]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-alias.c
poly_int: ao_ref and vn_reference_op_t
[thirdparty/gcc.git] / gcc / tree-ssa-alias.c
1 /* Alias analysis for trees.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "timevar.h" /* for TV_ALIAS_STMT_WALK */
30 #include "ssa.h"
31 #include "cgraph.h"
32 #include "tree-pretty-print.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "langhooks.h"
36 #include "dumpfile.h"
37 #include "tree-eh.h"
38 #include "tree-dfa.h"
39 #include "ipa-reference.h"
40 #include "varasm.h"
41
42 /* Broad overview of how alias analysis on gimple works:
43
44 Statements clobbering or using memory are linked through the
45 virtual operand factored use-def chain. The virtual operand
46 is unique per function, its symbol is accessible via gimple_vop (cfun).
47 Virtual operands are used for efficiently walking memory statements
48 in the gimple IL and are useful for things like value-numbering as
49 a generation count for memory references.
50
51 SSA_NAME pointers may have associated points-to information
52 accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive
53 points-to information is (re-)computed by the TODO_rebuild_alias
54 pass manager todo. Points-to information is also used for more
55 precise tracking of call-clobbered and call-used variables and
56 related disambiguations.
57
58 This file contains functions for disambiguating memory references,
59 the so called alias-oracle and tools for walking of the gimple IL.
60
61 The main alias-oracle entry-points are
62
63 bool stmt_may_clobber_ref_p (gimple *, tree)
64
65 This function queries if a statement may invalidate (parts of)
66 the memory designated by the reference tree argument.
67
68 bool ref_maybe_used_by_stmt_p (gimple *, tree)
69
70 This function queries if a statement may need (parts of) the
71 memory designated by the reference tree argument.
72
73 There are variants of these functions that only handle the call
74 part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p.
75 Note that these do not disambiguate against a possible call lhs.
76
77 bool refs_may_alias_p (tree, tree)
78
79 This function tries to disambiguate two reference trees.
80
81 bool ptr_deref_may_alias_global_p (tree)
82
83 This function queries if dereferencing a pointer variable may
84 alias global memory.
85
86 More low-level disambiguators are available and documented in
87 this file. Low-level disambiguators dealing with points-to
88 information are in tree-ssa-structalias.c. */
89
90
91 /* Query statistics for the different low-level disambiguators.
92 A high-level query may trigger multiple of them. */
93
94 static struct {
95 unsigned HOST_WIDE_INT refs_may_alias_p_may_alias;
96 unsigned HOST_WIDE_INT refs_may_alias_p_no_alias;
97 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias;
98 unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias;
99 unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias;
100 unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias;
101 } alias_stats;
102
103 void
104 dump_alias_stats (FILE *s)
105 {
106 fprintf (s, "\nAlias oracle query stats:\n");
107 fprintf (s, " refs_may_alias_p: "
108 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
109 HOST_WIDE_INT_PRINT_DEC" queries\n",
110 alias_stats.refs_may_alias_p_no_alias,
111 alias_stats.refs_may_alias_p_no_alias
112 + alias_stats.refs_may_alias_p_may_alias);
113 fprintf (s, " ref_maybe_used_by_call_p: "
114 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
115 HOST_WIDE_INT_PRINT_DEC" queries\n",
116 alias_stats.ref_maybe_used_by_call_p_no_alias,
117 alias_stats.refs_may_alias_p_no_alias
118 + alias_stats.ref_maybe_used_by_call_p_may_alias);
119 fprintf (s, " call_may_clobber_ref_p: "
120 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
121 HOST_WIDE_INT_PRINT_DEC" queries\n",
122 alias_stats.call_may_clobber_ref_p_no_alias,
123 alias_stats.call_may_clobber_ref_p_no_alias
124 + alias_stats.call_may_clobber_ref_p_may_alias);
125 dump_alias_stats_in_alias_c (s);
126 }
127
128
129 /* Return true, if dereferencing PTR may alias with a global variable. */
130
131 bool
132 ptr_deref_may_alias_global_p (tree ptr)
133 {
134 struct ptr_info_def *pi;
135
136 /* If we end up with a pointer constant here that may point
137 to global memory. */
138 if (TREE_CODE (ptr) != SSA_NAME)
139 return true;
140
141 pi = SSA_NAME_PTR_INFO (ptr);
142
143 /* If we do not have points-to information for this variable,
144 we have to punt. */
145 if (!pi)
146 return true;
147
148 /* ??? This does not use TBAA to prune globals ptr may not access. */
149 return pt_solution_includes_global (&pi->pt);
150 }
151
152 /* Return true if dereferencing PTR may alias DECL.
153 The caller is responsible for applying TBAA to see if PTR
154 may access DECL at all. */
155
156 static bool
157 ptr_deref_may_alias_decl_p (tree ptr, tree decl)
158 {
159 struct ptr_info_def *pi;
160
161 /* Conversions are irrelevant for points-to information and
162 data-dependence analysis can feed us those. */
163 STRIP_NOPS (ptr);
164
165 /* Anything we do not explicilty handle aliases. */
166 if ((TREE_CODE (ptr) != SSA_NAME
167 && TREE_CODE (ptr) != ADDR_EXPR
168 && TREE_CODE (ptr) != POINTER_PLUS_EXPR)
169 || !POINTER_TYPE_P (TREE_TYPE (ptr))
170 || (!VAR_P (decl)
171 && TREE_CODE (decl) != PARM_DECL
172 && TREE_CODE (decl) != RESULT_DECL))
173 return true;
174
175 /* Disregard pointer offsetting. */
176 if (TREE_CODE (ptr) == POINTER_PLUS_EXPR)
177 {
178 do
179 {
180 ptr = TREE_OPERAND (ptr, 0);
181 }
182 while (TREE_CODE (ptr) == POINTER_PLUS_EXPR);
183 return ptr_deref_may_alias_decl_p (ptr, decl);
184 }
185
186 /* ADDR_EXPR pointers either just offset another pointer or directly
187 specify the pointed-to set. */
188 if (TREE_CODE (ptr) == ADDR_EXPR)
189 {
190 tree base = get_base_address (TREE_OPERAND (ptr, 0));
191 if (base
192 && (TREE_CODE (base) == MEM_REF
193 || TREE_CODE (base) == TARGET_MEM_REF))
194 ptr = TREE_OPERAND (base, 0);
195 else if (base
196 && DECL_P (base))
197 return compare_base_decls (base, decl) != 0;
198 else if (base
199 && CONSTANT_CLASS_P (base))
200 return false;
201 else
202 return true;
203 }
204
205 /* Non-aliased variables can not be pointed to. */
206 if (!may_be_aliased (decl))
207 return false;
208
209 /* If we do not have useful points-to information for this pointer
210 we cannot disambiguate anything else. */
211 pi = SSA_NAME_PTR_INFO (ptr);
212 if (!pi)
213 return true;
214
215 return pt_solution_includes (&pi->pt, decl);
216 }
217
218 /* Return true if dereferenced PTR1 and PTR2 may alias.
219 The caller is responsible for applying TBAA to see if accesses
220 through PTR1 and PTR2 may conflict at all. */
221
222 bool
223 ptr_derefs_may_alias_p (tree ptr1, tree ptr2)
224 {
225 struct ptr_info_def *pi1, *pi2;
226
227 /* Conversions are irrelevant for points-to information and
228 data-dependence analysis can feed us those. */
229 STRIP_NOPS (ptr1);
230 STRIP_NOPS (ptr2);
231
232 /* Disregard pointer offsetting. */
233 if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR)
234 {
235 do
236 {
237 ptr1 = TREE_OPERAND (ptr1, 0);
238 }
239 while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR);
240 return ptr_derefs_may_alias_p (ptr1, ptr2);
241 }
242 if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR)
243 {
244 do
245 {
246 ptr2 = TREE_OPERAND (ptr2, 0);
247 }
248 while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR);
249 return ptr_derefs_may_alias_p (ptr1, ptr2);
250 }
251
252 /* ADDR_EXPR pointers either just offset another pointer or directly
253 specify the pointed-to set. */
254 if (TREE_CODE (ptr1) == ADDR_EXPR)
255 {
256 tree base = get_base_address (TREE_OPERAND (ptr1, 0));
257 if (base
258 && (TREE_CODE (base) == MEM_REF
259 || TREE_CODE (base) == TARGET_MEM_REF))
260 return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2);
261 else if (base
262 && DECL_P (base))
263 return ptr_deref_may_alias_decl_p (ptr2, base);
264 else
265 return true;
266 }
267 if (TREE_CODE (ptr2) == ADDR_EXPR)
268 {
269 tree base = get_base_address (TREE_OPERAND (ptr2, 0));
270 if (base
271 && (TREE_CODE (base) == MEM_REF
272 || TREE_CODE (base) == TARGET_MEM_REF))
273 return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0));
274 else if (base
275 && DECL_P (base))
276 return ptr_deref_may_alias_decl_p (ptr1, base);
277 else
278 return true;
279 }
280
281 /* From here we require SSA name pointers. Anything else aliases. */
282 if (TREE_CODE (ptr1) != SSA_NAME
283 || TREE_CODE (ptr2) != SSA_NAME
284 || !POINTER_TYPE_P (TREE_TYPE (ptr1))
285 || !POINTER_TYPE_P (TREE_TYPE (ptr2)))
286 return true;
287
288 /* We may end up with two empty points-to solutions for two same pointers.
289 In this case we still want to say both pointers alias, so shortcut
290 that here. */
291 if (ptr1 == ptr2)
292 return true;
293
294 /* If we do not have useful points-to information for either pointer
295 we cannot disambiguate anything else. */
296 pi1 = SSA_NAME_PTR_INFO (ptr1);
297 pi2 = SSA_NAME_PTR_INFO (ptr2);
298 if (!pi1 || !pi2)
299 return true;
300
301 /* ??? This does not use TBAA to prune decls from the intersection
302 that not both pointers may access. */
303 return pt_solutions_intersect (&pi1->pt, &pi2->pt);
304 }
305
306 /* Return true if dereferencing PTR may alias *REF.
307 The caller is responsible for applying TBAA to see if PTR
308 may access *REF at all. */
309
310 static bool
311 ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref)
312 {
313 tree base = ao_ref_base (ref);
314
315 if (TREE_CODE (base) == MEM_REF
316 || TREE_CODE (base) == TARGET_MEM_REF)
317 return ptr_derefs_may_alias_p (ptr, TREE_OPERAND (base, 0));
318 else if (DECL_P (base))
319 return ptr_deref_may_alias_decl_p (ptr, base);
320
321 return true;
322 }
323
324 /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */
325
326 bool
327 ptrs_compare_unequal (tree ptr1, tree ptr2)
328 {
329 /* First resolve the pointers down to a SSA name pointer base or
330 a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does
331 not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs
332 or STRING_CSTs which needs points-to adjustments to track them
333 in the points-to sets. */
334 tree obj1 = NULL_TREE;
335 tree obj2 = NULL_TREE;
336 if (TREE_CODE (ptr1) == ADDR_EXPR)
337 {
338 tree tem = get_base_address (TREE_OPERAND (ptr1, 0));
339 if (! tem)
340 return false;
341 if (VAR_P (tem)
342 || TREE_CODE (tem) == PARM_DECL
343 || TREE_CODE (tem) == RESULT_DECL)
344 obj1 = tem;
345 else if (TREE_CODE (tem) == MEM_REF)
346 ptr1 = TREE_OPERAND (tem, 0);
347 }
348 if (TREE_CODE (ptr2) == ADDR_EXPR)
349 {
350 tree tem = get_base_address (TREE_OPERAND (ptr2, 0));
351 if (! tem)
352 return false;
353 if (VAR_P (tem)
354 || TREE_CODE (tem) == PARM_DECL
355 || TREE_CODE (tem) == RESULT_DECL)
356 obj2 = tem;
357 else if (TREE_CODE (tem) == MEM_REF)
358 ptr2 = TREE_OPERAND (tem, 0);
359 }
360
361 /* Canonicalize ptr vs. object. */
362 if (TREE_CODE (ptr1) == SSA_NAME && obj2)
363 {
364 std::swap (ptr1, ptr2);
365 std::swap (obj1, obj2);
366 }
367
368 if (obj1 && obj2)
369 /* Other code handles this correctly, no need to duplicate it here. */;
370 else if (obj1 && TREE_CODE (ptr2) == SSA_NAME)
371 {
372 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2);
373 /* We may not use restrict to optimize pointer comparisons.
374 See PR71062. So we have to assume that restrict-pointed-to
375 may be in fact obj1. */
376 if (!pi
377 || pi->pt.vars_contains_restrict
378 || pi->pt.vars_contains_interposable)
379 return false;
380 if (VAR_P (obj1)
381 && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1)))
382 {
383 varpool_node *node = varpool_node::get (obj1);
384 /* If obj1 may bind to NULL give up (see below). */
385 if (! node
386 || ! node->nonzero_address ()
387 || ! decl_binds_to_current_def_p (obj1))
388 return false;
389 }
390 return !pt_solution_includes (&pi->pt, obj1);
391 }
392
393 /* ??? We'd like to handle ptr1 != NULL and ptr1 != ptr2
394 but those require pt.null to be conservatively correct. */
395
396 return false;
397 }
398
399 /* Returns whether reference REF to BASE may refer to global memory. */
400
401 static bool
402 ref_may_alias_global_p_1 (tree base)
403 {
404 if (DECL_P (base))
405 return is_global_var (base);
406 else if (TREE_CODE (base) == MEM_REF
407 || TREE_CODE (base) == TARGET_MEM_REF)
408 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
409 return true;
410 }
411
412 bool
413 ref_may_alias_global_p (ao_ref *ref)
414 {
415 tree base = ao_ref_base (ref);
416 return ref_may_alias_global_p_1 (base);
417 }
418
419 bool
420 ref_may_alias_global_p (tree ref)
421 {
422 tree base = get_base_address (ref);
423 return ref_may_alias_global_p_1 (base);
424 }
425
426 /* Return true whether STMT may clobber global memory. */
427
428 bool
429 stmt_may_clobber_global_p (gimple *stmt)
430 {
431 tree lhs;
432
433 if (!gimple_vdef (stmt))
434 return false;
435
436 /* ??? We can ask the oracle whether an artificial pointer
437 dereference with a pointer with points-to information covering
438 all global memory (what about non-address taken memory?) maybe
439 clobbered by this call. As there is at the moment no convenient
440 way of doing that without generating garbage do some manual
441 checking instead.
