]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ccp.c
/cp
[thirdparty/gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "cfgloop.h"
142 #include "stor-layout.h"
143 #include "optabs-query.h"
144 #include "tree-ssa-ccp.h"
145 #include "tree-dfa.h"
146 #include "diagnostic-core.h"
147 #include "stringpool.h"
148 #include "attribs.h"
149 #include "tree-vector-builder.h"
150
151 /* Possible lattice values. */
152 typedef enum
153 {
154 UNINITIALIZED,
155 UNDEFINED,
156 CONSTANT,
157 VARYING
158 } ccp_lattice_t;
159
160 class ccp_prop_value_t {
161 public:
162 /* Lattice value. */
163 ccp_lattice_t lattice_val;
164
165 /* Propagated value. */
166 tree value;
167
168 /* Mask that applies to the propagated value during CCP. For X
169 with a CONSTANT lattice value X & ~mask == value & ~mask. The
170 zero bits in the mask cover constant values. The ones mean no
171 information. */
172 widest_int mask;
173 };
174
175 class ccp_propagate : public ssa_propagation_engine
176 {
177 public:
178 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
179 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
180 };
181
182 /* Array of propagated constant values. After propagation,
183 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
184 the constant is held in an SSA name representing a memory store
185 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
186 memory reference used to store (i.e., the LHS of the assignment
187 doing the store). */
188 static ccp_prop_value_t *const_val;
189 static unsigned n_const_val;
190
191 static void canonicalize_value (ccp_prop_value_t *);
192 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
193
194 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
195
196 static void
197 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
198 {
199 switch (val.lattice_val)
200 {
201 case UNINITIALIZED:
202 fprintf (outf, "%sUNINITIALIZED", prefix);
203 break;
204 case UNDEFINED:
205 fprintf (outf, "%sUNDEFINED", prefix);
206 break;
207 case VARYING:
208 fprintf (outf, "%sVARYING", prefix);
209 break;
210 case CONSTANT:
211 if (TREE_CODE (val.value) != INTEGER_CST
212 || val.mask == 0)
213 {
214 fprintf (outf, "%sCONSTANT ", prefix);
215 print_generic_expr (outf, val.value, dump_flags);
216 }
217 else
218 {
219 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
220 val.mask);
221 fprintf (outf, "%sCONSTANT ", prefix);
222 print_hex (cval, outf);
223 fprintf (outf, " (");
224 print_hex (val.mask, outf);
225 fprintf (outf, ")");
226 }
227 break;
228 default:
229 gcc_unreachable ();
230 }
231 }
232
233
234 /* Print lattice value VAL to stderr. */
235
236 void debug_lattice_value (ccp_prop_value_t val);
237
238 DEBUG_FUNCTION void
239 debug_lattice_value (ccp_prop_value_t val)
240 {
241 dump_lattice_value (stderr, "", val);
242 fprintf (stderr, "\n");
243 }
244
245 /* Extend NONZERO_BITS to a full mask, based on sgn. */
246
247 static widest_int
248 extend_mask (const wide_int &nonzero_bits, signop sgn)
249 {
250 return widest_int::from (nonzero_bits, sgn);
251 }
252
253 /* Compute a default value for variable VAR and store it in the
254 CONST_VAL array. The following rules are used to get default
255 values:
256
257 1- Global and static variables that are declared constant are
258 considered CONSTANT.
259
260 2- Any other value is considered UNDEFINED. This is useful when
261 considering PHI nodes. PHI arguments that are undefined do not
262 change the constant value of the PHI node, which allows for more
263 constants to be propagated.
264
265 3- Variables defined by statements other than assignments and PHI
266 nodes are considered VARYING.
267
268 4- Initial values of variables that are not GIMPLE registers are
269 considered VARYING. */
270
271 static ccp_prop_value_t
272 get_default_value (tree var)
273 {
274 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
275 gimple *stmt;
276
277 stmt = SSA_NAME_DEF_STMT (var);
278
279 if (gimple_nop_p (stmt))
280 {
281 /* Variables defined by an empty statement are those used
282 before being initialized. If VAR is a local variable, we
283 can assume initially that it is UNDEFINED, otherwise we must
284 consider it VARYING. */
285 if (!virtual_operand_p (var)
286 && SSA_NAME_VAR (var)
287 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
288 val.lattice_val = UNDEFINED;
289 else
290 {
291 val.lattice_val = VARYING;
292 val.mask = -1;
293 if (flag_tree_bit_ccp)
294 {
295 wide_int nonzero_bits = get_nonzero_bits (var);
296 if (nonzero_bits != -1)
297 {
298 val.lattice_val = CONSTANT;
299 val.value = build_zero_cst (TREE_TYPE (var));
300 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
301 }
302 }
303 }
304 }
305 else if (is_gimple_assign (stmt))
306 {
307 tree cst;
308 if (gimple_assign_single_p (stmt)
309 && DECL_P (gimple_assign_rhs1 (stmt))
310 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
311 {
312 val.lattice_val = CONSTANT;
313 val.value = cst;
314 }
315 else
316 {
317 /* Any other variable defined by an assignment is considered
318 UNDEFINED. */
319 val.lattice_val = UNDEFINED;
320 }
321 }
322 else if ((is_gimple_call (stmt)
323 && gimple_call_lhs (stmt) != NULL_TREE)
324 || gimple_code (stmt) == GIMPLE_PHI)
325 {
326 /* A variable defined by a call or a PHI node is considered
327 UNDEFINED. */
328 val.lattice_val = UNDEFINED;
329 }
330 else
331 {
332 /* Otherwise, VAR will never take on a constant value. */
333 val.lattice_val = VARYING;
334 val.mask = -1;
335 }
336
337 return val;
338 }
339
340
341 /* Get the constant value associated with variable VAR. */
342
343 static inline ccp_prop_value_t *
344 get_value (tree var)
345 {
346 ccp_prop_value_t *val;
347
348 if (const_val == NULL
349 || SSA_NAME_VERSION (var) >= n_const_val)
350 return NULL;
351
352 val = &const_val[SSA_NAME_VERSION (var)];
353 if (val->lattice_val == UNINITIALIZED)
354 *val = get_default_value (var);
355
356 canonicalize_value (val);
357
358 return val;
359 }
360
361 /* Return the constant tree value associated with VAR. */
362
363 static inline tree
364 get_constant_value (tree var)
365 {
366 ccp_prop_value_t *val;
367 if (TREE_CODE (var) != SSA_NAME)
368 {
369 if (is_gimple_min_invariant (var))
370 return var;
371 return NULL_TREE;
372 }
373 val = get_value (var);
374 if (val
375 && val->lattice_val == CONSTANT
376 && (TREE_CODE (val->value) != INTEGER_CST
377 || val->mask == 0))
378 return val->value;
379 return NULL_TREE;
380 }
381
382 /* Sets the value associated with VAR to VARYING. */
383
384 static inline void
385 set_value_varying (tree var)
386 {
387 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
388
389 val->lattice_val = VARYING;
390 val->value = NULL_TREE;
391 val->mask = -1;
392 }
393
394 /* For integer constants, make sure to drop TREE_OVERFLOW. */
395
396 static void
397 canonicalize_value (ccp_prop_value_t *val)
398 {
399 if (val->lattice_val != CONSTANT)
400 return;
401
402 if (TREE_OVERFLOW_P (val->value))
403 val->value = drop_tree_overflow (val->value);
404 }
405
406 /* Return whether the lattice transition is valid. */
407
408 static bool
409 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
410 {
411 /* Lattice transitions must always be monotonically increasing in
412 value. */
413 if (old_val.lattice_val < new_val.lattice_val)
414 return true;
415
416 if (old_val.lattice_val != new_val.lattice_val)
417 return false;
418
419 if (!old_val.value && !new_val.value)
420 return true;
421
422 /* Now both lattice values are CONSTANT. */
423
424 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
425 when only a single copy edge is executable. */
426 if (TREE_CODE (old_val.value) == SSA_NAME
427 && TREE_CODE (new_val.value) == SSA_NAME)
428 return true;
429
430 /* Allow transitioning from a constant to a copy. */
431 if (is_gimple_min_invariant (old_val.value)
432 && TREE_CODE (new_val.value) == SSA_NAME)
433 return true;
434
435 /* Allow transitioning from PHI <&x, not executable> == &x
436 to PHI <&x, &y> == common alignment. */
437 if (TREE_CODE (old_val.value) != INTEGER_CST
438 && TREE_CODE (new_val.value) == INTEGER_CST)
439 return true;
440
441 /* Bit-lattices have to agree in the still valid bits. */
442 if (TREE_CODE (old_val.value) == INTEGER_CST
443 && TREE_CODE (new_val.value) == INTEGER_CST)
444 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
445 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
446
447 /* Otherwise constant values have to agree. */
448 if (operand_equal_p (old_val.value, new_val.value, 0))
449 return true;
450
451 /* At least the kinds and types should agree now. */
452 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
453 || !types_compatible_p (TREE_TYPE (old_val.value),
454 TREE_TYPE (new_val.value)))
455 return false;
456
457 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
458 to non-NaN. */
459 tree type = TREE_TYPE (new_val.value);
460 if (SCALAR_FLOAT_TYPE_P (type)
461 && !HONOR_NANS (type))
462 {
463 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
464 return true;
465 }
466 else if (VECTOR_FLOAT_TYPE_P (type)
467 && !HONOR_NANS (type))
468 {
469 unsigned int count
470 = tree_vector_builder::binary_encoded_nelts (old_val.value,
471 new_val.value);
472 for (unsigned int i = 0; i < count; ++i)
473 if (!REAL_VALUE_ISNAN
474 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
475 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
476 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
477 return false;
478 return true;
479 }
480 else if (COMPLEX_FLOAT_TYPE_P (type)
481 && !HONOR_NANS (type))
482 {
483 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
484 && !operand_equal_p (TREE_REALPART (old_val.value),
485 TREE_REALPART (new_val.value), 0))
486 return false;
487 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
488 && !operand_equal_p (TREE_IMAGPART (old_val.value),
489 TREE_IMAGPART (new_val.value), 0))
490 return false;
491 return true;
492 }
493 return false;
494 }
495
496 /* Set the value for variable VAR to NEW_VAL. Return true if the new
497 value is different from VAR's previous value. */
498
499 static bool
500 set_lattice_value (tree var, ccp_prop_value_t *new_val)
501 {
502 /* We can deal with old UNINITIALIZED values just fine here. */
503 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
504
505 canonicalize_value (new_val);
506
507 /* We have to be careful to not go up the bitwise lattice
508 represented by the mask. Instead of dropping to VARYING
509 use the meet operator to retain a conservative value.
