]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-alias.c
poly_int: get_ref_base_and_extent
[thirdparty/gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 } alias_stats;
102
103 void
104 dump_alias_stats (FILE *s)
105 {
106 fprintf (s, "\nAlias oracle query stats:\n");
107 fprintf (s, " refs_may_alias_p: "
108 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
109 HOST_WIDE_INT_PRINT_DEC" queries\n",
110 alias_stats.refs_may_alias_p_no_alias,
111 alias_stats.refs_may_alias_p_no_alias
112 + alias_stats.refs_may_alias_p_may_alias);
113 fprintf (s, " ref_maybe_used_by_call_p: "
114 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
115 HOST_WIDE_INT_PRINT_DEC" queries\n",
116 alias_stats.ref_maybe_used_by_call_p_no_alias,
117 alias_stats.refs_may_alias_p_no_alias
118 + alias_stats.ref_maybe_used_by_call_p_may_alias);
119 fprintf (s, " call_may_clobber_ref_p: "
120 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
121 HOST_WIDE_INT_PRINT_DEC" queries\n",
122 alias_stats.call_may_clobber_ref_p_no_alias,
123 alias_stats.call_may_clobber_ref_p_no_alias
124 + alias_stats.call_may_clobber_ref_p_may_alias);
125 dump_alias_stats_in_alias_c (s);
126 }
127
128
129 /* Return true, if dereferencing PTR may alias with a global variable. */
130
131 bool
132 ptr_deref_may_alias_global_p (tree ptr)
133 {
134 struct ptr_info_def *pi;
135
136 /* If we end up with a pointer constant here that may point
137 to global memory. */
138 if (TREE_CODE (ptr) != SSA_NAME)
139 return true;
140
141 pi = SSA_NAME_PTR_INFO (ptr);
142
143 /* If we do not have points-to information for this variable,
144 we have to punt. */
145 if (!pi)
146 return true;
147
148 /* ??? This does not use TBAA to prune globals ptr may not access. */
149 return pt_solution_includes_global (&pi->pt);
150 }
151
152 /* Return true if dereferencing PTR may alias DECL.
153 The caller is responsible for applying TBAA to see if PTR
154 may access DECL at all. */
155
156 static bool
157 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
158 {
159 struct ptr_info_def *pi;
160
161 /* Conversions are irrelevant for points-to information and
162 data-dependence analysis can feed us those. */
163 STRIP_NOPS (ptr);
164
165 /* Anything we do not explicilty handle aliases. */
166 if ((TREE_CODE (ptr) != SSA_NAME
167 && TREE_CODE (ptr) != ADDR_EXPR
168 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
169 || !POINTER_TYPE_P (TREE_TYPE (ptr))
170 || (!VAR_P (decl)
171 && TREE_CODE (decl) != PARM_DECL
172 && TREE_CODE (decl) != RESULT_DECL))
173 return true;
174
175 /* Disregard pointer offsetting. */
176 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
177 {
178 do
179 {
180 ptr = TREE_OPERAND (ptr, 0);
181 }
182 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
183 return ptr_deref_may_alias_decl_p (ptr, decl);
184 }
185
186 /* ADDR_EXPR pointers either just offset another pointer or directly
187 specify the pointed-to set. */
188 if (TREE_CODE (ptr) == ADDR_EXPR)
189 {
190 tree base = get_base_address (TREE_OPERAND (ptr, 0));
191 if (base
192 && (TREE_CODE (base) == MEM_REF
193 || TREE_CODE (base) == TARGET_MEM_REF))
194 ptr = TREE_OPERAND (base, 0);
195 else if (base
196 && DECL_P (base))
197 return compare_base_decls (base, decl) != 0;
198 else if (base
199 && CONSTANT_CLASS_P (base))
200 return false;
201 else
202 return true;
203 }
204
205 /* Non-aliased variables can not be pointed to. */
206 if (!may_be_aliased (decl))
207 return false;
208
209 /* If we do not have useful points-to information for this pointer
210 we cannot disambiguate anything else. */
211 pi = SSA_NAME_PTR_INFO (ptr);
212 if (!pi)
213 return true;
214
215 return pt_solution_includes (&pi->pt, decl);
216 }
217
218 /* Return true if dereferenced PTR1 and PTR2 may alias.
219 The caller is responsible for applying TBAA to see if accesses
220 through PTR1 and PTR2 may conflict at all. */
221
222 bool
223 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
224 {
225 struct ptr_info_def *pi1, *pi2;
226
227 /* Conversions are irrelevant for points-to information and
228 data-dependence analysis can feed us those. */
229 STRIP_NOPS (ptr1);
230 STRIP_NOPS (ptr2);
231
232 /* Disregard pointer offsetting. */
233 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
234 {
235 do
236 {
237 ptr1 = TREE_OPERAND (ptr1, 0);
238 }
239 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
240 return ptr_derefs_may_alias_p (ptr1, ptr2);
241 }
242 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
243 {
244 do
245 {
246 ptr2 = TREE_OPERAND (ptr2, 0);
247 }
248 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
249 return ptr_derefs_may_alias_p (ptr1, ptr2);
250 }
251
252 /* ADDR_EXPR pointers either just offset another pointer or directly
253 specify the pointed-to set. */
254 if (TREE_CODE (ptr1) == ADDR_EXPR)
255 {
256 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
257 if (base
258 && (TREE_CODE (base) == MEM_REF
259 || TREE_CODE (base) == TARGET_MEM_REF))
260 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
261 else if (base
262 && DECL_P (base))
263 return ptr_deref_may_alias_decl_p (ptr2, base);
264 else
265 return true;
266 }
267 if (TREE_CODE (ptr2) == ADDR_EXPR)
268 {
269 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
270 if (base
271 && (TREE_CODE (base) == MEM_REF
272 || TREE_CODE (base) == TARGET_MEM_REF))
273 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
274 else if (base
275 && DECL_P (base))
276 return ptr_deref_may_alias_decl_p (ptr1, base);
277 else
278 return true;
279 }
280
281 /* From here we require SSA name pointers. Anything else aliases. */
282 if (TREE_CODE (ptr1) != SSA_NAME
283 || TREE_CODE (ptr2) != SSA_NAME
284 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
285 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
286 return true;
287
288 /* We may end up with two empty points-to solutions for two same pointers.
289 In this case we still want to say both pointers alias, so shortcut
290 that here. */
291 if (ptr1 == ptr2)
292 return true;
293
294 /* If we do not have useful points-to information for either pointer
295 we cannot disambiguate anything else. */
296 pi1 = SSA_NAME_PTR_INFO (ptr1);
297 pi2 = SSA_NAME_PTR_INFO (ptr2);
298 if (!pi1 || !pi2)
299 return true;
300
301 /* ??? This does not use TBAA to prune decls from the intersection
302 that not both pointers may access. */
303 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
304 }
305
306 /* Return true if dereferencing PTR may alias *REF.
307 The caller is responsible for applying TBAA to see if PTR
308 may access *REF at all. */
309
310 static bool
311 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
312 {
313 tree base = ao_ref_base (ref);
314
315 if (TREE_CODE (base) == MEM_REF
316 || TREE_CODE (base) == TARGET_MEM_REF)
317 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
318 else if (DECL_P (base))
319 return ptr_deref_may_alias_decl_p (ptr, base);
320
321 return true;
322 }
323
324 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
325
326 bool
327 ptrs_compare_unequal (tree ptr1, tree ptr2)
328 {
329 /* First resolve the pointers down to a SSA name pointer base or
330 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
331 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
332 or STRING_CSTs which needs points-to adjustments to track them
333 in the points-to sets. */
334 tree obj1 = NULL_TREE;
335 tree obj2 = NULL_TREE;
336 if (TREE_CODE (ptr1) == ADDR_EXPR)
337 {
338 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
339 if (! tem)
340 return false;
341 if (VAR_P (tem)
342 || TREE_CODE (tem) == PARM_DECL
343 || TREE_CODE (tem) == RESULT_DECL)
344 obj1 = tem;
345 else if (TREE_CODE (tem) == MEM_REF)
346 ptr1 = TREE_OPERAND (tem, 0);
347 }
348 if (TREE_CODE (ptr2) == ADDR_EXPR)
349 {
350 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
351 if (! tem)
352 return false;
353 if (VAR_P (tem)
354 || TREE_CODE (tem) == PARM_DECL
355 || TREE_CODE (tem) == RESULT_DECL)
356 obj2 = tem;
357 else if (TREE_CODE (tem) == MEM_REF)
358 ptr2 = TREE_OPERAND (tem, 0);
359 }
360
361 /* Canonicalize ptr vs. object. */
362 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
363 {
364 std::swap (ptr1, ptr2);
365 std::swap (obj1, obj2);
366 }
367
368 if (obj1 && obj2)
369 /* Other code handles this correctly, no need to duplicate it here. */;
370 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
371 {
372 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
373 /* We may not use restrict to optimize pointer comparisons.
374 See PR71062. So we have to assume that restrict-pointed-to
375 may be in fact obj1. */
376 if (!pi
377 || pi->pt.vars_contains_restrict
378 || pi->pt.vars_contains_interposable)
379 return false;
380 if (VAR_P (obj1)
381 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
382 {
383 varpool_node *node = varpool_node::get (obj1);
384 /* If obj1 may bind to NULL give up (see below). */
385 if (! node
386 || ! node->nonzero_address ()
387 || ! decl_binds_to_current_def_p (obj1))
388 return false;
389 }
390 return !pt_solution_includes (&pi->pt, obj1);
391 }
392
393 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
394 but those require pt.null to be conservatively correct. */
395
396 return false;
397 }
398
399 /* Returns whether reference REF to BASE may refer to global memory. */
400
401 static bool
402 ref_may_alias_global_p_1 (tree base)
403 {
404 if (DECL_P (base))
405 return is_global_var (base);
406 else if (TREE_CODE (base) == MEM_REF
407 || TREE_CODE (base) == TARGET_MEM_REF)
408 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
409 return true;
410 }
411
412 bool
413 ref_may_alias_global_p (ao_ref *ref)
414 {
415 tree base = ao_ref_base (ref);
416 return ref_may_alias_global_p_1 (base);
417 }
418
419 bool
420 ref_may_alias_global_p (tree ref)
421 {
422 tree base = get_base_address (ref);
423 return ref_may_alias_global_p_1 (base);
424 }
425
426 /* Return true whether STMT may clobber global memory. */
427
428 bool
429 stmt_may_clobber_global_p (gimple *stmt)
430 {
431 tree lhs;
432
433 if (!gimple_vdef (stmt))
434 return false;
435
436 /* ??? We can ask the oracle whether an artificial pointer
437 dereference with a pointer with points-to information covering
438 all global memory (what about non-address taken memory?) maybe
439 clobbered by this call. As there is at the moment no convenient
440 way of doing that without generating garbage do some manual
441 checking instead.