442 ??? We could make a NULL ao_ref argument to the various
443 predicates special, meaning any global memory. */
444
445 switch (gimple_code (stmt))
446 {
447 case GIMPLE_ASSIGN:
448 lhs = gimple_assign_lhs (stmt);
449 return (TREE_CODE (lhs) != SSA_NAME
450 && ref_may_alias_global_p (lhs));
451 case GIMPLE_CALL:
452 return true;
453 default:
454 return true;
455 }
456 }
457
458
459 /* Dump alias information on FILE. */
460
461 void
462 dump_alias_info (FILE *file)
463 {
464 unsigned i;
465 tree ptr;
466 const char *funcname
467 = lang_hooks.decl_printable_name (current_function_decl, 2);
468 tree var;
469
470 fprintf (file, "\n\nAlias information for %s\n\n", funcname);
471
472 fprintf (file, "Aliased symbols\n\n");
473
474 FOR_EACH_LOCAL_DECL (cfun, i, var)
475 {
476 if (may_be_aliased (var))
477 dump_variable (file, var);
478 }
479
480 fprintf (file, "\nCall clobber information\n");
481
482 fprintf (file, "\nESCAPED");
483 dump_points_to_solution (file, &cfun->gimple_df->escaped);
484
485 fprintf (file, "\n\nFlow-insensitive points-to information\n\n");
486
487 FOR_EACH_SSA_NAME (i, ptr, cfun)
488 {
489 struct ptr_info_def *pi;
490
491 if (!POINTER_TYPE_P (TREE_TYPE (ptr))
492 || SSA_NAME_IN_FREE_LIST (ptr))
493 continue;
494
495 pi = SSA_NAME_PTR_INFO (ptr);
496 if (pi)
497 dump_points_to_info_for (file, ptr);
498 }
499
500 fprintf (file, "\n");
501 }
502
503
504 /* Dump alias information on stderr. */
505
506 DEBUG_FUNCTION void
507 debug_alias_info (void)
508 {
509 dump_alias_info (stderr);
510 }
511
512
513 /* Dump the points-to set *PT into FILE. */
514
515 void
516 dump_points_to_solution (FILE *file, struct pt_solution *pt)
517 {
518 if (pt->anything)
519 fprintf (file, ", points-to anything");
520
521 if (pt->nonlocal)
522 fprintf (file, ", points-to non-local");
523
524 if (pt->escaped)
525 fprintf (file, ", points-to escaped");
526
527 if (pt->ipa_escaped)
528 fprintf (file, ", points-to unit escaped");
529
530 if (pt->null)
531 fprintf (file, ", points-to NULL");
532
533 if (pt->vars)
534 {
535 fprintf (file, ", points-to vars: ");
536 dump_decl_set (file, pt->vars);
537 if (pt->vars_contains_nonlocal
538 || pt->vars_contains_escaped
539 || pt->vars_contains_escaped_heap
540 || pt->vars_contains_restrict)
541 {
542 const char *comma = "";
543 fprintf (file, " (");
544 if (pt->vars_contains_nonlocal)
545 {
546 fprintf (file, "nonlocal");
547 comma = ", ";
548 }
549 if (pt->vars_contains_escaped)
550 {
551 fprintf (file, "%sescaped", comma);
552 comma = ", ";
553 }
554 if (pt->vars_contains_escaped_heap)
555 {
556 fprintf (file, "%sescaped heap", comma);
557 comma = ", ";
558 }
559 if (pt->vars_contains_restrict)
560 {
561 fprintf (file, "%srestrict", comma);
562 comma = ", ";
563 }
564 if (pt->vars_contains_interposable)
565 fprintf (file, "%sinterposable", comma);
566 fprintf (file, ")");
567 }
568 }
569 }
570
571
572 /* Unified dump function for pt_solution. */
573
574 DEBUG_FUNCTION void
575 debug (pt_solution &ref)
576 {
577 dump_points_to_solution (stderr, &ref);
578 }
579
580 DEBUG_FUNCTION void
581 debug (pt_solution *ptr)
582 {
583 if (ptr)
584 debug (*ptr);
585 else
586 fprintf (stderr, "<nil>\n");
587 }
588
589
590 /* Dump points-to information for SSA_NAME PTR into FILE. */
591
592 void
593 dump_points_to_info_for (FILE *file, tree ptr)
594 {
595 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
596
597 print_generic_expr (file, ptr, dump_flags);
598
599 if (pi)
600 dump_points_to_solution (file, &pi->pt);
601 else
602 fprintf (file, ", points-to anything");
603
604 fprintf (file, "\n");
605 }
606
607
608 /* Dump points-to information for VAR into stderr. */
609
610 DEBUG_FUNCTION void
611 debug_points_to_info_for (tree var)
612 {
613 dump_points_to_info_for (stderr, var);
614 }
615
616
617 /* Initializes the alias-oracle reference representation *R from REF. */
618
619 void
620 ao_ref_init (ao_ref *r, tree ref)
621 {
622 r->ref = ref;
623 r->base = NULL_TREE;
624 r->offset = 0;
625 r->size = -1;
626 r->max_size = -1;
627 r->ref_alias_set = -1;
628 r->base_alias_set = -1;
629 r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false;
630 }
631
632 /* Returns the base object of the memory reference *REF. */
633
634 tree
635 ao_ref_base (ao_ref *ref)
636 {
637 bool reverse;
638 HOST_WIDE_INT offset, size, max_size;
639
640 if (ref->base)
641 return ref->base;
642 ref->base = get_ref_base_and_extent (ref->ref, &offset, &size,
643 &max_size, &reverse);
644 ref->offset = offset;
645 ref->size = size;
646 ref->max_size = max_size;
647 return ref->base;
648 }
649
650 /* Returns the base object alias set of the memory reference *REF. */
651
652 alias_set_type
653 ao_ref_base_alias_set (ao_ref *ref)
654 {
655 tree base_ref;
656 if (ref->base_alias_set != -1)
657 return ref->base_alias_set;
658 if (!ref->ref)
659 return 0;
660 base_ref = ref->ref;
661 while (handled_component_p (base_ref))
662 base_ref = TREE_OPERAND (base_ref, 0);
663 ref->base_alias_set = get_alias_set (base_ref);
664 return ref->base_alias_set;
665 }
666
667 /* Returns the reference alias set of the memory reference *REF. */
668
669 alias_set_type
670 ao_ref_alias_set (ao_ref *ref)
671 {
672 if (ref->ref_alias_set != -1)
673 return ref->ref_alias_set;
674 ref->ref_alias_set = get_alias_set (ref->ref);
675 return ref->ref_alias_set;
676 }
677
678 /* Init an alias-oracle reference representation from a gimple pointer
679 PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the
680 size is assumed to be unknown. The access is assumed to be only
681 to or after of the pointer target, not before it. */
682
683 void
684 ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size)
685 {
686 HOST_WIDE_INT t;
687 poly_int64 size_hwi, extra_offset = 0;
688 ref->ref = NULL_TREE;
689 if (TREE_CODE (ptr) == SSA_NAME)
690 {
691 gimple *stmt = SSA_NAME_DEF_STMT (ptr);
692 if (gimple_assign_single_p (stmt)
693 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
694 ptr = gimple_assign_rhs1 (stmt);
695 else if (is_gimple_assign (stmt)
696 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
697 && ptrdiff_tree_p (gimple_assign_rhs2 (stmt), &extra_offset))
698 {
699 ptr = gimple_assign_rhs1 (stmt);
700 extra_offset *= BITS_PER_UNIT;
701 }
702 }
703
704 if (TREE_CODE (ptr) == ADDR_EXPR)
705 {
706 ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t);
707 if (ref->base)
708 ref->offset = BITS_PER_UNIT * t;
709 else
710 {
711 size = NULL_TREE;
712 ref->offset = 0;
713 ref->base = get_base_address (TREE_OPERAND (ptr, 0));
714 }
715 }
716 else
717 {
718 ref->base = build2 (MEM_REF, char_type_node,
719 ptr, null_pointer_node);
720 ref->offset = 0;
721 }
722 ref->offset += extra_offset;
723 if (size
724 && poly_int_tree_p (size, &size_hwi)
725 && coeffs_in_range_p (size_hwi, 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT))
726 ref->max_size = ref->size = size_hwi * BITS_PER_UNIT;
727 else
728 ref->max_size = ref->size = -1;
729 ref->ref_alias_set = 0;
730 ref->base_alias_set = 0;
731 ref->volatile_p = false;
732 }
733
734 /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the
735 purpose of TBAA. Return 0 if they are distinct and -1 if we cannot
736 decide. */
737
738 static inline int
739 same_type_for_tbaa (tree type1, tree type2)
740 {
741 type1 = TYPE_MAIN_VARIANT (type1);
742 type2 = TYPE_MAIN_VARIANT (type2);
743
744 /* If we would have to do structural comparison bail out. */
745 if (TYPE_STRUCTURAL_EQUALITY_P (type1)
746 || TYPE_STRUCTURAL_EQUALITY_P (type2))
747 return -1;
748
749 /* Compare the canonical types. */
750 if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2))
751 return 1;
752
753 /* ??? Array types are not properly unified in all cases as we have
754 spurious changes in the index types for example. Removing this
755 causes all sorts of problems with the Fortran frontend. */
756 if (TREE_CODE (type1) == ARRAY_TYPE
757 && TREE_CODE (type2) == ARRAY_TYPE)
758 return -1;
759
760 /* ??? In Ada, an lvalue of an unconstrained type can be used to access an
761 object of one of its constrained subtypes, e.g. when a function with an
762 unconstrained parameter passed by reference is called on an object and
763 inlined. But, even in the case of a fixed size, type and subtypes are
764 not equivalent enough as to share the same TYPE_CANONICAL, since this
765 would mean that conversions between them are useless, whereas they are
766 not (e.g. type and subtypes can have different modes). So, in the end,
767 they are only guaranteed to have the same alias set. */
768 if (get_alias_set (type1) == get_alias_set (type2))
769 return -1;
770
771 /* The types are known to be not equal. */
772 return 0;
773 }
774
775 /* Determine if the two component references REF1 and REF2 which are
776 based on access types TYPE1 and TYPE2 and of which at least one is based
777 on an indirect reference may alias. REF2 is the only one that can
778 be a decl in which case REF2_IS_DECL is true.
779 REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET
780 are the respective alias sets. */
781
782 static bool
783 aliasing_component_refs_p (tree ref1,
784 alias_set_type ref1_alias_set,
785 alias_set_type base1_alias_set,
786 poly_int64 offset1, poly_int64 max_size1,
787 tree ref2,
788 alias_set_type ref2_alias_set,
789 alias_set_type base2_alias_set,
790 poly_int64 offset2, poly_int64 max_size2,
791 bool ref2_is_decl)
792 {
793 /* If one reference is a component references through pointers try to find a
794 common base and apply offset based disambiguation. This handles
795 for example
796 struct A { int i; int j; } *q;
797 struct B { struct A a; int k; } *p;
798 disambiguating q->i and p->a.j. */
799 tree base1, base2;
800 tree type1, type2;
801 tree *refp;
802 int same_p;
803
804 /* Choose bases and base types to search for. */
805 base1 = ref1;
806 while (handled_component_p (base1))
807 base1 = TREE_OPERAND (base1, 0);
808 type1 = TREE_TYPE (base1);
809 base2 = ref2;
810 while (handled_component_p (base2))
811 base2 = TREE_OPERAND (base2, 0);
812 type2 = TREE_TYPE (base2);
813
814 /* Now search for the type1 in the access path of ref2. This
815 would be a common base for doing offset based disambiguation on. */
816 refp = &ref2;
817 while (handled_component_p (*refp)
818 && same_type_for_tbaa (TREE_TYPE (*refp), type1) == 0)
819 refp = &TREE_OPERAND (*refp, 0);
820 same_p = same_type_for_tbaa (TREE_TYPE (*refp), type1);
821 /* If we couldn't compare types we have to bail out. */
822 if (same_p == -1)
823 return true;
824 else if (same_p == 1)
825 {
826 HOST_WIDE_INT offadj, sztmp, msztmp;
827 bool reverse;
828 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
829 offset2 -= offadj;
830 get_ref_base_and_extent (base1, &offadj, &sztmp, &msztmp, &reverse);
831 offset1 -= offadj;
832 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
833 }
834 /* If we didn't find a common base, try the other way around. */
835 refp = &ref1;
836 while (handled_component_p (*refp)
837 && same_type_for_tbaa (TREE_TYPE (*refp), type2) == 0)
838 refp = &TREE_OPERAND (*refp, 0);
839 same_p = same_type_for_tbaa (TREE_TYPE (*refp), type2);
840 /* If we couldn't compare types we have to bail out. */
841 if (same_p == -1)
842 return true;
843 else if (same_p == 1)
844 {
845 HOST_WIDE_INT offadj, sztmp, msztmp;
846 bool reverse;
847 get_ref_base_and_extent (*refp, &offadj, &sztmp, &msztmp, &reverse);
848 offset1 -= offadj;
849 get_ref_base_and_extent (base2, &offadj, &sztmp, &msztmp, &reverse);
850 offset2 -= offadj;
851 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
852 }
853
854 /* If we have two type access paths B1.path1 and B2.path2 they may
855 only alias if either B1 is in B2.path2 or B2 is in B1.path1.