510 Missed optimizations like PR65851 makes this necessary.
511 It also ensures we converge to a stable lattice solution. */
512 if (old_val->lattice_val != UNINITIALIZED)
513 ccp_lattice_meet (new_val, old_val);
514
515 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
516
517 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
518 caller that this was a non-transition. */
519 if (old_val->lattice_val != new_val->lattice_val
520 || (new_val->lattice_val == CONSTANT
521 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
522 || (TREE_CODE (new_val->value) == INTEGER_CST
523 && (new_val->mask != old_val->mask
524 || (wi::bit_and_not (wi::to_widest (old_val->value),
525 new_val->mask)
526 != wi::bit_and_not (wi::to_widest (new_val->value),
527 new_val->mask))))
528 || (TREE_CODE (new_val->value) != INTEGER_CST
529 && !operand_equal_p (new_val->value, old_val->value, 0)))))
530 {
531 /* ??? We would like to delay creation of INTEGER_CSTs from
532 partially constants here. */
533
534 if (dump_file && (dump_flags & TDF_DETAILS))
535 {
536 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
537 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
538 }
539
540 *old_val = *new_val;
541
542 gcc_assert (new_val->lattice_val != UNINITIALIZED);
543 return true;
544 }
545
546 return false;
547 }
548
549 static ccp_prop_value_t get_value_for_expr (tree, bool);
550 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
551 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
552 signop, int, const widest_int &, const widest_int &,
553 signop, int, const widest_int &, const widest_int &);
554
555 /* Return a widest_int that can be used for bitwise simplifications
556 from VAL. */
557
558 static widest_int
559 value_to_wide_int (ccp_prop_value_t val)
560 {
561 if (val.value
562 && TREE_CODE (val.value) == INTEGER_CST)
563 return wi::to_widest (val.value);
564
565 return 0;
566 }
567
568 /* Return the value for the address expression EXPR based on alignment
569 information. */
570
571 static ccp_prop_value_t
572 get_value_from_alignment (tree expr)
573 {
574 tree type = TREE_TYPE (expr);
575 ccp_prop_value_t val;
576 unsigned HOST_WIDE_INT bitpos;
577 unsigned int align;
578
579 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
580
581 get_pointer_alignment_1 (expr, &align, &bitpos);
582 val.mask = wi::bit_and_not
583 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
584 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
585 : -1,
586 align / BITS_PER_UNIT - 1);
587 val.lattice_val
588 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
589 if (val.lattice_val == CONSTANT)
590 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
591 else
592 val.value = NULL_TREE;
593
594 return val;
595 }
596
597 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
598 return constant bits extracted from alignment information for
599 invariant addresses. */
600
601 static ccp_prop_value_t
602 get_value_for_expr (tree expr, bool for_bits_p)
603 {
604 ccp_prop_value_t val;
605
606 if (TREE_CODE (expr) == SSA_NAME)
607 {
608 ccp_prop_value_t *val_ = get_value (expr);
609 if (val_)
610 val = *val_;
611 else
612 {
613 val.lattice_val = VARYING;
614 val.value = NULL_TREE;
615 val.mask = -1;
616 }
617 if (for_bits_p
618 && val.lattice_val == CONSTANT)
619 {
620 if (TREE_CODE (val.value) == ADDR_EXPR)
621 val = get_value_from_alignment (val.value);
622 else if (TREE_CODE (val.value) != INTEGER_CST)
623 {
624 val.lattice_val = VARYING;
625 val.value = NULL_TREE;
626 val.mask = -1;
627 }
628 }
629 /* Fall back to a copy value. */
630 if (!for_bits_p
631 && val.lattice_val == VARYING
632 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
633 {
634 val.lattice_val = CONSTANT;
635 val.value = expr;
636 val.mask = -1;
637 }
638 }
639 else if (is_gimple_min_invariant (expr)
640 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
641 {
642 val.lattice_val = CONSTANT;
643 val.value = expr;
644 val.mask = 0;
645 canonicalize_value (&val);
646 }
647 else if (TREE_CODE (expr) == ADDR_EXPR)
648 val = get_value_from_alignment (expr);
649 else
650 {
651 val.lattice_val = VARYING;
652 val.mask = -1;
653 val.value = NULL_TREE;
654 }
655
656 if (val.lattice_val == VARYING
657 && TYPE_UNSIGNED (TREE_TYPE (expr)))
658 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
659
660 return val;
661 }
662
663 /* Return the likely CCP lattice value for STMT.
664
665 If STMT has no operands, then return CONSTANT.
666
667 Else if undefinedness of operands of STMT cause its value to be
668 undefined, then return UNDEFINED.
669
670 Else if any operands of STMT are constants, then return CONSTANT.
671
672 Else return VARYING. */
673
674 static ccp_lattice_t
675 likely_value (gimple *stmt)
676 {
677 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
678 bool has_nsa_operand;
679 tree use;
680 ssa_op_iter iter;
681 unsigned i;
682
683 enum gimple_code code = gimple_code (stmt);
684
685 /* This function appears to be called only for assignments, calls,
686 conditionals, and switches, due to the logic in visit_stmt. */
687 gcc_assert (code == GIMPLE_ASSIGN
688 || code == GIMPLE_CALL
689 || code == GIMPLE_COND
690 || code == GIMPLE_SWITCH);
691
692 /* If the statement has volatile operands, it won't fold to a
693 constant value. */
694 if (gimple_has_volatile_ops (stmt))
695 return VARYING;
696
697 /* Arrive here for more complex cases. */
698 has_constant_operand = false;
699 has_undefined_operand = false;
700 all_undefined_operands = true;
701 has_nsa_operand = false;
702 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
703 {
704 ccp_prop_value_t *val = get_value (use);
705
706 if (val && val->lattice_val == UNDEFINED)
707 has_undefined_operand = true;
708 else
709 all_undefined_operands = false;
710
711 if (val && val->lattice_val == CONSTANT)
712 has_constant_operand = true;
713
714 if (SSA_NAME_IS_DEFAULT_DEF (use)
715 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
716 has_nsa_operand = true;
717 }
718
719 /* There may be constants in regular rhs operands. For calls we
720 have to ignore lhs, fndecl and static chain, otherwise only
721 the lhs. */
722 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
723 i < gimple_num_ops (stmt); ++i)
724 {
725 tree op = gimple_op (stmt, i);
726 if (!op || TREE_CODE (op) == SSA_NAME)
727 continue;
728 if (is_gimple_min_invariant (op))
729 has_constant_operand = true;
730 }
731
732 if (has_constant_operand)
733 all_undefined_operands = false;
734
735 if (has_undefined_operand
736 && code == GIMPLE_CALL
737 && gimple_call_internal_p (stmt))
738 switch (gimple_call_internal_fn (stmt))
739 {
740 /* These 3 builtins use the first argument just as a magic
741 way how to find out a decl uid. */
742 case IFN_GOMP_SIMD_LANE:
743 case IFN_GOMP_SIMD_VF:
744 case IFN_GOMP_SIMD_LAST_LANE:
745 has_undefined_operand = false;
746 break;
747 default:
748 break;
749 }
750
751 /* If the operation combines operands like COMPLEX_EXPR make sure to
752 not mark the result UNDEFINED if only one part of the result is
753 undefined. */
754 if (has_undefined_operand && all_undefined_operands)
755 return UNDEFINED;
756 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
757 {
758 switch (gimple_assign_rhs_code (stmt))
759 {
760 /* Unary operators are handled with all_undefined_operands. */
761 case PLUS_EXPR:
762 case MINUS_EXPR:
763 case POINTER_PLUS_EXPR:
764 case BIT_XOR_EXPR:
765 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
766 Not bitwise operators, one VARYING operand may specify the
767 result completely.
768 Not logical operators for the same reason, apart from XOR.
769 Not COMPLEX_EXPR as one VARYING operand makes the result partly
770 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
771 the undefined operand may be promoted. */
772 return UNDEFINED;
773
774 case ADDR_EXPR:
775 /* If any part of an address is UNDEFINED, like the index
776 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
777 return UNDEFINED;
778
779 default:
780 ;
781 }
782 }
783 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
784 fall back to CONSTANT. During iteration UNDEFINED may still drop
785 to CONSTANT. */
786 if (has_undefined_operand)
787 return CONSTANT;
788
789 /* We do not consider virtual operands here -- load from read-only
790 memory may have only VARYING virtual operands, but still be
791 constant. Also we can combine the stmt with definitions from
792 operands whose definitions are not simulated again. */
793 if (has_constant_operand
794 || has_nsa_operand
795 || gimple_references_memory_p (stmt))
796 return CONSTANT;
797
798 return VARYING;
799 }
800
801 /* Returns true if STMT cannot be constant. */
802
803 static bool
804 surely_varying_stmt_p (gimple *stmt)
805 {
806 /* If the statement has operands that we cannot handle, it cannot be
807 constant. */
808 if (gimple_has_volatile_ops (stmt))
809 return true;
810
811 /* If it is a call and does not return a value or is not a
812 builtin and not an indirect call or a call to function with
813 assume_aligned/alloc_align attribute, it is varying. */
814 if (is_gimple_call (stmt))
815 {
816 tree fndecl, fntype = gimple_call_fntype (stmt);
817 if (!gimple_call_lhs (stmt)
818 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
819 && !fndecl_built_in_p (fndecl)
820 && !lookup_attribute ("assume_aligned",
821 TYPE_ATTRIBUTES (fntype))
822 && !lookup_attribute ("alloc_align",
823 TYPE_ATTRIBUTES (fntype))))
824 return true;
825 }
826
827 /* Any other store operation is not interesting. */
828 else if (gimple_vdef (stmt))
829 return true;
830
831 /* Anything other than assignments and conditional jumps are not
832 interesting for CCP. */
833 if (gimple_code (stmt) != GIMPLE_ASSIGN
834 && gimple_code (stmt) != GIMPLE_COND
835 && gimple_code (stmt) != GIMPLE_SWITCH
836 && gimple_code (stmt) != GIMPLE_CALL)
837 return true;
838
839 return false;
840 }
841
842 /* Initialize local data structures for CCP. */
843
844 static void
845 ccp_initialize (void)
846 {
847 basic_block bb;
848
849 n_const_val = num_ssa_names;
850 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
851
852 /* Initialize simulation flags for PHI nodes and statements. */
853 FOR_EACH_BB_FN (bb, cfun)
854 {
855 gimple_stmt_iterator i;
856
857 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
858 {
859 gimple *stmt = gsi_stmt (i);
860 bool is_varying;
861
862 /* If the statement is a control insn, then we do not
863 want to avoid simulating the statement once. Failure
864 to do so means that those edges will never get added. */
865 if (stmt_ends_bb_p (stmt))
866 is_varying = false;
867 else
868 is_varying = surely_varying_stmt_p (stmt);
869
870 if (is_varying)
871 {
872 tree def;
873 ssa_op_iter iter;
874
875 /* If the statement will not produce a constant, mark
876 all its outputs VARYING. */
877 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
878 set_value_varying (def);
879 }
880 prop_set_simulate_again (stmt, !is_varying);
881 }
882 }
883
884 /* Now process PHI nodes. We never clear the simulate_again flag on
885 phi nodes, since we do not know which edges are executable yet,
886 except for phi nodes for virtual operands when we do not do store ccp. */
887 FOR_EACH_BB_FN (bb, cfun)
888 {
889 gphi_iterator i;
890
891 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
892 {
893 gphi *phi = i.phi ();
894
895 if (virtual_operand_p (gimple_phi_result (phi)))
896 prop_set_simulate_again (phi, false);
897 else
898 prop_set_simulate_again (phi, true);
899 }
900 }
901 }
902
903 /* Debug count support. Reset the values of ssa names
904 VARYING when the total number ssa names analyzed is
905 beyond the debug count specified. */
906
907 static void
908 do_dbg_cnt (void)
909 {
910 unsigned i;
911 for (i = 0; i < num_ssa_names; i++)
912 {
913 if (!dbg_cnt (ccp))
914 {
915 const_val[i].lattice_val = VARYING;
916 const_val[i].mask = -1;
917 const_val[i].value = NULL_TREE;
918 }
919 }
920 }
921
922
923 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
924 class ccp_folder : public substitute_and_fold_engine
925 {
926 public:
927 tree get_value (tree) FINAL OVERRIDE;
928 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
929 };
930
931 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
932 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
933 of calling member functions. */
934
935 tree
936 ccp_folder::get_value (tree op)
937 {
938 return get_constant_value (op);
939 }
940
941 /* Do final substitution of propagated values, cleanup the flowgraph and
942 free allocated storage. If NONZERO_P, record nonzero bits.
943
944 Return TRUE when something was optimized. */
945
946 static bool
947 ccp_finalize (bool nonzero_p)
948 {
949 bool something_changed;
950 unsigned i;
951 tree name;
952
953 do_dbg_cnt ();
954
955 /* Derive alignment and misalignment information from partially
956 constant pointers in the lattice or nonzero bits from partially
957 constant integers. */
958 FOR_EACH_SSA_NAME (i, name, cfun)
959 {
960 ccp_prop_value_t *val;
961 unsigned int tem, align;
962
963 if (!POINTER_TYPE_P (TREE_TYPE (name))
964 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
965 /* Don't record nonzero bits before IPA to avoid
966 using too much memory. */
967 || !nonzero_p))
968 continue;
969
970 val = get_value (name);
971 if (val->lattice_val != CONSTANT
972 || TREE_CODE (val->value) != INTEGER_CST
973 || val->mask == 0)
974 continue;
975
976 if (POINTER_TYPE_P (TREE_TYPE (name)))
977 {
978 /* Trailing mask bits specify the alignment, trailing value
979 bits the misalignment. */
980 tem = val->mask.to_uhwi ();
981 align = least_bit_hwi (tem);
982 if (align > 1)
983 set_ptr_info_alignment (get_ptr_info (name), align,
984 (TREE_INT_CST_LOW (val->value)
985 & (align - 1)));
986 }
987 else
988 {
989 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
990 wide_int nonzero_bits
991 = (wide_int::from (val->mask, precision, UNSIGNED)
992 | wi::to_wide (val->value));
993 nonzero_bits &= get_nonzero_bits (name);
994 set_nonzero_bits (name, nonzero_bits);
995 }
996 }
997
998 /* Perform substitutions based on the known constant values. */
999 class ccp_folder ccp_folder;
1000 something_changed = ccp_folder.substitute_and_fold ();
1001
1002 free (const_val);
1003 const_val = NULL;
1004 return something_changed;
1005 }
1006
1007
1008 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1009 in VAL1.