442 ??? We could make a NULL ao_ref argument to the various
443 predicates special, meaning any global memory. */
444
445 switch (gimple_code (stmt))
446 {
447 case GIMPLE_ASSIGN:
448 lhs = gimple_assign_lhs (stmt);
449 return (TREE_CODE (lhs) != SSA_NAME
450 && ref_may_alias_global_p (lhs));
451 case GIMPLE_CALL:
452 return true;
453 default:
454 return true;
455 }
456 }
457
458
459 /* Dump alias information on FILE. */
460
461 void
462 dump_alias_info (FILE *file)
463 {
464 unsigned i;
465 tree ptr;
466 const char *funcname
467 = lang_hooks.decl_printable_name (current_function_decl, 2);
468 tree var;
469
470 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
471
472 fprintf (file, "Aliased symbols\n\n");
473
474 FOR_EACH_LOCAL_DECL (cfun, i, var)
475 {
476 if (may_be_aliased (var))
477 dump_variable (file, var);
478 }
479
480 fprintf (file, "\nCall clobber information\n");
481
482 fprintf (file, "\nESCAPED");
483 dump_points_to_solution (file, &cfun->gimple_df->escaped);
484
485 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
486
487 FOR_EACH_SSA_NAME (i, ptr, cfun)
488 {
489 struct ptr_info_def *pi;
490
491 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
492 || SSA_NAME_IN_FREE_LIST (ptr))
493 continue;
494
495 pi = SSA_NAME_PTR_INFO (ptr);
496 if (pi)
497 dump_points_to_info_for (file, ptr);
498 }
499
500 fprintf (file, "\n");
501 }
502
503
504 /* Dump alias information on stderr. */
505
506 DEBUG_FUNCTION void
507 debug_alias_info (void)
508 {
509 dump_alias_info (stderr);
510 }
511
512
513 /* Dump the points-to set *PT into FILE. */
514
515 void
516 dump_points_to_solution (FILE *file, struct pt_solution *pt)
517 {
518 if (pt->anything)
519 fprintf (file, ", points-to anything");
520
521 if (pt->nonlocal)
522 fprintf (file, ", points-to non-local");
523
524 if (pt->escaped)
525 fprintf (file, ", points-to escaped");
526
527 if (pt->ipa_escaped)
528 fprintf (file, ", points-to unit escaped");
529
530 if (pt->null)
531 fprintf (file, ", points-to NULL");
532
533 if (pt->vars)
534 {
535 fprintf (file, ", points-to vars: ");
536 dump_decl_set (file, pt->vars);
537 if (pt->vars_contains_nonlocal
538 || pt->vars_contains_escaped
539 || pt->vars_contains_escaped_heap
540 || pt->vars_contains_restrict)
541 {
542 const char *comma = "";
543 fprintf (file, " (");
544 if (pt->vars_contains_nonlocal)
545 {
546 fprintf (file, "nonlocal");
547 comma = ", ";
548 }
549 if (pt->vars_contains_escaped)
550 {
551 fprintf (file, "%sescaped", comma);
552 comma = ", ";
553 }
554 if (pt->vars_contains_escaped_heap)
555 {
556 fprintf (file, "%sescaped heap", comma);
557 comma = ", ";
558 }
559 if (pt->vars_contains_restrict)
560 {
561 fprintf (file, "%srestrict", comma);
562 comma = ", ";
563 }
564 if (pt->vars_contains_interposable)
565 fprintf (file, "%sinterposable", comma);
566 fprintf (file, ")");
567 }
568 }
569 }
570
571
572 /* Unified dump function for pt_solution. */
573
574 DEBUG_FUNCTION void
575 debug (pt_solution &ref)
576 {
577 dump_points_to_solution (stderr, &ref);
578 }
579
580 DEBUG_FUNCTION void
581 debug (pt_solution *ptr)
582 {
583 if (ptr)
584 debug (*ptr);
585 else
586 fprintf (stderr, "<nil>\n");
587 }
588
589
590 /* Dump points-to information for SSA_NAME PTR into FILE. */
591
592 void
593 dump_points_to_info_for (FILE *file, tree ptr)
594 {
595 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
596
597 print_generic_expr (file, ptr, dump_flags);
598
599 if (pi)
600 dump_points_to_solution (file, &pi->pt);
601 else
602 fprintf (file, ", points-to anything");
603
604 fprintf (file, "\n");
605 }
606
607
608 /* Dump points-to information for VAR into stderr. */
609
610 DEBUG_FUNCTION void
611 debug_points_to_info_for (tree var)
612 {
613 dump_points_to_info_for (stderr, var);
614 }
615
616
617 /* Initializes the alias-oracle reference representation *R from REF. */
618
619 void
620 ao_ref_init (ao_ref *r, tree ref)
621 {
622 r->ref = ref;
623 r->base = NULL_TREE;
624 r->offset = 0;
625 r->size = -1;
626 r->max_size = -1;
627 r->ref_alias_set = -1;
628 r->base_alias_set = -1;
629 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
630 }
631
632 /* Returns the base object of the memory reference *REF. */
633
634 tree
635 ao_ref_base (ao_ref *ref)
636 {
637 bool reverse;
638
639 if (ref->base)
640 return ref->base;
641 ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size,
642 &ref->max_size, &reverse);
643 return ref->base;
644 }
645
646 /* Returns the base object alias set of the memory reference *REF. */
647
648 alias_set_type
649 ao_ref_base_alias_set (ao_ref *ref)
650 {
651 tree base_ref;
652 if (ref->base_alias_set != -1)
653 return ref->base_alias_set;
654 if (!ref->ref)
655 return 0;
656 base_ref = ref->ref;
657 while (handled_component_p (base_ref))
658 base_ref = TREE_OPERAND (base_ref, 0);
659 ref->base_alias_set = get_alias_set (base_ref);
660 return ref->base_alias_set;
661 }
662
663 /* Returns the reference alias set of the memory reference *REF. */
664
665 alias_set_type
666 ao_ref_alias_set (ao_ref *ref)
667 {
668 if (ref->ref_alias_set != -1)
669 return ref->ref_alias_set;
670 ref->ref_alias_set = get_alias_set (ref->ref);
671 return ref->ref_alias_set;
672 }
673
674 /* Init an alias-oracle reference representation from a gimple pointer
675 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
676 size is assumed to be unknown. The access is assumed to be only
677 to or after of the pointer target, not before it. */
678
679 void
680 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
681 {
682 HOST_WIDE_INT t;
683 poly_int64 size_hwi, extra_offset = 0;
684 ref->ref = NULL_TREE;
685 if (TREE_CODE (ptr) == SSA_NAME)
686 {
687 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
688 if (gimple_assign_single_p (stmt)
689 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
690 ptr = gimple_assign_rhs1 (stmt);
691 else if (is_gimple_assign (stmt)
692 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
693 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
694 {
695 ptr = gimple_assign_rhs1 (stmt);
696 extra_offset *= BITS_PER_UNIT;
697 }
698 }
699
700 if (TREE_CODE (ptr) == ADDR_EXPR)
701 {
702 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
703 if (ref->base)
704 ref->offset = BITS_PER_UNIT * t;
705 else
706 {
707 size = NULL_TREE;
708 ref->offset = 0;
709 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
710 }
711 }
712 else
713 {
714 ref->base = build2 (MEM_REF, char_type_node,
715 ptr, null_pointer_node);
716 ref->offset = 0;
717 }
718 ref->offset += extra_offset;
719 if (size
720 && poly_int_tree_p (size, &size_hwi)
721 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
722 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
723 else
724 ref->max_size = ref->size = -1;
725 ref->ref_alias_set = 0;
726 ref->base_alias_set = 0;
727 ref->volatile_p = false;
728 }
729
730 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
731 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
732 decide. */
733
734 static inline int
735 same_type_for_tbaa (tree type1, tree type2)
736 {
737 type1 = TYPE_MAIN_VARIANT (type1);
738 type2 = TYPE_MAIN_VARIANT (type2);
739
740 /* If we would have to do structural comparison bail out. */
741 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
742 || TYPE_STRUCTURAL_EQUALITY_P (type2))
743 return -1;
744
745 /* Compare the canonical types. */
746 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
747 return 1;
748
749 /* ??? Array types are not properly unified in all cases as we have
750 spurious changes in the index types for example. Removing this
751 causes all sorts of problems with the Fortran frontend. */
752 if (TREE_CODE (type1) == ARRAY_TYPE
753 && TREE_CODE (type2) == ARRAY_TYPE)
754 return -1;
755
756 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
757 object of one of its constrained subtypes, e.g. when a function with an
758 unconstrained parameter passed by reference is called on an object and
759 inlined. But, even in the case of a fixed size, type and subtypes are
760 not equivalent enough as to share the same TYPE_CANONICAL, since this
761 would mean that conversions between them are useless, whereas they are
762 not (e.g. type and subtypes can have different modes). So, in the end,
763 they are only guaranteed to have the same alias set. */
764 if (get_alias_set (type1) == get_alias_set (type2))
765 return -1;
766
767 /* The types are known to be not equal. */
768 return 0;
769 }
770
771 /* Determine if the two component references REF1 and REF2 which are
772 based on access types TYPE1 and TYPE2 and of which at least one is based
773 on an indirect reference may alias. REF2 is the only one that can
774 be a decl in which case REF2_IS_DECL is true.
775 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
776 are the respective alias sets. */
777
778 static bool
779 aliasing_component_refs_p (tree ref1,
780 alias_set_type ref1_alias_set,
781 alias_set_type base1_alias_set,
782 poly_int64 offset1, poly_int64 max_size1,
783 tree ref2,
784 alias_set_type ref2_alias_set,
785 alias_set_type base2_alias_set,
786 poly_int64 offset2, poly_int64 max_size2,
787 bool ref2_is_decl)
788 {
789 /* If one reference is a component references through pointers try to find a
790 common base and apply offset based disambiguation. This handles
791 for example
792 struct A { int i; int j; } *q;
793 struct B { struct A a; int k; } *p;
794 disambiguating q->i and p->a.j. */
795 tree base1, base2;
796 tree type1, type2;
797 tree *refp;
798 int same_p;
799
800 /* Choose bases and base types to search for. */
801 base1 = ref1;
802 while (handled_component_p (base1))
803 base1 = TREE_OPERAND (base1, 0);
804 type1 = TREE_TYPE (base1);
805 base2 = ref2;
806 while (handled_component_p (base2))
807 base2 = TREE_OPERAND (base2, 0);
808 type2 = TREE_TYPE (base2);
809
810 /* Now search for the type1 in the access path of ref2. This
811 would be a common base for doing offset based disambiguation on. */
812 refp = &ref2;
813 while (handled_component_p (*refp)
814 && same_type_for_tbaa (TREE_TYPE (*refp), type1) == 0)
815 refp = &TREE_OPERAND (*refp, 0);
816 same_p = same_type_for_tbaa (TREE_TYPE (*refp), type1);
817 /* If we couldn't compare types we have to bail out. */
818 if (same_p == -1)
819 return true;
820 else if (same_p == 1)
821 {
822 poly_int64 offadj, sztmp, msztmp;
823 bool reverse;
824 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
825 offset2 -= offadj;
826 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
827 offset1 -= offadj;
828 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
829 }
830 /* If we didn't find a common base, try the other way around. */
831 refp = &ref1;
832 while (handled_component_p (*refp)
833 && same_type_for_tbaa (TREE_TYPE (*refp), type2) == 0)
834 refp = &TREE_OPERAND (*refp, 0);
835 same_p = same_type_for_tbaa (TREE_TYPE (*refp), type2);
836 /* If we couldn't compare types we have to bail out. */
837 if (same_p == -1)
838 return true;
839 else if (same_p == 1)
840 {
841 poly_int64 offadj, sztmp, msztmp;
842 bool reverse;
843 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
844 offset1 -= offadj;
845 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
846 offset2 -= offadj;
847 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
848 }
849
850 /* If we have two type access paths B1.path1 and B2.path2 they may
851 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
852 But we can still have a path that goes B1.path1...B2.path2 with
853 a part that we do not see. So we can only disambiguate now
854 if there is no B2 in the tail of path1 and no B1 on the
855 tail of path2. */
856 if (base1_alias_set == ref2_alias_set
857 || alias_set_subset_of (base1_alias_set, ref2_alias_set))
858 return true;
859 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
860 if (!ref2_is_decl)
861 return (base2_alias_set == ref1_alias_set
862 || alias_set_subset_of (base2_alias_set, ref1_alias_set));
863 return false;
864 }
865
866 /* Return true if we can determine that component references REF1 and REF2,
867 that are within a common DECL, cannot overlap. */
868
869 static bool
870 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
871 {
872 auto_vec<tree, 16> component_refs1;
873 auto_vec<tree, 16> component_refs2;
874
875 /* Create the stack of handled components for REF1. */
876 while (handled_component_p (ref1))
877 {
878 component_refs1.safe_push (ref1);
879 ref1 = TREE_OPERAND (ref1, 0);
880 }
881 if (TREE_CODE (ref1) == MEM_REF)
882 {
883 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
884 return false;
885 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
886 }
887
888 /* Create the stack of handled components for REF2. */
889 while (handled_component_p (ref2))
890 {
891 component_refs2.safe_push (ref2);
892 ref2 = TREE_OPERAND (ref2, 0);
893 }
894 if (TREE_CODE (ref2) == MEM_REF)
895 {
896 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
897 return false;
898 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
899 }
900
901 /* Bases must be either same or uncomparable. */
902 gcc_checking_assert (ref1 == ref2
903 || (DECL_P (ref1) && DECL_P (ref2)
904 && compare_base_decls (ref1, ref2) != 0));
905
906 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
907 rank. This is sufficient because we start from the same DECL and you
908 cannot reference several fields at a time with COMPONENT_REFs (unlike
909 with ARRAY_RANGE_REFs for arrays) so you always need the same number
910 of them to access a sub-component, unless you're in a union, in which
911 case the return value will precisely be false. */
912 while (true)
913 {
914 do
915 {
916 if (component_refs1.is_empty ())
917 return false;
918 ref1 = component_refs1.pop ();
919 }
920 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
921
922 do
923 {
924 if (component_refs2.is_empty ())
925 return false;
926 ref2 = component_refs2.pop ();
927 }
928 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
929
930 /* Beware of BIT_FIELD_REF. */
931 if (TREE_CODE (ref1) != COMPONENT_REF
932 || TREE_CODE (ref2) != COMPONENT_REF)
933 return false;
934
935 tree field1 = TREE_OPERAND (ref1, 1);
936 tree field2 = TREE_OPERAND (ref2, 1);
937
938 /* ??? We cannot simply use the type of operand #0 of the refs here
939 as the Fortran compiler smuggles type punning into COMPONENT_REFs
940 for common blocks instead of using unions like everyone else. */
941 tree type1 = DECL_CONTEXT (field1);
942 tree type2 = DECL_CONTEXT (field2);
943
944 /* We cannot disambiguate fields in a union or qualified union. */
945 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
946 return false;
947
948 if (field1 != field2)
949 {
950 /* A field and its representative need to be considered the
951 same. */
952 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
953 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
954 return false;
955 /* Different fields of the same record type cannot overlap.
