]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ccp.c
[Ada] Remove Determine_License
[thirdparty/gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2020 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
154
155 /* Possible lattice values. */
156 typedef enum
157 {
158 UNINITIALIZED,
159 UNDEFINED,
160 CONSTANT,
161 VARYING
162 } ccp_lattice_t;
163
164 class ccp_prop_value_t {
165 public:
166 /* Lattice value. */
167 ccp_lattice_t lattice_val;
168
169 /* Propagated value. */
170 tree value;
171
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
175 information. */
176 widest_int mask;
177 };
178
179 class ccp_propagate : public ssa_propagation_engine
180 {
181 public:
182 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
183 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
184 };
185
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
191 doing the store). */
192 static ccp_prop_value_t *const_val;
193 static unsigned n_const_val;
194
195 static void canonicalize_value (ccp_prop_value_t *);
196 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
197
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
199
200 static void
201 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
202 {
203 switch (val.lattice_val)
204 {
205 case UNINITIALIZED:
206 fprintf (outf, "%sUNINITIALIZED", prefix);
207 break;
208 case UNDEFINED:
209 fprintf (outf, "%sUNDEFINED", prefix);
210 break;
211 case VARYING:
212 fprintf (outf, "%sVARYING", prefix);
213 break;
214 case CONSTANT:
215 if (TREE_CODE (val.value) != INTEGER_CST
216 || val.mask == 0)
217 {
218 fprintf (outf, "%sCONSTANT ", prefix);
219 print_generic_expr (outf, val.value, dump_flags);
220 }
221 else
222 {
223 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
224 val.mask);
225 fprintf (outf, "%sCONSTANT ", prefix);
226 print_hex (cval, outf);
227 fprintf (outf, " (");
228 print_hex (val.mask, outf);
229 fprintf (outf, ")");
230 }
231 break;
232 default:
233 gcc_unreachable ();
234 }
235 }
236
237
238 /* Print lattice value VAL to stderr. */
239
240 void debug_lattice_value (ccp_prop_value_t val);
241
242 DEBUG_FUNCTION void
243 debug_lattice_value (ccp_prop_value_t val)
244 {
245 dump_lattice_value (stderr, "", val);
246 fprintf (stderr, "\n");
247 }
248
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
250
251 static widest_int
252 extend_mask (const wide_int &nonzero_bits, signop sgn)
253 {
254 return widest_int::from (nonzero_bits, sgn);
255 }
256
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
259 values:
260
261 1- Global and static variables that are declared constant are
262 considered CONSTANT.
263
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
268
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
271
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
274
275 static ccp_prop_value_t
276 get_default_value (tree var)
277 {
278 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
279 gimple *stmt;
280
281 stmt = SSA_NAME_DEF_STMT (var);
282
283 if (gimple_nop_p (stmt))
284 {
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var)
290 && SSA_NAME_VAR (var)
291 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
292 val.lattice_val = UNDEFINED;
293 else
294 {
295 val.lattice_val = VARYING;
296 val.mask = -1;
297 if (flag_tree_bit_ccp)
298 {
299 wide_int nonzero_bits = get_nonzero_bits (var);
300 tree value;
301 widest_int mask;
302
303 if (SSA_NAME_VAR (var)
304 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
306 {
307 val.lattice_val = CONSTANT;
308 val.value = value;
309 val.mask = mask;
310 if (nonzero_bits != -1)
311 val.mask &= extend_mask (nonzero_bits,
312 TYPE_SIGN (TREE_TYPE (var)));
313 }
314 else if (nonzero_bits != -1)
315 {
316 val.lattice_val = CONSTANT;
317 val.value = build_zero_cst (TREE_TYPE (var));
318 val.mask = extend_mask (nonzero_bits,
319 TYPE_SIGN (TREE_TYPE (var)));
320 }
321 }
322 }
323 }
324 else if (is_gimple_assign (stmt))
325 {
326 tree cst;
327 if (gimple_assign_single_p (stmt)
328 && DECL_P (gimple_assign_rhs1 (stmt))
329 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
330 {
331 val.lattice_val = CONSTANT;
332 val.value = cst;
333 }
334 else
335 {
336 /* Any other variable defined by an assignment is considered
337 UNDEFINED. */
338 val.lattice_val = UNDEFINED;
339 }
340 }
341 else if ((is_gimple_call (stmt)
342 && gimple_call_lhs (stmt) != NULL_TREE)
343 || gimple_code (stmt) == GIMPLE_PHI)
344 {
345 /* A variable defined by a call or a PHI node is considered
346 UNDEFINED. */
347 val.lattice_val = UNDEFINED;
348 }
349 else
350 {
351 /* Otherwise, VAR will never take on a constant value. */
352 val.lattice_val = VARYING;
353 val.mask = -1;
354 }
355
356 return val;
357 }
358
359
360 /* Get the constant value associated with variable VAR. */
361
362 static inline ccp_prop_value_t *
363 get_value (tree var)
364 {
365 ccp_prop_value_t *val;
366
367 if (const_val == NULL
368 || SSA_NAME_VERSION (var) >= n_const_val)
369 return NULL;
370
371 val = &const_val[SSA_NAME_VERSION (var)];
372 if (val->lattice_val == UNINITIALIZED)
373 *val = get_default_value (var);
374
375 canonicalize_value (val);
376
377 return val;
378 }
379
380 /* Return the constant tree value associated with VAR. */
381
382 static inline tree
383 get_constant_value (tree var)
384 {
385 ccp_prop_value_t *val;
386 if (TREE_CODE (var) != SSA_NAME)
387 {
388 if (is_gimple_min_invariant (var))
389 return var;
390 return NULL_TREE;
391 }
392 val = get_value (var);
393 if (val
394 && val->lattice_val == CONSTANT
395 && (TREE_CODE (val->value) != INTEGER_CST
396 || val->mask == 0))
397 return val->value;
398 return NULL_TREE;
399 }
400
401 /* Sets the value associated with VAR to VARYING. */
402
403 static inline void
404 set_value_varying (tree var)
405 {
406 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
407
408 val->lattice_val = VARYING;
409 val->value = NULL_TREE;
410 val->mask = -1;
411 }
412
413 /* For integer constants, make sure to drop TREE_OVERFLOW. */
414
415 static void
416 canonicalize_value (ccp_prop_value_t *val)
417 {
418 if (val->lattice_val != CONSTANT)
419 return;
420
421 if (TREE_OVERFLOW_P (val->value))
422 val->value = drop_tree_overflow (val->value);
423 }
424
425 /* Return whether the lattice transition is valid. */
426
427 static bool
428 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
429 {
430 /* Lattice transitions must always be monotonically increasing in
431 value. */
432 if (old_val.lattice_val < new_val.lattice_val)
433 return true;
434
435 if (old_val.lattice_val != new_val.lattice_val)
436 return false;
437
438 if (!old_val.value && !new_val.value)
439 return true;
440
441 /* Now both lattice values are CONSTANT. */
442
443 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
444 when only a single copy edge is executable. */
445 if (TREE_CODE (old_val.value) == SSA_NAME
446 && TREE_CODE (new_val.value) == SSA_NAME)
447 return true;
448
449 /* Allow transitioning from a constant to a copy. */
450 if (is_gimple_min_invariant (old_val.value)
451 && TREE_CODE (new_val.value) == SSA_NAME)
452 return true;
453
454 /* Allow transitioning from PHI <&x, not executable> == &x
455 to PHI <&x, &y> == common alignment. */
456 if (TREE_CODE (old_val.value) != INTEGER_CST
457 && TREE_CODE (new_val.value) == INTEGER_CST)
458 return true;
459
460 /* Bit-lattices have to agree in the still valid bits. */
461 if (TREE_CODE (old_val.value) == INTEGER_CST
462 && TREE_CODE (new_val.value) == INTEGER_CST)
463 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
464 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
465
466 /* Otherwise constant values have to agree. */
467 if (operand_equal_p (old_val.value, new_val.value, 0))
468 return true;
469
470 /* At least the kinds and types should agree now. */
471 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
472 || !types_compatible_p (TREE_TYPE (old_val.value),
473 TREE_TYPE (new_val.value)))
474 return false;
475
476 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
477 to non-NaN. */
478 tree type = TREE_TYPE (new_val.value);
479 if (SCALAR_FLOAT_TYPE_P (type)
480 && !HONOR_NANS (type))
481 {
482 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
483 return true;
484 }
485 else if (VECTOR_FLOAT_TYPE_P (type)
486 && !HONOR_NANS (type))
487 {
488 unsigned int count
489 = tree_vector_builder::binary_encoded_nelts (old_val.value,
490 new_val.value);
491 for (unsigned int i = 0; i < count; ++i)
492 if (!REAL_VALUE_ISNAN
493 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
494 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
495 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
496 return false;
497 return true;
498 }
499 else if (COMPLEX_FLOAT_TYPE_P (type)
500 && !HONOR_NANS (type))
501 {
502 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
503 && !operand_equal_p (TREE_REALPART (old_val.value),
504 TREE_REALPART (new_val.value), 0))
505 return false;
506 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
507 && !operand_equal_p (TREE_IMAGPART (old_val.value),
508 TREE_IMAGPART (new_val.value), 0))
509 return false;
510 return true;
511 }
512 return false;
513 }
514
515 /* Set the value for variable VAR to NEW_VAL. Return true if the new
516 value is different from VAR's previous value. */
517
518 static bool
519 set_lattice_value (tree var, ccp_prop_value_t *new_val)
520 {
521 /* We can deal with old UNINITIALIZED values just fine here. */
522 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
523
524 canonicalize_value (new_val);
525
526 /* We have to be careful to not go up the bitwise lattice
527 represented by the mask. Instead of dropping to VARYING
528 use the meet operator to retain a conservative value.