856 But we can still have a path that goes B1.path1...B2.path2 with
857 a part that we do not see. So we can only disambiguate now
858 if there is no B2 in the tail of path1 and no B1 on the
859 tail of path2. */
860 if (base1_alias_set == ref2_alias_set
861 || alias_set_subset_of (base1_alias_set, ref2_alias_set))
862 return true;
863 /* If this is ptr vs. decl then we know there is no ptr ... decl path. */
864 if (!ref2_is_decl)
865 return (base2_alias_set == ref1_alias_set
866 || alias_set_subset_of (base2_alias_set, ref1_alias_set));
867 return false;
868 }
869
870 /* Return true if we can determine that component references REF1 and REF2,
871 that are within a common DECL, cannot overlap. */
872
873 static bool
874 nonoverlapping_component_refs_of_decl_p (tree ref1, tree ref2)
875 {
876 auto_vec<tree, 16> component_refs1;
877 auto_vec<tree, 16> component_refs2;
878
879 /* Create the stack of handled components for REF1. */
880 while (handled_component_p (ref1))
881 {
882 component_refs1.safe_push (ref1);
883 ref1 = TREE_OPERAND (ref1, 0);
884 }
885 if (TREE_CODE (ref1) == MEM_REF)
886 {
887 if (!integer_zerop (TREE_OPERAND (ref1, 1)))
888 return false;
889 ref1 = TREE_OPERAND (TREE_OPERAND (ref1, 0), 0);
890 }
891
892 /* Create the stack of handled components for REF2. */
893 while (handled_component_p (ref2))
894 {
895 component_refs2.safe_push (ref2);
896 ref2 = TREE_OPERAND (ref2, 0);
897 }
898 if (TREE_CODE (ref2) == MEM_REF)
899 {
900 if (!integer_zerop (TREE_OPERAND (ref2, 1)))
901 return false;
902 ref2 = TREE_OPERAND (TREE_OPERAND (ref2, 0), 0);
903 }
904
905 /* Bases must be either same or uncomparable. */
906 gcc_checking_assert (ref1 == ref2
907 || (DECL_P (ref1) && DECL_P (ref2)
908 && compare_base_decls (ref1, ref2) != 0));
909
910 /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same
911 rank. This is sufficient because we start from the same DECL and you
912 cannot reference several fields at a time with COMPONENT_REFs (unlike
913 with ARRAY_RANGE_REFs for arrays) so you always need the same number
914 of them to access a sub-component, unless you're in a union, in which
915 case the return value will precisely be false. */
916 while (true)
917 {
918 do
919 {
920 if (component_refs1.is_empty ())
921 return false;
922 ref1 = component_refs1.pop ();
923 }
924 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0))));
925
926 do
927 {
928 if (component_refs2.is_empty ())
929 return false;
930 ref2 = component_refs2.pop ();
931 }
932 while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0))));
933
934 /* Beware of BIT_FIELD_REF. */
935 if (TREE_CODE (ref1) != COMPONENT_REF
936 || TREE_CODE (ref2) != COMPONENT_REF)
937 return false;
938
939 tree field1 = TREE_OPERAND (ref1, 1);
940 tree field2 = TREE_OPERAND (ref2, 1);
941
942 /* ??? We cannot simply use the type of operand #0 of the refs here
943 as the Fortran compiler smuggles type punning into COMPONENT_REFs
944 for common blocks instead of using unions like everyone else. */
945 tree type1 = DECL_CONTEXT (field1);
946 tree type2 = DECL_CONTEXT (field2);
947
948 /* We cannot disambiguate fields in a union or qualified union. */
949 if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
950 return false;
951
952 if (field1 != field2)
953 {
954 /* A field and its representative need to be considered the
955 same. */
956 if (DECL_BIT_FIELD_REPRESENTATIVE (field1) == field2
957 || DECL_BIT_FIELD_REPRESENTATIVE (field2) == field1)
958 return false;
959 /* Different fields of the same record type cannot overlap.
960 ??? Bitfields can overlap at RTL level so punt on them. */
961 if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2))
962 return false;
963 return true;
964 }
965 }
966
967 return false;
968 }
969
970 /* qsort compare function to sort FIELD_DECLs after their
971 DECL_FIELD_CONTEXT TYPE_UID. */
972
973 static inline int
974 ncr_compar (const void *field1_, const void *field2_)
975 {
976 const_tree field1 = *(const_tree *) const_cast <void *>(field1_);
977 const_tree field2 = *(const_tree *) const_cast <void *>(field2_);
978 unsigned int uid1 = TYPE_UID (DECL_FIELD_CONTEXT (field1));
979 unsigned int uid2 = TYPE_UID (DECL_FIELD_CONTEXT (field2));
980 if (uid1 < uid2)
981 return -1;
982 else if (uid1 > uid2)
983 return 1;
984 return 0;
985 }
986
987 /* Return true if we can determine that the fields referenced cannot
988 overlap for any pair of objects. */
989
990 static bool
991 nonoverlapping_component_refs_p (const_tree x, const_tree y)
992 {
993 if (!flag_strict_aliasing
994 || !x || !y
995 || TREE_CODE (x) != COMPONENT_REF
996 || TREE_CODE (y) != COMPONENT_REF)
997 return false;
998
999 auto_vec<const_tree, 16> fieldsx;
1000 while (TREE_CODE (x) == COMPONENT_REF)
1001 {
1002 tree field = TREE_OPERAND (x, 1);
1003 tree type = DECL_FIELD_CONTEXT (field);
1004 if (TREE_CODE (type) == RECORD_TYPE)
1005 fieldsx.safe_push (field);
1006 x = TREE_OPERAND (x, 0);
1007 }
1008 if (fieldsx.length () == 0)
1009 return false;
1010 auto_vec<const_tree, 16> fieldsy;
1011 while (TREE_CODE (y) == COMPONENT_REF)
1012 {
1013 tree field = TREE_OPERAND (y, 1);
1014 tree type = DECL_FIELD_CONTEXT (field);
1015 if (TREE_CODE (type) == RECORD_TYPE)
1016 fieldsy.safe_push (TREE_OPERAND (y, 1));
1017 y = TREE_OPERAND (y, 0);
1018 }
1019 if (fieldsy.length () == 0)
1020 return false;
1021
1022 /* Most common case first. */
1023 if (fieldsx.length () == 1
1024 && fieldsy.length () == 1)
1025 return ((DECL_FIELD_CONTEXT (fieldsx[0])
1026 == DECL_FIELD_CONTEXT (fieldsy[0]))
1027 && fieldsx[0] != fieldsy[0]
1028 && !(DECL_BIT_FIELD (fieldsx[0]) && DECL_BIT_FIELD (fieldsy[0])));
1029
1030 if (fieldsx.length () == 2)
1031 {
1032 if (ncr_compar (&fieldsx[0], &fieldsx[1]) == 1)
1033 std::swap (fieldsx[0], fieldsx[1]);
1034 }
1035 else
1036 fieldsx.qsort (ncr_compar);
1037
1038 if (fieldsy.length () == 2)
1039 {
1040 if (ncr_compar (&fieldsy[0], &fieldsy[1]) == 1)
1041 std::swap (fieldsy[0], fieldsy[1]);
1042 }
1043 else
1044 fieldsy.qsort (ncr_compar);
1045
1046 unsigned i = 0, j = 0;
1047 do
1048 {
1049 const_tree fieldx = fieldsx[i];
1050 const_tree fieldy = fieldsy[j];
1051 tree typex = DECL_FIELD_CONTEXT (fieldx);
1052 tree typey = DECL_FIELD_CONTEXT (fieldy);
1053 if (typex == typey)
1054 {
1055 /* We're left with accessing different fields of a structure,
1056 no possible overlap. */
1057 if (fieldx != fieldy)
1058 {
1059 /* A field and its representative need to be considered the
1060 same. */
1061 if (DECL_BIT_FIELD_REPRESENTATIVE (fieldx) == fieldy
1062 || DECL_BIT_FIELD_REPRESENTATIVE (fieldy) == fieldx)
1063 return false;
1064 /* Different fields of the same record type cannot overlap.
1065 ??? Bitfields can overlap at RTL level so punt on them. */
1066 if (DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy))
1067 return false;
1068 return true;
1069 }
1070 }
1071 if (TYPE_UID (typex) < TYPE_UID (typey))
1072 {
1073 i++;
1074 if (i == fieldsx.length ())
1075 break;
1076 }
1077 else
1078 {
1079 j++;
1080 if (j == fieldsy.length ())
1081 break;
1082 }
1083 }
1084 while (1);
1085
1086 return false;
1087 }
1088
1089
1090 /* Return true if two memory references based on the variables BASE1
1091 and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1092 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2
1093 if non-NULL are the complete memory reference trees. */
1094
1095 static bool
1096 decl_refs_may_alias_p (tree ref1, tree base1,
1097 poly_int64 offset1, poly_int64 max_size1,
1098 tree ref2, tree base2,
1099 poly_int64 offset2, poly_int64 max_size2)
1100 {
1101 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
1102
1103 /* If both references are based on different variables, they cannot alias. */
1104 if (compare_base_decls (base1, base2) == 0)
1105 return false;
1106
1107 /* If both references are based on the same variable, they cannot alias if
1108 the accesses do not overlap. */
1109 if (!ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2))
1110 return false;
1111
1112 /* For components with variable position, the above test isn't sufficient,
1113 so we disambiguate component references manually. */
1114 if (ref1 && ref2
1115 && handled_component_p (ref1) && handled_component_p (ref2)
1116 && nonoverlapping_component_refs_of_decl_p (ref1, ref2))
1117 return false;
1118
1119 return true;
1120 }
1121
1122 /* Return true if an indirect reference based on *PTR1 constrained
1123 to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2
1124 constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have
1125 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1126 in which case they are computed on-demand. REF1 and REF2
1127 if non-NULL are the complete memory reference trees. */
1128
1129 static bool
1130 indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1131 poly_int64 offset1, poly_int64 max_size1,
1132 alias_set_type ref1_alias_set,
1133 alias_set_type base1_alias_set,
1134 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1135 poly_int64 offset2, poly_int64 max_size2,
1136 alias_set_type ref2_alias_set,
1137 alias_set_type base2_alias_set, bool tbaa_p)
1138 {
1139 tree ptr1;
1140 tree ptrtype1, dbase2;
1141
1142 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1143 || TREE_CODE (base1) == TARGET_MEM_REF)
1144 && DECL_P (base2));
1145
1146 ptr1 = TREE_OPERAND (base1, 0);
1147 offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1148
1149 /* If only one reference is based on a variable, they cannot alias if
1150 the pointer access is beyond the extent of the variable access.
1151 (the pointer base cannot validly point to an offset less than zero
1152 of the variable).
1153 ??? IVOPTs creates bases that do not honor this restriction,
1154 so do not apply this optimization for TARGET_MEM_REFs. */
1155 if (TREE_CODE (base1) != TARGET_MEM_REF
1156 && !ranges_maybe_overlap_p (offset1 + moff, -1, offset2, max_size2))
1157 return false;
1158 /* They also cannot alias if the pointer may not point to the decl. */
1159 if (!ptr_deref_may_alias_decl_p (ptr1, base2))
1160 return false;
1161
1162 /* Disambiguations that rely on strict aliasing rules follow. */
1163 if (!flag_strict_aliasing || !tbaa_p)
1164 return true;
1165
1166 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1167
1168 /* If the alias set for a pointer access is zero all bets are off. */
1169 if (base1_alias_set == 0)
1170 return true;
1171
1172 /* When we are trying to disambiguate an access with a pointer dereference
1173 as base versus one with a decl as base we can use both the size
1174 of the decl and its dynamic type for extra disambiguation.
1175 ??? We do not know anything about the dynamic type of the decl
1176 other than that its alias-set contains base2_alias_set as a subset
1177 which does not help us here. */
1178 /* As we know nothing useful about the dynamic type of the decl just
1179 use the usual conflict check rather than a subset test.