956 ??? Bitfields can overlap at RTL level so punt on them. */
957 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
958 return false;
959 return true;
960 }
961 }
962
963 return false;
964 }
965
966 /* qsort compare function to sort FIELD_DECLs after their
967 DECL_FIELD_CONTEXT TYPE_UID. */
968
969 static inline int
970 ncr_compar (const void *field1_, const void *field2_)
971 {
972 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
973 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
974 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
975 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
976 if (uid1 < uid2)
977 return -1;
978 else if (uid1 > uid2)
979 return 1;
980 return 0;
981 }
982
983 /* Return true if we can determine that the fields referenced cannot
984 overlap for any pair of objects. */
985
986 static bool
987 nonoverlapping_component_refs_p (const_tree x, const_tree y)
988 {
989 if (!flag_strict_aliasing
990 || !x || !y
991 || TREE_CODE (x) != COMPONENT_REF
992 || TREE_CODE (y) != COMPONENT_REF)
993 return false;
994
995 auto_vec<const_tree, 16> fieldsx;
996 while (TREE_CODE (x) == COMPONENT_REF)
997 {
998 tree field = TREE_OPERAND (x, 1);
999 tree type = DECL_FIELD_CONTEXT (field);
1000 if (TREE_CODE (type) == RECORD_TYPE)
1001 fieldsx.safe_push (field);
1002 x = TREE_OPERAND (x, 0);
1003 }
1004 if (fieldsx.length () == 0)
1005 return false;
1006 auto_vec<const_tree, 16> fieldsy;
1007 while (TREE_CODE (y) == COMPONENT_REF)
1008 {
1009 tree field = TREE_OPERAND (y, 1);
1010 tree type = DECL_FIELD_CONTEXT (field);
1011 if (TREE_CODE (type) == RECORD_TYPE)
1012 fieldsy.safe_push (TREE_OPERAND (y, 1));
1013 y = TREE_OPERAND (y, 0);
1014 }
1015 if (fieldsy.length () == 0)
1016 return false;
1017
1018 /* Most common case first. */
1019 if (fieldsx.length () == 1
1020 && fieldsy.length () == 1)
1021 return ((DECL_FIELD_CONTEXT (fieldsx[0])
1022 == DECL_FIELD_CONTEXT (fieldsy[0]))
1023 && fieldsx[0] != fieldsy[0]
1024 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])));
1025
1026 if (fieldsx.length () == 2)
1027 {
1028 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1029 std::swap (fieldsx[0], fieldsx[1]);
1030 }
1031 else
1032 fieldsx.qsort (ncr_compar);
1033
1034 if (fieldsy.length () == 2)
1035 {
1036 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1037 std::swap (fieldsy[0], fieldsy[1]);
1038 }
1039 else
1040 fieldsy.qsort (ncr_compar);
1041
1042 unsigned i = 0, j = 0;
1043 do
1044 {
1045 const_tree fieldx = fieldsx[i];
1046 const_tree fieldy = fieldsy[j];
1047 tree typex = DECL_FIELD_CONTEXT (fieldx);
1048 tree typey = DECL_FIELD_CONTEXT (fieldy);
1049 if (typex == typey)
1050 {
1051 /* We're left with accessing different fields of a structure,
1052 no possible overlap. */
1053 if (fieldx != fieldy)
1054 {
1055 /* A field and its representative need to be considered the
1056 same. */
1057 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1058 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1059 return false;
1060 /* Different fields of the same record type cannot overlap.
1061 ??? Bitfields can overlap at RTL level so punt on them. */
1062 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1063 return false;
1064 return true;
1065 }
1066 }
1067 if (TYPE_UID (typex) < TYPE_UID (typey))
1068 {
1069 i++;
1070 if (i == fieldsx.length ())
1071 break;
1072 }
1073 else
1074 {
1075 j++;
1076 if (j == fieldsy.length ())
1077 break;
1078 }
1079 }
1080 while (1);
1081
1082 return false;
1083 }
1084
1085
1086 /* Return true if two memory references based on the variables BASE1
1087 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1088 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1089 if non-NULL are the complete memory reference trees. */
1090
1091 static bool
1092 decl_refs_may_alias_p (tree ref1, tree base1,
1093 poly_int64 offset1, poly_int64 max_size1,
1094 tree ref2, tree base2,
1095 poly_int64 offset2, poly_int64 max_size2)
1096 {
1097 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1098
1099 /* If both references are based on different variables, they cannot alias. */
1100 if (compare_base_decls (base1, base2) == 0)
1101 return false;
1102
1103 /* If both references are based on the same variable, they cannot alias if
1104 the accesses do not overlap. */
1105 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1106 return false;
1107
1108 /* For components with variable position, the above test isn't sufficient,
1109 so we disambiguate component references manually. */
1110 if (ref1 && ref2
1111 && handled_component_p (ref1) && handled_component_p (ref2)
1112 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1113 return false;
1114
1115 return true;
1116 }
1117
1118 /* Return true if an indirect reference based on *PTR1 constrained
1119 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1120 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1121 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1122 in which case they are computed on-demand. REF1 and REF2
1123 if non-NULL are the complete memory reference trees. */
1124
1125 static bool
1126 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1127 poly_int64 offset1, poly_int64 max_size1,
1128 alias_set_type ref1_alias_set,
1129 alias_set_type base1_alias_set,
1130 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1131 poly_int64 offset2, poly_int64 max_size2,
1132 alias_set_type ref2_alias_set,
1133 alias_set_type base2_alias_set, bool tbaa_p)
1134 {
1135 tree ptr1;
1136 tree ptrtype1, dbase2;
1137
1138 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1139 || TREE_CODE (base1) == TARGET_MEM_REF)
1140 && DECL_P (base2));
1141
1142 ptr1 = TREE_OPERAND (base1, 0);
1143 offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1144
1145 /* If only one reference is based on a variable, they cannot alias if
1146 the pointer access is beyond the extent of the variable access.
1147 (the pointer base cannot validly point to an offset less than zero
1148 of the variable).
1149 ??? IVOPTs creates bases that do not honor this restriction,
1150 so do not apply this optimization for TARGET_MEM_REFs. */
1151 if (TREE_CODE (base1) != TARGET_MEM_REF
1152 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1153 return false;
1154 /* They also cannot alias if the pointer may not point to the decl. */
1155 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1156 return false;
1157
1158 /* Disambiguations that rely on strict aliasing rules follow. */
1159 if (!flag_strict_aliasing || !tbaa_p)
1160 return true;
1161
1162 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1163
1164 /* If the alias set for a pointer access is zero all bets are off. */
1165 if (base1_alias_set == 0)
1166 return true;
1167
1168 /* When we are trying to disambiguate an access with a pointer dereference
1169 as base versus one with a decl as base we can use both the size
1170 of the decl and its dynamic type for extra disambiguation.
1171 ??? We do not know anything about the dynamic type of the decl
1172 other than that its alias-set contains base2_alias_set as a subset
1173 which does not help us here. */
1174 /* As we know nothing useful about the dynamic type of the decl just
1175 use the usual conflict check rather than a subset test.
1176 ??? We could introduce -fvery-strict-aliasing when the language
1177 does not allow decls to have a dynamic type that differs from their
1178 static type. Then we can check
1179 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1180 if (base1_alias_set != base2_alias_set
1181 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1182 return false;
1183 /* If the size of the access relevant for TBAA through the pointer
1184 is bigger than the size of the decl we can't possibly access the
1185 decl via that pointer. */
1186 if (DECL_SIZE (base2) && COMPLETE_TYPE_P (TREE_TYPE (ptrtype1))
1187 && poly_int_tree_p (DECL_SIZE (base2))
1188 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (ptrtype1)))
1189 /* ??? This in turn may run afoul when a decl of type T which is
1190 a member of union type U is accessed through a pointer to
1191 type U and sizeof T is smaller than sizeof U. */
1192 && TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1193 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1194 && known_lt (wi::to_poly_widest (DECL_SIZE (base2)),
1195 wi::to_poly_widest (TYPE_SIZE (TREE_TYPE (ptrtype1)))))
1196 return false;
1197
1198 if (!ref2)
1199 return true;
1200
1201 /* If the decl is accessed via a MEM_REF, reconstruct the base
1202 we can use for TBAA and an appropriately adjusted offset. */
1203 dbase2 = ref2;
1204 while (handled_component_p (dbase2))
1205 dbase2 = TREE_OPERAND (dbase2, 0);
1206 poly_int64 doffset1 = offset1;
1207 poly_offset_int doffset2 = offset2;
1208 if (TREE_CODE (dbase2) == MEM_REF
1209 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1210 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1211
1212 /* If either reference is view-converted, give up now. */
1213 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1214 || same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (base2)) != 1)
1215 return true;
1216
1217 /* If both references are through the same type, they do not alias
1218 if the accesses do not overlap. This does extra disambiguation
1219 for mixed/pointer accesses but requires strict aliasing.
