]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-alias.c
PR fortran/95090 - ICE: identifier overflow
[thirdparty/gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90 static int nonoverlapping_refs_since_match_p (tree, tree, tree, tree, bool);
91 static bool nonoverlapping_component_refs_p (const_tree, const_tree);
92
93 /* Query statistics for the different low-level disambiguators.
94 A high-level query may trigger multiple of them. */
95
96 static struct {
97 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
98 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
99 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
100 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
101 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
102 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
103 unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias;
104 unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias;
105 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias;
106 unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias;
107 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_may_alias;
108 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_must_overlap;
109 unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_no_alias;
110 } alias_stats;
111
112 void
113 dump_alias_stats (FILE *s)
114 {
115 fprintf (s, "\nAlias oracle query stats:\n");
116 fprintf (s, " refs_may_alias_p: "
117 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
118 HOST_WIDE_INT_PRINT_DEC" queries\n",
119 alias_stats.refs_may_alias_p_no_alias,
120 alias_stats.refs_may_alias_p_no_alias
121 + alias_stats.refs_may_alias_p_may_alias);
122 fprintf (s, " ref_maybe_used_by_call_p: "
123 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
124 HOST_WIDE_INT_PRINT_DEC" queries\n",
125 alias_stats.ref_maybe_used_by_call_p_no_alias,
126 alias_stats.refs_may_alias_p_no_alias
127 + alias_stats.ref_maybe_used_by_call_p_may_alias);
128 fprintf (s, " call_may_clobber_ref_p: "
129 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
130 HOST_WIDE_INT_PRINT_DEC" queries\n",
131 alias_stats.call_may_clobber_ref_p_no_alias,
132 alias_stats.call_may_clobber_ref_p_no_alias
133 + alias_stats.call_may_clobber_ref_p_may_alias);
134 fprintf (s, " nonoverlapping_component_refs_p: "
135 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
136 HOST_WIDE_INT_PRINT_DEC" queries\n",
137 alias_stats.nonoverlapping_component_refs_p_no_alias,
138 alias_stats.nonoverlapping_component_refs_p_no_alias
139 + alias_stats.nonoverlapping_component_refs_p_may_alias);
140 fprintf (s, " nonoverlapping_refs_since_match_p: "
141 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
142 HOST_WIDE_INT_PRINT_DEC" must overlaps, "
143 HOST_WIDE_INT_PRINT_DEC" queries\n",
144 alias_stats.nonoverlapping_refs_since_match_p_no_alias,
145 alias_stats.nonoverlapping_refs_since_match_p_must_overlap,
146 alias_stats.nonoverlapping_refs_since_match_p_no_alias
147 + alias_stats.nonoverlapping_refs_since_match_p_may_alias
148 + alias_stats.nonoverlapping_refs_since_match_p_must_overlap);
149 fprintf (s, " aliasing_component_refs_p: "
150 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
151 HOST_WIDE_INT_PRINT_DEC" queries\n",
152 alias_stats.aliasing_component_refs_p_no_alias,
153 alias_stats.aliasing_component_refs_p_no_alias
154 + alias_stats.aliasing_component_refs_p_may_alias);
155 dump_alias_stats_in_alias_c (s);
156 }
157
158
159 /* Return true, if dereferencing PTR may alias with a global variable. */
160
161 bool
162 ptr_deref_may_alias_global_p (tree ptr)
163 {
164 struct ptr_info_def *pi;
165
166 /* If we end up with a pointer constant here that may point
167 to global memory. */
168 if (TREE_CODE (ptr) != SSA_NAME)
169 return true;
170
171 pi = SSA_NAME_PTR_INFO (ptr);
172
173 /* If we do not have points-to information for this variable,
174 we have to punt. */
175 if (!pi)
176 return true;
177
178 /* ??? This does not use TBAA to prune globals ptr may not access. */
179 return pt_solution_includes_global (&pi->pt);
180 }
181
182 /* Return true if dereferencing PTR may alias DECL.
183 The caller is responsible for applying TBAA to see if PTR
184 may access DECL at all. */
185
186 static bool
187 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
188 {
189 struct ptr_info_def *pi;
190
191 /* Conversions are irrelevant for points-to information and
192 data-dependence analysis can feed us those. */
193 STRIP_NOPS (ptr);
194
195 /* Anything we do not explicilty handle aliases. */
196 if ((TREE_CODE (ptr) != SSA_NAME
197 && TREE_CODE (ptr) != ADDR_EXPR
198 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
199 || !POINTER_TYPE_P (TREE_TYPE (ptr))
200 || (!VAR_P (decl)
201 && TREE_CODE (decl) != PARM_DECL
202 && TREE_CODE (decl) != RESULT_DECL))
203 return true;
204
205 /* Disregard pointer offsetting. */
206 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
207 {
208 do
209 {
210 ptr = TREE_OPERAND (ptr, 0);
211 }
212 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
213 return ptr_deref_may_alias_decl_p (ptr, decl);
214 }
215
216 /* ADDR_EXPR pointers either just offset another pointer or directly
217 specify the pointed-to set. */
218 if (TREE_CODE (ptr) == ADDR_EXPR)
219 {
220 tree base = get_base_address (TREE_OPERAND (ptr, 0));
221 if (base
222 && (TREE_CODE (base) == MEM_REF
223 || TREE_CODE (base) == TARGET_MEM_REF))
224 ptr = TREE_OPERAND (base, 0);
225 else if (base
226 && DECL_P (base))
227 return compare_base_decls (base, decl) != 0;
228 else if (base
229 && CONSTANT_CLASS_P (base))
230 return false;
231 else
232 return true;
233 }
234
235 /* Non-aliased variables cannot be pointed to. */
236 if (!may_be_aliased (decl))
237 return false;
238
239 /* If we do not have useful points-to information for this pointer
240 we cannot disambiguate anything else. */
241 pi = SSA_NAME_PTR_INFO (ptr);
242 if (!pi)
243 return true;
244
245 return pt_solution_includes (&pi->pt, decl);
246 }
247
248 /* Return true if dereferenced PTR1 and PTR2 may alias.
249 The caller is responsible for applying TBAA to see if accesses
250 through PTR1 and PTR2 may conflict at all. */
251
252 bool
253 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
254 {
255 struct ptr_info_def *pi1, *pi2;
256
257 /* Conversions are irrelevant for points-to information and
258 data-dependence analysis can feed us those. */
259 STRIP_NOPS (ptr1);
260 STRIP_NOPS (ptr2);
261
262 /* Disregard pointer offsetting. */
263 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
264 {
265 do
266 {
267 ptr1 = TREE_OPERAND (ptr1, 0);
268 }
269 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
270 return ptr_derefs_may_alias_p (ptr1, ptr2);
271 }
272 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
273 {
274 do
275 {
276 ptr2 = TREE_OPERAND (ptr2, 0);
277 }
278 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
279 return ptr_derefs_may_alias_p (ptr1, ptr2);
280 }
281
282 /* ADDR_EXPR pointers either just offset another pointer or directly
283 specify the pointed-to set. */
284 if (TREE_CODE (ptr1) == ADDR_EXPR)
285 {
286 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
287 if (base
288 && (TREE_CODE (base) == MEM_REF
289 || TREE_CODE (base) == TARGET_MEM_REF))
290 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
291 else if (base
292 && DECL_P (base))
293 return ptr_deref_may_alias_decl_p (ptr2, base);
294 else
295 return true;
296 }
297 if (TREE_CODE (ptr2) == ADDR_EXPR)
298 {
299 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
300 if (base
301 && (TREE_CODE (base) == MEM_REF
302 || TREE_CODE (base) == TARGET_MEM_REF))
303 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
304 else if (base
305 && DECL_P (base))
306 return ptr_deref_may_alias_decl_p (ptr1, base);
307 else
308 return true;
309 }
310
311 /* From here we require SSA name pointers. Anything else aliases. */
312 if (TREE_CODE (ptr1) != SSA_NAME
313 || TREE_CODE (ptr2) != SSA_NAME
314 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
315 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
316 return true;
317
318 /* We may end up with two empty points-to solutions for two same pointers.
319 In this case we still want to say both pointers alias, so shortcut
320 that here. */
321 if (ptr1 == ptr2)
322 return true;
323
324 /* If we do not have useful points-to information for either pointer
325 we cannot disambiguate anything else. */
326 pi1 = SSA_NAME_PTR_INFO (ptr1);
327 pi2 = SSA_NAME_PTR_INFO (ptr2);
328 if (!pi1 || !pi2)
329 return true;
330
331 /* ??? This does not use TBAA to prune decls from the intersection
332 that not both pointers may access. */
333 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
334 }
335
336 /* Return true if dereferencing PTR may alias *REF.
337 The caller is responsible for applying TBAA to see if PTR
338 may access *REF at all. */
339
340 static bool
341 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
342 {
343 tree base = ao_ref_base (ref);
344
345 if (TREE_CODE (base) == MEM_REF
346 || TREE_CODE (base) == TARGET_MEM_REF)
347 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
348 else if (DECL_P (base))
349 return ptr_deref_may_alias_decl_p (ptr, base);
350
351 return true;
352 }
353
354 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
355
356 bool
357 ptrs_compare_unequal (tree ptr1, tree ptr2)
358 {
359 /* First resolve the pointers down to a SSA name pointer base or
360 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
361 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
362 or STRING_CSTs which needs points-to adjustments to track them
363 in the points-to sets. */
364 tree obj1 = NULL_TREE;
365 tree obj2 = NULL_TREE;
366 if (TREE_CODE (ptr1) == ADDR_EXPR)
367 {
368 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
369 if (! tem)
370 return false;
371 if (VAR_P (tem)
372 || TREE_CODE (tem) == PARM_DECL
373 || TREE_CODE (tem) == RESULT_DECL)
374 obj1 = tem;
375 else if (TREE_CODE (tem) == MEM_REF)
376 ptr1 = TREE_OPERAND (tem, 0);
377 }
378 if (TREE_CODE (ptr2) == ADDR_EXPR)
379 {
380 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
381 if (! tem)
382 return false;
383 if (VAR_P (tem)
384 || TREE_CODE (tem) == PARM_DECL
385 || TREE_CODE (tem) == RESULT_DECL)
386 obj2 = tem;
387 else if (TREE_CODE (tem) == MEM_REF)
388 ptr2 = TREE_OPERAND (tem, 0);
389 }
390
391 /* Canonicalize ptr vs. object. */
392 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
393 {
394 std::swap (ptr1, ptr2);
395 std::swap (obj1, obj2);
396 }
397
398 if (obj1 && obj2)
399 /* Other code handles this correctly, no need to duplicate it here. */;
400 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
401 {
402 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
403 /* We may not use restrict to optimize pointer comparisons.
404 See PR71062. So we have to assume that restrict-pointed-to
405 may be in fact obj1. */
406 if (!pi
407 || pi->pt.vars_contains_restrict
408 || pi->pt.vars_contains_interposable)
409 return false;
410 if (VAR_P (obj1)
411 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
412 {
413 varpool_node *node = varpool_node::get (obj1);
414 /* If obj1 may bind to NULL give up (see below). */
415 if (! node
416 || ! node->nonzero_address ()
417 || ! decl_binds_to_current_def_p (obj1))
418 return false;
419 }
420 return !pt_solution_includes (&pi->pt, obj1);
421 }
422
423 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
424 but those require pt.null to be conservatively correct. */
425
426 return false;
427 }
428
429 /* Returns whether reference REF to BASE may refer to global memory. */
430
431 static bool
432 ref_may_alias_global_p_1 (tree base)
433 {
434 if (DECL_P (base))
435 return is_global_var (base);
436 else if (TREE_CODE (base) == MEM_REF
437 || TREE_CODE (base) == TARGET_MEM_REF)
438 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
439 return true;
440 }
441
442 bool
443 ref_may_alias_global_p (ao_ref *ref)
444 {
445 tree base = ao_ref_base (ref);
446 return ref_may_alias_global_p_1 (base);
447 }
448
449 bool
450 ref_may_alias_global_p (tree ref)
451 {
452 tree base = get_base_address (ref);
453 return ref_may_alias_global_p_1 (base);
454 }
455
456 /* Return true whether STMT may clobber global memory. */
457
458 bool
459 stmt_may_clobber_global_p (gimple *stmt)
460 {
461 tree lhs;
462
463 if (!gimple_vdef (stmt))
464 return false;
465
466 /* ??? We can ask the oracle whether an artificial pointer
467 dereference with a pointer with points-to information covering
468 all global memory (what about non-address taken memory?) maybe
469 clobbered by this call. As there is at the moment no convenient
470 way of doing that without generating garbage do some manual
471 checking instead.
