]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ccp.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
154
155 /* Possible lattice values. */
156 typedef enum
157 {
158 UNINITIALIZED,
159 UNDEFINED,
160 CONSTANT,
161 VARYING
162 } ccp_lattice_t;
163
164 class ccp_prop_value_t {
165 public:
166 /* Lattice value. */
167 ccp_lattice_t lattice_val;
168
169 /* Propagated value. */
170 tree value;
171
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
175 information. */
176 widest_int mask;
177 };
178
179 class ccp_propagate : public ssa_propagation_engine
180 {
181 public:
182 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
183 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
184 };
185
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
191 doing the store). */
192 static ccp_prop_value_t *const_val;
193 static unsigned n_const_val;
194
195 static void canonicalize_value (ccp_prop_value_t *);
196 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
197
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
199
200 static void
201 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
202 {
203 switch (val.lattice_val)
204 {
205 case UNINITIALIZED:
206 fprintf (outf, "%sUNINITIALIZED", prefix);
207 break;
208 case UNDEFINED:
209 fprintf (outf, "%sUNDEFINED", prefix);
210 break;
211 case VARYING:
212 fprintf (outf, "%sVARYING", prefix);
213 break;
214 case CONSTANT:
215 if (TREE_CODE (val.value) != INTEGER_CST
216 || val.mask == 0)
217 {
218 fprintf (outf, "%sCONSTANT ", prefix);
219 print_generic_expr (outf, val.value, dump_flags);
220 }
221 else
222 {
223 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
224 val.mask);
225 fprintf (outf, "%sCONSTANT ", prefix);
226 print_hex (cval, outf);
227 fprintf (outf, " (");
228 print_hex (val.mask, outf);
229 fprintf (outf, ")");
230 }
231 break;
232 default:
233 gcc_unreachable ();
234 }
235 }
236
237
238 /* Print lattice value VAL to stderr. */
239
240 void debug_lattice_value (ccp_prop_value_t val);
241
242 DEBUG_FUNCTION void
243 debug_lattice_value (ccp_prop_value_t val)
244 {
245 dump_lattice_value (stderr, "", val);
246 fprintf (stderr, "\n");
247 }
248
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
250
251 static widest_int
252 extend_mask (const wide_int &nonzero_bits, signop sgn)
253 {
254 return widest_int::from (nonzero_bits, sgn);
255 }
256
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
259 values:
260
261 1- Global and static variables that are declared constant are
262 considered CONSTANT.
263
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
268
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
271
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
274
275 static ccp_prop_value_t
276 get_default_value (tree var)
277 {
278 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
279 gimple *stmt;
280
281 stmt = SSA_NAME_DEF_STMT (var);
282
283 if (gimple_nop_p (stmt))
284 {
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var)
290 && SSA_NAME_VAR (var)
291 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
292 val.lattice_val = UNDEFINED;
293 else
294 {
295 val.lattice_val = VARYING;
296 val.mask = -1;
297 if (flag_tree_bit_ccp)
298 {
299 wide_int nonzero_bits = get_nonzero_bits (var);
300 tree value;
301 widest_int mask;
302
303 if (SSA_NAME_VAR (var)
304 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
306 {
307 val.lattice_val = CONSTANT;
308 val.value = value;
309 val.mask = mask;
310 if (nonzero_bits != -1)
311 val.mask &= extend_mask (nonzero_bits,
312 TYPE_SIGN (TREE_TYPE (var)));
313 }
314 else if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits,
319 TYPE_SIGN (TREE_TYPE (var)));
320 }
321 }
322 }
323 }
324 else if (is_gimple_assign (stmt))
325 {
326 tree cst;
327 if (gimple_assign_single_p (stmt)
328 && DECL_P (gimple_assign_rhs1 (stmt))
329 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
330 {
331 val.lattice_val = CONSTANT;
332 val.value = cst;
333 }
334 else
335 {
336 /* Any other variable defined by an assignment is considered
337 UNDEFINED. */
338 val.lattice_val = UNDEFINED;
339 }
340 }
341 else if ((is_gimple_call (stmt)
342 && gimple_call_lhs (stmt) != NULL_TREE)
343 || gimple_code (stmt) == GIMPLE_PHI)
344 {
345 /* A variable defined by a call or a PHI node is considered
346 UNDEFINED. */
347 val.lattice_val = UNDEFINED;
348 }
349 else
350 {
351 /* Otherwise, VAR will never take on a constant value. */
352 val.lattice_val = VARYING;
353 val.mask = -1;
354 }
355
356 return val;
357 }
358
359
360 /* Get the constant value associated with variable VAR. */
361
362 static inline ccp_prop_value_t *
363 get_value (tree var)
364 {
365 ccp_prop_value_t *val;
366
367 if (const_val == NULL
368 || SSA_NAME_VERSION (var) >= n_const_val)
369 return NULL;
370
371 val = &const_val[SSA_NAME_VERSION (var)];
372 if (val->lattice_val == UNINITIALIZED)
373 *val = get_default_value (var);
374
375 canonicalize_value (val);
376
377 return val;
378 }
379
380 /* Return the constant tree value associated with VAR. */
381
382 static inline tree
383 get_constant_value (tree var)
384 {
385 ccp_prop_value_t *val;
386 if (TREE_CODE (var) != SSA_NAME)
387 {
388 if (is_gimple_min_invariant (var))
389 return var;
390 return NULL_TREE;
391 }
392 val = get_value (var);
393 if (val
394 && val->lattice_val == CONSTANT
395 && (TREE_CODE (val->value) != INTEGER_CST
396 || val->mask == 0))
397 return val->value;
398 return NULL_TREE;
399 }
400
401 /* Sets the value associated with VAR to VARYING. */
402
403 static inline void
404 set_value_varying (tree var)
405 {
406 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
407
408 val->lattice_val = VARYING;
409 val->value = NULL_TREE;
410 val->mask = -1;
411 }
412
413 /* For integer constants, make sure to drop TREE_OVERFLOW. */
414
415 static void
416 canonicalize_value (ccp_prop_value_t *val)
417 {
418 if (val->lattice_val != CONSTANT)
419 return;
420
421 if (TREE_OVERFLOW_P (val->value))
422 val->value = drop_tree_overflow (val->value);
423 }
424
425 /* Return whether the lattice transition is valid. */
426
427 static bool
428 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
429 {
430 /* Lattice transitions must always be monotonically increasing in
431 value. */
432 if (old_val.lattice_val < new_val.lattice_val)
433 return true;
434
435 if (old_val.lattice_val != new_val.lattice_val)
436 return false;
437
438 if (!old_val.value && !new_val.value)
439 return true;
440
441 /* Now both lattice values are CONSTANT. */
442
443 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
444 when only a single copy edge is executable. */
445 if (TREE_CODE (old_val.value) == SSA_NAME
446 && TREE_CODE (new_val.value) == SSA_NAME)
447 return true;
448
449 /* Allow transitioning from a constant to a copy. */
450 if (is_gimple_min_invariant (old_val.value)
451 && TREE_CODE (new_val.value) == SSA_NAME)
452 return true;
453
454 /* Allow transitioning from PHI <&x, not executable> == &x
455 to PHI <&x, &y> == common alignment. */
456 if (TREE_CODE (old_val.value) != INTEGER_CST
457 && TREE_CODE (new_val.value) == INTEGER_CST)
458 return true;
459
460 /* Bit-lattices have to agree in the still valid bits. */
461 if (TREE_CODE (old_val.value) == INTEGER_CST
462 && TREE_CODE (new_val.value) == INTEGER_CST)
463 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
464 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
465
466 /* Otherwise constant values have to agree. */
467 if (operand_equal_p (old_val.value, new_val.value, 0))
468 return true;
469
470 /* At least the kinds and types should agree now. */
471 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
472 || !types_compatible_p (TREE_TYPE (old_val.value),
473 TREE_TYPE (new_val.value)))
474 return false;
475
476 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
477 to non-NaN. */
478 tree type = TREE_TYPE (new_val.value);
479 if (SCALAR_FLOAT_TYPE_P (type)
480 && !HONOR_NANS (type))
481 {
482 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
483 return true;
484 }
485 else if (VECTOR_FLOAT_TYPE_P (type)
486 && !HONOR_NANS (type))
487 {
488 unsigned int count
489 = tree_vector_builder::binary_encoded_nelts (old_val.value,
490 new_val.value);
491 for (unsigned int i = 0; i < count; ++i)
492 if (!REAL_VALUE_ISNAN
493 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
494 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
495 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
496 return false;
497 return true;
498 }
499 else if (COMPLEX_FLOAT_TYPE_P (type)
500 && !HONOR_NANS (type))
501 {
502 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
503 && !operand_equal_p (TREE_REALPART (old_val.value),
504 TREE_REALPART (new_val.value), 0))
505 return false;
506 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
507 && !operand_equal_p (TREE_IMAGPART (old_val.value),
508 TREE_IMAGPART (new_val.value), 0))
509 return false;
510 return true;
511 }
512 return false;
513 }
514
515 /* Set the value for variable VAR to NEW_VAL. Return true if the new
516 value is different from VAR's previous value. */
517
518 static bool
519 set_lattice_value (tree var, ccp_prop_value_t *new_val)
520 {
521 /* We can deal with old UNINITIALIZED values just fine here. */
522 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
523
524 canonicalize_value (new_val);
525
526 /* We have to be careful to not go up the bitwise lattice
527 represented by the mask. Instead of dropping to VARYING
528 use the meet operator to retain a conservative value.
529 Missed optimizations like PR65851 makes this necessary.
530 It also ensures we converge to a stable lattice solution. */
531 if (old_val->lattice_val != UNINITIALIZED)
532 ccp_lattice_meet (new_val, old_val);
533
534 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
535
536 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
537 caller that this was a non-transition. */
538 if (old_val->lattice_val != new_val->lattice_val
539 || (new_val->lattice_val == CONSTANT
540 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
541 || (TREE_CODE (new_val->value) == INTEGER_CST
542 && (new_val->mask != old_val->mask
543 || (wi::bit_and_not (wi::to_widest (old_val->value),
544 new_val->mask)
545 != wi::bit_and_not (wi::to_widest (new_val->value),
546 new_val->mask))))
547 || (TREE_CODE (new_val->value) != INTEGER_CST
548 && !operand_equal_p (new_val->value, old_val->value, 0)))))
549 {
550 /* ??? We would like to delay creation of INTEGER_CSTs from
551 partially constants here. */
552
553 if (dump_file && (dump_flags & TDF_DETAILS))
554 {
555 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
556 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
557 }
558
559 *old_val = *new_val;
560
561 gcc_assert (new_val->lattice_val != UNINITIALIZED);
562 return true;
563 }
564
565 return false;
566 }
567
568 static ccp_prop_value_t get_value_for_expr (tree, bool);
569 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
570 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
571 signop, int, const widest_int &, const widest_int &,
572 signop, int, const widest_int &, const widest_int &);
573
574 /* Return a widest_int that can be used for bitwise simplifications
575 from VAL. */
576
577 static widest_int
578 value_to_wide_int (ccp_prop_value_t val)
579 {
580 if (val.value
581 && TREE_CODE (val.value) == INTEGER_CST)
582 return wi::to_widest (val.value);
583
584 return 0;
585 }
586
587 /* Return the value for the address expression EXPR based on alignment
588 information. */
589
590 static ccp_prop_value_t
591 get_value_from_alignment (tree expr)
592 {
593 tree type = TREE_TYPE (expr);
594 ccp_prop_value_t val;
595 unsigned HOST_WIDE_INT bitpos;
596 unsigned int align;
597
598 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
599
600 get_pointer_alignment_1 (expr, &align, &bitpos);
601 val.mask = wi::bit_and_not
602 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
603 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
604 : -1,
605 align / BITS_PER_UNIT - 1);
606 val.lattice_val
607 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
608 if (val.lattice_val == CONSTANT)
609 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
610 else
611 val.value = NULL_TREE;
612
613 return val;
614 }
615
616 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
617 return constant bits extracted from alignment information for
618 invariant addresses. */
619
620 static ccp_prop_value_t
621 get_value_for_expr (tree expr, bool for_bits_p)
622 {
623 ccp_prop_value_t val;
624
625 if (TREE_CODE (expr) == SSA_NAME)
626 {
627 ccp_prop_value_t *val_ = get_value (expr);
628 if (val_)
629 val = *val_;
630 else
631 {
632 val.lattice_val = VARYING;
633 val.value = NULL_TREE;
634 val.mask = -1;
635 }
636 if (for_bits_p
637 && val.lattice_val == CONSTANT)
638 {
639 if (TREE_CODE (val.value) == ADDR_EXPR)
640 val = get_value_from_alignment (val.value);
641 else if (TREE_CODE (val.value) != INTEGER_CST)
642 {
643 val.lattice_val = VARYING;
644 val.value = NULL_TREE;
645 val.mask = -1;
646 }
647 }
648 /* Fall back to a copy value. */
649 if (!for_bits_p
650 && val.lattice_val == VARYING
651 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
652 {
653 val.lattice_val = CONSTANT;
654 val.value = expr;
655 val.mask = -1;
656 }
657 }
658 else if (is_gimple_min_invariant (expr)
659 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
660 {
661 val.lattice_val = CONSTANT;
662 val.value = expr;
663 val.mask = 0;
664 canonicalize_value (&val);
665 }
666 else if (TREE_CODE (expr) == ADDR_EXPR)
667 val = get_value_from_alignment (expr);
668 else
669 {
670 val.lattice_val = VARYING;
671 val.mask = -1;
672 val.value = NULL_TREE;
673 }
674
675 if (val.lattice_val == VARYING
676 && TYPE_UNSIGNED (TREE_TYPE (expr)))
677 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
678
679 return val;
680 }
681
682 /* Return the likely CCP lattice value for STMT.
