]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-alias.c
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90 static int nonoverlapping_refs_since_match_p (tree, tree, tree, tree, bool);
91 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
92
93 /* Query statistics for the different low-level disambiguators.
94 A high-level query may trigger multiple of them. */
95
96 static struct {
97 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
98 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
99 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
100 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
101 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
102 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
103 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
107 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_may_alias;
108 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_must_overlap;
109 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_no_alias;
110 } alias_stats;
111
112 void
113 dump_alias_stats (FILE *s)
114 {
115 fprintf (s, "\nAlias oracle query stats:\n");
116 fprintf (s, " refs_may_alias_p: "
117 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
118 HOST_WIDE_INT_PRINT_DEC" queries\n",
119 alias_stats.refs_may_alias_p_no_alias,
120 alias_stats.refs_may_alias_p_no_alias
121 + alias_stats.refs_may_alias_p_may_alias);
122 fprintf (s, " ref_maybe_used_by_call_p: "
123 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
124 HOST_WIDE_INT_PRINT_DEC" queries\n",
125 alias_stats.ref_maybe_used_by_call_p_no_alias,
126 alias_stats.refs_may_alias_p_no_alias
127 + alias_stats.ref_maybe_used_by_call_p_may_alias);
128 fprintf (s, " call_may_clobber_ref_p: "
129 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
130 HOST_WIDE_INT_PRINT_DEC" queries\n",
131 alias_stats.call_may_clobber_ref_p_no_alias,
132 alias_stats.call_may_clobber_ref_p_no_alias
133 + alias_stats.call_may_clobber_ref_p_may_alias);
134 fprintf (s, " nonoverlapping_component_refs_p: "
135 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
136 HOST_WIDE_INT_PRINT_DEC" queries\n",
137 alias_stats.nonoverlapping_component_refs_p_no_alias,
138 alias_stats.nonoverlapping_component_refs_p_no_alias
139 + alias_stats.nonoverlapping_component_refs_p_may_alias);
140 fprintf (s, " nonoverlapping_refs_since_match_p: "
141 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
142 HOST_WIDE_INT_PRINT_DEC" must overlaps, "
143 HOST_WIDE_INT_PRINT_DEC" queries\n",
144 alias_stats.nonoverlapping_refs_since_match_p_no_alias,
145 alias_stats.nonoverlapping_refs_since_match_p_must_overlap,
146 alias_stats.nonoverlapping_refs_since_match_p_no_alias
147 + alias_stats.nonoverlapping_refs_since_match_p_may_alias
148 + alias_stats.nonoverlapping_refs_since_match_p_must_overlap);
149 fprintf (s, " aliasing_component_refs_p: "
150 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
151 HOST_WIDE_INT_PRINT_DEC" queries\n",
152 alias_stats.aliasing_component_refs_p_no_alias,
153 alias_stats.aliasing_component_refs_p_no_alias
154 + alias_stats.aliasing_component_refs_p_may_alias);
155 dump_alias_stats_in_alias_c (s);
156 }
157
158
159 /* Return true, if dereferencing PTR may alias with a global variable. */
160
161 bool
162 ptr_deref_may_alias_global_p (tree ptr)
163 {
164 struct ptr_info_def *pi;
165
166 /* If we end up with a pointer constant here that may point
167 to global memory. */
168 if (TREE_CODE (ptr) != SSA_NAME)
169 return true;
170
171 pi = SSA_NAME_PTR_INFO (ptr);
172
173 /* If we do not have points-to information for this variable,
174 we have to punt. */
175 if (!pi)
176 return true;
177
178 /* ??? This does not use TBAA to prune globals ptr may not access. */
179 return pt_solution_includes_global (&pi->pt);
180 }
181
182 /* Return true if dereferencing PTR may alias DECL.
183 The caller is responsible for applying TBAA to see if PTR
184 may access DECL at all. */
185
186 static bool
187 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
188 {
189 struct ptr_info_def *pi;
190
191 /* Conversions are irrelevant for points-to information and
192 data-dependence analysis can feed us those. */
193 STRIP_NOPS (ptr);
194
195 /* Anything we do not explicilty handle aliases. */
196 if ((TREE_CODE (ptr) != SSA_NAME
197 && TREE_CODE (ptr) != ADDR_EXPR
198 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
199 || !POINTER_TYPE_P (TREE_TYPE (ptr))
200 || (!VAR_P (decl)
201 && TREE_CODE (decl) != PARM_DECL
202 && TREE_CODE (decl) != RESULT_DECL))
203 return true;
204
205 /* Disregard pointer offsetting. */
206 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
207 {
208 do
209 {
210 ptr = TREE_OPERAND (ptr, 0);
211 }
212 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
213 return ptr_deref_may_alias_decl_p (ptr, decl);
214 }
215
216 /* ADDR_EXPR pointers either just offset another pointer or directly
217 specify the pointed-to set. */
218 if (TREE_CODE (ptr) == ADDR_EXPR)
219 {
220 tree base = get_base_address (TREE_OPERAND (ptr, 0));
221 if (base
222 && (TREE_CODE (base) == MEM_REF
223 || TREE_CODE (base) == TARGET_MEM_REF))
224 ptr = TREE_OPERAND (base, 0);
225 else if (base
226 && DECL_P (base))
227 return compare_base_decls (base, decl) != 0;
228 else if (base
229 && CONSTANT_CLASS_P (base))
230 return false;
231 else
232 return true;
233 }
234
235 /* Non-aliased variables cannot be pointed to. */
236 if (!may_be_aliased (decl))
237 return false;
238
239 /* If we do not have useful points-to information for this pointer
240 we cannot disambiguate anything else. */
241 pi = SSA_NAME_PTR_INFO (ptr);
242 if (!pi)
243 return true;
244
245 return pt_solution_includes (&pi->pt, decl);
246 }
247
248 /* Return true if dereferenced PTR1 and PTR2 may alias.
249 The caller is responsible for applying TBAA to see if accesses
250 through PTR1 and PTR2 may conflict at all. */
251
252 bool
253 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
254 {
255 struct ptr_info_def *pi1, *pi2;
256
257 /* Conversions are irrelevant for points-to information and
258 data-dependence analysis can feed us those. */
259 STRIP_NOPS (ptr1);
260 STRIP_NOPS (ptr2);
261
262 /* Disregard pointer offsetting. */
263 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
264 {
265 do
266 {
267 ptr1 = TREE_OPERAND (ptr1, 0);
268 }
269 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
270 return ptr_derefs_may_alias_p (ptr1, ptr2);
271 }
272 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
273 {
274 do
275 {
276 ptr2 = TREE_OPERAND (ptr2, 0);
277 }
278 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
279 return ptr_derefs_may_alias_p (ptr1, ptr2);
280 }
281
282 /* ADDR_EXPR pointers either just offset another pointer or directly
283 specify the pointed-to set. */
284 if (TREE_CODE (ptr1) == ADDR_EXPR)
285 {
286 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
287 if (base
288 && (TREE_CODE (base) == MEM_REF
289 || TREE_CODE (base) == TARGET_MEM_REF))
290 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
291 else if (base
292 && DECL_P (base))
293 return ptr_deref_may_alias_decl_p (ptr2, base);
294 else
295 return true;
296 }
297 if (TREE_CODE (ptr2) == ADDR_EXPR)
298 {
299 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
300 if (base
301 && (TREE_CODE (base) == MEM_REF
302 || TREE_CODE (base) == TARGET_MEM_REF))
303 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
304 else if (base
305 && DECL_P (base))
306 return ptr_deref_may_alias_decl_p (ptr1, base);
307 else
308 return true;
309 }
310
311 /* From here we require SSA name pointers. Anything else aliases. */
312 if (TREE_CODE (ptr1) != SSA_NAME
313 || TREE_CODE (ptr2) != SSA_NAME
314 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
315 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
316 return true;
317
318 /* We may end up with two empty points-to solutions for two same pointers.
319 In this case we still want to say both pointers alias, so shortcut
320 that here. */
321 if (ptr1 == ptr2)
322 return true;
323
324 /* If we do not have useful points-to information for either pointer
325 we cannot disambiguate anything else. */
326 pi1 = SSA_NAME_PTR_INFO (ptr1);
327 pi2 = SSA_NAME_PTR_INFO (ptr2);
328 if (!pi1 || !pi2)
329 return true;
330
331 /* ??? This does not use TBAA to prune decls from the intersection
332 that not both pointers may access. */
333 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
334 }
335
336 /* Return true if dereferencing PTR may alias *REF.
337 The caller is responsible for applying TBAA to see if PTR
338 may access *REF at all. */
339
340 static bool
341 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
342 {
343 tree base = ao_ref_base (ref);
344
345 if (TREE_CODE (base) == MEM_REF
346 || TREE_CODE (base) == TARGET_MEM_REF)
347 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
348 else if (DECL_P (base))
349 return ptr_deref_may_alias_decl_p (ptr, base);
350
351 return true;
352 }
353
354 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
355
356 bool
357 ptrs_compare_unequal (tree ptr1, tree ptr2)
358 {
359 /* First resolve the pointers down to a SSA name pointer base or
360 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
361 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
362 or STRING_CSTs which needs points-to adjustments to track them
363 in the points-to sets. */
364 tree obj1 = NULL_TREE;
365 tree obj2 = NULL_TREE;
366 if (TREE_CODE (ptr1) == ADDR_EXPR)
367 {
368 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
369 if (! tem)
370 return false;
371 if (VAR_P (tem)
372 || TREE_CODE (tem) == PARM_DECL
373 || TREE_CODE (tem) == RESULT_DECL)
374 obj1 = tem;
375 else if (TREE_CODE (tem) == MEM_REF)
376 ptr1 = TREE_OPERAND (tem, 0);
377 }
378 if (TREE_CODE (ptr2) == ADDR_EXPR)
379 {
380 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
381 if (! tem)
382 return false;
383 if (VAR_P (tem)
384 || TREE_CODE (tem) == PARM_DECL
385 || TREE_CODE (tem) == RESULT_DECL)
386 obj2 = tem;
387 else if (TREE_CODE (tem) == MEM_REF)
388 ptr2 = TREE_OPERAND (tem, 0);
389 }
390
391 /* Canonicalize ptr vs. object. */
392 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
393 {
394 std::swap (ptr1, ptr2);
395 std::swap (obj1, obj2);
396 }
397
398 if (obj1 && obj2)
399 /* Other code handles this correctly, no need to duplicate it here. */;
400 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
401 {
402 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
403 /* We may not use restrict to optimize pointer comparisons.
404 See PR71062. So we have to assume that restrict-pointed-to
405 may be in fact obj1. */
406 if (!pi
407 || pi->pt.vars_contains_restrict
408 || pi->pt.vars_contains_interposable)
409 return false;
410 if (VAR_P (obj1)
411 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
412 {
413 varpool_node *node = varpool_node::get (obj1);
414 /* If obj1 may bind to NULL give up (see below). */
415 if (! node
416 || ! node->nonzero_address ()
417 || ! decl_binds_to_current_def_p (obj1))
418 return false;
419 }
420 return !pt_solution_includes (&pi->pt, obj1);
421 }
422
423 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
424 but those require pt.null to be conservatively correct. */
425
426 return false;
427 }
428
429 /* Returns whether reference REF to BASE may refer to global memory. */
430
431 static bool
432 ref_may_alias_global_p_1 (tree base)
433 {
434 if (DECL_P (base))
435 return is_global_var (base);
436 else if (TREE_CODE (base) == MEM_REF
437 || TREE_CODE (base) == TARGET_MEM_REF)
438 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
439 return true;
440 }
441
442 bool
443 ref_may_alias_global_p (ao_ref *ref)
444 {
445 tree base = ao_ref_base (ref);
446 return ref_may_alias_global_p_1 (base);
447 }
448
449 bool
450 ref_may_alias_global_p (tree ref)
451 {
452 tree base = get_base_address (ref);
453 return ref_may_alias_global_p_1 (base);
454 }
455
456 /* Return true whether STMT may clobber global memory. */
457
458 bool
459 stmt_may_clobber_global_p (gimple *stmt)
460 {
461 tree lhs;
462
463 if (!gimple_vdef (stmt))
464 return false;
465
466 /* ??? We can ask the oracle whether an artificial pointer
467 dereference with a pointer with points-to information covering
468 all global memory (what about non-address taken memory?) maybe
469 clobbered by this call. As there is at the moment no convenient
470 way of doing that without generating garbage do some manual
471 checking instead.