472 ??? We could make a NULL ao_ref argument to the various
473 predicates special, meaning any global memory. */
474
475 switch (gimple_code (stmt))
476 {
477 case GIMPLE_ASSIGN:
478 lhs = gimple_assign_lhs (stmt);
479 return (TREE_CODE (lhs) != SSA_NAME
480 && ref_may_alias_global_p (lhs));
481 case GIMPLE_CALL:
482 return true;
483 default:
484 return true;
485 }
486 }
487
488
489 /* Dump alias information on FILE. */
490
491 void
492 dump_alias_info (FILE *file)
493 {
494 unsigned i;
495 tree ptr;
496 const char *funcname
497 = lang_hooks.decl_printable_name (current_function_decl, 2);
498 tree var;
499
500 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
501
502 fprintf (file, "Aliased symbols\n\n");
503
504 FOR_EACH_LOCAL_DECL (cfun, i, var)
505 {
506 if (may_be_aliased (var))
507 dump_variable (file, var);
508 }
509
510 fprintf (file, "\nCall clobber information\n");
511
512 fprintf (file, "\nESCAPED");
513 dump_points_to_solution (file, &cfun->gimple_df->escaped);
514
515 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
516
517 FOR_EACH_SSA_NAME (i, ptr, cfun)
518 {
519 struct ptr_info_def *pi;
520
521 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
522 || SSA_NAME_IN_FREE_LIST (ptr))
523 continue;
524
525 pi = SSA_NAME_PTR_INFO (ptr);
526 if (pi)
527 dump_points_to_info_for (file, ptr);
528 }
529
530 fprintf (file, "\n");
531 }
532
533
534 /* Dump alias information on stderr. */
535
536 DEBUG_FUNCTION void
537 debug_alias_info (void)
538 {
539 dump_alias_info (stderr);
540 }
541
542
543 /* Dump the points-to set *PT into FILE. */
544
545 void
546 dump_points_to_solution (FILE *file, struct pt_solution *pt)
547 {
548 if (pt->anything)
549 fprintf (file, ", points-to anything");
550
551 if (pt->nonlocal)
552 fprintf (file, ", points-to non-local");
553
554 if (pt->escaped)
555 fprintf (file, ", points-to escaped");
556
557 if (pt->ipa_escaped)
558 fprintf (file, ", points-to unit escaped");
559
560 if (pt->null)
561 fprintf (file, ", points-to NULL");
562
563 if (pt->vars)
564 {
565 fprintf (file, ", points-to vars: ");
566 dump_decl_set (file, pt->vars);
567 if (pt->vars_contains_nonlocal
568 || pt->vars_contains_escaped
569 || pt->vars_contains_escaped_heap
570 || pt->vars_contains_restrict)
571 {
572 const char *comma = "";
573 fprintf (file, " (");
574 if (pt->vars_contains_nonlocal)
575 {
576 fprintf (file, "nonlocal");
577 comma = ", ";
578 }
579 if (pt->vars_contains_escaped)
580 {
581 fprintf (file, "%sescaped", comma);
582 comma = ", ";
583 }
584 if (pt->vars_contains_escaped_heap)
585 {
586 fprintf (file, "%sescaped heap", comma);
587 comma = ", ";
588 }
589 if (pt->vars_contains_restrict)
590 {
591 fprintf (file, "%srestrict", comma);
592 comma = ", ";
593 }
594 if (pt->vars_contains_interposable)
595 fprintf (file, "%sinterposable", comma);
596 fprintf (file, ")");
597 }
598 }
599 }
600
601
602 /* Unified dump function for pt_solution. */
603
604 DEBUG_FUNCTION void
605 debug (pt_solution &ref)
606 {
607 dump_points_to_solution (stderr, &ref);
608 }
609
610 DEBUG_FUNCTION void
611 debug (pt_solution *ptr)
612 {
613 if (ptr)
614 debug (*ptr);
615 else
616 fprintf (stderr, "<nil>\n");
617 }
618
619
620 /* Dump points-to information for SSA_NAME PTR into FILE. */
621
622 void
623 dump_points_to_info_for (FILE *file, tree ptr)
624 {
625 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
626
627 print_generic_expr (file, ptr, dump_flags);
628
629 if (pi)
630 dump_points_to_solution (file, &pi->pt);
631 else
632 fprintf (file, ", points-to anything");
633
634 fprintf (file, "\n");
635 }
636
637
638 /* Dump points-to information for VAR into stderr. */
639
640 DEBUG_FUNCTION void
641 debug_points_to_info_for (tree var)
642 {
643 dump_points_to_info_for (stderr, var);
644 }
645
646
647 /* Initializes the alias-oracle reference representation *R from REF. */
648
649 void
650 ao_ref_init (ao_ref *r, tree ref)
651 {
652 r->ref = ref;
653 r->base = NULL_TREE;
654 r->offset = 0;
655 r->size = -1;
656 r->max_size = -1;
657 r->ref_alias_set = -1;
658 r->base_alias_set = -1;
659 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
660 }
661
662 /* Returns the base object of the memory reference *REF. */
663
664 tree
665 ao_ref_base (ao_ref *ref)
666 {
667 bool reverse;
668
669 if (ref->base)
670 return ref->base;
671 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
672 &ref->max_size, &reverse);
673 return ref->base;
674 }
675
676 /* Returns the base object alias set of the memory reference *REF. */
677
678 alias_set_type
679 ao_ref_base_alias_set (ao_ref *ref)
680 {
681 tree base_ref;
682 if (ref->base_alias_set != -1)
683 return ref->base_alias_set;
684 if (!ref->ref)
685 return 0;
686 base_ref = ref->ref;
687 while (handled_component_p (base_ref))
688 base_ref = TREE_OPERAND (base_ref, 0);
689 ref->base_alias_set = get_alias_set (base_ref);
690 return ref->base_alias_set;
691 }
692
693 /* Returns the reference alias set of the memory reference *REF. */
694
695 alias_set_type
696 ao_ref_alias_set (ao_ref *ref)
697 {
698 if (ref->ref_alias_set != -1)
699 return ref->ref_alias_set;
700 if (!ref->ref)
701 return 0;
702 ref->ref_alias_set = get_alias_set (ref->ref);
703 return ref->ref_alias_set;
704 }
705
706 /* Init an alias-oracle reference representation from a gimple pointer
707 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
708 size is assumed to be unknown. The access is assumed to be only
709 to or after of the pointer target, not before it. */
710
711 void
712 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
713 {
714 poly_int64 t, size_hwi, extra_offset = 0;
715 ref->ref = NULL_TREE;
716 if (TREE_CODE (ptr) == SSA_NAME)
717 {
718 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
719 if (gimple_assign_single_p (stmt)
720 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
721 ptr = gimple_assign_rhs1 (stmt);
722 else if (is_gimple_assign (stmt)
723 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
724 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
725 {
726 ptr = gimple_assign_rhs1 (stmt);
727 extra_offset *= BITS_PER_UNIT;
728 }
729 }
730
731 if (TREE_CODE (ptr) == ADDR_EXPR)
732 {
733 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
734 if (ref->base)
735 ref->offset = BITS_PER_UNIT * t;
736 else
737 {
738 size = NULL_TREE;
739 ref->offset = 0;
740 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
741 }
742 }
743 else
744 {
745 gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr)));
746 ref->base = build2 (MEM_REF, char_type_node,
747 ptr, null_pointer_node);
748 ref->offset = 0;
749 }
750 ref->offset += extra_offset;
751 if (size
752 && poly_int_tree_p (size, &size_hwi)
753 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
754 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
755 else
756 ref->max_size = ref->size = -1;
757 ref->ref_alias_set = 0;
758 ref->base_alias_set = 0;
759 ref->volatile_p = false;
760 }
761
762 /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them:
763 Return -1 if S1 < S2
764 Return 1 if S1 > S2
765 Return 0 if equal or incomparable. */
766
767 static int
768 compare_sizes (tree s1, tree s2)
769 {
770 if (!s1 || !s2)
771 return 0;
772
773 poly_uint64 size1;
774 poly_uint64 size2;
775
776 if (!poly_int_tree_p (s1, &size1) || !poly_int_tree_p (s2, &size2))
777 return 0;
778 if (known_lt (size1, size2))
779 return -1;
780 if (known_lt (size2, size1))
781 return 1;
782 return 0;
783 }
784
785 /* Compare TYPE1 and TYPE2 by its size.
786 Return -1 if size of TYPE1 < size of TYPE2
787 Return 1 if size of TYPE1 > size of TYPE2
788 Return 0 if types are of equal sizes or we can not compare them. */
789
790 static int
791 compare_type_sizes (tree type1, tree type2)
792 {
793 /* Be conservative for arrays and vectors. We want to support partial
794 overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */
795 while (TREE_CODE (type1) == ARRAY_TYPE
796 || TREE_CODE (type1) == VECTOR_TYPE)
797 type1 = TREE_TYPE (type1);
798 while (TREE_CODE (type2) == ARRAY_TYPE
799 || TREE_CODE (type2) == VECTOR_TYPE)
800 type2 = TREE_TYPE (type2);
801 return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2));
802 }
803
804 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
805 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
806 decide. */
807
808 static inline int
809 same_type_for_tbaa (tree type1, tree type2)
810 {
811 type1 = TYPE_MAIN_VARIANT (type1);
812 type2 = TYPE_MAIN_VARIANT (type2);
813
814 /* Handle the most common case first. */
815 if (type1 == type2)
816 return 1;
817
818 /* If we would have to do structural comparison bail out. */
819 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
820 || TYPE_STRUCTURAL_EQUALITY_P (type2))
821 return -1;
822
823 /* Compare the canonical types. */
824 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
825 return 1;
826
827 /* ??? Array types are not properly unified in all cases as we have
828 spurious changes in the index types for example. Removing this
829 causes all sorts of problems with the Fortran frontend. */
830 if (TREE_CODE (type1) == ARRAY_TYPE
831 && TREE_CODE (type2) == ARRAY_TYPE)
832 return -1;
833
834 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
835 object of one of its constrained subtypes, e.g. when a function with an
836 unconstrained parameter passed by reference is called on an object and
837 inlined. But, even in the case of a fixed size, type and subtypes are
838 not equivalent enough as to share the same TYPE_CANONICAL, since this
839 would mean that conversions between them are useless, whereas they are
840 not (e.g. type and subtypes can have different modes). So, in the end,
841 they are only guaranteed to have the same alias set. */
842 alias_set_type set1 = get_alias_set (type1);
843 alias_set_type set2 = get_alias_set (type2);
844 if (set1 == set2)
845 return -1;
846
847 /* Pointers to void are considered compatible with all other pointers,
848 so for two pointers see what the alias set resolution thinks. */
849 if (POINTER_TYPE_P (type1)
850 && POINTER_TYPE_P (type2)
851 && alias_sets_conflict_p (set1, set2))
852 return -1;
853
854 /* The types are known to be not equal. */
855 return 0;
856 }
857
858 /* Return true if TYPE is a composite type (i.e. we may apply one of handled
859 components on it). */
860
861 static bool
862 type_has_components_p (tree type)
863 {
864 return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)
865 || TREE_CODE (type) == COMPLEX_TYPE;
866 }
867
868 /* MATCH1 and MATCH2 which are part of access path of REF1 and REF2
869 respectively are either pointing to same address or are completely
870 disjoint. If PARTIAL_OVERLAP is true, assume that outermost arrays may
871 just partly overlap.
872
873 Try to disambiguate using the access path starting from the match
874 and return false if there is no conflict.
875
876 Helper for aliasing_component_refs_p. */
877
878 static bool
879 aliasing_matching_component_refs_p (tree match1, tree ref1,
880 poly_int64 offset1, poly_int64 max_size1,
881 tree match2, tree ref2,
882 poly_int64 offset2, poly_int64 max_size2,
883 bool partial_overlap)
884 {
885 poly_int64 offadj, sztmp, msztmp;
886 bool reverse;
887
888 if (!partial_overlap)
889 {
890 get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse);
891 offset2 -= offadj;
892 get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse);
893 offset1 -= offadj;
894 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
895 {
896 ++alias_stats.aliasing_component_refs_p_no_alias;
897 return false;
898 }
899 }
900
901 int cmp = nonoverlapping_refs_since_match_p (match1, ref1, match2, ref2,
902 partial_overlap);
903 if (cmp == 1
904 || (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2)))
905 {
906 ++alias_stats.aliasing_component_refs_p_no_alias;
907 return false;
908 }
909 ++alias_stats.aliasing_component_refs_p_may_alias;
910 return true;
911 }
912
913 /* Return true if REF is reference to zero sized trailing array. I.e.
914 struct foo {int bar; int array[0];} *fooptr;
915 fooptr->array. */
916
917 static bool
918 component_ref_to_zero_sized_trailing_array_p (tree ref)
919 {
920 return (TREE_CODE (ref) == COMPONENT_REF
921 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE
922 && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))
923 || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1)))))
924 && array_at_struct_end_p (ref));
925 }
926
927 /* Worker for aliasing_component_refs_p. Most parameters match parameters of
928 aliasing_component_refs_p.
929
930 Walk access path REF2 and try to find type matching TYPE1
931 (which is a start of possibly aliasing access path REF1).
932 If match is found, try to disambiguate.
933
934 Return 0 for sucessful disambiguation.
935 Return 1 if match was found but disambiguation failed
936 Return -1 if there is no match.
937 In this case MAYBE_MATCH is set to 0 if there is no type matching TYPE1
938 in access patch REF2 and -1 if we are not sure. */
939
940 static int
941 aliasing_component_refs_walk (tree ref1, tree type1, tree base1,
942 poly_int64 offset1, poly_int64 max_size1,
943 tree end_struct_ref1,
944 tree ref2, tree base2,
945 poly_int64 offset2, poly_int64 max_size2,
946 bool *maybe_match)
947 {
948 tree ref = ref2;
949 int same_p = 0;
950
951 while (true)
952 {
953 /* We walk from inner type to the outer types. If type we see is
954 already too large to be part of type1, terminate the search. */
955 int cmp = compare_type_sizes (type1, TREE_TYPE (ref));
956
957 if (cmp < 0
958 && (!end_struct_ref1
959 || compare_type_sizes (TREE_TYPE (end_struct_ref1),
960 TREE_TYPE (ref)) < 0))
961 break;
962 /* If types may be of same size, see if we can decide about their
963 equality. */
964 if (cmp == 0)
965 {
966 same_p = same_type_for_tbaa (TREE_TYPE (ref), type1);
967 if (same_p == 1)
968 break;
969 /* In case we can't decide whether types are same try to
970 continue looking for the exact match.
971 Remember however that we possibly saw a match
972 to bypass the access path continuations tests we do later. */
973 if (same_p == -1)
974 *maybe_match = true;
975 }
976 if (!handled_component_p (ref))
977 break;
978 ref = TREE_OPERAND (ref, 0);
979 }
980 if (same_p == 1)
981 {
982 bool partial_overlap = false;
983
984 /* We assume that arrays can overlap by multiple of their elements
985 size as tested in gcc.dg/torture/alias-2.c.
986 This partial overlap happen only when both arrays are bases of
987 the access and not contained within another component ref.
988 To be safe we also assume partial overlap for VLAs. */
989 if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
990 && (!TYPE_SIZE (TREE_TYPE (base1))
991 || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST
992 || ref == base2))
993 {
994 /* Setting maybe_match to true triggers
995 nonoverlapping_component_refs_p test later that still may do
996 useful disambiguation. */
997 *maybe_match = true;
998 partial_overlap = true;
999 }
1000 return aliasing_matching_component_refs_p (base1, ref1,
1001 offset1, max_size1,
1002 ref, ref2,
1003 offset2, max_size2,
1004 partial_overlap);
1005 }
1006 return -1;
1007 }
1008
1009 /* Consider access path1 base1....ref1 and access path2 base2...ref2.
1010 Return true if they can be composed to single access path
1011 base1...ref1...base2...ref2.
1012
1013 REF_TYPE1 if type of REF1. END_STRUCT_PAST_END1 is true if there is
1014 a trailing array access after REF1 in the non-TBAA part of the access.
1015 REF1_ALIAS_SET is the alias set of REF1.
1016
1017 BASE_TYPE2 is type of base2. END_STRUCT_REF2 is non-NULL if there is
1018 a traling array access in the TBAA part of access path2.
1019 BASE2_ALIAS_SET is the alias set of base2. */
1020
1021 bool
1022 access_path_may_continue_p (tree ref_type1, bool end_struct_past_end1,
1023 alias_set_type ref1_alias_set,
1024 tree base_type2, tree end_struct_ref2,
1025 alias_set_type base2_alias_set)
1026 {
1027 /* Access path can not continue past types with no components. */
1028 if (!type_has_components_p (ref_type1))
1029 return false;
1030
1031 /* If first access path ends by too small type to hold base of
1032 the second access path, typically paths can not continue.
1033
1034 Punt if end_struct_past_end1 is true. We want to support arbitrary
1035 type puning past first COMPONENT_REF to union because redundant store
1036 elimination depends on this, see PR92152. For this reason we can not
1037 check size of the reference because types may partially overlap. */
1038 if (!end_struct_past_end1)
1039 {
1040 if (compare_type_sizes (ref_type1, base_type2) < 0)
1041 return false;
1042 /* If the path2 contains trailing array access we can strenghten the check
1043 to verify that also the size of element of the trailing array fits.
1044 In fact we could check for offset + type_size, but we do not track
1045 offsets and this is quite side case. */
1046 if (end_struct_ref2
1047 && compare_type_sizes (ref_type1, TREE_TYPE (end_struct_ref2)) < 0)
1048 return false;
1049 }
1050 return (base2_alias_set == ref1_alias_set
1051 || alias_set_subset_of (base2_alias_set, ref1_alias_set));
1052 }
1053
1054 /* Determine if the two component references REF1 and REF2 which are
1055 based on access types TYPE1 and TYPE2 and of which at least one is based
1056 on an indirect reference may alias.
1057 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
1058 are the respective alias sets. */
1059
1060 static bool
1061 aliasing_component_refs_p (tree ref1,
1062 alias_set_type ref1_alias_set,
1063 alias_set_type base1_alias_set,
1064 poly_int64 offset1, poly_int64 max_size1,
1065 tree ref2,
1066 alias_set_type ref2_alias_set,
1067 alias_set_type base2_alias_set,
1068 poly_int64 offset2, poly_int64 max_size2)
1069 {
1070 /* If one reference is a component references through pointers try to find a
1071 common base and apply offset based disambiguation. This handles
1072 for example
1073 struct A { int i; int j; } *q;
1074 struct B { struct A a; int k; } *p;
1075 disambiguating q->i and p->a.j. */
1076 tree base1, base2;
1077 tree type1, type2;
1078 bool maybe_match = false;
1079 tree end_struct_ref1 = NULL, end_struct_ref2 = NULL;
1080 bool end_struct_past_end1 = false;
1081 bool end_struct_past_end2 = false;
1082
1083 /* Choose bases and base types to search for.
1084 The access path is as follows:
1085 base....end_of_tbaa_ref...actual_ref
1086 At one place in the access path may be a reference to zero sized or
1087 trailing array.
1088
1089 We generally discard the segment after end_of_tbaa_ref however
1090 we need to be careful in case it contains zero sized or traling array.
1091 These may happen after refernce to union and in this case we need to
1092 not disambiguate type puning scenarios.
1093
1094 We set:
1095 base1 to point to base
1096
1097 ref1 to point to end_of_tbaa_ref
1098
1099 end_struct_ref1 to point the trailing reference (if it exists
1100 in range base....end_of_tbaa_ref
1101
1102 end_struct_past_end1 is true if this traling refernece occurs in
1103 end_of_tbaa_ref...actual_ref. */
1104 base1 = ref1;
1105 while (handled_component_p (base1))
1106 {
1107 /* Generally access paths are monotous in the size of object. The
1108 exception are trailing arrays of structures. I.e.