683
684 If STMT has no operands, then return CONSTANT.
685
686 Else if undefinedness of operands of STMT cause its value to be
687 undefined, then return UNDEFINED.
688
689 Else if any operands of STMT are constants, then return CONSTANT.
690
691 Else return VARYING. */
692
693 static ccp_lattice_t
694 likely_value (gimple *stmt)
695 {
696 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
697 bool has_nsa_operand;
698 tree use;
699 ssa_op_iter iter;
700 unsigned i;
701
702 enum gimple_code code = gimple_code (stmt);
703
704 /* This function appears to be called only for assignments, calls,
705 conditionals, and switches, due to the logic in visit_stmt. */
706 gcc_assert (code == GIMPLE_ASSIGN
707 || code == GIMPLE_CALL
708 || code == GIMPLE_COND
709 || code == GIMPLE_SWITCH);
710
711 /* If the statement has volatile operands, it won't fold to a
712 constant value. */
713 if (gimple_has_volatile_ops (stmt))
714 return VARYING;
715
716 /* Arrive here for more complex cases. */
717 has_constant_operand = false;
718 has_undefined_operand = false;
719 all_undefined_operands = true;
720 has_nsa_operand = false;
721 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
722 {
723 ccp_prop_value_t *val = get_value (use);
724
725 if (val && val->lattice_val == UNDEFINED)
726 has_undefined_operand = true;
727 else
728 all_undefined_operands = false;
729
730 if (val && val->lattice_val == CONSTANT)
731 has_constant_operand = true;
732
733 if (SSA_NAME_IS_DEFAULT_DEF (use)
734 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
735 has_nsa_operand = true;
736 }
737
738 /* There may be constants in regular rhs operands. For calls we
739 have to ignore lhs, fndecl and static chain, otherwise only
740 the lhs. */
741 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
742 i < gimple_num_ops (stmt); ++i)
743 {
744 tree op = gimple_op (stmt, i);
745 if (!op || TREE_CODE (op) == SSA_NAME)
746 continue;
747 if (is_gimple_min_invariant (op))
748 has_constant_operand = true;
749 }
750
751 if (has_constant_operand)
752 all_undefined_operands = false;
753
754 if (has_undefined_operand
755 && code == GIMPLE_CALL
756 && gimple_call_internal_p (stmt))
757 switch (gimple_call_internal_fn (stmt))
758 {
759 /* These 3 builtins use the first argument just as a magic
760 way how to find out a decl uid. */
761 case IFN_GOMP_SIMD_LANE:
762 case IFN_GOMP_SIMD_VF:
763 case IFN_GOMP_SIMD_LAST_LANE:
764 has_undefined_operand = false;
765 break;
766 default:
767 break;
768 }
769
770 /* If the operation combines operands like COMPLEX_EXPR make sure to
771 not mark the result UNDEFINED if only one part of the result is
772 undefined. */
773 if (has_undefined_operand && all_undefined_operands)
774 return UNDEFINED;
775 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
776 {
777 switch (gimple_assign_rhs_code (stmt))
778 {
779 /* Unary operators are handled with all_undefined_operands. */
780 case PLUS_EXPR:
781 case MINUS_EXPR:
782 case POINTER_PLUS_EXPR:
783 case BIT_XOR_EXPR:
784 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
785 Not bitwise operators, one VARYING operand may specify the
786 result completely.
787 Not logical operators for the same reason, apart from XOR.
788 Not COMPLEX_EXPR as one VARYING operand makes the result partly
789 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
790 the undefined operand may be promoted. */
791 return UNDEFINED;
792
793 case ADDR_EXPR:
794 /* If any part of an address is UNDEFINED, like the index
795 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
796 return UNDEFINED;
797
798 default:
799 ;
800 }
801 }
802 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
803 fall back to CONSTANT. During iteration UNDEFINED may still drop
804 to CONSTANT. */
805 if (has_undefined_operand)
806 return CONSTANT;
807
808 /* We do not consider virtual operands here -- load from read-only
809 memory may have only VARYING virtual operands, but still be
810 constant. Also we can combine the stmt with definitions from
811 operands whose definitions are not simulated again. */
812 if (has_constant_operand
813 || has_nsa_operand
814 || gimple_references_memory_p (stmt))
815 return CONSTANT;
816
817 return VARYING;
818 }
819
820 /* Returns true if STMT cannot be constant. */
821
822 static bool
823 surely_varying_stmt_p (gimple *stmt)
824 {
825 /* If the statement has operands that we cannot handle, it cannot be
826 constant. */
827 if (gimple_has_volatile_ops (stmt))
828 return true;
829
830 /* If it is a call and does not return a value or is not a
831 builtin and not an indirect call or a call to function with
832 assume_aligned/alloc_align attribute, it is varying. */
833 if (is_gimple_call (stmt))
834 {
835 tree fndecl, fntype = gimple_call_fntype (stmt);
836 if (!gimple_call_lhs (stmt)
837 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
838 && !fndecl_built_in_p (fndecl)
839 && !lookup_attribute ("assume_aligned",
840 TYPE_ATTRIBUTES (fntype))
841 && !lookup_attribute ("alloc_align",
842 TYPE_ATTRIBUTES (fntype))))
843 return true;
844 }
845
846 /* Any other store operation is not interesting. */
847 else if (gimple_vdef (stmt))
848 return true;
849
850 /* Anything other than assignments and conditional jumps are not
851 interesting for CCP. */
852 if (gimple_code (stmt) != GIMPLE_ASSIGN
853 && gimple_code (stmt) != GIMPLE_COND
854 && gimple_code (stmt) != GIMPLE_SWITCH
855 && gimple_code (stmt) != GIMPLE_CALL)
856 return true;
857
858 return false;
859 }
860
861 /* Initialize local data structures for CCP. */
862
863 static void
864 ccp_initialize (void)
865 {
866 basic_block bb;
867
868 n_const_val = num_ssa_names;
869 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
870
871 /* Initialize simulation flags for PHI nodes and statements. */
872 FOR_EACH_BB_FN (bb, cfun)
873 {
874 gimple_stmt_iterator i;
875
876 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
877 {
878 gimple *stmt = gsi_stmt (i);
879 bool is_varying;
880
881 /* If the statement is a control insn, then we do not
882 want to avoid simulating the statement once. Failure
883 to do so means that those edges will never get added. */
884 if (stmt_ends_bb_p (stmt))
885 is_varying = false;
886 else
887 is_varying = surely_varying_stmt_p (stmt);
888
889 if (is_varying)
890 {
891 tree def;
892 ssa_op_iter iter;
893
894 /* If the statement will not produce a constant, mark
895 all its outputs VARYING. */
896 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
897 set_value_varying (def);
898 }
899 prop_set_simulate_again (stmt, !is_varying);
900 }
901 }
902
903 /* Now process PHI nodes. We never clear the simulate_again flag on
904 phi nodes, since we do not know which edges are executable yet,
905 except for phi nodes for virtual operands when we do not do store ccp. */
906 FOR_EACH_BB_FN (bb, cfun)
907 {
908 gphi_iterator i;
909
910 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
911 {
912 gphi *phi = i.phi ();
913
914 if (virtual_operand_p (gimple_phi_result (phi)))
915 prop_set_simulate_again (phi, false);
916 else
917 prop_set_simulate_again (phi, true);
918 }
919 }
920 }
921
922 /* Debug count support. Reset the values of ssa names
923 VARYING when the total number ssa names analyzed is
924 beyond the debug count specified. */
925
926 static void
927 do_dbg_cnt (void)
928 {
929 unsigned i;
930 for (i = 0; i < num_ssa_names; i++)
931 {
932 if (!dbg_cnt (ccp))
933 {
934 const_val[i].lattice_val = VARYING;
935 const_val[i].mask = -1;
936 const_val[i].value = NULL_TREE;
937 }
938 }
939 }
940
941
942 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
943 class ccp_folder : public substitute_and_fold_engine
944 {
945 public:
946 tree get_value (tree) FINAL OVERRIDE;
947 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
948 };
949
950 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
951 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
952 of calling member functions. */
953
954 tree
955 ccp_folder::get_value (tree op)
956 {
957 return get_constant_value (op);
958 }
959
960 /* Do final substitution of propagated values, cleanup the flowgraph and
961 free allocated storage. If NONZERO_P, record nonzero bits.
962
963 Return TRUE when something was optimized. */
964
965 static bool
966 ccp_finalize (bool nonzero_p)
967 {
968 bool something_changed;
969 unsigned i;
970 tree name;
971
972 do_dbg_cnt ();
973
974 /* Derive alignment and misalignment information from partially
975 constant pointers in the lattice or nonzero bits from partially
976 constant integers. */
977 FOR_EACH_SSA_NAME (i, name, cfun)
978 {
979 ccp_prop_value_t *val;
980 unsigned int tem, align;
981
982 if (!POINTER_TYPE_P (TREE_TYPE (name))
983 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
984 /* Don't record nonzero bits before IPA to avoid
985 using too much memory. */
986 || !nonzero_p))
987 continue;
988
989 val = get_value (name);
990 if (val->lattice_val != CONSTANT
991 || TREE_CODE (val->value) != INTEGER_CST
992 || val->mask == 0)
993 continue;
994
995 if (POINTER_TYPE_P (TREE_TYPE (name)))
996 {
997 /* Trailing mask bits specify the alignment, trailing value
998 bits the misalignment. */
999 tem = val->mask.to_uhwi ();
1000 align = least_bit_hwi (tem);
1001 if (align > 1)
1002 set_ptr_info_alignment (get_ptr_info (name), align,
1003 (TREE_INT_CST_LOW (val->value)
1004 & (align - 1)));
1005 }
1006 else
1007 {
1008 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1009 wide_int nonzero_bits
1010 = (wide_int::from (val->mask, precision, UNSIGNED)
1011 | wi::to_wide (val->value));
1012 nonzero_bits &= get_nonzero_bits (name);
1013 set_nonzero_bits (name, nonzero_bits);
1014 }
1015 }
1016
1017 /* Perform substitutions based on the known constant values. */
1018 class ccp_folder ccp_folder;
1019 something_changed = ccp_folder.substitute_and_fold ();
1020
1021 free (const_val);
1022 const_val = NULL;
1023 return something_changed;
1024 }
1025
1026
1027 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1028 in VAL1.