529 Missed optimizations like PR65851 makes this necessary.
530 It also ensures we converge to a stable lattice solution. */
531 if (old_val->lattice_val != UNINITIALIZED)
532 ccp_lattice_meet (new_val, old_val);
533
534 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
535
536 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
537 caller that this was a non-transition. */
538 if (old_val->lattice_val != new_val->lattice_val
539 || (new_val->lattice_val == CONSTANT
540 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
541 || (TREE_CODE (new_val->value) == INTEGER_CST
542 && (new_val->mask != old_val->mask
543 || (wi::bit_and_not (wi::to_widest (old_val->value),
544 new_val->mask)
545 != wi::bit_and_not (wi::to_widest (new_val->value),
546 new_val->mask))))
547 || (TREE_CODE (new_val->value) != INTEGER_CST
548 && !operand_equal_p (new_val->value, old_val->value, 0)))))
549 {
550 /* ??? We would like to delay creation of INTEGER_CSTs from
551 partially constants here. */
552
553 if (dump_file && (dump_flags & TDF_DETAILS))
554 {
555 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
556 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
557 }
558
559 *old_val = *new_val;
560
561 gcc_assert (new_val->lattice_val != UNINITIALIZED);
562 return true;
563 }
564
565 return false;
566 }
567
568 static ccp_prop_value_t get_value_for_expr (tree, bool);
569 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
570 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
571 signop, int, const widest_int &, const widest_int &,
572 signop, int, const widest_int &, const widest_int &);
573
574 /* Return a widest_int that can be used for bitwise simplifications
575 from VAL. */
576
577 static widest_int
578 value_to_wide_int (ccp_prop_value_t val)
579 {
580 if (val.value
581 && TREE_CODE (val.value) == INTEGER_CST)
582 return wi::to_widest (val.value);
583
584 return 0;
585 }
586
587 /* Return the value for the address expression EXPR based on alignment
588 information. */
589
590 static ccp_prop_value_t
591 get_value_from_alignment (tree expr)
592 {
593 tree type = TREE_TYPE (expr);
594 ccp_prop_value_t val;
595 unsigned HOST_WIDE_INT bitpos;
596 unsigned int align;
597
598 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
599
600 get_pointer_alignment_1 (expr, &align, &bitpos);
601 val.mask = wi::bit_and_not
602 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
603 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
604 : -1,
605 align / BITS_PER_UNIT - 1);
606 val.lattice_val
607 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
608 if (val.lattice_val == CONSTANT)
609 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
610 else
611 val.value = NULL_TREE;
612
613 return val;
614 }
615
616 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
617 return constant bits extracted from alignment information for
618 invariant addresses. */
619
620 static ccp_prop_value_t
621 get_value_for_expr (tree expr, bool for_bits_p)
622 {
623 ccp_prop_value_t val;
624
625 if (TREE_CODE (expr) == SSA_NAME)
626 {
627 ccp_prop_value_t *val_ = get_value (expr);
628 if (val_)
629 val = *val_;
630 else
631 {
632 val.lattice_val = VARYING;
633 val.value = NULL_TREE;
634 val.mask = -1;
635 }
636 if (for_bits_p
637 && val.lattice_val == CONSTANT)
638 {
639 if (TREE_CODE (val.value) == ADDR_EXPR)
640 val = get_value_from_alignment (val.value);
641 else if (TREE_CODE (val.value) != INTEGER_CST)
642 {
643 val.lattice_val = VARYING;
644 val.value = NULL_TREE;
645 val.mask = -1;
646 }
647 }
648 /* Fall back to a copy value. */
649 if (!for_bits_p
650 && val.lattice_val == VARYING
651 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
652 {
653 val.lattice_val = CONSTANT;
654 val.value = expr;
655 val.mask = -1;
656 }
657 }
658 else if (is_gimple_min_invariant (expr)
659 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
660 {
661 val.lattice_val = CONSTANT;
662 val.value = expr;
663 val.mask = 0;
664 canonicalize_value (&val);
665 }
666 else if (TREE_CODE (expr) == ADDR_EXPR)
667 val = get_value_from_alignment (expr);
668 else
669 {
670 val.lattice_val = VARYING;
671 val.mask = -1;
672 val.value = NULL_TREE;
673 }
674
675 if (val.lattice_val == VARYING
676 && TYPE_UNSIGNED (TREE_TYPE (expr)))
677 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
678
679 return val;
680 }
681
682 /* Return the likely CCP lattice value for STMT.
683
684 If STMT has no operands, then return CONSTANT.
685
686 Else if undefinedness of operands of STMT cause its value to be
687 undefined, then return UNDEFINED.
688
689 Else if any operands of STMT are constants, then return CONSTANT.
690
691 Else return VARYING. */
692
693 static ccp_lattice_t
694 likely_value (gimple *stmt)
695 {
696 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
697 bool has_nsa_operand;
698 tree use;
699 ssa_op_iter iter;
700 unsigned i;
701
702 enum gimple_code code = gimple_code (stmt);
703
704 /* This function appears to be called only for assignments, calls,
705 conditionals, and switches, due to the logic in visit_stmt. */
706 gcc_assert (code == GIMPLE_ASSIGN
707 || code == GIMPLE_CALL
708 || code == GIMPLE_COND
709 || code == GIMPLE_SWITCH);
710
711 /* If the statement has volatile operands, it won't fold to a
712 constant value. */
713 if (gimple_has_volatile_ops (stmt))
714 return VARYING;
715
716 /* Arrive here for more complex cases. */
717 has_constant_operand = false;
718 has_undefined_operand = false;
719 all_undefined_operands = true;
720 has_nsa_operand = false;
721 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
722 {
723 ccp_prop_value_t *val = get_value (use);
724
725 if (val && val->lattice_val == UNDEFINED)
726 has_undefined_operand = true;
727 else
728 all_undefined_operands = false;
729
730 if (val && val->lattice_val == CONSTANT)
731 has_constant_operand = true;
732
733 if (SSA_NAME_IS_DEFAULT_DEF (use)
734 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
735 has_nsa_operand = true;
736 }
737
738 /* There may be constants in regular rhs operands. For calls we
739 have to ignore lhs, fndecl and static chain, otherwise only
740 the lhs. */
741 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
742 i < gimple_num_ops (stmt); ++i)
743 {
744 tree op = gimple_op (stmt, i);
745 if (!op || TREE_CODE (op) == SSA_NAME)
746 continue;
747 if (is_gimple_min_invariant (op))
748 has_constant_operand = true;
749 }
750
751 if (has_constant_operand)
752 all_undefined_operands = false;
753
754 if (has_undefined_operand
755 && code == GIMPLE_CALL
756 && gimple_call_internal_p (stmt))
757 switch (gimple_call_internal_fn (stmt))
758 {
759 /* These 3 builtins use the first argument just as a magic
760 way how to find out a decl uid. */
761 case IFN_GOMP_SIMD_LANE:
762 case IFN_GOMP_SIMD_VF:
763 case IFN_GOMP_SIMD_LAST_LANE:
764 has_undefined_operand = false;
765 break;
766 default:
767 break;
768 }
769
770 /* If the operation combines operands like COMPLEX_EXPR make sure to
771 not mark the result UNDEFINED if only one part of the result is
772 undefined. */
773 if (has_undefined_operand && all_undefined_operands)
774 return UNDEFINED;
775 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
776 {
777 switch (gimple_assign_rhs_code (stmt))
778 {
779 /* Unary operators are handled with all_undefined_operands. */
780 case PLUS_EXPR:
781 case MINUS_EXPR:
782 case POINTER_PLUS_EXPR:
783 case BIT_XOR_EXPR:
784 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
785 Not bitwise operators, one VARYING operand may specify the
786 result completely.