1109 struct a {int array[0];};
1110 or
1111 struct a {int array1[0]; int array[];};
1112 Such struct has size 0 but accesses to a.array may have non-zero size.
1113 In this case the size of TREE_TYPE (base1) is smaller than
1114 size of TREE_TYPE (TREE_OPERNAD (base1, 0)).
1115
1116 Because we compare sizes of arrays just by sizes of their elements,
1117 we only need to care about zero sized array fields here. */
1118 if (component_ref_to_zero_sized_trailing_array_p (base1))
1119 {
1120 gcc_checking_assert (!end_struct_ref1);
1121 end_struct_ref1 = base1;
1122 }
1123 if (ends_tbaa_access_path_p (base1))
1124 {
1125 ref1 = TREE_OPERAND (base1, 0);
1126 if (end_struct_ref1)
1127 {
1128 end_struct_past_end1 = true;
1129 end_struct_ref1 = NULL;
1130 }
1131 }
1132 base1 = TREE_OPERAND (base1, 0);
1133 }
1134 type1 = TREE_TYPE (base1);
1135 base2 = ref2;
1136 while (handled_component_p (base2))
1137 {
1138 if (component_ref_to_zero_sized_trailing_array_p (base2))
1139 {
1140 gcc_checking_assert (!end_struct_ref2);
1141 end_struct_ref2 = base2;
1142 }
1143 if (ends_tbaa_access_path_p (base2))
1144 {
1145 ref2 = TREE_OPERAND (base2, 0);
1146 if (end_struct_ref2)
1147 {
1148 end_struct_past_end2 = true;
1149 end_struct_ref2 = NULL;
1150 }
1151 }
1152 base2 = TREE_OPERAND (base2, 0);
1153 }
1154 type2 = TREE_TYPE (base2);
1155
1156 /* Now search for the type1 in the access path of ref2. This
1157 would be a common base for doing offset based disambiguation on.
1158 This however only makes sense if type2 is big enough to hold type1. */
1159 int cmp_outer = compare_type_sizes (type2, type1);
1160
1161 /* If type2 is big enough to contain type1 walk its access path.
1162 We also need to care of arrays at the end of structs that may extend
1163 beyond the end of structure. If this occurs in the TBAA part of the
1164 access path, we need to consider the increased type as well. */
1165 if (cmp_outer >= 0
1166 || (end_struct_ref2
1167 && compare_type_sizes (TREE_TYPE (end_struct_ref2), type1) >= 0))
1168 {
1169 int res = aliasing_component_refs_walk (ref1, type1, base1,
1170 offset1, max_size1,
1171 end_struct_ref1,
1172 ref2, base2, offset2, max_size2,
1173 &maybe_match);
1174 if (res != -1)
1175 return res;
1176 }
1177
1178 /* If we didn't find a common base, try the other way around. */
1179 if (cmp_outer <= 0
1180 || (end_struct_ref1
1181 && compare_type_sizes (TREE_TYPE (end_struct_ref1), type1) <= 0))
1182 {
1183 int res = aliasing_component_refs_walk (ref2, type2, base2,
1184 offset2, max_size2,
1185 end_struct_ref2,
1186 ref1, base1, offset1, max_size1,
1187 &maybe_match);
1188 if (res != -1)
1189 return res;
1190 }
1191
1192 /* In the following code we make an assumption that the types in access
1193 paths do not overlap and thus accesses alias only if one path can be
1194 continuation of another. If we was not able to decide about equivalence,
1195 we need to give up. */
1196 if (maybe_match)
1197 {
1198 if (!nonoverlapping_component_refs_p (ref1, ref2))
1199 {
1200 ++alias_stats.aliasing_component_refs_p_may_alias;
1201 return true;
1202 }
1203 ++alias_stats.aliasing_component_refs_p_no_alias;
1204 return false;
1205 }
1206
1207 if (access_path_may_continue_p (TREE_TYPE (ref1), end_struct_past_end1,
1208 ref1_alias_set,
1209 type2, end_struct_ref2,
1210 base2_alias_set)
1211 || access_path_may_continue_p (TREE_TYPE (ref2), end_struct_past_end2,
1212 ref2_alias_set,
1213 type1, end_struct_ref1,
1214 base1_alias_set))
1215 {
1216 ++alias_stats.aliasing_component_refs_p_may_alias;
1217 return true;
1218 }
1219 ++alias_stats.aliasing_component_refs_p_no_alias;
1220 return false;
1221 }
1222
1223 /* FIELD1 and FIELD2 are two fields of component refs. We assume
1224 that bases of both component refs are either equivalent or nonoverlapping.
1225 We do not assume that the containers of FIELD1 and FIELD2 are of the
1226 same type or size.
1227
1228 Return 0 in case the base address of component_refs are same then
1229 FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2
1230 may not be of same type or size.
1231
1232 Return 1 if FIELD1 and FIELD2 are non-overlapping.
1233
1234 Return -1 otherwise.
1235
1236 Main difference between 0 and -1 is to let
1237 nonoverlapping_component_refs_since_match_p discover the semantically
1238 equivalent part of the access path.
1239
1240 Note that this function is used even with -fno-strict-aliasing
1241 and makes use of no TBAA assumptions. */
1242
1243 static int
1244 nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2)
1245 {
1246 /* If both fields are of the same type, we could save hard work of
1247 comparing offsets. */
1248 tree type1 = DECL_CONTEXT (field1);
1249 tree type2 = DECL_CONTEXT (field2);
1250
1251 if (TREE_CODE (type1) == RECORD_TYPE
1252 && DECL_BIT_FIELD_REPRESENTATIVE (field1))
1253 field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1);
1254 if (TREE_CODE (type2) == RECORD_TYPE
1255 && DECL_BIT_FIELD_REPRESENTATIVE (field2))
1256 field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2);
1257
1258 /* ??? Bitfields can overlap at RTL level so punt on them.
1259 FIXME: RTL expansion should be fixed by adjusting the access path
1260 when producing MEM_ATTRs for MEMs which are wider than
1261 the bitfields similarly as done in set_mem_attrs_minus_bitpos. */
1262 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
1263 return -1;
1264
1265 /* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE. */
1266 if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE)
1267 return field1 != field2;
1268
1269 /* In common case the offsets and bit offsets will be the same.
1270 However if frontends do not agree on the alignment, they may be
1271 different even if they actually represent same address.
1272 Try the common case first and if that fails calcualte the
1273 actual bit offset. */
1274 if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1),
1275 DECL_FIELD_OFFSET (field2))
1276 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1),
1277 DECL_FIELD_BIT_OFFSET (field2)))
1278 return 0;
1279
1280 /* Note that it may be possible to use component_ref_field_offset
1281 which would provide offsets as trees. However constructing and folding
1282 trees is expensive and does not seem to be worth the compile time
1283 cost. */
1284
1285 poly_uint64 offset1, offset2;
1286 poly_uint64 bit_offset1, bit_offset2;
1287
1288 if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), &offset1)
1289 && poly_int_tree_p (DECL_FIELD_OFFSET (field2), &offset2)
1290 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), &bit_offset1)
1291 && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), &bit_offset2))
1292 {
1293 offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1;
1294 offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2;
1295
1296 if (known_eq (offset1, offset2))
1297 return 0;
1298
1299 poly_uint64 size1, size2;
1300
1301 if (poly_int_tree_p (DECL_SIZE (field1), &size1)
1302 && poly_int_tree_p (DECL_SIZE (field2), &size2)
1303 && !ranges_maybe_overlap_p (offset1, size1, offset2, size2))
1304 return 1;
1305 }
1306 /* Resort to slower overlap checking by looking for matching types in
1307 the middle of access path. */
1308 return -1;
1309 }
1310
1311 /* Return low bound of array. Do not produce new trees
1312 and thus do not care about particular type of integer constant
1313 and placeholder exprs. */
1314
1315 static tree
1316 cheap_array_ref_low_bound (tree ref)
1317 {
1318 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
1319
1320 /* Avoid expensive array_ref_low_bound.
1321 low bound is either stored in operand2, or it is TYPE_MIN_VALUE of domain
1322 type or it is zero. */
1323 if (TREE_OPERAND (ref, 2))
1324 return TREE_OPERAND (ref, 2);
1325 else if (domain_type && TYPE_MIN_VALUE (domain_type))
1326 return TYPE_MIN_VALUE (domain_type);
1327 else
1328 return integer_zero_node;
1329 }
1330
1331 /* REF1 and REF2 are ARRAY_REFs with either same base address or which are
1332 completely disjoint.
1333
1334 Return 1 if the refs are non-overlapping.
1335 Return 0 if they are possibly overlapping but if so the overlap again
1336 starts on the same address.
1337 Return -1 otherwise. */
1338
1339 int
1340 nonoverlapping_array_refs_p (tree ref1, tree ref2)
1341 {
1342 tree index1 = TREE_OPERAND (ref1, 1);
1343 tree index2 = TREE_OPERAND (ref2, 1);
1344 tree low_bound1 = cheap_array_ref_low_bound(ref1);
1345 tree low_bound2 = cheap_array_ref_low_bound(ref2);
1346
1347 /* Handle zero offsets first: we do not need to match type size in this
1348 case. */
1349 if (operand_equal_p (index1, low_bound1, 0)
1350 && operand_equal_p (index2, low_bound2, 0))
1351 return 0;
1352
1353 /* If type sizes are different, give up.
1354
1355 Avoid expensive array_ref_element_size.
1356 If operand 3 is present it denotes size in the alignmnet units.
1357 Otherwise size is TYPE_SIZE of the element type.
1358 Handle only common cases where types are of the same "kind". */
1359 if ((TREE_OPERAND (ref1, 3) == NULL) != (TREE_OPERAND (ref2, 3) == NULL))
1360 return -1;
1361
1362 tree elmt_type1 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref1, 0)));
1363 tree elmt_type2 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref2, 0)));
1364
1365 if (TREE_OPERAND (ref1, 3))
1366 {
1367 if (TYPE_ALIGN (elmt_type1) != TYPE_ALIGN (elmt_type2)
1368 || !operand_equal_p (TREE_OPERAND (ref1, 3),
1369 TREE_OPERAND (ref2, 3), 0))
1370 return -1;
1371 }
1372 else
1373 {
1374 if (!operand_equal_p (TYPE_SIZE_UNIT (elmt_type1),
1375 TYPE_SIZE_UNIT (elmt_type2), 0))
1376 return -1;
1377 }
1378
1379 /* Since we know that type sizes are the same, there is no need to return
1380 -1 after this point. Partial overlap can not be introduced. */
1381
1382 /* We may need to fold trees in this case.
1383 TODO: Handle integer constant case at least. */
1384 if (!operand_equal_p (low_bound1, low_bound2, 0))
1385 return 0;
1386
1387 if (TREE_CODE (index1) == INTEGER_CST && TREE_CODE (index2) == INTEGER_CST)
1388 {
1389 if (tree_int_cst_equal (index1, index2))
1390 return 0;
1391 return 1;
1392 }
1393 /* TODO: We can use VRP to further disambiguate here. */
1394 return 0;
1395 }
1396
1397 /* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and
1398 MATCH2 either point to the same address or are disjoint.
1399 MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2
1400 respectively or NULL in the case we established equivalence of bases.
1401 If PARTIAL_OVERLAP is true assume that the toplevel arrays may actually
1402 overlap by exact multiply of their element size.
1403
1404 This test works by matching the initial segment of the access path
1405 and does not rely on TBAA thus is safe for !flag_strict_aliasing if
1406 match was determined without use of TBAA oracle.
1407
1408 Return 1 if we can determine that component references REF1 and REF2,
1409 that are within a common DECL, cannot overlap.
1410
1411 Return 0 if paths are same and thus there is nothing to disambiguate more
1412 (i.e. there is must alias assuming there is must alias between MATCH1 and
1413 MATCH2)
1414
1415 Return -1 if we can not determine 0 or 1 - this happens when we met
1416 non-matching types was met in the path.
1417 In this case it may make sense to continue by other disambiguation
1418 oracles. */
1419
1420 static int
1421 nonoverlapping_refs_since_match_p (tree match1, tree ref1,
1422 tree match2, tree ref2,
1423 bool partial_overlap)
1424 {
1425 int ntbaa1 = 0, ntbaa2 = 0;
1426 /* Early return if there are no references to match, we do not need
1427 to walk the access paths.
1428
1429 Do not consider this as may-alias for stats - it is more useful
1430 to have information how many disambiguations happened provided that
1431 the query was meaningful. */
1432
1433 if (match1 == ref1 || !handled_component_p (ref1)
1434 || match2 == ref2 || !handled_component_p (ref2))
1435 return -1;
1436
1437 auto_vec<tree, 16> component_refs1;
1438 auto_vec<tree, 16> component_refs2;
1439
1440 /* Create the stack of handled components for REF1. */
1441 while (handled_component_p (ref1) && ref1 != match1)
1442 {
1443 /* We use TBAA only to re-synchronize after mismatched refs. So we
1444 do not need to truncate access path after TBAA part ends. */
1445 if (ends_tbaa_access_path_p (ref1))
1446 ntbaa1 = 0;
1447 else
1448 ntbaa1++;
1449 component_refs1.safe_push (ref1);
1450 ref1 = TREE_OPERAND (ref1, 0);
1451 }
1452
1453 /* Create the stack of handled components for REF2. */
1454 while (handled_component_p (ref2) && ref2 != match2)
1455 {
1456 if (ends_tbaa_access_path_p (ref2))
1457 ntbaa2 = 0;
1458 else
1459 ntbaa2++;
1460 component_refs2.safe_push (ref2);
1461 ref2 = TREE_OPERAND (ref2, 0);
1462 }
1463
1464 if (!flag_strict_aliasing)
1465 {
1466 ntbaa1 = 0;
1467 ntbaa2 = 0;
1468 }
1469
1470 bool mem_ref1 = TREE_CODE (ref1) == MEM_REF && ref1 != match1;
1471 bool mem_ref2 = TREE_CODE (ref2) == MEM_REF && ref2 != match2;
1472
1473 /* If only one of access path starts with MEM_REF check that offset is 0
1474 so the addresses stays the same after stripping it.
1475 TODO: In this case we may walk the other access path until we get same
1476 offset.
1477
1478 If both starts with MEM_REF, offset has to be same. */
1479 if ((mem_ref1 && !mem_ref2 && !integer_zerop (TREE_OPERAND (ref1, 1)))
1480 || (mem_ref2 && !mem_ref1 && !integer_zerop (TREE_OPERAND (ref2, 1)))
1481 || (mem_ref1 && mem_ref2
1482 && !tree_int_cst_equal (TREE_OPERAND (ref1, 1),
1483 TREE_OPERAND (ref2, 1))))
1484 {
1485 ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
1486 return -1;
1487 }
1488
1489 /* TARGET_MEM_REF are never wrapped in handled components, so we do not need
1490 to handle them here at all. */
1491 gcc_checking_assert (TREE_CODE (ref1) != TARGET_MEM_REF
1492 && TREE_CODE (ref2) != TARGET_MEM_REF);
1493
1494 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
1495 rank. This is sufficient because we start from the same DECL and you
1496 cannot reference several fields at a time with COMPONENT_REFs (unlike
1497 with ARRAY_RANGE_REFs for arrays) so you always need the same number
1498 of them to access a sub-component, unless you're in a union, in which
1499 case the return value will precisely be false. */
1500 while (true)
1501 {
1502 /* Track if we seen unmatched ref with non-zero offset. In this case
1503 we must look for partial overlaps. */
1504 bool seen_unmatched_ref_p = false;
1505
1506 /* First match ARRAY_REFs an try to disambiguate. */
1507 if (!component_refs1.is_empty ()
1508 && !component_refs2.is_empty ())
1509 {
1510 unsigned int narray_refs1=0, narray_refs2=0;
1511
1512 /* We generally assume that both access paths starts by same sequence
1513 of refs. However if number of array refs is not in sync, try
1514 to recover and pop elts until number match. This helps the case
1515 where one access path starts by array and other by element. */
1516 for (narray_refs1 = 0; narray_refs1 < component_refs1.length ();
1517 narray_refs1++)
1518 if (TREE_CODE (component_refs1 [component_refs1.length()
1519 - 1 - narray_refs1]) != ARRAY_REF)
1520 break;
1521
1522 for (narray_refs2 = 0; narray_refs2 < component_refs2.length ();
1523 narray_refs2++)
1524 if (TREE_CODE (component_refs2 [component_refs2.length()
1525 - 1 - narray_refs2]) != ARRAY_REF)
1526 break;
1527 for (; narray_refs1 > narray_refs2; narray_refs1--)
1528 {
1529 ref1 = component_refs1.pop ();
1530 ntbaa1--;
1531
1532 /* If index is non-zero we need to check whether the reference
1533 does not break the main invariant that bases are either
1534 disjoint or equal. Consider the example:
1535
1536 unsigned char out[][1];
1537 out[1]="a";
1538 out[i][0];
1539
1540 Here bases out and out are same, but after removing the
1541 [i] index, this invariant no longer holds, because
1542 out[i] points to the middle of array out.