1220 For MEM_REFs we require that the component-ref offset we computed
1221 is relative to the start of the type which we ensure by
1222 comparing rvalue and access type and disregarding the constant
1223 pointer offset. */
1224 if ((TREE_CODE (base1) != TARGET_MEM_REF
1225 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1226 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
1227 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1228
1229 if (ref1 && ref2
1230 && nonoverlapping_component_refs_p (ref1, ref2))
1231 return false;
1232
1233 /* Do access-path based disambiguation. */
1234 if (ref1 && ref2
1235 && (handled_component_p (ref1) || handled_component_p (ref2)))
1236 return aliasing_component_refs_p (ref1,
1237 ref1_alias_set, base1_alias_set,
1238 offset1, max_size1,
1239 ref2,
1240 ref2_alias_set, base2_alias_set,
1241 offset2, max_size2, true);
1242
1243 return true;
1244 }
1245
1246 /* Return true if two indirect references based on *PTR1
1247 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1248 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1249 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1250 in which case they are computed on-demand. REF1 and REF2
1251 if non-NULL are the complete memory reference trees. */
1252
1253 static bool
1254 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1255 poly_int64 offset1, poly_int64 max_size1,
1256 alias_set_type ref1_alias_set,
1257 alias_set_type base1_alias_set,
1258 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1259 poly_int64 offset2, poly_int64 max_size2,
1260 alias_set_type ref2_alias_set,
1261 alias_set_type base2_alias_set, bool tbaa_p)
1262 {
1263 tree ptr1;
1264 tree ptr2;
1265 tree ptrtype1, ptrtype2;
1266
1267 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1268 || TREE_CODE (base1) == TARGET_MEM_REF)
1269 && (TREE_CODE (base2) == MEM_REF
1270 || TREE_CODE (base2) == TARGET_MEM_REF));
1271
1272 ptr1 = TREE_OPERAND (base1, 0);
1273 ptr2 = TREE_OPERAND (base2, 0);
1274
1275 /* If both bases are based on pointers they cannot alias if they may not
1276 point to the same memory object or if they point to the same object
1277 and the accesses do not overlap. */
1278 if ((!cfun || gimple_in_ssa_p (cfun))
1279 && operand_equal_p (ptr1, ptr2, 0)
1280 && (((TREE_CODE (base1) != TARGET_MEM_REF
1281 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1282 && (TREE_CODE (base2) != TARGET_MEM_REF
1283 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1284 || (TREE_CODE (base1) == TARGET_MEM_REF
1285 && TREE_CODE (base2) == TARGET_MEM_REF
1286 && (TMR_STEP (base1) == TMR_STEP (base2)
1287 || (TMR_STEP (base1) && TMR_STEP (base2)
1288 && operand_equal_p (TMR_STEP (base1),
1289 TMR_STEP (base2), 0)))
1290 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1291 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1292 && operand_equal_p (TMR_INDEX (base1),
1293 TMR_INDEX (base2), 0)))
1294 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1295 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1296 && operand_equal_p (TMR_INDEX2 (base1),
1297 TMR_INDEX2 (base2), 0))))))
1298 {
1299 offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1300 offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1301 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1302 offset2 + moff2, max_size2);
1303 }
1304 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1305 return false;
1306
1307 /* Disambiguations that rely on strict aliasing rules follow. */
1308 if (!flag_strict_aliasing || !tbaa_p)
1309 return true;
1310
1311 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1312 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1313
1314 /* If the alias set for a pointer access is zero all bets are off. */
1315 if (base1_alias_set == 0
1316 || base2_alias_set == 0)
1317 return true;
1318
1319 /* If both references are through the same type, they do not alias
1320 if the accesses do not overlap. This does extra disambiguation
1321 for mixed/pointer accesses but requires strict aliasing. */
1322 if ((TREE_CODE (base1) != TARGET_MEM_REF
1323 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1324 && (TREE_CODE (base2) != TARGET_MEM_REF
1325 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1326 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) == 1
1327 && same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) == 1
1328 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1329 TREE_TYPE (ptrtype2)) == 1
1330 /* But avoid treating arrays as "objects", instead assume they
1331 can overlap by an exact multiple of their element size. */
1332 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1333 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1334
1335 /* Do type-based disambiguation. */
1336 if (base1_alias_set != base2_alias_set
1337 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1338 return false;
1339
1340 /* If either reference is view-converted, give up now. */
1341 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1342 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1343 return true;
1344
1345 if (ref1 && ref2
1346 && nonoverlapping_component_refs_p (ref1, ref2))
1347 return false;
1348
1349 /* Do access-path based disambiguation. */
1350 if (ref1 && ref2
1351 && (handled_component_p (ref1) || handled_component_p (ref2)))
1352 return aliasing_component_refs_p (ref1,
1353 ref1_alias_set, base1_alias_set,
1354 offset1, max_size1,
1355 ref2,
1356 ref2_alias_set, base2_alias_set,
1357 offset2, max_size2, false);
1358
1359 return true;
1360 }
1361
1362 /* Return true, if the two memory references REF1 and REF2 may alias. */
1363
1364 bool
1365 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1366 {
1367 tree base1, base2;
1368 poly_int64 offset1 = 0, offset2 = 0;
1369 poly_int64 max_size1 = -1, max_size2 = -1;
1370 bool var1_p, var2_p, ind1_p, ind2_p;
1371
1372 gcc_checking_assert ((!ref1->ref
1373 || TREE_CODE (ref1->ref) == SSA_NAME
1374 || DECL_P (ref1->ref)
1375 || TREE_CODE (ref1->ref) == STRING_CST
1376 || handled_component_p (ref1->ref)
1377 || TREE_CODE (ref1->ref) == MEM_REF
1378 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1379 && (!ref2->ref
1380 || TREE_CODE (ref2->ref) == SSA_NAME
1381 || DECL_P (ref2->ref)
1382 || TREE_CODE (ref2->ref) == STRING_CST
1383 || handled_component_p (ref2->ref)
1384 || TREE_CODE (ref2->ref) == MEM_REF
1385 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1386
1387 /* Decompose the references into their base objects and the access. */
1388 base1 = ao_ref_base (ref1);
1389 offset1 = ref1->offset;
1390 max_size1 = ref1->max_size;
1391 base2 = ao_ref_base (ref2);
1392 offset2 = ref2->offset;
1393 max_size2 = ref2->max_size;
1394
1395 /* We can end up with registers or constants as bases for example from
1396 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1397 which is seen as a struct copy. */
1398 if (TREE_CODE (base1) == SSA_NAME
1399 || TREE_CODE (base1) == CONST_DECL
1400 || TREE_CODE (base1) == CONSTRUCTOR
1401 || TREE_CODE (base1) == ADDR_EXPR
1402 || CONSTANT_CLASS_P (base1)
1403 || TREE_CODE (base2) == SSA_NAME
1404 || TREE_CODE (base2) == CONST_DECL
1405 || TREE_CODE (base2) == CONSTRUCTOR
1406 || TREE_CODE (base2) == ADDR_EXPR
1407 || CONSTANT_CLASS_P (base2))
1408 return false;
1409
1410 /* We can end up referring to code via function and label decls.
1411 As we likely do not properly track code aliases conservatively
1412 bail out. */
1413 if (TREE_CODE (base1) == FUNCTION_DECL
1414 || TREE_CODE (base1) == LABEL_DECL
1415 || TREE_CODE (base2) == FUNCTION_DECL
1416 || TREE_CODE (base2) == LABEL_DECL)
1417 return true;
1418
1419 /* Two volatile accesses always conflict. */
1420 if (ref1->volatile_p
1421 && ref2->volatile_p)
1422 return true;
1423
1424 /* Defer to simple offset based disambiguation if we have
1425 references based on two decls. Do this before defering to
1426 TBAA to handle must-alias cases in conformance with the
1427 GCC extension of allowing type-punning through unions. */
1428 var1_p = DECL_P (base1);
1429 var2_p = DECL_P (base2);
1430 if (var1_p && var2_p)
1431 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1432 ref2->ref, base2, offset2, max_size2);
1433
1434 /* Handle restrict based accesses.
1435 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1436 here. */
1437 tree rbase1 = base1;
1438 tree rbase2 = base2;
1439 if (var1_p)
1440 {
1441 rbase1 = ref1->ref;
1442 if (rbase1)
1443 while (handled_component_p (rbase1))
1444 rbase1 = TREE_OPERAND (rbase1, 0);
1445 }
1446 if (var2_p)
1447 {
1448 rbase2 = ref2->ref;
1449 if (rbase2)
1450 while (handled_component_p (rbase2))
1451 rbase2 = TREE_OPERAND (rbase2, 0);
1452 }
1453 if (rbase1 && rbase2
1454 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1455 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1456 /* If the accesses are in the same restrict clique... */
1457 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1458 /* But based on different pointers they do not alias. */
1459 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1460 return false;
1461
1462 ind1_p = (TREE_CODE (base1) == MEM_REF
1463 || TREE_CODE (base1) == TARGET_MEM_REF);
1464 ind2_p = (TREE_CODE (base2) == MEM_REF
1465 || TREE_CODE (base2) == TARGET_MEM_REF);
1466
1467 /* Canonicalize the pointer-vs-decl case. */
1468 if (ind1_p && var2_p)
1469 {
1470 std::swap (offset1, offset2);
1471 std::swap (max_size1, max_size2);
1472 std::swap (base1, base2);
1473 std::swap (ref1, ref2);
1474 var1_p = true;
1475 ind1_p = false;
1476 var2_p = false;
1477 ind2_p = true;
1478 }
1479
1480 /* First defer to TBAA if possible. */
1481 if (tbaa_p
1482 && flag_strict_aliasing
1483 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1484 ao_ref_alias_set (ref2)))
1485 return false;
1486
1487 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1488 if (var1_p && ind2_p)
1489 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1490 offset2, max_size2,
1491 ao_ref_alias_set (ref2),
1492 ao_ref_base_alias_set (ref2),
1493 ref1->ref, base1,
1494 offset1, max_size1,
1495 ao_ref_alias_set (ref1),
1496 ao_ref_base_alias_set (ref1),
1497 tbaa_p);
1498 else if (ind1_p && ind2_p)
1499 return indirect_refs_may_alias_p (ref1->ref, base1,
1500 offset1, max_size1,
1501 ao_ref_alias_set (ref1),
1502 ao_ref_base_alias_set (ref1),
1503 ref2->ref, base2,
1504 offset2, max_size2,
1505 ao_ref_alias_set (ref2),
1506 ao_ref_base_alias_set (ref2),
1507 tbaa_p);
1508
1509 gcc_unreachable ();
1510 }
1511
1512 static bool
1513 refs_may_alias_p (tree ref1, ao_ref *ref2)
1514 {
1515 ao_ref r1;
1516 ao_ref_init (&r1, ref1);
1517 return refs_may_alias_p_1 (&r1, ref2, true);
1518 }
1519
1520 bool
1521 refs_may_alias_p (tree ref1, tree ref2)
1522 {
1523 ao_ref r1, r2;
1524 bool res;
1525 ao_ref_init (&r1, ref1);
1526 ao_ref_init (&r2, ref2);
1527 res = refs_may_alias_p_1 (&r1, &r2, true);
1528 if (res)
1529 ++alias_stats.refs_may_alias_p_may_alias;
1530 else
1531 ++alias_stats.refs_may_alias_p_no_alias;
1532 return res;
1533 }
1534
1535 /* Returns true if there is a anti-dependence for the STORE that
1536 executes after the LOAD. */
1537
1538 bool
1539 refs_anti_dependent_p (tree load, tree store)
1540 {
1541 ao_ref r1, r2;
1542 ao_ref_init (&r1, load);
1543 ao_ref_init (&r2, store);
1544 return refs_may_alias_p_1 (&r1, &r2, false);
1545 }
1546
1547 /* Returns true if there is a output dependence for the stores
1548 STORE1 and STORE2. */
1549
1550 bool
1551 refs_output_dependent_p (tree store1, tree store2)
1552 {
1553 ao_ref r1, r2;
1554 ao_ref_init (&r1, store1);
1555 ao_ref_init (&r2, store2);
1556 return refs_may_alias_p_1 (&r1, &r2, false);
1557 }
1558
1559 /* If the call CALL may use the memory reference REF return true,
1560 otherwise return false. */
1561
1562 static bool
1563 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref)
1564 {