1010
1011 any M UNDEFINED = any
1012 any M VARYING = VARYING
1013 Ci M Cj = Ci if (i == j)
1014 Ci M Cj = VARYING if (i != j)
1015 */
1016
1017 static void
1018 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1019 {
1020 if (val1->lattice_val == UNDEFINED
1021 /* For UNDEFINED M SSA we can't always SSA because its definition
1022 may not dominate the PHI node. Doing optimistic copy propagation
1023 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1024 && (val2->lattice_val != CONSTANT
1025 || TREE_CODE (val2->value) != SSA_NAME))
1026 {
1027 /* UNDEFINED M any = any */
1028 *val1 = *val2;
1029 }
1030 else if (val2->lattice_val == UNDEFINED
1031 /* See above. */
1032 && (val1->lattice_val != CONSTANT
1033 || TREE_CODE (val1->value) != SSA_NAME))
1034 {
1035 /* any M UNDEFINED = any
1036 Nothing to do. VAL1 already contains the value we want. */
1037 ;
1038 }
1039 else if (val1->lattice_val == VARYING
1040 || val2->lattice_val == VARYING)
1041 {
1042 /* any M VARYING = VARYING. */
1043 val1->lattice_val = VARYING;
1044 val1->mask = -1;
1045 val1->value = NULL_TREE;
1046 }
1047 else if (val1->lattice_val == CONSTANT
1048 && val2->lattice_val == CONSTANT
1049 && TREE_CODE (val1->value) == INTEGER_CST
1050 && TREE_CODE (val2->value) == INTEGER_CST)
1051 {
1052 /* Ci M Cj = Ci if (i == j)
1053 Ci M Cj = VARYING if (i != j)
1054
1055 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1056 drop to varying. */
1057 val1->mask = (val1->mask | val2->mask
1058 | (wi::to_widest (val1->value)
1059 ^ wi::to_widest (val2->value)));
1060 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1061 {
1062 val1->lattice_val = VARYING;
1063 val1->value = NULL_TREE;
1064 }
1065 }
1066 else if (val1->lattice_val == CONSTANT
1067 && val2->lattice_val == CONSTANT
1068 && operand_equal_p (val1->value, val2->value, 0))
1069 {
1070 /* Ci M Cj = Ci if (i == j)
1071 Ci M Cj = VARYING if (i != j)
1072
1073 VAL1 already contains the value we want for equivalent values. */
1074 }
1075 else if (val1->lattice_val == CONSTANT
1076 && val2->lattice_val == CONSTANT
1077 && (TREE_CODE (val1->value) == ADDR_EXPR
1078 || TREE_CODE (val2->value) == ADDR_EXPR))
1079 {
1080 /* When not equal addresses are involved try meeting for
1081 alignment. */
1082 ccp_prop_value_t tem = *val2;
1083 if (TREE_CODE (val1->value) == ADDR_EXPR)
1084 *val1 = get_value_for_expr (val1->value, true);
1085 if (TREE_CODE (val2->value) == ADDR_EXPR)
1086 tem = get_value_for_expr (val2->value, true);
1087 ccp_lattice_meet (val1, &tem);
1088 }
1089 else
1090 {
1091 /* Any other combination is VARYING. */
1092 val1->lattice_val = VARYING;
1093 val1->mask = -1;
1094 val1->value = NULL_TREE;
1095 }
1096 }
1097
1098
1099 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1100 lattice values to determine PHI_NODE's lattice value. The value of a
1101 PHI node is determined calling ccp_lattice_meet with all the arguments
1102 of the PHI node that are incoming via executable edges. */
1103
1104 enum ssa_prop_result
1105 ccp_propagate::visit_phi (gphi *phi)
1106 {
1107 unsigned i;
1108 ccp_prop_value_t new_val;
1109
1110 if (dump_file && (dump_flags & TDF_DETAILS))
1111 {
1112 fprintf (dump_file, "\nVisiting PHI node: ");
1113 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1114 }
1115
1116 new_val.lattice_val = UNDEFINED;
1117 new_val.value = NULL_TREE;
1118 new_val.mask = 0;
1119
1120 bool first = true;
1121 bool non_exec_edge = false;
1122 for (i = 0; i < gimple_phi_num_args (phi); i++)
1123 {
1124 /* Compute the meet operator over all the PHI arguments flowing
1125 through executable edges. */
1126 edge e = gimple_phi_arg_edge (phi, i);
1127
1128 if (dump_file && (dump_flags & TDF_DETAILS))
1129 {
1130 fprintf (dump_file,
1131 "\tArgument #%d (%d -> %d %sexecutable)\n",
1132 i, e->src->index, e->dest->index,
1133 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1134 }
1135
1136 /* If the incoming edge is executable, Compute the meet operator for
1137 the existing value of the PHI node and the current PHI argument. */
1138 if (e->flags & EDGE_EXECUTABLE)
1139 {
1140 tree arg = gimple_phi_arg (phi, i)->def;
1141 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1142
1143 if (first)
1144 {
1145 new_val = arg_val;
1146 first = false;
1147 }
1148 else
1149 ccp_lattice_meet (&new_val, &arg_val);
1150
1151 if (dump_file && (dump_flags & TDF_DETAILS))
1152 {
1153 fprintf (dump_file, "\t");
1154 print_generic_expr (dump_file, arg, dump_flags);
1155 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1156 fprintf (dump_file, "\n");
1157 }
1158
1159 if (new_val.lattice_val == VARYING)
1160 break;
1161 }
1162 else
1163 non_exec_edge = true;
1164 }
1165
1166 /* In case there were non-executable edges and the value is a copy
1167 make sure its definition dominates the PHI node. */
1168 if (non_exec_edge
1169 && new_val.lattice_val == CONSTANT
1170 && TREE_CODE (new_val.value) == SSA_NAME
1171 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1172 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1173 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1174 {
1175 new_val.lattice_val = VARYING;
1176 new_val.value = NULL_TREE;
1177 new_val.mask = -1;
1178 }
1179
1180 if (dump_file && (dump_flags & TDF_DETAILS))
1181 {
1182 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1183 fprintf (dump_file, "\n\n");
1184 }
1185
1186 /* Make the transition to the new value. */
1187 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1188 {
1189 if (new_val.lattice_val == VARYING)
1190 return SSA_PROP_VARYING;
1191 else
1192 return SSA_PROP_INTERESTING;
1193 }
1194 else
1195 return SSA_PROP_NOT_INTERESTING;
1196 }
1197
1198 /* Return the constant value for OP or OP otherwise. */
1199
1200 static tree
1201 valueize_op (tree op)
1202 {
1203 if (TREE_CODE (op) == SSA_NAME)
1204 {
1205 tree tem = get_constant_value (op);
1206 if (tem)
1207 return tem;
1208 }
1209 return op;
1210 }
1211
1212 /* Return the constant value for OP, but signal to not follow SSA
1213 edges if the definition may be simulated again. */
1214
1215 static tree
1216 valueize_op_1 (tree op)
1217 {
1218 if (TREE_CODE (op) == SSA_NAME)
1219 {
1220 /* If the definition may be simulated again we cannot follow
1221 this SSA edge as the SSA propagator does not necessarily
1222 re-visit the use. */
1223 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1224 if (!gimple_nop_p (def_stmt)
1225 && prop_simulate_again_p (def_stmt))
1226 return NULL_TREE;
1227 tree tem = get_constant_value (op);
1228 if (tem)
1229 return tem;
1230 }
1231 return op;
1232 }
1233
1234 /* CCP specific front-end to the non-destructive constant folding
1235 routines.
1236
1237 Attempt to simplify the RHS of STMT knowing that one or more
1238 operands are constants.
1239
1240 If simplification is possible, return the simplified RHS,
1241 otherwise return the original RHS or NULL_TREE. */
1242
1243 static tree
1244 ccp_fold (gimple *stmt)
1245 {
1246 location_t loc = gimple_location (stmt);
1247 switch (gimple_code (stmt))
1248 {
1249 case GIMPLE_COND:
1250 {
1251 /* Handle comparison operators that can appear in GIMPLE form. */
1252 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1253 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1254 enum tree_code code = gimple_cond_code (stmt);
1255 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1256 }
1257
1258 case GIMPLE_SWITCH:
1259 {
1260 /* Return the constant switch index. */
1261 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1262 }
1263
1264 case GIMPLE_ASSIGN:
1265 case GIMPLE_CALL:
1266 return gimple_fold_stmt_to_constant_1 (stmt,
1267 valueize_op, valueize_op_1);
1268
1269 default:
1270 gcc_unreachable ();
1271 }
1272 }
1273
1274 /* Apply the operation CODE in type TYPE to the value, mask pair
1275 RVAL and RMASK representing a value of type RTYPE and set
1276 the value, mask pair *VAL and *MASK to the result. */
1277
1278 void
1279 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1280 widest_int *val, widest_int *mask,
1281 signop rtype_sgn, int rtype_precision,
1282 const widest_int &rval, const widest_int &rmask)
1283 {
1284 switch (code)
1285 {
1286 case BIT_NOT_EXPR:
1287 *mask = rmask;
1288 *val = ~rval;
1289 break;
1290
1291 case NEGATE_EXPR:
1292 {
1293 widest_int temv, temm;
1294 /* Return ~rval + 1. */
1295 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1296 type_sgn, type_precision, rval, rmask);
1297 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1298 type_sgn, type_precision, temv, temm,
1299 type_sgn, type_precision, 1, 0);
1300 break;
1301 }
1302
1303 CASE_CONVERT:
1304 {
1305 /* First extend mask and value according to the original type. */
1306 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1307 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1308
1309 /* Then extend mask and value according to the target type. */
1310 *mask = wi::ext (*mask, type_precision, type_sgn);
1311 *val = wi::ext (*val, type_precision, type_sgn);
1312 break;
1313 }
1314
1315 default:
1316 *mask = -1;
1317 break;
1318 }
1319 }
1320
1321 /* Apply the operation CODE in type TYPE to the value, mask pairs
1322 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1323 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1324
1325 void
1326 bit_value_binop (enum tree_code code, signop sgn, int width,
1327 widest_int *val, widest_int *mask,
1328 signop r1type_sgn, int r1type_precision,
1329 const widest_int &r1val, const widest_int &r1mask,
1330 signop r2type_sgn, int r2type_precision,
1331 const widest_int &r2val, const widest_int &r2mask)
1332 {
1333 bool swap_p = false;
1334
1335 /* Assume we'll get a constant result. Use an initial non varying
1336 value, we fall back to varying in the end if necessary. */
1337 *mask = -1;
1338
1339 switch (code)
1340 {
1341 case BIT_AND_EXPR:
1342 /* The mask is constant where there is a known not
1343 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1344 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1345 *val = r1val & r2val;
1346 break;
1347
1348 case BIT_IOR_EXPR:
1349 /* The mask is constant where there is a known
1350 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1351 *mask = wi::bit_and_not (r1mask | r2mask,
1352 wi::bit_and_not (r1val, r1mask)
1353 | wi::bit_and_not (r2val, r2mask));
1354 *val = r1val | r2val;
1355 break;
1356
1357 case BIT_XOR_EXPR:
1358 /* m1 | m2 */
1359 *mask = r1mask | r2mask;
1360 *val = r1val ^ r2val;
1361 break;
1362
1363 case LROTATE_EXPR:
1364 case RROTATE_EXPR:
1365 if (r2mask == 0)
1366 {
1367 widest_int shift = r2val;
1368 if (shift == 0)
1369 {
1370 *mask = r1mask;
1371 *val = r1val;
1372 }
1373 else
1374 {
1375 if (wi::neg_p (shift))
1376 {
1377 shift = -shift;
1378 if (code == RROTATE_EXPR)
1379 code = LROTATE_EXPR;
1380 else
1381 code = RROTATE_EXPR;
1382 }
1383 if (code == RROTATE_EXPR)
1384 {
1385 *mask = wi::rrotate (r1mask, shift, width);
1386 *val = wi::rrotate (r1val, shift, width);
1387 }
1388 else
1389 {
1390 *mask = wi::lrotate (r1mask, shift, width);
1391 *val = wi::lrotate (r1val, shift, width);
1392 }
1393 }
1394 }
1395 break;
1396
1397 case LSHIFT_EXPR:
1398 case RSHIFT_EXPR:
1399 /* ??? We can handle partially known shift counts if we know
1400 its sign. That way we can tell that (x << (y | 8)) & 255