1543
1544 TODO: If size of type of the skipped reference is an integer
1545 multiply of the size of type of the other reference this
1546 invariant can be verified, but even then it is not completely
1547 safe with !flag_strict_aliasing if the other reference contains
1548 unbounded array accesses.
1549 See */
1550
1551 if (!operand_equal_p (TREE_OPERAND (ref1, 1),
1552 cheap_array_ref_low_bound (ref1), 0))
1553 return 0;
1554 }
1555 for (; narray_refs2 > narray_refs1; narray_refs2--)
1556 {
1557 ref2 = component_refs2.pop ();
1558 ntbaa2--;
1559 if (!operand_equal_p (TREE_OPERAND (ref2, 1),
1560 cheap_array_ref_low_bound (ref2), 0))
1561 return 0;
1562 }
1563 /* Try to disambiguate matched arrays. */
1564 for (unsigned int i = 0; i < narray_refs1; i++)
1565 {
1566 int cmp = nonoverlapping_array_refs_p (component_refs1.pop (),
1567 component_refs2.pop ());
1568 ntbaa1--;
1569 ntbaa2--;
1570 if (cmp == 1 && !partial_overlap)
1571 {
1572 ++alias_stats
1573 .nonoverlapping_refs_since_match_p_no_alias;
1574 return 1;
1575 }
1576 if (cmp == -1)
1577 {
1578 seen_unmatched_ref_p = true;
1579 /* We can not maintain the invariant that bases are either
1580 same or completely disjoint. However we can still recover
1581 from type based alias analysis if we reach referneces to
1582 same sizes. We do not attempt to match array sizes, so
1583 just finish array walking and look for component refs. */
1584 if (ntbaa1 < 0 || ntbaa2 < 0)
1585 {
1586 ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
1587 return -1;
1588 }
1589 for (i++; i < narray_refs1; i++)
1590 {
1591 component_refs1.pop ();
1592 component_refs2.pop ();
1593 ntbaa1--;
1594 ntbaa2--;
1595 }
1596 break;
1597 }
1598 partial_overlap = false;
1599 }
1600 }
1601
1602 /* Next look for component_refs. */
1603 do
1604 {
1605 if (component_refs1.is_empty ())
1606 {
1607 ++alias_stats
1608 .nonoverlapping_refs_since_match_p_must_overlap;
1609 return 0;
1610 }
1611 ref1 = component_refs1.pop ();
1612 ntbaa1--;
1613 if (TREE_CODE (ref1) != COMPONENT_REF)
1614 {
1615 seen_unmatched_ref_p = true;
1616 if (ntbaa1 < 0 || ntbaa2 < 0)
1617 {
1618 ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
1619 return -1;
1620 }
1621 }
1622 }
1623 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
1624
1625 do
1626 {
1627 if (component_refs2.is_empty ())
1628 {
1629 ++alias_stats
1630 .nonoverlapping_refs_since_match_p_must_overlap;
1631 return 0;
1632 }
1633 ref2 = component_refs2.pop ();
1634 ntbaa2--;
1635 if (TREE_CODE (ref2) != COMPONENT_REF)
1636 {
1637 if (ntbaa1 < 0 || ntbaa2 < 0)
1638 {
1639 ++alias_stats.nonoverlapping_refs_since_match_p_may_alias;
1640 return -1;
1641 }
1642 seen_unmatched_ref_p = true;
1643 }
1644 }
1645 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
1646
1647 /* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors
1648 earlier. */
1649 gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF
1650 && TREE_CODE (ref2) == COMPONENT_REF);
1651
1652 tree field1 = TREE_OPERAND (ref1, 1);
1653 tree field2 = TREE_OPERAND (ref2, 1);
1654
1655 /* ??? We cannot simply use the type of operand #0 of the refs here
1656 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1657 for common blocks instead of using unions like everyone else. */
1658 tree type1 = DECL_CONTEXT (field1);
1659 tree type2 = DECL_CONTEXT (field2);
1660
1661 partial_overlap = false;
1662
1663 /* If we skipped array refs on type of different sizes, we can
1664 no longer be sure that there are not partial overlaps. */
1665 if (seen_unmatched_ref_p && ntbaa1 >= 0 && ntbaa2 >= 0
1666 && !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), 0))
1667 {
1668 ++alias_stats
1669 .nonoverlapping_refs_since_match_p_may_alias;
1670 return -1;
1671 }
1672
1673 int cmp = nonoverlapping_component_refs_p_1 (field1, field2);
1674 if (cmp == -1)
1675 {
1676 ++alias_stats
1677 .nonoverlapping_refs_since_match_p_may_alias;
1678 return -1;
1679 }
1680 else if (cmp == 1)
1681 {
1682 ++alias_stats
1683 .nonoverlapping_refs_since_match_p_no_alias;
1684 return 1;
1685 }
1686 }
1687
1688 ++alias_stats.nonoverlapping_refs_since_match_p_must_overlap;
1689 return 0;
1690 }
1691
1692 /* Return TYPE_UID which can be used to match record types we consider
1693 same for TBAA purposes. */
1694
1695 static inline int
1696 ncr_type_uid (const_tree field)
1697 {
1698 /* ??? We cannot simply use the type of operand #0 of the refs here
1699 as the Fortran compiler smuggles type punning into COMPONENT_REFs
1700 for common blocks instead of using unions like everyone else. */
1701 tree type = DECL_FIELD_CONTEXT (field);
1702 /* With LTO types considered same_type_for_tbaa_p
1703 from different translation unit may not have same
1704 main variant. They however have same TYPE_CANONICAL. */
1705 if (TYPE_CANONICAL (type))
1706 return TYPE_UID (TYPE_CANONICAL (type));
1707 return TYPE_UID (type);
1708 }
1709
1710 /* qsort compare function to sort FIELD_DECLs after their
1711 DECL_FIELD_CONTEXT TYPE_UID. */
1712
1713 static inline int
1714 ncr_compar (const void *field1_, const void *field2_)
1715 {
1716 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
1717 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
1718 unsigned int uid1 = ncr_type_uid (field1);
1719 unsigned int uid2 = ncr_type_uid (field2);
1720
1721 if (uid1 < uid2)
1722 return -1;
1723 else if (uid1 > uid2)
1724 return 1;
1725 return 0;
1726 }
1727
1728 /* Return true if we can determine that the fields referenced cannot
1729 overlap for any pair of objects. This relies on TBAA. */
1730
1731 static bool
1732 nonoverlapping_component_refs_p (const_tree x, const_tree y)
1733 {
1734 /* Early return if we have nothing to do.
1735
1736 Do not consider this as may-alias for stats - it is more useful
1737 to have information how many disambiguations happened provided that
1738 the query was meaningful. */
1739 if (!flag_strict_aliasing
1740 || !x || !y
1741 || !handled_component_p (x)
1742 || !handled_component_p (y))
1743 return false;
1744
1745 auto_vec<const_tree, 16> fieldsx;
1746 while (handled_component_p (x))
1747 {
1748 if (TREE_CODE (x) == COMPONENT_REF)
1749 {
1750 tree field = TREE_OPERAND (x, 1);
1751 tree type = DECL_FIELD_CONTEXT (field);
1752 if (TREE_CODE (type) == RECORD_TYPE)
1753 fieldsx.safe_push (field);
1754 }
1755 else if (ends_tbaa_access_path_p (x))
1756 fieldsx.truncate (0);
1757 x = TREE_OPERAND (x, 0);
1758 }
1759 if (fieldsx.length () == 0)
1760 return false;
1761 auto_vec<const_tree, 16> fieldsy;
1762 while (handled_component_p (y))
1763 {
1764 if (TREE_CODE (y) == COMPONENT_REF)
1765 {
1766 tree field = TREE_OPERAND (y, 1);
1767 tree type = DECL_FIELD_CONTEXT (field);
1768 if (TREE_CODE (type) == RECORD_TYPE)
1769 fieldsy.safe_push (TREE_OPERAND (y, 1));
1770 }
1771 else if (ends_tbaa_access_path_p (y))
1772 fieldsy.truncate (0);
1773 y = TREE_OPERAND (y, 0);
1774 }
1775 if (fieldsy.length () == 0)
1776 {
1777 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1778 return false;
1779 }
1780
1781 /* Most common case first. */
1782 if (fieldsx.length () == 1
1783 && fieldsy.length () == 1)
1784 {
1785 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]),
1786 DECL_FIELD_CONTEXT (fieldsy[0])) == 1
1787 && nonoverlapping_component_refs_p_1 (fieldsx[0], fieldsy[0]) == 1)
1788 {
1789 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1790 return true;
1791 }
1792 else
1793 {
1794 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1795 return false;
1796 }
1797 }
1798
1799 if (fieldsx.length () == 2)
1800 {
1801 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1802 std::swap (fieldsx[0], fieldsx[1]);
1803 }
1804 else
1805 fieldsx.qsort (ncr_compar);
1806
1807 if (fieldsy.length () == 2)
1808 {
1809 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1810 std::swap (fieldsy[0], fieldsy[1]);
1811 }
1812 else
1813 fieldsy.qsort (ncr_compar);
1814
1815 unsigned i = 0, j = 0;
1816 do
1817 {
1818 const_tree fieldx = fieldsx[i];
1819 const_tree fieldy = fieldsy[j];
1820
1821 /* We're left with accessing different fields of a structure,
1822 no possible overlap. */
1823 if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx),
1824 DECL_FIELD_CONTEXT (fieldy)) == 1
1825 && nonoverlapping_component_refs_p_1 (fieldx, fieldy) == 1)
1826 {
1827 ++alias_stats.nonoverlapping_component_refs_p_no_alias;
1828 return true;
1829 }
1830
1831 if (ncr_type_uid (fieldx) < ncr_type_uid (fieldy))
1832 {
1833 i++;
1834 if (i == fieldsx.length ())
1835 break;
1836 }
1837 else
1838 {
1839 j++;
1840 if (j == fieldsy.length ())
1841 break;
1842 }
1843 }
1844 while (1);
1845
1846 ++alias_stats.nonoverlapping_component_refs_p_may_alias;
1847 return false;
1848 }
1849
1850
1851 /* Return true if two memory references based on the variables BASE1
1852 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1853 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1854 if non-NULL are the complete memory reference trees. */
1855
1856 static bool
1857 decl_refs_may_alias_p (tree ref1, tree base1,
1858 poly_int64 offset1, poly_int64 max_size1,
1859 poly_int64 size1,
1860 tree ref2, tree base2,
1861 poly_int64 offset2, poly_int64 max_size2,
1862 poly_int64 size2)
1863 {
1864 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1865
1866 /* If both references are based on different variables, they cannot alias. */
1867 if (compare_base_decls (base1, base2) == 0)
1868 return false;
1869
1870 /* If both references are based on the same variable, they cannot alias if
1871 the accesses do not overlap. */
1872 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1873 return false;
1874
1875 /* If there is must alias, there is no use disambiguating further. */
1876 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
1877 return true;
1878
1879 /* For components with variable position, the above test isn't sufficient,
1880 so we disambiguate component references manually. */
1881 if (ref1 && ref2
1882 && handled_component_p (ref1) && handled_component_p (ref2)
1883 && nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, false) == 1)
1884 return false;
1885
1886 return true;
1887 }
1888
1889 /* Return true if an indirect reference based on *PTR1 constrained
1890 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1891 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1892 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1893 in which case they are computed on-demand. REF1 and REF2
1894 if non-NULL are the complete memory reference trees. */
1895
1896 static bool
1897 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1898 poly_int64 offset1, poly_int64 max_size1,
1899 poly_int64 size1,
1900 alias_set_type ref1_alias_set,
1901 alias_set_type base1_alias_set,
1902 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1903 poly_int64 offset2, poly_int64 max_size2,
1904 poly_int64 size2,
1905 alias_set_type ref2_alias_set,
1906 alias_set_type base2_alias_set, bool tbaa_p)
1907 {
1908 tree ptr1;
1909 tree ptrtype1, dbase2;
1910
1911 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1912 || TREE_CODE (base1) == TARGET_MEM_REF)
1913 && DECL_P (base2));
1914
1915 ptr1 = TREE_OPERAND (base1, 0);
1916 poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1917
1918 /* If only one reference is based on a variable, they cannot alias if
1919 the pointer access is beyond the extent of the variable access.
1920 (the pointer base cannot validly point to an offset less than zero
1921 of the variable).
1922 ??? IVOPTs creates bases that do not honor this restriction,
1923 so do not apply this optimization for TARGET_MEM_REFs. */
1924 if (TREE_CODE (base1) != TARGET_MEM_REF
1925 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1926 return false;
1927 /* They also cannot alias if the pointer may not point to the decl. */
1928 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1929 return false;
1930
1931 /* Disambiguations that rely on strict aliasing rules follow. */
1932 if (!flag_strict_aliasing || !tbaa_p)
1933 return true;
1934
1935 /* If the alias set for a pointer access is zero all bets are off. */
1936 if (base1_alias_set == 0 || base2_alias_set == 0)
1937 return true;
1938
1939 /* When we are trying to disambiguate an access with a pointer dereference
1940 as base versus one with a decl as base we can use both the size
1941 of the decl and its dynamic type for extra disambiguation.
1942 ??? We do not know anything about the dynamic type of the decl
1943 other than that its alias-set contains base2_alias_set as a subset
1944 which does not help us here. */
1945 /* As we know nothing useful about the dynamic type of the decl just
1946 use the usual conflict check rather than a subset test.
1947 ??? We could introduce -fvery-strict-aliasing when the language
1948 does not allow decls to have a dynamic type that differs from their
1949 static type. Then we can check
1950 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1951 if (base1_alias_set != base2_alias_set
1952 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1953 return false;
1954
1955 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1956
1957 /* If the size of the access relevant for TBAA through the pointer
1958 is bigger than the size of the decl we can't possibly access the
1959 decl via that pointer. */
1960 if (/* ??? This in turn may run afoul when a decl of type T which is
1961 a member of union type U is accessed through a pointer to
1962 type U and sizeof T is smaller than sizeof U. */
1963 TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1964 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1965 && compare_sizes (DECL_SIZE (base2),
1966 TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0)
1967 return false;
1968
1969 if (!ref2)
1970 return true;
1971
1972 /* If the decl is accessed via a MEM_REF, reconstruct the base
1973 we can use for TBAA and an appropriately adjusted offset. */
1974 dbase2 = ref2;
1975 while (handled_component_p (dbase2))
1976 dbase2 = TREE_OPERAND (dbase2, 0);
1977 poly_int64 doffset1 = offset1;
1978 poly_offset_int doffset2 = offset2;
1979 if (TREE_CODE (dbase2) == MEM_REF
1980 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1981 {
1982 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1983 tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1));
1984 /* If second reference is view-converted, give up now. */
1985 if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1)
1986 return true;
1987 }
1988
1989 /* If first reference is view-converted, give up now. */
1990 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1)
1991 return true;
1992
1993 /* If both references are through the same type, they do not alias
1994 if the accesses do not overlap. This does extra disambiguation
1995 for mixed/pointer accesses but requires strict aliasing.
1996 For MEM_REFs we require that the component-ref offset we computed
1997 is relative to the start of the type which we ensure by
1998 comparing rvalue and access type and disregarding the constant
1999 pointer offset.
