + 1);
217
218 /* Reuse the templates for addresses, so that we do not waste memory. */
219 templ = VEC_index (mem_addr_template, mem_addr_template_list, templ_index);
220 if (!templ->ref)
221 {
222 sym = (addr->symbol ?
223 gen_rtx_SYMBOL_REF (address_mode, ggc_strdup ("test_symbol"))
224 : NULL_RTX);
225 bse = (addr->base ?
226 gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1)
227 : NULL_RTX);
228 idx = (addr->index ?
229 gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2)
230 : NULL_RTX);
231
232 gen_addr_rtx (address_mode, sym, bse, idx,
233 st? const0_rtx : NULL_RTX,
234 off? const0_rtx : NULL_RTX,
235 &templ->ref,
236 &templ->step_p,
237 &templ->off_p);
238 }
239
240 if (st)
241 *templ->step_p = st;
242 if (off)
243 *templ->off_p = off;
244
245 return templ->ref;
246 }
247
248 /* Otherwise really expand the expressions. */
249 sym = (addr->symbol
250 ? expand_expr (build_addr (addr->symbol, current_function_decl),
251 NULL_RTX, address_mode, EXPAND_NORMAL)
252 : NULL_RTX);
253 bse = (addr->base
254 ? expand_expr (addr->base, NULL_RTX, address_mode, EXPAND_NORMAL)
255 : NULL_RTX);
256 idx = (addr->index
257 ? expand_expr (addr->index, NULL_RTX, address_mode, EXPAND_NORMAL)
258 : NULL_RTX);
259
260 gen_addr_rtx (address_mode, sym, bse, idx, st, off, &address, NULL, NULL);
261 return address;
262 }
263
264 /* Returns address of MEM_REF in TYPE. */
265
266 tree
267 tree_mem_ref_addr (tree type, tree mem_ref)
268 {
269 tree addr;
270 tree act_elem;
271 tree step = TMR_STEP (mem_ref), offset = TMR_OFFSET (mem_ref);
272 tree sym = TMR_SYMBOL (mem_ref), base = TMR_BASE (mem_ref);
273 tree addr_base = NULL_TREE, addr_off = NULL_TREE;
274
275 if (sym)
276 addr_base = fold_convert (type, build_addr (sym, current_function_decl));
277 else if (base && POINTER_TYPE_P (TREE_TYPE (base)))
278 {
279 addr_base = fold_convert (type, base);
280 base = NULL_TREE;
281 }
282
283 act_elem = TMR_INDEX (mem_ref);
284 if (act_elem)
285 {
286 if (step)
287 act_elem = fold_build2 (MULT_EXPR, sizetype, act_elem, step);
288 addr_off = act_elem;
289 }
290
291 act_elem = base;
292 if (act_elem)
293 {
294 if (addr_off)
295 addr_off = fold_build2 (PLUS_EXPR, sizetype, addr_off, act_elem);
296 else
297 addr_off = act_elem;
298 }
299
300 if (offset && !integer_zerop (offset))
301 {
302 offset = fold_convert (sizetype, offset);
303 if (addr_off)
304 addr_off = fold_build2 (PLUS_EXPR, sizetype, addr_off, offset);
305 else
306 addr_off = offset;
307 }
308
309 if (addr_off)
310 {
311 if (addr_base)
312 addr = fold_build2 (POINTER_PLUS_EXPR, type, addr_base, addr_off);
313 else
314 addr = fold_convert (type, addr_off);
315 }
316 else if (addr_base)
317 addr = addr_base;
318 else
319 addr = build_int_cst (type, 0);
320
321 return addr;
322 }
323
324 /* Returns true if a memory reference in MODE and with parameters given by
325 ADDR is valid on the current target. */
326
327 static bool
328 valid_mem_ref_p (enum machine_mode mode, addr_space_t as,
329 struct mem_address *addr)