1565 tree base, callee;
1566 unsigned i;
1567 int flags = gimple_call_flags (call);
1568
1569 /* Const functions without a static chain do not implicitly use memory. */
1570 if (!gimple_call_chain (call)
1571 && (flags & (ECF_CONST|ECF_NOVOPS)))
1572 goto process_args;
1573
1574 base = ao_ref_base (ref);
1575 if (!base)
1576 return true;
1577
1578 /* A call that is not without side-effects might involve volatile
1579 accesses and thus conflicts with all other volatile accesses. */
1580 if (ref->volatile_p)
1581 return true;
1582
1583 /* If the reference is based on a decl that is not aliased the call
1584 cannot possibly use it. */
1585 if (DECL_P (base)
1586 && !may_be_aliased (base)
1587 /* But local statics can be used through recursion. */
1588 && !is_global_var (base))
1589 goto process_args;
1590
1591 callee = gimple_call_fndecl (call);
1592
1593 /* Handle those builtin functions explicitly that do not act as
1594 escape points. See tree-ssa-structalias.c:find_func_aliases
1595 for the list of builtins we might need to handle here. */
1596 if (callee != NULL_TREE
1597 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1598 switch (DECL_FUNCTION_CODE (callee))
1599 {
1600 /* All the following functions read memory pointed to by
1601 their second argument. strcat/strncat additionally
1602 reads memory pointed to by the first argument. */
1603 case BUILT_IN_STRCAT:
1604 case BUILT_IN_STRNCAT:
1605 {
1606 ao_ref dref;
1607 ao_ref_init_from_ptr_and_size (&dref,
1608 gimple_call_arg (call, 0),
1609 NULL_TREE);
1610 if (refs_may_alias_p_1 (&dref, ref, false))
1611 return true;
1612 }
1613 /* FALLTHRU */
1614 case BUILT_IN_STRCPY:
1615 case BUILT_IN_STRNCPY:
1616 case BUILT_IN_MEMCPY:
1617 case BUILT_IN_MEMMOVE:
1618 case BUILT_IN_MEMPCPY:
1619 case BUILT_IN_STPCPY:
1620 case BUILT_IN_STPNCPY:
1621 case BUILT_IN_TM_MEMCPY:
1622 case BUILT_IN_TM_MEMMOVE:
1623 {
1624 ao_ref dref;
1625 tree size = NULL_TREE;
1626 if (gimple_call_num_args (call) == 3)
1627 size = gimple_call_arg (call, 2);
1628 ao_ref_init_from_ptr_and_size (&dref,
1629 gimple_call_arg (call, 1),
1630 size);
1631 return refs_may_alias_p_1 (&dref, ref, false);
1632 }
1633 case BUILT_IN_STRCAT_CHK:
1634 case BUILT_IN_STRNCAT_CHK:
1635 {
1636 ao_ref dref;
1637 ao_ref_init_from_ptr_and_size (&dref,
1638 gimple_call_arg (call, 0),
1639 NULL_TREE);
1640 if (refs_may_alias_p_1 (&dref, ref, false))
1641 return true;
1642 }
1643 /* FALLTHRU */
1644 case BUILT_IN_STRCPY_CHK:
1645 case BUILT_IN_STRNCPY_CHK:
1646 case BUILT_IN_MEMCPY_CHK:
1647 case BUILT_IN_MEMMOVE_CHK:
1648 case BUILT_IN_MEMPCPY_CHK:
1649 case BUILT_IN_STPCPY_CHK:
1650 case BUILT_IN_STPNCPY_CHK:
1651 {
1652 ao_ref dref;
1653 tree size = NULL_TREE;
1654 if (gimple_call_num_args (call) == 4)
1655 size = gimple_call_arg (call, 2);
1656 ao_ref_init_from_ptr_and_size (&dref,
1657 gimple_call_arg (call, 1),
1658 size);
1659 return refs_may_alias_p_1 (&dref, ref, false);
1660 }
1661 case BUILT_IN_BCOPY:
1662 {
1663 ao_ref dref;
1664 tree size = gimple_call_arg (call, 2);
1665 ao_ref_init_from_ptr_and_size (&dref,
1666 gimple_call_arg (call, 0),
1667 size);
1668 return refs_may_alias_p_1 (&dref, ref, false);
1669 }
1670
1671 /* The following functions read memory pointed to by their
1672 first argument. */
1673 CASE_BUILT_IN_TM_LOAD (1):
1674 CASE_BUILT_IN_TM_LOAD (2):
1675 CASE_BUILT_IN_TM_LOAD (4):
1676 CASE_BUILT_IN_TM_LOAD (8):
1677 CASE_BUILT_IN_TM_LOAD (FLOAT):
1678 CASE_BUILT_IN_TM_LOAD (DOUBLE):
1679 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
1680 CASE_BUILT_IN_TM_LOAD (M64):
1681 CASE_BUILT_IN_TM_LOAD (M128):
1682 CASE_BUILT_IN_TM_LOAD (M256):
1683 case BUILT_IN_TM_LOG:
1684 case BUILT_IN_TM_LOG_1:
1685 case BUILT_IN_TM_LOG_2:
1686 case BUILT_IN_TM_LOG_4:
1687 case BUILT_IN_TM_LOG_8:
1688 case BUILT_IN_TM_LOG_FLOAT:
1689 case BUILT_IN_TM_LOG_DOUBLE:
1690 case BUILT_IN_TM_LOG_LDOUBLE:
1691 case BUILT_IN_TM_LOG_M64:
1692 case BUILT_IN_TM_LOG_M128:
1693 case BUILT_IN_TM_LOG_M256:
1694 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
1695
1696 /* These read memory pointed to by the first argument. */
1697 case BUILT_IN_STRDUP:
1698 case BUILT_IN_STRNDUP:
1699 case BUILT_IN_REALLOC:
1700 {
1701 ao_ref dref;
1702 tree size = NULL_TREE;
1703 if (gimple_call_num_args (call) == 2)
1704 size = gimple_call_arg (call, 1);
1705 ao_ref_init_from_ptr_and_size (&dref,
1706 gimple_call_arg (call, 0),
1707 size);
1708 return refs_may_alias_p_1 (&dref, ref, false);
1709 }
1710 /* These read memory pointed to by the first argument. */
1711 case BUILT_IN_INDEX:
1712 case BUILT_IN_STRCHR:
1713 case BUILT_IN_STRRCHR:
1714 {
1715 ao_ref dref;
1716 ao_ref_init_from_ptr_and_size (&dref,
1717 gimple_call_arg (call, 0),
1718 NULL_TREE);
1719 return refs_may_alias_p_1 (&dref, ref, false);
1720 }
1721 /* These read memory pointed to by the first argument with size
1722 in the third argument. */
1723 case BUILT_IN_MEMCHR:
1724 {
1725 ao_ref dref;
1726 ao_ref_init_from_ptr_and_size (&dref,
1727 gimple_call_arg (call, 0),
1728 gimple_call_arg (call, 2));
1729 return refs_may_alias_p_1 (&dref, ref, false);
1730 }
1731 /* These read memory pointed to by the first and second arguments. */
1732 case BUILT_IN_STRSTR:
1733 case BUILT_IN_STRPBRK:
1734 {
1735 ao_ref dref;
1736 ao_ref_init_from_ptr_and_size (&dref,
1737 gimple_call_arg (call, 0),
1738 NULL_TREE);
1739 if (refs_may_alias_p_1 (&dref, ref, false))
1740 return true;
1741 ao_ref_init_from_ptr_and_size (&dref,
1742 gimple_call_arg (call, 1),
1743 NULL_TREE);
1744 return refs_may_alias_p_1 (&dref, ref, false);
1745 }
1746
1747 /* The following builtins do not read from memory. */
1748 case BUILT_IN_FREE:
1749 case BUILT_IN_MALLOC:
1750 case BUILT_IN_POSIX_MEMALIGN:
1751 case BUILT_IN_ALIGNED_ALLOC:
1752 case BUILT_IN_CALLOC:
1753 CASE_BUILT_IN_ALLOCA:
1754 case BUILT_IN_STACK_SAVE:
1755 case BUILT_IN_STACK_RESTORE:
1756 case BUILT_IN_MEMSET:
1757 case BUILT_IN_TM_MEMSET:
1758 case BUILT_IN_MEMSET_CHK:
1759 case BUILT_IN_FREXP:
1760 case BUILT_IN_FREXPF:
1761 case BUILT_IN_FREXPL:
1762 case BUILT_IN_GAMMA_R:
1763 case BUILT_IN_GAMMAF_R:
1764 case BUILT_IN_GAMMAL_R:
1765 case BUILT_IN_LGAMMA_R:
1766 case BUILT_IN_LGAMMAF_R:
1767 case BUILT_IN_LGAMMAL_R:
1768 case BUILT_IN_MODF:
1769 case BUILT_IN_MODFF:
1770 case BUILT_IN_MODFL:
1771 case BUILT_IN_REMQUO:
1772 case BUILT_IN_REMQUOF:
1773 case BUILT_IN_REMQUOL:
1774 case BUILT_IN_SINCOS:
1775 case BUILT_IN_SINCOSF:
1776 case BUILT_IN_SINCOSL:
1777 case BUILT_IN_ASSUME_ALIGNED:
1778 case BUILT_IN_VA_END:
1779 return false;
1780 /* __sync_* builtins and some OpenMP builtins act as threading
1781 barriers. */
1782 #undef DEF_SYNC_BUILTIN
1783 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
1784 #include "sync-builtins.def"
1785 #undef DEF_SYNC_BUILTIN
1786 case BUILT_IN_GOMP_ATOMIC_START:
1787 case BUILT_IN_GOMP_ATOMIC_END:
1788 case BUILT_IN_GOMP_BARRIER:
1789 case BUILT_IN_GOMP_BARRIER_CANCEL:
1790 case BUILT_IN_GOMP_TASKWAIT:
1791 case BUILT_IN_GOMP_TASKGROUP_END:
1792 case BUILT_IN_GOMP_CRITICAL_START:
1793 case BUILT_IN_GOMP_CRITICAL_END:
1794 case BUILT_IN_GOMP_CRITICAL_NAME_START:
1795 case BUILT_IN_GOMP_CRITICAL_NAME_END:
1796 case BUILT_IN_GOMP_LOOP_END:
1797 case BUILT_IN_GOMP_LOOP_END_CANCEL:
1798 case BUILT_IN_GOMP_ORDERED_START:
1799 case BUILT_IN_GOMP_ORDERED_END:
1800 case BUILT_IN_GOMP_SECTIONS_END:
1801 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
1802 case BUILT_IN_GOMP_SINGLE_COPY_START:
1803 case BUILT_IN_GOMP_SINGLE_COPY_END:
1804 return true;
1805
1806 default:
1807 /* Fallthru to general call handling. */;
1808 }
1809
1810 /* Check if base is a global static variable that is not read
1811 by the function. */
1812 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
1813 {
1814 struct cgraph_node *node = cgraph_node::get (callee);
1815 bitmap not_read;
1816
1817 /* FIXME: Callee can be an OMP builtin that does not have a call graph
1818 node yet. We should enforce that there are nodes for all decls in the
1819 IL and remove this check instead. */
1820 if (node
1821 && (not_read = ipa_reference_get_not_read_global (node))
1822 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
1823 goto process_args;
1824 }
1825
1826 /* Check if the base variable is call-used. */
1827 if (DECL_P (base))
1828 {
1829 if (pt_solution_includes (gimple_call_use_set (call), base))
1830 return true;
1831 }
1832 else if ((TREE_CODE (base) == MEM_REF
1833 || TREE_CODE (base) == TARGET_MEM_REF)
1834 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1835 {
1836 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
1837 if (!pi)
1838 return true;
1839
1840 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
1841 return true;
1842 }
1843 else
1844 return true;
1845
1846 /* Inspect call arguments for passed-by-value aliases. */
1847 process_args:
1848 for (i = 0; i < gimple_call_num_args (call); ++i)
1849 {
1850 tree op = gimple_call_arg (call, i);
1851 int flags = gimple_call_arg_flags (call, i);
1852
1853 if (flags & EAF_UNUSED)
1854 continue;
1855
1856 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1857 op = TREE_OPERAND (op, 0);
1858
1859 if (TREE_CODE (op) != SSA_NAME
1860 && !is_gimple_min_invariant (op))
1861 {
1862 ao_ref r;
1863 ao_ref_init (&r, op);
1864 if (refs_may_alias_p_1 (&r, ref, true))
1865 return true;
1866 }
1867 }
1868
1869 return false;
1870 }
1871
1872 static bool
1873 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref)
1874 {
1875 bool res;
1876 res = ref_maybe_used_by_call_p_1 (call, ref);
1877 if (res)
1878 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
1879 else
1880 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
1881 return res;
1882 }
1883
1884
1885 /* If the statement STMT may use the memory reference REF return
1886 true, otherwise return false. */
1887
1888 bool
1889 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref)
1890 {
1891 if (is_gimple_assign (stmt))
1892 {
1893 tree rhs;
1894
1895 /* All memory assign statements are single. */
1896 if (!gimple_assign_single_p (stmt))
1897 return false;
1898
1899 rhs = gimple_assign_rhs1 (stmt);
1900 if (is_gimple_reg (rhs)
1901 || is_gimple_min_invariant (rhs)
1902 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
1903 return false;
1904
1905 return refs_may_alias_p (rhs, ref);
1906 }
1907 else if (is_gimple_call (stmt))
1908 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref);
1909 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
1910 {
1911 tree retval = gimple_return_retval (return_stmt);
1912 if (retval
1913 && TREE_CODE (retval) != SSA_NAME
1914 && !is_gimple_min_invariant (retval)
1915 && refs_may_alias_p (retval, ref))
1916 return true;
1917 /* If ref escapes the function then the return acts as a use. */
1918 tree base = ao_ref_base (ref);
1919 if (!base)
1920 ;
1921 else if (DECL_P (base))
1922 return is_global_var (base);
1923 else if (TREE_CODE (base) == MEM_REF
1924 || TREE_CODE (base) == TARGET_MEM_REF)
1925 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
1926 return false;
1927 }
1928
1929 return true;
1930 }
1931
1932 bool
1933 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref)
1934 {
1935 ao_ref r;
1936 ao_ref_init (&r, ref);
1937 return ref_maybe_used_by_stmt_p (stmt, &r);
1938 }
1939
1940 /* If the call in statement CALL may clobber the memory reference REF
1941 return true, otherwise return false. */
1942
1943 bool
1944 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
1945 {
1946 tree base;
1947 tree callee;
1948
1949 /* If the call is pure or const it cannot clobber anything. */
1950 if (gimple_call_flags (call)
1951 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
1952 return false;
1953 if (gimple_call_internal_p (call))
1954 switch (gimple_call_internal_fn (call))
1955 {
1956 /* Treat these internal calls like ECF_PURE for aliasing,
1957 they don't write to any memory the program should care about.