472 ??? We could make a NULL ao_ref argument to the various
473 predicates special, meaning any global memory. */
474
475 switch (gimple_code (stmt))
476 {
477 case GIMPLE_ASSIGN:
478 lhs = gimple_assign_lhs (stmt);
479 return (TREE_CODE (lhs) != SSA_NAME
480 && ref_may_alias_global_p (lhs));
481 case GIMPLE_CALL:
482 return true;
483 default:
484 return true;
485 }
486 }
487
488
489 /* Dump alias information on FILE. */
490
491 void
492 dump_alias_info (FILE *file)
493 {
494 unsigned i;
495 tree ptr;
496 const char *funcname
497 = lang_hooks.decl_printable_name (current_function_decl, 2);
498 tree var;
499
500 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
501
502 fprintf (file, "Aliased symbols\n\n");
503
504 FOR_EACH_LOCAL_DECL (cfun, i, var)
505 {
506 if (may_be_aliased (var))
507 dump_variable (file, var);
508 }
509
510 fprintf (file, "\nCall clobber information\n");
511
512 fprintf (file, "\nESCAPED");
513 dump_points_to_solution (file, &cfun->gimple_df->escaped);
514
515 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
516
517 FOR_EACH_SSA_NAME (i, ptr, cfun)
518 {
519 struct ptr_info_def *pi;
520
521 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
522 || SSA_NAME_IN_FREE_LIST (ptr))
523 continue;
524
525 pi = SSA_NAME_PTR_INFO (ptr);
526 if (pi)
527 dump_points_to_info_for (file, ptr);
528 }
529
530 fprintf (file, "\n");
531 }
532
533
534 /* Dump alias information on stderr. */
535
536 DEBUG_FUNCTION void
537 debug_alias_info (void)
538 {
539 dump_alias_info (stderr);
540 }
541
542
543 /* Dump the points-to set *PT into FILE. */
544
545 void
546 dump_points_to_solution (FILE *file, struct pt_solution *pt)
547 {
548 if (pt->anything)
549 fprintf (file, ", points-to anything");
550
551 if (pt->nonlocal)
552 fprintf (file, ", points-to non-local");
553
554 if (pt->escaped)
555 fprintf (file, ", points-to escaped");
556
557 if (pt->ipa_escaped)
558 fprintf (file, ", points-to unit escaped");
559
560 if (pt->null)
561 fprintf (file, ", points-to NULL");
562
563 if (pt->vars)
564 {
565 fprintf (file, ", points-to vars: ");
566 dump_decl_set (file, pt->vars);
567 if (pt->vars_contains_nonlocal
568 || pt->vars_contains_escaped
569 || pt->vars_contains_escaped_heap
570 || pt->vars_contains_restrict)
571 {
572 const char *comma = "";
573 fprintf (file, " (");
574 if (pt->vars_contains_nonlocal)
575 {
576 fprintf (file, "nonlocal");
577 comma = ", ";
578 }
579 if (pt->vars_contains_escaped)
580 {
581 fprintf (file, "%sescaped", comma);
582 comma = ", ";
583 }
584 if (pt->vars_contains_escaped_heap)
585 {
586 fprintf (file, "%sescaped heap", comma);
587 comma = ", ";
588 }
589 if (pt->vars_contains_restrict)
590 {
591 fprintf (file, "%srestrict", comma);
592 comma = ", ";
593 }
594 if (pt->vars_contains_interposable)
595 fprintf (file, "%sinterposable", comma);
596 fprintf (file, ")");
597 }
598 }
599 }
600
601
602 /* Unified dump function for pt_solution. */
603
604 DEBUG_FUNCTION void
605 debug (pt_solution &ref)
606 {
607 dump_points_to_solution (stderr, &ref);
608 }
609
610 DEBUG_FUNCTION void
611 debug (pt_solution *ptr)
612 {
613 if (ptr)
614 debug (*ptr);
615 else
616 fprintf (stderr, "<nil>\n");
617 }
618
619
620 /* Dump points-to information for SSA_NAME PTR into FILE. */
621
622 void
623 dump_points_to_info_for (FILE *file, tree ptr)
624 {
625 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
626
627 print_generic_expr (file, ptr, dump_flags);
628
629 if (pi)
630 dump_points_to_solution (file, &pi->pt);
631 else
632 fprintf (file, ", points-to anything");
633
634 fprintf (file, "\n");
635 }
636
637
638 /* Dump points-to information for VAR into stderr. */
639
640 DEBUG_FUNCTION void
641 debug_points_to_info_for (tree var)
642 {
643 dump_points_to_info_for (stderr, var);
644 }
645
646
647 /* Initializes the alias-oracle reference representation *R from REF. */
648
649 void
650 ao_ref_init (ao_ref *r, tree ref)
651 {
652 r->ref = ref;
653 r->base = NULL_TREE;
654 r->offset = 0;
655 r->size = -1;
656 r->max_size = -1;
657 r->ref_alias_set = -1;
658 r->base_alias_set = -1;
659 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
660 }
661
662 /* Returns the base object of the memory reference *REF. */
663
664 tree
665 ao_ref_base (ao_ref *ref)
666 {
667 bool reverse;
668
669 if (ref->base)
670 return ref->base;
671 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
672 &ref->max_size, &reverse);
673 return ref->base;
674 }
675
676 /* Returns the base object alias set of the memory reference *REF. */
677
678 alias_set_type
679 ao_ref_base_alias_set (ao_ref *ref)
680 {
681 tree base_ref;
682 if (ref->base_alias_set != -1)
683 return ref->base_alias_set;
684 if (!ref->ref)
685 return 0;
686 base_ref = ref->ref;
687 while (handled_component_p (base_ref))
688 base_ref = TREE_OPERAND (base_ref, 0);
689 ref->base_alias_set = get_alias_set (base_ref);
690 return ref->base_alias_set;
691 }
692
693 /* Returns the reference alias set of the memory reference *REF. */
694
695 alias_set_type
696 ao_ref_alias_set (ao_ref *ref)
697 {
698 if (ref->ref_alias_set != -1)
699 return ref->ref_alias_set;
700 ref->ref_alias_set = get_alias_set (ref->ref);
701 return ref->ref_alias_set;
702 }
703
704 /* Init an alias-oracle reference representation from a gimple pointer
705 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
706 size is assumed to be unknown. The access is assumed to be only
707 to or after of the pointer target, not before it. */
708
709 void
710 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
711 {
712 poly_int64 t, size_hwi, extra_offset = 0;
713 ref->ref = NULL_TREE;
714 if (TREE_CODE (ptr) == SSA_NAME)
715 {
716 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
717 if (gimple_assign_single_p (stmt)
718 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
719 ptr = gimple_assign_rhs1 (stmt);
720 else if (is_gimple_assign (stmt)
721 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
722 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
723 {
724 ptr = gimple_assign_rhs1 (stmt);
725 extra_offset *= BITS_PER_UNIT;
726 }
727 }
728
729 if (TREE_CODE (ptr) == ADDR_EXPR)
730 {
731 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
732 if (ref->base)
733 ref->offset = BITS_PER_UNIT * t;
734 else
735 {
736 size = NULL_TREE;
737 ref->offset = 0;
738 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
739 }
740 }
741 else
742 {
743 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
744 ref->base = build2 (MEM_REF, char_type_node,
745 ptr, null_pointer_node);
746 ref->offset = 0;
747 }
748 ref->offset += extra_offset;
749 if (size
750 && poly_int_tree_p (size, &size_hwi)
751 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
752 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
753 else
754 ref->max_size = ref->size = -1;
755 ref->ref_alias_set = 0;
756 ref->base_alias_set = 0;
757 ref->volatile_p = false;
758 }
759
760 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
761 Return -1 if S1 < S2
762 Return 1 if S1 > S2
763 Return 0 if equal or incomparable. */
764
765 static int
766 compare_sizes (tree s1, tree s2)
767 {
768 if (!s1 || !s2)
769 return 0;
770
771 poly_uint64 size1;
772 poly_uint64 size2;
773
774 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
775 return 0;
776 if (known_lt (size1, size2))
777 return -1;
778 if (known_lt (size2, size1))
779 return 1;
780 return 0;
781 }
782
783 /* Compare TYPE1 and TYPE2 by its size.
784 Return -1 if size of TYPE1 < size of TYPE2
785 Return 1 if size of TYPE1 > size of TYPE2
786 Return 0 if types are of equal sizes or we can not compare them. */
787
788 static int
789 compare_type_sizes (tree type1, tree type2)
790 {
791 /* Be conservative for arrays and vectors. We want to support partial
792 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
793 while (TREE_CODE (type1) == ARRAY_TYPE
794 || TREE_CODE (type1) == VECTOR_TYPE)
795 type1 = TREE_TYPE (type1);
796 while (TREE_CODE (type2) == ARRAY_TYPE
797 || TREE_CODE (type2) == VECTOR_TYPE)
798 type2 = TREE_TYPE (type2);
799 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
800 }
801
802 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
803 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
804 decide. */
805
806 static inline int
807 same_type_for_tbaa (tree type1, tree type2)
808 {
809 type1 = TYPE_MAIN_VARIANT (type1);
810 type2 = TYPE_MAIN_VARIANT (type2);
811
812 /* Handle the most common case first. */
813 if (type1 == type2)
814 return 1;
815
816 /* If we would have to do structural comparison bail out. */
817 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
818 || TYPE_STRUCTURAL_EQUALITY_P (type2))
819 return -1;
820
821 /* Compare the canonical types. */
822 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
823 return 1;
824
825 /* ??? Array types are not properly unified in all cases as we have
826 spurious changes in the index types for example. Removing this
827 causes all sorts of problems with the Fortran frontend. */
828 if (TREE_CODE (type1) == ARRAY_TYPE
829 && TREE_CODE (type2) == ARRAY_TYPE)
830 return -1;
831
832 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
833 object of one of its constrained subtypes, e.g. when a function with an
834 unconstrained parameter passed by reference is called on an object and
835 inlined. But, even in the case of a fixed size, type and subtypes are
836 not equivalent enough as to share the same TYPE_CANONICAL, since this
837 would mean that conversions between them are useless, whereas they are
838 not (e.g. type and subtypes can have different modes). So, in the end,
839 they are only guaranteed to have the same alias set. */
840 if (get_alias_set (type1) == get_alias_set (type2))
841 return -1;
842
843 /* The types are known to be not equal. */
844 return 0;
845 }
846
847 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
848 components on it). */
849
850 static bool
851 type_has_components_p (tree type)
852 {
853 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
854 || TREE_CODE (type) == COMPLEX_TYPE;
855 }
856
857 /* MATCH1 and MATCH2 which are part of access path of REF1 and REF2
858 respectively are either pointing to same address or are completely
859 disjoint. If PARITAL_OVERLAP is true, assume that outermost arrays may
860 just partly overlap.
861
862 Try to disambiguate using the access path starting from the match
863 and return false if there is no conflict.
864
865 Helper for aliasing_component_refs_p. */
866
867 static bool
868 aliasing_matching_component_refs_p (tree match1, tree ref1,
869 poly_int64 offset1, poly_int64 max_size1,
870 tree match2, tree ref2,
871 poly_int64 offset2, poly_int64 max_size2,
872 bool partial_overlap)
873 {
874 poly_int64 offadj, sztmp, msztmp;
875 bool reverse;
876
877 if (!partial_overlap)
878 {
879 get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse);
880 offset2 -= offadj;
881 get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse);
882 offset1 -= offadj;
883 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
884 {
885 ++alias_stats.aliasing_component_refs_p_no_alias;
886 return false;
887 }
888 }
889
890 int cmp = nonoverlapping_refs_since_match_p (match1, ref1, match2, ref2,
891 partial_overlap);
892 if (cmp == 1
893 || (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2)))
894 {
895 ++alias_stats.aliasing_component_refs_p_no_alias;
896 return false;
897 }
898 ++alias_stats.aliasing_component_refs_p_may_alias;
899 return true;
900 }
901
902 /* Return true if REF is reference to zero sized trailing array. I.e.
903 struct foo {int bar; int array[0];} *fooptr;
904 fooptr->array. */
905
906 static bool
907 component_ref_to_zero_sized_trailing_array_p (tree ref)
908 {
909 return (TREE_CODE (ref) == COMPONENT_REF
910 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE
911 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))
912 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))))
913 && array_at_struct_end_p (ref));
914 }
915
916 /* Worker for aliasing_component_refs_p. Most parameters match parameters of
917 aliasing_component_refs_p.
918
919 Walk access path REF2 and try to find type matching TYPE1
920 (which is a start of possibly aliasing access path REF1).
921 If match is found, try to disambiguate.
922
923 Return 0 for sucessful disambiguation.
924 Return 1 if match was found but disambiguation failed
925 Return -1 if there is no match.
926 In this case MAYBE_MATCH is set to 0 if there is no type matching TYPE1
927 in access patch REF2 and -1 if we are not sure. */
928
929 static int
930 aliasing_component_refs_walk (tree ref1, tree type1, tree base1,
931 poly_int64 offset1, poly_int64 max_size1,
932 tree end_struct_ref1,
933 tree ref2, tree base2,
934 poly_int64 offset2, poly_int64 max_size2,
935 bool *maybe_match)
936 {
937 tree ref = ref2;
938 int same_p = 0;
939
940 while (true)
941 {
942 /* We walk from inner type to the outer types. If type we see is
943 already too large to be part of type1, terminate the search. */
944 int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
945
946 if (cmp < 0
947 && (!end_struct_ref1
948 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
949 TREE_TYPE (ref)) < 0))
950 break;
951 /* If types may be of same size, see if we can decide about their
952 equality. */
953 if (cmp == 0)
954 {
955 same_p = same_type_for_tbaa (TREE_TYPE (ref), type1);
956 if (same_p == 1)
957 break;
958 /* In case we can't decide whether types are same try to
959 continue looking for the exact match.
960 Remember however that we possibly saw a match
961 to bypass the access path continuations tests we do later. */
962 if (same_p == -1)
963 *maybe_match = true;
964 }
965 if (!handled_component_p (ref))
966 break;
967 ref = TREE_OPERAND (ref, 0);
968 }
969 if (same_p == 1)
970 {
971 bool partial_overlap = false;
972
973 /* We assume that arrays can overlap by multiple of their elements
974 size as tested in gcc.dg/torture/alias-2.c.
975 This partial overlap happen only when both arrays are bases of
976 the access and not contained within another component ref.
977 To be safe we also assume partial overlap for VLAs. */
978 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
979 && (!TYPE_SIZE (TREE_TYPE (base1))
980 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
981 || ref == base2))
982 {
983 /* Setting maybe_match to true triggers
984 nonoverlapping_component_refs_p test later that still may do
985 useful disambiguation. */
986 *maybe_match = true;
987 partial_overlap = true;
988 }
989 return aliasing_matching_component_refs_p (base1, ref1,
990 offset1, max_size1,
991 ref, ref2,
992 offset2, max_size2,
993 partial_overlap);
994 }
995 return -1;
996 }
997
998 /* Determine if the two component references REF1 and REF2 which are
999 based on access types TYPE1 and TYPE2 and of which at least one is based
1000 on an indirect reference may alias.
1001 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
1002 are the respective alias sets. */
1003
1004 static bool
1005 aliasing_component_refs_p (tree ref1,
1006 alias_set_type ref1_alias_set,
1007 alias_set_type base1_alias_set,
1008 poly_int64 offset1, poly_int64 max_size1,
1009 tree ref2,
1010 alias_set_type ref2_alias_set,
1011 alias_set_type base2_alias_set,
1012 poly_int64 offset2, poly_int64 max_size2)
1013 {
1014 /* If one reference is a component references through pointers try to find a
1015 common base and apply offset based disambiguation. This handles
1016 for example
1017 struct A { int i; int j; } *q;
1018 struct B { struct A a; int k; } *p;
1019 disambiguating q->i and p->a.j. */
1020 tree base1, base2;
1021 tree type1, type2;
1022 bool maybe_match = false;
1023 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
1024
1025 /* Choose bases and base types to search for. */
1026 base1 = ref1;
1027 while (handled_component_p (base1))
1028 {
1029 /* Generally access paths are monotous in the size of object. The
1030 exception are trailing arrays of structures. I.e.
1031 struct a {int array[0];};
1032 or
1033 struct a {int array1[0]; int array[];};
1034 Such struct has size 0 but accesses to a.array may have non-zero size.
1035 In this case the size of TREE_TYPE (base1) is smaller than
1036 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
1037
1038 Because we compare sizes of arrays just by sizes of their elements,
1039 we only need to care about zero sized array fields here. */
1040 if (component_ref_to_zero_sized_trailing_array_p (base1))
1041 {
1042 gcc_checking_assert (!end_struct_ref1);
1043 end_struct_ref1 = base1;
1044 }
1045 if (TREE_CODE (base1) == VIEW_CONVERT_EXPR
1046 || TREE_CODE (base1) == BIT_FIELD_REF)
1047 ref1 = TREE_OPERAND (base1, 0);
1048 base1 = TREE_OPERAND (base1, 0);
1049 }
1050 type1 = TREE_TYPE (base1);
1051 base2 = ref2;
1052 while (handled_component_p (base2))
1053 {
1054 if (component_ref_to_zero_sized_trailing_array_p (base2))
1055 {
1056 gcc_checking_assert (!end_struct_ref2);
1057 end_struct_ref2 = base2;
1058 }
1059 if (TREE_CODE (base2) == VIEW_CONVERT_EXPR
1060 || TREE_CODE (base2) == BIT_FIELD_REF)
1061 ref2 = TREE_OPERAND (base2, 0);
1062 base2 = TREE_OPERAND (base2, 0);
1063 }
1064 type2 = TREE_TYPE (base2);
1065
1066 /* Now search for the type1 in the access path of ref2. This
1067 would be a common base for doing offset based disambiguation on.
1068 This however only makes sense if type2 is big enough to hold type1. */
1069 int cmp_outer = compare_type_sizes (type2, type1);
1070
1071 /* If type2 is big enough to contain type1 walk its access path.