787 Not logical operators for the same reason, apart from XOR.
788 Not COMPLEX_EXPR as one VARYING operand makes the result partly
789 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
790 the undefined operand may be promoted. */
791 return UNDEFINED;
792
793 case ADDR_EXPR:
794 /* If any part of an address is UNDEFINED, like the index
795 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
796 return UNDEFINED;
797
798 default:
799 ;
800 }
801 }
802 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
803 fall back to CONSTANT. During iteration UNDEFINED may still drop
804 to CONSTANT. */
805 if (has_undefined_operand)
806 return CONSTANT;
807
808 /* We do not consider virtual operands here -- load from read-only
809 memory may have only VARYING virtual operands, but still be
810 constant. Also we can combine the stmt with definitions from
811 operands whose definitions are not simulated again. */
812 if (has_constant_operand
813 || has_nsa_operand
814 || gimple_references_memory_p (stmt))
815 return CONSTANT;
816
817 return VARYING;
818 }
819
820 /* Returns true if STMT cannot be constant. */
821
822 static bool
823 surely_varying_stmt_p (gimple *stmt)
824 {
825 /* If the statement has operands that we cannot handle, it cannot be
826 constant. */
827 if (gimple_has_volatile_ops (stmt))
828 return true;
829
830 /* If it is a call and does not return a value or is not a
831 builtin and not an indirect call or a call to function with
832 assume_aligned/alloc_align attribute, it is varying. */
833 if (is_gimple_call (stmt))
834 {
835 tree fndecl, fntype = gimple_call_fntype (stmt);
836 if (!gimple_call_lhs (stmt)
837 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
838 && !fndecl_built_in_p (fndecl)
839 && !lookup_attribute ("assume_aligned",
840 TYPE_ATTRIBUTES (fntype))
841 && !lookup_attribute ("alloc_align",
842 TYPE_ATTRIBUTES (fntype))))
843 return true;
844 }
845
846 /* Any other store operation is not interesting. */
847 else if (gimple_vdef (stmt))
848 return true;
849
850 /* Anything other than assignments and conditional jumps are not
851 interesting for CCP. */
852 if (gimple_code (stmt) != GIMPLE_ASSIGN
853 && gimple_code (stmt) != GIMPLE_COND
854 && gimple_code (stmt) != GIMPLE_SWITCH
855 && gimple_code (stmt) != GIMPLE_CALL)
856 return true;
857
858 return false;
859 }
860
861 /* Initialize local data structures for CCP. */
862
863 static void
864 ccp_initialize (void)
865 {
866 basic_block bb;
867
868 n_const_val = num_ssa_names;
869 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
870
871 /* Initialize simulation flags for PHI nodes and statements. */
872 FOR_EACH_BB_FN (bb, cfun)
873 {
874 gimple_stmt_iterator i;
875
876 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
877 {
878 gimple *stmt = gsi_stmt (i);
879 bool is_varying;
880
881 /* If the statement is a control insn, then we do not
882 want to avoid simulating the statement once. Failure
883 to do so means that those edges will never get added. */
884 if (stmt_ends_bb_p (stmt))
885 is_varying = false;
886 else
887 is_varying = surely_varying_stmt_p (stmt);
888
889 if (is_varying)
890 {
891 tree def;
892 ssa_op_iter iter;
893
894 /* If the statement will not produce a constant, mark
895 all its outputs VARYING. */
896 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
897 set_value_varying (def);
898 }
899 prop_set_simulate_again (stmt, !is_varying);
900 }
901 }
902
903 /* Now process PHI nodes. We never clear the simulate_again flag on
904 phi nodes, since we do not know which edges are executable yet,
905 except for phi nodes for virtual operands when we do not do store ccp. */
906 FOR_EACH_BB_FN (bb, cfun)
907 {
908 gphi_iterator i;
909
910 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
911 {
912 gphi *phi = i.phi ();
913
914 if (virtual_operand_p (gimple_phi_result (phi)))
915 prop_set_simulate_again (phi, false);
916 else
917 prop_set_simulate_again (phi, true);
918 }
919 }
920 }
921
922 /* Debug count support. Reset the values of ssa names
923 VARYING when the total number ssa names analyzed is
924 beyond the debug count specified. */
925
926 static void
927 do_dbg_cnt (void)
928 {
929 unsigned i;
930 for (i = 0; i < num_ssa_names; i++)
931 {
932 if (!dbg_cnt (ccp))
933 {
934 const_val[i].lattice_val = VARYING;
935 const_val[i].mask = -1;
936 const_val[i].value = NULL_TREE;
937 }
938 }
939 }
940
941
942 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
943 class ccp_folder : public substitute_and_fold_engine
944 {
945 public:
946 tree get_value (tree, gimple *) FINAL OVERRIDE;
947 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
948 };
949
950 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
951 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
952 of calling member functions. */
953
954 tree
955 ccp_folder::get_value (tree op, gimple *stmt ATTRIBUTE_UNUSED)
956 {
957 return get_constant_value (op);
958 }
959
960 /* Do final substitution of propagated values, cleanup the flowgraph and
961 free allocated storage. If NONZERO_P, record nonzero bits.
962
963 Return TRUE when something was optimized. */
964
965 static bool
966 ccp_finalize (bool nonzero_p)
967 {
968 bool something_changed;
969 unsigned i;
970 tree name;
971
972 do_dbg_cnt ();
973
974 /* Derive alignment and misalignment information from partially
975 constant pointers in the lattice or nonzero bits from partially
976 constant integers. */
977 FOR_EACH_SSA_NAME (i, name, cfun)
978 {
979 ccp_prop_value_t *val;
980 unsigned int tem, align;
981
982 if (!POINTER_TYPE_P (TREE_TYPE (name))
983 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
984 /* Don't record nonzero bits before IPA to avoid
985 using too much memory. */
986 || !nonzero_p))
987 continue;
988
989 val = get_value (name);
990 if (val->lattice_val != CONSTANT
991 || TREE_CODE (val->value) != INTEGER_CST
992 || val->mask == 0)
993 continue;
994
995 if (POINTER_TYPE_P (TREE_TYPE (name)))
996 {
997 /* Trailing mask bits specify the alignment, trailing value
998 bits the misalignment. */
999 tem = val->mask.to_uhwi ();
1000 align = least_bit_hwi (tem);
1001 if (align > 1)
1002 set_ptr_info_alignment (get_ptr_info (name), align,
1003 (TREE_INT_CST_LOW (val->value)
1004 & (align - 1)));
1005 }
1006 else
1007 {
1008 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1009 wide_int nonzero_bits
1010 = (wide_int::from (val->mask, precision, UNSIGNED)
1011 | wi::to_wide (val->value));
1012 nonzero_bits &= get_nonzero_bits (name);
1013 set_nonzero_bits (name, nonzero_bits);
1014 }
1015 }
1016
1017 /* Perform substitutions based on the known constant values. */
1018 class ccp_folder ccp_folder;
1019 something_changed = ccp_folder.substitute_and_fold ();
1020
1021 free (const_val);
1022 const_val = NULL;
1023 return something_changed;
1024 }
1025
1026
1027 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1028 in VAL1.
1029
1030 any M UNDEFINED = any
1031 any M VARYING = VARYING
1032 Ci M Cj = Ci if (i == j)
1033 Ci M Cj = VARYING if (i != j)
1034 */
1035
1036 static void
1037 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1038 {
1039 if (val1->lattice_val == UNDEFINED
1040 /* For UNDEFINED M SSA we can't always SSA because its definition
1041 may not dominate the PHI node. Doing optimistic copy propagation
1042 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1043 && (val2->lattice_val != CONSTANT
1044 || TREE_CODE (val2->value) != SSA_NAME))
1045 {
1046 /* UNDEFINED M any = any */
1047 *val1 = *val2;
1048 }
1049 else if (val2->lattice_val == UNDEFINED
1050 /* See above. */
1051 && (val1->lattice_val != CONSTANT
1052 || TREE_CODE (val1->value) != SSA_NAME))
1053 {
1054 /* any M UNDEFINED = any
1055 Nothing to do. VAL1 already contains the value we want. */
1056 ;
1057 }
1058 else if (val1->lattice_val == VARYING
1059 || val2->lattice_val == VARYING)
1060 {
1061 /* any M VARYING = VARYING. */
1062 val1->lattice_val = VARYING;
1063 val1->mask = -1;
1064 val1->value = NULL_TREE;
1065 }
1066 else if (val1->lattice_val == CONSTANT
1067 && val2->lattice_val == CONSTANT
1068 && TREE_CODE (val1->value) == INTEGER_CST
1069 && TREE_CODE (val2->value) == INTEGER_CST)
1070 {
1071 /* Ci M Cj = Ci if (i == j)
1072 Ci M Cj = VARYING if (i != j)
1073
1074 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1075 drop to varying. */
1076 val1->mask = (val1->mask | val2->mask
1077 | (wi::to_widest (val1->value)
1078 ^ wi::to_widest (val2->value)));
1079 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1080 {
1081 val1->lattice_val = VARYING;
1082 val1->value = NULL_TREE;
1083 }
1084 }
1085 else if (val1->lattice_val == CONSTANT
1086 && val2->lattice_val == CONSTANT
1087 && operand_equal_p (val1->value, val2->value, 0))
1088 {
1089 /* Ci M Cj = Ci if (i == j)
1090 Ci M Cj = VARYING if (i != j)
1091
1092 VAL1 already contains the value we want for equivalent values. */
1093 }
1094 else if (val1->lattice_val == CONSTANT
1095 && val2->lattice_val == CONSTANT
1096 && (TREE_CODE (val1->value) == ADDR_EXPR
1097 || TREE_CODE (val2->value) == ADDR_EXPR))
1098 {
1099 /* When not equal addresses are involved try meeting for
1100 alignment. */
1101 ccp_prop_value_t tem = *val2;
1102 if (TREE_CODE (val1->value) == ADDR_EXPR)
1103 *val1 = get_value_for_expr (val1->value, true);
1104 if (TREE_CODE (val2->value) == ADDR_EXPR)
1105 tem = get_value_for_expr (val2->value, true);
1106 ccp_lattice_meet (val1, &tem);
1107 }
1108 else
1109 {
1110 /* Any other combination is VARYING. */
1111 val1->lattice_val = VARYING;
1112 val1->mask = -1;
1113 val1->value = NULL_TREE;
1114 }
1115 }
1116
1117