1958 They have important other side-effects, and read memory,
1959 so can't be ECF_NOVOPS. */
1960 case IFN_UBSAN_NULL:
1961 case IFN_UBSAN_BOUNDS:
1962 case IFN_UBSAN_VPTR:
1963 case IFN_UBSAN_OBJECT_SIZE:
1964 case IFN_UBSAN_PTR:
1965 case IFN_ASAN_CHECK:
1966 return false;
1967 default:
1968 break;
1969 }
1970
1971 base = ao_ref_base (ref);
1972 if (!base)
1973 return true;
1974
1975 if (TREE_CODE (base) == SSA_NAME
1976 || CONSTANT_CLASS_P (base))
1977 return false;
1978
1979 /* A call that is not without side-effects might involve volatile
1980 accesses and thus conflicts with all other volatile accesses. */
1981 if (ref->volatile_p)
1982 return true;
1983
1984 /* If the reference is based on a decl that is not aliased the call
1985 cannot possibly clobber it. */
1986 if (DECL_P (base)
1987 && !may_be_aliased (base)
1988 /* But local non-readonly statics can be modified through recursion
1989 or the call may implement a threading barrier which we must
1990 treat as may-def. */
1991 && (TREE_READONLY (base)
1992 || !is_global_var (base)))
1993 return false;
1994
1995 callee = gimple_call_fndecl (call);
1996
1997 /* Handle those builtin functions explicitly that do not act as
1998 escape points. See tree-ssa-structalias.c:find_func_aliases
1999 for the list of builtins we might need to handle here. */
2000 if (callee != NULL_TREE
2001 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2002 switch (DECL_FUNCTION_CODE (callee))
2003 {
2004 /* All the following functions clobber memory pointed to by
2005 their first argument. */
2006 case BUILT_IN_STRCPY:
2007 case BUILT_IN_STRNCPY:
2008 case BUILT_IN_MEMCPY:
2009 case BUILT_IN_MEMMOVE:
2010 case BUILT_IN_MEMPCPY:
2011 case BUILT_IN_STPCPY:
2012 case BUILT_IN_STPNCPY:
2013 case BUILT_IN_STRCAT:
2014 case BUILT_IN_STRNCAT:
2015 case BUILT_IN_MEMSET:
2016 case BUILT_IN_TM_MEMSET:
2017 CASE_BUILT_IN_TM_STORE (1):
2018 CASE_BUILT_IN_TM_STORE (2):
2019 CASE_BUILT_IN_TM_STORE (4):
2020 CASE_BUILT_IN_TM_STORE (8):
2021 CASE_BUILT_IN_TM_STORE (FLOAT):
2022 CASE_BUILT_IN_TM_STORE (DOUBLE):
2023 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2024 CASE_BUILT_IN_TM_STORE (M64):
2025 CASE_BUILT_IN_TM_STORE (M128):
2026 CASE_BUILT_IN_TM_STORE (M256):
2027 case BUILT_IN_TM_MEMCPY:
2028 case BUILT_IN_TM_MEMMOVE:
2029 {
2030 ao_ref dref;
2031 tree size = NULL_TREE;
2032 /* Don't pass in size for strncat, as the maximum size
2033 is strlen (dest) + n + 1 instead of n, resp.
2034 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2035 known. */
2036 if (gimple_call_num_args (call) == 3
2037 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2038 size = gimple_call_arg (call, 2);
2039 ao_ref_init_from_ptr_and_size (&dref,
2040 gimple_call_arg (call, 0),
2041 size);
2042 return refs_may_alias_p_1 (&dref, ref, false);
2043 }
2044 case BUILT_IN_STRCPY_CHK:
2045 case BUILT_IN_STRNCPY_CHK:
2046 case BUILT_IN_MEMCPY_CHK:
2047 case BUILT_IN_MEMMOVE_CHK:
2048 case BUILT_IN_MEMPCPY_CHK:
2049 case BUILT_IN_STPCPY_CHK:
2050 case BUILT_IN_STPNCPY_CHK:
2051 case BUILT_IN_STRCAT_CHK:
2052 case BUILT_IN_STRNCAT_CHK:
2053 case BUILT_IN_MEMSET_CHK:
2054 {
2055 ao_ref dref;
2056 tree size = NULL_TREE;
2057 /* Don't pass in size for __strncat_chk, as the maximum size
2058 is strlen (dest) + n + 1 instead of n, resp.
2059 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2060 known. */
2061 if (gimple_call_num_args (call) == 4
2062 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2063 size = gimple_call_arg (call, 2);
2064 ao_ref_init_from_ptr_and_size (&dref,
2065 gimple_call_arg (call, 0),
2066 size);
2067 return refs_may_alias_p_1 (&dref, ref, false);
2068 }
2069 case BUILT_IN_BCOPY:
2070 {
2071 ao_ref dref;
2072 tree size = gimple_call_arg (call, 2);
2073 ao_ref_init_from_ptr_and_size (&dref,
2074 gimple_call_arg (call, 1),
2075 size);
2076 return refs_may_alias_p_1 (&dref, ref, false);
2077 }
2078 /* Allocating memory does not have any side-effects apart from
2079 being the definition point for the pointer. */
2080 case BUILT_IN_MALLOC:
2081 case BUILT_IN_ALIGNED_ALLOC:
2082 case BUILT_IN_CALLOC:
2083 case BUILT_IN_STRDUP:
2084 case BUILT_IN_STRNDUP:
2085 /* Unix98 specifies that errno is set on allocation failure. */
2086 if (flag_errno_math
2087 && targetm.ref_may_alias_errno (ref))
2088 return true;
2089 return false;
2090 case BUILT_IN_STACK_SAVE:
2091 CASE_BUILT_IN_ALLOCA:
2092 case BUILT_IN_ASSUME_ALIGNED:
2093 return false;
2094 /* But posix_memalign stores a pointer into the memory pointed to
2095 by its first argument. */
2096 case BUILT_IN_POSIX_MEMALIGN:
2097 {
2098 tree ptrptr = gimple_call_arg (call, 0);
2099 ao_ref dref;
2100 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2101 TYPE_SIZE_UNIT (ptr_type_node));
2102 return (refs_may_alias_p_1 (&dref, ref, false)
2103 || (flag_errno_math
2104 && targetm.ref_may_alias_errno (ref)));
2105 }
2106 /* Freeing memory kills the pointed-to memory. More importantly
2107 the call has to serve as a barrier for moving loads and stores
2108 across it. */
2109 case BUILT_IN_FREE:
2110 case BUILT_IN_VA_END:
2111 {
2112 tree ptr = gimple_call_arg (call, 0);
2113 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2114 }
2115 /* Realloc serves both as allocation point and deallocation point. */
2116 case BUILT_IN_REALLOC:
2117 {
2118 tree ptr = gimple_call_arg (call, 0);
2119 /* Unix98 specifies that errno is set on allocation failure. */
2120 return ((flag_errno_math
2121 && targetm.ref_may_alias_errno (ref))
2122 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2123 }
2124 case BUILT_IN_GAMMA_R:
2125 case BUILT_IN_GAMMAF_R:
2126 case BUILT_IN_GAMMAL_R:
2127 case BUILT_IN_LGAMMA_R:
2128 case BUILT_IN_LGAMMAF_R:
2129 case BUILT_IN_LGAMMAL_R:
2130 {
2131 tree out = gimple_call_arg (call, 1);
2132 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2133 return true;
2134 if (flag_errno_math)
2135 break;
2136 return false;
2137 }
2138 case BUILT_IN_FREXP:
2139 case BUILT_IN_FREXPF:
2140 case BUILT_IN_FREXPL:
2141 case BUILT_IN_MODF:
2142 case BUILT_IN_MODFF:
2143 case BUILT_IN_MODFL:
2144 {
2145 tree out = gimple_call_arg (call, 1);
2146 return ptr_deref_may_alias_ref_p_1 (out, ref);
2147 }
2148 case BUILT_IN_REMQUO:
2149 case BUILT_IN_REMQUOF:
2150 case BUILT_IN_REMQUOL:
2151 {
2152 tree out = gimple_call_arg (call, 2);
2153 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2154 return true;
2155 if (flag_errno_math)
2156 break;
2157 return false;
2158 }
2159 case BUILT_IN_SINCOS:
2160 case BUILT_IN_SINCOSF:
2161 case BUILT_IN_SINCOSL:
2162 {
2163 tree sin = gimple_call_arg (call, 1);
2164 tree cos = gimple_call_arg (call, 2);
2165 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2166 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2167 }
2168 /* __sync_* builtins and some OpenMP builtins act as threading
2169 barriers. */
2170 #undef DEF_SYNC_BUILTIN
2171 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2172 #include "sync-builtins.def"
2173 #undef DEF_SYNC_BUILTIN
2174 case BUILT_IN_GOMP_ATOMIC_START:
2175 case BUILT_IN_GOMP_ATOMIC_END:
2176 case BUILT_IN_GOMP_BARRIER:
2177 case BUILT_IN_GOMP_BARRIER_CANCEL:
2178 case BUILT_IN_GOMP_TASKWAIT:
2179 case BUILT_IN_GOMP_TASKGROUP_END:
2180 case BUILT_IN_GOMP_CRITICAL_START:
2181 case BUILT_IN_GOMP_CRITICAL_END:
2182 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2183 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2184 case BUILT_IN_GOMP_LOOP_END:
2185 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2186 case BUILT_IN_GOMP_ORDERED_START:
2187 case BUILT_IN_GOMP_ORDERED_END:
2188 case BUILT_IN_GOMP_SECTIONS_END:
2189 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2190 case BUILT_IN_GOMP_SINGLE_COPY_START:
2191 case BUILT_IN_GOMP_SINGLE_COPY_END:
2192 return true;
2193 default:
2194 /* Fallthru to general call handling. */;
2195 }
2196
2197 /* Check if base is a global static variable that is not written
2198 by the function. */
2199 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2200 {
2201 struct cgraph_node *node = cgraph_node::get (callee);
2202 bitmap not_written;
2203
2204 if (node
2205 && (not_written = ipa_reference_get_not_written_global (node))
2206 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2207 return false;
2208 }
2209
2210 /* Check if the base variable is call-clobbered. */
2211 if (DECL_P (base))
2212 return pt_solution_includes (gimple_call_clobber_set (call), base);
2213 else if ((TREE_CODE (base) == MEM_REF
2214 || TREE_CODE (base) == TARGET_MEM_REF)
2215 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2216 {
2217 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2218 if (!pi)
2219 return true;
2220
2221 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2222 }
2223
2224 return true;
2225 }
2226
2227 /* If the call in statement CALL may clobber the memory reference REF
2228 return true, otherwise return false. */
2229
2230 bool
2231 call_may_clobber_ref_p (gcall *call, tree ref)
2232 {
2233 bool res;
2234 ao_ref r;
2235 ao_ref_init (&r, ref);
2236 res = call_may_clobber_ref_p_1 (call, &r);
2237 if (res)
2238 ++alias_stats.call_may_clobber_ref_p_may_alias;
2239 else
2240 ++alias_stats.call_may_clobber_ref_p_no_alias;
2241 return res;
2242 }
2243
2244