2000
2001 But avoid treating variable length arrays as "objects", instead assume they
2002 can overlap by an exact multiple of their element size.
2003 See gcc.dg/torture/alias-2.c. */
2004 if (((TREE_CODE (base1) != TARGET_MEM_REF
2005 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
2006 && (TREE_CODE (dbase2) != TARGET_MEM_REF
2007 || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2))))
2008 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
2009 {
2010 bool partial_overlap = (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE
2011 && (TYPE_SIZE (TREE_TYPE (base1))
2012 && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1)))
2013 != INTEGER_CST));
2014 if (!partial_overlap
2015 && !ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2))
2016 return false;
2017 if (!ref1 || !ref2
2018 /* If there is must alias, there is no use disambiguating further. */
2019 || (!partial_overlap
2020 && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
2021 return true;
2022 int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
2023 partial_overlap);
2024 if (res == -1)
2025 return !nonoverlapping_component_refs_p (ref1, ref2);
2026 return !res;
2027 }
2028
2029 /* Do access-path based disambiguation. */
2030 if (ref1 && ref2
2031 && (handled_component_p (ref1) || handled_component_p (ref2)))
2032 return aliasing_component_refs_p (ref1,
2033 ref1_alias_set, base1_alias_set,
2034 offset1, max_size1,
2035 ref2,
2036 ref2_alias_set, base2_alias_set,
2037 offset2, max_size2);
2038
2039 return true;
2040 }
2041
2042 /* Return true if two indirect references based on *PTR1
2043 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
2044 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
2045 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
2046 in which case they are computed on-demand. REF1 and REF2
2047 if non-NULL are the complete memory reference trees. */
2048
2049 static bool
2050 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
2051 poly_int64 offset1, poly_int64 max_size1,
2052 poly_int64 size1,
2053 alias_set_type ref1_alias_set,
2054 alias_set_type base1_alias_set,
2055 tree ref2 ATTRIBUTE_UNUSED, tree base2,
2056 poly_int64 offset2, poly_int64 max_size2,
2057 poly_int64 size2,
2058 alias_set_type ref2_alias_set,
2059 alias_set_type base2_alias_set, bool tbaa_p)
2060 {
2061 tree ptr1;
2062 tree ptr2;
2063 tree ptrtype1, ptrtype2;
2064
2065 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
2066 || TREE_CODE (base1) == TARGET_MEM_REF)
2067 && (TREE_CODE (base2) == MEM_REF
2068 || TREE_CODE (base2) == TARGET_MEM_REF));
2069
2070 ptr1 = TREE_OPERAND (base1, 0);
2071 ptr2 = TREE_OPERAND (base2, 0);
2072
2073 /* If both bases are based on pointers they cannot alias if they may not
2074 point to the same memory object or if they point to the same object
2075 and the accesses do not overlap. */
2076 if ((!cfun || gimple_in_ssa_p (cfun))
2077 && operand_equal_p (ptr1, ptr2, 0)
2078 && (((TREE_CODE (base1) != TARGET_MEM_REF
2079 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
2080 && (TREE_CODE (base2) != TARGET_MEM_REF
2081 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
2082 || (TREE_CODE (base1) == TARGET_MEM_REF
2083 && TREE_CODE (base2) == TARGET_MEM_REF
2084 && (TMR_STEP (base1) == TMR_STEP (base2)
2085 || (TMR_STEP (base1) && TMR_STEP (base2)
2086 && operand_equal_p (TMR_STEP (base1),
2087 TMR_STEP (base2), 0)))
2088 && (TMR_INDEX (base1) == TMR_INDEX (base2)
2089 || (TMR_INDEX (base1) && TMR_INDEX (base2)
2090 && operand_equal_p (TMR_INDEX (base1),
2091 TMR_INDEX (base2), 0)))
2092 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
2093 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
2094 && operand_equal_p (TMR_INDEX2 (base1),
2095 TMR_INDEX2 (base2), 0))))))
2096 {
2097 poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
2098 poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
2099 if (!ranges_maybe_overlap_p (offset1 + moff1, max_size1,
2100 offset2 + moff2, max_size2))
2101 return false;
2102 /* If there is must alias, there is no use disambiguating further. */
2103 if (known_eq (size1, max_size1) && known_eq (size2, max_size2))
2104 return true;
2105 if (ref1 && ref2)
2106 {
2107 int res = nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2,
2108 false);
2109 if (res != -1)
2110 return !res;
2111 }
2112 }
2113 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
2114 return false;
2115
2116 /* Disambiguations that rely on strict aliasing rules follow. */
2117 if (!flag_strict_aliasing || !tbaa_p)
2118 return true;
2119
2120 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
2121 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
2122
2123 /* If the alias set for a pointer access is zero all bets are off. */
2124 if (base1_alias_set == 0
2125 || base2_alias_set == 0)
2126 return true;
2127
2128 /* Do type-based disambiguation. */
2129 if (base1_alias_set != base2_alias_set
2130 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
2131 return false;
2132
2133 /* If either reference is view-converted, give up now. */
2134 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
2135 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
2136 return true;
2137
2138 /* If both references are through the same type, they do not alias
2139 if the accesses do not overlap. This does extra disambiguation
2140 for mixed/pointer accesses but requires strict aliasing. */
2141 if ((TREE_CODE (base1) != TARGET_MEM_REF
2142 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
2143 && (TREE_CODE (base2) != TARGET_MEM_REF
2144 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
2145 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
2146 TREE_TYPE (ptrtype2)) == 1)
2147 {
2148 /* But avoid treating arrays as "objects", instead assume they
2149 can overlap by an exact multiple of their element size.
2150 See gcc.dg/torture/alias-2.c. */
2151 bool partial_overlap = TREE_CODE (TREE_TYPE (ptrtype1)) == ARRAY_TYPE;
2152
2153 if (!partial_overlap
2154 && !ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
2155 return false;
2156 if (!ref1 || !ref2
2157 || (!partial_overlap
2158 && known_eq (size1, max_size1) && known_eq (size2, max_size2)))
2159 return true;
2160 int res = nonoverlapping_refs_since_match_p (base1, ref1, base2, ref2,
2161 partial_overlap);
2162 if (res == -1)
2163 return !nonoverlapping_component_refs_p (ref1, ref2);
2164 return !res;
2165 }
2166
2167 /* Do access-path based disambiguation. */
2168 if (ref1 && ref2
2169 && (handled_component_p (ref1) || handled_component_p (ref2)))
2170 return aliasing_component_refs_p (ref1,
2171 ref1_alias_set, base1_alias_set,
2172 offset1, max_size1,
2173 ref2,
2174 ref2_alias_set, base2_alias_set,
2175 offset2, max_size2);
2176
2177 return true;
2178 }
2179
2180 /* Return true, if the two memory references REF1 and REF2 may alias. */
2181
2182 static bool
2183 refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2184 {
2185 tree base1, base2;
2186 poly_int64 offset1 = 0, offset2 = 0;
2187 poly_int64 max_size1 = -1, max_size2 = -1;
2188 bool var1_p, var2_p, ind1_p, ind2_p;
2189
2190 gcc_checking_assert ((!ref1->ref
2191 || TREE_CODE (ref1->ref) == SSA_NAME
2192 || DECL_P (ref1->ref)
2193 || TREE_CODE (ref1->ref) == STRING_CST
2194 || handled_component_p (ref1->ref)
2195 || TREE_CODE (ref1->ref) == MEM_REF
2196 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
2197 && (!ref2->ref
2198 || TREE_CODE (ref2->ref) == SSA_NAME
2199 || DECL_P (ref2->ref)
2200 || TREE_CODE (ref2->ref) == STRING_CST
2201 || handled_component_p (ref2->ref)
2202 || TREE_CODE (ref2->ref) == MEM_REF
2203 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
2204
2205 /* Decompose the references into their base objects and the access. */
2206 base1 = ao_ref_base (ref1);
2207 offset1 = ref1->offset;
2208 max_size1 = ref1->max_size;
2209 base2 = ao_ref_base (ref2);
2210 offset2 = ref2->offset;
2211 max_size2 = ref2->max_size;
2212
2213 /* We can end up with registers or constants as bases for example from
2214 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
2215 which is seen as a struct copy. */
2216 if (TREE_CODE (base1) == SSA_NAME
2217 || TREE_CODE (base1) == CONST_DECL
2218 || TREE_CODE (base1) == CONSTRUCTOR
2219 || TREE_CODE (base1) == ADDR_EXPR
2220 || CONSTANT_CLASS_P (base1)
2221 || TREE_CODE (base2) == SSA_NAME
2222 || TREE_CODE (base2) == CONST_DECL
2223 || TREE_CODE (base2) == CONSTRUCTOR
2224 || TREE_CODE (base2) == ADDR_EXPR
2225 || CONSTANT_CLASS_P (base2))
2226 return false;
2227
2228 /* We can end up referring to code via function and label decls.
2229 As we likely do not properly track code aliases conservatively
2230 bail out. */
2231 if (TREE_CODE (base1) == FUNCTION_DECL
2232 || TREE_CODE (base1) == LABEL_DECL
2233 || TREE_CODE (base2) == FUNCTION_DECL
2234 || TREE_CODE (base2) == LABEL_DECL)
2235 return true;
2236
2237 /* Two volatile accesses always conflict. */
2238 if (ref1->volatile_p
2239 && ref2->volatile_p)
2240 return true;
2241
2242 /* Defer to simple offset based disambiguation if we have
2243 references based on two decls. Do this before defering to
2244 TBAA to handle must-alias cases in conformance with the
2245 GCC extension of allowing type-punning through unions. */
2246 var1_p = DECL_P (base1);
2247 var2_p = DECL_P (base2);
2248 if (var1_p && var2_p)
2249 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
2250 ref1->size,
2251 ref2->ref, base2, offset2, max_size2,
2252 ref2->size);
2253
2254 /* Handle restrict based accesses.
2255 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
2256 here. */
2257 tree rbase1 = base1;
2258 tree rbase2 = base2;
2259 if (var1_p)
2260 {
2261 rbase1 = ref1->ref;
2262 if (rbase1)
2263 while (handled_component_p (rbase1))
2264 rbase1 = TREE_OPERAND (rbase1, 0);
2265 }
2266 if (var2_p)
2267 {
2268 rbase2 = ref2->ref;
2269 if (rbase2)
2270 while (handled_component_p (rbase2))
2271 rbase2 = TREE_OPERAND (rbase2, 0);
2272 }
2273 if (rbase1 && rbase2
2274 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
2275 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
2276 /* If the accesses are in the same restrict clique... */
2277 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
2278 /* But based on different pointers they do not alias. */
2279 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
2280 return false;
2281
2282 ind1_p = (TREE_CODE (base1) == MEM_REF
2283 || TREE_CODE (base1) == TARGET_MEM_REF);
2284 ind2_p = (TREE_CODE (base2) == MEM_REF
2285 || TREE_CODE (base2) == TARGET_MEM_REF);
2286
2287 /* Canonicalize the pointer-vs-decl case. */
2288 if (ind1_p && var2_p)
2289 {
2290 std::swap (offset1, offset2);
2291 std::swap (max_size1, max_size2);
2292 std::swap (base1, base2);
2293 std::swap (ref1, ref2);
2294 var1_p = true;
2295 ind1_p = false;
2296 var2_p = false;
2297 ind2_p = true;
2298 }
2299
2300 /* First defer to TBAA if possible. */
2301 if (tbaa_p
2302 && flag_strict_aliasing
2303 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
2304 ao_ref_alias_set (ref2)))
2305 return false;
2306
2307 /* If the reference is based on a pointer that points to memory
2308 that may not be written to then the other reference cannot possibly
2309 clobber it. */
2310 if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME
2311 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0)))
2312 || (ind1_p
2313 && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME
2314 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0))))
2315 return false;
2316
2317 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
2318 if (var1_p && ind2_p)
2319 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
2320 offset2, max_size2, ref2->size,
2321 ao_ref_alias_set (ref2),
2322 ao_ref_base_alias_set (ref2),
2323 ref1->ref, base1,
2324 offset1, max_size1, ref1->size,
2325 ao_ref_alias_set (ref1),
2326 ao_ref_base_alias_set (ref1),
2327 tbaa_p);
2328 else if (ind1_p && ind2_p)
2329 return indirect_refs_may_alias_p (ref1->ref, base1,
2330 offset1, max_size1, ref1->size,
2331 ao_ref_alias_set (ref1),
2332 ao_ref_base_alias_set (ref1),
2333 ref2->ref, base2,
2334 offset2, max_size2, ref2->size,
2335 ao_ref_alias_set (ref2),
2336 ao_ref_base_alias_set (ref2),
2337 tbaa_p);
2338
2339 gcc_unreachable ();
2340 }
2341
2342 /* Return true, if the two memory references REF1 and REF2 may alias
2343 and update statistics. */
2344
2345 bool
2346 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
2347 {
2348 bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p);
2349 if (res)
2350 ++alias_stats.refs_may_alias_p_may_alias;
2351 else
2352 ++alias_stats.refs_may_alias_p_no_alias;
2353 return res;
2354 }
2355
2356 static bool
2357 refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p)
2358 {
2359 ao_ref r1;
2360 ao_ref_init (&r1, ref1);
2361 return refs_may_alias_p_1 (&r1, ref2, tbaa_p);
2362 }
2363
2364 bool
2365 refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p)
2366 {
2367 ao_ref r1, r2;
2368 ao_ref_init (&r1, ref1);
2369 ao_ref_init (&r2, ref2);
2370 return refs_may_alias_p_1 (&r1, &r2, tbaa_p);
2371 }
2372
2373 /* Returns true if there is a anti-dependence for the STORE that
2374 executes after the LOAD. */
2375
2376 bool
2377 refs_anti_dependent_p (tree load, tree store)
2378 {
2379 ao_ref r1, r2;
2380 ao_ref_init (&r1, load);
2381 ao_ref_init (&r2, store);
2382 return refs_may_alias_p_1 (&r1, &r2, false);
2383 }
2384
2385 /* Returns true if there is a output dependence for the stores
2386 STORE1 and STORE2. */
2387
2388 bool
2389 refs_output_dependent_p (tree store1, tree store2)
2390 {
2391 ao_ref r1, r2;
2392 ao_ref_init (&r1, store1);
2393 ao_ref_init (&r2, store2);
2394 return refs_may_alias_p_1 (&r1, &r2, false);
2395 }
2396
2397 /* If the call CALL may use the memory reference REF return true,
2398 otherwise return false. */
2399
2400 static bool
2401 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p)
2402 {
2403 tree base, callee;
2404 unsigned i;
2405 int flags = gimple_call_flags (call);
2406
2407 /* Const functions without a static chain do not implicitly use memory. */
2408 if (!gimple_call_chain (call)
2409 && (flags & (ECF_CONST|ECF_NOVOPS)))
2410 goto process_args;
2411
2412 base = ao_ref_base (ref);
2413 if (!base)
2414 return true;
2415
2416 /* A call that is not without side-effects might involve volatile