330 {
331 rtx address;
332
333 address = addr_for_mem_ref (addr, as, false);
334 if (!address)
335 return false;
336
337 return memory_address_addr_space_p (mode, address, as);
338 }
339
340 /* Checks whether a TARGET_MEM_REF with type TYPE and parameters given by ADDR
341 is valid on the current target and if so, creates and returns the
342 TARGET_MEM_REF. */
343
344 static tree
345 create_mem_ref_raw (tree type, tree alias_ptr_type, struct mem_address *addr)
346 {
347 if (!valid_mem_ref_p (TYPE_MODE (type), TYPE_ADDR_SPACE (type), addr))
348 return NULL_TREE;
349
350 if (addr->step && integer_onep (addr->step))
351 addr->step = NULL_TREE;
352
353 if (addr->offset)
354 addr->offset = fold_convert (alias_ptr_type, addr->offset);
355 else
356 addr->offset = build_int_cst (alias_ptr_type, 0);
357
358 /* If possible use a plain MEM_REF instead of a TARGET_MEM_REF. */
359 if (alias_ptr_type
360 && !addr->index
361 && !addr->step
362 && (!addr->base || POINTER_TYPE_P (TREE_TYPE (addr->base))))
363 {
364 tree base;
365 gcc_assert (!addr->symbol ^ !addr->base);
366 if (addr->symbol)
367 base = build_fold_addr_expr (addr->symbol);
368 else
369 base = addr->base;
370 return fold_build2 (MEM_REF, type, base, addr->offset);
371 }
372
373 return build5 (TARGET_MEM_REF, type,
374 addr->symbol, addr->base, addr->index,
375 addr->step, addr->offset);
376 }
377
378 /* Returns true if OBJ is an object whose address is a link time constant. */
379
380 static bool
381 fixed_address_object_p (tree obj)
382 {
383 return (TREE_CODE (obj) == VAR_DECL
384 && (TREE_STATIC (obj)
385 || DECL_EXTERNAL (obj))
386 && ! DECL_DLLIMPORT_P (obj));
387 }
388
389 /* If ADDR contains an address of object that is a link time constant,
390 move it to PARTS->symbol. */
391
392 static void
393 move_fixed_address_to_symbol (struct mem_address *parts, aff_tree *addr)
394 {
395 unsigned i;
396 tree val = NULL_TREE;
397
398 for (i = 0; i < addr->n; i++)
399 {
400 if (!double_int_one_p (addr->elts[i].coef))
401 continue;
402
403 val = addr->elts[i].val;
404 if (TREE_CODE (val) == ADDR_EXPR
405 && fixed_address_object_p (TREE_OPERAND (val, 0)))
406 break;
407 }
408
409 if (i == addr->n)
410 return;
411
412 parts->symbol = TREE_OPERAND (val, 0);
413 aff_combination_remove_elt (addr, i);
414 }
415
416 /* If ADDR contains an instance of BASE_HINT, move it to PARTS->base. */
417
418 static void
419 move_hint_to_base (tree type, struct mem_address *parts, tree base_hint,
420 aff_tree *addr)
421 {
422 unsigned i;
423 tree val = NULL_TREE;
424 int qual;
425
426 for (i = 0; i < addr->n; i++)
427 {
428 if (!double_int_one_p (addr->elts[i].coef))
429 continue;
430
431 val = addr->elts[i].val;
432 if (operand_equal_p (val, base_hint, 0))
433 break;
434 }
435
436 if (i == addr->n)
437 return;
438
439 /* Cast value to appropriate pointer type. We cannot use a pointer
440 to TYPE directly, as the back-end will assume registers of pointer
441 type are aligned, and just the base itself may not actually be.