1180 ??? We could introduce -fvery-strict-aliasing when the language
1181 does not allow decls to have a dynamic type that differs from their
1182 static type. Then we can check
1183 !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */
1184 if (base1_alias_set != base2_alias_set
1185 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1186 return false;
1187 /* If the size of the access relevant for TBAA through the pointer
1188 is bigger than the size of the decl we can't possibly access the
1189 decl via that pointer. */
1190 if (DECL_SIZE (base2) && COMPLETE_TYPE_P (TREE_TYPE (ptrtype1))
1191 && poly_int_tree_p (DECL_SIZE (base2))
1192 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (ptrtype1)))
1193 /* ??? This in turn may run afoul when a decl of type T which is
1194 a member of union type U is accessed through a pointer to
1195 type U and sizeof T is smaller than sizeof U. */
1196 && TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE
1197 && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE
1198 && known_lt (wi::to_poly_widest (DECL_SIZE (base2)),
1199 wi::to_poly_widest (TYPE_SIZE (TREE_TYPE (ptrtype1)))))
1200 return false;
1201
1202 if (!ref2)
1203 return true;
1204
1205 /* If the decl is accessed via a MEM_REF, reconstruct the base
1206 we can use for TBAA and an appropriately adjusted offset. */
1207 dbase2 = ref2;
1208 while (handled_component_p (dbase2))
1209 dbase2 = TREE_OPERAND (dbase2, 0);
1210 poly_int64 doffset1 = offset1;
1211 poly_offset_int doffset2 = offset2;
1212 if (TREE_CODE (dbase2) == MEM_REF
1213 || TREE_CODE (dbase2) == TARGET_MEM_REF)
1214 doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT;
1215
1216 /* If either reference is view-converted, give up now. */
1217 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1218 || same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (base2)) != 1)
1219 return true;
1220
1221 /* If both references are through the same type, they do not alias
1222 if the accesses do not overlap. This does extra disambiguation
1223 for mixed/pointer accesses but requires strict aliasing.
1224 For MEM_REFs we require that the component-ref offset we computed
1225 is relative to the start of the type which we ensure by
1226 comparing rvalue and access type and disregarding the constant
1227 pointer offset. */
1228 if ((TREE_CODE (base1) != TARGET_MEM_REF
1229 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1230 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1)
1231 return ranges_maybe_overlap_p (doffset1, max_size1, doffset2, max_size2);
1232
1233 if (ref1 && ref2
1234 && nonoverlapping_component_refs_p (ref1, ref2))
1235 return false;
1236
1237 /* Do access-path based disambiguation. */
1238 if (ref1 && ref2
1239 && (handled_component_p (ref1) || handled_component_p (ref2)))
1240 return aliasing_component_refs_p (ref1,
1241 ref1_alias_set, base1_alias_set,
1242 offset1, max_size1,
1243 ref2,
1244 ref2_alias_set, base2_alias_set,
1245 offset2, max_size2, true);
1246
1247 return true;
1248 }
1249
1250 /* Return true if two indirect references based on *PTR1
1251 and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and
1252 [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have
1253 the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1
1254 in which case they are computed on-demand. REF1 and REF2
1255 if non-NULL are the complete memory reference trees. */
1256
1257 static bool
1258 indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1,
1259 poly_int64 offset1, poly_int64 max_size1,
1260 alias_set_type ref1_alias_set,
1261 alias_set_type base1_alias_set,
1262 tree ref2 ATTRIBUTE_UNUSED, tree base2,
1263 poly_int64 offset2, poly_int64 max_size2,
1264 alias_set_type ref2_alias_set,
1265 alias_set_type base2_alias_set, bool tbaa_p)
1266 {
1267 tree ptr1;
1268 tree ptr2;
1269 tree ptrtype1, ptrtype2;
1270
1271 gcc_checking_assert ((TREE_CODE (base1) == MEM_REF
1272 || TREE_CODE (base1) == TARGET_MEM_REF)
1273 && (TREE_CODE (base2) == MEM_REF
1274 || TREE_CODE (base2) == TARGET_MEM_REF));
1275
1276 ptr1 = TREE_OPERAND (base1, 0);
1277 ptr2 = TREE_OPERAND (base2, 0);
1278
1279 /* If both bases are based on pointers they cannot alias if they may not
1280 point to the same memory object or if they point to the same object
1281 and the accesses do not overlap. */
1282 if ((!cfun || gimple_in_ssa_p (cfun))
1283 && operand_equal_p (ptr1, ptr2, 0)
1284 && (((TREE_CODE (base1) != TARGET_MEM_REF
1285 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1286 && (TREE_CODE (base2) != TARGET_MEM_REF
1287 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))))
1288 || (TREE_CODE (base1) == TARGET_MEM_REF
1289 && TREE_CODE (base2) == TARGET_MEM_REF
1290 && (TMR_STEP (base1) == TMR_STEP (base2)
1291 || (TMR_STEP (base1) && TMR_STEP (base2)
1292 && operand_equal_p (TMR_STEP (base1),
1293 TMR_STEP (base2), 0)))
1294 && (TMR_INDEX (base1) == TMR_INDEX (base2)
1295 || (TMR_INDEX (base1) && TMR_INDEX (base2)
1296 && operand_equal_p (TMR_INDEX (base1),
1297 TMR_INDEX (base2), 0)))
1298 && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2)
1299 || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2)
1300 && operand_equal_p (TMR_INDEX2 (base1),
1301 TMR_INDEX2 (base2), 0))))))
1302 {
1303 offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT;
1304 offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT;
1305 return ranges_maybe_overlap_p (offset1 + moff1, max_size1,
1306 offset2 + moff2, max_size2);
1307 }
1308 if (!ptr_derefs_may_alias_p (ptr1, ptr2))
1309 return false;
1310
1311 /* Disambiguations that rely on strict aliasing rules follow. */
1312 if (!flag_strict_aliasing || !tbaa_p)
1313 return true;
1314
1315 ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1));
1316 ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1));
1317
1318 /* If the alias set for a pointer access is zero all bets are off. */
1319 if (base1_alias_set == 0
1320 || base2_alias_set == 0)
1321 return true;
1322
1323 /* If both references are through the same type, they do not alias
1324 if the accesses do not overlap. This does extra disambiguation
1325 for mixed/pointer accesses but requires strict aliasing. */
1326 if ((TREE_CODE (base1) != TARGET_MEM_REF
1327 || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1)))
1328 && (TREE_CODE (base2) != TARGET_MEM_REF
1329 || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))
1330 && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) == 1
1331 && same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) == 1
1332 && same_type_for_tbaa (TREE_TYPE (ptrtype1),
1333 TREE_TYPE (ptrtype2)) == 1
1334 /* But avoid treating arrays as "objects", instead assume they
1335 can overlap by an exact multiple of their element size. */
1336 && TREE_CODE (TREE_TYPE (ptrtype1)) != ARRAY_TYPE)
1337 return ranges_maybe_overlap_p (offset1, max_size1, offset2, max_size2);
1338
1339 /* Do type-based disambiguation. */
1340 if (base1_alias_set != base2_alias_set
1341 && !alias_sets_conflict_p (base1_alias_set, base2_alias_set))
1342 return false;
1343
1344 /* If either reference is view-converted, give up now. */
1345 if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1
1346 || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1)
1347 return true;
1348
1349 if (ref1 && ref2
1350 && nonoverlapping_component_refs_p (ref1, ref2))
1351 return false;
1352
1353 /* Do access-path based disambiguation. */
1354 if (ref1 && ref2
1355 && (handled_component_p (ref1) || handled_component_p (ref2)))
1356 return aliasing_component_refs_p (ref1,
1357 ref1_alias_set, base1_alias_set,
1358 offset1, max_size1,
1359 ref2,
1360 ref2_alias_set, base2_alias_set,
1361 offset2, max_size2, false);
1362
1363 return true;
1364 }
1365
1366 /* Return true, if the two memory references REF1 and REF2 may alias. */
1367
1368 bool
1369 refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p)
1370 {
1371 tree base1, base2;
1372 poly_int64 offset1 = 0, offset2 = 0;
1373 poly_int64 max_size1 = -1, max_size2 = -1;
1374 bool var1_p, var2_p, ind1_p, ind2_p;
1375
1376 gcc_checking_assert ((!ref1->ref
1377 || TREE_CODE (ref1->ref) == SSA_NAME
1378 || DECL_P (ref1->ref)
1379 || TREE_CODE (ref1->ref) == STRING_CST
1380 || handled_component_p (ref1->ref)
1381 || TREE_CODE (ref1->ref) == MEM_REF
1382 || TREE_CODE (ref1->ref) == TARGET_MEM_REF)
1383 && (!ref2->ref
1384 || TREE_CODE (ref2->ref) == SSA_NAME
1385 || DECL_P (ref2->ref)
1386 || TREE_CODE (ref2->ref) == STRING_CST
1387 || handled_component_p (ref2->ref)
1388 || TREE_CODE (ref2->ref) == MEM_REF
1389 || TREE_CODE (ref2->ref) == TARGET_MEM_REF));
1390
1391 /* Decompose the references into their base objects and the access. */
1392 base1 = ao_ref_base (ref1);
1393 offset1 = ref1->offset;
1394 max_size1 = ref1->max_size;
1395 base2 = ao_ref_base (ref2);
1396 offset2 = ref2->offset;
1397 max_size2 = ref2->max_size;
1398
1399 /* We can end up with registers or constants as bases for example from
1400 *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59);
1401 which is seen as a struct copy. */
1402 if (TREE_CODE (base1) == SSA_NAME
1403 || TREE_CODE (base1) == CONST_DECL
1404 || TREE_CODE (base1) == CONSTRUCTOR
1405 || TREE_CODE (base1) == ADDR_EXPR
1406 || CONSTANT_CLASS_P (base1)
1407 || TREE_CODE (base2) == SSA_NAME
1408 || TREE_CODE (base2) == CONST_DECL
1409 || TREE_CODE (base2) == CONSTRUCTOR
1410 || TREE_CODE (base2) == ADDR_EXPR
1411 || CONSTANT_CLASS_P (base2))
1412 return false;
1413
1414 /* We can end up referring to code via function and label decls.
1415 As we likely do not properly track code aliases conservatively
1416 bail out. */
1417 if (TREE_CODE (base1) == FUNCTION_DECL
1418 || TREE_CODE (base1) == LABEL_DECL
1419 || TREE_CODE (base2) == FUNCTION_DECL
1420 || TREE_CODE (base2) == LABEL_DECL)
1421 return true;
1422
1423 /* Two volatile accesses always conflict. */
1424 if (ref1->volatile_p
1425 && ref2->volatile_p)
1426 return true;
1427
1428 /* Defer to simple offset based disambiguation if we have
1429 references based on two decls. Do this before defering to
1430 TBAA to handle must-alias cases in conformance with the
1431 GCC extension of allowing type-punning through unions. */
1432 var1_p = DECL_P (base1);
1433 var2_p = DECL_P (base2);
1434 if (var1_p && var2_p)
1435 return decl_refs_may_alias_p (ref1->ref, base1, offset1, max_size1,
1436 ref2->ref, base2, offset2, max_size2);
1437
1438 /* Handle restrict based accesses.