1401 is zero. */
1402 if (r2mask == 0)
1403 {
1404 widest_int shift = r2val;
1405 if (shift == 0)
1406 {
1407 *mask = r1mask;
1408 *val = r1val;
1409 }
1410 else
1411 {
1412 if (wi::neg_p (shift))
1413 {
1414 shift = -shift;
1415 if (code == RSHIFT_EXPR)
1416 code = LSHIFT_EXPR;
1417 else
1418 code = RSHIFT_EXPR;
1419 }
1420 if (code == RSHIFT_EXPR)
1421 {
1422 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1423 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1424 }
1425 else
1426 {
1427 *mask = wi::ext (r1mask << shift, width, sgn);
1428 *val = wi::ext (r1val << shift, width, sgn);
1429 }
1430 }
1431 }
1432 break;
1433
1434 case PLUS_EXPR:
1435 case POINTER_PLUS_EXPR:
1436 {
1437 /* Do the addition with unknown bits set to zero, to give carry-ins of
1438 zero wherever possible. */
1439 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1440 + wi::bit_and_not (r2val, r2mask));
1441 lo = wi::ext (lo, width, sgn);
1442 /* Do the addition with unknown bits set to one, to give carry-ins of
1443 one wherever possible. */
1444 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1445 hi = wi::ext (hi, width, sgn);
1446 /* Each bit in the result is known if (a) the corresponding bits in
1447 both inputs are known, and (b) the carry-in to that bit position
1448 is known. We can check condition (b) by seeing if we got the same
1449 result with minimised carries as with maximised carries. */
1450 *mask = r1mask | r2mask | (lo ^ hi);
1451 *mask = wi::ext (*mask, width, sgn);
1452 /* It shouldn't matter whether we choose lo or hi here. */
1453 *val = lo;
1454 break;
1455 }
1456
1457 case MINUS_EXPR:
1458 {
1459 widest_int temv, temm;
1460 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1461 r2type_sgn, r2type_precision, r2val, r2mask);
1462 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1463 r1type_sgn, r1type_precision, r1val, r1mask,
1464 r2type_sgn, r2type_precision, temv, temm);
1465 break;
1466 }
1467
1468 case MULT_EXPR:
1469 {
1470 /* Just track trailing zeros in both operands and transfer
1471 them to the other. */
1472 int r1tz = wi::ctz (r1val | r1mask);
1473 int r2tz = wi::ctz (r2val | r2mask);
1474 if (r1tz + r2tz >= width)
1475 {
1476 *mask = 0;
1477 *val = 0;
1478 }
1479 else if (r1tz + r2tz > 0)
1480 {
1481 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1482 width, sgn);
1483 *val = 0;
1484 }
1485 break;
1486 }
1487
1488 case EQ_EXPR:
1489 case NE_EXPR:
1490 {
1491 widest_int m = r1mask | r2mask;
1492 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1493 {
1494 *mask = 0;
1495 *val = ((code == EQ_EXPR) ? 0 : 1);
1496 }
1497 else
1498 {
1499 /* We know the result of a comparison is always one or zero. */
1500 *mask = 1;
1501 *val = 0;
1502 }
1503 break;
1504 }
1505
1506 case GE_EXPR:
1507 case GT_EXPR:
1508 swap_p = true;
1509 code = swap_tree_comparison (code);
1510 /* Fall through. */
1511 case LT_EXPR:
1512 case LE_EXPR:
1513 {
1514 int minmax, maxmin;
1515
1516 const widest_int &o1val = swap_p ? r2val : r1val;
1517 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1518 const widest_int &o2val = swap_p ? r1val : r2val;
1519 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1520
1521 /* If the most significant bits are not known we know nothing. */
1522 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1523 break;
1524
1525 /* For comparisons the signedness is in the comparison operands. */
1526 sgn = r1type_sgn;
1527
1528 /* If we know the most significant bits we know the values
1529 value ranges by means of treating varying bits as zero
1530 or one. Do a cross comparison of the max/min pairs. */
1531 maxmin = wi::cmp (o1val | o1mask,
1532 wi::bit_and_not (o2val, o2mask), sgn);
1533 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1534 o2val | o2mask, sgn);
1535 if (maxmin < 0) /* o1 is less than o2. */
1536 {
1537 *mask = 0;
1538 *val = 1;
1539 }
1540 else if (minmax > 0) /* o1 is not less or equal to o2. */
1541 {
1542 *mask = 0;
1543 *val = 0;
1544 }
1545 else if (maxmin == minmax) /* o1 and o2 are equal. */
1546 {
1547 /* This probably should never happen as we'd have
1548 folded the thing during fully constant value folding. */
1549 *mask = 0;
1550 *val = (code == LE_EXPR ? 1 : 0);
1551 }
1552 else
1553 {
1554 /* We know the result of a comparison is always one or zero. */
1555 *mask = 1;
1556 *val = 0;
1557 }
1558 break;
1559 }
1560
1561 default:;
1562 }
1563 }
1564
1565 /* Return the propagation value when applying the operation CODE to
1566 the value RHS yielding type TYPE. */
1567
1568 static ccp_prop_value_t
1569 bit_value_unop (enum tree_code code, tree type, tree rhs)
1570 {
1571 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1572 widest_int value, mask;
1573 ccp_prop_value_t val;
1574
1575 if (rval.lattice_val == UNDEFINED)
1576 return rval;
1577
1578 gcc_assert ((rval.lattice_val == CONSTANT
1579 && TREE_CODE (rval.value) == INTEGER_CST)
1580 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1581 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1582 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1583 value_to_wide_int (rval), rval.mask);
1584 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1585 {
1586 val.lattice_val = CONSTANT;
1587 val.mask = mask;
1588 /* ??? Delay building trees here. */
1589 val.value = wide_int_to_tree (type, value);
1590 }
1591 else
1592 {
1593 val.lattice_val = VARYING;
1594 val.value = NULL_TREE;
1595 val.mask = -1;
1596 }
1597 return val;
1598 }
1599
1600 /* Return the propagation value when applying the operation CODE to
1601 the values RHS1 and RHS2 yielding type TYPE. */
1602
1603 static ccp_prop_value_t
1604 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1605 {
1606 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1607 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1608 widest_int value, mask;
1609 ccp_prop_value_t val;
1610
1611 if (r1val.lattice_val == UNDEFINED
1612 || r2val.lattice_val == UNDEFINED)
1613 {
1614 val.lattice_val = VARYING;
1615 val.value = NULL_TREE;
1616 val.mask = -1;
1617 return val;
1618 }
1619
1620 gcc_assert ((r1val.lattice_val == CONSTANT
1621 && TREE_CODE (r1val.value) == INTEGER_CST)
1622 || wi::sext (r1val.mask,
1623 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1624 gcc_assert ((r2val.lattice_val == CONSTANT
1625 && TREE_CODE (r2val.value) == INTEGER_CST)
1626 || wi::sext (r2val.mask,
1627 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1628 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1629 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1630 value_to_wide_int (r1val), r1val.mask,
1631 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1632 value_to_wide_int (r2val), r2val.mask);
1633
1634 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1635 {
1636 val.lattice_val = CONSTANT;
1637 val.mask = mask;
1638 /* ??? Delay building trees here. */
1639 val.value = wide_int_to_tree (type, value);
1640 }
1641 else
1642 {
1643 val.lattice_val = VARYING;
1644 val.value = NULL_TREE;
1645 val.mask = -1;
1646 }
1647 return val;
1648 }
1649
1650 /* Return the propagation value for __builtin_assume_aligned
1651 and functions with assume_aligned or alloc_aligned attribute.
1652 For __builtin_assume_aligned, ATTR is NULL_TREE,
1653 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1654 is false, for alloc_aligned attribute ATTR is non-NULL and
1655 ALLOC_ALIGNED is true. */
1656
1657 static ccp_prop_value_t
1658 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1659 bool alloc_aligned)
1660 {
1661 tree align, misalign = NULL_TREE, type;
1662 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1663 ccp_prop_value_t alignval;
1664 widest_int value, mask;
1665 ccp_prop_value_t val;
1666
1667 if (attr == NULL_TREE)
1668 {
1669 tree ptr = gimple_call_arg (stmt, 0);
1670 type = TREE_TYPE (ptr);
1671 ptrval = get_value_for_expr (ptr, true);
1672 }
1673 else
1674 {
1675 tree lhs = gimple_call_lhs (stmt);
1676 type = TREE_TYPE (lhs);
1677 }
1678
1679 if (ptrval.lattice_val == UNDEFINED)
1680 return ptrval;
1681 gcc_assert ((ptrval.lattice_val == CONSTANT
1682 && TREE_CODE (ptrval.value) == INTEGER_CST)
1683 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1684 if (attr == NULL_TREE)
1685 {
1686 /* Get aligni and misaligni from __builtin_assume_aligned. */
1687 align = gimple_call_arg (stmt, 1);
1688 if (!tree_fits_uhwi_p (align))
1689 return ptrval;
1690 aligni = tree_to_uhwi (align);
1691 if (gimple_call_num_args (stmt) > 2)
1692 {
1693 misalign = gimple_call_arg (stmt, 2);
1694 if (!tree_fits_uhwi_p (misalign))
1695 return ptrval;
1696 misaligni = tree_to_uhwi (misalign);
1697 }
1698 }
1699 else
1700 {
1701 /* Get aligni and misaligni from assume_aligned or
1702 alloc_align attributes. */
1703 if (TREE_VALUE (attr) == NULL_TREE)
1704 return ptrval;
1705 attr = TREE_VALUE (attr);
1706 align = TREE_VALUE (attr);
1707 if (!tree_fits_uhwi_p (align))
1708 return ptrval;
1709 aligni = tree_to_uhwi (align);
1710 if (alloc_aligned)
1711 {
1712 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1713 return ptrval;
1714 align = gimple_call_arg (stmt, aligni - 1);
1715 if (!tree_fits_uhwi_p (align))
1716 return ptrval;
1717 aligni = tree_to_uhwi (align);
1718 }
1719 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1720 {
1721 misalign = TREE_VALUE (TREE_CHAIN (attr));
1722 if (!tree_fits_uhwi_p (misalign))
1723 return ptrval;
1724 misaligni = tree_to_uhwi (misalign);
1725 }
1726 }
1727 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1728 return ptrval;
1729
1730 align = build_int_cst_type (type, -aligni);
1731 alignval = get_value_for_expr (align, true);
1732 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1733 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1734 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1735
1736 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1737 {
1738 val.lattice_val = CONSTANT;
1739 val.mask = mask;
1740 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1741 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1742 value |= misaligni;
1743 /* ??? Delay building trees here. */
1744 val.value = wide_int_to_tree (type, value);
1745 }
1746 else
1747 {
1748 val.lattice_val = VARYING;
1749 val.value = NULL_TREE;
1750 val.mask = -1;
1751 }
1752 return val;
1753 }
1754
1755 /* Evaluate statement STMT.
1756 Valid only for assignments, calls, conditionals, and switches. */
1757
1758 static ccp_prop_value_t
1759 evaluate_stmt (gimple *stmt)
1760 {
1761 ccp_prop_value_t val;
1762 tree simplified = NULL_TREE;
1763 ccp_lattice_t likelyvalue = likely_value (stmt);
1764 bool is_constant = false;
1765 unsigned int align;
1766
1767 if (dump_file && (dump_flags & TDF_DETAILS))
1768 {
1769 fprintf (dump_file, "which is likely ");
1770 switch (likelyvalue)
1771 {
1772 case CONSTANT:
1773 fprintf (dump_file, "CONSTANT");
1774 break;
1775 case UNDEFINED:
1776 fprintf (dump_file, "UNDEFINED");
1777 break;
1778 case VARYING:
1779 fprintf (dump_file, "VARYING");
1780 break;
1781 default:;
1782 }
1783 fprintf (dump_file, "\n");
1784 }
1785
1786 /* If the statement is likely to have a CONSTANT result, then try
1787 to fold the statement to determine the constant value. */
1788 /* FIXME. This is the only place that we call ccp_fold.