2417 accesses and thus conflicts with all other volatile accesses. */
2418 if (ref->volatile_p)
2419 return true;
2420
2421 /* If the reference is based on a decl that is not aliased the call
2422 cannot possibly use it. */
2423 if (DECL_P (base)
2424 && !may_be_aliased (base)
2425 /* But local statics can be used through recursion. */
2426 && !is_global_var (base))
2427 goto process_args;
2428
2429 callee = gimple_call_fndecl (call);
2430
2431 /* Handle those builtin functions explicitly that do not act as
2432 escape points. See tree-ssa-structalias.c:find_func_aliases
2433 for the list of builtins we might need to handle here. */
2434 if (callee != NULL_TREE
2435 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2436 switch (DECL_FUNCTION_CODE (callee))
2437 {
2438 /* All the following functions read memory pointed to by
2439 their second argument. strcat/strncat additionally
2440 reads memory pointed to by the first argument. */
2441 case BUILT_IN_STRCAT:
2442 case BUILT_IN_STRNCAT:
2443 {
2444 ao_ref dref;
2445 ao_ref_init_from_ptr_and_size (&dref,
2446 gimple_call_arg (call, 0),
2447 NULL_TREE);
2448 if (refs_may_alias_p_1 (&dref, ref, false))
2449 return true;
2450 }
2451 /* FALLTHRU */
2452 case BUILT_IN_STRCPY:
2453 case BUILT_IN_STRNCPY:
2454 case BUILT_IN_MEMCPY:
2455 case BUILT_IN_MEMMOVE:
2456 case BUILT_IN_MEMPCPY:
2457 case BUILT_IN_STPCPY:
2458 case BUILT_IN_STPNCPY:
2459 case BUILT_IN_TM_MEMCPY:
2460 case BUILT_IN_TM_MEMMOVE:
2461 {
2462 ao_ref dref;
2463 tree size = NULL_TREE;
2464 if (gimple_call_num_args (call) == 3)
2465 size = gimple_call_arg (call, 2);
2466 ao_ref_init_from_ptr_and_size (&dref,
2467 gimple_call_arg (call, 1),
2468 size);
2469 return refs_may_alias_p_1 (&dref, ref, false);
2470 }
2471 case BUILT_IN_STRCAT_CHK:
2472 case BUILT_IN_STRNCAT_CHK:
2473 {
2474 ao_ref dref;
2475 ao_ref_init_from_ptr_and_size (&dref,
2476 gimple_call_arg (call, 0),
2477 NULL_TREE);
2478 if (refs_may_alias_p_1 (&dref, ref, false))
2479 return true;
2480 }
2481 /* FALLTHRU */
2482 case BUILT_IN_STRCPY_CHK:
2483 case BUILT_IN_STRNCPY_CHK:
2484 case BUILT_IN_MEMCPY_CHK:
2485 case BUILT_IN_MEMMOVE_CHK:
2486 case BUILT_IN_MEMPCPY_CHK:
2487 case BUILT_IN_STPCPY_CHK:
2488 case BUILT_IN_STPNCPY_CHK:
2489 {
2490 ao_ref dref;
2491 tree size = NULL_TREE;
2492 if (gimple_call_num_args (call) == 4)
2493 size = gimple_call_arg (call, 2);
2494 ao_ref_init_from_ptr_and_size (&dref,
2495 gimple_call_arg (call, 1),
2496 size);
2497 return refs_may_alias_p_1 (&dref, ref, false);
2498 }
2499 case BUILT_IN_BCOPY:
2500 {
2501 ao_ref dref;
2502 tree size = gimple_call_arg (call, 2);
2503 ao_ref_init_from_ptr_and_size (&dref,
2504 gimple_call_arg (call, 0),
2505 size);
2506 return refs_may_alias_p_1 (&dref, ref, false);
2507 }
2508
2509 /* The following functions read memory pointed to by their
2510 first argument. */
2511 CASE_BUILT_IN_TM_LOAD (1):
2512 CASE_BUILT_IN_TM_LOAD (2):
2513 CASE_BUILT_IN_TM_LOAD (4):
2514 CASE_BUILT_IN_TM_LOAD (8):
2515 CASE_BUILT_IN_TM_LOAD (FLOAT):
2516 CASE_BUILT_IN_TM_LOAD (DOUBLE):
2517 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
2518 CASE_BUILT_IN_TM_LOAD (M64):
2519 CASE_BUILT_IN_TM_LOAD (M128):
2520 CASE_BUILT_IN_TM_LOAD (M256):
2521 case BUILT_IN_TM_LOG:
2522 case BUILT_IN_TM_LOG_1:
2523 case BUILT_IN_TM_LOG_2:
2524 case BUILT_IN_TM_LOG_4:
2525 case BUILT_IN_TM_LOG_8:
2526 case BUILT_IN_TM_LOG_FLOAT:
2527 case BUILT_IN_TM_LOG_DOUBLE:
2528 case BUILT_IN_TM_LOG_LDOUBLE:
2529 case BUILT_IN_TM_LOG_M64:
2530 case BUILT_IN_TM_LOG_M128:
2531 case BUILT_IN_TM_LOG_M256:
2532 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
2533
2534 /* These read memory pointed to by the first argument. */
2535 case BUILT_IN_STRDUP:
2536 case BUILT_IN_STRNDUP:
2537 case BUILT_IN_REALLOC:
2538 {
2539 ao_ref dref;
2540 tree size = NULL_TREE;
2541 if (gimple_call_num_args (call) == 2)
2542 size = gimple_call_arg (call, 1);
2543 ao_ref_init_from_ptr_and_size (&dref,
2544 gimple_call_arg (call, 0),
2545 size);
2546 return refs_may_alias_p_1 (&dref, ref, false);
2547 }
2548 /* These read memory pointed to by the first argument. */
2549 case BUILT_IN_INDEX:
2550 case BUILT_IN_STRCHR:
2551 case BUILT_IN_STRRCHR:
2552 {
2553 ao_ref dref;
2554 ao_ref_init_from_ptr_and_size (&dref,
2555 gimple_call_arg (call, 0),
2556 NULL_TREE);
2557 return refs_may_alias_p_1 (&dref, ref, false);
2558 }
2559 /* These read memory pointed to by the first argument with size
2560 in the third argument. */
2561 case BUILT_IN_MEMCHR:
2562 {
2563 ao_ref dref;
2564 ao_ref_init_from_ptr_and_size (&dref,
2565 gimple_call_arg (call, 0),
2566 gimple_call_arg (call, 2));
2567 return refs_may_alias_p_1 (&dref, ref, false);
2568 }
2569 /* These read memory pointed to by the first and second arguments. */
2570 case BUILT_IN_STRSTR:
2571 case BUILT_IN_STRPBRK:
2572 {
2573 ao_ref dref;
2574 ao_ref_init_from_ptr_and_size (&dref,
2575 gimple_call_arg (call, 0),
2576 NULL_TREE);
2577 if (refs_may_alias_p_1 (&dref, ref, false))
2578 return true;
2579 ao_ref_init_from_ptr_and_size (&dref,
2580 gimple_call_arg (call, 1),
2581 NULL_TREE);
2582 return refs_may_alias_p_1 (&dref, ref, false);
2583 }
2584
2585 /* The following builtins do not read from memory. */
2586 case BUILT_IN_FREE:
2587 case BUILT_IN_MALLOC:
2588 case BUILT_IN_POSIX_MEMALIGN:
2589 case BUILT_IN_ALIGNED_ALLOC:
2590 case BUILT_IN_CALLOC:
2591 CASE_BUILT_IN_ALLOCA:
2592 case BUILT_IN_STACK_SAVE:
2593 case BUILT_IN_STACK_RESTORE:
2594 case BUILT_IN_MEMSET:
2595 case BUILT_IN_TM_MEMSET:
2596 case BUILT_IN_MEMSET_CHK:
2597 case BUILT_IN_FREXP:
2598 case BUILT_IN_FREXPF:
2599 case BUILT_IN_FREXPL:
2600 case BUILT_IN_GAMMA_R:
2601 case BUILT_IN_GAMMAF_R:
2602 case BUILT_IN_GAMMAL_R:
2603 case BUILT_IN_LGAMMA_R:
2604 case BUILT_IN_LGAMMAF_R:
2605 case BUILT_IN_LGAMMAL_R:
2606 case BUILT_IN_MODF:
2607 case BUILT_IN_MODFF:
2608 case BUILT_IN_MODFL:
2609 case BUILT_IN_REMQUO:
2610 case BUILT_IN_REMQUOF:
2611 case BUILT_IN_REMQUOL:
2612 case BUILT_IN_SINCOS:
2613 case BUILT_IN_SINCOSF:
2614 case BUILT_IN_SINCOSL:
2615 case BUILT_IN_ASSUME_ALIGNED:
2616 case BUILT_IN_VA_END:
2617 return false;
2618 /* __sync_* builtins and some OpenMP builtins act as threading
2619 barriers. */
2620 #undef DEF_SYNC_BUILTIN
2621 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2622 #include "sync-builtins.def"
2623 #undef DEF_SYNC_BUILTIN
2624 case BUILT_IN_GOMP_ATOMIC_START:
2625 case BUILT_IN_GOMP_ATOMIC_END:
2626 case BUILT_IN_GOMP_BARRIER:
2627 case BUILT_IN_GOMP_BARRIER_CANCEL:
2628 case BUILT_IN_GOMP_TASKWAIT:
2629 case BUILT_IN_GOMP_TASKGROUP_END:
2630 case BUILT_IN_GOMP_CRITICAL_START:
2631 case BUILT_IN_GOMP_CRITICAL_END:
2632 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2633 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2634 case BUILT_IN_GOMP_LOOP_END:
2635 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2636 case BUILT_IN_GOMP_ORDERED_START:
2637 case BUILT_IN_GOMP_ORDERED_END:
2638 case BUILT_IN_GOMP_SECTIONS_END:
2639 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2640 case BUILT_IN_GOMP_SINGLE_COPY_START:
2641 case BUILT_IN_GOMP_SINGLE_COPY_END:
2642 return true;
2643
2644 default:
2645 /* Fallthru to general call handling. */;
2646 }
2647
2648 /* Check if base is a global static variable that is not read
2649 by the function. */
2650 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2651 {
2652 struct cgraph_node *node = cgraph_node::get (callee);
2653 bitmap read;
2654 int id;
2655
2656 /* FIXME: Callee can be an OMP builtin that does not have a call graph
2657 node yet. We should enforce that there are nodes for all decls in the
2658 IL and remove this check instead. */
2659 if (node
2660 && (id = ipa_reference_var_uid (base)) != -1
2661 && (read = ipa_reference_get_read_global (node))
2662 && !bitmap_bit_p (read, id))
2663 goto process_args;
2664 }
2665
2666 /* Check if the base variable is call-used. */
2667 if (DECL_P (base))
2668 {
2669 if (pt_solution_includes (gimple_call_use_set (call), base))
2670 return true;
2671 }
2672 else if ((TREE_CODE (base) == MEM_REF
2673 || TREE_CODE (base) == TARGET_MEM_REF)
2674 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2675 {
2676 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2677 if (!pi)
2678 return true;
2679
2680 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
2681 return true;
2682 }
2683 else
2684 return true;
2685
2686 /* Inspect call arguments for passed-by-value aliases. */
2687 process_args:
2688 for (i = 0; i < gimple_call_num_args (call); ++i)
2689 {
2690 tree op = gimple_call_arg (call, i);
2691 int flags = gimple_call_arg_flags (call, i);
2692
2693 if (flags & EAF_UNUSED)
2694 continue;
2695
2696 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2697 op = TREE_OPERAND (op, 0);
2698
2699 if (TREE_CODE (op) != SSA_NAME
2700 && !is_gimple_min_invariant (op))
2701 {
2702 ao_ref r;
2703 ao_ref_init (&r, op);
2704 if (refs_may_alias_p_1 (&r, ref, tbaa_p))
2705 return true;
2706 }
2707 }
2708
2709 return false;
2710 }
2711
2712 static bool
2713 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p)
2714 {
2715 bool res;
2716 res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p);
2717 if (res)
2718 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
2719 else
2720 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
2721 return res;
2722 }
2723
2724
2725 /* If the statement STMT may use the memory reference REF return
2726 true, otherwise return false. */
2727
2728 bool
2729 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p)
2730 {
2731 if (is_gimple_assign (stmt))
2732 {
2733 tree rhs;
2734
2735 /* All memory assign statements are single. */
2736 if (!gimple_assign_single_p (stmt))
2737 return false;
2738
2739 rhs = gimple_assign_rhs1 (stmt);
2740 if (is_gimple_reg (rhs)
2741 || is_gimple_min_invariant (rhs)
2742 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
2743 return false;
2744
2745 return refs_may_alias_p (rhs, ref, tbaa_p);
2746 }
2747 else if (is_gimple_call (stmt))
2748 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref, tbaa_p);
2749 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2750 {
2751 tree retval = gimple_return_retval (return_stmt);
2752 if (retval
2753 && TREE_CODE (retval) != SSA_NAME
2754 && !is_gimple_min_invariant (retval)
2755 && refs_may_alias_p (retval, ref, tbaa_p))
2756 return true;
2757 /* If ref escapes the function then the return acts as a use. */
2758 tree base = ao_ref_base (ref);
2759 if (!base)
2760 ;
2761 else if (DECL_P (base))
2762 return is_global_var (base);
2763 else if (TREE_CODE (base) == MEM_REF
2764 || TREE_CODE (base) == TARGET_MEM_REF)
2765 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
2766 return false;
2767 }
2768
2769 return true;
2770 }
2771
2772 bool
2773 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p)
2774 {
2775 ao_ref r;
2776 ao_ref_init (&r, ref);
2777 return ref_maybe_used_by_stmt_p (stmt, &r, tbaa_p);
2778 }
2779
2780 /* If the call in statement CALL may clobber the memory reference REF
2781 return true, otherwise return false. */
2782
2783 bool
2784 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
2785 {
2786 tree base;
2787 tree callee;
2788
2789 /* If the call is pure or const it cannot clobber anything. */
2790 if (gimple_call_flags (call)
2791 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
2792 return false;
2793 if (gimple_call_internal_p (call))
2794 switch (gimple_call_internal_fn (call))
2795 {
2796 /* Treat these internal calls like ECF_PURE for aliasing,
2797 they don't write to any memory the program should care about.
2798 They have important other side-effects, and read memory,
2799 so can't be ECF_NOVOPS. */
2800 case IFN_UBSAN_NULL:
2801 case IFN_UBSAN_BOUNDS:
2802 case IFN_UBSAN_VPTR:
2803 case IFN_UBSAN_OBJECT_SIZE:
2804 case IFN_UBSAN_PTR:
2805 case IFN_ASAN_CHECK:
2806 return false;
2807 default:
2808 break;
2809 }
2810
2811 base = ao_ref_base (ref);
2812 if (!base)
2813 return true;
2814
2815 if (TREE_CODE (base) == SSA_NAME
2816 || CONSTANT_CLASS_P (base))
2817 return false;
2818
2819 /* A call that is not without side-effects might involve volatile
2820 accesses and thus conflicts with all other volatile accesses. */
2821 if (ref->volatile_p)
2822 return true;
2823
2824 /* If the reference is based on a decl that is not aliased the call
2825 cannot possibly clobber it. */
2826 if (DECL_P (base)
2827 && !may_be_aliased (base)
2828 /* But local non-readonly statics can be modified through recursion
2829 or the call may implement a threading barrier which we must
2830 treat as may-def. */
2831 && (TREE_READONLY (base)
2832 || !is_global_var (base)))
2833 return false;
2834
2835 /* If the reference is based on a pointer that points to memory
2836 that may not be written to then the call cannot possibly clobber it. */
2837 if ((TREE_CODE (base) == MEM_REF
2838 || TREE_CODE (base) == TARGET_MEM_REF)
2839 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2840 && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0)))
2841 return false;
2842
2843 callee = gimple_call_fndecl (call);
2844
2845 /* Handle those builtin functions explicitly that do not act as
2846 escape points. See tree-ssa-structalias.c:find_func_aliases
2847 for the list of builtins we might need to handle here. */
2848 if (callee != NULL_TREE
2849 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2850 switch (DECL_FUNCTION_CODE (callee))
2851 {
2852 /* All the following functions clobber memory pointed to by
2853 their first argument. */
2854 case BUILT_IN_STRCPY:
2855 case BUILT_IN_STRNCPY:
2856 case BUILT_IN_MEMCPY:
2857 case BUILT_IN_MEMMOVE:
2858 case BUILT_IN_MEMPCPY:
2859 case BUILT_IN_STPCPY:
2860 case BUILT_IN_STPNCPY:
2861 case BUILT_IN_STRCAT:
2862 case BUILT_IN_STRNCAT:
2863 case BUILT_IN_MEMSET:
2864 case BUILT_IN_TM_MEMSET:
2865 CASE_BUILT_IN_TM_STORE (1):
2866 CASE_BUILT_IN_TM_STORE (2):
2867 CASE_BUILT_IN_TM_STORE (4):
2868 CASE_BUILT_IN_TM_STORE (8):
2869 CASE_BUILT_IN_TM_STORE (FLOAT):
2870 CASE_BUILT_IN_TM_STORE (DOUBLE):
2871 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2872 CASE_BUILT_IN_TM_STORE (M64):
2873 CASE_BUILT_IN_TM_STORE (M128):
2874 CASE_BUILT_IN_TM_STORE (M256):
2875 case BUILT_IN_TM_MEMCPY:
2876 case BUILT_IN_TM_MEMMOVE:
2877 {
2878 ao_ref dref;
2879 tree size = NULL_TREE;
2880 /* Don't pass in size for strncat, as the maximum size
2881 is strlen (dest) + n + 1 instead of n, resp.