1118 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1119 lattice values to determine PHI_NODE's lattice value. The value of a
1120 PHI node is determined calling ccp_lattice_meet with all the arguments
1121 of the PHI node that are incoming via executable edges. */
1122
1123 enum ssa_prop_result
1124 ccp_propagate::visit_phi (gphi *phi)
1125 {
1126 unsigned i;
1127 ccp_prop_value_t new_val;
1128
1129 if (dump_file && (dump_flags & TDF_DETAILS))
1130 {
1131 fprintf (dump_file, "\nVisiting PHI node: ");
1132 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1133 }
1134
1135 new_val.lattice_val = UNDEFINED;
1136 new_val.value = NULL_TREE;
1137 new_val.mask = 0;
1138
1139 bool first = true;
1140 bool non_exec_edge = false;
1141 for (i = 0; i < gimple_phi_num_args (phi); i++)
1142 {
1143 /* Compute the meet operator over all the PHI arguments flowing
1144 through executable edges. */
1145 edge e = gimple_phi_arg_edge (phi, i);
1146
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 {
1149 fprintf (dump_file,
1150 "\tArgument #%d (%d -> %d %sexecutable)\n",
1151 i, e->src->index, e->dest->index,
1152 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1153 }
1154
1155 /* If the incoming edge is executable, Compute the meet operator for
1156 the existing value of the PHI node and the current PHI argument. */
1157 if (e->flags & EDGE_EXECUTABLE)
1158 {
1159 tree arg = gimple_phi_arg (phi, i)->def;
1160 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1161
1162 if (first)
1163 {
1164 new_val = arg_val;
1165 first = false;
1166 }
1167 else
1168 ccp_lattice_meet (&new_val, &arg_val);
1169
1170 if (dump_file && (dump_flags & TDF_DETAILS))
1171 {
1172 fprintf (dump_file, "\t");
1173 print_generic_expr (dump_file, arg, dump_flags);
1174 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1175 fprintf (dump_file, "\n");
1176 }
1177
1178 if (new_val.lattice_val == VARYING)
1179 break;
1180 }
1181 else
1182 non_exec_edge = true;
1183 }
1184
1185 /* In case there were non-executable edges and the value is a copy
1186 make sure its definition dominates the PHI node. */
1187 if (non_exec_edge
1188 && new_val.lattice_val == CONSTANT
1189 && TREE_CODE (new_val.value) == SSA_NAME
1190 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1191 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1192 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1193 {
1194 new_val.lattice_val = VARYING;
1195 new_val.value = NULL_TREE;
1196 new_val.mask = -1;
1197 }
1198
1199 if (dump_file && (dump_flags & TDF_DETAILS))
1200 {
1201 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1202 fprintf (dump_file, "\n\n");
1203 }
1204
1205 /* Make the transition to the new value. */
1206 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1207 {
1208 if (new_val.lattice_val == VARYING)
1209 return SSA_PROP_VARYING;
1210 else
1211 return SSA_PROP_INTERESTING;
1212 }
1213 else
1214 return SSA_PROP_NOT_INTERESTING;
1215 }
1216
1217 /* Return the constant value for OP or OP otherwise. */
1218
1219 static tree
1220 valueize_op (tree op)
1221 {
1222 if (TREE_CODE (op) == SSA_NAME)
1223 {
1224 tree tem = get_constant_value (op);
1225 if (tem)
1226 return tem;
1227 }
1228 return op;
1229 }
1230
1231 /* Return the constant value for OP, but signal to not follow SSA
1232 edges if the definition may be simulated again. */
1233
1234 static tree
1235 valueize_op_1 (tree op)
1236 {
1237 if (TREE_CODE (op) == SSA_NAME)
1238 {
1239 /* If the definition may be simulated again we cannot follow
1240 this SSA edge as the SSA propagator does not necessarily
1241 re-visit the use. */
1242 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1243 if (!gimple_nop_p (def_stmt)
1244 && prop_simulate_again_p (def_stmt))
1245 return NULL_TREE;
1246 tree tem = get_constant_value (op);
1247 if (tem)
1248 return tem;
1249 }
1250 return op;
1251 }
1252
1253 /* CCP specific front-end to the non-destructive constant folding
1254 routines.
1255
1256 Attempt to simplify the RHS of STMT knowing that one or more
1257 operands are constants.
1258
1259 If simplification is possible, return the simplified RHS,
1260 otherwise return the original RHS or NULL_TREE. */
1261
1262 static tree
1263 ccp_fold (gimple *stmt)
1264 {
1265 location_t loc = gimple_location (stmt);
1266 switch (gimple_code (stmt))
1267 {
1268 case GIMPLE_COND:
1269 {
1270 /* Handle comparison operators that can appear in GIMPLE form. */
1271 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1272 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1273 enum tree_code code = gimple_cond_code (stmt);
1274 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1275 }
1276
1277 case GIMPLE_SWITCH:
1278 {
1279 /* Return the constant switch index. */
1280 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1281 }
1282
1283 case GIMPLE_ASSIGN:
1284 case GIMPLE_CALL:
1285 return gimple_fold_stmt_to_constant_1 (stmt,
1286 valueize_op, valueize_op_1);
1287
1288 default:
1289 gcc_unreachable ();
1290 }
1291 }
1292
1293 /* Apply the operation CODE in type TYPE to the value, mask pair
1294 RVAL and RMASK representing a value of type RTYPE and set
1295 the value, mask pair *VAL and *MASK to the result. */
1296
1297 void
1298 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1299 widest_int *val, widest_int *mask,
1300 signop rtype_sgn, int rtype_precision,
1301 const widest_int &rval, const widest_int &rmask)
1302 {
1303 switch (code)
1304 {
1305 case BIT_NOT_EXPR:
1306 *mask = rmask;
1307 *val = ~rval;
1308 break;
1309
1310 case NEGATE_EXPR:
1311 {
1312 widest_int temv, temm;
1313 /* Return ~rval + 1. */
1314 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1315 type_sgn, type_precision, rval, rmask);
1316 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1317 type_sgn, type_precision, temv, temm,
1318 type_sgn, type_precision, 1, 0);
1319 break;
1320 }
1321
1322 CASE_CONVERT:
1323 {
1324 /* First extend mask and value according to the original type. */
1325 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1326 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1327
1328 /* Then extend mask and value according to the target type. */
1329 *mask = wi::ext (*mask, type_precision, type_sgn);
1330 *val = wi::ext (*val, type_precision, type_sgn);
1331 break;
1332 }
1333
1334 default:
1335 *mask = -1;
1336 break;
1337 }
1338 }
1339
1340 /* Apply the operation CODE in type TYPE to the value, mask pairs
1341 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1342 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1343
1344 void
1345 bit_value_binop (enum tree_code code, signop sgn, int width,
1346 widest_int *val, widest_int *mask,
1347 signop r1type_sgn, int r1type_precision,
1348 const widest_int &r1val, const widest_int &r1mask,
1349 signop r2type_sgn, int r2type_precision,
1350 const widest_int &r2val, const widest_int &r2mask)
1351 {
1352 bool swap_p = false;
1353
1354 /* Assume we'll get a constant result. Use an initial non varying
1355 value, we fall back to varying in the end if necessary. */
1356 *mask = -1;
1357
1358 switch (code)
1359 {
1360 case BIT_AND_EXPR:
1361 /* The mask is constant where there is a known not
1362 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1363 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1364 *val = r1val & r2val;
1365 break;
1366
1367 case BIT_IOR_EXPR:
1368 /* The mask is constant where there is a known
1369 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1370 *mask = wi::bit_and_not (r1mask | r2mask,
1371 wi::bit_and_not (r1val, r1mask)
1372 | wi::bit_and_not (r2val, r2mask));
1373 *val = r1val | r2val;
1374 break;
1375
1376 case BIT_XOR_EXPR:
1377 /* m1 | m2 */
1378 *mask = r1mask | r2mask;
1379 *val = r1val ^ r2val;
1380 break;
1381
1382 case LROTATE_EXPR:
1383 case RROTATE_EXPR:
1384 if (r2mask == 0)
1385 {
1386 widest_int shift = r2val;
1387 if (shift == 0)
1388 {
1389 *mask = r1mask;
1390 *val = r1val;
1391 }
1392 else
1393 {
1394 if (wi::neg_p (shift))
1395 {
1396 shift = -shift;
1397 if (code == RROTATE_EXPR)
1398 code = LROTATE_EXPR;
1399 else
1400 code = RROTATE_EXPR;
1401 }
1402 if (code == RROTATE_EXPR)
1403 {
1404 *mask = wi::rrotate (r1mask, shift, width);
1405 *val = wi::rrotate (r1val, shift, width);
1406 }
1407 else
1408 {
1409 *mask = wi::lrotate (r1mask, shift, width);
1410 *val = wi::lrotate (r1val, shift, width);
1411 }
1412 }
1413 }
1414 break;
1415
1416 case LSHIFT_EXPR:
1417 case RSHIFT_EXPR:
1418 /* ??? We can handle partially known shift counts if we know
1419 its sign. That way we can tell that (x << (y | 8)) & 255
1420 is zero. */
1421 if (r2mask == 0)
1422 {
1423 widest_int shift = r2val;
1424 if (shift == 0)
1425 {
1426 *mask = r1mask;
1427 *val = r1val;
1428 }
1429 else
1430 {
1431 if (wi::neg_p (shift))
1432 {
1433 shift = -shift;
1434 if (code == RSHIFT_EXPR)
1435 code = LSHIFT_EXPR;
1436 else
1437 code = RSHIFT_EXPR;
1438 }
1439 if (code == RSHIFT_EXPR)
1440 {
1441 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1442 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1443 }
1444 else
1445 {
1446 *mask = wi::ext (r1mask << shift, width, sgn);
1447 *val = wi::ext (r1val << shift, width, sgn);
1448 }
1449 }
1450 }
1451 break;
1452
1453 case PLUS_EXPR:
1454 case POINTER_PLUS_EXPR:
1455 {
1456 /* Do the addition with unknown bits set to zero, to give carry-ins of
1457 zero wherever possible. */
1458 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1459 + wi::bit_and_not (r2val, r2mask));
1460 lo = wi::ext (lo, width, sgn);
1461 /* Do the addition with unknown bits set to one, to give carry-ins of