442 We use void pointer to the type's address space instead. */
443 qual = ENCODE_QUAL_ADDR_SPACE (TYPE_ADDR_SPACE (type));
444 type = build_qualified_type (void_type_node, qual);
445 parts->base = fold_convert (build_pointer_type (type), val);
446 aff_combination_remove_elt (addr, i);
447 }
448
449 /* If ADDR contains an address of a dereferenced pointer, move it to
450 PARTS->base. */
451
452 static void
453 move_pointer_to_base (struct mem_address *parts, aff_tree *addr)
454 {
455 unsigned i;
456 tree val = NULL_TREE;
457
458 for (i = 0; i < addr->n; i++)
459 {
460 if (!double_int_one_p (addr->elts[i].coef))
461 continue;
462
463 val = addr->elts[i].val;
464 if (POINTER_TYPE_P (TREE_TYPE (val)))
465 break;
466 }
467
468 if (i == addr->n)
469 return;
470
471 parts->base = val;
472 aff_combination_remove_elt (addr, i);
473 }
474
475 /* Moves the loop variant part V in linear address ADDR to be the index
476 of PARTS. */
477
478 static void
479 move_variant_to_index (struct mem_address *parts, aff_tree *addr, tree v)
480 {
481 unsigned i;
482 tree val = NULL_TREE;
483
484 gcc_assert (!parts->index);
485 for (i = 0; i < addr->n; i++)
486 {
487 val = addr->elts[i].val;
488 if (operand_equal_p (val, v, 0))
489 break;
490 }
491
492 if (i == addr->n)
493 return;
494
495 parts->index = fold_convert (sizetype, val);
496 parts->step = double_int_to_tree (sizetype, addr->elts[i].coef);
497 aff_combination_remove_elt (addr, i);
498 }
499
500 /* Adds ELT to PARTS. */
501
502 static void
503 add_to_parts (struct mem_address *parts, tree elt)
504 {
505 tree type;
506
507 if (!parts->index)
508 {
509 parts->index = fold_convert (sizetype, elt);
510 return;
511 }
512
513 if (!parts->base)
514 {
515 parts->base = elt;
516 return;
517 }
518
519 /* Add ELT to base. */
520 type = TREE_TYPE (parts->base);
521 if (POINTER_TYPE_P (type))
522 parts->base = fold_build2 (POINTER_PLUS_EXPR, type,
523 parts->base,
524 fold_convert (sizetype, elt));
525 else
526 parts->base = fold_build2 (PLUS_EXPR, type,
527 parts->base, elt);
528 }
529
530 /* Finds the most expensive multiplication in ADDR that can be
531 expressed in an addressing mode and move the corresponding
532 element(s) to PARTS. */
533
534 static void
535 most_expensive_mult_to_index (tree type, struct mem_address *parts,
536 aff_tree *addr, bool speed)
537 {
538 addr_space_t as = TYPE_ADDR_SPACE (type);
539 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
540 HOST_WIDE_INT coef;
541 double_int best_mult, amult, amult_neg;
542 unsigned best_mult_cost = 0, acost;
543 tree mult_elt = NULL_TREE, elt;
544 unsigned i, j;
545 enum tree_code op_code;
546
547 best_mult = double_int_zero;
548 for (i = 0; i < addr->n; i++)
549 {
550 if (!double_int_fits_in_shwi_p (addr->elts[i].coef))
551 continue;
552
553 coef = double_int_to_shwi (addr->elts[i].coef);
554 if (coef == 1
555 || !multiplier_allowed_in_address_p (coef, TYPE_MODE (type), as))
556 continue;
557
558 acost = multiply_by_cost (coef, address_mode, speed);
559
560 if (acost > best_mult_cost)
561 {
562 best_mult_cost = acost;
563 best_mult = addr->elts[i].coef;
564 }
565 }
566
567 if (!best_mult_cost)
568 return;
569
570 /* Collect elements multiplied by best_mult. */
571 for (i = j = 0; i < addr->n; i++)
572 {
573 amult = addr->elts[i].coef;
574 amult_neg = double_int_ext_for_comb (double_int_neg (amult), addr);
575
576 if (double_int_equal_p (amult, best_mult))
577 op_code = PLUS_EXPR;
578 else if (double_int_equal_p (amult_neg, best_mult))
579 op_code = MINUS_EXPR;
580 else
581 {
582 addr->elts[j] = addr->elts[i];
583 j++;
584 continue;
585 }
586
587 elt = fold_convert (sizetype, addr->elts[i].val);
588 if (mult_elt)
589 mult_elt = fold_build2 (op_code, sizetype, mult_elt, elt);
590 else if (op_code == PLUS_EXPR)
591 mult_elt = elt;
592 else
593 mult_elt = fold_build1 (NEGATE_EXPR, sizetype, elt);
594 }
595 addr->n = j;
596
597 parts->index = mult_elt;
598 parts->step = double_int_to_tree (sizetype, best_mult);
599 }
600
601 /* Splits address ADDR for a memory access of type TYPE into PARTS.