1029
1030 any M UNDEFINED = any
1031 any M VARYING = VARYING
1032 Ci M Cj = Ci if (i == j)
1033 Ci M Cj = VARYING if (i != j)
1034 */
1035
1036 static void
1037 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1038 {
1039 if (val1->lattice_val == UNDEFINED
1040 /* For UNDEFINED M SSA we can't always SSA because its definition
1041 may not dominate the PHI node. Doing optimistic copy propagation
1042 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1043 && (val2->lattice_val != CONSTANT
1044 || TREE_CODE (val2->value) != SSA_NAME))
1045 {
1046 /* UNDEFINED M any = any */
1047 *val1 = *val2;
1048 }
1049 else if (val2->lattice_val == UNDEFINED
1050 /* See above. */
1051 && (val1->lattice_val != CONSTANT
1052 || TREE_CODE (val1->value) != SSA_NAME))
1053 {
1054 /* any M UNDEFINED = any
1055 Nothing to do. VAL1 already contains the value we want. */
1056 ;
1057 }
1058 else if (val1->lattice_val == VARYING
1059 || val2->lattice_val == VARYING)
1060 {
1061 /* any M VARYING = VARYING. */
1062 val1->lattice_val = VARYING;
1063 val1->mask = -1;
1064 val1->value = NULL_TREE;
1065 }
1066 else if (val1->lattice_val == CONSTANT
1067 && val2->lattice_val == CONSTANT
1068 && TREE_CODE (val1->value) == INTEGER_CST
1069 && TREE_CODE (val2->value) == INTEGER_CST)
1070 {
1071 /* Ci M Cj = Ci if (i == j)
1072 Ci M Cj = VARYING if (i != j)
1073
1074 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1075 drop to varying. */
1076 val1->mask = (val1->mask | val2->mask
1077 | (wi::to_widest (val1->value)
1078 ^ wi::to_widest (val2->value)));
1079 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1080 {
1081 val1->lattice_val = VARYING;
1082 val1->value = NULL_TREE;
1083 }
1084 }
1085 else if (val1->lattice_val == CONSTANT
1086 && val2->lattice_val == CONSTANT
1087 && operand_equal_p (val1->value, val2->value, 0))
1088 {
1089 /* Ci M Cj = Ci if (i == j)
1090 Ci M Cj = VARYING if (i != j)
1091
1092 VAL1 already contains the value we want for equivalent values. */
1093 }
1094 else if (val1->lattice_val == CONSTANT
1095 && val2->lattice_val == CONSTANT
1096 && (TREE_CODE (val1->value) == ADDR_EXPR
1097 || TREE_CODE (val2->value) == ADDR_EXPR))
1098 {
1099 /* When not equal addresses are involved try meeting for
1100 alignment. */
1101 ccp_prop_value_t tem = *val2;
1102 if (TREE_CODE (val1->value) == ADDR_EXPR)
1103 *val1 = get_value_for_expr (val1->value, true);
1104 if (TREE_CODE (val2->value) == ADDR_EXPR)
1105 tem = get_value_for_expr (val2->value, true);
1106 ccp_lattice_meet (val1, &tem);
1107 }
1108 else
1109 {
1110 /* Any other combination is VARYING. */
1111 val1->lattice_val = VARYING;
1112 val1->mask = -1;
1113 val1->value = NULL_TREE;
1114 }
1115 }
1116
1117
1118 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1119 lattice values to determine PHI_NODE's lattice value. The value of a
1120 PHI node is determined calling ccp_lattice_meet with all the arguments
1121 of the PHI node that are incoming via executable edges. */
1122
1123 enum ssa_prop_result
1124 ccp_propagate::visit_phi (gphi *phi)
1125 {
1126 unsigned i;
1127 ccp_prop_value_t new_val;
1128
1129 if (dump_file && (dump_flags & TDF_DETAILS))
1130 {
1131 fprintf (dump_file, "\nVisiting PHI node: ");
1132 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1133 }
1134
1135 new_val.lattice_val = UNDEFINED;
1136 new_val.value = NULL_TREE;
1137 new_val.mask = 0;
1138
1139 bool first = true;
1140 bool non_exec_edge = false;
1141 for (i = 0; i < gimple_phi_num_args (phi); i++)
1142 {
1143 /* Compute the meet operator over all the PHI arguments flowing
1144 through executable edges. */
1145 edge e = gimple_phi_arg_edge (phi, i);
1146
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 {
1149 fprintf (dump_file,
1150 "\tArgument #%d (%d -> %d %sexecutable)\n",
1151 i, e->src->index, e->dest->index,
1152 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1153 }
1154
1155 /* If the incoming edge is executable, Compute the meet operator for
1156 the existing value of the PHI node and the current PHI argument. */
1157 if (e->flags & EDGE_EXECUTABLE)
1158 {
1159 tree arg = gimple_phi_arg (phi, i)->def;
1160 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1161
1162 if (first)
1163 {
1164 new_val = arg_val;
1165 first = false;
1166 }
1167 else
1168 ccp_lattice_meet (&new_val, &arg_val);
1169
1170 if (dump_file && (dump_flags & TDF_DETAILS))
1171 {
1172 fprintf (dump_file, "\t");
1173 print_generic_expr (dump_file, arg, dump_flags);
1174 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1175 fprintf (dump_file, "\n");
1176 }
1177
1178 if (new_val.lattice_val == VARYING)
1179 break;
1180 }
1181 else
1182 non_exec_edge = true;
1183 }
1184
1185 /* In case there were non-executable edges and the value is a copy
1186 make sure its definition dominates the PHI node. */
1187 if (non_exec_edge
1188 && new_val.lattice_val == CONSTANT
1189 && TREE_CODE (new_val.value) == SSA_NAME
1190 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1191 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1192 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1193 {
1194 new_val.lattice_val = VARYING;
1195 new_val.value = NULL_TREE;
1196 new_val.mask = -1;
1197 }
1198
1199 if (dump_file && (dump_flags & TDF_DETAILS))
1200 {
1201 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1202 fprintf (dump_file, "\n\n");
1203 }
1204
1205 /* Make the transition to the new value. */
1206 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1207 {
1208 if (new_val.lattice_val == VARYING)
1209 return SSA_PROP_VARYING;
1210 else
1211 return SSA_PROP_INTERESTING;
1212 }
1213 else
1214 return SSA_PROP_NOT_INTERESTING;
1215 }
1216
1217 /* Return the constant value for OP or OP otherwise. */
1218
1219 static tree
1220 valueize_op (tree op)
1221 {
1222 if (TREE_CODE (op) == SSA_NAME)
1223 {
1224 tree tem = get_constant_value (op);
1225 if (tem)
1226 return tem;
1227 }
1228 return op;
1229 }
1230
1231 /* Return the constant value for OP, but signal to not follow SSA
1232 edges if the definition may be simulated again. */
1233
1234 static tree
1235 valueize_op_1 (tree op)
1236 {
1237 if (TREE_CODE (op) == SSA_NAME)
1238 {
1239 /* If the definition may be simulated again we cannot follow
1240 this SSA edge as the SSA propagator does not necessarily
1241 re-visit the use. */
1242 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1243 if (!gimple_nop_p (def_stmt)
1244 && prop_simulate_again_p (def_stmt))
1245 return NULL_TREE;
1246 tree tem = get_constant_value (op);
1247 if (tem)
1248 return tem;
1249 }
1250 return op;
1251 }
1252
1253 /* CCP specific front-end to the non-destructive constant folding
1254 routines.
1255
1256 Attempt to simplify the RHS of STMT knowing that one or more
1257 operands are constants.
1258
1259 If simplification is possible, return the simplified RHS,
1260 otherwise return the original RHS or NULL_TREE. */
1261
1262 static tree
1263 ccp_fold (gimple *stmt)
1264 {
1265 location_t loc = gimple_location (stmt);
1266 switch (gimple_code (stmt))
1267 {
1268 case GIMPLE_COND:
1269 {
1270 /* Handle comparison operators that can appear in GIMPLE form. */
1271 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1272 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1273 enum tree_code code = gimple_cond_code (stmt);
1274 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1275 }
1276
1277 case GIMPLE_SWITCH:
1278 {
1279 /* Return the constant switch index. */
1280 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1281 }
1282
1283 case GIMPLE_ASSIGN:
1284 case GIMPLE_CALL:
1285 return gimple_fold_stmt_to_constant_1 (stmt,
1286 valueize_op, valueize_op_1);
1287
1288 default:
1289 gcc_unreachable ();
1290 }
1291 }
1292
1293 /* Apply the operation CODE in type TYPE to the value, mask pair
1294 RVAL and RMASK representing a value of type RTYPE and set
1295 the value, mask pair *VAL and *MASK to the result. */
1296
1297 void
1298 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1299 widest_int *val, widest_int *mask,
1300 signop rtype_sgn, int rtype_precision,
1301 const widest_int &rval, const widest_int &rmask)
1302 {
1303 switch (code)
1304 {
1305 case BIT_NOT_EXPR:
1306 *mask = rmask;
1307 *val = ~rval;
1308 break;
1309
1310 case NEGATE_EXPR:
1311 {
1312 widest_int temv, temm;
1313 /* Return ~rval + 1. */
1314 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1315 type_sgn, type_precision, rval, rmask);
1316 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1317 type_sgn, type_precision, temv, temm,
1318 type_sgn, type_precision, 1, 0);
1319 break;
1320 }
1321
1322 CASE_CONVERT:
1323 {
1324 /* First extend mask and value according to the original type. */
1325 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1326 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1327
1328 /* Then extend mask and value according to the target type. */
1329 *mask = wi::ext (*mask, type_precision, type_sgn);
1330 *val = wi::ext (*val, type_precision, type_sgn);
1331 break;
1332 }
1333
1334 default:
1335 *mask = -1;
1336 break;
1337 }
1338 }
1339
1340 /* Apply the operation CODE in type TYPE to the value, mask pairs
1341 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1342 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1343
1344 void
1345 bit_value_binop (enum tree_code code, signop sgn, int width,
1346 widest_int *val, widest_int *mask,
1347 signop r1type_sgn, int r1type_precision,
1348 const widest_int &r1val, const widest_int &r1mask,
1349 signop r2type_sgn, int r2type_precision,
1350 const widest_int &r2val, const widest_int &r2mask)
1351 {
1352 bool swap_p = false;
1353
1354 /* Assume we'll get a constant result. Use an initial non varying
1355 value, we fall back to varying in the end if necessary. */
1356 *mask = -1;
1357
1358 switch (code)
1359 {
1360 case BIT_AND_EXPR:
1361 /* The mask is constant where there is a known not
1362 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1363 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1364 *val = r1val & r2val;
1365 break;
1366
1367 case BIT_IOR_EXPR:
1368 /* The mask is constant where there is a known
1369 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1370 *mask = wi::bit_and_not (r1mask | r2mask,
1371 wi::bit_and_not (r1val, r1mask)
1372 | wi::bit_and_not (r2val, r2mask));
1373 *val = r1val | r2val;
1374 break;
1375
1376 case BIT_XOR_EXPR:
1377 /* m1 | m2 */
1378 *mask = r1mask | r2mask;
1379 *val = r1val ^ r2val;
1380 break;
1381
1382 case LROTATE_EXPR:
1383 case RROTATE_EXPR:
1384 if (r2mask == 0)
1385 {
1386 widest_int shift = r2val;
1387 if (shift == 0)
1388 {
1389 *mask = r1mask;
1390 *val = r1val;
1391 }
1392 else
1393 {
1394 if (wi::neg_p (shift))
1395 {
1396 shift = -shift;
1397 if (code == RROTATE_EXPR)
1398 code = LROTATE_EXPR;
1399 else
1400 code = RROTATE_EXPR;
1401 }
1402 if (code == RROTATE_EXPR)
1403 {
1404 *mask = wi::rrotate (r1mask, shift, width);
1405 *val = wi::rrotate (r1val, shift, width);
1406 }
1407 else
1408 {
1409 *mask = wi::lrotate (r1mask, shift, width);
1410 *val = wi::lrotate (r1val, shift, width);
1411 }
1412 }
1413 }
1414 break;
1415
1416 case LSHIFT_EXPR:
1417 case RSHIFT_EXPR:
1418 /* ??? We can handle partially known shift counts if we know
1419 its sign. That way we can tell that (x << (y | 8)) & 255
1420 is zero. */
1421 if (r2mask == 0)
1422 {
1423 widest_int shift = r2val;
1424 if (shift == 0)
1425 {
1426 *mask = r1mask;
1427 *val = r1val;