1462 one wherever possible. */
1463 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1464 hi = wi::ext (hi, width, sgn);
1465 /* Each bit in the result is known if (a) the corresponding bits in
1466 both inputs are known, and (b) the carry-in to that bit position
1467 is known. We can check condition (b) by seeing if we got the same
1468 result with minimised carries as with maximised carries. */
1469 *mask = r1mask | r2mask | (lo ^ hi);
1470 *mask = wi::ext (*mask, width, sgn);
1471 /* It shouldn't matter whether we choose lo or hi here. */
1472 *val = lo;
1473 break;
1474 }
1475
1476 case MINUS_EXPR:
1477 {
1478 widest_int temv, temm;
1479 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1480 r2type_sgn, r2type_precision, r2val, r2mask);
1481 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1482 r1type_sgn, r1type_precision, r1val, r1mask,
1483 r2type_sgn, r2type_precision, temv, temm);
1484 break;
1485 }
1486
1487 case MULT_EXPR:
1488 {
1489 /* Just track trailing zeros in both operands and transfer
1490 them to the other. */
1491 int r1tz = wi::ctz (r1val | r1mask);
1492 int r2tz = wi::ctz (r2val | r2mask);
1493 if (r1tz + r2tz >= width)
1494 {
1495 *mask = 0;
1496 *val = 0;
1497 }
1498 else if (r1tz + r2tz > 0)
1499 {
1500 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1501 width, sgn);
1502 *val = 0;
1503 }
1504 break;
1505 }
1506
1507 case EQ_EXPR:
1508 case NE_EXPR:
1509 {
1510 widest_int m = r1mask | r2mask;
1511 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1512 {
1513 *mask = 0;
1514 *val = ((code == EQ_EXPR) ? 0 : 1);
1515 }
1516 else
1517 {
1518 /* We know the result of a comparison is always one or zero. */
1519 *mask = 1;
1520 *val = 0;
1521 }
1522 break;
1523 }
1524
1525 case GE_EXPR:
1526 case GT_EXPR:
1527 swap_p = true;
1528 code = swap_tree_comparison (code);
1529 /* Fall through. */
1530 case LT_EXPR:
1531 case LE_EXPR:
1532 {
1533 int minmax, maxmin;
1534
1535 const widest_int &o1val = swap_p ? r2val : r1val;
1536 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1537 const widest_int &o2val = swap_p ? r1val : r2val;
1538 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1539
1540 /* If the most significant bits are not known we know nothing. */
1541 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1542 break;
1543
1544 /* For comparisons the signedness is in the comparison operands. */
1545 sgn = r1type_sgn;
1546
1547 /* If we know the most significant bits we know the values
1548 value ranges by means of treating varying bits as zero
1549 or one. Do a cross comparison of the max/min pairs. */
1550 maxmin = wi::cmp (o1val | o1mask,
1551 wi::bit_and_not (o2val, o2mask), sgn);
1552 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1553 o2val | o2mask, sgn);
1554 if (maxmin < 0) /* o1 is less than o2. */
1555 {
1556 *mask = 0;
1557 *val = 1;
1558 }
1559 else if (minmax > 0) /* o1 is not less or equal to o2. */
1560 {
1561 *mask = 0;
1562 *val = 0;
1563 }
1564 else if (maxmin == minmax) /* o1 and o2 are equal. */
1565 {
1566 /* This probably should never happen as we'd have
1567 folded the thing during fully constant value folding. */
1568 *mask = 0;
1569 *val = (code == LE_EXPR ? 1 : 0);
1570 }
1571 else
1572 {
1573 /* We know the result of a comparison is always one or zero. */
1574 *mask = 1;
1575 *val = 0;
1576 }
1577 break;
1578 }
1579
1580 default:;
1581 }
1582 }
1583
1584 /* Return the propagation value when applying the operation CODE to
1585 the value RHS yielding type TYPE. */
1586
1587 static ccp_prop_value_t
1588 bit_value_unop (enum tree_code code, tree type, tree rhs)
1589 {
1590 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1591 widest_int value, mask;
1592 ccp_prop_value_t val;
1593
1594 if (rval.lattice_val == UNDEFINED)
1595 return rval;
1596
1597 gcc_assert ((rval.lattice_val == CONSTANT
1598 && TREE_CODE (rval.value) == INTEGER_CST)
1599 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1600 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1601 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1602 value_to_wide_int (rval), rval.mask);
1603 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1604 {
1605 val.lattice_val = CONSTANT;
1606 val.mask = mask;
1607 /* ??? Delay building trees here. */
1608 val.value = wide_int_to_tree (type, value);
1609 }
1610 else
1611 {
1612 val.lattice_val = VARYING;
1613 val.value = NULL_TREE;
1614 val.mask = -1;
1615 }
1616 return val;
1617 }
1618
1619 /* Return the propagation value when applying the operation CODE to
1620 the values RHS1 and RHS2 yielding type TYPE. */
1621
1622 static ccp_prop_value_t
1623 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1624 {
1625 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1626 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1627 widest_int value, mask;
1628 ccp_prop_value_t val;
1629
1630 if (r1val.lattice_val == UNDEFINED
1631 || r2val.lattice_val == UNDEFINED)
1632 {
1633 val.lattice_val = VARYING;
1634 val.value = NULL_TREE;
1635 val.mask = -1;
1636 return val;
1637 }
1638
1639 gcc_assert ((r1val.lattice_val == CONSTANT
1640 && TREE_CODE (r1val.value) == INTEGER_CST)
1641 || wi::sext (r1val.mask,
1642 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1643 gcc_assert ((r2val.lattice_val == CONSTANT
1644 && TREE_CODE (r2val.value) == INTEGER_CST)
1645 || wi::sext (r2val.mask,
1646 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1647 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1648 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1649 value_to_wide_int (r1val), r1val.mask,
1650 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1651 value_to_wide_int (r2val), r2val.mask);
1652
1653 /* (x * x) & 2 == 0. */
1654 if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
1655 {
1656 widest_int m = 2;
1657 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1658 value = wi::bit_and_not (value, m);
1659 else
1660 value = 0;
1661 mask = wi::bit_and_not (mask, m);
1662 }
1663
1664 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1665 {
1666 val.lattice_val = CONSTANT;
1667 val.mask = mask;
1668 /* ??? Delay building trees here. */
1669 val.value = wide_int_to_tree (type, value);
1670 }
1671 else
1672 {
1673 val.lattice_val = VARYING;
1674 val.value = NULL_TREE;
1675 val.mask = -1;
1676 }
1677 return val;
1678 }
1679
1680 /* Return the propagation value for __builtin_assume_aligned
1681 and functions with assume_aligned or alloc_aligned attribute.
1682 For __builtin_assume_aligned, ATTR is NULL_TREE,
1683 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1684 is false, for alloc_aligned attribute ATTR is non-NULL and
1685 ALLOC_ALIGNED is true. */
1686
1687 static ccp_prop_value_t
1688 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1689 bool alloc_aligned)
1690 {
1691 tree align, misalign = NULL_TREE, type;
1692 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1693 ccp_prop_value_t alignval;
1694 widest_int value, mask;
1695 ccp_prop_value_t val;
1696
1697 if (attr == NULL_TREE)
1698 {
1699 tree ptr = gimple_call_arg (stmt, 0);
1700 type = TREE_TYPE (ptr);
1701 ptrval = get_value_for_expr (ptr, true);
1702 }
1703 else
1704 {
1705 tree lhs = gimple_call_lhs (stmt);
1706 type = TREE_TYPE (lhs);
1707 }
1708
1709 if (ptrval.lattice_val == UNDEFINED)
1710 return ptrval;
1711 gcc_assert ((ptrval.lattice_val == CONSTANT
1712 && TREE_CODE (ptrval.value) == INTEGER_CST)
1713 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1714 if (attr == NULL_TREE)
1715 {
1716 /* Get aligni and misaligni from __builtin_assume_aligned. */
1717 align = gimple_call_arg (stmt, 1);
1718 if (!tree_fits_uhwi_p (align))
1719 return ptrval;
1720 aligni = tree_to_uhwi (align);
1721 if (gimple_call_num_args (stmt) > 2)
1722 {
1723 misalign = gimple_call_arg (stmt, 2);
1724 if (!tree_fits_uhwi_p (misalign))
1725 return ptrval;
1726 misaligni = tree_to_uhwi (misalign);
1727 }
1728 }
1729 else
1730 {
1731 /* Get aligni and misaligni from assume_aligned or
1732 alloc_align attributes. */
1733 if (TREE_VALUE (attr) == NULL_TREE)
1734 return ptrval;
1735 attr = TREE_VALUE (attr);
1736 align = TREE_VALUE (attr);
1737 if (!tree_fits_uhwi_p (align))
1738 return ptrval;
1739 aligni = tree_to_uhwi (align);
1740 if (alloc_aligned)
1741 {
1742 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1743 return ptrval;
1744 align = gimple_call_arg (stmt, aligni - 1);
1745 if (!tree_fits_uhwi_p (align))
1746 return ptrval;
1747 aligni = tree_to_uhwi (align);
1748 }
1749 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1750 {
1751 misalign = TREE_VALUE (TREE_CHAIN (attr));
1752 if (!tree_fits_uhwi_p (misalign))
1753 return ptrval;
1754 misaligni = tree_to_uhwi (misalign);
1755 }
1756 }
1757 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1758 return ptrval;
1759
1760 align = build_int_cst_type (type, -aligni);
1761 alignval = get_value_for_expr (align, true);
1762 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1763 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1764 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1765
1766 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1767 {
1768 val.lattice_val = CONSTANT;
1769 val.mask = mask;
1770 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1771 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1772 value |= misaligni;
1773 /* ??? Delay building trees here. */
1774 val.value = wide_int_to_tree (type, value);
1775 }
1776 else
1777 {
1778 val.lattice_val = VARYING;
1779 val.value = NULL_TREE;
1780 val.mask = -1;
1781 }
1782 return val;
1783 }
1784
1785 /* Evaluate statement STMT.