602 If BASE_HINT is non-NULL, it specifies an SSA name to be used
603 preferentially as base of the reference, and IV_CAND is the selected
604 iv candidate used in ADDR.
605
606 TODO -- be more clever about the distribution of the elements of ADDR
607 to PARTS. Some architectures do not support anything but single
608 register in address, possibly with a small integer offset; while
609 create_mem_ref will simplify the address to an acceptable shape
610 later, it would be more efficient to know that asking for complicated
611 addressing modes is useless. */
612
613 static void
614 addr_to_parts (tree type, aff_tree *addr, tree iv_cand,
615 tree base_hint, struct mem_address *parts,
616 bool speed)
617 {
618 tree part;
619 unsigned i;
620
621 parts->symbol = NULL_TREE;
622 parts->base = NULL_TREE;
623 parts->index = NULL_TREE;
624 parts->step = NULL_TREE;
625
626 if (!double_int_zero_p (addr->offset))
627 parts->offset = double_int_to_tree (sizetype, addr->offset);
628 else
629 parts->offset = NULL_TREE;
630
631 /* Try to find a symbol. */
632 move_fixed_address_to_symbol (parts, addr);
633
634 /* No need to do address parts reassociation if the number of parts
635 is <= 2 -- in that case, no loop invariant code motion can be
636 exposed. */
637
638 if (!base_hint && (addr->n > 2))
639 move_variant_to_index (parts, addr, iv_cand);
640
641 /* First move the most expensive feasible multiplication
642 to index. */
643 if (!parts->index)
644 most_expensive_mult_to_index (type, parts, addr, speed);
645
646 /* Try to find a base of the reference. Since at the moment
647 there is no reliable way how to distinguish between pointer and its
648 offset, this is just a guess. */
649 if (!parts->symbol && base_hint)
650 move_hint_to_base (type, parts, base_hint, addr);
651 if (!parts->symbol && !parts->base)
652 move_pointer_to_base (parts, addr);
653
654 /* Then try to process the remaining elements. */
655 for (i = 0; i < addr->n; i++)
656 {
657 part = fold_convert (sizetype, addr->elts[i].val);
658 if (!double_int_one_p (addr->elts[i].coef))
659 part = fold_build2 (MULT_EXPR, sizetype, part,
660 double_int_to_tree (sizetype, addr->elts[i].coef));
661 add_to_parts (parts, part);
662 }
663 if (addr->rest)
664 add_to_parts (parts, fold_convert (sizetype, addr->rest));
665 }
666
667 /* Force the PARTS to register. */
668
669 static void
670 gimplify_mem_ref_parts (gimple_stmt_iterator *gsi, struct mem_address *parts)
671 {
672 if (parts->base)
673 parts->base = force_gimple_operand_gsi (gsi, parts->base,
674 true, NULL_TREE,
675 true, GSI_SAME_STMT);
676 if (parts->index)
677 parts->index = force_gimple_operand_gsi (gsi, parts->index,
678 true, NULL_TREE,
679 true, GSI_SAME_STMT);
680 }
681
682 /* Creates and returns a TARGET_MEM_REF for address ADDR. If necessary
683 computations are emitted in front of GSI. TYPE is the mode
684 of created memory reference. IV_CAND is the selected iv candidate in ADDR,
685 and BASE_HINT is non NULL if IV_CAND comes from a base address