2245 /* If the statement STMT may clobber the memory reference REF return true,
2246 otherwise return false. */
2247
2248 bool
2249 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref)
2250 {
2251 if (is_gimple_call (stmt))
2252 {
2253 tree lhs = gimple_call_lhs (stmt);
2254 if (lhs
2255 && TREE_CODE (lhs) != SSA_NAME)
2256 {
2257 ao_ref r;
2258 ao_ref_init (&r, lhs);
2259 if (refs_may_alias_p_1 (ref, &r, true))
2260 return true;
2261 }
2262
2263 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2264 }
2265 else if (gimple_assign_single_p (stmt))
2266 {
2267 tree lhs = gimple_assign_lhs (stmt);
2268 if (TREE_CODE (lhs) != SSA_NAME)
2269 {
2270 ao_ref r;
2271 ao_ref_init (&r, lhs);
2272 return refs_may_alias_p_1 (ref, &r, true);
2273 }
2274 }
2275 else if (gimple_code (stmt) == GIMPLE_ASM)
2276 return true;
2277
2278 return false;
2279 }
2280
2281 bool
2282 stmt_may_clobber_ref_p (gimple *stmt, tree ref)
2283 {
2284 ao_ref r;
2285 ao_ref_init (&r, ref);
2286 return stmt_may_clobber_ref_p_1 (stmt, &r);
2287 }
2288
2289 /* Return true if store1 and store2 described by corresponding tuples
2290 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2291 address. */
2292
2293 static bool
2294 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2295 poly_int64 max_size1,
2296 tree base2, poly_int64 offset2, poly_int64 size2,
2297 poly_int64 max_size2)
2298 {
2299 /* Offsets need to be 0. */
2300 if (maybe_ne (offset1, 0)
2301 || maybe_ne (offset2, 0))
2302 return false;
2303
2304 bool base1_obj_p = SSA_VAR_P (base1);
2305 bool base2_obj_p = SSA_VAR_P (base2);
2306
2307 /* We need one object. */
2308 if (base1_obj_p == base2_obj_p)
2309 return false;
2310 tree obj = base1_obj_p ? base1 : base2;
2311
2312 /* And we need one MEM_REF. */
2313 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2314 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2315 if (base1_memref_p == base2_memref_p)
2316 return false;
2317 tree memref = base1_memref_p ? base1 : base2;
2318
2319 /* Sizes need to be valid. */
2320 if (!known_size_p (max_size1)
2321 || !known_size_p (max_size2)
2322 || !known_size_p (size1)
2323 || !known_size_p (size2))
2324 return false;
2325
2326 /* Max_size needs to match size. */
2327 if (maybe_ne (max_size1, size1)
2328 || maybe_ne (max_size2, size2))
2329 return false;
2330
2331 /* Sizes need to match. */
2332 if (maybe_ne (size1, size2))
2333 return false;
2334
2335
2336 /* Check that memref is a store to pointer with singleton points-to info. */
2337 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2338 return false;
2339 tree ptr = TREE_OPERAND (memref, 0);
2340 if (TREE_CODE (ptr) != SSA_NAME)
2341 return false;
2342 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2343 unsigned int pt_uid;
2344 if (pi == NULL
2345 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2346 return false;
2347
2348 /* Be conservative with non-call exceptions when the address might
2349 be NULL. */
2350 if (flag_non_call_exceptions && pi->pt.null)
2351 return false;
2352
2353 /* Check that ptr points relative to obj. */
2354 unsigned int obj_uid = DECL_PT_UID (obj);
2355 if (obj_uid != pt_uid)
2356 return false;
2357
2358 /* Check that the object size is the same as the store size. That ensures us
2359 that ptr points to the start of obj. */
2360 return (DECL_SIZE (obj)
2361 && poly_int_tree_p (DECL_SIZE (obj))
2362 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2363 }
2364
2365 /* If STMT kills the memory reference REF return true, otherwise
2366 return false. */
2367
2368 bool
2369 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2370 {
2371 if (!ao_ref_base (ref))
2372 return false;
2373
2374 if (gimple_has_lhs (stmt)
2375 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2376 /* The assignment is not necessarily carried out if it can throw
2377 and we can catch it in the current function where we could inspect
2378 the previous value.
2379 ??? We only need to care about the RHS throwing. For aggregate
2380 assignments or similar calls and non-call exceptions the LHS
2381 might throw as well. */
2382 && !stmt_can_throw_internal (stmt))
2383 {
2384 tree lhs = gimple_get_lhs (stmt);
2385 /* If LHS is literally a base of the access we are done. */
2386 if (ref->ref)
2387 {
2388 tree base = ref->ref;
2389 tree innermost_dropped_array_ref = NULL_TREE;
2390 if (handled_component_p (base))
2391 {
2392 tree saved_lhs0 = NULL_TREE;
2393 if (handled_component_p (lhs))
2394 {
2395 saved_lhs0 = TREE_OPERAND (lhs, 0);
2396 TREE_OPERAND (lhs, 0) = integer_zero_node;
2397 }
2398 do
2399 {
2400 /* Just compare the outermost handled component, if
2401 they are equal we have found a possible common
2402 base. */
2403 tree saved_base0 = TREE_OPERAND (base, 0);
2404 TREE_OPERAND (base, 0) = integer_zero_node;
2405 bool res = operand_equal_p (lhs, base, 0);
2406 TREE_OPERAND (base, 0) = saved_base0;
2407 if (res)
2408 break;
2409 /* Remember if we drop an array-ref that we need to
2410 double-check not being at struct end. */
2411 if (TREE_CODE (base) == ARRAY_REF
2412 || TREE_CODE (base) == ARRAY_RANGE_REF)
2413 innermost_dropped_array_ref = base;
2414 /* Otherwise drop handled components of the access. */
2415 base = saved_base0;
2416 }
2417 while (handled_component_p (base));
2418 if (saved_lhs0)
2419 TREE_OPERAND (lhs, 0) = saved_lhs0;
2420 }
2421 /* Finally check if the lhs has the same address and size as the
2422 base candidate of the access. Watch out if we have dropped
2423 an array-ref that was at struct end, this means ref->ref may
2424 be outside of the TYPE_SIZE of its base. */
2425 if ((! innermost_dropped_array_ref
2426 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2427 && (lhs == base
2428 || (((TYPE_SIZE (TREE_TYPE (lhs))
2429 == TYPE_SIZE (TREE_TYPE (base)))
2430 || (TYPE_SIZE (TREE_TYPE (lhs))
2431 && TYPE_SIZE (TREE_TYPE (base))
2432 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2433 TYPE_SIZE (TREE_TYPE (base)),
2434 0)))
2435 && operand_equal_p (lhs, base,
2436 OEP_ADDRESS_OF
2437 | OEP_MATCH_SIDE_EFFECTS))))
2438 return true;
2439 }
2440
2441 /* Now look for non-literal equal bases with the restriction of
2442 handling constant offset and size. */
2443 /* For a must-alias check we need to be able to constrain
2444 the access properly. */
2445 if (!ref->max_size_known_p ())
2446 return false;
2447 poly_int64 size, offset, max_size, ref_offset = ref->offset;
2448 bool reverse;
2449 tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size,
2450 &reverse);
2451 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2452 so base == ref->base does not always hold. */
2453 if (base != ref->base)
2454 {
2455 /* Try using points-to info. */
2456 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2457 ref->offset, ref->size, ref->max_size))
2458 return true;
2459
2460 /* If both base and ref->base are MEM_REFs, only compare the
2461 first operand, and if the second operand isn't equal constant,
2462 try to add the offsets into offset and ref_offset. */
2463 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2464 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2465 {
2466 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2467 TREE_OPERAND (ref->base, 1)))
2468 {
2469 poly_offset_int off1 = mem_ref_offset (base);
2470 off1 <<= LOG2_BITS_PER_UNIT;
2471 off1 += offset;
2472 poly_offset_int off2 = mem_ref_offset (ref->base);
2473 off2 <<= LOG2_BITS_PER_UNIT;
2474 off2 += ref_offset;
2475 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2476 size = -1;
2477 }
2478 }
2479 else
2480 size = -1;
2481 }
2482 /* For a must-alias check we need to be able to constrain
2483 the access properly. */
2484 if (known_eq (size, max_size)
2485 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2486 return true;
2487 }
2488
2489 if (is_gimple_call (stmt))
2490 {
2491 tree callee = gimple_call_fndecl (stmt);
2492 if (callee != NULL_TREE
2493 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2494 switch (DECL_FUNCTION_CODE (callee))
2495 {
2496 case BUILT_IN_FREE:
2497 {
2498 tree ptr = gimple_call_arg (stmt, 0);
2499 tree base = ao_ref_base (ref);
2500 if (base && TREE_CODE (base) == MEM_REF
2501 && TREE_OPERAND (base, 0) == ptr)
2502 return true;
2503 break;
2504 }
2505
2506 case BUILT_IN_MEMCPY:
2507 case BUILT_IN_MEMPCPY:
2508 case BUILT_IN_MEMMOVE:
2509 case BUILT_IN_MEMSET:
2510 case BUILT_IN_MEMCPY_CHK:
2511 case BUILT_IN_MEMPCPY_CHK:
2512 case BUILT_IN_MEMMOVE_CHK:
2513 case BUILT_IN_MEMSET_CHK:
2514 case BUILT_IN_STRNCPY:
2515 case BUILT_IN_STPNCPY:
2516 {
2517 /* For a must-alias check we need to be able to constrain
2518 the access properly. */
2519 if (!ref->max_size_known_p ())
2520 return false;
2521 tree dest = gimple_call_arg (stmt, 0);
2522 tree len = gimple_call_arg (stmt, 2);
2523 if (!poly_int_tree_p (len))
2524 return false;
2525 tree rbase = ref->base;
2526 poly_offset_int roffset = ref->offset;
2527 ao_ref dref;
2528 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2529 tree base = ao_ref_base (&dref);
2530 poly_offset_int offset = dref.offset;
2531 if (!base || !known_size_p (dref.size))
2532 return false;
2533 if (TREE_CODE (base) == MEM_REF)
2534 {
2535 if (TREE_CODE (rbase) != MEM_REF)
2536 return false;
2537 // Compare pointers.