1789 Since likely_value never returns CONSTANT for calls, we will
1790 not attempt to fold them, including builtins that may profit. */
1791 if (likelyvalue == CONSTANT)
1792 {
1793 fold_defer_overflow_warnings ();
1794 simplified = ccp_fold (stmt);
1795 if (simplified
1796 && TREE_CODE (simplified) == SSA_NAME)
1797 {
1798 /* We may not use values of something that may be simulated again,
1799 see valueize_op_1. */
1800 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1801 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1802 {
1803 ccp_prop_value_t *val = get_value (simplified);
1804 if (val && val->lattice_val != VARYING)
1805 {
1806 fold_undefer_overflow_warnings (true, stmt, 0);
1807 return *val;
1808 }
1809 }
1810 else
1811 /* We may also not place a non-valueized copy in the lattice
1812 as that might become stale if we never re-visit this stmt. */
1813 simplified = NULL_TREE;
1814 }
1815 is_constant = simplified && is_gimple_min_invariant (simplified);
1816 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1817 if (is_constant)
1818 {
1819 /* The statement produced a constant value. */
1820 val.lattice_val = CONSTANT;
1821 val.value = simplified;
1822 val.mask = 0;
1823 return val;
1824 }
1825 }
1826 /* If the statement is likely to have a VARYING result, then do not
1827 bother folding the statement. */
1828 else if (likelyvalue == VARYING)
1829 {
1830 enum gimple_code code = gimple_code (stmt);
1831 if (code == GIMPLE_ASSIGN)
1832 {
1833 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1834
1835 /* Other cases cannot satisfy is_gimple_min_invariant
1836 without folding. */
1837 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1838 simplified = gimple_assign_rhs1 (stmt);
1839 }
1840 else if (code == GIMPLE_SWITCH)
1841 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1842 else
1843 /* These cannot satisfy is_gimple_min_invariant without folding. */
1844 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1845 is_constant = simplified && is_gimple_min_invariant (simplified);
1846 if (is_constant)
1847 {
1848 /* The statement produced a constant value. */
1849 val.lattice_val = CONSTANT;
1850 val.value = simplified;
1851 val.mask = 0;
1852 }
1853 }
1854 /* If the statement result is likely UNDEFINED, make it so. */
1855 else if (likelyvalue == UNDEFINED)
1856 {
1857 val.lattice_val = UNDEFINED;
1858 val.value = NULL_TREE;
1859 val.mask = 0;
1860 return val;
1861 }
1862
1863 /* Resort to simplification for bitwise tracking. */
1864 if (flag_tree_bit_ccp
1865 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1866 || (gimple_assign_single_p (stmt)
1867 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1868 && !is_constant)
1869 {
1870 enum gimple_code code = gimple_code (stmt);
1871 val.lattice_val = VARYING;
1872 val.value = NULL_TREE;
1873 val.mask = -1;
1874 if (code == GIMPLE_ASSIGN)
1875 {
1876 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1877 tree rhs1 = gimple_assign_rhs1 (stmt);
1878 tree lhs = gimple_assign_lhs (stmt);
1879 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1880 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1881 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1882 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1883 switch (get_gimple_rhs_class (subcode))
1884 {
1885 case GIMPLE_SINGLE_RHS:
1886 val = get_value_for_expr (rhs1, true);
1887 break;
1888
1889 case GIMPLE_UNARY_RHS:
1890 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1891 break;
1892
1893 case GIMPLE_BINARY_RHS:
1894 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1895 gimple_assign_rhs2 (stmt));
1896 break;
1897
1898 default:;
1899 }
1900 }
1901 else if (code == GIMPLE_COND)
1902 {
1903 enum tree_code code = gimple_cond_code (stmt);
1904 tree rhs1 = gimple_cond_lhs (stmt);
1905 tree rhs2 = gimple_cond_rhs (stmt);
1906 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1907 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1908 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1909 }
1910 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1911 {
1912 tree fndecl = gimple_call_fndecl (stmt);
1913 switch (DECL_FUNCTION_CODE (fndecl))
1914 {
1915 case BUILT_IN_MALLOC:
1916 case BUILT_IN_REALLOC:
1917 case BUILT_IN_CALLOC:
1918 case BUILT_IN_STRDUP:
1919 case BUILT_IN_STRNDUP:
1920 val.lattice_val = CONSTANT;
1921 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1922 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1923 / BITS_PER_UNIT - 1);
1924 break;
1925
1926 CASE_BUILT_IN_ALLOCA:
1927 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1928 ? BIGGEST_ALIGNMENT
1929 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1930 val.lattice_val = CONSTANT;
1931 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1932 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1933 break;
1934
1935 /* These builtins return their first argument, unmodified. */
1936 case BUILT_IN_MEMCPY:
1937 case BUILT_IN_MEMMOVE:
1938 case BUILT_IN_MEMSET:
1939 case BUILT_IN_STRCPY:
1940 case BUILT_IN_STRNCPY:
1941 case BUILT_IN_MEMCPY_CHK:
1942 case BUILT_IN_MEMMOVE_CHK:
1943 case BUILT_IN_MEMSET_CHK:
1944 case BUILT_IN_STRCPY_CHK:
1945 case BUILT_IN_STRNCPY_CHK:
1946 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1947 break;
1948
1949 case BUILT_IN_ASSUME_ALIGNED:
1950 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1951 break;
1952
1953 case BUILT_IN_ALIGNED_ALLOC:
1954 {
1955 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1956 if (align
1957 && tree_fits_uhwi_p (align))
1958 {
1959 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1960 if (aligni > 1
1961 /* align must be power-of-two */
1962 && (aligni & (aligni - 1)) == 0)
1963 {
1964 val.lattice_val = CONSTANT;
1965 val.value = build_int_cst (ptr_type_node, 0);
1966 val.mask = -aligni;
1967 }
1968 }
1969 break;
1970 }
1971
1972 case BUILT_IN_BSWAP16:
1973 case BUILT_IN_BSWAP32:
1974 case BUILT_IN_BSWAP64:
1975 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1976 if (val.lattice_val == UNDEFINED)
1977 break;
1978 else if (val.lattice_val == CONSTANT
1979 && val.value
1980 && TREE_CODE (val.value) == INTEGER_CST)
1981 {
1982 tree type = TREE_TYPE (gimple_call_lhs (stmt));
1983 int prec = TYPE_PRECISION (type);
1984 wide_int wval = wi::to_wide (val.value);
1985 val.value
1986 = wide_int_to_tree (type,
1987 wide_int::from (wval, prec,
1988 UNSIGNED).bswap ());
1989 val.mask
1990 = widest_int::from (wide_int::from (val.mask, prec,
1991 UNSIGNED).bswap (),
1992 UNSIGNED);
1993 if (wi::sext (val.mask, prec) != -1)
1994 break;
1995 }
1996 val.lattice_val = VARYING;
1997 val.value = NULL_TREE;
1998 val.mask = -1;
1999 break;
2000
2001 default:;
2002 }
2003 }
2004 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2005 {
2006 tree fntype = gimple_call_fntype (stmt);
2007 if (fntype)
2008 {
2009 tree attrs = lookup_attribute ("assume_aligned",
2010 TYPE_ATTRIBUTES (fntype));
2011 if (attrs)
2012 val = bit_value_assume_aligned (stmt, attrs, val, false);
2013 attrs = lookup_attribute ("alloc_align",
2014 TYPE_ATTRIBUTES (fntype));
2015 if (attrs)
2016 val = bit_value_assume_aligned (stmt, attrs, val, true);
2017 }
2018 }
2019 is_constant = (val.lattice_val == CONSTANT);
2020 }
2021
2022 if (flag_tree_bit_ccp
2023 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2024 || !is_constant)
2025 && gimple_get_lhs (stmt)
2026 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2027 {
2028 tree lhs = gimple_get_lhs (stmt);
2029 wide_int nonzero_bits = get_nonzero_bits (lhs);
2030 if (nonzero_bits != -1)
2031 {
2032 if (!is_constant)
2033 {
2034 val.lattice_val = CONSTANT;
2035 val.value = build_zero_cst (TREE_TYPE (lhs));
2036 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2037 is_constant = true;
2038 }
2039 else
2040 {
2041 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2042 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2043 nonzero_bits
2044 & wi::to_wide (val.value));
2045 if (nonzero_bits == 0)
2046 val.mask = 0;
2047 else
2048 val.mask = val.mask & extend_mask (nonzero_bits,
2049 TYPE_SIGN (TREE_TYPE (lhs)));
2050 }
2051 }
2052 }
2053
2054 /* The statement produced a nonconstant value. */
2055 if (!is_constant)
2056 {
2057 /* The statement produced a copy. */
2058 if (simplified && TREE_CODE (simplified) == SSA_NAME
2059 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2060 {
2061 val.lattice_val = CONSTANT;
2062 val.value = simplified;
2063 val.mask = -1;
2064 }
2065 /* The statement is VARYING. */
2066 else
2067 {
2068 val.lattice_val = VARYING;
2069 val.value = NULL_TREE;
2070 val.mask = -1;
2071 }
2072 }
2073
2074 return val;
2075 }
2076
2077 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2078
2079 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2080 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2081
2082 static void
2083 insert_clobber_before_stack_restore (tree saved_val, tree var,
2084 gimple_htab **visited)
2085 {
2086 gimple *stmt;
2087 gassign *clobber_stmt;
2088 tree clobber;
2089 imm_use_iterator iter;
2090 gimple_stmt_iterator i;
2091 gimple **slot;
2092
2093 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2094 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2095 {
2096 clobber = build_clobber (TREE_TYPE (var));
2097 clobber_stmt = gimple_build_assign (var, clobber);
2098
2099 i = gsi_for_stmt (stmt);
2100 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2101 }
2102 else if (gimple_code (stmt) == GIMPLE_PHI)
2103 {
2104 if (!*visited)
2105 *visited = new gimple_htab (10);
2106
2107 slot = (*visited)->find_slot (stmt, INSERT);
2108 if (*slot != NULL)
2109 continue;
2110
2111 *slot = stmt;
2112 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2113 visited);
2114 }
2115 else if (gimple_assign_ssa_name_copy_p (stmt))
2116 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2117 visited);
2118 else
2119 gcc_assert (is_gimple_debug (stmt));
2120 }
2121
2122 /* Advance the iterator to the previous non-debug gimple statement in the same
2123 or dominating basic block. */
2124
2125 static inline void
2126 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2127 {
2128 basic_block dom;
2129
2130 gsi_prev_nondebug (i);
2131 while (gsi_end_p (*i))
2132 {
2133 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2134 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2135 return;
2136
2137 *i = gsi_last_bb (dom);
2138 }
2139 }
2140
2141 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2142 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2143
2144 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2145 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2146 that case the function gives up without inserting the clobbers. */
2147
2148 static void
2149 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2150 {
2151 gimple *stmt;
2152 tree saved_val;
2153 gimple_htab *visited = NULL;
2154
2155 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2156 {
2157 stmt = gsi_stmt (i);
2158
2159 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2160 continue;
2161
2162 saved_val = gimple_call_lhs (stmt);
2163 if (saved_val == NULL_TREE)
2164 continue;
2165
2166 insert_clobber_before_stack_restore (saved_val, var, &visited);
2167 break;
2168 }
2169
2170 delete visited;
2171 }
2172
2173 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2174 fixed-size array and returns the address, if found, otherwise returns
2175 NULL_TREE. */
2176
2177 static tree
2178 fold_builtin_alloca_with_align (gimple *stmt)
2179 {
2180 unsigned HOST_WIDE_INT size, threshold, n_elem;
2181 tree lhs, arg, block, var, elem_type, array_type;
2182
2183 /* Get lhs. */
2184 lhs = gimple_call_lhs (stmt);
2185 if (lhs == NULL_TREE)
2186 return NULL_TREE;
2187
2188 /* Detect constant argument. */
2189 arg = get_constant_value (gimple_call_arg (stmt, 0));
2190 if (arg == NULL_TREE
2191 || TREE_CODE (arg) != INTEGER_CST
2192 || !tree_fits_uhwi_p (arg))
2193 return NULL_TREE;
2194
2195 size = tree_to_uhwi (arg);
2196
2197 /* Heuristic: don't fold large allocas. */
2198 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2199 /* In case the alloca is located at function entry, it has the same lifetime
2200 as a declared array, so we allow a larger size. */
2201 block = gimple_block (stmt);
2202 if (!(cfun->after_inlining
2203 && block
2204 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2205 threshold /= 10;
2206 if (size > threshold)
2207 return NULL_TREE;
2208
2209 /* We have to be able to move points-to info. We used to assert
2210 that we can but IPA PTA might end up with two UIDs here
2211 as it might need to handle more than one instance being
2212 live at the same time. Instead of trying to detect this case
2213 (using the first UID would be OK) just give up for now. */
2214 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2215 unsigned uid = 0;
2216 if (pi != NULL
2217 && !pi->pt.anything
2218 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2219 return NULL_TREE;
2220
2221 /* Declare array. */
2222 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2223 n_elem = size * 8 / BITS_PER_UNIT;
2224 array_type = build_array_type_nelts (elem_type, n_elem);