2882 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2883 known. */
2884 if (gimple_call_num_args (call) == 3
2885 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2886 size = gimple_call_arg (call, 2);
2887 ao_ref_init_from_ptr_and_size (&dref,
2888 gimple_call_arg (call, 0),
2889 size);
2890 return refs_may_alias_p_1 (&dref, ref, false);
2891 }
2892 case BUILT_IN_STRCPY_CHK:
2893 case BUILT_IN_STRNCPY_CHK:
2894 case BUILT_IN_MEMCPY_CHK:
2895 case BUILT_IN_MEMMOVE_CHK:
2896 case BUILT_IN_MEMPCPY_CHK:
2897 case BUILT_IN_STPCPY_CHK:
2898 case BUILT_IN_STPNCPY_CHK:
2899 case BUILT_IN_STRCAT_CHK:
2900 case BUILT_IN_STRNCAT_CHK:
2901 case BUILT_IN_MEMSET_CHK:
2902 {
2903 ao_ref dref;
2904 tree size = NULL_TREE;
2905 /* Don't pass in size for __strncat_chk, as the maximum size
2906 is strlen (dest) + n + 1 instead of n, resp.
2907 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2908 known. */
2909 if (gimple_call_num_args (call) == 4
2910 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2911 size = gimple_call_arg (call, 2);
2912 ao_ref_init_from_ptr_and_size (&dref,
2913 gimple_call_arg (call, 0),
2914 size);
2915 return refs_may_alias_p_1 (&dref, ref, false);
2916 }
2917 case BUILT_IN_BCOPY:
2918 {
2919 ao_ref dref;
2920 tree size = gimple_call_arg (call, 2);
2921 ao_ref_init_from_ptr_and_size (&dref,
2922 gimple_call_arg (call, 1),
2923 size);
2924 return refs_may_alias_p_1 (&dref, ref, false);
2925 }
2926 /* Allocating memory does not have any side-effects apart from
2927 being the definition point for the pointer. */
2928 case BUILT_IN_MALLOC:
2929 case BUILT_IN_ALIGNED_ALLOC:
2930 case BUILT_IN_CALLOC:
2931 case BUILT_IN_STRDUP:
2932 case BUILT_IN_STRNDUP:
2933 /* Unix98 specifies that errno is set on allocation failure. */
2934 if (flag_errno_math
2935 && targetm.ref_may_alias_errno (ref))
2936 return true;
2937 return false;
2938 case BUILT_IN_STACK_SAVE:
2939 CASE_BUILT_IN_ALLOCA:
2940 case BUILT_IN_ASSUME_ALIGNED:
2941 return false;
2942 /* But posix_memalign stores a pointer into the memory pointed to
2943 by its first argument. */
2944 case BUILT_IN_POSIX_MEMALIGN:
2945 {
2946 tree ptrptr = gimple_call_arg (call, 0);
2947 ao_ref dref;
2948 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2949 TYPE_SIZE_UNIT (ptr_type_node));
2950 return (refs_may_alias_p_1 (&dref, ref, false)
2951 || (flag_errno_math
2952 && targetm.ref_may_alias_errno (ref)));
2953 }
2954 /* Freeing memory kills the pointed-to memory. More importantly
2955 the call has to serve as a barrier for moving loads and stores
2956 across it. */
2957 case BUILT_IN_FREE:
2958 case BUILT_IN_VA_END:
2959 {
2960 tree ptr = gimple_call_arg (call, 0);
2961 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2962 }
2963 /* Realloc serves both as allocation point and deallocation point. */
2964 case BUILT_IN_REALLOC:
2965 {
2966 tree ptr = gimple_call_arg (call, 0);
2967 /* Unix98 specifies that errno is set on allocation failure. */
2968 return ((flag_errno_math
2969 && targetm.ref_may_alias_errno (ref))
2970 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2971 }
2972 case BUILT_IN_GAMMA_R:
2973 case BUILT_IN_GAMMAF_R:
2974 case BUILT_IN_GAMMAL_R:
2975 case BUILT_IN_LGAMMA_R:
2976 case BUILT_IN_LGAMMAF_R:
2977 case BUILT_IN_LGAMMAL_R:
2978 {
2979 tree out = gimple_call_arg (call, 1);
2980 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2981 return true;
2982 if (flag_errno_math)
2983 break;
2984 return false;
2985 }
2986 case BUILT_IN_FREXP:
2987 case BUILT_IN_FREXPF:
2988 case BUILT_IN_FREXPL:
2989 case BUILT_IN_MODF:
2990 case BUILT_IN_MODFF:
2991 case BUILT_IN_MODFL:
2992 {
2993 tree out = gimple_call_arg (call, 1);
2994 return ptr_deref_may_alias_ref_p_1 (out, ref);
2995 }
2996 case BUILT_IN_REMQUO:
2997 case BUILT_IN_REMQUOF:
2998 case BUILT_IN_REMQUOL:
2999 {
3000 tree out = gimple_call_arg (call, 2);
3001 if (ptr_deref_may_alias_ref_p_1 (out, ref))
3002 return true;
3003 if (flag_errno_math)
3004 break;
3005 return false;
3006 }
3007 case BUILT_IN_SINCOS:
3008 case BUILT_IN_SINCOSF:
3009 case BUILT_IN_SINCOSL:
3010 {
3011 tree sin = gimple_call_arg (call, 1);
3012 tree cos = gimple_call_arg (call, 2);
3013 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
3014 || ptr_deref_may_alias_ref_p_1 (cos, ref));
3015 }
3016 /* __sync_* builtins and some OpenMP builtins act as threading
3017 barriers. */
3018 #undef DEF_SYNC_BUILTIN
3019 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
3020 #include "sync-builtins.def"
3021 #undef DEF_SYNC_BUILTIN
3022 case BUILT_IN_GOMP_ATOMIC_START:
3023 case BUILT_IN_GOMP_ATOMIC_END:
3024 case BUILT_IN_GOMP_BARRIER:
3025 case BUILT_IN_GOMP_BARRIER_CANCEL:
3026 case BUILT_IN_GOMP_TASKWAIT:
3027 case BUILT_IN_GOMP_TASKGROUP_END:
3028 case BUILT_IN_GOMP_CRITICAL_START:
3029 case BUILT_IN_GOMP_CRITICAL_END:
3030 case BUILT_IN_GOMP_CRITICAL_NAME_START:
3031 case BUILT_IN_GOMP_CRITICAL_NAME_END:
3032 case BUILT_IN_GOMP_LOOP_END:
3033 case BUILT_IN_GOMP_LOOP_END_CANCEL:
3034 case BUILT_IN_GOMP_ORDERED_START:
3035 case BUILT_IN_GOMP_ORDERED_END:
3036 case BUILT_IN_GOMP_SECTIONS_END:
3037 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
3038 case BUILT_IN_GOMP_SINGLE_COPY_START:
3039 case BUILT_IN_GOMP_SINGLE_COPY_END:
3040 return true;
3041 default:
3042 /* Fallthru to general call handling. */;
3043 }
3044
3045 /* Check if base is a global static variable that is not written
3046 by the function. */
3047 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
3048 {
3049 struct cgraph_node *node = cgraph_node::get (callee);
3050 bitmap written;
3051 int id;
3052
3053 if (node
3054 && (id = ipa_reference_var_uid (base)) != -1
3055 && (written = ipa_reference_get_written_global (node))
3056 && !bitmap_bit_p (written, id))
3057 return false;
3058 }
3059
3060 /* Check if the base variable is call-clobbered. */
3061 if (DECL_P (base))
3062 return pt_solution_includes (gimple_call_clobber_set (call), base);
3063 else if ((TREE_CODE (base) == MEM_REF
3064 || TREE_CODE (base) == TARGET_MEM_REF)
3065 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
3066 {
3067 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
3068 if (!pi)
3069 return true;
3070
3071 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
3072 }
3073
3074 return true;
3075 }
3076
3077 /* If the call in statement CALL may clobber the memory reference REF
3078 return true, otherwise return false. */
3079
3080 bool
3081 call_may_clobber_ref_p (gcall *call, tree ref)
3082 {
3083 bool res;
3084 ao_ref r;
3085 ao_ref_init (&r, ref);
3086 res = call_may_clobber_ref_p_1 (call, &r);
3087 if (res)
3088 ++alias_stats.call_may_clobber_ref_p_may_alias;
3089 else
3090 ++alias_stats.call_may_clobber_ref_p_no_alias;
3091 return res;
3092 }
3093
3094
3095 /* If the statement STMT may clobber the memory reference REF return true,
3096 otherwise return false. */
3097
3098 bool
3099 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p)
3100 {
3101 if (is_gimple_call (stmt))
3102 {
3103 tree lhs = gimple_call_lhs (stmt);
3104 if (lhs
3105 && TREE_CODE (lhs) != SSA_NAME)
3106 {
3107 ao_ref r;
3108 ao_ref_init (&r, lhs);
3109 if (refs_may_alias_p_1 (ref, &r, tbaa_p))
3110 return true;
3111 }
3112
3113 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
3114 }
3115 else if (gimple_assign_single_p (stmt))
3116 {
3117 tree lhs = gimple_assign_lhs (stmt);
3118 if (TREE_CODE (lhs) != SSA_NAME)
3119 {
3120 ao_ref r;
3121 ao_ref_init (&r, lhs);
3122 return refs_may_alias_p_1 (ref, &r, tbaa_p);
3123 }
3124 }
3125 else if (gimple_code (stmt) == GIMPLE_ASM)
3126 return true;
3127
3128 return false;
3129 }
3130
3131 bool
3132 stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p)
3133 {
3134 ao_ref r;
3135 ao_ref_init (&r, ref);
3136 return stmt_may_clobber_ref_p_1 (stmt, &r, tbaa_p);
3137 }
3138
3139 /* Return true if store1 and store2 described by corresponding tuples
3140 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
3141 address. */
3142
3143 static bool
3144 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
3145 poly_int64 max_size1,
3146 tree base2, poly_int64 offset2, poly_int64 size2,
3147 poly_int64 max_size2)
3148 {
3149 /* Offsets need to be 0. */
3150 if (maybe_ne (offset1, 0)
3151 || maybe_ne (offset2, 0))
3152 return false;
3153
3154 bool base1_obj_p = SSA_VAR_P (base1);
3155 bool base2_obj_p = SSA_VAR_P (base2);
3156
3157 /* We need one object. */
3158 if (base1_obj_p == base2_obj_p)
3159 return false;
3160 tree obj = base1_obj_p ? base1 : base2;
3161
3162 /* And we need one MEM_REF. */
3163 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
3164 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
3165 if (base1_memref_p == base2_memref_p)
3166 return false;
3167 tree memref = base1_memref_p ? base1 : base2;
3168
3169 /* Sizes need to be valid. */
3170 if (!known_size_p (max_size1)
3171 || !known_size_p (max_size2)
3172 || !known_size_p (size1)
3173 || !known_size_p (size2))
3174 return false;
3175
3176 /* Max_size needs to match size. */
3177 if (maybe_ne (max_size1, size1)
3178 || maybe_ne (max_size2, size2))
3179 return false;
3180
3181 /* Sizes need to match. */
3182 if (maybe_ne (size1, size2))
3183 return false;
3184
3185
3186 /* Check that memref is a store to pointer with singleton points-to info. */
3187 if (!integer_zerop (TREE_OPERAND (memref, 1)))
3188 return false;
3189 tree ptr = TREE_OPERAND (memref, 0);
3190 if (TREE_CODE (ptr) != SSA_NAME)
3191 return false;
3192 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
3193 unsigned int pt_uid;
3194 if (pi == NULL
3195 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
3196 return false;
3197
3198 /* Be conservative with non-call exceptions when the address might
3199 be NULL. */
3200 if (cfun->can_throw_non_call_exceptions && pi->pt.null)
3201 return false;
3202
3203 /* Check that ptr points relative to obj. */
3204 unsigned int obj_uid = DECL_PT_UID (obj);
3205 if (obj_uid != pt_uid)
3206 return false;
3207
3208 /* Check that the object size is the same as the store size. That ensures us
3209 that ptr points to the start of obj. */
3210 return (DECL_SIZE (obj)
3211 && poly_int_tree_p (DECL_SIZE (obj))
3212 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
3213 }
3214
3215 /* If STMT kills the memory reference REF return true, otherwise
3216 return false. */
3217
3218 bool
3219 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
3220 {
3221 if (!ao_ref_base (ref))
3222 return false;
3223
3224 if (gimple_has_lhs (stmt)
3225 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
3226 /* The assignment is not necessarily carried out if it can throw
3227 and we can catch it in the current function where we could inspect
3228 the previous value.