1072 We also need to care of arrays at the end of structs that may extend
1073 beyond the end of structure. */
1074 if (cmp_outer >= 0
1075 || (end_struct_ref2
1076 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
1077 {
1078 int res = aliasing_component_refs_walk (ref1, type1, base1,
1079 offset1, max_size1,
1080 end_struct_ref1,
1081 ref2, base2, offset2, max_size2,
1082 &maybe_match);
1083 if (res != -1)
1084 return res;
1085 }
1086
1087 /* If we didn't find a common base, try the other way around. */
1088 if (cmp_outer <= 0
1089 || (end_struct_ref1
1090 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1091 {
1092 int res = aliasing_component_refs_walk (ref2, type2, base2,
1093 offset2, max_size2,
1094 end_struct_ref2,
1095 ref1, base1, offset1, max_size1,
1096 &maybe_match);
1097 if (res != -1)
1098 return res;
1099 }
1100
1101 /* In the following code we make an assumption that the types in access
1102 paths do not overlap and thus accesses alias only if one path can be
1103 continuation of another. If we was not able to decide about equivalence,
1104 we need to give up. */
1105 if (maybe_match)
1106 {
1107 if (!nonoverlapping_component_refs_p (ref1, ref2))
1108 {
1109 ++alias_stats.aliasing_component_refs_p_may_alias;
1110 return true;
1111 }
1112 ++alias_stats.aliasing_component_refs_p_no_alias;
1113 return false;
1114 }
1115
1116 /* If we have two type access paths B1.path1 and B2.path2 they may
1117 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
1118 But we can still have a path that goes B1.path1...B2.path2 with
1119 a part that we do not see. So we can only disambiguate now
1120 if there is no B2 in the tail of path1 and no B1 on the
1121 tail of path2. */
1122 if (compare_type_sizes (TREE_TYPE (ref2), type1) >= 0
1123 && (!end_struct_ref1
1124 || compare_type_sizes (TREE_TYPE (ref2),
1125 TREE_TYPE (end_struct_ref1)) >= 0)
1126 && type_has_components_p (TREE_TYPE (ref2))
1127 && (base1_alias_set == ref2_alias_set
1128 || alias_set_subset_of (base1_alias_set, ref2_alias_set)))
1129 {
1130 ++alias_stats.aliasing_component_refs_p_may_alias;
1131 return true;
1132 }
1133 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
1134 if (compare_type_sizes (TREE_TYPE (ref1), type2) >= 0
1135 && (!end_struct_ref2
1136 || compare_type_sizes (TREE_TYPE (ref1),
1137 TREE_TYPE (end_struct_ref2)) >= 0)
1138 && type_has_components_p (TREE_TYPE (ref1))
1139 && (base2_alias_set == ref1_alias_set
1140 || alias_set_subset_of (base2_alias_set, ref1_alias_set)))
1141 {
1142 ++alias_stats.aliasing_component_refs_p_may_alias;
1143 return true;
1144 }
1145 ++alias_stats.aliasing_component_refs_p_no_alias;
1146 return false;
1147 }
1148
1149 /* FIELD1 and FIELD2 are two fields of component refs. We assume
1150 that bases of both component refs are either equivalent or nonoverlapping.
1151 We do not assume that the containers of FIELD1 and FIELD2 are of the
1152 same type or size.
1153
1154 Return 0 in case the base address of component_refs are same then
1155 FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2
1156 may not be of same type or size.
1157
1158 Return 1 if FIELD1 and FIELD2 are non-overlapping.
1159
1160 Return -1 otherwise.
1161
1162 Main difference between 0 and -1 is to let
1163 nonoverlapping_component_refs_since_match_p discover the semantically
1164 equivalent part of the access path.
1165
1166 Note that this function is used even with -fno-strict-aliasing
1167 and makes use of no TBAA assumptions. */
1168
1169 static int
1170 nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2)
1171 {
1172 /* If both fields are of the same type, we could save hard work of
1173 comparing offsets. */
1174 tree type1 = DECL_CONTEXT (field1);
1175 tree type2 = DECL_CONTEXT (field2);
1176
1177 if (TREE_CODE (type1) == RECORD_TYPE
1178 && DECL_BIT_FIELD_REPRESENTATIVE (field1))
1179 field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1);
1180 if (TREE_CODE (type2) == RECORD_TYPE
1181 && DECL_BIT_FIELD_REPRESENTATIVE (field2))
1182 field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2);
1183
1184 /* ??? Bitfields can overlap at RTL level so punt on them.
1185 FIXME: RTL expansion should be fixed by adjusting the access path
1186 when producing MEM_ATTRs for MEMs which are wider than
1187 the bitfields similarly as done in set_mem_attrs_minus_bitpos. */
1188 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1189 return -1;
1190
1191 /* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE. */
1192 if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE)
1193 return field1 != field2;
1194
1195 /* In common case the offsets and bit offsets will be the same.
1196 However if frontends do not agree on the alignment, they may be
1197 different even if they actually represent same address.
1198 Try the common case first and if that fails calcualte the
1199 actual bit offset. */
1200 if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1),
1201 DECL_FIELD_OFFSET (field2))
1202 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1),
1203 DECL_FIELD_BIT_OFFSET (field2)))
1204 return 0;
1205
1206 /* Note that it may be possible to use component_ref_field_offset
1207 which would provide offsets as trees. However constructing and folding
1208 trees is expensive and does not seem to be worth the compile time
1209 cost. */
1210
1211 poly_uint64 offset1, offset2;
1212 poly_uint64 bit_offset1, bit_offset2;
1213
1214 if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), &offset1)
1215 && poly_int_tree_p (DECL_FIELD_OFFSET (field2), &offset2)
1216 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), &bit_offset1)
1217 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), &bit_offset2))
1218 {
1219 offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1;
1220 offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2;
1221
1222 if (known_eq (offset1, offset2))
1223 return 0;
1224
1225 poly_uint64 size1, size2;
1226
1227 if (poly_int_tree_p (DECL_SIZE (field1), &size1)
1228 && poly_int_tree_p (DECL_SIZE (field2), &size2)
1229 && !ranges_maybe_overlap_p (offset1, size1, offset2, size2))
1230 return 1;
1231 }
1232 /* Resort to slower overlap checking by looking for matching types in
1233 the middle of access path. */
1234 return -1;
1235 }
1236
1237 /* Return low bound of array. Do not produce new trees
1238 and thus do not care about particular type of integer constant
1239 and placeholder exprs. */
1240
1241 static tree
1242 cheap_array_ref_low_bound (tree ref)
1243 {
1244 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
1245
1246 /* Avoid expensive array_ref_low_bound.
1247 low bound is either stored in operand2, or it is TYPE_MIN_VALUE of domain
1248 type or it is zero. */
1249 if (TREE_OPERAND (ref, 2))
1250 return TREE_OPERAND (ref, 2);
1251 else if (domain_type && TYPE_MIN_VALUE (domain_type))
1252 return TYPE_MIN_VALUE (domain_type);
1253 else
1254 return integer_zero_node;
1255 }
1256
1257 /* REF1 and REF2 are ARRAY_REFs with either same base address or which are
1258 completely disjoint.
1259
1260 Return 1 if the refs are non-overlapping.
1261 Return 0 if they are possibly overlapping but if so the overlap again
1262 starts on the same address.
1263 Return -1 otherwise. */
1264
1265 int
1266 nonoverlapping_array_refs_p (tree ref1, tree ref2)
1267 {
1268 tree index1 = TREE_OPERAND (ref1, 1);
1269 tree index2 = TREE_OPERAND (ref2, 1);
1270 tree low_bound1 = cheap_array_ref_low_bound(ref1);
1271 tree low_bound2 = cheap_array_ref_low_bound(ref2);
1272
1273 /* Handle zero offsets first: we do not need to match type size in this
1274 case. */
1275 if (operand_equal_p (index1, low_bound1, 0)
1276 && operand_equal_p (index2, low_bound2, 0))
1277 return 0;
1278
1279 /* If type sizes are different, give up.
1280
1281 Avoid expensive array_ref_element_size.
1282 If operand 3 is present it denotes size in the alignmnet units.
1283 Otherwise size is TYPE_SIZE of the element type.
1284 Handle only common cases where types are of the same "kind". */
1285 if ((TREE_OPERAND (ref1, 3) == NULL) != (TREE_OPERAND (ref2, 3) == NULL))
1286 return -1;
1287
1288 tree elmt_type1 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref1, 0)));
1289 tree elmt_type2 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref2, 0)));
1290
1291 if (TREE_OPERAND (ref1, 3))
1292 {
1293 if (TYPE_ALIGN (elmt_type1) != TYPE_ALIGN (elmt_type2)
1294 || !operand_equal_p (TREE_OPERAND (ref1, 3),
1295 TREE_OPERAND (ref2, 3), 0))
1296 return -1;
1297 }
1298 else
1299 {
1300 if (!operand_equal_p (TYPE_SIZE_UNIT (elmt_type1),
1301 TYPE_SIZE_UNIT (elmt_type2), 0))
1302 return -1;
1303 }
1304
1305 /* Since we know that type sizes are the same, there is no need to return
1306 -1 after this point. Partial overlap can not be introduced. */
1307
1308 /* We may need to fold trees in this case.
1309 TODO: Handle integer constant case at least. */
1310 if (!operand_equal_p (low_bound1, low_bound2, 0))
1311 return 0;
1312
1313 if (TREE_CODE (index1) == INTEGER_CST && TREE_CODE (index2) == INTEGER_CST)
1314 {
1315 if (tree_int_cst_equal (index1, index2))
1316 return 0;
1317 return 1;
1318 }
1319 /* TODO: We can use VRP to further disambiguate here. */
1320 return 0;
1321 }
1322
1323 /* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and
1324 MATCH2 either point to the same address or are disjoint.
1325 MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2
1326 respectively or NULL in the case we established equivalence of bases.
1327 If PARTIAL_OVERLAP is true assume that the toplevel arrays may actually
1328 overlap by exact multiply of their element size.
1329
1330 This test works by matching the initial segment of the access path
1331 and does not rely on TBAA thus is safe for !flag_strict_aliasing if
1332 match was determined without use of TBAA oracle.
1333
1334 Return 1 if we can determine that component references REF1 and REF2,
1335 that are within a common DECL, cannot overlap.
1336
1337 Return 0 if paths are same and thus there is nothing to disambiguate more
1338 (i.e. there is must alias assuming there is must alias between MATCH1 and
1339 MATCH2)
1340
1341 Return -1 if we can not determine 0 or 1 - this happens when we met
1342 non-matching types was met in the path.
1343 In this case it may make sense to continue by other disambiguation
1344 oracles. */
1345
1346 static int
1347 nonoverlapping_refs_since_match_p (tree match1, tree ref1,
1348 tree match2, tree ref2,
1349 bool partial_overlap)
1350 {
1351 /* Early return if there are no references to match, we do not need
1352 to walk the access paths.
1353
1354 Do not consider this as may-alias for stats - it is more useful
1355 to have information how many disambiguations happened provided that
1356 the query was meaningful. */
1357
1358 if (match1 == ref1 || !handled_component_p (ref1)
1359 || match2 == ref2 || !handled_component_p (ref2))
1360 return -1;
1361
1362 auto_vec<tree, 16> component_refs1;
1363 auto_vec<tree, 16> component_refs2;
1364
1365 /* Create the stack of handled components for REF1. */
1366 while (handled_component_p (ref1) && ref1 != match1)
1367 {
1368 if (TREE_CODE (ref1) == VIEW_CONVERT_EXPR
1369 || TREE_CODE (ref1) == BIT_FIELD_REF)
1370 component_refs1.truncate (0);
1371 else
1372 component_refs1.safe_push (ref1);
1373 ref1 = TREE_OPERAND (ref1, 0);
1374 }
1375
1376 /* Create the stack of handled components for REF2. */
1377 while (handled_component_p (ref2) && ref2 != match2)
1378 {
1379 if (TREE_CODE (ref2) == VIEW_CONVERT_EXPR
1380 || TREE_CODE (ref2) == BIT_FIELD_REF)
1381 component_refs2.truncate (0);
1382 else
1383 component_refs2.safe_push (ref2);
1384 ref2 = TREE_OPERAND (ref2, 0);
1385 }
1386
1387 bool mem_ref1 = TREE_CODE (ref1) == MEM_REF && ref1 != match1;
1388 bool mem_ref2 = TREE_CODE (ref2) == MEM_REF && ref2 != match2;
1389
1390 /* If only one of access path starts with MEM_REF check that offset is 0
1391 so the addresses stays the same after stripping it.
1392 TODO: In this case we may walk the other access path until we get same
1393 offset.
1394
1395 If both starts with MEM_REF, offset has to be same. */
1396 if ((mem_ref1 && !mem_ref2 && !integer_zerop (TREE_OPERAND (ref1, 1)))
1397 || (mem_ref2 && !mem_ref1 && !integer_zerop (TREE_OPERAND (ref2, 1)))
1398 || (mem_ref1 && mem_ref2
1399 && !tree_int_cst_equal (TREE_OPERAND (ref1, 1),
1400 TREE_OPERAND (ref2, 1))))
1401 {
1402 ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
1403 return -1;
1404 }
1405
1406 /* TARGET_MEM_REF are never wrapped in handled components, so we do not need
1407 to handle them here at all. */
1408 gcc_checking_assert (TREE_CODE (ref1) != TARGET_MEM_REF
1409 && TREE_CODE (ref2) != TARGET_MEM_REF);
1410
1411 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1412 rank. This is sufficient because we start from the same DECL and you
1413 cannot reference several fields at a time with COMPONENT_REFs (unlike
1414 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1415 of them to access a sub-component, unless you're in a union, in which
1416 case the return value will precisely be false. */
1417 while (true)
1418 {
1419 /* Track if we seen unmatched ref with non-zero offset. In this case
1420 we must look for partial overlaps. */
1421 bool seen_unmatched_ref_p = false;
1422
1423 /* First match ARRAY_REFs an try to disambiguate. */
1424 if (!component_refs1.is_empty ()
1425 && !component_refs2.is_empty ())
1426 {
1427 unsigned int narray_refs1=0, narray_refs2=0;
1428
1429 /* We generally assume that both access paths starts by same sequence
1430 of refs. However if number of array refs is not in sync, try
1431 to recover and pop elts until number match. This helps the case
1432 where one access path starts by array and other by element. */
1433 for (narray_refs1 = 0; narray_refs1 < component_refs1.length ();
1434 narray_refs1++)
1435 if (TREE_CODE (component_refs1 [component_refs1.length()
1436 - 1 - narray_refs1]) != ARRAY_REF)
1437 break;
1438
1439 for (narray_refs2 = 0; narray_refs2 < component_refs2.length ();
1440 narray_refs2++)
1441 if (TREE_CODE (component_refs2 [component_refs2.length()
1442 - 1 - narray_refs2]) != ARRAY_REF)
1443 break;
1444 for (; narray_refs1 > narray_refs2; narray_refs1--)
1445 {
1446 ref1 = component_refs1.pop ();
1447
1448 /* If index is non-zero we need to check whether the reference
1449 does not break the main invariant that bases are either
1450 disjoint or equal. Consider the example:
1451
1452 unsigned char out[][1];
1453 out[1]="a";
1454 out[i][0];
1455
1456 Here bases out and out are same, but after removing the
1457 [i] index, this invariant no longer holds, because
1458 out[i] points to the middle of array out.