2225 var = create_tmp_var (array_type);
2226 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2227 if (uid != 0)
2228 SET_DECL_PT_UID (var, uid);
2229
2230 /* Fold alloca to the address of the array. */
2231 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2232 }
2233
2234 /* Fold the stmt at *GSI with CCP specific information that propagating
2235 and regular folding does not catch. */
2236
2237 bool
2238 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2239 {
2240 gimple *stmt = gsi_stmt (*gsi);
2241
2242 switch (gimple_code (stmt))
2243 {
2244 case GIMPLE_COND:
2245 {
2246 gcond *cond_stmt = as_a <gcond *> (stmt);
2247 ccp_prop_value_t val;
2248 /* Statement evaluation will handle type mismatches in constants
2249 more gracefully than the final propagation. This allows us to
2250 fold more conditionals here. */
2251 val = evaluate_stmt (stmt);
2252 if (val.lattice_val != CONSTANT
2253 || val.mask != 0)
2254 return false;
2255
2256 if (dump_file)
2257 {
2258 fprintf (dump_file, "Folding predicate ");
2259 print_gimple_expr (dump_file, stmt, 0);
2260 fprintf (dump_file, " to ");
2261 print_generic_expr (dump_file, val.value);
2262 fprintf (dump_file, "\n");
2263 }
2264
2265 if (integer_zerop (val.value))
2266 gimple_cond_make_false (cond_stmt);
2267 else
2268 gimple_cond_make_true (cond_stmt);
2269
2270 return true;
2271 }
2272
2273 case GIMPLE_CALL:
2274 {
2275 tree lhs = gimple_call_lhs (stmt);
2276 int flags = gimple_call_flags (stmt);
2277 tree val;
2278 tree argt;
2279 bool changed = false;
2280 unsigned i;
2281
2282 /* If the call was folded into a constant make sure it goes
2283 away even if we cannot propagate into all uses because of
2284 type issues. */
2285 if (lhs
2286 && TREE_CODE (lhs) == SSA_NAME
2287 && (val = get_constant_value (lhs))
2288 /* Don't optimize away calls that have side-effects. */
2289 && (flags & (ECF_CONST|ECF_PURE)) != 0
2290 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2291 {
2292 tree new_rhs = unshare_expr (val);
2293 bool res;
2294 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2295 TREE_TYPE (new_rhs)))
2296 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2297 res = update_call_from_tree (gsi, new_rhs);
2298 gcc_assert (res);
2299 return true;
2300 }
2301
2302 /* Internal calls provide no argument types, so the extra laxity
2303 for normal calls does not apply. */
2304 if (gimple_call_internal_p (stmt))
2305 return false;
2306
2307 /* The heuristic of fold_builtin_alloca_with_align differs before and
2308 after inlining, so we don't require the arg to be changed into a
2309 constant for folding, but just to be constant. */
2310 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2311 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2312 {
2313 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2314 if (new_rhs)
2315 {
2316 bool res = update_call_from_tree (gsi, new_rhs);
2317 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2318 gcc_assert (res);
2319 insert_clobbers_for_var (*gsi, var);
2320 return true;
2321 }
2322 }
2323
2324 /* If there's no extra info from an assume_aligned call,
2325 drop it so it doesn't act as otherwise useless dataflow
2326 barrier. */
2327 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2328 {
2329 tree ptr = gimple_call_arg (stmt, 0);
2330 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2331 if (ptrval.lattice_val == CONSTANT
2332 && TREE_CODE (ptrval.value) == INTEGER_CST
2333 && ptrval.mask != 0)
2334 {
2335 ccp_prop_value_t val
2336 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2337 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2338 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2339 if (ptralign == align
2340 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2341 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2342 {
2343 bool res = update_call_from_tree (gsi, ptr);
2344 gcc_assert (res);
2345 return true;
2346 }
2347 }
2348 }
2349
2350 /* Propagate into the call arguments. Compared to replace_uses_in
2351 this can use the argument slot types for type verification
2352 instead of the current argument type. We also can safely
2353 drop qualifiers here as we are dealing with constants anyway. */
2354 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2355 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2356 ++i, argt = TREE_CHAIN (argt))
2357 {
2358 tree arg = gimple_call_arg (stmt, i);
2359 if (TREE_CODE (arg) == SSA_NAME
2360 && (val = get_constant_value (arg))
2361 && useless_type_conversion_p
2362 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2363 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2364 {
2365 gimple_call_set_arg (stmt, i, unshare_expr (val));
2366 changed = true;
2367 }
2368 }
2369
2370 return changed;
2371 }
2372
2373 case GIMPLE_ASSIGN:
2374 {
2375 tree lhs = gimple_assign_lhs (stmt);
2376 tree val;
2377
2378 /* If we have a load that turned out to be constant replace it
2379 as we cannot propagate into all uses in all cases. */
2380 if (gimple_assign_single_p (stmt)
2381 && TREE_CODE (lhs) == SSA_NAME
2382 && (val = get_constant_value (lhs)))
2383 {
2384 tree rhs = unshare_expr (val);
2385 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2386 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2387 gimple_assign_set_rhs_from_tree (gsi, rhs);
2388 return true;
2389 }
2390
2391 return false;
2392 }
2393
2394 default:
2395 return false;
2396 }
2397 }
2398
2399 /* Visit the assignment statement STMT. Set the value of its LHS to the
2400 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2401 creates virtual definitions, set the value of each new name to that
2402 of the RHS (if we can derive a constant out of the RHS).
2403 Value-returning call statements also perform an assignment, and
2404 are handled here. */
2405
2406 static enum ssa_prop_result
2407 visit_assignment (gimple *stmt, tree *output_p)
2408 {
2409 ccp_prop_value_t val;
2410 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2411
2412 tree lhs = gimple_get_lhs (stmt);
2413 if (TREE_CODE (lhs) == SSA_NAME)
2414 {
2415 /* Evaluate the statement, which could be
2416 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2417 val = evaluate_stmt (stmt);
2418
2419 /* If STMT is an assignment to an SSA_NAME, we only have one
2420 value to set. */
2421 if (set_lattice_value (lhs, &val))
2422 {
2423 *output_p = lhs;
2424 if (val.lattice_val == VARYING)
2425 retval = SSA_PROP_VARYING;
2426 else
2427 retval = SSA_PROP_INTERESTING;
2428 }
2429 }
2430
2431 return retval;
2432 }
2433
2434
2435 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2436 if it can determine which edge will be taken. Otherwise, return
2437 SSA_PROP_VARYING. */
2438
2439 static enum ssa_prop_result
2440 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2441 {
2442 ccp_prop_value_t val;
2443 basic_block block;
2444
2445 block = gimple_bb (stmt);
2446 val = evaluate_stmt (stmt);
2447 if (val.lattice_val != CONSTANT
2448 || val.mask != 0)
2449 return SSA_PROP_VARYING;
2450
2451 /* Find which edge out of the conditional block will be taken and add it
2452 to the worklist. If no single edge can be determined statically,
2453 return SSA_PROP_VARYING to feed all the outgoing edges to the
2454 propagation engine. */
2455 *taken_edge_p = find_taken_edge (block, val.value);
2456 if (*taken_edge_p)
2457 return SSA_PROP_INTERESTING;
2458 else
2459 return SSA_PROP_VARYING;
2460 }
2461
2462
2463 /* Evaluate statement STMT. If the statement produces an output value and
2464 its evaluation changes the lattice value of its output, return
2465 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2466 output value.
2467
2468 If STMT is a conditional branch and we can determine its truth
2469 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2470 value, return SSA_PROP_VARYING. */
2471
2472 enum ssa_prop_result
2473 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2474 {
2475 tree def;
2476 ssa_op_iter iter;
2477
2478 if (dump_file && (dump_flags & TDF_DETAILS))
2479 {
2480 fprintf (dump_file, "\nVisiting statement:\n");
2481 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2482 }
2483
2484 switch (gimple_code (stmt))
2485 {
2486 case GIMPLE_ASSIGN:
2487 /* If the statement is an assignment that produces a single
2488 output value, evaluate its RHS to see if the lattice value of
2489 its output has changed. */
2490 return visit_assignment (stmt, output_p);
2491
2492 case GIMPLE_CALL:
2493 /* A value-returning call also performs an assignment. */
2494 if (gimple_call_lhs (stmt) != NULL_TREE)
2495 return visit_assignment (stmt, output_p);
2496 break;
2497
2498 case GIMPLE_COND:
2499 case GIMPLE_SWITCH:
2500 /* If STMT is a conditional branch, see if we can determine
2501 which branch will be taken. */
2502 /* FIXME. It appears that we should be able to optimize
2503 computed GOTOs here as well. */
2504 return visit_cond_stmt (stmt, taken_edge_p);
2505
2506 default:
2507 break;
2508 }
2509
2510 /* Any other kind of statement is not interesting for constant
2511 propagation and, therefore, not worth simulating. */
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2514
2515 /* Definitions made by statements other than assignments to
2516 SSA_NAMEs represent unknown modifications to their outputs.
2517 Mark them VARYING. */
2518 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2519 set_value_varying (def);
2520
2521 return SSA_PROP_VARYING;
2522 }
2523
2524
2525 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2526 record nonzero bits. */
2527
2528 static unsigned int
2529 do_ssa_ccp (bool nonzero_p)
2530 {
2531 unsigned int todo = 0;
2532 calculate_dominance_info (CDI_DOMINATORS);
2533
2534 ccp_initialize ();
2535 class ccp_propagate ccp_propagate;
2536 ccp_propagate.ssa_propagate ();
2537 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2538 {
2539 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2540
2541 /* ccp_finalize does not preserve loop-closed ssa. */
2542 loops_state_clear (LOOP_CLOSED_SSA);
2543 }
2544
2545 free_dominance_info (CDI_DOMINATORS);
2546 return todo;
2547 }
2548
2549
2550 namespace {
2551
2552 const pass_data pass_data_ccp =
2553 {
2554 GIMPLE_PASS, /* type */
2555 "ccp", /* name */
2556 OPTGROUP_NONE, /* optinfo_flags */
2557 TV_TREE_CCP, /* tv_id */
2558 ( PROP_cfg | PROP_ssa ), /* properties_required */
2559 0, /* properties_provided */
2560 0, /* properties_destroyed */
2561 0, /* todo_flags_start */
2562 TODO_update_address_taken, /* todo_flags_finish */
2563 };
2564
2565 class pass_ccp : public gimple_opt_pass
2566 {
2567 public:
2568 pass_ccp (gcc::context *ctxt)
2569 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2570 {}
2571
2572 /* opt_pass methods: */
2573 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2574 void set_pass_param (unsigned int n, bool param)
2575 {
2576 gcc_assert (n == 0);
2577 nonzero_p = param;
2578 }
2579 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2580 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2581
2582 private:
2583 /* Determines whether the pass instance records nonzero bits. */
2584 bool nonzero_p;
2585 }; // class pass_ccp
2586
2587 } // anon namespace
2588
2589 gimple_opt_pass *
2590 make_pass_ccp (gcc::context *ctxt)
2591 {
2592 return new pass_ccp (ctxt);
2593 }
2594
2595
2596
2597 /* Try to optimize out __builtin_stack_restore. Optimize it out
2598 if there is another __builtin_stack_restore in the same basic
2599 block and no calls or ASM_EXPRs are in between, or if this block's
2600 only outgoing edge is to EXIT_BLOCK and there are no calls or
2601 ASM_EXPRs after this __builtin_stack_restore. */
2602
2603 static tree
2604 optimize_stack_restore (gimple_stmt_iterator i)
2605 {
2606 tree callee;
2607 gimple *stmt;
2608
2609 basic_block bb = gsi_bb (i);
2610 gimple *call = gsi_stmt (i);
2611
2612 if (gimple_code (call) != GIMPLE_CALL
2613 || gimple_call_num_args (call) != 1
2614 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2615 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2616 return NULL_TREE;
2617
2618 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2619 {
2620 stmt = gsi_stmt (i);
2621 if (gimple_code (stmt) == GIMPLE_ASM)
2622 return NULL_TREE;
2623 if (gimple_code (stmt) != GIMPLE_CALL)
2624 continue;
2625
2626 callee = gimple_call_fndecl (stmt);
2627 if (!callee
2628 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2629 /* All regular builtins are ok, just obviously not alloca. */
2630 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2631 return NULL_TREE;
2632
2633 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2634 goto second_stack_restore;
2635 }
2636
2637 if (!gsi_end_p (i))
2638 return NULL_TREE;
2639
2640 /* Allow one successor of the exit block, or zero successors. */
2641 switch (EDGE_COUNT (bb->succs))
2642 {
2643 case 0:
2644 break;
2645 case 1:
2646 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2647 return NULL_TREE;
2648 break;
2649 default:
2650 return NULL_TREE;
2651 }
2652 second_stack_restore:
2653
2654 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2655 If there are multiple uses, then the last one should remove the call.