1439 ??? ao_ref_base strips inner MEM_REF [&decl], recover from that
1440 here. */
1441 tree rbase1 = base1;
1442 tree rbase2 = base2;
1443 if (var1_p)
1444 {
1445 rbase1 = ref1->ref;
1446 if (rbase1)
1447 while (handled_component_p (rbase1))
1448 rbase1 = TREE_OPERAND (rbase1, 0);
1449 }
1450 if (var2_p)
1451 {
1452 rbase2 = ref2->ref;
1453 if (rbase2)
1454 while (handled_component_p (rbase2))
1455 rbase2 = TREE_OPERAND (rbase2, 0);
1456 }
1457 if (rbase1 && rbase2
1458 && (TREE_CODE (base1) == MEM_REF || TREE_CODE (base1) == TARGET_MEM_REF)
1459 && (TREE_CODE (base2) == MEM_REF || TREE_CODE (base2) == TARGET_MEM_REF)
1460 /* If the accesses are in the same restrict clique... */
1461 && MR_DEPENDENCE_CLIQUE (base1) == MR_DEPENDENCE_CLIQUE (base2)
1462 /* But based on different pointers they do not alias. */
1463 && MR_DEPENDENCE_BASE (base1) != MR_DEPENDENCE_BASE (base2))
1464 return false;
1465
1466 ind1_p = (TREE_CODE (base1) == MEM_REF
1467 || TREE_CODE (base1) == TARGET_MEM_REF);
1468 ind2_p = (TREE_CODE (base2) == MEM_REF
1469 || TREE_CODE (base2) == TARGET_MEM_REF);
1470
1471 /* Canonicalize the pointer-vs-decl case. */
1472 if (ind1_p && var2_p)
1473 {
1474 std::swap (offset1, offset2);
1475 std::swap (max_size1, max_size2);
1476 std::swap (base1, base2);
1477 std::swap (ref1, ref2);
1478 var1_p = true;
1479 ind1_p = false;
1480 var2_p = false;
1481 ind2_p = true;
1482 }
1483
1484 /* First defer to TBAA if possible. */
1485 if (tbaa_p
1486 && flag_strict_aliasing
1487 && !alias_sets_conflict_p (ao_ref_alias_set (ref1),
1488 ao_ref_alias_set (ref2)))
1489 return false;
1490
1491 /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */
1492 if (var1_p && ind2_p)
1493 return indirect_ref_may_alias_decl_p (ref2->ref, base2,
1494 offset2, max_size2,
1495 ao_ref_alias_set (ref2),
1496 ao_ref_base_alias_set (ref2),
1497 ref1->ref, base1,
1498 offset1, max_size1,
1499 ao_ref_alias_set (ref1),
1500 ao_ref_base_alias_set (ref1),
1501 tbaa_p);
1502 else if (ind1_p && ind2_p)
1503 return indirect_refs_may_alias_p (ref1->ref, base1,
1504 offset1, max_size1,
1505 ao_ref_alias_set (ref1),
1506 ao_ref_base_alias_set (ref1),
1507 ref2->ref, base2,
1508 offset2, max_size2,
1509 ao_ref_alias_set (ref2),
1510 ao_ref_base_alias_set (ref2),
1511 tbaa_p);
1512
1513 gcc_unreachable ();
1514 }
1515
1516 static bool
1517 refs_may_alias_p (tree ref1, ao_ref *ref2)
1518 {
1519 ao_ref r1;
1520 ao_ref_init (&r1, ref1);
1521 return refs_may_alias_p_1 (&r1, ref2, true);
1522 }
1523
1524 bool
1525 refs_may_alias_p (tree ref1, tree ref2)
1526 {
1527 ao_ref r1, r2;
1528 bool res;
1529 ao_ref_init (&r1, ref1);
1530 ao_ref_init (&r2, ref2);
1531 res = refs_may_alias_p_1 (&r1, &r2, true);
1532 if (res)
1533 ++alias_stats.refs_may_alias_p_may_alias;
1534 else
1535 ++alias_stats.refs_may_alias_p_no_alias;
1536 return res;
1537 }
1538
1539 /* Returns true if there is a anti-dependence for the STORE that
1540 executes after the LOAD. */
1541
1542 bool
1543 refs_anti_dependent_p (tree load, tree store)
1544 {
1545 ao_ref r1, r2;
1546 ao_ref_init (&r1, load);
1547 ao_ref_init (&r2, store);
1548 return refs_may_alias_p_1 (&r1, &r2, false);
1549 }
1550
1551 /* Returns true if there is a output dependence for the stores
1552 STORE1 and STORE2. */
1553
1554 bool
1555 refs_output_dependent_p (tree store1, tree store2)
1556 {
1557 ao_ref r1, r2;
1558 ao_ref_init (&r1, store1);
1559 ao_ref_init (&r2, store2);
1560 return refs_may_alias_p_1 (&r1, &r2, false);
1561 }
1562
1563 /* If the call CALL may use the memory reference REF return true,
1564 otherwise return false. */
1565
1566 static bool
1567 ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref)
1568 {
1569 tree base, callee;
1570 unsigned i;
1571 int flags = gimple_call_flags (call);
1572
1573 /* Const functions without a static chain do not implicitly use memory. */
1574 if (!gimple_call_chain (call)
1575 && (flags & (ECF_CONST|ECF_NOVOPS)))
1576 goto process_args;
1577
1578 base = ao_ref_base (ref);
1579 if (!base)
1580 return true;
1581
1582 /* A call that is not without side-effects might involve volatile
1583 accesses and thus conflicts with all other volatile accesses. */
1584 if (ref->volatile_p)
1585 return true;
1586
1587 /* If the reference is based on a decl that is not aliased the call
1588 cannot possibly use it. */
1589 if (DECL_P (base)
1590 && !may_be_aliased (base)
1591 /* But local statics can be used through recursion. */
1592 && !is_global_var (base))
1593 goto process_args;
1594
1595 callee = gimple_call_fndecl (call);
1596
1597 /* Handle those builtin functions explicitly that do not act as
1598 escape points. See tree-ssa-structalias.c:find_func_aliases
1599 for the list of builtins we might need to handle here. */
1600 if (callee != NULL_TREE
1601 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
1602 switch (DECL_FUNCTION_CODE (callee))
1603 {
1604 /* All the following functions read memory pointed to by
1605 their second argument. strcat/strncat additionally
1606 reads memory pointed to by the first argument. */
1607 case BUILT_IN_STRCAT:
1608 case BUILT_IN_STRNCAT:
1609 {
1610 ao_ref dref;
1611 ao_ref_init_from_ptr_and_size (&dref,
1612 gimple_call_arg (call, 0),
1613 NULL_TREE);
1614 if (refs_may_alias_p_1 (&dref, ref, false))
1615 return true;
1616 }
1617 /* FALLTHRU */
1618 case BUILT_IN_STRCPY:
1619 case BUILT_IN_STRNCPY:
1620 case BUILT_IN_MEMCPY:
1621 case BUILT_IN_MEMMOVE:
1622 case BUILT_IN_MEMPCPY:
1623 case BUILT_IN_STPCPY:
1624 case BUILT_IN_STPNCPY:
1625 case BUILT_IN_TM_MEMCPY:
1626 case BUILT_IN_TM_MEMMOVE:
1627 {
1628 ao_ref dref;
1629 tree size = NULL_TREE;
1630 if (gimple_call_num_args (call) == 3)
1631 size = gimple_call_arg (call, 2);
1632 ao_ref_init_from_ptr_and_size (&dref,
1633 gimple_call_arg (call, 1),
1634 size);
1635 return refs_may_alias_p_1 (&dref, ref, false);
1636 }
1637 case BUILT_IN_STRCAT_CHK:
1638 case BUILT_IN_STRNCAT_CHK:
1639 {
1640 ao_ref dref;
1641 ao_ref_init_from_ptr_and_size (&dref,
1642 gimple_call_arg (call, 0),
1643 NULL_TREE);
1644 if (refs_may_alias_p_1 (&dref, ref, false))
1645 return true;
1646 }
1647 /* FALLTHRU */
1648 case BUILT_IN_STRCPY_CHK:
1649 case BUILT_IN_STRNCPY_CHK:
1650 case BUILT_IN_MEMCPY_CHK:
1651 case BUILT_IN_MEMMOVE_CHK:
1652 case BUILT_IN_MEMPCPY_CHK:
1653 case BUILT_IN_STPCPY_CHK:
1654 case BUILT_IN_STPNCPY_CHK:
1655 {
1656 ao_ref dref;
1657 tree size = NULL_TREE;
1658 if (gimple_call_num_args (call) == 4)
1659 size = gimple_call_arg (call, 2);
1660 ao_ref_init_from_ptr_and_size (&dref,
1661 gimple_call_arg (call, 1),
1662 size);
1663 return refs_may_alias_p_1 (&dref, ref, false);
1664 }
1665 case BUILT_IN_BCOPY:
1666 {
1667 ao_ref dref;
1668 tree size = gimple_call_arg (call, 2);
1669 ao_ref_init_from_ptr_and_size (&dref,
1670 gimple_call_arg (call, 0),
1671 size);
1672 return refs_may_alias_p_1 (&dref, ref, false);
1673 }
1674
1675 /* The following functions read memory pointed to by their
1676 first argument. */
1677 CASE_BUILT_IN_TM_LOAD (1):
1678 CASE_BUILT_IN_TM_LOAD (2):
1679 CASE_BUILT_IN_TM_LOAD (4):
1680 CASE_BUILT_IN_TM_LOAD (8):
1681 CASE_BUILT_IN_TM_LOAD (FLOAT):
1682 CASE_BUILT_IN_TM_LOAD (DOUBLE):
1683 CASE_BUILT_IN_TM_LOAD (LDOUBLE):
1684 CASE_BUILT_IN_TM_LOAD (M64):
1685 CASE_BUILT_IN_TM_LOAD (M128):
1686 CASE_BUILT_IN_TM_LOAD (M256):
1687 case BUILT_IN_TM_LOG:
1688 case BUILT_IN_TM_LOG_1:
1689 case BUILT_IN_TM_LOG_2:
1690 case BUILT_IN_TM_LOG_4:
1691 case BUILT_IN_TM_LOG_8:
1692 case BUILT_IN_TM_LOG_FLOAT:
1693 case BUILT_IN_TM_LOG_DOUBLE:
1694 case BUILT_IN_TM_LOG_LDOUBLE:
1695 case BUILT_IN_TM_LOG_M64:
1696 case BUILT_IN_TM_LOG_M128:
1697 case BUILT_IN_TM_LOG_M256:
1698 return ptr_deref_may_alias_ref_p_1 (gimple_call_arg (call, 0), ref);
1699
1700 /* These read memory pointed to by the first argument. */
1701 case BUILT_IN_STRDUP:
1702 case BUILT_IN_STRNDUP:
1703 case BUILT_IN_REALLOC:
1704 {
1705 ao_ref dref;
1706 tree size = NULL_TREE;
1707 if (gimple_call_num_args (call) == 2)
1708 size = gimple_call_arg (call, 1);
1709 ao_ref_init_from_ptr_and_size (&dref,
1710 gimple_call_arg (call, 0),
1711 size);
1712 return refs_may_alias_p_1 (&dref, ref, false);
1713 }
1714 /* These read memory pointed to by the first argument. */
1715 case BUILT_IN_INDEX:
1716 case BUILT_IN_STRCHR:
1717 case BUILT_IN_STRRCHR:
1718 {
1719 ao_ref dref;
1720 ao_ref_init_from_ptr_and_size (&dref,
1721 gimple_call_arg (call, 0),
1722 NULL_TREE);
1723 return refs_may_alias_p_1 (&dref, ref, false);
1724 }
1725 /* These read memory pointed to by the first argument with size
1726 in the third argument. */
1727 case BUILT_IN_MEMCHR:
1728 {
1729 ao_ref dref;
1730 ao_ref_init_from_ptr_and_size (&dref,
1731 gimple_call_arg (call, 0),
1732 gimple_call_arg (call, 2));
1733 return refs_may_alias_p_1 (&dref, ref, false);
1734 }
1735 /* These read memory pointed to by the first and second arguments. */
1736 case BUILT_IN_STRSTR:
1737 case BUILT_IN_STRPBRK:
1738 {
1739 ao_ref dref;
1740 ao_ref_init_from_ptr_and_size (&dref,
1741 gimple_call_arg (call, 0),
1742 NULL_TREE);
1743 if (refs_may_alias_p_1 (&dref, ref, false))
1744 return true;
1745 ao_ref_init_from_ptr_and_size (&dref,
1746 gimple_call_arg (call, 1),
1747 NULL_TREE);
1748 return refs_may_alias_p_1 (&dref, ref, false);
1749 }
1750
1751 /* The following builtins do not read from memory. */
1752 case BUILT_IN_FREE:
1753 case BUILT_IN_MALLOC:
1754 case BUILT_IN_POSIX_MEMALIGN:
1755 case BUILT_IN_ALIGNED_ALLOC:
1756 case BUILT_IN_CALLOC:
1757 CASE_BUILT_IN_ALLOCA:
1758 case BUILT_IN_STACK_SAVE:
1759 case BUILT_IN_STACK_RESTORE:
1760 case BUILT_IN_MEMSET:
1761 case BUILT_IN_TM_MEMSET:
1762 case BUILT_IN_MEMSET_CHK:
1763 case BUILT_IN_FREXP:
1764 case BUILT_IN_FREXPF:
1765 case BUILT_IN_FREXPL:
1766 case BUILT_IN_GAMMA_R:
1767 case BUILT_IN_GAMMAF_R:
1768 case BUILT_IN_GAMMAL_R:
1769 case BUILT_IN_LGAMMA_R:
1770 case BUILT_IN_LGAMMAF_R:
1771 case BUILT_IN_LGAMMAL_R:
1772 case BUILT_IN_MODF:
1773 case BUILT_IN_MODFF:
1774 case BUILT_IN_MODFL:
1775 case BUILT_IN_REMQUO:
1776 case BUILT_IN_REMQUOF:
1777 case BUILT_IN_REMQUOL:
1778 case BUILT_IN_SINCOS:
1779 case BUILT_IN_SINCOSF:
1780 case BUILT_IN_SINCOSL:
1781 case BUILT_IN_ASSUME_ALIGNED:
1782 case BUILT_IN_VA_END:
1783 return false;
1784 /* __sync_* builtins and some OpenMP builtins act as threading
1785 barriers. */
1786 #undef DEF_SYNC_BUILTIN
1787 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
1788 #include "sync-builtins.def"
1789 #undef DEF_SYNC_BUILTIN
1790 case BUILT_IN_GOMP_ATOMIC_START:
1791 case BUILT_IN_GOMP_ATOMIC_END:
1792 case BUILT_IN_GOMP_BARRIER:
1793 case BUILT_IN_GOMP_BARRIER_CANCEL:
1794 case BUILT_IN_GOMP_TASKWAIT:
1795 case BUILT_IN_GOMP_TASKGROUP_END:
1796 case BUILT_IN_GOMP_CRITICAL_START:
1797 case BUILT_IN_GOMP_CRITICAL_END:
1798 case BUILT_IN_GOMP_CRITICAL_NAME_START:
1799 case BUILT_IN_GOMP_CRITICAL_NAME_END:
1800 case BUILT_IN_GOMP_LOOP_END:
1801 case BUILT_IN_GOMP_LOOP_END_CANCEL:
1802 case BUILT_IN_GOMP_ORDERED_START:
1803 case BUILT_IN_GOMP_ORDERED_END:
1804 case BUILT_IN_GOMP_SECTIONS_END:
1805 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
1806 case BUILT_IN_GOMP_SINGLE_COPY_START:
1807 case BUILT_IN_GOMP_SINGLE_COPY_END:
1808 return true;
1809
1810 default:
1811 /* Fallthru to general call handling. */;
1812 }
1813
1814 /* Check if base is a global static variable that is not read
1815 by the function. */
1816 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
1817 {
1818 struct cgraph_node *node = cgraph_node::get (callee);
1819 bitmap not_read;
1820
1821 /* FIXME: Callee can be an OMP builtin that does not have a call graph
1822 node yet. We should enforce that there are nodes for all decls in the
1823 IL and remove this check instead. */
1824 if (node
1825 && (not_read = ipa_reference_get_not_read_global (node))
1826 && bitmap_bit_p (not_read, ipa_reference_var_uid (base)))
1827 goto process_args;
1828 }
1829
1830 /* Check if the base variable is call-used. */
1831 if (DECL_P (base))
1832 {
1833 if (pt_solution_includes (gimple_call_use_set (call), base))
1834 return true;
1835 }
1836 else if ((TREE_CODE (base) == MEM_REF
1837 || TREE_CODE (base) == TARGET_MEM_REF)
1838 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1839 {
1840 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
1841 if (!pi)
1842 return true;
1843
1844 if (pt_solutions_intersect (gimple_call_use_set (call), &pi->pt))
1845 return true;
1846 }
1847 else
1848 return true;
1849
1850 /* Inspect call arguments for passed-by-value aliases. */
1851 process_args:
1852 for (i = 0; i < gimple_call_num_args (call); ++i)
1853 {
1854 tree op = gimple_call_arg (call, i);
1855 int flags = gimple_call_arg_flags (call, i);
1856
1857 if (flags & EAF_UNUSED)
1858 continue;
1859
1860 if (TREE_CODE (op) == WITH_SIZE_EXPR)
1861 op = TREE_OPERAND (op, 0);
1862
1863 if (TREE_CODE (op) != SSA_NAME
1864 && !is_gimple_min_invariant (op))
1865 {
1866 ao_ref r;
1867 ao_ref_init (&r, op);
1868 if (refs_may_alias_p_1 (&r, ref, true))
1869 return true;
1870 }
1871 }
1872
1873 return false;
1874 }
1875
1876 static bool
1877 ref_maybe_used_by_call_p (gcall *call, ao_ref *ref)
1878 {
1879 bool res;
1880 res = ref_maybe_used_by_call_p_1 (call, ref);
1881 if (res)
1882 ++alias_stats.ref_maybe_used_by_call_p_may_alias;
1883 else
1884 ++alias_stats.ref_maybe_used_by_call_p_no_alias;
1885 return res;
1886 }
1887
1888
1889 /* If the statement STMT may use the memory reference REF return
1890 true, otherwise return false. */
1891
1892 bool
1893 ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref)
1894 {
1895 if (is_gimple_assign (stmt))
1896 {
1897 tree rhs;
1898
1899 /* All memory assign statements are single. */
1900 if (!gimple_assign_single_p (stmt))
1901 return false;
1902
1903 rhs = gimple_assign_rhs1 (stmt);
1904 if (is_gimple_reg (rhs)
1905 || is_gimple_min_invariant (rhs)
1906 || gimple_assign_rhs_code (stmt) == CONSTRUCTOR)
1907 return false;
1908
1909 return refs_may_alias_p (rhs, ref);
1910 }
1911 else if (is_gimple_call (stmt))
1912 return ref_maybe_used_by_call_p (as_a <gcall *> (stmt), ref);
1913 else if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
1914 {
1915 tree retval = gimple_return_retval (return_stmt);
1916 if (retval
1917 && TREE_CODE (retval) != SSA_NAME
1918 && !is_gimple_min_invariant (retval)
1919 && refs_may_alias_p (retval, ref))
1920 return true;
1921 /* If ref escapes the function then the return acts as a use. */
1922 tree base = ao_ref_base (ref);
1923 if (!base)
1924 ;
1925 else if (DECL_P (base))
1926 return is_global_var (base);
1927 else if (TREE_CODE (base) == MEM_REF
1928 || TREE_CODE (base) == TARGET_MEM_REF)
1929 return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0));
1930 return false;
1931 }
1932
1933 return true;
1934 }
1935
1936 bool
1937 ref_maybe_used_by_stmt_p (gimple *stmt, tree ref)
1938 {
1939 ao_ref r;
1940 ao_ref_init (&r, ref);
1941 return ref_maybe_used_by_stmt_p (stmt, &r);
1942 }
1943
1944 /* If the call in statement CALL may clobber the memory reference REF
1945 return true, otherwise return false. */
1946
1947 bool
1948 call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref)
1949 {
1950 tree base;
1951 tree callee;
1952
1953 /* If the call is pure or const it cannot clobber anything. */
1954 if (gimple_call_flags (call)
1955 & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS))
1956 return false;
1957 if (gimple_call_internal_p (call))
1958 switch (gimple_call_internal_fn (call))
1959 {
1960 /* Treat these internal calls like ECF_PURE for aliasing,
1961 they don't write to any memory the program should care about.