1459
1460 TODO: If size of type of the skipped reference is an integer
1461 multiply of the size of type of the other reference this
1462 invariant can be verified, but even then it is not completely
1463 safe with !flag_strict_aliasing if the other reference contains
1464 unbounded array accesses.
1465 See */
1466
1467 if (!operand_equal_p (TREE_OPERAND (ref1, 1),
1468 cheap_array_ref_low_bound (ref1), 0))
1469 return 0;
1470 }
1471 for (; narray_refs2 > narray_refs1; narray_refs2--)
1472 {
1473 ref2 = component_refs2.pop ();
1474 if (!operand_equal_p (TREE_OPERAND (ref2, 1),
1475 cheap_array_ref_low_bound (ref2), 0))
1476 return 0;
1477 }
1478 /* Try to disambiguate matched arrays. */
1479 for (unsigned int i = 0; i < narray_refs1; i++)
1480 {
1481 int cmp = nonoverlapping_array_refs_p (component_refs1.pop (),
1482 component_refs2.pop ());
1483 if (cmp == 1 && !partial_overlap)
1484 {
1485 ++alias_stats
1486 .nonoverlapping_refs_since_match_p_no_alias;
1487 return 1;
1488 }
1489 partial_overlap = false;
1490 if (cmp == -1)
1491 seen_unmatched_ref_p = true;
1492 }
1493 }
1494
1495 /* Next look for component_refs. */
1496 do
1497 {
1498 if (component_refs1.is_empty ())
1499 {
1500 ++alias_stats
1501 .nonoverlapping_refs_since_match_p_must_overlap;
1502 return 0;
1503 }
1504 ref1 = component_refs1.pop ();
1505 if (TREE_CODE (ref1) != COMPONENT_REF)
1506 seen_unmatched_ref_p = true;
1507 }
1508 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1509
1510 do
1511 {
1512 if (component_refs2.is_empty ())
1513 {
1514 ++alias_stats
1515 .nonoverlapping_refs_since_match_p_must_overlap;
1516 return 0;
1517 }
1518 ref2 = component_refs2.pop ();
1519 if (TREE_CODE (ref2) != COMPONENT_REF)
1520 seen_unmatched_ref_p = true;
1521 }
1522 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1523
1524 /* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors
1525 earlier. */
1526 gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF
1527 && TREE_CODE (ref2) == COMPONENT_REF);
1528
1529 tree field1 = TREE_OPERAND (ref1, 1);
1530 tree field2 = TREE_OPERAND (ref2, 1);
1531
1532 /* ??? We cannot simply use the type of operand #0 of the refs here
1533 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1534 for common blocks instead of using unions like everyone else. */
1535 tree type1 = DECL_CONTEXT (field1);
1536 tree type2 = DECL_CONTEXT (field2);
1537
1538 partial_overlap = false;
1539
1540 /* If we skipped array refs on type of different sizes, we can
1541 no longer be sure that there are not partial overlaps. */
1542 if (seen_unmatched_ref_p
1543 && !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), 0))
1544 {
1545 ++alias_stats
1546 .nonoverlapping_refs_since_match_p_may_alias;
1547 return -1;
1548 }
1549
1550 int cmp = nonoverlapping_component_refs_p_1 (field1, field2);
1551 if (cmp == -1)
1552 {
1553 ++alias_stats
1554 .nonoverlapping_refs_since_match_p_may_alias;
1555 return -1;
1556 }
1557 else if (cmp == 1)
1558 {
1559 ++alias_stats
1560 .nonoverlapping_refs_since_match_p_no_alias;
1561 return 1;
1562 }
1563 }
1564
1565 ++alias_stats.nonoverlapping_refs_since_match_p_must_overlap;
1566 return 0;
1567 }
1568
1569 /* Return TYPE_UID which can be used to match record types we consider
1570 same for TBAA purposes. */
1571
1572 static inline int
1573 ncr_type_uid (const_tree field)
1574 {
1575 /* ??? We cannot simply use the type of operand #0 of the refs here
1576 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1577 for common blocks instead of using unions like everyone else. */
1578 tree type = DECL_FIELD_CONTEXT (field);
1579 /* With LTO types considered same_type_for_tbaa_p
1580 from different translation unit may not have same
1581 main variant. They however have same TYPE_CANONICAL. */
1582 if (TYPE_CANONICAL (type))
1583 return TYPE_UID (TYPE_CANONICAL (type));
1584 return TYPE_UID (type);
1585 }
1586
1587 /* qsort compare function to sort FIELD_DECLs after their
1588 DECL_FIELD_CONTEXT TYPE_UID. */
1589
1590 static inline int
1591 ncr_compar (const void *field1_, const void *field2_)
1592 {
1593 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1594 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1595 unsigned int uid1 = ncr_type_uid (field1);
1596 unsigned int uid2 = ncr_type_uid (field2);
1597
1598 if (uid1 < uid2)
1599 return -1;
1600 else if (uid1 > uid2)
1601 return 1;
1602 return 0;
1603 }
1604
1605 /* Return true if we can determine that the fields referenced cannot
1606 overlap for any pair of objects. This relies on TBAA. */
1607
1608 static bool
1609 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1610 {
1611 /* Early return if we have nothing to do.
1612
1613 Do not consider this as may-alias for stats - it is more useful
1614 to have information how many disambiguations happened provided that
1615 the query was meaningful. */
1616 if (!flag_strict_aliasing
1617 || !x || !y
1618 || !handled_component_p (x)
1619 || !handled_component_p (y))
1620 return false;
1621
1622 auto_vec<const_tree, 16> fieldsx;
1623 while (handled_component_p (x))
1624 {
1625 if (TREE_CODE (x) == COMPONENT_REF)
1626 {
1627 tree field = TREE_OPERAND (x, 1);
1628 tree type = DECL_FIELD_CONTEXT (field);
1629 if (TREE_CODE (type) == RECORD_TYPE)
1630 fieldsx.safe_push (field);
1631 }
1632 else if (TREE_CODE (x) == VIEW_CONVERT_EXPR
1633 || TREE_CODE (x) == BIT_FIELD_REF)
1634 fieldsx.truncate (0);
1635 x = TREE_OPERAND (x, 0);
1636 }
1637 if (fieldsx.length () == 0)
1638 return false;
1639 auto_vec<const_tree, 16> fieldsy;
1640 while (handled_component_p (y))
1641 {
1642 if (TREE_CODE (y) == COMPONENT_REF)
1643 {
1644 tree field = TREE_OPERAND (y, 1);
1645 tree type = DECL_FIELD_CONTEXT (field);
1646 if (TREE_CODE (type) == RECORD_TYPE)
1647 fieldsy.safe_push (TREE_OPERAND (y, 1));
1648 }
1649 else if (TREE_CODE (y) == VIEW_CONVERT_EXPR
1650 || TREE_CODE (y) == BIT_FIELD_REF)
1651 fieldsy.truncate (0);
1652 y = TREE_OPERAND (y, 0);
1653 }
1654 if (fieldsy.length () == 0)
1655 {
1656 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1657 return false;
1658 }
1659
1660 /* Most common case first. */
1661 if (fieldsx.length () == 1
1662 && fieldsy.length () == 1)
1663 {
1664 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]),
1665 DECL_FIELD_CONTEXT (fieldsy[0])) == 1
1666 && nonoverlapping_component_refs_p_1 (fieldsx[0], fieldsy[0]) == 1)
1667 {
1668 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1669 return true;
1670 }
1671 else
1672 {
1673 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1674 return false;
1675 }
1676 }
1677
1678 if (fieldsx.length () == 2)
1679 {
1680 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1681 std::swap (fieldsx[0], fieldsx[1]);
1682 }
1683 else
1684 fieldsx.qsort (ncr_compar);
1685
1686 if (fieldsy.length () == 2)
1687 {
1688 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1689 std::swap (fieldsy[0], fieldsy[1]);
1690 }
1691 else
1692 fieldsy.qsort (ncr_compar);
1693
1694 unsigned i = 0, j = 0;
1695 do
1696 {
1697 const_tree fieldx = fieldsx[i];
1698 const_tree fieldy = fieldsy[j];
1699
1700 /* We're left with accessing different fields of a structure,
1701 no possible overlap. */
1702 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx),
1703 DECL_FIELD_CONTEXT (fieldy)) == 1
1704 && nonoverlapping_component_refs_p_1 (fieldx, fieldy) == 1)
1705 {
1706 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1707 return true;
1708 }
1709
1710 if (ncr_type_uid (fieldx) < ncr_type_uid (fieldy))
1711 {
1712 i++;
1713 if (i == fieldsx.length ())
1714 break;
1715 }
1716 else
1717 {
1718 j++;
1719 if (j == fieldsy.length ())
1720 break;
1721 }
1722 }
1723 while (1);
1724
1725 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1726 return false;
1727 }
1728
1729
1730 /* Return true if two memory references based on the variables BASE1
1731 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1732 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1733 if non-NULL are the complete memory reference trees. */
1734
1735 static bool
1736 decl_refs_may_alias_p (tree ref1, tree base1,
1737 poly_int64 offset1, poly_int64 max_size1,
1738 poly_int64 size1,
1739 tree ref2, tree base2,
1740 poly_int64 offset2, poly_int64 max_size2,
1741 poly_int64 size2)
1742 {
1743 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1744
1745 /* If both references are based on different variables, they cannot alias. */
1746 if (compare_base_decls (base1, base2) == 0)
1747 return false;
1748
1749 /* If both references are based on the same variable, they cannot alias if
1750 the accesses do not overlap. */
1751 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1752 return false;
1753
1754 /* If there is must alias, there is no use disambiguating further. */
1755 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1756 return true;
1757
1758 /* For components with variable position, the above test isn't sufficient,
1759 so we disambiguate component references manually. */
1760 if (ref1 && ref2
1761 && handled_component_p (ref1) && handled_component_p (ref2)
1762 && nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, false) == 1)
1763 return false;
1764
1765 return true;
1766 }
1767
1768 /* Return true if an indirect reference based on *PTR1 constrained
1769 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1770 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1771 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1772 in which case they are computed on-demand. REF1 and REF2
1773 if non-NULL are the complete memory reference trees. */
1774
1775 static bool
1776 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1777 poly_int64 offset1, poly_int64 max_size1,
1778 poly_int64 size1,
1779 alias_set_type ref1_alias_set,
1780 alias_set_type base1_alias_set,
1781 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1782 poly_int64 offset2, poly_int64 max_size2,
1783 poly_int64 size2,
1784 alias_set_type ref2_alias_set,
1785 alias_set_type base2_alias_set, bool tbaa_p)
1786 {
1787 tree ptr1;
1788 tree ptrtype1, dbase2;
1789
1790 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1791 || TREE_CODE (base1) == TARGET_MEM_REF)
1792 && DECL_P (base2));
1793
1794 ptr1 = TREE_OPERAND (base1, 0);
1795 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1796
1797 /* If only one reference is based on a variable, they cannot alias if
1798 the pointer access is beyond the extent of the variable access.
1799 (the pointer base cannot validly point to an offset less than zero
1800 of the variable).
1801 ??? IVOPTs creates bases that do not honor this restriction,
1802 so do not apply this optimization for TARGET_MEM_REFs. */
1803 if (TREE_CODE (base1) != TARGET_MEM_REF
1804 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1805 return false;
1806 /* They also cannot alias if the pointer may not point to the decl. */
1807 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1808 return false;
1809
1810 /* Disambiguations that rely on strict aliasing rules follow. */
1811 if (!flag_strict_aliasing || !tbaa_p)
1812 return true;
1813
1814 /* If the alias set for a pointer access is zero all bets are off. */
1815 if (base1_alias_set == 0 || base2_alias_set == 0)
1816 return true;
1817
1818 /* When we are trying to disambiguate an access with a pointer dereference
1819 as base versus one with a decl as base we can use both the size
1820 of the decl and its dynamic type for extra disambiguation.
1821 ??? We do not know anything about the dynamic type of the decl
1822 other than that its alias-set contains base2_alias_set as a subset
1823 which does not help us here. */
1824 /* As we know nothing useful about the dynamic type of the decl just
1825 use the usual conflict check rather than a subset test.
1826 ??? We could introduce -fvery-strict-aliasing when the language
1827 does not allow decls to have a dynamic type that differs from their
1828 static type. Then we can check
1829 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1830 if (base1_alias_set != base2_alias_set
1831 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1832 return false;
1833
1834 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1835
1836 /* If the size of the access relevant for TBAA through the pointer
1837 is bigger than the size of the decl we can't possibly access the
1838 decl via that pointer. */
1839 if (/* ??? This in turn may run afoul when a decl of type T which is
1840 a member of union type U is accessed through a pointer to
1841 type U and sizeof T is smaller than sizeof U. */
1842 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1843 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1844 && compare_sizes (DECL_SIZE (base2),
1845 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1846 return false;
1847
1848 if (!ref2)
1849 return true;
1850
1851 /* If the decl is accessed via a MEM_REF, reconstruct the base
1852 we can use for TBAA and an appropriately adjusted offset. */
1853 dbase2 = ref2;
1854 while (handled_component_p (dbase2))
1855 dbase2 = TREE_OPERAND (dbase2, 0);
1856 poly_int64 doffset1 = offset1;
1857 poly_offset_int doffset2 = offset2;
1858 if (TREE_CODE (dbase2) == MEM_REF
1859 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1860 {
1861 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1862 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1863 /* If second reference is view-converted, give up now. */
1864 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1865 return true;
1866 }
1867
1868 /* If first reference is view-converted, give up now. */
1869 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1870 return true;
1871
1872 /* If both references are through the same type, they do not alias
1873 if the accesses do not overlap. This does extra disambiguation
1874 for mixed/pointer accesses but requires strict aliasing.
1875 For MEM_REFs we require that the component-ref offset we computed
1876 is relative to the start of the type which we ensure by
1877 comparing rvalue and access type and disregarding the constant
1878 pointer offset.
1879
1880 But avoid treating variable length arrays as "objects", instead assume they
1881 can overlap by an exact multiple of their element size.