1786 Valid only for assignments, calls, conditionals, and switches. */
1787
1788 static ccp_prop_value_t
1789 evaluate_stmt (gimple *stmt)
1790 {
1791 ccp_prop_value_t val;
1792 tree simplified = NULL_TREE;
1793 ccp_lattice_t likelyvalue = likely_value (stmt);
1794 bool is_constant = false;
1795 unsigned int align;
1796
1797 if (dump_file && (dump_flags & TDF_DETAILS))
1798 {
1799 fprintf (dump_file, "which is likely ");
1800 switch (likelyvalue)
1801 {
1802 case CONSTANT:
1803 fprintf (dump_file, "CONSTANT");
1804 break;
1805 case UNDEFINED:
1806 fprintf (dump_file, "UNDEFINED");
1807 break;
1808 case VARYING:
1809 fprintf (dump_file, "VARYING");
1810 break;
1811 default:;
1812 }
1813 fprintf (dump_file, "\n");
1814 }
1815
1816 /* If the statement is likely to have a CONSTANT result, then try
1817 to fold the statement to determine the constant value. */
1818 /* FIXME. This is the only place that we call ccp_fold.
1819 Since likely_value never returns CONSTANT for calls, we will
1820 not attempt to fold them, including builtins that may profit. */
1821 if (likelyvalue == CONSTANT)
1822 {
1823 fold_defer_overflow_warnings ();
1824 simplified = ccp_fold (stmt);
1825 if (simplified
1826 && TREE_CODE (simplified) == SSA_NAME)
1827 {
1828 /* We may not use values of something that may be simulated again,
1829 see valueize_op_1. */
1830 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1831 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1832 {
1833 ccp_prop_value_t *val = get_value (simplified);
1834 if (val && val->lattice_val != VARYING)
1835 {
1836 fold_undefer_overflow_warnings (true, stmt, 0);
1837 return *val;
1838 }
1839 }
1840 else
1841 /* We may also not place a non-valueized copy in the lattice
1842 as that might become stale if we never re-visit this stmt. */
1843 simplified = NULL_TREE;
1844 }
1845 is_constant = simplified && is_gimple_min_invariant (simplified);
1846 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1847 if (is_constant)
1848 {
1849 /* The statement produced a constant value. */
1850 val.lattice_val = CONSTANT;
1851 val.value = simplified;
1852 val.mask = 0;
1853 return val;
1854 }
1855 }
1856 /* If the statement is likely to have a VARYING result, then do not
1857 bother folding the statement. */
1858 else if (likelyvalue == VARYING)
1859 {
1860 enum gimple_code code = gimple_code (stmt);
1861 if (code == GIMPLE_ASSIGN)
1862 {
1863 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1864
1865 /* Other cases cannot satisfy is_gimple_min_invariant
1866 without folding. */
1867 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1868 simplified = gimple_assign_rhs1 (stmt);
1869 }
1870 else if (code == GIMPLE_SWITCH)
1871 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1872 else
1873 /* These cannot satisfy is_gimple_min_invariant without folding. */
1874 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1875 is_constant = simplified && is_gimple_min_invariant (simplified);
1876 if (is_constant)
1877 {
1878 /* The statement produced a constant value. */
1879 val.lattice_val = CONSTANT;
1880 val.value = simplified;
1881 val.mask = 0;
1882 }
1883 }
1884 /* If the statement result is likely UNDEFINED, make it so. */
1885 else if (likelyvalue == UNDEFINED)
1886 {
1887 val.lattice_val = UNDEFINED;
1888 val.value = NULL_TREE;
1889 val.mask = 0;
1890 return val;
1891 }
1892
1893 /* Resort to simplification for bitwise tracking. */
1894 if (flag_tree_bit_ccp
1895 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1896 || (gimple_assign_single_p (stmt)
1897 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1898 && !is_constant)
1899 {
1900 enum gimple_code code = gimple_code (stmt);
1901 val.lattice_val = VARYING;
1902 val.value = NULL_TREE;
1903 val.mask = -1;
1904 if (code == GIMPLE_ASSIGN)
1905 {
1906 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1907 tree rhs1 = gimple_assign_rhs1 (stmt);
1908 tree lhs = gimple_assign_lhs (stmt);
1909 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1910 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1911 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1912 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1913 switch (get_gimple_rhs_class (subcode))
1914 {
1915 case GIMPLE_SINGLE_RHS:
1916 val = get_value_for_expr (rhs1, true);
1917 break;
1918
1919 case GIMPLE_UNARY_RHS:
1920 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1921 break;
1922
1923 case GIMPLE_BINARY_RHS:
1924 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1925 gimple_assign_rhs2 (stmt));
1926 break;
1927
1928 default:;
1929 }
1930 }
1931 else if (code == GIMPLE_COND)
1932 {
1933 enum tree_code code = gimple_cond_code (stmt);
1934 tree rhs1 = gimple_cond_lhs (stmt);
1935 tree rhs2 = gimple_cond_rhs (stmt);
1936 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1937 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1938 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1939 }
1940 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1941 {
1942 tree fndecl = gimple_call_fndecl (stmt);
1943 switch (DECL_FUNCTION_CODE (fndecl))
1944 {
1945 case BUILT_IN_MALLOC:
1946 case BUILT_IN_REALLOC:
1947 case BUILT_IN_CALLOC:
1948 case BUILT_IN_STRDUP:
1949 case BUILT_IN_STRNDUP:
1950 val.lattice_val = CONSTANT;
1951 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1952 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1953 / BITS_PER_UNIT - 1);
1954 break;
1955
1956 CASE_BUILT_IN_ALLOCA:
1957 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1958 ? BIGGEST_ALIGNMENT
1959 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1960 val.lattice_val = CONSTANT;
1961 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1962 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1963 break;
1964
1965 /* These builtins return their first argument, unmodified. */
1966 case BUILT_IN_MEMCPY:
1967 case BUILT_IN_MEMMOVE:
1968 case BUILT_IN_MEMSET:
1969 case BUILT_IN_STRCPY:
1970 case BUILT_IN_STRNCPY:
1971 case BUILT_IN_MEMCPY_CHK:
1972 case BUILT_IN_MEMMOVE_CHK:
1973 case BUILT_IN_MEMSET_CHK:
1974 case BUILT_IN_STRCPY_CHK:
1975 case BUILT_IN_STRNCPY_CHK:
1976 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1977 break;
1978
1979 case BUILT_IN_ASSUME_ALIGNED:
1980 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1981 break;
1982
1983 case BUILT_IN_ALIGNED_ALLOC:
1984 {
1985 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1986 if (align
1987 && tree_fits_uhwi_p (align))
1988 {
1989 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1990 if (aligni > 1
1991 /* align must be power-of-two */
1992 && (aligni & (aligni - 1)) == 0)
1993 {
1994 val.lattice_val = CONSTANT;
1995 val.value = build_int_cst (ptr_type_node, 0);
1996 val.mask = -aligni;
1997 }
1998 }
1999 break;
2000 }
2001
2002 case BUILT_IN_BSWAP16:
2003 case BUILT_IN_BSWAP32:
2004 case BUILT_IN_BSWAP64:
2005 case BUILT_IN_BSWAP128:
2006 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
2007 if (val.lattice_val == UNDEFINED)
2008 break;
2009 else if (val.lattice_val == CONSTANT
2010 && val.value
2011 && TREE_CODE (val.value) == INTEGER_CST)
2012 {
2013 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2014 int prec = TYPE_PRECISION (type);
2015 wide_int wval = wi::to_wide (val.value);
2016 val.value
2017 = wide_int_to_tree (type,
2018 wide_int::from (wval, prec,
2019 UNSIGNED).bswap ());
2020 val.mask
2021 = widest_int::from (wide_int::from (val.mask, prec,
2022 UNSIGNED).bswap (),
2023 UNSIGNED);
2024 if (wi::sext (val.mask, prec) != -1)
2025 break;
2026 }
2027 val.lattice_val = VARYING;
2028 val.value = NULL_TREE;
2029 val.mask = -1;
2030 break;
2031
2032 default:;
2033 }
2034 }
2035 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2036 {
2037 tree fntype = gimple_call_fntype (stmt);
2038 if (fntype)
2039 {
2040 tree attrs = lookup_attribute ("assume_aligned",
2041 TYPE_ATTRIBUTES (fntype));
2042 if (attrs)
2043 val = bit_value_assume_aligned (stmt, attrs, val, false);
2044 attrs = lookup_attribute ("alloc_align",
2045 TYPE_ATTRIBUTES (fntype));
2046 if (attrs)
2047 val = bit_value_assume_aligned (stmt, attrs, val, true);
2048 }
2049 }
2050 is_constant = (val.lattice_val == CONSTANT);
2051 }
2052
2053 if (flag_tree_bit_ccp
2054 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2055 || !is_constant)
2056 && gimple_get_lhs (stmt)
2057 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2058 {
2059 tree lhs = gimple_get_lhs (stmt);
2060 wide_int nonzero_bits = get_nonzero_bits (lhs);
2061 if (nonzero_bits != -1)
2062 {
2063 if (!is_constant)
2064 {
2065 val.lattice_val = CONSTANT;
2066 val.value = build_zero_cst (TREE_TYPE (lhs));
2067 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2068 is_constant = true;
2069 }
2070 else
2071 {
2072 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2073 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2074 nonzero_bits
2075 & wi::to_wide (val.value));
2076 if (nonzero_bits == 0)
2077 val.mask = 0;
2078 else
2079 val.mask = val.mask & extend_mask (nonzero_bits,
2080 TYPE_SIGN (TREE_TYPE (lhs)));
2081 }
2082 }
2083 }
2084
2085 /* The statement produced a nonconstant value. */
2086 if (!is_constant)
2087 {
2088 /* The statement produced a copy. */
2089 if (simplified && TREE_CODE (simplified) == SSA_NAME
2090 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2091 {
2092 val.lattice_val = CONSTANT;
2093 val.value = simplified;
2094 val.mask = -1;
2095 }
2096 /* The statement is VARYING. */
2097 else
2098 {
2099 val.lattice_val = VARYING;
2100 val.value = NULL_TREE;
2101 val.mask = -1;
2102 }
2103 }
2104
2105 return val;
2106 }
2107
2108 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2109
2110 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2111 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2112
2113 static void
2114 insert_clobber_before_stack_restore (tree saved_val, tree var,
2115 gimple_htab **visited)
2116 {
2117 gimple *stmt;
2118 gassign *clobber_stmt;
2119 tree clobber;
2120 imm_use_iterator iter;
2121 gimple_stmt_iterator i;
2122 gimple **slot;
2123
2124 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2125 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2126 {