3229 ??? We only need to care about the RHS throwing. For aggregate
3230 assignments or similar calls and non-call exceptions the LHS
3231 might throw as well. */
3232 && !stmt_can_throw_internal (cfun, stmt))
3233 {
3234 tree lhs = gimple_get_lhs (stmt);
3235 /* If LHS is literally a base of the access we are done. */
3236 if (ref->ref)
3237 {
3238 tree base = ref->ref;
3239 tree innermost_dropped_array_ref = NULL_TREE;
3240 if (handled_component_p (base))
3241 {
3242 tree saved_lhs0 = NULL_TREE;
3243 if (handled_component_p (lhs))
3244 {
3245 saved_lhs0 = TREE_OPERAND (lhs, 0);
3246 TREE_OPERAND (lhs, 0) = integer_zero_node;
3247 }
3248 do
3249 {
3250 /* Just compare the outermost handled component, if
3251 they are equal we have found a possible common
3252 base. */
3253 tree saved_base0 = TREE_OPERAND (base, 0);
3254 TREE_OPERAND (base, 0) = integer_zero_node;
3255 bool res = operand_equal_p (lhs, base, 0);
3256 TREE_OPERAND (base, 0) = saved_base0;
3257 if (res)
3258 break;
3259 /* Remember if we drop an array-ref that we need to
3260 double-check not being at struct end. */
3261 if (TREE_CODE (base) == ARRAY_REF
3262 || TREE_CODE (base) == ARRAY_RANGE_REF)
3263 innermost_dropped_array_ref = base;
3264 /* Otherwise drop handled components of the access. */
3265 base = saved_base0;
3266 }
3267 while (handled_component_p (base));
3268 if (saved_lhs0)
3269 TREE_OPERAND (lhs, 0) = saved_lhs0;
3270 }
3271 /* Finally check if the lhs has the same address and size as the
3272 base candidate of the access. Watch out if we have dropped
3273 an array-ref that was at struct end, this means ref->ref may
3274 be outside of the TYPE_SIZE of its base. */
3275 if ((! innermost_dropped_array_ref
3276 || ! array_at_struct_end_p (innermost_dropped_array_ref))
3277 && (lhs == base
3278 || (((TYPE_SIZE (TREE_TYPE (lhs))
3279 == TYPE_SIZE (TREE_TYPE (base)))
3280 || (TYPE_SIZE (TREE_TYPE (lhs))
3281 && TYPE_SIZE (TREE_TYPE (base))
3282 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
3283 TYPE_SIZE (TREE_TYPE (base)),
3284 0)))
3285 && operand_equal_p (lhs, base,
3286 OEP_ADDRESS_OF
3287 | OEP_MATCH_SIDE_EFFECTS))))
3288 return true;
3289 }
3290
3291 /* Now look for non-literal equal bases with the restriction of
3292 handling constant offset and size. */
3293 /* For a must-alias check we need to be able to constrain
3294 the access properly. */
3295 if (!ref->max_size_known_p ())
3296 return false;
3297 poly_int64 size, offset, max_size, ref_offset = ref->offset;
3298 bool reverse;
3299 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
3300 &reverse);
3301 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
3302 so base == ref->base does not always hold. */
3303 if (base != ref->base)
3304 {
3305 /* Try using points-to info. */
3306 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
3307 ref->offset, ref->size, ref->max_size))
3308 return true;
3309
3310 /* If both base and ref->base are MEM_REFs, only compare the
3311 first operand, and if the second operand isn't equal constant,
3312 try to add the offsets into offset and ref_offset. */
3313 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
3314 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
3315 {
3316 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
3317 TREE_OPERAND (ref->base, 1)))
3318 {
3319 poly_offset_int off1 = mem_ref_offset (base);
3320 off1 <<= LOG2_BITS_PER_UNIT;
3321 off1 += offset;
3322 poly_offset_int off2 = mem_ref_offset (ref->base);
3323 off2 <<= LOG2_BITS_PER_UNIT;
3324 off2 += ref_offset;
3325 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
3326 size = -1;
3327 }
3328 }
3329 else
3330 size = -1;
3331 }
3332 /* For a must-alias check we need to be able to constrain
3333 the access properly. */
3334 if (known_eq (size, max_size)
3335 && known_subrange_p (ref_offset, ref->max_size, offset, size))
3336 return true;
3337 }
3338
3339 if (is_gimple_call (stmt))
3340 {
3341 tree callee = gimple_call_fndecl (stmt);
3342 if (callee != NULL_TREE
3343 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3344 switch (DECL_FUNCTION_CODE (callee))
3345 {
3346 case BUILT_IN_FREE:
3347 {
3348 tree ptr = gimple_call_arg (stmt, 0);
3349 tree base = ao_ref_base (ref);
3350 if (base && TREE_CODE (base) == MEM_REF
3351 && TREE_OPERAND (base, 0) == ptr)
3352 return true;
3353 break;
3354 }
3355
3356 case BUILT_IN_MEMCPY:
3357 case BUILT_IN_MEMPCPY:
3358 case BUILT_IN_MEMMOVE:
3359 case BUILT_IN_MEMSET:
3360 case BUILT_IN_MEMCPY_CHK:
3361 case BUILT_IN_MEMPCPY_CHK:
3362 case BUILT_IN_MEMMOVE_CHK:
3363 case BUILT_IN_MEMSET_CHK:
3364 case BUILT_IN_STRNCPY:
3365 case BUILT_IN_STPNCPY:
3366 case BUILT_IN_CALLOC:
3367 {
3368 /* For a must-alias check we need to be able to constrain
3369 the access properly. */
3370 if (!ref->max_size_known_p ())
3371 return false;
3372 tree dest;
3373 tree len;
3374
3375 /* In execution order a calloc call will never kill
3376 anything. However, DSE will (ab)use this interface
3377 to ask if a calloc call writes the same memory locations
3378 as a later assignment, memset, etc. So handle calloc
3379 in the expected way. */
3380 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC)
3381 {
3382 tree arg0 = gimple_call_arg (stmt, 0);
3383 tree arg1 = gimple_call_arg (stmt, 1);
3384 if (TREE_CODE (arg0) != INTEGER_CST
3385 || TREE_CODE (arg1) != INTEGER_CST)
3386 return false;
3387
3388 dest = gimple_call_lhs (stmt);
3389 if (!dest)
3390 return false;
3391 len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1);
3392 }
3393 else
3394 {
3395 dest = gimple_call_arg (stmt, 0);
3396 len = gimple_call_arg (stmt, 2);
3397 }
3398 if (!poly_int_tree_p (len))
3399 return false;
3400 tree rbase = ref->base;
3401 poly_offset_int roffset = ref->offset;
3402 ao_ref dref;
3403 ao_ref_init_from_ptr_and_size (&dref, dest, len);
3404 tree base = ao_ref_base (&dref);
3405 poly_offset_int offset = dref.offset;
3406 if (!base || !known_size_p (dref.size))
3407 return false;
3408 if (TREE_CODE (base) == MEM_REF)
3409 {
3410 if (TREE_CODE (rbase) != MEM_REF)
3411 return false;
3412 // Compare pointers.
3413 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
3414 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
3415 base = TREE_OPERAND (base, 0);
3416 rbase = TREE_OPERAND (rbase, 0);
3417 }
3418 if (base == rbase
3419 && known_subrange_p (roffset, ref->max_size, offset,
3420 wi::to_poly_offset (len)
3421 << LOG2_BITS_PER_UNIT))
3422 return true;
3423 break;
3424 }
3425
3426 case BUILT_IN_VA_END:
3427 {
3428 tree ptr = gimple_call_arg (stmt, 0);
3429 if (TREE_CODE (ptr) == ADDR_EXPR)
3430 {
3431 tree base = ao_ref_base (ref);
3432 if (TREE_OPERAND (ptr, 0) == base)
3433 return true;
3434 }
3435 break;
3436 }
3437
3438 default:;
3439 }
3440 }
3441 return false;
3442 }
3443
3444 bool
3445 stmt_kills_ref_p (gimple *stmt, tree ref)
3446 {
3447 ao_ref r;
3448 ao_ref_init (&r, ref);
3449 return stmt_kills_ref_p (stmt, &r);
3450 }
3451
3452
3453 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
3454 TARGET or a statement clobbering the memory reference REF in which
3455 case false is returned. The walk starts with VUSE, one argument of PHI. */
3456
3457 static bool
3458 maybe_skip_until (gimple *phi, tree &target, basic_block target_bb,
3459 ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit,
3460 bitmap *visited, bool abort_on_visited,
3461 void *(*translate)(ao_ref *, tree, void *, translate_flags *),
3462 translate_flags disambiguate_only,
3463 void *data)
3464 {
3465 basic_block bb = gimple_bb (phi);
3466
3467 if (!*visited)
3468 *visited = BITMAP_ALLOC (NULL);
3469
3470 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
3471
3472 /* Walk until we hit the target. */
3473 while (vuse != target)
3474 {
3475 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
3476 /* If we are searching for the target VUSE by walking up to
3477 TARGET_BB dominating the original PHI we are finished once
3478 we reach a default def or a definition in a block dominating
3479 that block. Update TARGET and return. */
3480 if (!target
3481 && (gimple_nop_p (def_stmt)
3482 || dominated_by_p (CDI_DOMINATORS,
3483 target_bb, gimple_bb (def_stmt))))
3484 {
3485 target = vuse;
3486 return true;
3487 }
3488
3489 /* Recurse for PHI nodes. */
3490 if (gimple_code (def_stmt) == GIMPLE_PHI)
3491 {
3492 /* An already visited PHI node ends the walk successfully. */
3493 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
3494 return !abort_on_visited;
3495 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3496 visited, abort_on_visited,
3497 translate, data, disambiguate_only);
3498 if (!vuse)
3499 return false;
3500 continue;
3501 }
3502 else if (gimple_nop_p (def_stmt))
3503 return false;
3504 else
3505 {
3506 /* A clobbering statement or the end of the IL ends it failing. */
3507 if ((int)limit <= 0)
3508 return false;
3509 --limit;
3510 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3511 {
3512 translate_flags tf = disambiguate_only;
3513 if (translate
3514 && (*translate) (ref, vuse, data, &tf) == NULL)
3515 ;
3516 else
3517 return false;
3518 }
3519 }
3520 /* If we reach a new basic-block see if we already skipped it
3521 in a previous walk that ended successfully. */
3522 if (gimple_bb (def_stmt) != bb)
3523 {
3524 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
3525 return !abort_on_visited;
3526 bb = gimple_bb (def_stmt);
3527 }
3528 vuse = gimple_vuse (def_stmt);
3529 }
3530 return true;
3531 }
3532
3533
3534 /* Starting from a PHI node for the virtual operand of the memory reference
3535 REF find a continuation virtual operand that allows to continue walking
3536 statements dominating PHI skipping only statements that cannot possibly
3537 clobber REF. Decrements LIMIT for each alias disambiguation done
3538 and aborts the walk, returning NULL_TREE if it reaches zero.
3539 Returns NULL_TREE if no suitable virtual operand can be found. */
3540
3541 tree
3542 get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p,
3543 unsigned int &limit, bitmap *visited,
3544 bool abort_on_visited,
3545 void *(*translate)(ao_ref *, tree, void *,
3546 translate_flags *),
3547 void *data,
3548 translate_flags disambiguate_only)
3549 {
3550 unsigned nargs = gimple_phi_num_args (phi);
3551
3552 /* Through a single-argument PHI we can simply look through. */
3553 if (nargs == 1)
3554 return PHI_ARG_DEF (phi, 0);
3555
3556 /* For two or more arguments try to pairwise skip non-aliasing code
3557 until we hit the phi argument definition that dominates the other one. */
3558 basic_block phi_bb = gimple_bb (phi);
3559 tree arg0, arg1;
3560 unsigned i;
3561
3562 /* Find a candidate for the virtual operand which definition
3563 dominates those of all others. */
3564 /* First look if any of the args themselves satisfy this. */
3565 for (i = 0; i < nargs; ++i)
3566 {
3567 arg0 = PHI_ARG_DEF (phi, i);
3568 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
3569 break;
3570 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
3571 if (def_bb != phi_bb
3572 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
3573 break;
3574 arg0 = NULL_TREE;
3575 }
3576 /* If not, look if we can reach such candidate by walking defs
3577 until we hit the immediate dominator. maybe_skip_until will
3578 do that for us. */
3579 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
3580
3581 /* Then check against the (to be) found candidate. */
3582 for (i = 0; i < nargs; ++i)
3583 {
3584 arg1 = PHI_ARG_DEF (phi, i);
3585 if (arg1 == arg0)
3586 ;
3587 else if (! maybe_skip_until (phi, arg0, dom, ref, arg1, tbaa_p,
3588 limit, visited,
3589 abort_on_visited,
3590 translate,
3591 /* Do not valueize when walking over
3592 backedges. */
3593 dominated_by_p
3594 (CDI_DOMINATORS,
3595 gimple_bb (SSA_NAME_DEF_STMT (arg1)),
3596 phi_bb)
3597 ? TR_DISAMBIGUATE
3598 : disambiguate_only, data))
3599 return NULL_TREE;
3600 }
3601
3602 return arg0;
3603 }
3604
3605 /* Based on the memory reference REF and its virtual use VUSE call
3606 WALKER for each virtual use that is equivalent to VUSE, including VUSE
3607 itself. That is, for each virtual use for which its defining statement
3608 does not clobber REF.
3609
3610 WALKER is called with REF, the current virtual use and DATA. If
3611 WALKER returns non-NULL the walk stops and its result is returned.
3612 At the end of a non-successful walk NULL is returned.
3613
3614 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
3615 use which definition is a statement that may clobber REF and DATA.
3616 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
3617 If TRANSLATE returns non-NULL the walk stops and its result is returned.
3618 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
3619 to adjust REF and *DATA to make that valid.
3620
3621 VALUEIZE if non-NULL is called with the next VUSE that is considered
3622 and return value is substituted for that. This can be used to
3623 implement optimistic value-numbering for example. Note that the
3624 VUSE argument is assumed to be valueized already.
3625
3626 LIMIT specifies the number of alias queries we are allowed to do,
3627 the walk stops when it reaches zero and NULL is returned. LIMIT
3628 is decremented by the number of alias queries (plus adjustments
3629 done by the callbacks) upon return.
3630
3631 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
3632
3633 void *
3634 walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p,
3635 void *(*walker)(ao_ref *, tree, void *),
3636 void *(*translate)(ao_ref *, tree, void *,
3637 translate_flags *),
3638 tree (*valueize)(tree),
3639 unsigned &limit, void *data)
3640 {
3641 bitmap visited = NULL;
3642 void *res;
3643 bool translated = false;
3644
3645 timevar_push (TV_ALIAS_STMT_WALK);
3646
3647 do
3648 {
3649 gimple *def_stmt;
3650
3651 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3652 res = (*walker) (ref, vuse, data);
3653 /* Abort walk. */
3654 if (res == (void *)-1)
3655 {
3656 res = NULL;
3657 break;
3658 }
3659 /* Lookup succeeded. */
3660 else if (res != NULL)
3661 break;
3662
3663 if (valueize)
3664 {
3665 vuse = valueize (vuse);
3666 if (!vuse)
3667 {
3668 res = NULL;
3669 break;
3670 }
3671 }
3672 def_stmt = SSA_NAME_DEF_STMT (vuse);
3673 if (gimple_nop_p (def_stmt))
3674 break;
3675 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3676 vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit,
3677 &visited, translated, translate, data);
3678 else
3679 {
3680 if ((int)limit <= 0)
3681 {
3682 res = NULL;
3683 break;
3684 }
3685 --limit;
3686 if (stmt_may_clobber_ref_p_1 (def_stmt, ref, tbaa_p))
3687 {
3688 if (!translate)
3689 break;
3690 translate_flags disambiguate_only = TR_TRANSLATE;
3691 res = (*translate) (ref, vuse, data, &disambiguate_only);
3692 /* Failed lookup and translation. */
3693 if (res == (void *)-1)
3694 {
3695 res = NULL;
3696 break;
3697 }
3698 /* Lookup succeeded. */
3699 else if (res != NULL)
3700 break;
3701 /* Translation succeeded, continue walking. */
3702 translated = translated || disambiguate_only == TR_TRANSLATE;
3703 }
3704 vuse = gimple_vuse (def_stmt);
3705 }
3706 }
3707 while (vuse);
3708
3709 if (visited)
3710 BITMAP_FREE (visited);
3711
3712 timevar_pop (TV_ALIAS_STMT_WALK);
3713
3714 return res;
3715 }
3716
3717
3718 /* Based on the memory reference REF call WALKER for each vdef which
3719 defining statement may clobber REF, starting with VDEF. If REF
3720 is NULL_TREE, each defining statement is visited.
3721
3722 WALKER is called with REF, the current vdef and DATA. If WALKER
3723 returns true the walk is stopped, otherwise it continues.
3724
3725 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
3726 The pointer may be NULL and then we do not track this information.
3727
3728 At PHI nodes walk_aliased_vdefs forks into one walk for reach
3729 PHI argument (but only one walk continues on merge points), the
3730 return value is true if any of the walks was successful.
3731
3732 The function returns the number of statements walked or -1 if
3733 LIMIT stmts were walked and the walk was aborted at this point.
3734 If LIMIT is zero the walk is not aborted. */
3735
3736 static int
3737 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
3738 bool (*walker)(ao_ref *, tree, void *), void *data,
3739 bitmap *visited, unsigned int cnt,
3740 bool *function_entry_reached, unsigned limit)
3741 {
3742 do
3743 {
3744 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
3745
3746 if (*visited
3747 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
3748 return cnt;
3749
3750 if (gimple_nop_p (def_stmt))
3751 {
3752 if (function_entry_reached)
3753 *function_entry_reached = true;
3754 return cnt;
3755 }
3756 else if (gimple_code (def_stmt) == GIMPLE_PHI)
3757 {
3758 unsigned i;
3759 if (!*visited)
3760 *visited = BITMAP_ALLOC (NULL);
3761 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
3762 {
3763 int res = walk_aliased_vdefs_1 (ref,
3764 gimple_phi_arg_def (def_stmt, i),
3765 walker, data, visited, cnt,
3766 function_entry_reached, limit);
3767 if (res == -1)
3768 return -1;
3769 cnt = res;
3770 }
3771 return cnt;
3772 }
3773
3774 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
3775 cnt++;
3776 if (cnt == limit)
3777 return -1;
3778 if ((!ref
3779 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
3780 && (*walker) (ref, vdef, data))
3781 return cnt;
3782
3783 vdef = gimple_vuse (def_stmt);
3784 }
3785 while (1);
3786 }
3787
3788 int
3789 walk_aliased_vdefs (ao_ref *ref, tree vdef,
3790 bool (*walker)(ao_ref *, tree, void *), void *data,
3791 bitmap *visited,
3792 bool *function_entry_reached, unsigned int limit)
3793 {
3794 bitmap local_visited = NULL;
3795 int ret;
3796
3797 timevar_push (TV_ALIAS_STMT_WALK);
3798
3799 if (function_entry_reached)
3800 *function_entry_reached = false;
3801
3802 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
3803 visited ? visited : &local_visited, 0,
3804 function_entry_reached, limit);
3805 if (local_visited)
3806 BITMAP_FREE (local_visited);
3807
3808 timevar_pop (TV_ALIAS_STMT_WALK);
3809
3810 return ret;
3811 }
3812