1882 See gcc.dg/torture/alias-2.c. */
1883 if (((TREE_CODE (base1) != TARGET_MEM_REF
1884 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1885 && (TREE_CODE (dbase2) != TARGET_MEM_REF
1886 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
1887 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
1888 {
1889 bool partial_overlap = (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
1890 && (TYPE_SIZE (TREE_TYPE (base1))
1891 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1)))
1892 != INTEGER_CST));
1893 if (!partial_overlap
1894 && !ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2))
1895 return false;
1896 if (!ref1 || !ref2
1897 /* If there is must alias, there is no use disambiguating further. */
1898 || (!partial_overlap
1899 && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
1900 return true;
1901 int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
1902 partial_overlap);
1903 if (res == -1)
1904 return !nonoverlapping_component_refs_p (ref1, ref2);
1905 return !res;
1906 }
1907
1908 /* Do access-path based disambiguation. */
1909 if (ref1 && ref2
1910 && (handled_component_p (ref1) || handled_component_p (ref2)))
1911 return aliasing_component_refs_p (ref1,
1912 ref1_alias_set, base1_alias_set,
1913 offset1, max_size1,
1914 ref2,
1915 ref2_alias_set, base2_alias_set,
1916 offset2, max_size2);
1917
1918 return true;
1919 }
1920
1921 /* Return true if two indirect references based on *PTR1
1922 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1923 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1924 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1925 in which case they are computed on-demand. REF1 and REF2
1926 if non-NULL are the complete memory reference trees. */
1927
1928 static bool
1929 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1930 poly_int64 offset1, poly_int64 max_size1,
1931 poly_int64 size1,
1932 alias_set_type ref1_alias_set,
1933 alias_set_type base1_alias_set,
1934 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1935 poly_int64 offset2, poly_int64 max_size2,
1936 poly_int64 size2,
1937 alias_set_type ref2_alias_set,
1938 alias_set_type base2_alias_set, bool tbaa_p)
1939 {
1940 tree ptr1;
1941 tree ptr2;
1942 tree ptrtype1, ptrtype2;
1943
1944 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1945 || TREE_CODE (base1) == TARGET_MEM_REF)
1946 && (TREE_CODE (base2) == MEM_REF
1947 || TREE_CODE (base2) == TARGET_MEM_REF));
1948
1949 ptr1 = TREE_OPERAND (base1, 0);
1950 ptr2 = TREE_OPERAND (base2, 0);
1951
1952 /* If both bases are based on pointers they cannot alias if they may not
1953 point to the same memory object or if they point to the same object
1954 and the accesses do not overlap. */
1955 if ((!cfun || gimple_in_ssa_p (cfun))
1956 && operand_equal_p (ptr1, ptr2, 0)
1957 && (((TREE_CODE (base1) != TARGET_MEM_REF
1958 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1959 && (TREE_CODE (base2) != TARGET_MEM_REF
1960 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1961 || (TREE_CODE (base1) == TARGET_MEM_REF
1962 && TREE_CODE (base2) == TARGET_MEM_REF
1963 && (TMR_STEP (base1) == TMR_STEP (base2)
1964 || (TMR_STEP (base1) && TMR_STEP (base2)
1965 && operand_equal_p (TMR_STEP (base1),
1966 TMR_STEP (base2), 0)))
1967 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1968 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1969 && operand_equal_p (TMR_INDEX (base1),
1970 TMR_INDEX (base2), 0)))
1971 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1972 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1973 && operand_equal_p (TMR_INDEX2 (base1),
1974 TMR_INDEX2 (base2), 0))))))
1975 {
1976 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1977 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1978 if (!ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1979 offset2 + moff2, max_size2))
1980 return false;
1981 /* If there is must alias, there is no use disambiguating further. */
1982 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1983 return true;
1984 if (ref1 && ref2)
1985 {
1986 int res = nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2,
1987 false);
1988 if (res != -1)
1989 return !res;
1990 }
1991 }
1992 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1993 return false;
1994
1995 /* Disambiguations that rely on strict aliasing rules follow. */
1996 if (!flag_strict_aliasing || !tbaa_p)
1997 return true;
1998
1999 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
2000 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
2001
2002 /* If the alias set for a pointer access is zero all bets are off. */
2003 if (base1_alias_set == 0
2004 || base2_alias_set == 0)
2005 return true;
2006
2007 /* Do type-based disambiguation. */
2008 if (base1_alias_set != base2_alias_set
2009 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
2010 return false;
2011
2012 /* If either reference is view-converted, give up now. */
2013 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
2014 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
2015 return true;
2016
2017 /* If both references are through the same type, they do not alias
2018 if the accesses do not overlap. This does extra disambiguation
2019 for mixed/pointer accesses but requires strict aliasing. */
2020 if ((TREE_CODE (base1) != TARGET_MEM_REF
2021 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
2022 && (TREE_CODE (base2) != TARGET_MEM_REF
2023 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
2024 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
2025 TREE_TYPE (ptrtype2)) == 1)
2026 {
2027 /* But avoid treating arrays as "objects", instead assume they
2028 can overlap by an exact multiple of their element size.
2029 See gcc.dg/torture/alias-2.c. */
2030 bool partial_overlap = TREE_CODE (TREE_TYPE (ptrtype1)) == ARRAY_TYPE;
2031
2032 if (!partial_overlap
2033 && !ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
2034 return false;
2035 if (!ref1 || !ref2
2036 || (!partial_overlap
2037 && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
2038 return true;
2039 int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
2040 partial_overlap);
2041 if (res == -1)
2042 return !nonoverlapping_component_refs_p (ref1, ref2);
2043 return !res;
2044 }
2045
2046 /* Do access-path based disambiguation. */
2047 if (ref1 && ref2
2048 && (handled_component_p (ref1) || handled_component_p (ref2)))
2049 return aliasing_component_refs_p (ref1,
2050 ref1_alias_set, base1_alias_set,
2051 offset1, max_size1,
2052 ref2,
2053 ref2_alias_set, base2_alias_set,
2054 offset2, max_size2);
2055
2056 return true;
2057 }
2058
2059 /* Return true, if the two memory references REF1 and REF2 may alias. */
2060
2061 static bool
2062 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2063 {
2064 tree base1, base2;
2065 poly_int64 offset1 = 0, offset2 = 0;
2066 poly_int64 max_size1 = -1, max_size2 = -1;
2067 bool var1_p, var2_p, ind1_p, ind2_p;
2068
2069 gcc_checking_assert ((!ref1->ref
2070 || TREE_CODE (ref1->ref) == SSA_NAME
2071 || DECL_P (ref1->ref)
2072 || TREE_CODE (ref1->ref) == STRING_CST
2073 || handled_component_p (ref1->ref)
2074 || TREE_CODE (ref1->ref) == MEM_REF
2075 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
2076 && (!ref2->ref
2077 || TREE_CODE (ref2->ref) == SSA_NAME
2078 || DECL_P (ref2->ref)
2079 || TREE_CODE (ref2->ref) == STRING_CST
2080 || handled_component_p (ref2->ref)
2081 || TREE_CODE (ref2->ref) == MEM_REF
2082 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
2083
2084 /* Decompose the references into their base objects and the access. */
2085 base1 = ao_ref_base (ref1);
2086 offset1 = ref1->offset;
2087 max_size1 = ref1->max_size;
2088 base2 = ao_ref_base (ref2);
2089 offset2 = ref2->offset;
2090 max_size2 = ref2->max_size;
2091
2092 /* We can end up with registers or constants as bases for example from
2093 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
2094 which is seen as a struct copy. */
2095 if (TREE_CODE (base1) == SSA_NAME
2096 || TREE_CODE (base1) == CONST_DECL
2097 || TREE_CODE (base1) == CONSTRUCTOR
2098 || TREE_CODE (base1) == ADDR_EXPR
2099 || CONSTANT_CLASS_P (base1)
2100 || TREE_CODE (base2) == SSA_NAME
2101 || TREE_CODE (base2) == CONST_DECL
2102 || TREE_CODE (base2) == CONSTRUCTOR
2103 || TREE_CODE (base2) == ADDR_EXPR
2104 || CONSTANT_CLASS_P (base2))
2105 return false;
2106
2107 /* We can end up referring to code via function and label decls.
2108 As we likely do not properly track code aliases conservatively
2109 bail out. */
2110 if (TREE_CODE (base1) == FUNCTION_DECL
2111 || TREE_CODE (base1) == LABEL_DECL
2112 || TREE_CODE (base2) == FUNCTION_DECL
2113 || TREE_CODE (base2) == LABEL_DECL)
2114 return true;
2115
2116 /* Two volatile accesses always conflict. */
2117 if (ref1->volatile_p
2118 && ref2->volatile_p)
2119 return true;
2120
2121 /* Defer to simple offset based disambiguation if we have
2122 references based on two decls. Do this before defering to
2123 TBAA to handle must-alias cases in conformance with the
2124 GCC extension of allowing type-punning through unions. */
2125 var1_p = DECL_P (base1);
2126 var2_p = DECL_P (base2);
2127 if (var1_p && var2_p)
2128 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
2129 ref1->size,
2130 ref2->ref, base2, offset2, max_size2,
2131 ref2->size);
2132
2133 /* Handle restrict based accesses.
2134 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
2135 here. */
2136 tree rbase1 = base1;
2137 tree rbase2 = base2;
2138 if (var1_p)
2139 {
2140 rbase1 = ref1->ref;
2141 if (rbase1)
2142 while (handled_component_p (rbase1))
2143 rbase1 = TREE_OPERAND (rbase1, 0);
2144 }
2145 if (var2_p)
2146 {
2147 rbase2 = ref2->ref;
2148 if (rbase2)
2149 while (handled_component_p (rbase2))
2150 rbase2 = TREE_OPERAND (rbase2, 0);
2151 }
2152 if (rbase1 && rbase2
2153 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
2154 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
2155 /* If the accesses are in the same restrict clique... */
2156 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
2157 /* But based on different pointers they do not alias. */
2158 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
2159 return false;
2160
2161 ind1_p = (TREE_CODE (base1) == MEM_REF
2162 || TREE_CODE (base1) == TARGET_MEM_REF);
2163 ind2_p = (TREE_CODE (base2) == MEM_REF
2164 || TREE_CODE (base2) == TARGET_MEM_REF);
2165
2166 /* Canonicalize the pointer-vs-decl case. */
2167 if (ind1_p && var2_p)
2168 {
2169 std::swap (offset1, offset2);
2170 std::swap (max_size1, max_size2);
2171 std::swap (base1, base2);
2172 std::swap (ref1, ref2);
2173 var1_p = true;
2174 ind1_p = false;
2175 var2_p = false;
2176 ind2_p = true;
2177 }
2178
2179 /* First defer to TBAA if possible. */
2180 if (tbaa_p
2181 && flag_strict_aliasing
2182 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
2183 ao_ref_alias_set (ref2)))
2184 return false;
2185
2186 /* If the reference is based on a pointer that points to memory
2187 that may not be written to then the other reference cannot possibly
2188 clobber it. */
2189 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
2190 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
2191 || (ind1_p
2192 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
2193 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
2194 return false;
2195
2196 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
2197 if (var1_p && ind2_p)
2198 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
2199 offset2, max_size2, ref2->size,
2200 ao_ref_alias_set (ref2),
2201 ao_ref_base_alias_set (ref2),
2202 ref1->ref, base1,
2203 offset1, max_size1, ref1->size,
2204 ao_ref_alias_set (ref1),
2205 ao_ref_base_alias_set (ref1),
2206 tbaa_p);
2207 else if (ind1_p && ind2_p)
2208 return indirect_refs_may_alias_p (ref1->ref, base1,
2209 offset1, max_size1, ref1->size,
2210 ao_ref_alias_set (ref1),
2211 ao_ref_base_alias_set (ref1),
2212 ref2->ref, base2,
2213 offset2, max_size2, ref2->size,
2214 ao_ref_alias_set (ref2),
2215 ao_ref_base_alias_set (ref2),
2216 tbaa_p);
2217
2218 gcc_unreachable ();
2219 }
2220
2221 /* Return true, if the two memory references REF1 and REF2 may alias
2222 and update statistics. */
2223
2224 bool
2225 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2226 {
2227 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
2228 if (res)
2229 ++alias_stats.refs_may_alias_p_may_alias;
2230 else
2231 ++alias_stats.refs_may_alias_p_no_alias;
2232 return res;
2233 }
2234
2235 static bool
2236 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
2237 {
2238 ao_ref r1;
2239 ao_ref_init (&r1, ref1);
2240 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
2241 }
2242
2243 bool
2244 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
2245 {
2246 ao_ref r1, r2;
2247 ao_ref_init (&r1, ref1);
2248 ao_ref_init (&r2, ref2);
2249 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
2250 }
2251
2252 /* Returns true if there is a anti-dependence for the STORE that
2253 executes after the LOAD. */
2254
2255 bool
2256 refs_anti_dependent_p (tree load, tree store)
2257 {
2258 ao_ref r1, r2;
2259 ao_ref_init (&r1, load);
2260 ao_ref_init (&r2, store);
2261 return refs_may_alias_p_1 (&r1, &r2, false);
2262 }
2263
2264 /* Returns true if there is a output dependence for the stores
2265 STORE1 and STORE2. */
2266
2267 bool
2268 refs_output_dependent_p (tree store1, tree store2)
2269 {
2270 ao_ref r1, r2;
2271 ao_ref_init (&r1, store1);
2272 ao_ref_init (&r2, store2);
2273 return refs_may_alias_p_1 (&r1, &r2, false);
2274 }
2275
2276 /* If the call CALL may use the memory reference REF return true,
2277 otherwise return false. */
2278
2279 static bool
2280 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
2281 {
2282 tree base, callee;
2283 unsigned i;
2284 int flags = gimple_call_flags (call);
2285
2286 /* Const functions without a static chain do not implicitly use memory. */
2287 if (!gimple_call_chain (call)
2288 && (flags & (ECF_CONST|ECF_NOVOPS)))
2289 goto process_args;
2290
2291 base = ao_ref_base (ref);
2292 if (!base)
2293 return true;
2294
2295 /* A call that is not without side-effects might involve volatile
2296 accesses and thus conflicts with all other volatile accesses. */
2297 if (ref->volatile_p)
2298 return true;