686 object. */
687
688 tree
689 create_mem_ref (gimple_stmt_iterator *gsi, tree type, aff_tree *addr,
690 tree alias_ptr_type, tree iv_cand, tree base_hint, bool speed)
691 {
692 tree mem_ref, tmp;
693 tree atype;
694 struct mem_address parts;
695
696 addr_to_parts (type, addr, iv_cand, base_hint, &parts, speed);
697 gimplify_mem_ref_parts (gsi, &parts);
698 mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts);
699 if (mem_ref)
700 return mem_ref;
701
702 /* The expression is too complicated. Try making it simpler. */
703
704 if (parts.step && !integer_onep (parts.step))
705 {
706 /* Move the multiplication to index. */
707 gcc_assert (parts.index);
708 parts.index = force_gimple_operand_gsi (gsi,
709 fold_build2 (MULT_EXPR, sizetype,
710 parts.index, parts.step),
711 true, NULL_TREE, true, GSI_SAME_STMT);
712 parts.step = NULL_TREE;
713
714 mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts);
715 if (mem_ref)
716 return mem_ref;
717 }
718
719 if (parts.symbol)
720 {
721 tmp = build_addr (parts.symbol, current_function_decl);
722 gcc_assert (is_gimple_val (tmp));
723
724 /* Add the symbol to base, eventually forcing it to register. */
725 if (parts.base)
726 {
727 gcc_assert (useless_type_conversion_p
728 (sizetype, TREE_TYPE (parts.base)));
729
730 if (parts.index)
731 {
732 atype = TREE_TYPE (tmp);
733 parts.base = force_gimple_operand_gsi (gsi,
734 fold_build2 (POINTER_PLUS_EXPR, atype,
735 tmp,
736 fold_convert (sizetype, parts.base)),
737 true, NULL_TREE, true, GSI_SAME_STMT);
738 }
739 else
740 {
741 parts.index = parts.base;
742 parts.base = tmp;
743 }
744 }
745 else
746 parts.base = tmp;
747 parts.symbol = NULL_TREE;
748
749 mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts);
750 if (mem_ref)
751 return mem_ref;
752 }
753
754 if (parts.index)
755 {
756 /* Add index to base. */
757 if (parts.base)
758 {
759 atype = TREE_TYPE (parts.base);
760 parts.base = force_gimple_operand_gsi (gsi,
761 fold_build2 (POINTER_PLUS_EXPR, atype,
762 parts.base,
763 parts.index),
764 true, NULL_TREE, true, GSI_SAME_STMT);
765 }
766 else
767 parts.base = parts.index;
768 parts.index = NULL_TREE;
769
770 mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts);
771 if (mem_ref)
772 return mem_ref;
773 }
774
775 if (parts.offset && !integer_zerop (parts.offset))
776 {
777 /* Try adding offset to base. */
778 if (parts.base)
779 {
780 atype = TREE_TYPE (parts.base);
781 parts.base = force_gimple_operand_gsi (gsi,
782 fold_build2 (POINTER_PLUS_EXPR, atype,
783 parts.base,
784 fold_convert (sizetype, parts.offset)),
785 true, NULL_TREE, true, GSI_SAME_STMT);
786 }
787 else
788 parts.base = parts.offset;
789
790 parts.offset = NULL_TREE;
791
792 mem_ref = create_mem_ref_raw (type, alias_ptr_type, &parts);
793 if (mem_ref)
794 return mem_ref;
795 }
796
797 /* Verify that the address is in the simplest possible shape
798 (only a register). If we cannot create such a memory reference,
799 something is really wrong. */