2656 In any case, whether the call to __builtin_stack_save can be removed
2657 or not is irrelevant to removing the call to __builtin_stack_restore. */
2658 if (has_single_use (gimple_call_arg (call, 0)))
2659 {
2660 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2661 if (is_gimple_call (stack_save))
2662 {
2663 callee = gimple_call_fndecl (stack_save);
2664 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2665 {
2666 gimple_stmt_iterator stack_save_gsi;
2667 tree rhs;
2668
2669 stack_save_gsi = gsi_for_stmt (stack_save);
2670 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2671 update_call_from_tree (&stack_save_gsi, rhs);
2672 }
2673 }
2674 }
2675
2676 /* No effect, so the statement will be deleted. */
2677 return integer_zero_node;
2678 }
2679
2680 /* If va_list type is a simple pointer and nothing special is needed,
2681 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2682 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2683 pointer assignment. */
2684
2685 static tree
2686 optimize_stdarg_builtin (gimple *call)
2687 {
2688 tree callee, lhs, rhs, cfun_va_list;
2689 bool va_list_simple_ptr;
2690 location_t loc = gimple_location (call);
2691
2692 callee = gimple_call_fndecl (call);
2693
2694 cfun_va_list = targetm.fn_abi_va_list (callee);
2695 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2696 && (TREE_TYPE (cfun_va_list) == void_type_node
2697 || TREE_TYPE (cfun_va_list) == char_type_node);
2698
2699 switch (DECL_FUNCTION_CODE (callee))
2700 {
2701 case BUILT_IN_VA_START:
2702 if (!va_list_simple_ptr
2703 || targetm.expand_builtin_va_start != NULL
2704 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2705 return NULL_TREE;
2706
2707 if (gimple_call_num_args (call) != 2)
2708 return NULL_TREE;
2709
2710 lhs = gimple_call_arg (call, 0);
2711 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2712 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2713 != TYPE_MAIN_VARIANT (cfun_va_list))
2714 return NULL_TREE;
2715
2716 lhs = build_fold_indirect_ref_loc (loc, lhs);
2717 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2718 1, integer_zero_node);
2719 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2720 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2721
2722 case BUILT_IN_VA_COPY:
2723 if (!va_list_simple_ptr)
2724 return NULL_TREE;
2725
2726 if (gimple_call_num_args (call) != 2)
2727 return NULL_TREE;
2728
2729 lhs = gimple_call_arg (call, 0);
2730 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2731 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2732 != TYPE_MAIN_VARIANT (cfun_va_list))
2733 return NULL_TREE;
2734
2735 lhs = build_fold_indirect_ref_loc (loc, lhs);
2736 rhs = gimple_call_arg (call, 1);
2737 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2738 != TYPE_MAIN_VARIANT (cfun_va_list))
2739 return NULL_TREE;
2740
2741 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2742 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2743
2744 case BUILT_IN_VA_END:
2745 /* No effect, so the statement will be deleted. */
2746 return integer_zero_node;
2747
2748 default:
2749 gcc_unreachable ();
2750 }
2751 }
2752
2753 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2754 the incoming jumps. Return true if at least one jump was changed. */
2755
2756 static bool
2757 optimize_unreachable (gimple_stmt_iterator i)
2758 {
2759 basic_block bb = gsi_bb (i);
2760 gimple_stmt_iterator gsi;
2761 gimple *stmt;
2762 edge_iterator ei;
2763 edge e;
2764 bool ret;
2765
2766 if (flag_sanitize & SANITIZE_UNREACHABLE)
2767 return false;
2768
2769 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2770 {
2771 stmt = gsi_stmt (gsi);
2772
2773 if (is_gimple_debug (stmt))
2774 continue;
2775
2776 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2777 {
2778 /* Verify we do not need to preserve the label. */
2779 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2780 return false;
2781
2782 continue;
2783 }
2784
2785 /* Only handle the case that __builtin_unreachable is the first statement
2786 in the block. We rely on DCE to remove stmts without side-effects
2787 before __builtin_unreachable. */
2788 if (gsi_stmt (gsi) != gsi_stmt (i))
2789 return false;
2790 }
2791
2792 ret = false;
2793 FOR_EACH_EDGE (e, ei, bb->preds)
2794 {
2795 gsi = gsi_last_bb (e->src);
2796 if (gsi_end_p (gsi))
2797 continue;
2798
2799 stmt = gsi_stmt (gsi);
2800 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2801 {
2802 if (e->flags & EDGE_TRUE_VALUE)
2803 gimple_cond_make_false (cond_stmt);
2804 else if (e->flags & EDGE_FALSE_VALUE)
2805 gimple_cond_make_true (cond_stmt);
2806 else
2807 gcc_unreachable ();
2808 update_stmt (cond_stmt);
2809 }
2810 else
2811 {
2812 /* Todo: handle other cases. Note that unreachable switch case
2813 statements have already been removed. */
2814 continue;
2815 }
2816
2817 ret = true;
2818 }
2819
2820 return ret;
2821 }
2822
2823 /* Optimize
2824 mask_2 = 1 << cnt_1;
2825 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2826 _5 = _4 & mask_2;
2827 to
2828 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2829 _5 = _4;
2830 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2831 is passed instead of 0, and the builtin just returns a zero
2832 or 1 value instead of the actual bit.
2833 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2834 in there), and/or if mask_2 is a power of 2 constant.
2835 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2836 in that case. And similarly for and instead of or, except that
2837 the second argument to the builtin needs to be one's complement
2838 of the mask instead of mask. */
2839
2840 static void
2841 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2842 enum internal_fn fn, bool has_model_arg,
2843 bool after)
2844 {
2845 gimple *call = gsi_stmt (*gsip);
2846 tree lhs = gimple_call_lhs (call);
2847 use_operand_p use_p;
2848 gimple *use_stmt;
2849 tree mask, bit;
2850 optab optab;
2851
2852 if (!flag_inline_atomics
2853 || optimize_debug
2854 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2855 || !lhs
2856 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2857 || !single_imm_use (lhs, &use_p, &use_stmt)
2858 || !is_gimple_assign (use_stmt)
2859 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2860 || !gimple_vdef (call))
2861 return;
2862
2863 switch (fn)
2864 {
2865 case IFN_ATOMIC_BIT_TEST_AND_SET:
2866 optab = atomic_bit_test_and_set_optab;
2867 break;
2868 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2869 optab = atomic_bit_test_and_complement_optab;
2870 break;
2871 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2872 optab = atomic_bit_test_and_reset_optab;
2873 break;
2874 default:
2875 return;
2876 }
2877
2878 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2879 return;
2880
2881 mask = gimple_call_arg (call, 1);
2882 tree use_lhs = gimple_assign_lhs (use_stmt);
2883 if (!use_lhs)
2884 return;
2885
2886 if (TREE_CODE (mask) == INTEGER_CST)
2887 {
2888 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2889 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2890 mask = fold_convert (TREE_TYPE (lhs), mask);
2891 int ibit = tree_log2 (mask);
2892 if (ibit < 0)
2893 return;
2894 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2895 }
2896 else if (TREE_CODE (mask) == SSA_NAME)
2897 {
2898 gimple *g = SSA_NAME_DEF_STMT (mask);
2899 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2900 {
2901 if (!is_gimple_assign (g)
2902 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2903 return;
2904 mask = gimple_assign_rhs1 (g);
2905 if (TREE_CODE (mask) != SSA_NAME)
2906 return;
2907 g = SSA_NAME_DEF_STMT (mask);
2908 }
2909 if (!is_gimple_assign (g)
2910 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2911 || !integer_onep (gimple_assign_rhs1 (g)))
2912 return;
2913 bit = gimple_assign_rhs2 (g);
2914 }
2915 else
2916 return;
2917
2918 if (gimple_assign_rhs1 (use_stmt) == lhs)
2919 {
2920 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2921 return;
2922 }
2923 else if (gimple_assign_rhs2 (use_stmt) != lhs
2924 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2925 return;
2926
2927 bool use_bool = true;
2928 bool has_debug_uses = false;
2929 imm_use_iterator iter;
2930 gimple *g;
2931
2932 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2933 use_bool = false;
2934 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2935 {
2936 enum tree_code code = ERROR_MARK;
2937 tree op0 = NULL_TREE, op1 = NULL_TREE;
2938 if (is_gimple_debug (g))
2939 {
2940 has_debug_uses = true;
2941 continue;
2942 }
2943 else if (is_gimple_assign (g))
2944 switch (gimple_assign_rhs_code (g))
2945 {
2946 case COND_EXPR:
2947 op1 = gimple_assign_rhs1 (g);
2948 code = TREE_CODE (op1);
2949 op0 = TREE_OPERAND (op1, 0);
2950 op1 = TREE_OPERAND (op1, 1);
2951 break;
2952 case EQ_EXPR:
2953 case NE_EXPR:
2954 code = gimple_assign_rhs_code (g);
2955 op0 = gimple_assign_rhs1 (g);
2956 op1 = gimple_assign_rhs2 (g);
2957 break;
2958 default:
2959 break;
2960 }
2961 else if (gimple_code (g) == GIMPLE_COND)
2962 {
2963 code = gimple_cond_code (g);
2964 op0 = gimple_cond_lhs (g);
2965 op1 = gimple_cond_rhs (g);
2966 }
2967
2968 if ((code == EQ_EXPR || code == NE_EXPR)
2969 && op0 == use_lhs
2970 && integer_zerop (op1))
2971 {
2972 use_operand_p use_p;
2973 int n = 0;
2974 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2975 n++;
2976 if (n == 1)
2977 continue;
2978 }
2979
2980 use_bool = false;
2981 BREAK_FROM_IMM_USE_STMT (iter);
2982 }
2983
2984 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2985 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2986 if (has_model_arg)
2987 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2988 bit, flag, gimple_call_arg (call, 2));
2989 else
2990 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2991 bit, flag);
2992 gimple_call_set_lhs (g, new_lhs);
2993 gimple_set_location (g, gimple_location (call));
2994 gimple_move_vops (g, call);
2995 bool throws = stmt_can_throw_internal (cfun, call);
2996 gimple_call_set_nothrow (as_a <gcall *> (g),
2997 gimple_call_nothrow_p (as_a <gcall *> (call)));
2998 gimple_stmt_iterator gsi = *gsip;
2999 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3000 edge e = NULL;
3001 if (throws)
3002 {
3003 maybe_clean_or_replace_eh_stmt (call, g);
3004 if (after || (use_bool && has_debug_uses))
3005 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3006 }
3007 if (after)
3008 {
3009 /* The internal function returns the value of the specified bit
3010 before the atomic operation. If we are interested in the value
3011 of the specified bit after the atomic operation (makes only sense
3012 for xor, otherwise the bit content is compile time known),
3013 we need to invert the bit. */
3014 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3015 BIT_XOR_EXPR, new_lhs,
3016 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3017 : mask);
3018 new_lhs = gimple_assign_lhs (g);
3019 if (throws)
3020 {
3021 gsi_insert_on_edge_immediate (e, g);
3022 gsi = gsi_for_stmt (g);
3023 }
3024 else
3025 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3026 }
3027 if (use_bool && has_debug_uses)
3028 {
3029 tree temp = NULL_TREE;
3030 if (!throws || after || single_pred_p (e->dest))
3031 {
3032 temp = make_node (DEBUG_EXPR_DECL);
3033 DECL_ARTIFICIAL (temp) = 1;
3034 TREE_TYPE (temp) = TREE_TYPE (lhs);
3035 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3036 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3037 g = gimple_build_debug_bind (temp, t, g);
3038 if (throws && !after)
3039 {
3040 gsi = gsi_after_labels (e->dest);
3041 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3042 }
3043 else
3044 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3045 }
3046 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3047 if (is_gimple_debug (g))
3048 {
3049 use_operand_p use_p;
3050 if (temp == NULL_TREE)
3051 gimple_debug_bind_reset_value (g);
3052 else
3053 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3054 SET_USE (use_p, temp);
3055 update_stmt (g);
3056 }
3057 }
3058 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3059 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3060 replace_uses_by (use_lhs, new_lhs);
3061 gsi = gsi_for_stmt (use_stmt);
3062 gsi_remove (&gsi, true);
3063 release_defs (use_stmt);
3064 gsi_remove (gsip, true);
3065 release_ssa_name (lhs);
3066 }
3067
3068 /* Optimize
3069 a = {};
3070 b = a;
3071 into
3072 a = {};
3073 b = {};
3074 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3075 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3076
3077 static void
3078 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3079 {
3080 gimple *stmt = gsi_stmt (*gsip);
3081 if (gimple_has_volatile_ops (stmt))
3082 return;
3083
3084 tree vuse = gimple_vuse (stmt);
3085 if (vuse == NULL)
3086 return;
3087
3088 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3089 tree src2 = NULL_TREE, len2 = NULL_TREE;
3090 poly_int64 offset, offset2;
3091 tree val = integer_zero_node;
3092 if (gimple_store_p (defstmt)
3093 && gimple_assign_single_p (defstmt)
3094 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3095 && !gimple_clobber_p (defstmt))
3096 src2 = gimple_assign_lhs (defstmt);
3097 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3098 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3099 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3100 {