2299
2300 /* If the reference is based on a decl that is not aliased the call
2301 cannot possibly use it. */
2302 if (DECL_P (base)
2303 && !may_be_aliased (base)
2304 /* But local statics can be used through recursion. */
2305 && !is_global_var (base))
2306 goto process_args;
2307
2308 callee = gimple_call_fndecl (call);
2309
2310 /* Handle those builtin functions explicitly that do not act as
2311 escape points. See tree-ssa-structalias.c:find_func_aliases
2312 for the list of builtins we might need to handle here. */
2313 if (callee != NULL_TREE
2314 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2315 switch (DECL_FUNCTION_CODE (callee))
2316 {
2317 /* All the following functions read memory pointed to by
2318 their second argument. strcat/strncat additionally
2319 reads memory pointed to by the first argument. */
2320 case BUILT_IN_STRCAT:
2321 case BUILT_IN_STRNCAT:
2322 {
2323 ao_ref dref;
2324 ao_ref_init_from_ptr_and_size (&dref,
2325 gimple_call_arg (call, 0),
2326 NULL_TREE);
2327 if (refs_may_alias_p_1 (&dref, ref, false))
2328 return true;
2329 }
2330 /* FALLTHRU */
2331 case BUILT_IN_STRCPY:
2332 case BUILT_IN_STRNCPY:
2333 case BUILT_IN_MEMCPY:
2334 case BUILT_IN_MEMMOVE:
2335 case BUILT_IN_MEMPCPY:
2336 case BUILT_IN_STPCPY:
2337 case BUILT_IN_STPNCPY:
2338 case BUILT_IN_TM_MEMCPY:
2339 case BUILT_IN_TM_MEMMOVE:
2340 {
2341 ao_ref dref;
2342 tree size = NULL_TREE;
2343 if (gimple_call_num_args (call) == 3)
2344 size = gimple_call_arg (call, 2);
2345 ao_ref_init_from_ptr_and_size (&dref,
2346 gimple_call_arg (call, 1),
2347 size);
2348 return refs_may_alias_p_1 (&dref, ref, false);
2349 }
2350 case BUILT_IN_STRCAT_CHK:
2351 case BUILT_IN_STRNCAT_CHK:
2352 {
2353 ao_ref dref;
2354 ao_ref_init_from_ptr_and_size (&dref,
2355 gimple_call_arg (call, 0),
2356 NULL_TREE);
2357 if (refs_may_alias_p_1 (&dref, ref, false))
2358 return true;
2359 }
2360 /* FALLTHRU */
2361 case BUILT_IN_STRCPY_CHK:
2362 case BUILT_IN_STRNCPY_CHK:
2363 case BUILT_IN_MEMCPY_CHK:
2364 case BUILT_IN_MEMMOVE_CHK:
2365 case BUILT_IN_MEMPCPY_CHK:
2366 case BUILT_IN_STPCPY_CHK:
2367 case BUILT_IN_STPNCPY_CHK:
2368 {
2369 ao_ref dref;
2370 tree size = NULL_TREE;
2371 if (gimple_call_num_args (call) == 4)
2372 size = gimple_call_arg (call, 2);
2373 ao_ref_init_from_ptr_and_size (&dref,
2374 gimple_call_arg (call, 1),
2375 size);
2376 return refs_may_alias_p_1 (&dref, ref, false);
2377 }
2378 case BUILT_IN_BCOPY:
2379 {
2380 ao_ref dref;
2381 tree size = gimple_call_arg (call, 2);
2382 ao_ref_init_from_ptr_and_size (&dref,
2383 gimple_call_arg (call, 0),
2384 size);
2385 return refs_may_alias_p_1 (&dref, ref, false);
2386 }
2387
2388 /* The following functions read memory pointed to by their
2389 first argument. */
2390 CASE_BUILT_IN_TM_LOAD (1):
2391 CASE_BUILT_IN_TM_LOAD (2):
2392 CASE_BUILT_IN_TM_LOAD (4):
2393 CASE_BUILT_IN_TM_LOAD (8):
2394 CASE_BUILT_IN_TM_LOAD (FLOAT):
2395 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2396 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2397 CASE_BUILT_IN_TM_LOAD (M64):
2398 CASE_BUILT_IN_TM_LOAD (M128):
2399 CASE_BUILT_IN_TM_LOAD (M256):
2400 case BUILT_IN_TM_LOG:
2401 case BUILT_IN_TM_LOG_1:
2402 case BUILT_IN_TM_LOG_2:
2403 case BUILT_IN_TM_LOG_4:
2404 case BUILT_IN_TM_LOG_8:
2405 case BUILT_IN_TM_LOG_FLOAT:
2406 case BUILT_IN_TM_LOG_DOUBLE:
2407 case BUILT_IN_TM_LOG_LDOUBLE:
2408 case BUILT_IN_TM_LOG_M64:
2409 case BUILT_IN_TM_LOG_M128:
2410 case BUILT_IN_TM_LOG_M256:
2411 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2412
2413 /* These read memory pointed to by the first argument. */
2414 case BUILT_IN_STRDUP:
2415 case BUILT_IN_STRNDUP:
2416 case BUILT_IN_REALLOC:
2417 {
2418 ao_ref dref;
2419 tree size = NULL_TREE;
2420 if (gimple_call_num_args (call) == 2)
2421 size = gimple_call_arg (call, 1);
2422 ao_ref_init_from_ptr_and_size (&dref,
2423 gimple_call_arg (call, 0),
2424 size);
2425 return refs_may_alias_p_1 (&dref, ref, false);
2426 }
2427 /* These read memory pointed to by the first argument. */
2428 case BUILT_IN_INDEX:
2429 case BUILT_IN_STRCHR:
2430 case BUILT_IN_STRRCHR:
2431 {
2432 ao_ref dref;
2433 ao_ref_init_from_ptr_and_size (&dref,
2434 gimple_call_arg (call, 0),
2435 NULL_TREE);
2436 return refs_may_alias_p_1 (&dref, ref, false);
2437 }
2438 /* These read memory pointed to by the first argument with size
2439 in the third argument. */
2440 case BUILT_IN_MEMCHR:
2441 {
2442 ao_ref dref;
2443 ao_ref_init_from_ptr_and_size (&dref,
2444 gimple_call_arg (call, 0),
2445 gimple_call_arg (call, 2));
2446 return refs_may_alias_p_1 (&dref, ref, false);
2447 }
2448 /* These read memory pointed to by the first and second arguments. */
2449 case BUILT_IN_STRSTR:
2450 case BUILT_IN_STRPBRK:
2451 {
2452 ao_ref dref;
2453 ao_ref_init_from_ptr_and_size (&dref,
2454 gimple_call_arg (call, 0),
2455 NULL_TREE);
2456 if (refs_may_alias_p_1 (&dref, ref, false))
2457 return true;
2458 ao_ref_init_from_ptr_and_size (&dref,
2459 gimple_call_arg (call, 1),
2460 NULL_TREE);
2461 return refs_may_alias_p_1 (&dref, ref, false);
2462 }
2463
2464 /* The following builtins do not read from memory. */
2465 case BUILT_IN_FREE:
2466 case BUILT_IN_MALLOC:
2467 case BUILT_IN_POSIX_MEMALIGN:
2468 case BUILT_IN_ALIGNED_ALLOC:
2469 case BUILT_IN_CALLOC:
2470 CASE_BUILT_IN_ALLOCA:
2471 case BUILT_IN_STACK_SAVE:
2472 case BUILT_IN_STACK_RESTORE:
2473 case BUILT_IN_MEMSET:
2474 case BUILT_IN_TM_MEMSET:
2475 case BUILT_IN_MEMSET_CHK:
2476 case BUILT_IN_FREXP:
2477 case BUILT_IN_FREXPF:
2478 case BUILT_IN_FREXPL:
2479 case BUILT_IN_GAMMA_R:
2480 case BUILT_IN_GAMMAF_R:
2481 case BUILT_IN_GAMMAL_R:
2482 case BUILT_IN_LGAMMA_R:
2483 case BUILT_IN_LGAMMAF_R:
2484 case BUILT_IN_LGAMMAL_R:
2485 case BUILT_IN_MODF:
2486 case BUILT_IN_MODFF:
2487 case BUILT_IN_MODFL:
2488 case BUILT_IN_REMQUO:
2489 case BUILT_IN_REMQUOF:
2490 case BUILT_IN_REMQUOL:
2491 case BUILT_IN_SINCOS:
2492 case BUILT_IN_SINCOSF:
2493 case BUILT_IN_SINCOSL:
2494 case BUILT_IN_ASSUME_ALIGNED:
2495 case BUILT_IN_VA_END:
2496 return false;
2497 /* __sync_* builtins and some OpenMP builtins act as threading
2498 barriers. */
2499 #undef DEF_SYNC_BUILTIN
2500 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2501 #include "sync-builtins.def"
2502 #undef DEF_SYNC_BUILTIN
2503 case BUILT_IN_GOMP_ATOMIC_START:
2504 case BUILT_IN_GOMP_ATOMIC_END:
2505 case BUILT_IN_GOMP_BARRIER:
2506 case BUILT_IN_GOMP_BARRIER_CANCEL:
2507 case BUILT_IN_GOMP_TASKWAIT:
2508 case BUILT_IN_GOMP_TASKGROUP_END:
2509 case BUILT_IN_GOMP_CRITICAL_START:
2510 case BUILT_IN_GOMP_CRITICAL_END:
2511 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2512 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2513 case BUILT_IN_GOMP_LOOP_END:
2514 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2515 case BUILT_IN_GOMP_ORDERED_START:
2516 case BUILT_IN_GOMP_ORDERED_END:
2517 case BUILT_IN_GOMP_SECTIONS_END:
2518 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2519 case BUILT_IN_GOMP_SINGLE_COPY_START:
2520 case BUILT_IN_GOMP_SINGLE_COPY_END:
2521 return true;
2522
2523 default:
2524 /* Fallthru to general call handling. */;
2525 }
2526
2527 /* Check if base is a global static variable that is not read
2528 by the function. */
2529 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2530 {
2531 struct cgraph_node *node = cgraph_node::get (callee);
2532 bitmap read;
2533 int id;
2534
2535 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2536 node yet. We should enforce that there are nodes for all decls in the
2537 IL and remove this check instead. */
2538 if (node
2539 && (id = ipa_reference_var_uid (base)) != -1
2540 && (read = ipa_reference_get_read_global (node))
2541 && !bitmap_bit_p (read, id))
2542 goto process_args;
2543 }
2544
2545 /* Check if the base variable is call-used. */
2546 if (DECL_P (base))
2547 {
2548 if (pt_solution_includes (gimple_call_use_set (call), base))
2549 return true;
2550 }
2551 else if ((TREE_CODE (base) == MEM_REF
2552 || TREE_CODE (base) == TARGET_MEM_REF)
2553 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2554 {
2555 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2556 if (!pi)
2557 return true;
2558
2559 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2560 return true;
2561 }
2562 else
2563 return true;
2564
2565 /* Inspect call arguments for passed-by-value aliases. */
2566 process_args:
2567 for (i = 0; i < gimple_call_num_args (call); ++i)
2568 {
2569 tree op = gimple_call_arg (call, i);
2570 int flags = gimple_call_arg_flags (call, i);
2571
2572 if (flags & EAF_UNUSED)
2573 continue;
2574
2575 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2576 op = TREE_OPERAND (op, 0);
2577
2578 if (TREE_CODE (op) != SSA_NAME
2579 && !is_gimple_min_invariant (op))
2580 {
2581 ao_ref r;
2582 ao_ref_init (&r, op);
2583 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2584 return true;
2585 }
2586 }
2587
2588 return false;
2589 }
2590
2591 static bool
2592 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2593 {
2594 bool res;
2595 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2596 if (res)
2597 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2598 else
2599 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2600 return res;
2601 }
2602
2603
2604 /* If the statement STMT may use the memory reference REF return
2605 true, otherwise return false. */
2606
2607 bool
2608 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2609 {
2610 if (is_gimple_assign (stmt))
2611 {
2612 tree rhs;
2613
2614 /* All memory assign statements are single. */
2615 if (!gimple_assign_single_p (stmt))
2616 return false;
2617
2618 rhs = gimple_assign_rhs1 (stmt);
2619 if (is_gimple_reg (rhs)
2620 || is_gimple_min_invariant (rhs)
2621 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2622 return false;
2623
2624 return refs_may_alias_p (rhs, ref, tbaa_p);
2625 }
2626 else if (is_gimple_call (stmt))
2627 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2628 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2629 {
2630 tree retval = gimple_return_retval (return_stmt);
2631 if (retval
2632 && TREE_CODE (retval) != SSA_NAME
2633 && !is_gimple_min_invariant (retval)
2634 && refs_may_alias_p (retval, ref, tbaa_p))
2635 return true;
2636 /* If ref escapes the function then the return acts as a use. */
2637 tree base = ao_ref_base (ref);
2638 if (!base)
2639 ;
2640 else if (DECL_P (base))
2641 return is_global_var (base);
2642 else if (TREE_CODE (base) == MEM_REF
2643 || TREE_CODE (base) == TARGET_MEM_REF)
2644 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2645 return false;
2646 }
2647
2648 return true;
2649 }
2650
2651 bool
2652 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2653 {
2654 ao_ref r;
2655 ao_ref_init (&r, ref);
2656 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2657 }
2658
2659 /* If the call in statement CALL may clobber the memory reference REF
2660 return true, otherwise return false. */
2661
2662 bool
2663 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2664 {
2665 tree base;
2666 tree callee;
2667
2668 /* If the call is pure or const it cannot clobber anything. */
2669 if (gimple_call_flags (call)
2670 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2671 return false;
2672 if (gimple_call_internal_p (call))
2673 switch (gimple_call_internal_fn (call))
2674 {
2675 /* Treat these internal calls like ECF_PURE for aliasing,
2676 they don't write to any memory the program should care about.
2677 They have important other side-effects, and read memory,
2678 so can't be ECF_NOVOPS. */
2679 case IFN_UBSAN_NULL:
2680 case IFN_UBSAN_BOUNDS:
2681 case IFN_UBSAN_VPTR:
2682 case IFN_UBSAN_OBJECT_SIZE:
2683 case IFN_UBSAN_PTR:
2684 case IFN_ASAN_CHECK:
2685 return false;
2686 default:
2687 break;
2688 }
2689
2690 base = ao_ref_base (ref);
2691 if (!base)
2692 return true;
2693
2694 if (TREE_CODE (base) == SSA_NAME
2695 || CONSTANT_CLASS_P (base))
2696 return false;
2697
2698 /* A call that is not without side-effects might involve volatile
2699 accesses and thus conflicts with all other volatile accesses. */
2700 if (ref->volatile_p)
2701 return true;
2702
2703 /* If the reference is based on a decl that is not aliased the call
2704 cannot possibly clobber it. */
2705 if (DECL_P (base)
2706 && !may_be_aliased (base)
2707 /* But local non-readonly statics can be modified through recursion
2708 or the call may implement a threading barrier which we must
2709 treat as may-def. */
2710 && (TREE_READONLY (base)
2711 || !is_global_var (base)))
2712 return false;
2713
2714 /* If the reference is based on a pointer that points to memory
2715 that may not be written to then the call cannot possibly clobber it. */
2716 if ((TREE_CODE (base) == MEM_REF
2717 || TREE_CODE (base) == TARGET_MEM_REF)
2718 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2719 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2720 return false;
2721
2722 callee = gimple_call_fndecl (call);
2723
2724 /* Handle those builtin functions explicitly that do not act as
2725 escape points. See tree-ssa-structalias.c:find_func_aliases
2726 for the list of builtins we might need to handle here. */
2727 if (callee != NULL_TREE
2728 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2729 switch (DECL_FUNCTION_CODE (callee))
2730 {
2731 /* All the following functions clobber memory pointed to by
2732 their first argument. */
2733 case BUILT_IN_STRCPY:
2734 case BUILT_IN_STRNCPY:
2735 case BUILT_IN_MEMCPY:
2736 case BUILT_IN_MEMMOVE:
2737 case BUILT_IN_MEMPCPY:
2738 case BUILT_IN_STPCPY:
2739 case BUILT_IN_STPNCPY:
2740 case BUILT_IN_STRCAT:
2741 case BUILT_IN_STRNCAT:
2742 case BUILT_IN_MEMSET:
2743 case BUILT_IN_TM_MEMSET:
2744 CASE_BUILT_IN_TM_STORE (1):
2745 CASE_BUILT_IN_TM_STORE (2):
2746 CASE_BUILT_IN_TM_STORE (4):
2747 CASE_BUILT_IN_TM_STORE (8):
2748 CASE_BUILT_IN_TM_STORE (FLOAT):
2749 CASE_BUILT_IN_TM_STORE (DOUBLE):
2750 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2751 CASE_BUILT_IN_TM_STORE (M64):
2752 CASE_BUILT_IN_TM_STORE (M128):
2753 CASE_BUILT_IN_TM_STORE (M256):
2754 case BUILT_IN_TM_MEMCPY:
2755 case BUILT_IN_TM_MEMMOVE:
2756 {
2757 ao_ref dref;
2758 tree size = NULL_TREE;
2759 /* Don't pass in size for strncat, as the maximum size
2760 is strlen (dest) + n + 1 instead of n, resp.