800 gcc_assert (parts.symbol == NULL_TREE);
801 gcc_assert (parts.index == NULL_TREE);
802 gcc_assert (!parts.step || integer_onep (parts.step));
803 gcc_assert (!parts.offset || integer_zerop (parts.offset));
804 gcc_unreachable ();
805 }
806
807 /* Copies components of the address from OP to ADDR. */
808
809 void
810 get_address_description (tree op, struct mem_address *addr)
811 {
812 addr->symbol = TMR_SYMBOL (op);
813 addr->base = TMR_BASE (op);
814 addr->index = TMR_INDEX (op);
815 addr->step = TMR_STEP (op);
816 addr->offset = TMR_OFFSET (op);
817 }
818
819 /* Copies the additional information attached to target_mem_ref FROM to TO. */
820
821 void
822 copy_mem_ref_info (tree to, tree from)
823 {
824 /* And the info about the original reference. */
825 TREE_SIDE_EFFECTS (to) = TREE_SIDE_EFFECTS (from);
826 TREE_THIS_VOLATILE (to) = TREE_THIS_VOLATILE (from);
827 }
828
829 /* Move constants in target_mem_ref REF to offset. Returns the new target
830 mem ref if anything changes, NULL_TREE otherwise. */
831
832 tree
833 maybe_fold_tmr (tree ref)
834 {
835 struct mem_address addr;
836 bool changed = false;
837 tree ret, off;
838
839 get_address_description (ref, &addr);
840
841 if (addr.base && TREE_CODE (addr.base) == INTEGER_CST)
842 {
843 addr.offset = fold_binary_to_constant (PLUS_EXPR,
844 TREE_TYPE (addr.offset),
845 addr.offset, addr.base);
846 addr.base = NULL_TREE;
847 changed = true;
848 }
849
850 if (addr.index && TREE_CODE (addr.index) == INTEGER_CST)
851 {
852 off = addr.index;
853 if (addr.step)
854 {
855 off = fold_binary_to_constant (MULT_EXPR, sizetype,
856 off, addr.step);
857 addr.step = NULL_TREE;
858 }
859
860 addr.offset = fold_binary_to_constant (PLUS_EXPR,
861 TREE_TYPE (addr.offset),
862 addr.offset, off);
863 addr.index = NULL_TREE;
864 changed = true;
865 }
866
867 if (!changed)
868 return NULL_TREE;
869
870 ret = create_mem_ref_raw (TREE_TYPE (ref), TREE_TYPE (addr.offset), &addr);
871 if (!ret)
872 return NULL_TREE;
873
874 copy_mem_ref_info (ret, ref);
875 return ret;
876 }
877
878 /* Dump PARTS to FILE. */
879
880 extern void dump_mem_address (FILE *, struct mem_address *);
881 void
882 dump_mem_address (FILE *file, struct mem_address *parts)
883 {
884 if (parts->symbol)
885 {
886 fprintf (file, "symbol: ");
887 print_generic_expr (file, parts->symbol, TDF_SLIM);
888 fprintf (file, "\n");
889 }
890 if (parts->base)
891 {
892 fprintf (file, "base: ");
893 print_generic_expr (file, parts->base, TDF_SLIM);
894 fprintf (file, "\n");
895 }
896 if (parts->index)
897 {
898 fprintf (file, "index: ");
899 print_generic_expr (file, parts->index, TDF_SLIM);
900 fprintf (file, "\n");
901 }
902 if (parts->step)
903 {
904 fprintf (file, "step: ");
905 print_generic_expr (file, parts->step, TDF_SLIM);
906 fprintf (file, "\n");
907 }
908 if (parts->offset)
909 {
910 fprintf (file, "offset: ");
911 print_generic_expr (file, parts->offset, TDF_SLIM);
912 fprintf (file, "\n");
913 }
914 }
915
916 #include "gt-tree-ssa-address.h"