1962 They have important other side-effects, and read memory,
1963 so can't be ECF_NOVOPS. */
1964 case IFN_UBSAN_NULL:
1965 case IFN_UBSAN_BOUNDS:
1966 case IFN_UBSAN_VPTR:
1967 case IFN_UBSAN_OBJECT_SIZE:
1968 case IFN_UBSAN_PTR:
1969 case IFN_ASAN_CHECK:
1970 return false;
1971 default:
1972 break;
1973 }
1974
1975 base = ao_ref_base (ref);
1976 if (!base)
1977 return true;
1978
1979 if (TREE_CODE (base) == SSA_NAME
1980 || CONSTANT_CLASS_P (base))
1981 return false;
1982
1983 /* A call that is not without side-effects might involve volatile
1984 accesses and thus conflicts with all other volatile accesses. */
1985 if (ref->volatile_p)
1986 return true;
1987
1988 /* If the reference is based on a decl that is not aliased the call
1989 cannot possibly clobber it. */
1990 if (DECL_P (base)
1991 && !may_be_aliased (base)
1992 /* But local non-readonly statics can be modified through recursion
1993 or the call may implement a threading barrier which we must
1994 treat as may-def. */
1995 && (TREE_READONLY (base)
1996 || !is_global_var (base)))
1997 return false;
1998
1999 callee = gimple_call_fndecl (call);
2000
2001 /* Handle those builtin functions explicitly that do not act as
2002 escape points. See tree-ssa-structalias.c:find_func_aliases
2003 for the list of builtins we might need to handle here. */
2004 if (callee != NULL_TREE
2005 && gimple_call_builtin_p (call, BUILT_IN_NORMAL))
2006 switch (DECL_FUNCTION_CODE (callee))
2007 {
2008 /* All the following functions clobber memory pointed to by
2009 their first argument. */
2010 case BUILT_IN_STRCPY:
2011 case BUILT_IN_STRNCPY:
2012 case BUILT_IN_MEMCPY:
2013 case BUILT_IN_MEMMOVE:
2014 case BUILT_IN_MEMPCPY:
2015 case BUILT_IN_STPCPY:
2016 case BUILT_IN_STPNCPY:
2017 case BUILT_IN_STRCAT:
2018 case BUILT_IN_STRNCAT:
2019 case BUILT_IN_MEMSET:
2020 case BUILT_IN_TM_MEMSET:
2021 CASE_BUILT_IN_TM_STORE (1):
2022 CASE_BUILT_IN_TM_STORE (2):
2023 CASE_BUILT_IN_TM_STORE (4):
2024 CASE_BUILT_IN_TM_STORE (8):
2025 CASE_BUILT_IN_TM_STORE (FLOAT):
2026 CASE_BUILT_IN_TM_STORE (DOUBLE):
2027 CASE_BUILT_IN_TM_STORE (LDOUBLE):
2028 CASE_BUILT_IN_TM_STORE (M64):
2029 CASE_BUILT_IN_TM_STORE (M128):
2030 CASE_BUILT_IN_TM_STORE (M256):
2031 case BUILT_IN_TM_MEMCPY:
2032 case BUILT_IN_TM_MEMMOVE:
2033 {
2034 ao_ref dref;
2035 tree size = NULL_TREE;
2036 /* Don't pass in size for strncat, as the maximum size
2037 is strlen (dest) + n + 1 instead of n, resp.
2038 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2039 known. */
2040 if (gimple_call_num_args (call) == 3
2041 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT)
2042 size = gimple_call_arg (call, 2);
2043 ao_ref_init_from_ptr_and_size (&dref,
2044 gimple_call_arg (call, 0),
2045 size);
2046 return refs_may_alias_p_1 (&dref, ref, false);
2047 }
2048 case BUILT_IN_STRCPY_CHK:
2049 case BUILT_IN_STRNCPY_CHK:
2050 case BUILT_IN_MEMCPY_CHK:
2051 case BUILT_IN_MEMMOVE_CHK:
2052 case BUILT_IN_MEMPCPY_CHK:
2053 case BUILT_IN_STPCPY_CHK:
2054 case BUILT_IN_STPNCPY_CHK:
2055 case BUILT_IN_STRCAT_CHK:
2056 case BUILT_IN_STRNCAT_CHK:
2057 case BUILT_IN_MEMSET_CHK:
2058 {
2059 ao_ref dref;
2060 tree size = NULL_TREE;
2061 /* Don't pass in size for __strncat_chk, as the maximum size
2062 is strlen (dest) + n + 1 instead of n, resp.
2063 n + 1 at dest + strlen (dest), but strlen (dest) isn't
2064 known. */
2065 if (gimple_call_num_args (call) == 4
2066 && DECL_FUNCTION_CODE (callee) != BUILT_IN_STRNCAT_CHK)
2067 size = gimple_call_arg (call, 2);
2068 ao_ref_init_from_ptr_and_size (&dref,
2069 gimple_call_arg (call, 0),
2070 size);
2071 return refs_may_alias_p_1 (&dref, ref, false);
2072 }
2073 case BUILT_IN_BCOPY:
2074 {
2075 ao_ref dref;
2076 tree size = gimple_call_arg (call, 2);
2077 ao_ref_init_from_ptr_and_size (&dref,
2078 gimple_call_arg (call, 1),
2079 size);
2080 return refs_may_alias_p_1 (&dref, ref, false);
2081 }
2082 /* Allocating memory does not have any side-effects apart from
2083 being the definition point for the pointer. */
2084 case BUILT_IN_MALLOC:
2085 case BUILT_IN_ALIGNED_ALLOC:
2086 case BUILT_IN_CALLOC:
2087 case BUILT_IN_STRDUP:
2088 case BUILT_IN_STRNDUP:
2089 /* Unix98 specifies that errno is set on allocation failure. */
2090 if (flag_errno_math
2091 && targetm.ref_may_alias_errno (ref))
2092 return true;
2093 return false;
2094 case BUILT_IN_STACK_SAVE:
2095 CASE_BUILT_IN_ALLOCA:
2096 case BUILT_IN_ASSUME_ALIGNED:
2097 return false;
2098 /* But posix_memalign stores a pointer into the memory pointed to
2099 by its first argument. */
2100 case BUILT_IN_POSIX_MEMALIGN:
2101 {
2102 tree ptrptr = gimple_call_arg (call, 0);
2103 ao_ref dref;
2104 ao_ref_init_from_ptr_and_size (&dref, ptrptr,
2105 TYPE_SIZE_UNIT (ptr_type_node));
2106 return (refs_may_alias_p_1 (&dref, ref, false)
2107 || (flag_errno_math
2108 && targetm.ref_may_alias_errno (ref)));
2109 }
2110 /* Freeing memory kills the pointed-to memory. More importantly
2111 the call has to serve as a barrier for moving loads and stores
2112 across it. */
2113 case BUILT_IN_FREE:
2114 case BUILT_IN_VA_END:
2115 {
2116 tree ptr = gimple_call_arg (call, 0);
2117 return ptr_deref_may_alias_ref_p_1 (ptr, ref);
2118 }
2119 /* Realloc serves both as allocation point and deallocation point. */
2120 case BUILT_IN_REALLOC:
2121 {
2122 tree ptr = gimple_call_arg (call, 0);
2123 /* Unix98 specifies that errno is set on allocation failure. */
2124 return ((flag_errno_math
2125 && targetm.ref_may_alias_errno (ref))
2126 || ptr_deref_may_alias_ref_p_1 (ptr, ref));
2127 }
2128 case BUILT_IN_GAMMA_R:
2129 case BUILT_IN_GAMMAF_R:
2130 case BUILT_IN_GAMMAL_R:
2131 case BUILT_IN_LGAMMA_R:
2132 case BUILT_IN_LGAMMAF_R:
2133 case BUILT_IN_LGAMMAL_R:
2134 {
2135 tree out = gimple_call_arg (call, 1);
2136 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2137 return true;
2138 if (flag_errno_math)
2139 break;
2140 return false;
2141 }
2142 case BUILT_IN_FREXP:
2143 case BUILT_IN_FREXPF:
2144 case BUILT_IN_FREXPL:
2145 case BUILT_IN_MODF:
2146 case BUILT_IN_MODFF:
2147 case BUILT_IN_MODFL:
2148 {
2149 tree out = gimple_call_arg (call, 1);
2150 return ptr_deref_may_alias_ref_p_1 (out, ref);
2151 }
2152 case BUILT_IN_REMQUO:
2153 case BUILT_IN_REMQUOF:
2154 case BUILT_IN_REMQUOL:
2155 {
2156 tree out = gimple_call_arg (call, 2);
2157 if (ptr_deref_may_alias_ref_p_1 (out, ref))
2158 return true;
2159 if (flag_errno_math)
2160 break;
2161 return false;
2162 }
2163 case BUILT_IN_SINCOS:
2164 case BUILT_IN_SINCOSF:
2165 case BUILT_IN_SINCOSL:
2166 {
2167 tree sin = gimple_call_arg (call, 1);
2168 tree cos = gimple_call_arg (call, 2);
2169 return (ptr_deref_may_alias_ref_p_1 (sin, ref)
2170 || ptr_deref_may_alias_ref_p_1 (cos, ref));
2171 }
2172 /* __sync_* builtins and some OpenMP builtins act as threading
2173 barriers. */
2174 #undef DEF_SYNC_BUILTIN
2175 #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM:
2176 #include "sync-builtins.def"
2177 #undef DEF_SYNC_BUILTIN
2178 case BUILT_IN_GOMP_ATOMIC_START:
2179 case BUILT_IN_GOMP_ATOMIC_END:
2180 case BUILT_IN_GOMP_BARRIER:
2181 case BUILT_IN_GOMP_BARRIER_CANCEL:
2182 case BUILT_IN_GOMP_TASKWAIT:
2183 case BUILT_IN_GOMP_TASKGROUP_END:
2184 case BUILT_IN_GOMP_CRITICAL_START:
2185 case BUILT_IN_GOMP_CRITICAL_END:
2186 case BUILT_IN_GOMP_CRITICAL_NAME_START:
2187 case BUILT_IN_GOMP_CRITICAL_NAME_END:
2188 case BUILT_IN_GOMP_LOOP_END:
2189 case BUILT_IN_GOMP_LOOP_END_CANCEL:
2190 case BUILT_IN_GOMP_ORDERED_START:
2191 case BUILT_IN_GOMP_ORDERED_END:
2192 case BUILT_IN_GOMP_SECTIONS_END:
2193 case BUILT_IN_GOMP_SECTIONS_END_CANCEL:
2194 case BUILT_IN_GOMP_SINGLE_COPY_START:
2195 case BUILT_IN_GOMP_SINGLE_COPY_END:
2196 return true;
2197 default:
2198 /* Fallthru to general call handling. */;
2199 }
2200
2201 /* Check if base is a global static variable that is not written
2202 by the function. */
2203 if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base))
2204 {
2205 struct cgraph_node *node = cgraph_node::get (callee);
2206 bitmap not_written;
2207
2208 if (node
2209 && (not_written = ipa_reference_get_not_written_global (node))
2210 && bitmap_bit_p (not_written, ipa_reference_var_uid (base)))
2211 return false;
2212 }
2213
2214 /* Check if the base variable is call-clobbered. */
2215 if (DECL_P (base))
2216 return pt_solution_includes (gimple_call_clobber_set (call), base);
2217 else if ((TREE_CODE (base) == MEM_REF
2218 || TREE_CODE (base) == TARGET_MEM_REF)
2219 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
2220 {
2221 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0));
2222 if (!pi)
2223 return true;
2224
2225 return pt_solutions_intersect (gimple_call_clobber_set (call), &pi->pt);
2226 }
2227
2228 return true;
2229 }
2230
2231 /* If the call in statement CALL may clobber the memory reference REF
2232 return true, otherwise return false. */
2233
2234 bool
2235 call_may_clobber_ref_p (gcall *call, tree ref)
2236 {
2237 bool res;
2238 ao_ref r;
2239 ao_ref_init (&r, ref);
2240 res = call_may_clobber_ref_p_1 (call, &r);
2241 if (res)
2242 ++alias_stats.call_may_clobber_ref_p_may_alias;
2243 else
2244 ++alias_stats.call_may_clobber_ref_p_no_alias;
2245 return res;
2246 }
2247
2248
2249 /* If the statement STMT may clobber the memory reference REF return true,
2250 otherwise return false. */
2251