2761 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2762 known. */
2763 if (gimple_call_num_args (call) == 3
2764 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2765 size = gimple_call_arg (call, 2);
2766 ao_ref_init_from_ptr_and_size (&dref,
2767 gimple_call_arg (call, 0),
2768 size);
2769 return refs_may_alias_p_1 (&dref, ref, false);
2770 }
2771 case BUILT_IN_STRCPY_CHK:
2772 case BUILT_IN_STRNCPY_CHK:
2773 case BUILT_IN_MEMCPY_CHK:
2774 case BUILT_IN_MEMMOVE_CHK:
2775 case BUILT_IN_MEMPCPY_CHK:
2776 case BUILT_IN_STPCPY_CHK:
2777 case BUILT_IN_STPNCPY_CHK:
2778 case BUILT_IN_STRCAT_CHK:
2779 case BUILT_IN_STRNCAT_CHK:
2780 case BUILT_IN_MEMSET_CHK:
2781 {
2782 ao_ref dref;
2783 tree size = NULL_TREE;
2784 /* Don't pass in size for __strncat_chk, as the maximum size
2785 is strlen (dest) + n + 1 instead of n, resp.
2786 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2787 known. */
2788 if (gimple_call_num_args (call) == 4
2789 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2790 size = gimple_call_arg (call, 2);
2791 ao_ref_init_from_ptr_and_size (&dref,
2792 gimple_call_arg (call, 0),
2793 size);
2794 return refs_may_alias_p_1 (&dref, ref, false);
2795 }
2796 case BUILT_IN_BCOPY:
2797 {
2798 ao_ref dref;
2799 tree size = gimple_call_arg (call, 2);
2800 ao_ref_init_from_ptr_and_size (&dref,
2801 gimple_call_arg (call, 1),
2802 size);
2803 return refs_may_alias_p_1 (&dref, ref, false);
2804 }
2805 /* Allocating memory does not have any side-effects apart from
2806 being the definition point for the pointer. */
2807 case BUILT_IN_MALLOC:
2808 case BUILT_IN_ALIGNED_ALLOC:
2809 case BUILT_IN_CALLOC:
2810 case BUILT_IN_STRDUP:
2811 case BUILT_IN_STRNDUP:
2812 /* Unix98 specifies that errno is set on allocation failure. */
2813 if (flag_errno_math
2814 && targetm.ref_may_alias_errno (ref))
2815 return true;
2816 return false;
2817 case BUILT_IN_STACK_SAVE:
2818 CASE_BUILT_IN_ALLOCA:
2819 case BUILT_IN_ASSUME_ALIGNED:
2820 return false;
2821 /* But posix_memalign stores a pointer into the memory pointed to
2822 by its first argument. */
2823 case BUILT_IN_POSIX_MEMALIGN:
2824 {
2825 tree ptrptr = gimple_call_arg (call, 0);
2826 ao_ref dref;
2827 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2828 TYPE_SIZE_UNIT (ptr_type_node));
2829 return (refs_may_alias_p_1 (&dref, ref, false)
2830 || (flag_errno_math
2831 && targetm.ref_may_alias_errno (ref)));
2832 }
2833 /* Freeing memory kills the pointed-to memory. More importantly
2834 the call has to serve as a barrier for moving loads and stores
2835 across it. */
2836 case BUILT_IN_FREE:
2837 case BUILT_IN_VA_END:
2838 {
2839 tree ptr = gimple_call_arg (call, 0);
2840 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2841 }
2842 /* Realloc serves both as allocation point and deallocation point. */
2843 case BUILT_IN_REALLOC:
2844 {
2845 tree ptr = gimple_call_arg (call, 0);
2846 /* Unix98 specifies that errno is set on allocation failure. */
2847 return ((flag_errno_math
2848 && targetm.ref_may_alias_errno (ref))
2849 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2850 }
2851 case BUILT_IN_GAMMA_R:
2852 case BUILT_IN_GAMMAF_R:
2853 case BUILT_IN_GAMMAL_R:
2854 case BUILT_IN_LGAMMA_R:
2855 case BUILT_IN_LGAMMAF_R:
2856 case BUILT_IN_LGAMMAL_R:
2857 {
2858 tree out = gimple_call_arg (call, 1);
2859 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2860 return true;
2861 if (flag_errno_math)
2862 break;
2863 return false;
2864 }
2865 case BUILT_IN_FREXP:
2866 case BUILT_IN_FREXPF:
2867 case BUILT_IN_FREXPL:
2868 case BUILT_IN_MODF:
2869 case BUILT_IN_MODFF:
2870 case BUILT_IN_MODFL:
2871 {
2872 tree out = gimple_call_arg (call, 1);
2873 return ptr_deref_may_alias_ref_p_1 (out, ref);
2874 }
2875 case BUILT_IN_REMQUO:
2876 case BUILT_IN_REMQUOF:
2877 case BUILT_IN_REMQUOL:
2878 {
2879 tree out = gimple_call_arg (call, 2);
2880 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2881 return true;
2882 if (flag_errno_math)
2883 break;
2884 return false;
2885 }
2886 case BUILT_IN_SINCOS:
2887 case BUILT_IN_SINCOSF:
2888 case BUILT_IN_SINCOSL:
2889 {
2890 tree sin = gimple_call_arg (call, 1);
2891 tree cos = gimple_call_arg (call, 2);
2892 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2893 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2894 }
2895 /* __sync_* builtins and some OpenMP builtins act as threading
2896 barriers. */
2897 #undef DEF_SYNC_BUILTIN
2898 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2899 #include "sync-builtins.def"
2900 #undef DEF_SYNC_BUILTIN
2901 case BUILT_IN_GOMP_ATOMIC_START:
2902 case BUILT_IN_GOMP_ATOMIC_END:
2903 case BUILT_IN_GOMP_BARRIER:
2904 case BUILT_IN_GOMP_BARRIER_CANCEL:
2905 case BUILT_IN_GOMP_TASKWAIT:
2906 case BUILT_IN_GOMP_TASKGROUP_END:
2907 case BUILT_IN_GOMP_CRITICAL_START:
2908 case BUILT_IN_GOMP_CRITICAL_END:
2909 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2910 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2911 case BUILT_IN_GOMP_LOOP_END:
2912 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2913 case BUILT_IN_GOMP_ORDERED_START:
2914 case BUILT_IN_GOMP_ORDERED_END:
2915 case BUILT_IN_GOMP_SECTIONS_END:
2916 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2917 case BUILT_IN_GOMP_SINGLE_COPY_START:
2918 case BUILT_IN_GOMP_SINGLE_COPY_END:
2919 return true;
2920 default:
2921 /* Fallthru to general call handling. */;
2922 }
2923
2924 /* Check if base is a global static variable that is not written
2925 by the function. */
2926 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2927 {
2928 struct cgraph_node *node = cgraph_node::get (callee);
2929 bitmap written;
2930 int id;
2931
2932 if (node
2933 && (id = ipa_reference_var_uid (base)) != -1
2934 && (written = ipa_reference_get_written_global (node))
2935 && !bitmap_bit_p (written, id))
2936 return false;
2937 }
2938
2939 /* Check if the base variable is call-clobbered. */
2940 if (DECL_P (base))
2941 return pt_solution_includes (gimple_call_clobber_set (call), base);
2942 else if ((TREE_CODE (base) == MEM_REF
2943 || TREE_CODE (base) == TARGET_MEM_REF)
2944 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2945 {
2946 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2947 if (!pi)
2948 return true;
2949
2950 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2951 }
2952
2953 return true;
2954 }
2955
2956 /* If the call in statement CALL may clobber the memory reference REF
2957 return true, otherwise return false. */
2958
2959 bool
2960 call_may_clobber_ref_p (gcall *call, tree ref)
2961 {
2962 bool res;
2963 ao_ref r;
2964 ao_ref_init (&r, ref);
2965 res = call_may_clobber_ref_p_1 (call, &r);
2966 if (res)
2967 ++alias_stats.call_may_clobber_ref_p_may_alias;
2968 else
2969 ++alias_stats.call_may_clobber_ref_p_no_alias;
2970 return res;
2971 }
2972
2973
2974 /* If the statement STMT may clobber the memory reference REF return true,
2975 otherwise return false. */
2976
2977 bool
2978 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
2979 {
2980 if (is_gimple_call (stmt))
2981 {
2982 tree lhs = gimple_call_lhs (stmt);
2983 if (lhs
2984 && TREE_CODE (lhs) != SSA_NAME)
2985 {
2986 ao_ref r;
2987 ao_ref_init (&r, lhs);
2988 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
2989 return true;
2990 }
2991
2992 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2993 }
2994 else if (gimple_assign_single_p (stmt))
2995 {
2996 tree lhs = gimple_assign_lhs (stmt);
2997 if (TREE_CODE (lhs) != SSA_NAME)
2998 {
2999 ao_ref r;
3000 ao_ref_init (&r, lhs);
3001 return refs_may_alias_p_1 (ref, &r, tbaa_p);
3002 }
3003 }
3004 else if (gimple_code (stmt) == GIMPLE_ASM)
3005 return true;
3006
3007 return false;
3008 }
3009
3010 bool
3011 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
3012 {
3013 ao_ref r;
3014 ao_ref_init (&r, ref);
3015 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
3016 }
3017
3018 /* Return true if store1 and store2 described by corresponding tuples
3019 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
3020 address. */
3021
3022 static bool
3023 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
3024 poly_int64 max_size1,
3025 tree base2, poly_int64 offset2, poly_int64 size2,
3026 poly_int64 max_size2)
3027 {
3028 /* Offsets need to be 0. */
3029 if (maybe_ne (offset1, 0)
3030 || maybe_ne (offset2, 0))
3031 return false;
3032
3033 bool base1_obj_p = SSA_VAR_P (base1);
3034 bool base2_obj_p = SSA_VAR_P (base2);
3035
3036 /* We need one object. */
3037 if (base1_obj_p == base2_obj_p)
3038 return false;
3039 tree obj = base1_obj_p ? base1 : base2;
3040
3041 /* And we need one MEM_REF. */
3042 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
3043 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
3044 if (base1_memref_p == base2_memref_p)
3045 return false;
3046 tree memref = base1_memref_p ? base1 : base2;
3047
3048 /* Sizes need to be valid. */
3049 if (!known_size_p (max_size1)
3050 || !known_size_p (max_size2)
3051 || !known_size_p (size1)
3052 || !known_size_p (size2))
3053 return false;
3054
3055 /* Max_size needs to match size. */
3056 if (maybe_ne (max_size1, size1)
3057 || maybe_ne (max_size2, size2))
3058 return false;
3059
3060 /* Sizes need to match. */
3061 if (maybe_ne (size1, size2))
3062 return false;
3063
3064
3065 /* Check that memref is a store to pointer with singleton points-to info. */
3066 if (!integer_zerop (TREE_OPERAND (memref, 1)))
3067 return false;
3068 tree ptr = TREE_OPERAND (memref, 0);
3069 if (TREE_CODE (ptr) != SSA_NAME)
3070 return false;
3071 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
3072 unsigned int pt_uid;
3073 if (pi == NULL
3074 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
3075 return false;
3076
3077 /* Be conservative with non-call exceptions when the address might
3078 be NULL. */
3079 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
3080 return false;
3081
3082 /* Check that ptr points relative to obj. */
3083 unsigned int obj_uid = DECL_PT_UID (obj);
3084 if (obj_uid != pt_uid)
3085 return false;
3086
3087 /* Check that the object size is the same as the store size. That ensures us
3088 that ptr points to the start of obj. */
3089 return (DECL_SIZE (obj)
3090 && poly_int_tree_p (DECL_SIZE (obj))
3091 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
3092 }
3093
3094 /* If STMT kills the memory reference REF return true, otherwise
3095 return false. */
3096
3097 bool
3098 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
3099 {
3100 if (!ao_ref_base (ref))
3101 return false;
3102
3103 if (gimple_has_lhs (stmt)
3104 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
3105 /* The assignment is not necessarily carried out if it can throw
3106 and we can catch it in the current function where we could inspect
3107 the previous value.