1428 }
1429 else
1430 {
1431 if (wi::neg_p (shift))
1432 {
1433 shift = -shift;
1434 if (code == RSHIFT_EXPR)
1435 code = LSHIFT_EXPR;
1436 else
1437 code = RSHIFT_EXPR;
1438 }
1439 if (code == RSHIFT_EXPR)
1440 {
1441 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1442 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1443 }
1444 else
1445 {
1446 *mask = wi::ext (r1mask << shift, width, sgn);
1447 *val = wi::ext (r1val << shift, width, sgn);
1448 }
1449 }
1450 }
1451 break;
1452
1453 case PLUS_EXPR:
1454 case POINTER_PLUS_EXPR:
1455 {
1456 /* Do the addition with unknown bits set to zero, to give carry-ins of
1457 zero wherever possible. */
1458 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1459 + wi::bit_and_not (r2val, r2mask));
1460 lo = wi::ext (lo, width, sgn);
1461 /* Do the addition with unknown bits set to one, to give carry-ins of
1462 one wherever possible. */
1463 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1464 hi = wi::ext (hi, width, sgn);
1465 /* Each bit in the result is known if (a) the corresponding bits in
1466 both inputs are known, and (b) the carry-in to that bit position
1467 is known. We can check condition (b) by seeing if we got the same
1468 result with minimised carries as with maximised carries. */
1469 *mask = r1mask | r2mask | (lo ^ hi);
1470 *mask = wi::ext (*mask, width, sgn);
1471 /* It shouldn't matter whether we choose lo or hi here. */
1472 *val = lo;
1473 break;
1474 }
1475
1476 case MINUS_EXPR:
1477 {
1478 widest_int temv, temm;
1479 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1480 r2type_sgn, r2type_precision, r2val, r2mask);
1481 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1482 r1type_sgn, r1type_precision, r1val, r1mask,
1483 r2type_sgn, r2type_precision, temv, temm);
1484 break;
1485 }
1486
1487 case MULT_EXPR:
1488 {
1489 /* Just track trailing zeros in both operands and transfer
1490 them to the other. */
1491 int r1tz = wi::ctz (r1val | r1mask);
1492 int r2tz = wi::ctz (r2val | r2mask);
1493 if (r1tz + r2tz >= width)
1494 {
1495 *mask = 0;
1496 *val = 0;
1497 }
1498 else if (r1tz + r2tz > 0)
1499 {
1500 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1501 width, sgn);
1502 *val = 0;
1503 }
1504 break;
1505 }
1506
1507 case EQ_EXPR:
1508 case NE_EXPR:
1509 {
1510 widest_int m = r1mask | r2mask;
1511 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1512 {
1513 *mask = 0;
1514 *val = ((code == EQ_EXPR) ? 0 : 1);
1515 }
1516 else
1517 {
1518 /* We know the result of a comparison is always one or zero. */
1519 *mask = 1;
1520 *val = 0;
1521 }
1522 break;
1523 }
1524
1525 case GE_EXPR:
1526 case GT_EXPR:
1527 swap_p = true;
1528 code = swap_tree_comparison (code);
1529 /* Fall through. */
1530 case LT_EXPR:
1531 case LE_EXPR:
1532 {
1533 int minmax, maxmin;
1534
1535 const widest_int &o1val = swap_p ? r2val : r1val;
1536 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1537 const widest_int &o2val = swap_p ? r1val : r2val;
1538 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1539
1540 /* If the most significant bits are not known we know nothing. */
1541 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1542 break;
1543
1544 /* For comparisons the signedness is in the comparison operands. */
1545 sgn = r1type_sgn;
1546
1547 /* If we know the most significant bits we know the values
1548 value ranges by means of treating varying bits as zero
1549 or one. Do a cross comparison of the max/min pairs. */
1550 maxmin = wi::cmp (o1val | o1mask,
1551 wi::bit_and_not (o2val, o2mask), sgn);
1552 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1553 o2val | o2mask, sgn);
1554 if (maxmin < 0) /* o1 is less than o2. */
1555 {
1556 *mask = 0;
1557 *val = 1;
1558 }
1559 else if (minmax > 0) /* o1 is not less or equal to o2. */
1560 {
1561 *mask = 0;
1562 *val = 0;
1563 }
1564 else if (maxmin == minmax) /* o1 and o2 are equal. */
1565 {
1566 /* This probably should never happen as we'd have
1567 folded the thing during fully constant value folding. */
1568 *mask = 0;
1569 *val = (code == LE_EXPR ? 1 : 0);
1570 }
1571 else
1572 {
1573 /* We know the result of a comparison is always one or zero. */
1574 *mask = 1;
1575 *val = 0;
1576 }
1577 break;
1578 }
1579
1580 default:;
1581 }
1582 }
1583
1584 /* Return the propagation value when applying the operation CODE to
1585 the value RHS yielding type TYPE. */
1586
1587 static ccp_prop_value_t
1588 bit_value_unop (enum tree_code code, tree type, tree rhs)
1589 {
1590 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1591 widest_int value, mask;
1592 ccp_prop_value_t val;
1593
1594 if (rval.lattice_val == UNDEFINED)
1595 return rval;
1596
1597 gcc_assert ((rval.lattice_val == CONSTANT
1598 && TREE_CODE (rval.value) == INTEGER_CST)
1599 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1600 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1601 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1602 value_to_wide_int (rval), rval.mask);
1603 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1604 {
1605 val.lattice_val = CONSTANT;
1606 val.mask = mask;
1607 /* ??? Delay building trees here. */
1608 val.value = wide_int_to_tree (type, value);
1609 }
1610 else
1611 {
1612 val.lattice_val = VARYING;
1613 val.value = NULL_TREE;
1614 val.mask = -1;
1615 }
1616 return val;
1617 }
1618
1619 /* Return the propagation value when applying the operation CODE to
1620 the values RHS1 and RHS2 yielding type TYPE. */
1621
1622 static ccp_prop_value_t
1623 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1624 {
1625 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1626 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1627 widest_int value, mask;
1628 ccp_prop_value_t val;
1629
1630 if (r1val.lattice_val == UNDEFINED
1631 || r2val.lattice_val == UNDEFINED)
1632 {
1633 val.lattice_val = VARYING;
1634 val.value = NULL_TREE;
1635 val.mask = -1;
1636 return val;
1637 }
1638
1639 gcc_assert ((r1val.lattice_val == CONSTANT
1640 && TREE_CODE (r1val.value) == INTEGER_CST)
1641 || wi::sext (r1val.mask,
1642 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1643 gcc_assert ((r2val.lattice_val == CONSTANT
1644 && TREE_CODE (r2val.value) == INTEGER_CST)
1645 || wi::sext (r2val.mask,
1646 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1647 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1648 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1649 value_to_wide_int (r1val), r1val.mask,
1650 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1651 value_to_wide_int (r2val), r2val.mask);
1652
1653 /* (x * x) & 2 == 0. */
1654 if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
1655 {
1656 widest_int m = 2;
1657 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1658 value = wi::bit_and_not (value, m);
1659 else
1660 value = 0;
1661 mask = wi::bit_and_not (mask, m);
1662 }
1663
1664 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1665 {
1666 val.lattice_val = CONSTANT;
1667 val.mask = mask;
1668 /* ??? Delay building trees here. */
1669 val.value = wide_int_to_tree (type, value);
1670 }
1671 else
1672 {
1673 val.lattice_val = VARYING;
1674 val.value = NULL_TREE;
1675 val.mask = -1;
1676 }
1677 return val;
1678 }
1679
1680 /* Return the propagation value for __builtin_assume_aligned
1681 and functions with assume_aligned or alloc_aligned attribute.
1682 For __builtin_assume_aligned, ATTR is NULL_TREE,
1683 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1684 is false, for alloc_aligned attribute ATTR is non-NULL and
1685 ALLOC_ALIGNED is true. */
1686
1687 static ccp_prop_value_t
1688 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1689 bool alloc_aligned)
1690 {
1691 tree align, misalign = NULL_TREE, type;
1692 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1693 ccp_prop_value_t alignval;
1694 widest_int value, mask;
1695 ccp_prop_value_t val;
1696
1697 if (attr == NULL_TREE)
1698 {
1699 tree ptr = gimple_call_arg (stmt, 0);
1700 type = TREE_TYPE (ptr);
1701 ptrval = get_value_for_expr (ptr, true);
1702 }
1703 else
1704 {
1705 tree lhs = gimple_call_lhs (stmt);
1706 type = TREE_TYPE (lhs);
1707 }
1708
1709 if (ptrval.lattice_val == UNDEFINED)
1710 return ptrval;
1711 gcc_assert ((ptrval.lattice_val == CONSTANT
1712 && TREE_CODE (ptrval.value) == INTEGER_CST)
1713 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1714 if (attr == NULL_TREE)
1715 {
1716 /* Get aligni and misaligni from __builtin_assume_aligned. */
1717 align = gimple_call_arg (stmt, 1);
1718 if (!tree_fits_uhwi_p (align))
1719 return ptrval;
1720 aligni = tree_to_uhwi (align);
1721 if (gimple_call_num_args (stmt) > 2)
1722 {
1723 misalign = gimple_call_arg (stmt, 2);
1724 if (!tree_fits_uhwi_p (misalign))
1725 return ptrval;
1726 misaligni = tree_to_uhwi (misalign);
1727 }
1728 }
1729 else
1730 {
1731 /* Get aligni and misaligni from assume_aligned or
1732 alloc_align attributes. */
1733 if (TREE_VALUE (attr) == NULL_TREE)
1734 return ptrval;
1735 attr = TREE_VALUE (attr);
1736 align = TREE_VALUE (attr);
1737 if (!tree_fits_uhwi_p (align))
1738 return ptrval;
1739 aligni = tree_to_uhwi (align);
1740 if (alloc_aligned)
1741 {
1742 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1743 return ptrval;
1744 align = gimple_call_arg (stmt, aligni - 1);
1745 if (!tree_fits_uhwi_p (align))
1746 return ptrval;
1747 aligni = tree_to_uhwi (align);
1748 }
1749 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1750 {
1751 misalign = TREE_VALUE (TREE_CHAIN (attr));
1752 if (!tree_fits_uhwi_p (misalign))
1753 return ptrval;
1754 misaligni = tree_to_uhwi (misalign);
1755 }
1756 }
1757 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1758 return ptrval;
1759
1760 align = build_int_cst_type (type, -aligni);
1761 alignval = get_value_for_expr (align, true);
1762 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1763 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1764 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1765
1766 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1767 {
1768 val.lattice_val = CONSTANT;
1769 val.mask = mask;
1770 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1771 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1772 value |= misaligni;
1773 /* ??? Delay building trees here. */
1774 val.value = wide_int_to_tree (type, value);
1775 }
1776 else
1777 {
1778 val.lattice_val = VARYING;
1779 val.value = NULL_TREE;
1780 val.mask = -1;
1781 }
1782 return val;
1783 }
1784
1785 /* Evaluate statement STMT.
1786 Valid only for assignments, calls, conditionals, and switches. */
1787
1788 static ccp_prop_value_t
1789 evaluate_stmt (gimple *stmt)
1790 {
1791 ccp_prop_value_t val;
1792 tree simplified = NULL_TREE;
1793 ccp_lattice_t likelyvalue = likely_value (stmt);
1794 bool is_constant = false;
1795 unsigned int align;
1796
1797 if (dump_file && (dump_flags & TDF_DETAILS))
1798 {
1799 fprintf (dump_file, "which is likely ");
1800 switch (likelyvalue)
1801 {
1802 case CONSTANT:
1803 fprintf (dump_file, "CONSTANT");
1804 break;
1805 case UNDEFINED:
1806 fprintf (dump_file, "UNDEFINED");
1807 break;
1808 case VARYING:
1809 fprintf (dump_file, "VARYING");
1810 break;
1811 default:;
1812 }
1813 fprintf (dump_file, "\n");
1814 }
1815
1816 /* If the statement is likely to have a CONSTANT result, then try
1817 to fold the statement to determine the constant value. */
1818 /* FIXME. This is the only place that we call ccp_fold.