3101 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3102 len2 = gimple_call_arg (defstmt, 2);
3103 val = gimple_call_arg (defstmt, 1);
3104 /* For non-0 val, we'd have to transform stmt from assignment
3105 into memset (only if dest is addressable). */
3106 if (!integer_zerop (val) && is_gimple_assign (stmt))
3107 src2 = NULL_TREE;
3108 }
3109
3110 if (src2 == NULL_TREE)
3111 return;
3112
3113 if (len == NULL_TREE)
3114 len = (TREE_CODE (src) == COMPONENT_REF
3115 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3116 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3117 if (len2 == NULL_TREE)
3118 len2 = (TREE_CODE (src2) == COMPONENT_REF
3119 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3120 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3121 if (len == NULL_TREE
3122 || !poly_int_tree_p (len)
3123 || len2 == NULL_TREE
3124 || !poly_int_tree_p (len2))
3125 return;
3126
3127 src = get_addr_base_and_unit_offset (src, &offset);
3128 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3129 if (src == NULL_TREE
3130 || src2 == NULL_TREE
3131 || maybe_lt (offset, offset2))
3132 return;
3133
3134 if (!operand_equal_p (src, src2, 0))
3135 return;
3136
3137 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3138 Make sure that
3139 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3140 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3141 wi::to_poly_offset (len2)))
3142 return;
3143
3144 if (dump_file && (dump_flags & TDF_DETAILS))
3145 {
3146 fprintf (dump_file, "Simplified\n ");
3147 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3148 fprintf (dump_file, "after previous\n ");
3149 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3150 }
3151
3152 /* For simplicity, don't change the kind of the stmt,
3153 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3154 into memset (&dest, val, len);
3155 In theory we could change dest = src into memset if dest
3156 is addressable (maybe beneficial if val is not 0), or
3157 memcpy (&dest, &src, len) into dest = {} if len is the size
3158 of dest, dest isn't volatile. */
3159 if (is_gimple_assign (stmt))
3160 {
3161 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3162 gimple_assign_set_rhs_from_tree (gsip, ctor);
3163 update_stmt (stmt);
3164 }
3165 else /* If stmt is memcpy, transform it into memset. */
3166 {
3167 gcall *call = as_a <gcall *> (stmt);
3168 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3169 gimple_call_set_fndecl (call, fndecl);
3170 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3171 gimple_call_set_arg (call, 1, val);
3172 update_stmt (stmt);
3173 }
3174
3175 if (dump_file && (dump_flags & TDF_DETAILS))
3176 {
3177 fprintf (dump_file, "into\n ");
3178 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3179 }
3180 }
3181
3182 /* A simple pass that attempts to fold all builtin functions. This pass
3183 is run after we've propagated as many constants as we can. */
3184
3185 namespace {
3186
3187 const pass_data pass_data_fold_builtins =
3188 {
3189 GIMPLE_PASS, /* type */
3190 "fab", /* name */
3191 OPTGROUP_NONE, /* optinfo_flags */
3192 TV_NONE, /* tv_id */
3193 ( PROP_cfg | PROP_ssa ), /* properties_required */
3194 0, /* properties_provided */
3195 0, /* properties_destroyed */
3196 0, /* todo_flags_start */
3197 TODO_update_ssa, /* todo_flags_finish */
3198 };
3199
3200 class pass_fold_builtins : public gimple_opt_pass
3201 {
3202 public:
3203 pass_fold_builtins (gcc::context *ctxt)
3204 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3205 {}
3206
3207 /* opt_pass methods: */
3208 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3209 virtual unsigned int execute (function *);
3210
3211 }; // class pass_fold_builtins
3212
3213 unsigned int
3214 pass_fold_builtins::execute (function *fun)
3215 {
3216 bool cfg_changed = false;
3217 basic_block bb;
3218 unsigned int todoflags = 0;
3219
3220 FOR_EACH_BB_FN (bb, fun)
3221 {
3222 gimple_stmt_iterator i;
3223 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3224 {
3225 gimple *stmt, *old_stmt;
3226 tree callee;
3227 enum built_in_function fcode;
3228
3229 stmt = gsi_stmt (i);
3230
3231 if (gimple_code (stmt) != GIMPLE_CALL)
3232 {
3233 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3234 after the last GIMPLE DSE they aren't needed and might
3235 unnecessarily keep the SSA_NAMEs live. */
3236 if (gimple_clobber_p (stmt))
3237 {
3238 tree lhs = gimple_assign_lhs (stmt);
3239 if (TREE_CODE (lhs) == MEM_REF
3240 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3241 {
3242 unlink_stmt_vdef (stmt);
3243 gsi_remove (&i, true);
3244 release_defs (stmt);
3245 continue;
3246 }
3247 }
3248 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3249 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3250 gimple_assign_rhs1 (stmt), NULL_TREE);
3251 gsi_next (&i);
3252 continue;
3253 }
3254
3255 callee = gimple_call_fndecl (stmt);
3256 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3257 {
3258 gsi_next (&i);
3259 continue;
3260 }
3261
3262 fcode = DECL_FUNCTION_CODE (callee);
3263 if (fold_stmt (&i))
3264 ;
3265 else
3266 {
3267 tree result = NULL_TREE;
3268 switch (DECL_FUNCTION_CODE (callee))
3269 {
3270 case BUILT_IN_CONSTANT_P:
3271 /* Resolve __builtin_constant_p. If it hasn't been
3272 folded to integer_one_node by now, it's fairly
3273 certain that the value simply isn't constant. */
3274 result = integer_zero_node;
3275 break;
3276
3277 case BUILT_IN_ASSUME_ALIGNED:
3278 /* Remove __builtin_assume_aligned. */
3279 result = gimple_call_arg (stmt, 0);
3280 break;
3281
3282 case BUILT_IN_STACK_RESTORE:
3283 result = optimize_stack_restore (i);
3284 if (result)
3285 break;
3286 gsi_next (&i);
3287 continue;
3288
3289 case BUILT_IN_UNREACHABLE:
3290 if (optimize_unreachable (i))
3291 cfg_changed = true;
3292 break;
3293
3294 case BUILT_IN_ATOMIC_FETCH_OR_1:
3295 case BUILT_IN_ATOMIC_FETCH_OR_2:
3296 case BUILT_IN_ATOMIC_FETCH_OR_4:
3297 case BUILT_IN_ATOMIC_FETCH_OR_8:
3298 case BUILT_IN_ATOMIC_FETCH_OR_16:
3299 optimize_atomic_bit_test_and (&i,
3300 IFN_ATOMIC_BIT_TEST_AND_SET,
3301 true, false);
3302 break;
3303 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3304 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3305 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3306 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3307 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3308 optimize_atomic_bit_test_and (&i,
3309 IFN_ATOMIC_BIT_TEST_AND_SET,
3310 false, false);
3311 break;
3312
3313 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3314 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3315 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3316 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3317 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3318 optimize_atomic_bit_test_and
3319 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3320 break;
3321 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3322 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3323 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3324 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3325 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3326 optimize_atomic_bit_test_and
3327 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3328 break;
3329
3330 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3331 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3332 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3333 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3334 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3335 optimize_atomic_bit_test_and
3336 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3337 break;
3338 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3339 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3340 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3341 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3342 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3343 optimize_atomic_bit_test_and
3344 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3345 break;
3346
3347 case BUILT_IN_ATOMIC_FETCH_AND_1:
3348 case BUILT_IN_ATOMIC_FETCH_AND_2:
3349 case BUILT_IN_ATOMIC_FETCH_AND_4:
3350 case BUILT_IN_ATOMIC_FETCH_AND_8:
3351 case BUILT_IN_ATOMIC_FETCH_AND_16:
3352 optimize_atomic_bit_test_and (&i,
3353 IFN_ATOMIC_BIT_TEST_AND_RESET,
3354 true, false);
3355 break;
3356 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3357 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3358 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3359 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3360 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3361 optimize_atomic_bit_test_and (&i,
3362 IFN_ATOMIC_BIT_TEST_AND_RESET,
3363 false, false);
3364 break;
3365
3366 case BUILT_IN_MEMCPY:
3367 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3368 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3369 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3370 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3371 {
3372 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3373 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3374 tree len = gimple_call_arg (stmt, 2);
3375 optimize_memcpy (&i, dest, src, len);
3376 }
3377 break;
3378
3379 case BUILT_IN_VA_START:
3380 case BUILT_IN_VA_END:
3381 case BUILT_IN_VA_COPY:
3382 /* These shouldn't be folded before pass_stdarg. */
3383 result = optimize_stdarg_builtin (stmt);
3384 break;
3385
3386 default:;
3387 }
3388
3389 if (!result)
3390 {
3391 gsi_next (&i);
3392 continue;
3393 }
3394
3395 if (!update_call_from_tree (&i, result))
3396 gimplify_and_update_call_from_tree (&i, result);
3397 }
3398
3399 todoflags |= TODO_update_address_taken;
3400
3401 if (dump_file && (dump_flags & TDF_DETAILS))
3402 {
3403 fprintf (dump_file, "Simplified\n ");
3404 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3405 }
3406
3407 old_stmt = stmt;
3408 stmt = gsi_stmt (i);
3409 update_stmt (stmt);
3410
3411 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3412 && gimple_purge_dead_eh_edges (bb))
3413 cfg_changed = true;
3414
3415 if (dump_file && (dump_flags & TDF_DETAILS))
3416 {
3417 fprintf (dump_file, "to\n ");
3418 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3419 fprintf (dump_file, "\n");
3420 }
3421
3422 /* Retry the same statement if it changed into another
3423 builtin, there might be new opportunities now. */
3424 if (gimple_code (stmt) != GIMPLE_CALL)
3425 {
3426 gsi_next (&i);
3427 continue;
3428 }
3429 callee = gimple_call_fndecl (stmt);
3430 if (!callee
3431 || !fndecl_built_in_p (callee, fcode))
3432 gsi_next (&i);
3433 }
3434 }
3435
3436 /* Delete unreachable blocks. */
3437 if (cfg_changed)
3438 todoflags |= TODO_cleanup_cfg;
3439
3440 return todoflags;
3441 }
3442
3443 } // anon namespace
3444
3445 gimple_opt_pass *
3446 make_pass_fold_builtins (gcc::context *ctxt)
3447 {
3448 return new pass_fold_builtins (ctxt);
3449 }
3450
3451 /* A simple pass that emits some warnings post IPA. */
3452
3453 namespace {
3454
3455 const pass_data pass_data_post_ipa_warn =
3456 {
3457 GIMPLE_PASS, /* type */
3458 "post_ipa_warn", /* name */
3459 OPTGROUP_NONE, /* optinfo_flags */
3460 TV_NONE, /* tv_id */
3461 ( PROP_cfg | PROP_ssa ), /* properties_required */
3462 0, /* properties_provided */
3463 0, /* properties_destroyed */
3464 0, /* todo_flags_start */
3465 0, /* todo_flags_finish */
3466 };
3467
3468 class pass_post_ipa_warn : public gimple_opt_pass
3469 {
3470 public:
3471 pass_post_ipa_warn (gcc::context *ctxt)
3472 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3473 {}
3474
3475 /* opt_pass methods: */
3476 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3477 virtual bool gate (function *) { return warn_nonnull != 0; }
3478 virtual unsigned int execute (function *);
3479
3480 }; // class pass_fold_builtins
3481
3482 unsigned int
3483 pass_post_ipa_warn::execute (function *fun)
3484 {
3485 basic_block bb;
3486
3487 FOR_EACH_BB_FN (bb, fun)
3488 {
3489 gimple_stmt_iterator gsi;
3490 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3491 {
3492 gimple *stmt = gsi_stmt (gsi);
3493 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3494 continue;
3495
3496 if (warn_nonnull)
3497 {
3498 bitmap nonnullargs
3499 = get_nonnull_args (gimple_call_fntype (stmt));
3500 if (nonnullargs)
3501 {
3502 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3503 {
3504 tree arg = gimple_call_arg (stmt, i);
3505 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3506 continue;
3507 if (!integer_zerop (arg))
3508 continue;
3509 if (!bitmap_empty_p (nonnullargs)
3510 && !bitmap_bit_p (nonnullargs, i))
3511 continue;
3512
3513 location_t loc = gimple_location (stmt);
3514 auto_diagnostic_group d;
3515 if (warning_at (loc, OPT_Wnonnull,
3516 "%Gargument %u null where non-null "
3517 "expected", stmt, i + 1))
3518 {
3519 tree fndecl = gimple_call_fndecl (stmt);
3520 if (fndecl && DECL_IS_BUILTIN (fndecl))
3521 inform (loc, "in a call to built-in function %qD",
3522 fndecl);
3523 else if (fndecl)
3524 inform (DECL_SOURCE_LOCATION (fndecl),
3525 "in a call to function %qD declared here",
3526 fndecl);
3527
3528 }
3529 }
3530 BITMAP_FREE (nonnullargs);
3531 }
3532 }
3533 }
3534 }
3535 return 0;
3536 }
3537
3538 } // anon namespace
3539
3540 gimple_opt_pass *
3541 make_pass_post_ipa_warn (gcc::context *ctxt)
3542 {
3543 return new pass_post_ipa_warn (ctxt);
3544 }