3108 ??? We only need to care about the RHS throwing. For aggregate
3109 assignments or similar calls and non-call exceptions the LHS
3110 might throw as well. */
3111 && !stmt_can_throw_internal (cfun, stmt))
3112 {
3113 tree lhs = gimple_get_lhs (stmt);
3114 /* If LHS is literally a base of the access we are done. */
3115 if (ref->ref)
3116 {
3117 tree base = ref->ref;
3118 tree innermost_dropped_array_ref = NULL_TREE;
3119 if (handled_component_p (base))
3120 {
3121 tree saved_lhs0 = NULL_TREE;
3122 if (handled_component_p (lhs))
3123 {
3124 saved_lhs0 = TREE_OPERAND (lhs, 0);
3125 TREE_OPERAND (lhs, 0) = integer_zero_node;
3126 }
3127 do
3128 {
3129 /* Just compare the outermost handled component, if
3130 they are equal we have found a possible common
3131 base. */
3132 tree saved_base0 = TREE_OPERAND (base, 0);
3133 TREE_OPERAND (base, 0) = integer_zero_node;
3134 bool res = operand_equal_p (lhs, base, 0);
3135 TREE_OPERAND (base, 0) = saved_base0;
3136 if (res)
3137 break;
3138 /* Remember if we drop an array-ref that we need to
3139 double-check not being at struct end. */
3140 if (TREE_CODE (base) == ARRAY_REF
3141 || TREE_CODE (base) == ARRAY_RANGE_REF)
3142 innermost_dropped_array_ref = base;
3143 /* Otherwise drop handled components of the access. */
3144 base = saved_base0;
3145 }
3146 while (handled_component_p (base));
3147 if (saved_lhs0)
3148 TREE_OPERAND (lhs, 0) = saved_lhs0;
3149 }
3150 /* Finally check if the lhs has the same address and size as the
3151 base candidate of the access. Watch out if we have dropped
3152 an array-ref that was at struct end, this means ref->ref may
3153 be outside of the TYPE_SIZE of its base. */
3154 if ((! innermost_dropped_array_ref
3155 || ! array_at_struct_end_p (innermost_dropped_array_ref))
3156 && (lhs == base
3157 || (((TYPE_SIZE (TREE_TYPE (lhs))
3158 == TYPE_SIZE (TREE_TYPE (base)))
3159 || (TYPE_SIZE (TREE_TYPE (lhs))
3160 && TYPE_SIZE (TREE_TYPE (base))
3161 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
3162 TYPE_SIZE (TREE_TYPE (base)),
3163 0)))
3164 && operand_equal_p (lhs, base,
3165 OEP_ADDRESS_OF
3166 | OEP_MATCH_SIDE_EFFECTS))))
3167 return true;
3168 }
3169
3170 /* Now look for non-literal equal bases with the restriction of
3171 handling constant offset and size. */
3172 /* For a must-alias check we need to be able to constrain
3173 the access properly. */
3174 if (!ref->max_size_known_p ())
3175 return false;
3176 poly_int64 size, offset, max_size, ref_offset = ref->offset;
3177 bool reverse;
3178 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
3179 &reverse);
3180 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
3181 so base == ref->base does not always hold. */
3182 if (base != ref->base)
3183 {
3184 /* Try using points-to info. */
3185 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
3186 ref->offset, ref->size, ref->max_size))
3187 return true;
3188
3189 /* If both base and ref->base are MEM_REFs, only compare the
3190 first operand, and if the second operand isn't equal constant,
3191 try to add the offsets into offset and ref_offset. */
3192 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
3193 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
3194 {
3195 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
3196 TREE_OPERAND (ref->base, 1)))
3197 {
3198 poly_offset_int off1 = mem_ref_offset (base);
3199 off1 <<= LOG2_BITS_PER_UNIT;
3200 off1 += offset;
3201 poly_offset_int off2 = mem_ref_offset (ref->base);
3202 off2 <<= LOG2_BITS_PER_UNIT;
3203 off2 += ref_offset;
3204 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
3205 size = -1;
3206 }
3207 }
3208 else
3209 size = -1;
3210 }
3211 /* For a must-alias check we need to be able to constrain
3212 the access properly. */
3213 if (known_eq (size, max_size)
3214 && known_subrange_p (ref_offset, ref->max_size, offset, size))
3215 return true;
3216 }
3217
3218 if (is_gimple_call (stmt))
3219 {
3220 tree callee = gimple_call_fndecl (stmt);
3221 if (callee != NULL_TREE
3222 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3223 switch (DECL_FUNCTION_CODE (callee))
3224 {
3225 case BUILT_IN_FREE:
3226 {
3227 tree ptr = gimple_call_arg (stmt, 0);
3228 tree base = ao_ref_base (ref);
3229 if (base && TREE_CODE (base) == MEM_REF
3230 && TREE_OPERAND (base, 0) == ptr)
3231 return true;
3232 break;
3233 }
3234
3235 case BUILT_IN_MEMCPY:
3236 case BUILT_IN_MEMPCPY:
3237 case BUILT_IN_MEMMOVE:
3238 case BUILT_IN_MEMSET:
3239 case BUILT_IN_MEMCPY_CHK:
3240 case BUILT_IN_MEMPCPY_CHK:
3241 case BUILT_IN_MEMMOVE_CHK:
3242 case BUILT_IN_MEMSET_CHK:
3243 case BUILT_IN_STRNCPY:
3244 case BUILT_IN_STPNCPY:
3245 case BUILT_IN_CALLOC:
3246 {
3247 /* For a must-alias check we need to be able to constrain
3248 the access properly. */
3249 if (!ref->max_size_known_p ())
3250 return false;
3251 tree dest;
3252 tree len;
3253
3254 /* In execution order a calloc call will never kill
3255 anything. However, DSE will (ab)use this interface
3256 to ask if a calloc call writes the same memory locations
3257 as a later assignment, memset, etc. So handle calloc
3258 in the expected way. */
3259 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
3260 {
3261 tree arg0 = gimple_call_arg (stmt, 0);
3262 tree arg1 = gimple_call_arg (stmt, 1);
3263 if (TREE_CODE (arg0) != INTEGER_CST
3264 || TREE_CODE (arg1) != INTEGER_CST)
3265 return false;
3266
3267 dest = gimple_call_lhs (stmt);
3268 len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
3269 }
3270 else
3271 {
3272 dest = gimple_call_arg (stmt, 0);
3273 len = gimple_call_arg (stmt, 2);
3274 }
3275 if (!poly_int_tree_p (len))
3276 return false;
3277 tree rbase = ref->base;
3278 poly_offset_int roffset = ref->offset;
3279 ao_ref dref;
3280 ao_ref_init_from_ptr_and_size (&dref, dest, len);
3281 tree base = ao_ref_base (&dref);
3282 poly_offset_int offset = dref.offset;
3283 if (!base || !known_size_p (dref.size))
3284 return false;
3285 if (TREE_CODE (base) == MEM_REF)
3286 {
3287 if (TREE_CODE (rbase) != MEM_REF)
3288 return false;
3289 // Compare pointers.
3290 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
3291 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
3292 base = TREE_OPERAND (base, 0);
3293 rbase = TREE_OPERAND (rbase, 0);
3294 }
3295 if (base == rbase
3296 && known_subrange_p (roffset, ref->max_size, offset,
3297 wi::to_poly_offset (len)
3298 << LOG2_BITS_PER_UNIT))
3299 return true;
3300 break;
3301 }
3302
3303 case BUILT_IN_VA_END:
3304 {
3305 tree ptr = gimple_call_arg (stmt, 0);
3306 if (TREE_CODE (ptr) == ADDR_EXPR)
3307 {
3308 tree base = ao_ref_base (ref);
3309 if (TREE_OPERAND (ptr, 0) == base)
3310 return true;
3311 }
3312 break;
3313 }
3314
3315 default:;
3316 }
3317 }
3318 return false;
3319 }
3320
3321 bool
3322 stmt_kills_ref_p (gimple *stmt, tree ref)
3323 {
3324 ao_ref r;
3325 ao_ref_init (&r, ref);
3326 return stmt_kills_ref_p (stmt, &r);
3327 }
3328
3329
3330 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
3331 TARGET or a statement clobbering the memory reference REF in which
3332 case false is returned. The walk starts with VUSE, one argument of PHI. */
3333
3334 static bool
3335 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
3336 ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit,
3337 bitmap *visited, bool abort_on_visited,
3338 void *(*translate)(ao_ref *, tree, void *, translate_flags *),
3339 translate_flags disambiguate_only,
3340 void *data)
3341 {
3342 basic_block bb = gimple_bb (phi);
3343
3344 if (!*visited)
3345 *visited = BITMAP_ALLOC (NULL);
3346
3347 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
3348
3349 /* Walk until we hit the target. */
3350 while (vuse != target)
3351 {
3352 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
3353 /* If we are searching for the target VUSE by walking up to
3354 TARGET_BB dominating the original PHI we are finished once
3355 we reach a default def or a definition in a block dominating
3356 that block. Update TARGET and return. */
3357 if (!target
3358 && (gimple_nop_p (def_stmt)
3359 || dominated_by_p (CDI_DOMINATORS,
3360 target_bb, gimple_bb (def_stmt))))
3361 {
3362 target = vuse;
3363 return true;
3364 }
3365
3366 /* Recurse for PHI nodes. */
3367 if (gimple_code (def_stmt) == GIMPLE_PHI)
3368 {
3369 /* An already visited PHI node ends the walk successfully. */
3370 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
3371 return !abort_on_visited;
3372 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3373 visited, abort_on_visited,
3374 translate, data, disambiguate_only);
3375 if (!vuse)
3376 return false;
3377 continue;
3378 }
3379 else if (gimple_nop_p (def_stmt))
3380 return false;
3381 else
3382 {
3383 /* A clobbering statement or the end of the IL ends it failing. */
3384 if ((int)limit <= 0)
3385 return false;
3386 --limit;
3387 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3388 {
3389 translate_flags tf = disambiguate_only;
3390 if (translate
3391 && (*translate) (ref, vuse, data, &tf) == NULL)
3392 ;
3393 else
3394 return false;
3395 }
3396 }
3397 /* If we reach a new basic-block see if we already skipped it
3398 in a previous walk that ended successfully. */
3399 if (gimple_bb (def_stmt) != bb)
3400 {
3401 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
3402 return !abort_on_visited;
3403 bb = gimple_bb (def_stmt);
3404 }
3405 vuse = gimple_vuse (def_stmt);
3406 }
3407 return true;
3408 }
3409
3410
3411 /* Starting from a PHI node for the virtual operand of the memory reference
3412 REF find a continuation virtual operand that allows to continue walking
3413 statements dominating PHI skipping only statements that cannot possibly
3414 clobber REF. Decrements LIMIT for each alias disambiguation done
3415 and aborts the walk, returning NULL_TREE if it reaches zero.
3416 Returns NULL_TREE if no suitable virtual operand can be found. */
3417
3418 tree
3419 get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p,
3420 unsigned int &limit, bitmap *visited,
3421 bool abort_on_visited,
3422 void *(*translate)(ao_ref *, tree, void *,
3423 translate_flags *),
3424 void *data,
3425 translate_flags disambiguate_only)
3426 {
3427 unsigned nargs = gimple_phi_num_args (phi);
3428
3429 /* Through a single-argument PHI we can simply look through. */
3430 if (nargs == 1)
3431 return PHI_ARG_DEF (phi, 0);
3432
3433 /* For two or more arguments try to pairwise skip non-aliasing code
3434 until we hit the phi argument definition that dominates the other one. */
3435 basic_block phi_bb = gimple_bb (phi);
3436 tree arg0, arg1;
3437 unsigned i;
3438
3439 /* Find a candidate for the virtual operand which definition
3440 dominates those of all others. */
3441 /* First look if any of the args themselves satisfy this. */
3442 for (i = 0; i < nargs; ++i)
3443 {
3444 arg0 = PHI_ARG_DEF (phi, i);
3445 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3446 break;
3447 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3448 if (def_bb != phi_bb
3449 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3450 break;
3451 arg0 = NULL_TREE;
3452 }
3453 /* If not, look if we can reach such candidate by walking defs
3454 until we hit the immediate dominator. maybe_skip_until will
3455 do that for us. */
3456 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3457
3458 /* Then check against the (to be) found candidate. */
3459 for (i = 0; i < nargs; ++i)
3460 {
3461 arg1 = PHI_ARG_DEF (phi, i);
3462 if (arg1 == arg0)
3463 ;
3464 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, tbaa_p,
3465 limit, visited,
3466 abort_on_visited,
3467 translate,
3468 /* Do not valueize when walking over
3469 backedges. */
3470 dominated_by_p
3471 (CDI_DOMINATORS,
3472 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3473 phi_bb)
3474 ? TR_DISAMBIGUATE
3475 : disambiguate_only, data))
3476 return NULL_TREE;
3477 }
3478
3479 return arg0;
3480 }
3481
3482 /* Based on the memory reference REF and its virtual use VUSE call
3483 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3484 itself. That is, for each virtual use for which its defining statement
3485 does not clobber REF.
3486
3487 WALKER is called with REF, the current virtual use and DATA. If
3488 WALKER returns non-NULL the walk stops and its result is returned.
3489 At the end of a non-successful walk NULL is returned.
3490
3491 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3492 use which definition is a statement that may clobber REF and DATA.
3493 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3494 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3495 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3496 to adjust REF and *DATA to make that valid.
3497
3498 VALUEIZE if non-NULL is called with the next VUSE that is considered
3499 and return value is substituted for that. This can be used to
3500 implement optimistic value-numbering for example. Note that the
3501 VUSE argument is assumed to be valueized already.
3502
3503 LIMIT specifies the number of alias queries we are allowed to do,
3504 the walk stops when it reaches zero and NULL is returned. LIMIT
3505 is decremented by the number of alias queries (plus adjustments
3506 done by the callbacks) upon return.
3507
3508 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3509
3510 void *
3511 walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p,
3512 void *(*walker)(ao_ref *, tree, void *),
3513 void *(*translate)(ao_ref *, tree, void *,
3514 translate_flags *),
3515 tree (*valueize)(tree),
3516 unsigned &limit, void *data)
3517 {
3518 bitmap visited = NULL;
3519 void *res;
3520 bool translated = false;
3521
3522 timevar_push (TV_ALIAS_STMT_WALK);
3523
3524 do
3525 {
3526 gimple *def_stmt;
3527
3528 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3529 res = (*walker) (ref, vuse, data);
3530 /* Abort walk. */
3531 if (res == (void *)-1)
3532 {
3533 res = NULL;
3534 break;
3535 }
3536 /* Lookup succeeded. */
3537 else if (res != NULL)
3538 break;
3539
3540 if (valueize)
3541 {
3542 vuse = valueize (vuse);
3543 if (!vuse)
3544 {
3545 res = NULL;
3546 break;
3547 }
3548 }
3549 def_stmt = SSA_NAME_DEF_STMT (vuse);
3550 if (gimple_nop_p (def_stmt))
3551 break;
3552 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3553 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3554 &visited, translated, translate, data);
3555 else
3556 {
3557 if ((int)limit <= 0)
3558 {
3559 res = NULL;
3560 break;
3561 }
3562 --limit;
3563 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3564 {
3565 if (!translate)
3566 break;
3567 translate_flags disambiguate_only = TR_TRANSLATE;
3568 res = (*translate) (ref, vuse, data, &disambiguate_only);
3569 /* Failed lookup and translation. */
3570 if (res == (void *)-1)
3571 {
3572 res = NULL;
3573 break;
3574 }
3575 /* Lookup succeeded. */
3576 else if (res != NULL)
3577 break;
3578 /* Translation succeeded, continue walking. */
3579 translated = translated || disambiguate_only == TR_TRANSLATE;
3580 }
3581 vuse = gimple_vuse (def_stmt);
3582 }
3583 }
3584 while (vuse);
3585
3586 if (visited)
3587 BITMAP_FREE (visited);
3588
3589 timevar_pop (TV_ALIAS_STMT_WALK);
3590
3591 return res;
3592 }
3593
3594
3595 /* Based on the memory reference REF call WALKER for each vdef which
3596 defining statement may clobber REF, starting with VDEF. If REF
3597 is NULL_TREE, each defining statement is visited.
3598
3599 WALKER is called with REF, the current vdef and DATA. If WALKER
3600 returns true the walk is stopped, otherwise it continues.
3601
3602 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3603 The pointer may be NULL and then we do not track this information.
3604
3605 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3606 PHI argument (but only one walk continues on merge points), the
3607 return value is true if any of the walks was successful.
3608
3609 The function returns the number of statements walked or -1 if
3610 LIMIT stmts were walked and the walk was aborted at this point.
3611 If LIMIT is zero the walk is not aborted. */
3612
3613 static int
3614 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3615 bool (*walker)(ao_ref *, tree, void *), void *data,
3616 bitmap *visited, unsigned int cnt,
3617 bool *function_entry_reached, unsigned limit)
3618 {
3619 do
3620 {
3621 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3622
3623 if (*visited
3624 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3625 return cnt;
3626
3627 if (gimple_nop_p (def_stmt))
3628 {
3629 if (function_entry_reached)
3630 *function_entry_reached = true;
3631 return cnt;
3632 }
3633 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3634 {
3635 unsigned i;
3636 if (!*visited)
3637 *visited = BITMAP_ALLOC (NULL);
3638 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3639 {
3640 int res = walk_aliased_vdefs_1 (ref,
3641 gimple_phi_arg_def (def_stmt, i),
3642 walker, data, visited, cnt,
3643 function_entry_reached, limit);
3644 if (res == -1)
3645 return -1;
3646 cnt = res;
3647 }
3648 return cnt;
3649 }
3650
3651 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3652 cnt++;
3653 if (cnt == limit)
3654 return -1;
3655 if ((!ref
3656 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3657 && (*walker) (ref, vdef, data))
3658 return cnt;
3659
3660 vdef = gimple_vuse (def_stmt);
3661 }
3662 while (1);
3663 }
3664
3665 int
3666 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3667 bool (*walker)(ao_ref *, tree, void *), void *data,
3668 bitmap *visited,
3669 bool *function_entry_reached, unsigned int limit)
3670 {
3671 bitmap local_visited = NULL;
3672 int ret;
3673
3674 timevar_push (TV_ALIAS_STMT_WALK);
3675
3676 if (function_entry_reached)
3677 *function_entry_reached = false;
3678
3679 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3680 visited ? visited : &local_visited, 0,
3681 function_entry_reached, limit);
3682 if (local_visited)
3683 BITMAP_FREE (local_visited);
3684
3685 timevar_pop (TV_ALIAS_STMT_WALK);
3686
3687 return ret;
3688 }
3689