1819 Since likely_value never returns CONSTANT for calls, we will
1820 not attempt to fold them, including builtins that may profit. */
1821 if (likelyvalue == CONSTANT)
1822 {
1823 fold_defer_overflow_warnings ();
1824 simplified = ccp_fold (stmt);
1825 if (simplified
1826 && TREE_CODE (simplified) == SSA_NAME)
1827 {
1828 /* We may not use values of something that may be simulated again,
1829 see valueize_op_1. */
1830 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1831 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1832 {
1833 ccp_prop_value_t *val = get_value (simplified);
1834 if (val && val->lattice_val != VARYING)
1835 {
1836 fold_undefer_overflow_warnings (true, stmt, 0);
1837 return *val;
1838 }
1839 }
1840 else
1841 /* We may also not place a non-valueized copy in the lattice
1842 as that might become stale if we never re-visit this stmt. */
1843 simplified = NULL_TREE;
1844 }
1845 is_constant = simplified && is_gimple_min_invariant (simplified);
1846 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1847 if (is_constant)
1848 {
1849 /* The statement produced a constant value. */
1850 val.lattice_val = CONSTANT;
1851 val.value = simplified;
1852 val.mask = 0;
1853 return val;
1854 }
1855 }
1856 /* If the statement is likely to have a VARYING result, then do not
1857 bother folding the statement. */
1858 else if (likelyvalue == VARYING)
1859 {
1860 enum gimple_code code = gimple_code (stmt);
1861 if (code == GIMPLE_ASSIGN)
1862 {
1863 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1864
1865 /* Other cases cannot satisfy is_gimple_min_invariant
1866 without folding. */
1867 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1868 simplified = gimple_assign_rhs1 (stmt);
1869 }
1870 else if (code == GIMPLE_SWITCH)
1871 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1872 else
1873 /* These cannot satisfy is_gimple_min_invariant without folding. */
1874 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1875 is_constant = simplified && is_gimple_min_invariant (simplified);
1876 if (is_constant)
1877 {
1878 /* The statement produced a constant value. */
1879 val.lattice_val = CONSTANT;
1880 val.value = simplified;
1881 val.mask = 0;
1882 }
1883 }
1884 /* If the statement result is likely UNDEFINED, make it so. */
1885 else if (likelyvalue == UNDEFINED)
1886 {
1887 val.lattice_val = UNDEFINED;
1888 val.value = NULL_TREE;
1889 val.mask = 0;
1890 return val;
1891 }
1892
1893 /* Resort to simplification for bitwise tracking. */
1894 if (flag_tree_bit_ccp
1895 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1896 || (gimple_assign_single_p (stmt)
1897 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1898 && !is_constant)
1899 {
1900 enum gimple_code code = gimple_code (stmt);
1901 val.lattice_val = VARYING;
1902 val.value = NULL_TREE;
1903 val.mask = -1;
1904 if (code == GIMPLE_ASSIGN)
1905 {
1906 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1907 tree rhs1 = gimple_assign_rhs1 (stmt);
1908 tree lhs = gimple_assign_lhs (stmt);
1909 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1910 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1911 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1912 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1913 switch (get_gimple_rhs_class (subcode))
1914 {
1915 case GIMPLE_SINGLE_RHS:
1916 val = get_value_for_expr (rhs1, true);
1917 break;
1918
1919 case GIMPLE_UNARY_RHS:
1920 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1921 break;
1922
1923 case GIMPLE_BINARY_RHS:
1924 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1925 gimple_assign_rhs2 (stmt));
1926 break;
1927
1928 default:;
1929 }
1930 }
1931 else if (code == GIMPLE_COND)
1932 {
1933 enum tree_code code = gimple_cond_code (stmt);
1934 tree rhs1 = gimple_cond_lhs (stmt);
1935 tree rhs2 = gimple_cond_rhs (stmt);
1936 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1937 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1938 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1939 }
1940 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1941 {
1942 tree fndecl = gimple_call_fndecl (stmt);
1943 switch (DECL_FUNCTION_CODE (fndecl))
1944 {
1945 case BUILT_IN_MALLOC:
1946 case BUILT_IN_REALLOC:
1947 case BUILT_IN_CALLOC:
1948 case BUILT_IN_STRDUP:
1949 case BUILT_IN_STRNDUP:
1950 val.lattice_val = CONSTANT;
1951 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1952 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1953 / BITS_PER_UNIT - 1);
1954 break;
1955
1956 CASE_BUILT_IN_ALLOCA:
1957 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1958 ? BIGGEST_ALIGNMENT
1959 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1960 val.lattice_val = CONSTANT;
1961 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1962 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1963 break;
1964
1965 /* These builtins return their first argument, unmodified. */
1966 case BUILT_IN_MEMCPY:
1967 case BUILT_IN_MEMMOVE:
1968 case BUILT_IN_MEMSET:
1969 case BUILT_IN_STRCPY:
1970 case BUILT_IN_STRNCPY:
1971 case BUILT_IN_MEMCPY_CHK:
1972 case BUILT_IN_MEMMOVE_CHK:
1973 case BUILT_IN_MEMSET_CHK:
1974 case BUILT_IN_STRCPY_CHK:
1975 case BUILT_IN_STRNCPY_CHK:
1976 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1977 break;
1978
1979 case BUILT_IN_ASSUME_ALIGNED:
1980 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1981 break;
1982
1983 case BUILT_IN_ALIGNED_ALLOC:
1984 {
1985 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1986 if (align
1987 && tree_fits_uhwi_p (align))
1988 {
1989 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1990 if (aligni > 1
1991 /* align must be power-of-two */
1992 && (aligni & (aligni - 1)) == 0)
1993 {
1994 val.lattice_val = CONSTANT;
1995 val.value = build_int_cst (ptr_type_node, 0);
1996 val.mask = -aligni;
1997 }
1998 }
1999 break;
2000 }
2001
2002 case BUILT_IN_BSWAP16:
2003 case BUILT_IN_BSWAP32:
2004 case BUILT_IN_BSWAP64:
2005 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
2006 if (val.lattice_val == UNDEFINED)
2007 break;
2008 else if (val.lattice_val == CONSTANT
2009 && val.value
2010 && TREE_CODE (val.value) == INTEGER_CST)
2011 {
2012 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2013 int prec = TYPE_PRECISION (type);
2014 wide_int wval = wi::to_wide (val.value);
2015 val.value
2016 = wide_int_to_tree (type,
2017 wide_int::from (wval, prec,
2018 UNSIGNED).bswap ());
2019 val.mask
2020 = widest_int::from (wide_int::from (val.mask, prec,
2021 UNSIGNED).bswap (),
2022 UNSIGNED);
2023 if (wi::sext (val.mask, prec) != -1)
2024 break;
2025 }
2026 val.lattice_val = VARYING;
2027 val.value = NULL_TREE;
2028 val.mask = -1;
2029 break;
2030
2031 default:;
2032 }
2033 }
2034 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2035 {
2036 tree fntype = gimple_call_fntype (stmt);
2037 if (fntype)
2038 {
2039 tree attrs = lookup_attribute ("assume_aligned",
2040 TYPE_ATTRIBUTES (fntype));
2041 if (attrs)
2042 val = bit_value_assume_aligned (stmt, attrs, val, false);
2043 attrs = lookup_attribute ("alloc_align",
2044 TYPE_ATTRIBUTES (fntype));
2045 if (attrs)
2046 val = bit_value_assume_aligned (stmt, attrs, val, true);
2047 }
2048 }
2049 is_constant = (val.lattice_val == CONSTANT);
2050 }
2051
2052 if (flag_tree_bit_ccp
2053 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2054 || !is_constant)
2055 && gimple_get_lhs (stmt)
2056 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2057 {
2058 tree lhs = gimple_get_lhs (stmt);
2059 wide_int nonzero_bits = get_nonzero_bits (lhs);
2060 if (nonzero_bits != -1)
2061 {
2062 if (!is_constant)
2063 {
2064 val.lattice_val = CONSTANT;
2065 val.value = build_zero_cst (TREE_TYPE (lhs));
2066 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2067 is_constant = true;
2068 }
2069 else
2070 {
2071 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2072 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2073 nonzero_bits
2074 & wi::to_wide (val.value));
2075 if (nonzero_bits == 0)
2076 val.mask = 0;
2077 else
2078 val.mask = val.mask & extend_mask (nonzero_bits,
2079 TYPE_SIGN (TREE_TYPE (lhs)));
2080 }
2081 }
2082 }
2083
2084 /* The statement produced a nonconstant value. */
2085 if (!is_constant)
2086 {
2087 /* The statement produced a copy. */
2088 if (simplified && TREE_CODE (simplified) == SSA_NAME
2089 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2090 {
2091 val.lattice_val = CONSTANT;
2092 val.value = simplified;
2093 val.mask = -1;
2094 }
2095 /* The statement is VARYING. */
2096 else
2097 {
2098 val.lattice_val = VARYING;
2099 val.value = NULL_TREE;
2100 val.mask = -1;
2101 }
2102 }
2103
2104 return val;
2105 }
2106
2107 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2108
2109 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2110 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2111
2112 static void
2113 insert_clobber_before_stack_restore (tree saved_val, tree var,
2114 gimple_htab **visited)
2115 {
2116 gimple *stmt;
2117 gassign *clobber_stmt;
2118 tree clobber;
2119 imm_use_iterator iter;
2120 gimple_stmt_iterator i;
2121 gimple **slot;
2122
2123 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2124 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2125 {
2126 clobber = build_clobber (TREE_TYPE (var));
2127 clobber_stmt = gimple_build_assign (var, clobber);
2128
2129 i = gsi_for_stmt (stmt);
2130 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2131 }
2132 else if (gimple_code (stmt) == GIMPLE_PHI)
2133 {
2134 if (!*visited)
2135 *visited = new gimple_htab (10);
2136
2137 slot = (*visited)->find_slot (stmt, INSERT);
2138 if (*slot != NULL)
2139 continue;
2140
2141 *slot = stmt;
2142 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2143 visited);
2144 }
2145 else if (gimple_assign_ssa_name_copy_p (stmt))
2146 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2147 visited);
2148 }
2149
2150 /* Advance the iterator to the previous non-debug gimple statement in the same
2151 or dominating basic block. */
2152
2153 static inline void
2154 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2155 {
2156 basic_block dom;
2157
2158 gsi_prev_nondebug (i);
2159 while (gsi_end_p (*i))
2160 {
2161 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2162 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2163 return;
2164
2165 *i = gsi_last_bb (dom);
2166 }
2167 }
2168
2169 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2170 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2171
2172 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2173 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2174 In that case the function gives up without inserting the clobbers. */
2175
2176 static void
2177 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2178 {
2179 gimple *stmt;
2180 tree saved_val;
2181 gimple_htab *visited = NULL;
2182
2183 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2184 {
2185 stmt = gsi_stmt (i);
2186
2187 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2188 continue;
2189
2190 saved_val = gimple_call_lhs (stmt);
2191 if (saved_val == NULL_TREE)
2192 continue;
2193
2194 insert_clobber_before_stack_restore (saved_val, var, &visited);
2195 break;
2196 }
2197
2198 delete visited;
2199 }
2200
2201 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2202 fixed-size array and returns the address, if found, otherwise returns
2203 NULL_TREE. */
2204
2205 static tree
2206 fold_builtin_alloca_with_align (gimple *stmt)
2207 {
2208 unsigned HOST_WIDE_INT size, threshold, n_elem;
2209 tree lhs, arg, block, var, elem_type, array_type;
2210
2211 /* Get lhs. */
2212 lhs = gimple_call_lhs (stmt);
2213 if (lhs == NULL_TREE)
2214 return NULL_TREE;
2215
2216 /* Detect constant argument. */
2217 arg = get_constant_value (gimple_call_arg (stmt, 0));
2218 if (arg == NULL_TREE
2219 || TREE_CODE (arg) != INTEGER_CST
2220 || !tree_fits_uhwi_p (arg))
2221 return NULL_TREE;
2222
2223 size = tree_to_uhwi (arg);
2224
2225 /* Heuristic: don't fold large allocas. */
2226 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2227 /* In case the alloca is located at function entry, it has the same lifetime
2228 as a declared array, so we allow a larger size. */
2229 block = gimple_block (stmt);
2230 if (!(cfun->after_inlining
2231 && block
2232 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2233 threshold /= 10;
2234 if (size > threshold)
2235 return NULL_TREE;
2236
2237 /* We have to be able to move points-to info. We used to assert
2238 that we can but IPA PTA might end up with two UIDs here
2239 as it might need to handle more than one instance being
2240 live at the same time. Instead of trying to detect this case
2241 (using the first UID would be OK) just give up for now. */
2242 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2243 unsigned uid = 0;
2244 if (pi != NULL
2245 && !pi->pt.anything
2246 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2247 return NULL_TREE;
2248
2249 /* Declare array. */
2250 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2251 n_elem = size * 8 / BITS_PER_UNIT;
2252 array_type = build_array_type_nelts (elem_type, n_elem);
2253
2254 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2255 {
2256 /* Give the temporary a name derived from the name of the VLA
2257 declaration so it can be referenced in diagnostics. */
2258 const char *name = IDENTIFIER_POINTER (ssa_name);
2259 var = create_tmp_var (array_type, name);
2260 }
2261 else
2262 var = create_tmp_var (array_type);