2538 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2539 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2540 base = TREE_OPERAND (base, 0);
2541 rbase = TREE_OPERAND (rbase, 0);
2542 }
2543 if (base == rbase
2544 && known_subrange_p (roffset, ref->max_size, offset,
2545 wi::to_poly_offset (len)
2546 << LOG2_BITS_PER_UNIT))
2547 return true;
2548 break;
2549 }
2550
2551 case BUILT_IN_VA_END:
2552 {
2553 tree ptr = gimple_call_arg (stmt, 0);
2554 if (TREE_CODE (ptr) == ADDR_EXPR)
2555 {
2556 tree base = ao_ref_base (ref);
2557 if (TREE_OPERAND (ptr, 0) == base)
2558 return true;
2559 }
2560 break;
2561 }
2562
2563 default:;
2564 }
2565 }
2566 return false;
2567 }
2568
2569 bool
2570 stmt_kills_ref_p (gimple *stmt, tree ref)
2571 {
2572 ao_ref r;
2573 ao_ref_init (&r, ref);
2574 return stmt_kills_ref_p (stmt, &r);
2575 }
2576
2577
2578 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2579 TARGET or a statement clobbering the memory reference REF in which
2580 case false is returned. The walk starts with VUSE, one argument of PHI. */
2581
2582 static bool
2583 maybe_skip_until (gimple *phi, tree target, ao_ref *ref,
2584 tree vuse, unsigned int *cnt, bitmap *visited,
2585 bool abort_on_visited,
2586 void *(*translate)(ao_ref *, tree, void *, bool *),
2587 void *data)
2588 {
2589 basic_block bb = gimple_bb (phi);
2590
2591 if (!*visited)
2592 *visited = BITMAP_ALLOC (NULL);
2593
2594 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2595
2596 /* Walk until we hit the target. */
2597 while (vuse != target)
2598 {
2599 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2600 /* Recurse for PHI nodes. */
2601 if (gimple_code (def_stmt) == GIMPLE_PHI)
2602 {
2603 /* An already visited PHI node ends the walk successfully. */
2604 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2605 return !abort_on_visited;
2606 vuse = get_continuation_for_phi (def_stmt, ref, cnt,
2607 visited, abort_on_visited,
2608 translate, data);
2609 if (!vuse)
2610 return false;
2611 continue;
2612 }
2613 else if (gimple_nop_p (def_stmt))
2614 return false;
2615 else
2616 {
2617 /* A clobbering statement or the end of the IL ends it failing. */
2618 ++*cnt;
2619 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2620 {
2621 bool disambiguate_only = true;
2622 if (translate
2623 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2624 ;
2625 else
2626 return false;
2627 }
2628 }
2629 /* If we reach a new basic-block see if we already skipped it
2630 in a previous walk that ended successfully. */
2631 if (gimple_bb (def_stmt) != bb)
2632 {
2633 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2634 return !abort_on_visited;
2635 bb = gimple_bb (def_stmt);
2636 }
2637 vuse = gimple_vuse (def_stmt);
2638 }
2639 return true;
2640 }
2641
2642
2643 /* Starting from a PHI node for the virtual operand of the memory reference
2644 REF find a continuation virtual operand that allows to continue walking
2645 statements dominating PHI skipping only statements that cannot possibly
2646 clobber REF. Increments *CNT for each alias disambiguation done.
2647 Returns NULL_TREE if no suitable virtual operand can be found. */
2648
2649 tree
2650 get_continuation_for_phi (gimple *phi, ao_ref *ref,
2651 unsigned int *cnt, bitmap *visited,
2652 bool abort_on_visited,
2653 void *(*translate)(ao_ref *, tree, void *, bool *),
2654 void *data)
2655 {
2656 unsigned nargs = gimple_phi_num_args (phi);
2657
2658 /* Through a single-argument PHI we can simply look through. */
2659 if (nargs == 1)
2660 return PHI_ARG_DEF (phi, 0);
2661
2662 /* For two or more arguments try to pairwise skip non-aliasing code
2663 until we hit the phi argument definition that dominates the other one. */
2664 basic_block phi_bb = gimple_bb (phi);
2665 tree arg0, arg1;
2666 unsigned i;
2667
2668 /* Find a candidate for the virtual operand which definition
2669 dominates those of all others. */
2670 /* First look if any of the args themselves satisfy this. */
2671 for (i = 0; i < nargs; ++i)
2672 {
2673 arg0 = PHI_ARG_DEF (phi, i);
2674 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2675 break;
2676 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
2677 if (def_bb != phi_bb
2678 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
2679 break;
2680 arg0 = NULL_TREE;
2681 }
2682 /* If not, look if we can reach such candidate by walking defs
2683 of a PHI arg without crossing other PHIs. */
2684 if (! arg0)
2685 for (i = 0; i < nargs; ++i)
2686 {
2687 arg0 = PHI_ARG_DEF (phi, i);
2688 gimple *def = SSA_NAME_DEF_STMT (arg0);
2689 /* Backedges can't work. */
2690 if (dominated_by_p (CDI_DOMINATORS,
2691 gimple_bb (def), phi_bb))
2692 continue;
2693 /* See below. */
2694 if (gimple_code (def) == GIMPLE_PHI)
2695 continue;
2696 while (! dominated_by_p (CDI_DOMINATORS,
2697 phi_bb, gimple_bb (def)))
2698 {
2699 arg0 = gimple_vuse (def);
2700 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2701 break;
2702 def = SSA_NAME_DEF_STMT (arg0);
2703 if (gimple_code (def) == GIMPLE_PHI)
2704 {
2705 /* Do not try to look through arbitrarily complicated
2706 CFGs. For those looking for the first VUSE starting
2707 from the end of the immediate dominator of phi_bb
2708 is likely faster. */
2709 arg0 = NULL_TREE;
2710 goto next;
2711 }
2712 }
2713 break;
2714 next:;
2715 }
2716 if (! arg0)
2717 return NULL_TREE;
2718
2719 /* Then check against the found candidate. */
2720 for (i = 0; i < nargs; ++i)
2721 {
2722 arg1 = PHI_ARG_DEF (phi, i);
2723 if (arg1 == arg0)
2724 ;
2725 else if (! maybe_skip_until (phi, arg0, ref, arg1, cnt, visited,
2726 abort_on_visited, translate, data))
2727 return NULL_TREE;
2728 }
2729
2730 return arg0;
2731 }
2732
2733 /* Based on the memory reference REF and its virtual use VUSE call
2734 WALKER for each virtual use that is equivalent to VUSE, including VUSE
2735 itself. That is, for each virtual use for which its defining statement
2736 does not clobber REF.
2737
2738 WALKER is called with REF, the current virtual use and DATA. If
2739 WALKER returns non-NULL the walk stops and its result is returned.
2740 At the end of a non-successful walk NULL is returned.
2741
2742 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
2743 use which definition is a statement that may clobber REF and DATA.
2744 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
2745 If TRANSLATE returns non-NULL the walk stops and its result is returned.
2746 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
2747 to adjust REF and *DATA to make that valid.
2748
2749 VALUEIZE if non-NULL is called with the next VUSE that is considered
2750 and return value is substituted for that. This can be used to
2751 implement optimistic value-numbering for example. Note that the
2752 VUSE argument is assumed to be valueized already.
2753
2754 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
2755
2756 void *
2757 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
2758 void *(*walker)(ao_ref *, tree, unsigned int, void *),
2759 void *(*translate)(ao_ref *, tree, void *, bool *),
2760 tree (*valueize)(tree),
2761 void *data)
2762 {
2763 bitmap visited = NULL;
2764 void *res;
2765 unsigned int cnt = 0;
2766 bool translated = false;
2767
2768 timevar_push (TV_ALIAS_STMT_WALK);
2769
2770 do
2771 {
2772 gimple *def_stmt;
2773
2774 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2775 res = (*walker) (ref, vuse, cnt, data);
2776 /* Abort walk. */
2777 if (res == (void *)-1)
2778 {
2779 res = NULL;
2780 break;
2781 }
2782 /* Lookup succeeded. */
2783 else if (res != NULL)
2784 break;
2785
2786 if (valueize)
2787 vuse = valueize (vuse);
2788 def_stmt = SSA_NAME_DEF_STMT (vuse);
2789 if (gimple_nop_p (def_stmt))
2790 break;
2791 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2792 vuse = get_continuation_for_phi (def_stmt, ref, &cnt,
2793 &visited, translated, translate, data);
2794 else
2795 {
2796 cnt++;
2797 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2798 {
2799 if (!translate)
2800 break;
2801 bool disambiguate_only = false;
2802 res = (*translate) (ref, vuse, data, &disambiguate_only);
2803 /* Failed lookup and translation. */
2804 if (res == (void *)-1)
2805 {
2806 res = NULL;
2807 break;
2808 }
2809 /* Lookup succeeded. */
2810 else if (res != NULL)
2811 break;
2812 /* Translation succeeded, continue walking. */
2813 translated = translated || !disambiguate_only;
2814 }
2815 vuse = gimple_vuse (def_stmt);
2816 }
2817 }
2818 while (vuse);
2819
2820 if (visited)
2821 BITMAP_FREE (visited);
2822
2823 timevar_pop (TV_ALIAS_STMT_WALK);
2824
2825 return res;
2826 }
2827
2828
2829 /* Based on the memory reference REF call WALKER for each vdef which
2830 defining statement may clobber REF, starting with VDEF. If REF
2831 is NULL_TREE, each defining statement is visited.
2832
2833 WALKER is called with REF, the current vdef and DATA. If WALKER
2834 returns true the walk is stopped, otherwise it continues.
2835
2836 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
2837 The pointer may be NULL and then we do not track this information.
2838
2839 At PHI nodes walk_aliased_vdefs forks into one walk for reach
2840 PHI argument (but only one walk continues on merge points), the
2841 return value is true if any of the walks was successful.
2842
2843 The function returns the number of statements walked or -1 if
2844 LIMIT stmts were walked and the walk was aborted at this point.
2845 If LIMIT is zero the walk is not aborted. */
2846
2847 static int
2848 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
2849 bool (*walker)(ao_ref *, tree, void *), void *data,
2850 bitmap *visited, unsigned int cnt,
2851 bool *function_entry_reached, unsigned limit)
2852 {
2853 do
2854 {
2855 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
2856
2857 if (*visited
2858 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
2859 return cnt;
2860
2861 if (gimple_nop_p (def_stmt))
2862 {
2863 if (function_entry_reached)
2864 *function_entry_reached = true;
2865 return cnt;
2866 }
2867 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2868 {
2869 unsigned i;
2870 if (!*visited)
2871 *visited = BITMAP_ALLOC (NULL);
2872 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
2873 {
2874 int res = walk_aliased_vdefs_1 (ref,
2875 gimple_phi_arg_def (def_stmt, i),
2876 walker, data, visited, cnt,
2877 function_entry_reached, limit);
2878 if (res == -1)
2879 return -1;
2880 cnt = res;
2881 }
2882 return cnt;
2883 }
2884
2885 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2886 cnt++;
2887 if (cnt == limit)
2888 return -1;
2889 if ((!ref
2890 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
2891 && (*walker) (ref, vdef, data))
2892 return cnt;
2893
2894 vdef = gimple_vuse (def_stmt);
2895 }
2896 while (1);
2897 }
2898
2899 int
2900 walk_aliased_vdefs (ao_ref *ref, tree vdef,
2901 bool (*walker)(ao_ref *, tree, void *), void *data,
2902 bitmap *visited,
2903 bool *function_entry_reached, unsigned int limit)
2904 {
2905 bitmap local_visited = NULL;
2906 int ret;
2907
2908 timevar_push (TV_ALIAS_STMT_WALK);
2909
2910 if (function_entry_reached)
2911 *function_entry_reached = false;
2912
2913 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
2914 visited ? visited : &local_visited, 0,
2915 function_entry_reached, limit);
2916 if (local_visited)
2917 BITMAP_FREE (local_visited);
2918
2919 timevar_pop (TV_ALIAS_STMT_WALK);
2920
2921 return ret;
2922 }
2923