2127 clobber = build_clobber (TREE_TYPE (var));
2128 clobber_stmt = gimple_build_assign (var, clobber);
2129
2130 i = gsi_for_stmt (stmt);
2131 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2132 }
2133 else if (gimple_code (stmt) == GIMPLE_PHI)
2134 {
2135 if (!*visited)
2136 *visited = new gimple_htab (10);
2137
2138 slot = (*visited)->find_slot (stmt, INSERT);
2139 if (*slot != NULL)
2140 continue;
2141
2142 *slot = stmt;
2143 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2144 visited);
2145 }
2146 else if (gimple_assign_ssa_name_copy_p (stmt))
2147 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2148 visited);
2149 }
2150
2151 /* Advance the iterator to the previous non-debug gimple statement in the same
2152 or dominating basic block. */
2153
2154 static inline void
2155 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2156 {
2157 basic_block dom;
2158
2159 gsi_prev_nondebug (i);
2160 while (gsi_end_p (*i))
2161 {
2162 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2163 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2164 return;
2165
2166 *i = gsi_last_bb (dom);
2167 }
2168 }
2169
2170 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2171 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2172
2173 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2174 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2175 In that case the function gives up without inserting the clobbers. */
2176
2177 static void
2178 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2179 {
2180 gimple *stmt;
2181 tree saved_val;
2182 gimple_htab *visited = NULL;
2183
2184 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2185 {
2186 stmt = gsi_stmt (i);
2187
2188 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2189 continue;
2190
2191 saved_val = gimple_call_lhs (stmt);
2192 if (saved_val == NULL_TREE)
2193 continue;
2194
2195 insert_clobber_before_stack_restore (saved_val, var, &visited);
2196 break;
2197 }
2198
2199 delete visited;
2200 }
2201
2202 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2203 fixed-size array and returns the address, if found, otherwise returns
2204 NULL_TREE. */
2205
2206 static tree
2207 fold_builtin_alloca_with_align (gimple *stmt)
2208 {
2209 unsigned HOST_WIDE_INT size, threshold, n_elem;
2210 tree lhs, arg, block, var, elem_type, array_type;
2211
2212 /* Get lhs. */
2213 lhs = gimple_call_lhs (stmt);
2214 if (lhs == NULL_TREE)
2215 return NULL_TREE;
2216
2217 /* Detect constant argument. */
2218 arg = get_constant_value (gimple_call_arg (stmt, 0));
2219 if (arg == NULL_TREE
2220 || TREE_CODE (arg) != INTEGER_CST
2221 || !tree_fits_uhwi_p (arg))
2222 return NULL_TREE;
2223
2224 size = tree_to_uhwi (arg);
2225
2226 /* Heuristic: don't fold large allocas. */
2227 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2228 /* In case the alloca is located at function entry, it has the same lifetime
2229 as a declared array, so we allow a larger size. */
2230 block = gimple_block (stmt);
2231 if (!(cfun->after_inlining
2232 && block
2233 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2234 threshold /= 10;
2235 if (size > threshold)
2236 return NULL_TREE;
2237
2238 /* We have to be able to move points-to info. We used to assert
2239 that we can but IPA PTA might end up with two UIDs here
2240 as it might need to handle more than one instance being
2241 live at the same time. Instead of trying to detect this case
2242 (using the first UID would be OK) just give up for now. */
2243 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2244 unsigned uid = 0;
2245 if (pi != NULL
2246 && !pi->pt.anything
2247 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2248 return NULL_TREE;
2249
2250 /* Declare array. */
2251 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2252 n_elem = size * 8 / BITS_PER_UNIT;
2253 array_type = build_array_type_nelts (elem_type, n_elem);
2254
2255 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2256 {
2257 /* Give the temporary a name derived from the name of the VLA
2258 declaration so it can be referenced in diagnostics. */
2259 const char *name = IDENTIFIER_POINTER (ssa_name);
2260 var = create_tmp_var (array_type, name);
2261 }
2262 else
2263 var = create_tmp_var (array_type);
2264
2265 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2266 {
2267 /* Set the temporary's location to that of the VLA declaration
2268 so it can be pointed to in diagnostics. */
2269 location_t loc = gimple_location (lhsdef);
2270 DECL_SOURCE_LOCATION (var) = loc;
2271 }
2272
2273 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2274 if (uid != 0)
2275 SET_DECL_PT_UID (var, uid);
2276
2277 /* Fold alloca to the address of the array. */
2278 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2279 }
2280
2281 /* Fold the stmt at *GSI with CCP specific information that propagating
2282 and regular folding does not catch. */
2283
2284 bool
2285 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2286 {
2287 gimple *stmt = gsi_stmt (*gsi);
2288
2289 switch (gimple_code (stmt))
2290 {
2291 case GIMPLE_COND:
2292 {
2293 gcond *cond_stmt = as_a <gcond *> (stmt);
2294 ccp_prop_value_t val;
2295 /* Statement evaluation will handle type mismatches in constants
2296 more gracefully than the final propagation. This allows us to
2297 fold more conditionals here. */
2298 val = evaluate_stmt (stmt);
2299 if (val.lattice_val != CONSTANT
2300 || val.mask != 0)
2301 return false;
2302
2303 if (dump_file)
2304 {
2305 fprintf (dump_file, "Folding predicate ");
2306 print_gimple_expr (dump_file, stmt, 0);
2307 fprintf (dump_file, " to ");
2308 print_generic_expr (dump_file, val.value);
2309 fprintf (dump_file, "\n");
2310 }
2311
2312 if (integer_zerop (val.value))
2313 gimple_cond_make_false (cond_stmt);
2314 else
2315 gimple_cond_make_true (cond_stmt);
2316
2317 return true;
2318 }
2319
2320 case GIMPLE_CALL:
2321 {
2322 tree lhs = gimple_call_lhs (stmt);
2323 int flags = gimple_call_flags (stmt);
2324 tree val;
2325 tree argt;
2326 bool changed = false;
2327 unsigned i;
2328
2329 /* If the call was folded into a constant make sure it goes
2330 away even if we cannot propagate into all uses because of
2331 type issues. */
2332 if (lhs
2333 && TREE_CODE (lhs) == SSA_NAME
2334 && (val = get_constant_value (lhs))
2335 /* Don't optimize away calls that have side-effects. */
2336 && (flags & (ECF_CONST|ECF_PURE)) != 0
2337 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2338 {
2339 tree new_rhs = unshare_expr (val);
2340 bool res;
2341 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2342 TREE_TYPE (new_rhs)))
2343 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2344 res = update_call_from_tree (gsi, new_rhs);
2345 gcc_assert (res);
2346 return true;
2347 }
2348
2349 /* Internal calls provide no argument types, so the extra laxity
2350 for normal calls does not apply. */
2351 if (gimple_call_internal_p (stmt))
2352 return false;
2353
2354 /* The heuristic of fold_builtin_alloca_with_align differs before and
2355 after inlining, so we don't require the arg to be changed into a
2356 constant for folding, but just to be constant. */
2357 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2358 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2359 {
2360 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2361 if (new_rhs)
2362 {
2363 bool res = update_call_from_tree (gsi, new_rhs);
2364 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2365 gcc_assert (res);
2366 insert_clobbers_for_var (*gsi, var);
2367 return true;
2368 }
2369 }
2370
2371 /* If there's no extra info from an assume_aligned call,
2372 drop it so it doesn't act as otherwise useless dataflow
2373 barrier. */
2374 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2375 {
2376 tree ptr = gimple_call_arg (stmt, 0);
2377 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2378 if (ptrval.lattice_val == CONSTANT
2379 && TREE_CODE (ptrval.value) == INTEGER_CST
2380 && ptrval.mask != 0)
2381 {
2382 ccp_prop_value_t val
2383 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2384 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2385 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2386 if (ptralign == align
2387 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2388 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2389 {
2390 bool res = update_call_from_tree (gsi, ptr);
2391 gcc_assert (res);
2392 return true;
2393 }
2394 }
2395 }
2396
2397 /* Propagate into the call arguments. Compared to replace_uses_in
2398 this can use the argument slot types for type verification
2399 instead of the current argument type. We also can safely
2400 drop qualifiers here as we are dealing with constants anyway. */
2401 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2402 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2403 ++i, argt = TREE_CHAIN (argt))
2404 {
2405 tree arg = gimple_call_arg (stmt, i);
2406 if (TREE_CODE (arg) == SSA_NAME
2407 && (val = get_constant_value (arg))
2408 && useless_type_conversion_p
2409 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2410 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2411 {
2412 gimple_call_set_arg (stmt, i, unshare_expr (val));
2413 changed = true;
2414 }
2415 }
2416
2417 return changed;
2418 }
2419
2420 case GIMPLE_ASSIGN:
2421 {
2422 tree lhs = gimple_assign_lhs (stmt);
2423 tree val;
2424
2425 /* If we have a load that turned out to be constant replace it
2426 as we cannot propagate into all uses in all cases. */
2427 if (gimple_assign_single_p (stmt)
2428 && TREE_CODE (lhs) == SSA_NAME
2429 && (val = get_constant_value (lhs)))
2430 {
2431 tree rhs = unshare_expr (val);
2432 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2433 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2434 gimple_assign_set_rhs_from_tree (gsi, rhs);
2435 return true;
2436 }
2437
2438 return false;
2439 }
2440
2441 default:
2442 return false;
2443 }
2444 }
2445
2446 /* Visit the assignment statement STMT. Set the value of its LHS to the
2447 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2448 creates virtual definitions, set the value of each new name to that
2449 of the RHS (if we can derive a constant out of the RHS).