2263
2264 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2265 {
2266 /* Set the temporary's location to that of the VLA declaration
2267 so it can be pointed to in diagnostics. */
2268 location_t loc = gimple_location (lhsdef);
2269 DECL_SOURCE_LOCATION (var) = loc;
2270 }
2271
2272 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2273 if (uid != 0)
2274 SET_DECL_PT_UID (var, uid);
2275
2276 /* Fold alloca to the address of the array. */
2277 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2278 }
2279
2280 /* Fold the stmt at *GSI with CCP specific information that propagating
2281 and regular folding does not catch. */
2282
2283 bool
2284 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2285 {
2286 gimple *stmt = gsi_stmt (*gsi);
2287
2288 switch (gimple_code (stmt))
2289 {
2290 case GIMPLE_COND:
2291 {
2292 gcond *cond_stmt = as_a <gcond *> (stmt);
2293 ccp_prop_value_t val;
2294 /* Statement evaluation will handle type mismatches in constants
2295 more gracefully than the final propagation. This allows us to
2296 fold more conditionals here. */
2297 val = evaluate_stmt (stmt);
2298 if (val.lattice_val != CONSTANT
2299 || val.mask != 0)
2300 return false;
2301
2302 if (dump_file)
2303 {
2304 fprintf (dump_file, "Folding predicate ");
2305 print_gimple_expr (dump_file, stmt, 0);
2306 fprintf (dump_file, " to ");
2307 print_generic_expr (dump_file, val.value);
2308 fprintf (dump_file, "\n");
2309 }
2310
2311 if (integer_zerop (val.value))
2312 gimple_cond_make_false (cond_stmt);
2313 else
2314 gimple_cond_make_true (cond_stmt);
2315
2316 return true;
2317 }
2318
2319 case GIMPLE_CALL:
2320 {
2321 tree lhs = gimple_call_lhs (stmt);
2322 int flags = gimple_call_flags (stmt);
2323 tree val;
2324 tree argt;
2325 bool changed = false;
2326 unsigned i;
2327
2328 /* If the call was folded into a constant make sure it goes
2329 away even if we cannot propagate into all uses because of
2330 type issues. */
2331 if (lhs
2332 && TREE_CODE (lhs) == SSA_NAME
2333 && (val = get_constant_value (lhs))
2334 /* Don't optimize away calls that have side-effects. */
2335 && (flags & (ECF_CONST|ECF_PURE)) != 0
2336 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2337 {
2338 tree new_rhs = unshare_expr (val);
2339 bool res;
2340 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2341 TREE_TYPE (new_rhs)))
2342 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2343 res = update_call_from_tree (gsi, new_rhs);
2344 gcc_assert (res);
2345 return true;
2346 }
2347
2348 /* Internal calls provide no argument types, so the extra laxity
2349 for normal calls does not apply. */
2350 if (gimple_call_internal_p (stmt))
2351 return false;
2352
2353 /* The heuristic of fold_builtin_alloca_with_align differs before and
2354 after inlining, so we don't require the arg to be changed into a
2355 constant for folding, but just to be constant. */
2356 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2357 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2358 {
2359 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2360 if (new_rhs)
2361 {
2362 bool res = update_call_from_tree (gsi, new_rhs);
2363 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2364 gcc_assert (res);
2365 insert_clobbers_for_var (*gsi, var);
2366 return true;
2367 }
2368 }
2369
2370 /* If there's no extra info from an assume_aligned call,
2371 drop it so it doesn't act as otherwise useless dataflow
2372 barrier. */
2373 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2374 {
2375 tree ptr = gimple_call_arg (stmt, 0);
2376 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2377 if (ptrval.lattice_val == CONSTANT
2378 && TREE_CODE (ptrval.value) == INTEGER_CST
2379 && ptrval.mask != 0)
2380 {
2381 ccp_prop_value_t val
2382 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2383 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2384 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2385 if (ptralign == align
2386 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2387 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2388 {
2389 bool res = update_call_from_tree (gsi, ptr);
2390 gcc_assert (res);
2391 return true;
2392 }
2393 }
2394 }
2395
2396 /* Propagate into the call arguments. Compared to replace_uses_in
2397 this can use the argument slot types for type verification
2398 instead of the current argument type. We also can safely
2399 drop qualifiers here as we are dealing with constants anyway. */
2400 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2401 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2402 ++i, argt = TREE_CHAIN (argt))
2403 {
2404 tree arg = gimple_call_arg (stmt, i);
2405 if (TREE_CODE (arg) == SSA_NAME
2406 && (val = get_constant_value (arg))
2407 && useless_type_conversion_p
2408 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2409 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2410 {
2411 gimple_call_set_arg (stmt, i, unshare_expr (val));
2412 changed = true;
2413 }
2414 }
2415
2416 return changed;
2417 }
2418
2419 case GIMPLE_ASSIGN:
2420 {
2421 tree lhs = gimple_assign_lhs (stmt);
2422 tree val;
2423
2424 /* If we have a load that turned out to be constant replace it
2425 as we cannot propagate into all uses in all cases. */
2426 if (gimple_assign_single_p (stmt)
2427 && TREE_CODE (lhs) == SSA_NAME
2428 && (val = get_constant_value (lhs)))
2429 {
2430 tree rhs = unshare_expr (val);
2431 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2432 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2433 gimple_assign_set_rhs_from_tree (gsi, rhs);
2434 return true;
2435 }
2436
2437 return false;
2438 }
2439
2440 default:
2441 return false;
2442 }
2443 }
2444
2445 /* Visit the assignment statement STMT. Set the value of its LHS to the
2446 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2447 creates virtual definitions, set the value of each new name to that
2448 of the RHS (if we can derive a constant out of the RHS).
2449 Value-returning call statements also perform an assignment, and
2450 are handled here. */
2451
2452 static enum ssa_prop_result
2453 visit_assignment (gimple *stmt, tree *output_p)
2454 {
2455 ccp_prop_value_t val;
2456 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2457
2458 tree lhs = gimple_get_lhs (stmt);
2459 if (TREE_CODE (lhs) == SSA_NAME)
2460 {
2461 /* Evaluate the statement, which could be
2462 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2463 val = evaluate_stmt (stmt);
2464
2465 /* If STMT is an assignment to an SSA_NAME, we only have one
2466 value to set. */
2467 if (set_lattice_value (lhs, &val))
2468 {
2469 *output_p = lhs;
2470 if (val.lattice_val == VARYING)
2471 retval = SSA_PROP_VARYING;
2472 else
2473 retval = SSA_PROP_INTERESTING;
2474 }
2475 }
2476
2477 return retval;
2478 }
2479
2480
2481 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2482 if it can determine which edge will be taken. Otherwise, return
2483 SSA_PROP_VARYING. */
2484
2485 static enum ssa_prop_result
2486 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2487 {
2488 ccp_prop_value_t val;
2489 basic_block block;
2490
2491 block = gimple_bb (stmt);
2492 val = evaluate_stmt (stmt);
2493 if (val.lattice_val != CONSTANT
2494 || val.mask != 0)
2495 return SSA_PROP_VARYING;
2496
2497 /* Find which edge out of the conditional block will be taken and add it
2498 to the worklist. If no single edge can be determined statically,
2499 return SSA_PROP_VARYING to feed all the outgoing edges to the
2500 propagation engine. */
2501 *taken_edge_p = find_taken_edge (block, val.value);
2502 if (*taken_edge_p)
2503 return SSA_PROP_INTERESTING;
2504 else
2505 return SSA_PROP_VARYING;
2506 }
2507
2508
2509 /* Evaluate statement STMT. If the statement produces an output value and
2510 its evaluation changes the lattice value of its output, return
2511 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2512 output value.
2513
2514 If STMT is a conditional branch and we can determine its truth
2515 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2516 value, return SSA_PROP_VARYING. */
2517
2518 enum ssa_prop_result
2519 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2520 {
2521 tree def;
2522 ssa_op_iter iter;
2523
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2525 {
2526 fprintf (dump_file, "\nVisiting statement:\n");
2527 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2528 }
2529
2530 switch (gimple_code (stmt))
2531 {
2532 case GIMPLE_ASSIGN:
2533 /* If the statement is an assignment that produces a single
2534 output value, evaluate its RHS to see if the lattice value of
2535 its output has changed. */
2536 return visit_assignment (stmt, output_p);
2537
2538 case GIMPLE_CALL:
2539 /* A value-returning call also performs an assignment. */
2540 if (gimple_call_lhs (stmt) != NULL_TREE)
2541 return visit_assignment (stmt, output_p);
2542 break;
2543
2544 case GIMPLE_COND:
2545 case GIMPLE_SWITCH:
2546 /* If STMT is a conditional branch, see if we can determine
2547 which branch will be taken. */
2548 /* FIXME. It appears that we should be able to optimize
2549 computed GOTOs here as well. */
2550 return visit_cond_stmt (stmt, taken_edge_p);
2551
2552 default:
2553 break;
2554 }
2555
2556 /* Any other kind of statement is not interesting for constant
2557 propagation and, therefore, not worth simulating. */
2558 if (dump_file && (dump_flags & TDF_DETAILS))
2559 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2560
2561 /* Definitions made by statements other than assignments to
2562 SSA_NAMEs represent unknown modifications to their outputs.
2563 Mark them VARYING. */
2564 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2565 set_value_varying (def);
2566
2567 return SSA_PROP_VARYING;
2568 }
2569
2570
2571 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2572 record nonzero bits. */
2573
2574 static unsigned int
2575 do_ssa_ccp (bool nonzero_p)
2576 {
2577 unsigned int todo = 0;
2578 calculate_dominance_info (CDI_DOMINATORS);
2579
2580 ccp_initialize ();
2581 class ccp_propagate ccp_propagate;
2582 ccp_propagate.ssa_propagate ();
2583 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2584 {
2585 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2586
2587 /* ccp_finalize does not preserve loop-closed ssa. */
2588 loops_state_clear (LOOP_CLOSED_SSA);
2589 }
2590
2591 free_dominance_info (CDI_DOMINATORS);
2592 return todo;
2593 }
2594
2595
2596 namespace {
2597
2598 const pass_data pass_data_ccp =
2599 {
2600 GIMPLE_PASS, /* type */
2601 "ccp", /* name */
2602 OPTGROUP_NONE, /* optinfo_flags */
2603 TV_TREE_CCP, /* tv_id */
2604 ( PROP_cfg | PROP_ssa ), /* properties_required */
2605 0, /* properties_provided */
2606 0, /* properties_destroyed */
2607 0, /* todo_flags_start */
2608 TODO_update_address_taken, /* todo_flags_finish */
2609 };
2610
2611 class pass_ccp : public gimple_opt_pass
2612 {
2613 public:
2614 pass_ccp (gcc::context *ctxt)
2615 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2616 {}
2617
2618 /* opt_pass methods: */
2619 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2620 void set_pass_param (unsigned int n, bool param)
2621 {
2622 gcc_assert (n == 0);
2623 nonzero_p = param;
2624 }
2625 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2626 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2627
2628 private:
2629 /* Determines whether the pass instance records nonzero bits. */
2630 bool nonzero_p;
2631 }; // class pass_ccp
2632
2633 } // anon namespace
2634
2635 gimple_opt_pass *
2636 make_pass_ccp (gcc::context *ctxt)
2637 {
2638 return new pass_ccp (ctxt);
2639 }
2640
2641
2642
2643 /* Try to optimize out __builtin_stack_restore. Optimize it out
2644 if there is another __builtin_stack_restore in the same basic
2645 block and no calls or ASM_EXPRs are in between, or if this block's
2646 only outgoing edge is to EXIT_BLOCK and there are no calls or
2647 ASM_EXPRs after this __builtin_stack_restore. */
2648
2649 static tree
2650 optimize_stack_restore (gimple_stmt_iterator i)
2651 {
2652 tree callee;
2653 gimple *stmt;
2654
2655 basic_block bb = gsi_bb (i);
2656 gimple *call = gsi_stmt (i);
2657
2658 if (gimple_code (call) != GIMPLE_CALL
2659 || gimple_call_num_args (call) != 1
2660 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2661 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2662 return NULL_TREE;
2663
2664 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2665 {
2666 stmt = gsi_stmt (i);
2667 if (gimple_code (stmt) == GIMPLE_ASM)
2668 return NULL_TREE;
2669 if (gimple_code (stmt) != GIMPLE_CALL)
2670 continue;
2671
2672 callee = gimple_call_fndecl (stmt);
2673 if (!callee
2674 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2675 /* All regular builtins are ok, just obviously not alloca. */
2676 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2677 return NULL_TREE;
2678
2679 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2680 goto second_stack_restore;
2681 }
2682
2683 if (!gsi_end_p (i))
2684 return NULL_TREE;
2685
2686 /* Allow one successor of the exit block, or zero successors. */
2687 switch (EDGE_COUNT (bb->succs))
2688 {
2689 case 0:
2690 break;
2691 case 1:
2692 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2693 return NULL_TREE;
2694 break;
2695 default:
2696 return NULL_TREE;
2697 }
2698 second_stack_restore:
2699
2700 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2701 If there are multiple uses, then the last one should remove the call.