2252 bool
2253 stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref)
2254 {
2255 if (is_gimple_call (stmt))
2256 {
2257 tree lhs = gimple_call_lhs (stmt);
2258 if (lhs
2259 && TREE_CODE (lhs) != SSA_NAME)
2260 {
2261 ao_ref r;
2262 ao_ref_init (&r, lhs);
2263 if (refs_may_alias_p_1 (ref, &r, true))
2264 return true;
2265 }
2266
2267 return call_may_clobber_ref_p_1 (as_a <gcall *> (stmt), ref);
2268 }
2269 else if (gimple_assign_single_p (stmt))
2270 {
2271 tree lhs = gimple_assign_lhs (stmt);
2272 if (TREE_CODE (lhs) != SSA_NAME)
2273 {
2274 ao_ref r;
2275 ao_ref_init (&r, lhs);
2276 return refs_may_alias_p_1 (ref, &r, true);
2277 }
2278 }
2279 else if (gimple_code (stmt) == GIMPLE_ASM)
2280 return true;
2281
2282 return false;
2283 }
2284
2285 bool
2286 stmt_may_clobber_ref_p (gimple *stmt, tree ref)
2287 {
2288 ao_ref r;
2289 ao_ref_init (&r, ref);
2290 return stmt_may_clobber_ref_p_1 (stmt, &r);
2291 }
2292
2293 /* Return true if store1 and store2 described by corresponding tuples
2294 <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same
2295 address. */
2296
2297 static bool
2298 same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1,
2299 poly_int64 max_size1,
2300 tree base2, poly_int64 offset2, poly_int64 size2,
2301 poly_int64 max_size2)
2302 {
2303 /* Offsets need to be 0. */
2304 if (maybe_ne (offset1, 0)
2305 || maybe_ne (offset2, 0))
2306 return false;
2307
2308 bool base1_obj_p = SSA_VAR_P (base1);
2309 bool base2_obj_p = SSA_VAR_P (base2);
2310
2311 /* We need one object. */
2312 if (base1_obj_p == base2_obj_p)
2313 return false;
2314 tree obj = base1_obj_p ? base1 : base2;
2315
2316 /* And we need one MEM_REF. */
2317 bool base1_memref_p = TREE_CODE (base1) == MEM_REF;
2318 bool base2_memref_p = TREE_CODE (base2) == MEM_REF;
2319 if (base1_memref_p == base2_memref_p)
2320 return false;
2321 tree memref = base1_memref_p ? base1 : base2;
2322
2323 /* Sizes need to be valid. */
2324 if (!known_size_p (max_size1)
2325 || !known_size_p (max_size2)
2326 || !known_size_p (size1)
2327 || !known_size_p (size2))
2328 return false;
2329
2330 /* Max_size needs to match size. */
2331 if (maybe_ne (max_size1, size1)
2332 || maybe_ne (max_size2, size2))
2333 return false;
2334
2335 /* Sizes need to match. */
2336 if (maybe_ne (size1, size2))
2337 return false;
2338
2339
2340 /* Check that memref is a store to pointer with singleton points-to info. */
2341 if (!integer_zerop (TREE_OPERAND (memref, 1)))
2342 return false;
2343 tree ptr = TREE_OPERAND (memref, 0);
2344 if (TREE_CODE (ptr) != SSA_NAME)
2345 return false;
2346 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
2347 unsigned int pt_uid;
2348 if (pi == NULL
2349 || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid))
2350 return false;
2351
2352 /* Be conservative with non-call exceptions when the address might
2353 be NULL. */
2354 if (flag_non_call_exceptions && pi->pt.null)
2355 return false;
2356
2357 /* Check that ptr points relative to obj. */
2358 unsigned int obj_uid = DECL_PT_UID (obj);
2359 if (obj_uid != pt_uid)
2360 return false;
2361
2362 /* Check that the object size is the same as the store size. That ensures us
2363 that ptr points to the start of obj. */
2364 return (DECL_SIZE (obj)
2365 && poly_int_tree_p (DECL_SIZE (obj))
2366 && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1));
2367 }
2368
2369 /* If STMT kills the memory reference REF return true, otherwise
2370 return false. */
2371
2372 bool
2373 stmt_kills_ref_p (gimple *stmt, ao_ref *ref)
2374 {
2375 if (!ao_ref_base (ref))
2376 return false;
2377
2378 if (gimple_has_lhs (stmt)
2379 && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME
2380 /* The assignment is not necessarily carried out if it can throw
2381 and we can catch it in the current function where we could inspect
2382 the previous value.
2383 ??? We only need to care about the RHS throwing. For aggregate
2384 assignments or similar calls and non-call exceptions the LHS
2385 might throw as well. */
2386 && !stmt_can_throw_internal (stmt))
2387 {
2388 tree lhs = gimple_get_lhs (stmt);
2389 /* If LHS is literally a base of the access we are done. */
2390 if (ref->ref)
2391 {
2392 tree base = ref->ref;
2393 tree innermost_dropped_array_ref = NULL_TREE;
2394 if (handled_component_p (base))
2395 {
2396 tree saved_lhs0 = NULL_TREE;
2397 if (handled_component_p (lhs))
2398 {
2399 saved_lhs0 = TREE_OPERAND (lhs, 0);
2400 TREE_OPERAND (lhs, 0) = integer_zero_node;
2401 }
2402 do
2403 {
2404 /* Just compare the outermost handled component, if
2405 they are equal we have found a possible common
2406 base. */
2407 tree saved_base0 = TREE_OPERAND (base, 0);
2408 TREE_OPERAND (base, 0) = integer_zero_node;
2409 bool res = operand_equal_p (lhs, base, 0);
2410 TREE_OPERAND (base, 0) = saved_base0;
2411 if (res)
2412 break;
2413 /* Remember if we drop an array-ref that we need to
2414 double-check not being at struct end. */
2415 if (TREE_CODE (base) == ARRAY_REF
2416 || TREE_CODE (base) == ARRAY_RANGE_REF)
2417 innermost_dropped_array_ref = base;
2418 /* Otherwise drop handled components of the access. */
2419 base = saved_base0;
2420 }
2421 while (handled_component_p (base));
2422 if (saved_lhs0)
2423 TREE_OPERAND (lhs, 0) = saved_lhs0;
2424 }
2425 /* Finally check if the lhs has the same address and size as the
2426 base candidate of the access. Watch out if we have dropped
2427 an array-ref that was at struct end, this means ref->ref may
2428 be outside of the TYPE_SIZE of its base. */
2429 if ((! innermost_dropped_array_ref
2430 || ! array_at_struct_end_p (innermost_dropped_array_ref))
2431 && (lhs == base
2432 || (((TYPE_SIZE (TREE_TYPE (lhs))
2433 == TYPE_SIZE (TREE_TYPE (base)))
2434 || (TYPE_SIZE (TREE_TYPE (lhs))
2435 && TYPE_SIZE (TREE_TYPE (base))
2436 && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)),
2437 TYPE_SIZE (TREE_TYPE (base)),
2438 0)))
2439 && operand_equal_p (lhs, base,
2440 OEP_ADDRESS_OF
2441 | OEP_MATCH_SIDE_EFFECTS))))
2442 return true;
2443 }
2444
2445 /* Now look for non-literal equal bases with the restriction of
2446 handling constant offset and size. */
2447 /* For a must-alias check we need to be able to constrain
2448 the access properly. */
2449 if (!ref->max_size_known_p ())
2450 return false;
2451 HOST_WIDE_INT size, max_size, const_offset;
2452 poly_int64 ref_offset = ref->offset;
2453 bool reverse;
2454 tree base
2455 = get_ref_base_and_extent (lhs, &const_offset, &size, &max_size,
2456 &reverse);
2457 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
2458 so base == ref->base does not always hold. */
2459 poly_int64 offset = const_offset;
2460 if (base != ref->base)
2461 {
2462 /* Try using points-to info. */
2463 if (same_addr_size_stores_p (base, offset, size, max_size, ref->base,
2464 ref->offset, ref->size, ref->max_size))
2465 return true;
2466
2467 /* If both base and ref->base are MEM_REFs, only compare the
2468 first operand, and if the second operand isn't equal constant,
2469 try to add the offsets into offset and ref_offset. */
2470 if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF
2471 && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0))
2472 {
2473 if (!tree_int_cst_equal (TREE_OPERAND (base, 1),
2474 TREE_OPERAND (ref->base, 1)))
2475 {
2476 poly_offset_int off1 = mem_ref_offset (base);
2477 off1 <<= LOG2_BITS_PER_UNIT;
2478 off1 += offset;
2479 poly_offset_int off2 = mem_ref_offset (ref->base);
2480 off2 <<= LOG2_BITS_PER_UNIT;
2481 off2 += ref_offset;
2482 if (!off1.to_shwi (&offset) || !off2.to_shwi (&ref_offset))
2483 size = -1;
2484 }
2485 }
2486 else
2487 size = -1;
2488 }
2489 /* For a must-alias check we need to be able to constrain
2490 the access properly. */
2491 if (size == max_size
2492 && known_subrange_p (ref_offset, ref->max_size, offset, size))
2493 return true;
2494 }
2495
2496 if (is_gimple_call (stmt))
2497 {
2498 tree callee = gimple_call_fndecl (stmt);
2499 if (callee != NULL_TREE
2500 && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2501 switch (DECL_FUNCTION_CODE (callee))
2502 {
2503 case BUILT_IN_FREE:
2504 {
2505 tree ptr = gimple_call_arg (stmt, 0);
2506 tree base = ao_ref_base (ref);
2507 if (base && TREE_CODE (base) == MEM_REF
2508 && TREE_OPERAND (base, 0) == ptr)
2509 return true;
2510 break;
2511 }
2512
2513 case BUILT_IN_MEMCPY:
2514 case BUILT_IN_MEMPCPY:
2515 case BUILT_IN_MEMMOVE:
2516 case BUILT_IN_MEMSET:
2517 case BUILT_IN_MEMCPY_CHK:
2518 case BUILT_IN_MEMPCPY_CHK:
2519 case BUILT_IN_MEMMOVE_CHK:
2520 case BUILT_IN_MEMSET_CHK:
2521 case BUILT_IN_STRNCPY:
2522 case BUILT_IN_STPNCPY:
2523 {
2524 /* For a must-alias check we need to be able to constrain
2525 the access properly. */
2526 if (!ref->max_size_known_p ())
2527 return false;
2528 tree dest = gimple_call_arg (stmt, 0);
2529 tree len = gimple_call_arg (stmt, 2);
2530 if (!poly_int_tree_p (len))
2531 return false;
2532 tree rbase = ref->base;
2533 poly_offset_int roffset = ref->offset;
2534 ao_ref dref;
2535 ao_ref_init_from_ptr_and_size (&dref, dest, len);
2536 tree base = ao_ref_base (&dref);
2537 poly_offset_int offset = dref.offset;
2538 if (!base || !known_size_p (dref.size))
2539 return false;
2540 if (TREE_CODE (base) == MEM_REF)
2541 {
2542 if (TREE_CODE (rbase) != MEM_REF)
2543 return false;
2544 // Compare pointers.
2545 offset += mem_ref_offset (base) << LOG2_BITS_PER_UNIT;
2546 roffset += mem_ref_offset (rbase) << LOG2_BITS_PER_UNIT;
2547 base = TREE_OPERAND (base, 0);
2548 rbase = TREE_OPERAND (rbase, 0);
2549 }
2550 if (base == rbase
2551 && known_subrange_p (roffset, ref->max_size, offset,
2552 wi::to_poly_offset (len)
2553 << LOG2_BITS_PER_UNIT))
2554 return true;
2555 break;
2556 }
2557
2558 case BUILT_IN_VA_END:
2559 {
2560 tree ptr = gimple_call_arg (stmt, 0);
2561 if (TREE_CODE (ptr) == ADDR_EXPR)
2562 {
2563 tree base = ao_ref_base (ref);
2564 if (TREE_OPERAND (ptr, 0) == base)
2565 return true;
2566 }
2567 break;
2568 }
2569
2570 default:;
2571 }
2572 }
2573 return false;
2574 }
2575
2576 bool
2577 stmt_kills_ref_p (gimple *stmt, tree ref)
2578 {
2579 ao_ref r;
2580 ao_ref_init (&r, ref);
2581 return stmt_kills_ref_p (stmt, &r);
2582 }
2583
2584
2585 /* Walk the virtual use-def chain of VUSE until hitting the virtual operand
2586 TARGET or a statement clobbering the memory reference REF in which
2587 case false is returned. The walk starts with VUSE, one argument of PHI. */
2588
2589 static bool
2590 maybe_skip_until (gimple *phi, tree target, ao_ref *ref,
2591 tree vuse, unsigned int *cnt, bitmap *visited,
2592 bool abort_on_visited,
2593 void *(*translate)(ao_ref *, tree, void *, bool *),
2594 void *data)
2595 {
2596 basic_block bb = gimple_bb (phi);
2597
2598 if (!*visited)
2599 *visited = BITMAP_ALLOC (NULL);
2600
2601 bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi)));
2602
2603 /* Walk until we hit the target. */
2604 while (vuse != target)
2605 {
2606 gimple *def_stmt = SSA_NAME_DEF_STMT (vuse);
2607 /* Recurse for PHI nodes. */
2608 if (gimple_code (def_stmt) == GIMPLE_PHI)
2609 {
2610 /* An already visited PHI node ends the walk successfully. */
2611 if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt))))
2612 return !abort_on_visited;
2613 vuse = get_continuation_for_phi (def_stmt, ref, cnt,
2614 visited, abort_on_visited,
2615 translate, data);
2616 if (!vuse)
2617 return false;
2618 continue;
2619 }
2620 else if (gimple_nop_p (def_stmt))
2621 return false;
2622 else
2623 {
2624 /* A clobbering statement or the end of the IL ends it failing. */
2625 ++*cnt;
2626 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2627 {
2628 bool disambiguate_only = true;
2629 if (translate
2630 && (*translate) (ref, vuse, data, &disambiguate_only) == NULL)
2631 ;
2632 else
2633 return false;
2634 }
2635 }
2636 /* If we reach a new basic-block see if we already skipped it
2637 in a previous walk that ended successfully. */
2638 if (gimple_bb (def_stmt) != bb)
2639 {
2640 if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse)))
2641 return !abort_on_visited;
2642 bb = gimple_bb (def_stmt);
2643 }
2644 vuse = gimple_vuse (def_stmt);
2645 }
2646 return true;
2647 }
2648
2649
2650 /* Starting from a PHI node for the virtual operand of the memory reference
2651 REF find a continuation virtual operand that allows to continue walking
2652 statements dominating PHI skipping only statements that cannot possibly
2653 clobber REF. Increments *CNT for each alias disambiguation done.
2654 Returns NULL_TREE if no suitable virtual operand can be found. */
2655
2656 tree
2657 get_continuation_for_phi (gimple *phi, ao_ref *ref,
2658 unsigned int *cnt, bitmap *visited,
2659 bool abort_on_visited,
2660 void *(*translate)(ao_ref *, tree, void *, bool *),
2661 void *data)
2662 {
2663 unsigned nargs = gimple_phi_num_args (phi);
2664
2665 /* Through a single-argument PHI we can simply look through. */
2666 if (nargs == 1)
2667 return PHI_ARG_DEF (phi, 0);
2668
2669 /* For two or more arguments try to pairwise skip non-aliasing code
2670 until we hit the phi argument definition that dominates the other one. */
2671 basic_block phi_bb = gimple_bb (phi);
2672 tree arg0, arg1;
2673 unsigned i;
2674
2675 /* Find a candidate for the virtual operand which definition
2676 dominates those of all others. */
2677 /* First look if any of the args themselves satisfy this. */
2678 for (i = 0; i < nargs; ++i)
2679 {
2680 arg0 = PHI_ARG_DEF (phi, i);
2681 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2682 break;
2683 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0));
2684 if (def_bb != phi_bb
2685 && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb))
2686 break;
2687 arg0 = NULL_TREE;
2688 }
2689 /* If not, look if we can reach such candidate by walking defs
2690 of a PHI arg without crossing other PHIs. */
2691 if (! arg0)
2692 for (i = 0; i < nargs; ++i)
2693 {
2694 arg0 = PHI_ARG_DEF (phi, i);
2695 gimple *def = SSA_NAME_DEF_STMT (arg0);
2696 /* Backedges can't work. */
2697 if (dominated_by_p (CDI_DOMINATORS,
2698 gimple_bb (def), phi_bb))
2699 continue;
2700 /* See below. */
2701 if (gimple_code (def) == GIMPLE_PHI)
2702 continue;
2703 while (! dominated_by_p (CDI_DOMINATORS,
2704 phi_bb, gimple_bb (def)))
2705 {
2706 arg0 = gimple_vuse (def);
2707 if (SSA_NAME_IS_DEFAULT_DEF (arg0))
2708 break;
2709 def = SSA_NAME_DEF_STMT (arg0);
2710 if (gimple_code (def) == GIMPLE_PHI)
2711 {
2712 /* Do not try to look through arbitrarily complicated
2713 CFGs. For those looking for the first VUSE starting
2714 from the end of the immediate dominator of phi_bb
2715 is likely faster. */
2716 arg0 = NULL_TREE;
2717 goto next;
2718 }
2719 }
2720 break;
2721 next:;
2722 }
2723 if (! arg0)
2724 return NULL_TREE;
2725
2726 /* Then check against the found candidate. */
2727 for (i = 0; i < nargs; ++i)
2728 {
2729 arg1 = PHI_ARG_DEF (phi, i);
2730 if (arg1 == arg0)
2731 ;
2732 else if (! maybe_skip_until (phi, arg0, ref, arg1, cnt, visited,
2733 abort_on_visited, translate, data))
2734 return NULL_TREE;
2735 }
2736
2737 return arg0;
2738 }
2739
2740 /* Based on the memory reference REF and its virtual use VUSE call
2741 WALKER for each virtual use that is equivalent to VUSE, including VUSE
2742 itself. That is, for each virtual use for which its defining statement
2743 does not clobber REF.
2744
2745 WALKER is called with REF, the current virtual use and DATA. If
2746 WALKER returns non-NULL the walk stops and its result is returned.
2747 At the end of a non-successful walk NULL is returned.
2748
2749 TRANSLATE if non-NULL is called with a pointer to REF, the virtual
2750 use which definition is a statement that may clobber REF and DATA.
2751 If TRANSLATE returns (void *)-1 the walk stops and NULL is returned.
2752 If TRANSLATE returns non-NULL the walk stops and its result is returned.
2753 If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed
2754 to adjust REF and *DATA to make that valid.
2755
2756 VALUEIZE if non-NULL is called with the next VUSE that is considered
2757 and return value is substituted for that. This can be used to
2758 implement optimistic value-numbering for example. Note that the
2759 VUSE argument is assumed to be valueized already.
2760
2761 TODO: Cache the vector of equivalent vuses per ref, vuse pair. */
2762
2763 void *
2764 walk_non_aliased_vuses (ao_ref *ref, tree vuse,
2765 void *(*walker)(ao_ref *, tree, unsigned int, void *),
2766 void *(*translate)(ao_ref *, tree, void *, bool *),
2767 tree (*valueize)(tree),
2768 void *data)
2769 {
2770 bitmap visited = NULL;
2771 void *res;
2772 unsigned int cnt = 0;
2773 bool translated = false;
2774
2775 timevar_push (TV_ALIAS_STMT_WALK);
2776
2777 do
2778 {
2779 gimple *def_stmt;
2780
2781 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2782 res = (*walker) (ref, vuse, cnt, data);
2783 /* Abort walk. */
2784 if (res == (void *)-1)
2785 {
2786 res = NULL;
2787 break;
2788 }
2789 /* Lookup succeeded. */
2790 else if (res != NULL)
2791 break;
2792
2793 if (valueize)
2794 vuse = valueize (vuse);
2795 def_stmt = SSA_NAME_DEF_STMT (vuse);
2796 if (gimple_nop_p (def_stmt))
2797 break;
2798 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2799 vuse = get_continuation_for_phi (def_stmt, ref, &cnt,
2800 &visited, translated, translate, data);
2801 else
2802 {
2803 cnt++;
2804 if (stmt_may_clobber_ref_p_1 (def_stmt, ref))
2805 {
2806 if (!translate)
2807 break;
2808 bool disambiguate_only = false;
2809 res = (*translate) (ref, vuse, data, &disambiguate_only);
2810 /* Failed lookup and translation. */
2811 if (res == (void *)-1)
2812 {
2813 res = NULL;
2814 break;
2815 }
2816 /* Lookup succeeded. */
2817 else if (res != NULL)
2818 break;
2819 /* Translation succeeded, continue walking. */
2820 translated = translated || !disambiguate_only;
2821 }
2822 vuse = gimple_vuse (def_stmt);
2823 }
2824 }
2825 while (vuse);
2826
2827 if (visited)
2828 BITMAP_FREE (visited);
2829
2830 timevar_pop (TV_ALIAS_STMT_WALK);
2831
2832 return res;
2833 }
2834
2835
2836 /* Based on the memory reference REF call WALKER for each vdef which
2837 defining statement may clobber REF, starting with VDEF. If REF
2838 is NULL_TREE, each defining statement is visited.
2839
2840 WALKER is called with REF, the current vdef and DATA. If WALKER
2841 returns true the walk is stopped, otherwise it continues.
2842
2843 If function entry is reached, FUNCTION_ENTRY_REACHED is set to true.
2844 The pointer may be NULL and then we do not track this information.
2845
2846 At PHI nodes walk_aliased_vdefs forks into one walk for reach
2847 PHI argument (but only one walk continues on merge points), the
2848 return value is true if any of the walks was successful.
2849
2850 The function returns the number of statements walked or -1 if
2851 LIMIT stmts were walked and the walk was aborted at this point.
2852 If LIMIT is zero the walk is not aborted. */
2853
2854 static int
2855 walk_aliased_vdefs_1 (ao_ref *ref, tree vdef,
2856 bool (*walker)(ao_ref *, tree, void *), void *data,
2857 bitmap *visited, unsigned int cnt,
2858 bool *function_entry_reached, unsigned limit)
2859 {
2860 do
2861 {
2862 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
2863
2864 if (*visited
2865 && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef)))
2866 return cnt;
2867
2868 if (gimple_nop_p (def_stmt))
2869 {
2870 if (function_entry_reached)
2871 *function_entry_reached = true;
2872 return cnt;
2873 }
2874 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2875 {
2876 unsigned i;
2877 if (!*visited)
2878 *visited = BITMAP_ALLOC (NULL);
2879 for (i = 0; i < gimple_phi_num_args (def_stmt); ++i)
2880 {
2881 int res = walk_aliased_vdefs_1 (ref,
2882 gimple_phi_arg_def (def_stmt, i),
2883 walker, data, visited, cnt,
2884 function_entry_reached, limit);
2885 if (res == -1)
2886 return -1;
2887 cnt = res;
2888 }
2889 return cnt;
2890 }
2891
2892 /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */
2893 cnt++;
2894 if (cnt == limit)
2895 return -1;
2896 if ((!ref
2897 || stmt_may_clobber_ref_p_1 (def_stmt, ref))
2898 && (*walker) (ref, vdef, data))
2899 return cnt;
2900
2901 vdef = gimple_vuse (def_stmt);
2902 }
2903 while (1);
2904 }
2905
2906 int
2907 walk_aliased_vdefs (ao_ref *ref, tree vdef,
2908 bool (*walker)(ao_ref *, tree, void *), void *data,
2909 bitmap *visited,
2910 bool *function_entry_reached, unsigned int limit)
2911 {
2912 bitmap local_visited = NULL;
2913 int ret;
2914
2915 timevar_push (TV_ALIAS_STMT_WALK);
2916
2917 if (function_entry_reached)
2918 *function_entry_reached = false;
2919
2920 ret = walk_aliased_vdefs_1 (ref, vdef, walker, data,
2921 visited ? visited : &local_visited, 0,
2922 function_entry_reached, limit);
2923 if (local_visited)
2924 BITMAP_FREE (local_visited);
2925
2926 timevar_pop (TV_ALIAS_STMT_WALK);
2927
2928 return ret;
2929 }
2930