2702 In any case, whether the call to __builtin_stack_save can be removed
2703 or not is irrelevant to removing the call to __builtin_stack_restore. */
2704 if (has_single_use (gimple_call_arg (call, 0)))
2705 {
2706 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2707 if (is_gimple_call (stack_save))
2708 {
2709 callee = gimple_call_fndecl (stack_save);
2710 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2711 {
2712 gimple_stmt_iterator stack_save_gsi;
2713 tree rhs;
2714
2715 stack_save_gsi = gsi_for_stmt (stack_save);
2716 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2717 update_call_from_tree (&stack_save_gsi, rhs);
2718 }
2719 }
2720 }
2721
2722 /* No effect, so the statement will be deleted. */
2723 return integer_zero_node;
2724 }
2725
2726 /* If va_list type is a simple pointer and nothing special is needed,
2727 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2728 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2729 pointer assignment. */
2730
2731 static tree
2732 optimize_stdarg_builtin (gimple *call)
2733 {
2734 tree callee, lhs, rhs, cfun_va_list;
2735 bool va_list_simple_ptr;
2736 location_t loc = gimple_location (call);
2737
2738 callee = gimple_call_fndecl (call);
2739
2740 cfun_va_list = targetm.fn_abi_va_list (callee);
2741 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2742 && (TREE_TYPE (cfun_va_list) == void_type_node
2743 || TREE_TYPE (cfun_va_list) == char_type_node);
2744
2745 switch (DECL_FUNCTION_CODE (callee))
2746 {
2747 case BUILT_IN_VA_START:
2748 if (!va_list_simple_ptr
2749 || targetm.expand_builtin_va_start != NULL
2750 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2751 return NULL_TREE;
2752
2753 if (gimple_call_num_args (call) != 2)
2754 return NULL_TREE;
2755
2756 lhs = gimple_call_arg (call, 0);
2757 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2758 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2759 != TYPE_MAIN_VARIANT (cfun_va_list))
2760 return NULL_TREE;
2761
2762 lhs = build_fold_indirect_ref_loc (loc, lhs);
2763 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2764 1, integer_zero_node);
2765 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2766 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2767
2768 case BUILT_IN_VA_COPY:
2769 if (!va_list_simple_ptr)
2770 return NULL_TREE;
2771
2772 if (gimple_call_num_args (call) != 2)
2773 return NULL_TREE;
2774
2775 lhs = gimple_call_arg (call, 0);
2776 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2777 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2778 != TYPE_MAIN_VARIANT (cfun_va_list))
2779 return NULL_TREE;
2780
2781 lhs = build_fold_indirect_ref_loc (loc, lhs);
2782 rhs = gimple_call_arg (call, 1);
2783 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2784 != TYPE_MAIN_VARIANT (cfun_va_list))
2785 return NULL_TREE;
2786
2787 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2788 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2789
2790 case BUILT_IN_VA_END:
2791 /* No effect, so the statement will be deleted. */
2792 return integer_zero_node;
2793
2794 default:
2795 gcc_unreachable ();
2796 }
2797 }
2798
2799 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2800 the incoming jumps. Return true if at least one jump was changed. */
2801
2802 static bool
2803 optimize_unreachable (gimple_stmt_iterator i)
2804 {
2805 basic_block bb = gsi_bb (i);
2806 gimple_stmt_iterator gsi;
2807 gimple *stmt;
2808 edge_iterator ei;
2809 edge e;
2810 bool ret;
2811
2812 if (flag_sanitize & SANITIZE_UNREACHABLE)
2813 return false;
2814
2815 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2816 {
2817 stmt = gsi_stmt (gsi);
2818
2819 if (is_gimple_debug (stmt))
2820 continue;
2821
2822 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2823 {
2824 /* Verify we do not need to preserve the label. */
2825 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2826 return false;
2827
2828 continue;
2829 }
2830
2831 /* Only handle the case that __builtin_unreachable is the first statement
2832 in the block. We rely on DCE to remove stmts without side-effects
2833 before __builtin_unreachable. */
2834 if (gsi_stmt (gsi) != gsi_stmt (i))
2835 return false;
2836 }
2837
2838 ret = false;
2839 FOR_EACH_EDGE (e, ei, bb->preds)
2840 {
2841 gsi = gsi_last_bb (e->src);
2842 if (gsi_end_p (gsi))
2843 continue;
2844
2845 stmt = gsi_stmt (gsi);
2846 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2847 {
2848 if (e->flags & EDGE_TRUE_VALUE)
2849 gimple_cond_make_false (cond_stmt);
2850 else if (e->flags & EDGE_FALSE_VALUE)
2851 gimple_cond_make_true (cond_stmt);
2852 else
2853 gcc_unreachable ();
2854 update_stmt (cond_stmt);
2855 }
2856 else
2857 {
2858 /* Todo: handle other cases. Note that unreachable switch case
2859 statements have already been removed. */
2860 continue;
2861 }
2862
2863 ret = true;
2864 }
2865
2866 return ret;
2867 }
2868
2869 /* Optimize
2870 mask_2 = 1 << cnt_1;
2871 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2872 _5 = _4 & mask_2;
2873 to
2874 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2875 _5 = _4;
2876 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2877 is passed instead of 0, and the builtin just returns a zero
2878 or 1 value instead of the actual bit.
2879 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2880 in there), and/or if mask_2 is a power of 2 constant.
2881 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2882 in that case. And similarly for and instead of or, except that
2883 the second argument to the builtin needs to be one's complement
2884 of the mask instead of mask. */
2885
2886 static void
2887 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2888 enum internal_fn fn, bool has_model_arg,
2889 bool after)
2890 {
2891 gimple *call = gsi_stmt (*gsip);
2892 tree lhs = gimple_call_lhs (call);
2893 use_operand_p use_p;
2894 gimple *use_stmt;
2895 tree mask, bit;
2896 optab optab;
2897
2898 if (!flag_inline_atomics
2899 || optimize_debug
2900 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2901 || !lhs
2902 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2903 || !single_imm_use (lhs, &use_p, &use_stmt)
2904 || !is_gimple_assign (use_stmt)
2905 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2906 || !gimple_vdef (call))
2907 return;
2908
2909 switch (fn)
2910 {
2911 case IFN_ATOMIC_BIT_TEST_AND_SET:
2912 optab = atomic_bit_test_and_set_optab;
2913 break;
2914 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2915 optab = atomic_bit_test_and_complement_optab;
2916 break;
2917 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2918 optab = atomic_bit_test_and_reset_optab;
2919 break;
2920 default:
2921 return;
2922 }
2923
2924 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2925 return;
2926
2927 mask = gimple_call_arg (call, 1);
2928 tree use_lhs = gimple_assign_lhs (use_stmt);
2929 if (!use_lhs)
2930 return;
2931
2932 if (TREE_CODE (mask) == INTEGER_CST)
2933 {
2934 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2935 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2936 mask = fold_convert (TREE_TYPE (lhs), mask);
2937 int ibit = tree_log2 (mask);
2938 if (ibit < 0)
2939 return;
2940 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2941 }
2942 else if (TREE_CODE (mask) == SSA_NAME)
2943 {
2944 gimple *g = SSA_NAME_DEF_STMT (mask);
2945 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2946 {
2947 if (!is_gimple_assign (g)
2948 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2949 return;
2950 mask = gimple_assign_rhs1 (g);
2951 if (TREE_CODE (mask) != SSA_NAME)
2952 return;
2953 g = SSA_NAME_DEF_STMT (mask);
2954 }
2955 if (!is_gimple_assign (g)
2956 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2957 || !integer_onep (gimple_assign_rhs1 (g)))
2958 return;
2959 bit = gimple_assign_rhs2 (g);
2960 }
2961 else
2962 return;
2963
2964 if (gimple_assign_rhs1 (use_stmt) == lhs)
2965 {
2966 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2967 return;
2968 }
2969 else if (gimple_assign_rhs2 (use_stmt) != lhs
2970 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2971 return;
2972
2973 bool use_bool = true;
2974 bool has_debug_uses = false;
2975 imm_use_iterator iter;
2976 gimple *g;
2977
2978 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2979 use_bool = false;
2980 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2981 {
2982 enum tree_code code = ERROR_MARK;
2983 tree op0 = NULL_TREE, op1 = NULL_TREE;
2984 if (is_gimple_debug (g))
2985 {
2986 has_debug_uses = true;
2987 continue;
2988 }
2989 else if (is_gimple_assign (g))
2990 switch (gimple_assign_rhs_code (g))
2991 {
2992 case COND_EXPR:
2993 op1 = gimple_assign_rhs1 (g);
2994 code = TREE_CODE (op1);
2995 op0 = TREE_OPERAND (op1, 0);
2996 op1 = TREE_OPERAND (op1, 1);
2997 break;
2998 case EQ_EXPR:
2999 case NE_EXPR:
3000 code = gimple_assign_rhs_code (g);
3001 op0 = gimple_assign_rhs1 (g);
3002 op1 = gimple_assign_rhs2 (g);
3003 break;
3004 default:
3005 break;
3006 }
3007 else if (gimple_code (g) == GIMPLE_COND)
3008 {
3009 code = gimple_cond_code (g);
3010 op0 = gimple_cond_lhs (g);
3011 op1 = gimple_cond_rhs (g);
3012 }
3013
3014 if ((code == EQ_EXPR || code == NE_EXPR)
3015 && op0 == use_lhs
3016 && integer_zerop (op1))
3017 {
3018 use_operand_p use_p;
3019 int n = 0;
3020 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3021 n++;
3022 if (n == 1)
3023 continue;
3024 }
3025
3026 use_bool = false;
3027 BREAK_FROM_IMM_USE_STMT (iter);
3028 }
3029
3030 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3031 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3032 if (has_model_arg)
3033 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3034 bit, flag, gimple_call_arg (call, 2));
3035 else
3036 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3037 bit, flag);
3038 gimple_call_set_lhs (g, new_lhs);
3039 gimple_set_location (g, gimple_location (call));
3040 gimple_move_vops (g, call);
3041 bool throws = stmt_can_throw_internal (cfun, call);
3042 gimple_call_set_nothrow (as_a <gcall *> (g),
3043 gimple_call_nothrow_p (as_a <gcall *> (call)));
3044 gimple_stmt_iterator gsi = *gsip;
3045 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3046 edge e = NULL;
3047 if (throws)
3048 {
3049 maybe_clean_or_replace_eh_stmt (call, g);
3050 if (after || (use_bool && has_debug_uses))
3051 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3052 }
3053 if (after)
3054 {
3055 /* The internal function returns the value of the specified bit
3056 before the atomic operation. If we are interested in the value
3057 of the specified bit after the atomic operation (makes only sense
3058 for xor, otherwise the bit content is compile time known),
3059 we need to invert the bit. */
3060 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3061 BIT_XOR_EXPR, new_lhs,
3062 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3063 : mask);
3064 new_lhs = gimple_assign_lhs (g);
3065 if (throws)
3066 {
3067 gsi_insert_on_edge_immediate (e, g);
3068 gsi = gsi_for_stmt (g);
3069 }
3070 else
3071 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3072 }
3073 if (use_bool && has_debug_uses)
3074 {
3075 tree temp = NULL_TREE;
3076 if (!throws || after || single_pred_p (e->dest))
3077 {
3078 temp = make_node (DEBUG_EXPR_DECL);
3079 DECL_ARTIFICIAL (temp) = 1;
3080 TREE_TYPE (temp) = TREE_TYPE (lhs);
3081 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3082 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3083 g = gimple_build_debug_bind (temp, t, g);
3084 if (throws && !after)
3085 {
3086 gsi = gsi_after_labels (e->dest);
3087 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3088 }
3089 else
3090 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3091 }
3092 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3093 if (is_gimple_debug (g))
3094 {
3095 use_operand_p use_p;
3096 if (temp == NULL_TREE)
3097 gimple_debug_bind_reset_value (g);
3098 else
3099 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3100 SET_USE (use_p, temp);
3101 update_stmt (g);
3102 }
3103 }
3104 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3105 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3106 replace_uses_by (use_lhs, new_lhs);
3107 gsi = gsi_for_stmt (use_stmt);
3108 gsi_remove (&gsi, true);
3109 release_defs (use_stmt);
3110 gsi_remove (gsip, true);
3111 release_ssa_name (lhs);
3112 }
3113
3114 /* Optimize
3115 a = {};
3116 b = a;
3117 into
3118 a = {};
3119 b = {};
3120 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3121 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3122
3123 static void
3124 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3125 {
3126 gimple *stmt = gsi_stmt (*gsip);
3127 if (gimple_has_volatile_ops (stmt))
3128 return;
3129
3130 tree vuse = gimple_vuse (stmt);
3131 if (vuse == NULL)
3132 return;
3133
3134 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3135 tree src2 = NULL_TREE, len2 = NULL_TREE;
3136 poly_int64 offset, offset2;
3137 tree val = integer_zero_node;
3138 if (gimple_store_p (defstmt)
3139 && gimple_assign_single_p (defstmt)
3140 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3141 && !gimple_clobber_p (defstmt))
3142 src2 = gimple_assign_lhs (defstmt);
3143 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3144 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3145 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3146 {
3147 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3148 len2 = gimple_call_arg (defstmt, 2);
3149 val = gimple_call_arg (defstmt, 1);
3150 /* For non-0 val, we'd have to transform stmt from assignment
3151 into memset (only if dest is addressable). */
3152 if (!integer_zerop (val) && is_gimple_assign (stmt))
3153 src2 = NULL_TREE;
3154 }
3155
3156 if (src2 == NULL_TREE)
3157 return;
3158
3159 if (len == NULL_TREE)
3160 len = (TREE_CODE (src) == COMPONENT_REF
3161 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3162 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3163 if (len2 == NULL_TREE)
3164 len2 = (TREE_CODE (src2) == COMPONENT_REF
3165 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3166 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3167 if (len == NULL_TREE
3168 || !poly_int_tree_p (len)
3169 || len2 == NULL_TREE
3170 || !poly_int_tree_p (len2))
3171 return;
3172
3173 src = get_addr_base_and_unit_offset (src, &offset);
3174 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3175 if (src == NULL_TREE
3176 || src2 == NULL_TREE
3177 || maybe_lt (offset, offset2))
3178 return;
3179
3180 if (!operand_equal_p (src, src2, 0))
3181 return;
3182
3183 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3184 Make sure that
3185 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3186 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3187 wi::to_poly_offset (len2)))
3188 return;
3189
3190 if (dump_file && (dump_flags & TDF_DETAILS))
3191 {
3192 fprintf (dump_file, "Simplified\n ");
3193 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3194 fprintf (dump_file, "after previous\n ");
3195 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3196 }
3197
3198 /* For simplicity, don't change the kind of the stmt,
3199 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3200 into memset (&dest, val, len);
3201 In theory we could change dest = src into memset if dest
3202 is addressable (maybe beneficial if val is not 0), or
3203 memcpy (&dest, &src, len) into dest = {} if len is the size
3204 of dest, dest isn't volatile. */
3205 if (is_gimple_assign (stmt))
3206 {
3207 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3208 gimple_assign_set_rhs_from_tree (gsip, ctor);
3209 update_stmt (stmt);
3210 }
3211 else /* If stmt is memcpy, transform it into memset. */
3212 {
3213 gcall *call = as_a <gcall *> (stmt);
3214 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3215 gimple_call_set_fndecl (call, fndecl);
3216 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3217 gimple_call_set_arg (call, 1, val);
3218 update_stmt (stmt);
3219 }
3220
3221 if (dump_file && (dump_flags & TDF_DETAILS))
3222 {
3223 fprintf (dump_file, "into\n ");
3224 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3225 }
3226 }
3227
3228 /* A simple pass that attempts to fold all builtin functions. This pass
3229 is run after we've propagated as many constants as we can. */
3230
3231 namespace {
3232
3233 const pass_data pass_data_fold_builtins =
3234 {
3235 GIMPLE_PASS, /* type */
3236 "fab", /* name */
3237 OPTGROUP_NONE, /* optinfo_flags */
3238 TV_NONE, /* tv_id */
3239 ( PROP_cfg | PROP_ssa ), /* properties_required */
3240 0, /* properties_provided */
3241 0, /* properties_destroyed */
3242 0, /* todo_flags_start */
3243 TODO_update_ssa, /* todo_flags_finish */
3244 };
3245
3246 class pass_fold_builtins : public gimple_opt_pass
3247 {
3248 public:
3249 pass_fold_builtins (gcc::context *ctxt)
3250 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3251 {}
3252
3253 /* opt_pass methods: */
3254 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3255 virtual unsigned int execute (function *);
3256
3257 }; // class pass_fold_builtins
3258
3259 unsigned int
3260 pass_fold_builtins::execute (function *fun)
3261 {
3262 bool cfg_changed = false;
3263 basic_block bb;
3264 unsigned int todoflags = 0;
3265
3266 FOR_EACH_BB_FN (bb, fun)
3267 {
3268 gimple_stmt_iterator i;
3269 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3270 {
3271 gimple *stmt, *old_stmt;
3272 tree callee;
3273 enum built_in_function fcode;
3274
3275 stmt = gsi_stmt (i);
3276
3277 if (gimple_code (stmt) != GIMPLE_CALL)
3278 {
3279 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3280 after the last GIMPLE DSE they aren't needed and might
3281 unnecessarily keep the SSA_NAMEs live. */
3282 if (gimple_clobber_p (stmt))
3283 {
3284 tree lhs = gimple_assign_lhs (stmt);
3285 if (TREE_CODE (lhs) == MEM_REF
3286 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3287 {
3288 unlink_stmt_vdef (stmt);
3289 gsi_remove (&i, true);
3290 release_defs (stmt);
3291 continue;
3292 }
3293 }
3294 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3295 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3296 gimple_assign_rhs1 (stmt), NULL_TREE);
3297 gsi_next (&i);
3298 continue;
3299 }
3300
3301 callee = gimple_call_fndecl (stmt);
3302 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3303 {
3304 gsi_next (&i);
3305 continue;
3306 }
3307
3308 fcode = DECL_FUNCTION_CODE (callee);
3309 if (fold_stmt (&i))
3310 ;
3311 else
3312 {
3313 tree result = NULL_TREE;
3314 switch (DECL_FUNCTION_CODE (callee))
3315 {
3316 case BUILT_IN_CONSTANT_P:
3317 /* Resolve __builtin_constant_p. If it hasn't been
3318 folded to integer_one_node by now, it's fairly
3319 certain that the value simply isn't constant. */
3320 result = integer_zero_node;
3321 break;
3322
3323 case BUILT_IN_ASSUME_ALIGNED:
3324 /* Remove __builtin_assume_aligned. */
3325 result = gimple_call_arg (stmt, 0);
3326 break;
3327
3328 case BUILT_IN_STACK_RESTORE:
3329 result = optimize_stack_restore (i);
3330 if (result)
3331 break;
3332 gsi_next (&i);
3333 continue;
3334
3335 case BUILT_IN_UNREACHABLE:
3336 if (optimize_unreachable (i))
3337 cfg_changed = true;
3338 break;
3339
3340 case BUILT_IN_ATOMIC_FETCH_OR_1:
3341 case BUILT_IN_ATOMIC_FETCH_OR_2:
3342 case BUILT_IN_ATOMIC_FETCH_OR_4:
3343 case BUILT_IN_ATOMIC_FETCH_OR_8:
3344 case BUILT_IN_ATOMIC_FETCH_OR_16:
3345 optimize_atomic_bit_test_and (&i,
3346 IFN_ATOMIC_BIT_TEST_AND_SET,
3347 true, false);
3348 break;
3349 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3350 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3351 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3352 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3353 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3354 optimize_atomic_bit_test_and (&i,
3355 IFN_ATOMIC_BIT_TEST_AND_SET,
3356 false, false);
3357 break;
3358
3359 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3360 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3361 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3362 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3363 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3364 optimize_atomic_bit_test_and
3365 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3366 break;
3367 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3368 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3369 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3370 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3371 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3372 optimize_atomic_bit_test_and
3373 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3374 break;
3375
3376 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3377 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3378 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3379 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3380 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3381 optimize_atomic_bit_test_and
3382 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3383 break;
3384 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3385 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3386 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3387 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3388 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3389 optimize_atomic_bit_test_and
3390 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3391 break;
3392
3393 case BUILT_IN_ATOMIC_FETCH_AND_1:
3394 case BUILT_IN_ATOMIC_FETCH_AND_2:
3395 case BUILT_IN_ATOMIC_FETCH_AND_4:
3396 case BUILT_IN_ATOMIC_FETCH_AND_8:
3397 case BUILT_IN_ATOMIC_FETCH_AND_16:
3398 optimize_atomic_bit_test_and (&i,
3399 IFN_ATOMIC_BIT_TEST_AND_RESET,
3400 true, false);
3401 break;
3402 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3403 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3404 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3405 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3406 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3407 optimize_atomic_bit_test_and (&i,
3408 IFN_ATOMIC_BIT_TEST_AND_RESET,
3409 false, false);
3410 break;
3411
3412 case BUILT_IN_MEMCPY:
3413 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3414 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3415 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3416 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3417 {
3418 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3419 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3420 tree len = gimple_call_arg (stmt, 2);
3421 optimize_memcpy (&i, dest, src, len);
3422 }
3423 break;
3424
3425 case BUILT_IN_VA_START:
3426 case BUILT_IN_VA_END:
3427 case BUILT_IN_VA_COPY:
3428 /* These shouldn't be folded before pass_stdarg. */
3429 result = optimize_stdarg_builtin (stmt);
3430 break;
3431
3432 default:;
3433 }
3434
3435 if (!result)
3436 {
3437 gsi_next (&i);
3438 continue;
3439 }
3440
3441 if (!update_call_from_tree (&i, result))
3442 gimplify_and_update_call_from_tree (&i, result);
3443 }
3444
3445 todoflags |= TODO_update_address_taken;
3446
3447 if (dump_file && (dump_flags & TDF_DETAILS))
3448 {
3449 fprintf (dump_file, "Simplified\n ");
3450 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3451 }
3452
3453 old_stmt = stmt;
3454 stmt = gsi_stmt (i);
3455 update_stmt (stmt);
3456
3457 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3458 && gimple_purge_dead_eh_edges (bb))
3459 cfg_changed = true;
3460
3461 if (dump_file && (dump_flags & TDF_DETAILS))
3462 {
3463 fprintf (dump_file, "to\n ");
3464 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3465 fprintf (dump_file, "\n");
3466 }
3467
3468 /* Retry the same statement if it changed into another
3469 builtin, there might be new opportunities now. */
3470 if (gimple_code (stmt) != GIMPLE_CALL)
3471 {
3472 gsi_next (&i);
3473 continue;
3474 }
3475 callee = gimple_call_fndecl (stmt);
3476 if (!callee
3477 || !fndecl_built_in_p (callee, fcode))
3478 gsi_next (&i);
3479 }
3480 }
3481
3482 /* Delete unreachable blocks. */
3483 if (cfg_changed)
3484 todoflags |= TODO_cleanup_cfg;
3485
3486 return todoflags;
3487 }
3488
3489 } // anon namespace
3490
3491 gimple_opt_pass *
3492 make_pass_fold_builtins (gcc::context *ctxt)
3493 {
3494 return new pass_fold_builtins (ctxt);
3495 }
3496
3497 /* A simple pass that emits some warnings post IPA. */
3498
3499 namespace {
3500
3501 const pass_data pass_data_post_ipa_warn =
3502 {
3503 GIMPLE_PASS, /* type */
3504 "post_ipa_warn", /* name */
3505 OPTGROUP_NONE, /* optinfo_flags */
3506 TV_NONE, /* tv_id */
3507 ( PROP_cfg | PROP_ssa ), /* properties_required */
3508 0, /* properties_provided */
3509 0, /* properties_destroyed */
3510 0, /* todo_flags_start */
3511 0, /* todo_flags_finish */
3512 };
3513
3514 class pass_post_ipa_warn : public gimple_opt_pass
3515 {
3516 public:
3517 pass_post_ipa_warn (gcc::context *ctxt)
3518 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3519 {}
3520
3521 /* opt_pass methods: */
3522 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3523 virtual bool gate (function *) { return warn_nonnull != 0; }
3524 virtual unsigned int execute (function *);
3525
3526 }; // class pass_fold_builtins
3527
3528 unsigned int
3529 pass_post_ipa_warn::execute (function *fun)
3530 {
3531 basic_block bb;
3532
3533 FOR_EACH_BB_FN (bb, fun)
3534 {
3535 gimple_stmt_iterator gsi;
3536 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3537 {
3538 gimple *stmt = gsi_stmt (gsi);
3539 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3540 continue;
3541
3542 if (warn_nonnull)
3543 {
3544 bitmap nonnullargs
3545 = get_nonnull_args (gimple_call_fntype (stmt));
3546 if (nonnullargs)
3547 {
3548 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3549 {
3550 tree arg = gimple_call_arg (stmt, i);
3551 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3552 continue;
3553 if (!integer_zerop (arg))
3554 continue;
3555 if (!bitmap_empty_p (nonnullargs)
3556 && !bitmap_bit_p (nonnullargs, i))
3557 continue;
3558
3559 location_t loc = gimple_location (stmt);
3560 auto_diagnostic_group d;
3561 if (warning_at (loc, OPT_Wnonnull,
3562 "%Gargument %u null where non-null "
3563 "expected", stmt, i + 1))
3564 {
3565 tree fndecl = gimple_call_fndecl (stmt);
3566 if (fndecl && DECL_IS_BUILTIN (fndecl))
3567 inform (loc, "in a call to built-in function %qD",
3568 fndecl);
3569 else if (fndecl)
3570 inform (DECL_SOURCE_LOCATION (fndecl),
3571 "in a call to function %qD declared here",
3572 fndecl);
3573
3574 }
3575 }
3576 BITMAP_FREE (nonnullargs);
3577 }
3578 }
3579 }
3580 }
3581 return 0;
3582 }
3583
3584 } // anon namespace
3585
3586 gimple_opt_pass *
3587 make_pass_post_ipa_warn (gcc::context *ctxt)
3588 {
3589 return new pass_post_ipa_warn (ctxt);
3590 }