2450 Value-returning call statements also perform an assignment, and
2451 are handled here. */
2452
2453 static enum ssa_prop_result
2454 visit_assignment (gimple *stmt, tree *output_p)
2455 {
2456 ccp_prop_value_t val;
2457 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2458
2459 tree lhs = gimple_get_lhs (stmt);
2460 if (TREE_CODE (lhs) == SSA_NAME)
2461 {
2462 /* Evaluate the statement, which could be
2463 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2464 val = evaluate_stmt (stmt);
2465
2466 /* If STMT is an assignment to an SSA_NAME, we only have one
2467 value to set. */
2468 if (set_lattice_value (lhs, &val))
2469 {
2470 *output_p = lhs;
2471 if (val.lattice_val == VARYING)
2472 retval = SSA_PROP_VARYING;
2473 else
2474 retval = SSA_PROP_INTERESTING;
2475 }
2476 }
2477
2478 return retval;
2479 }
2480
2481
2482 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2483 if it can determine which edge will be taken. Otherwise, return
2484 SSA_PROP_VARYING. */
2485
2486 static enum ssa_prop_result
2487 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2488 {
2489 ccp_prop_value_t val;
2490 basic_block block;
2491
2492 block = gimple_bb (stmt);
2493 val = evaluate_stmt (stmt);
2494 if (val.lattice_val != CONSTANT
2495 || val.mask != 0)
2496 return SSA_PROP_VARYING;
2497
2498 /* Find which edge out of the conditional block will be taken and add it
2499 to the worklist. If no single edge can be determined statically,
2500 return SSA_PROP_VARYING to feed all the outgoing edges to the
2501 propagation engine. */
2502 *taken_edge_p = find_taken_edge (block, val.value);
2503 if (*taken_edge_p)
2504 return SSA_PROP_INTERESTING;
2505 else
2506 return SSA_PROP_VARYING;
2507 }
2508
2509
2510 /* Evaluate statement STMT. If the statement produces an output value and
2511 its evaluation changes the lattice value of its output, return
2512 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2513 output value.
2514
2515 If STMT is a conditional branch and we can determine its truth
2516 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2517 value, return SSA_PROP_VARYING. */
2518
2519 enum ssa_prop_result
2520 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2521 {
2522 tree def;
2523 ssa_op_iter iter;
2524
2525 if (dump_file && (dump_flags & TDF_DETAILS))
2526 {
2527 fprintf (dump_file, "\nVisiting statement:\n");
2528 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2529 }
2530
2531 switch (gimple_code (stmt))
2532 {
2533 case GIMPLE_ASSIGN:
2534 /* If the statement is an assignment that produces a single
2535 output value, evaluate its RHS to see if the lattice value of
2536 its output has changed. */
2537 return visit_assignment (stmt, output_p);
2538
2539 case GIMPLE_CALL:
2540 /* A value-returning call also performs an assignment. */
2541 if (gimple_call_lhs (stmt) != NULL_TREE)
2542 return visit_assignment (stmt, output_p);
2543 break;
2544
2545 case GIMPLE_COND:
2546 case GIMPLE_SWITCH:
2547 /* If STMT is a conditional branch, see if we can determine
2548 which branch will be taken. */
2549 /* FIXME. It appears that we should be able to optimize
2550 computed GOTOs here as well. */
2551 return visit_cond_stmt (stmt, taken_edge_p);
2552
2553 default:
2554 break;
2555 }
2556
2557 /* Any other kind of statement is not interesting for constant
2558 propagation and, therefore, not worth simulating. */
2559 if (dump_file && (dump_flags & TDF_DETAILS))
2560 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2561
2562 /* Definitions made by statements other than assignments to
2563 SSA_NAMEs represent unknown modifications to their outputs.
2564 Mark them VARYING. */
2565 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2566 set_value_varying (def);
2567
2568 return SSA_PROP_VARYING;
2569 }
2570
2571
2572 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2573 record nonzero bits. */
2574
2575 static unsigned int
2576 do_ssa_ccp (bool nonzero_p)
2577 {
2578 unsigned int todo = 0;
2579 calculate_dominance_info (CDI_DOMINATORS);
2580
2581 ccp_initialize ();
2582 class ccp_propagate ccp_propagate;
2583 ccp_propagate.ssa_propagate ();
2584 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2585 {
2586 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2587
2588 /* ccp_finalize does not preserve loop-closed ssa. */
2589 loops_state_clear (LOOP_CLOSED_SSA);
2590 }
2591
2592 free_dominance_info (CDI_DOMINATORS);
2593 return todo;
2594 }
2595
2596
2597 namespace {
2598
2599 const pass_data pass_data_ccp =
2600 {
2601 GIMPLE_PASS, /* type */
2602 "ccp", /* name */
2603 OPTGROUP_NONE, /* optinfo_flags */
2604 TV_TREE_CCP, /* tv_id */
2605 ( PROP_cfg | PROP_ssa ), /* properties_required */
2606 0, /* properties_provided */
2607 0, /* properties_destroyed */
2608 0, /* todo_flags_start */
2609 TODO_update_address_taken, /* todo_flags_finish */
2610 };
2611
2612 class pass_ccp : public gimple_opt_pass
2613 {
2614 public:
2615 pass_ccp (gcc::context *ctxt)
2616 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2617 {}
2618
2619 /* opt_pass methods: */
2620 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2621 void set_pass_param (unsigned int n, bool param)
2622 {
2623 gcc_assert (n == 0);
2624 nonzero_p = param;
2625 }
2626 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2627 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2628
2629 private:
2630 /* Determines whether the pass instance records nonzero bits. */
2631 bool nonzero_p;
2632 }; // class pass_ccp
2633
2634 } // anon namespace
2635
2636 gimple_opt_pass *
2637 make_pass_ccp (gcc::context *ctxt)
2638 {
2639 return new pass_ccp (ctxt);
2640 }
2641
2642
2643
2644 /* Try to optimize out __builtin_stack_restore. Optimize it out
2645 if there is another __builtin_stack_restore in the same basic
2646 block and no calls or ASM_EXPRs are in between, or if this block's
2647 only outgoing edge is to EXIT_BLOCK and there are no calls or
2648 ASM_EXPRs after this __builtin_stack_restore. */
2649
2650 static tree
2651 optimize_stack_restore (gimple_stmt_iterator i)
2652 {
2653 tree callee;
2654 gimple *stmt;
2655
2656 basic_block bb = gsi_bb (i);
2657 gimple *call = gsi_stmt (i);
2658
2659 if (gimple_code (call) != GIMPLE_CALL
2660 || gimple_call_num_args (call) != 1
2661 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2662 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2663 return NULL_TREE;
2664
2665 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2666 {
2667 stmt = gsi_stmt (i);
2668 if (gimple_code (stmt) == GIMPLE_ASM)
2669 return NULL_TREE;
2670 if (gimple_code (stmt) != GIMPLE_CALL)
2671 continue;
2672
2673 callee = gimple_call_fndecl (stmt);
2674 if (!callee
2675 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2676 /* All regular builtins are ok, just obviously not alloca. */
2677 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2678 return NULL_TREE;
2679
2680 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2681 goto second_stack_restore;
2682 }
2683
2684 if (!gsi_end_p (i))
2685 return NULL_TREE;
2686
2687 /* Allow one successor of the exit block, or zero successors. */
2688 switch (EDGE_COUNT (bb->succs))
2689 {
2690 case 0:
2691 break;
2692 case 1:
2693 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2694 return NULL_TREE;
2695 break;
2696 default:
2697 return NULL_TREE;
2698 }
2699 second_stack_restore:
2700
2701 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2702 If there are multiple uses, then the last one should remove the call.
2703 In any case, whether the call to __builtin_stack_save can be removed
2704 or not is irrelevant to removing the call to __builtin_stack_restore. */
2705 if (has_single_use (gimple_call_arg (call, 0)))
2706 {
2707 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2708 if (is_gimple_call (stack_save))
2709 {
2710 callee = gimple_call_fndecl (stack_save);
2711 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2712 {
2713 gimple_stmt_iterator stack_save_gsi;
2714 tree rhs;
2715
2716 stack_save_gsi = gsi_for_stmt (stack_save);
2717 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2718 update_call_from_tree (&stack_save_gsi, rhs);
2719 }
2720 }
2721 }
2722
2723 /* No effect, so the statement will be deleted. */
2724 return integer_zero_node;
2725 }
2726
2727 /* If va_list type is a simple pointer and nothing special is needed,
2728 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2729 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2730 pointer assignment. */
2731
2732 static tree
2733 optimize_stdarg_builtin (gimple *call)
2734 {
2735 tree callee, lhs, rhs, cfun_va_list;
2736 bool va_list_simple_ptr;
2737 location_t loc = gimple_location (call);
2738
2739 callee = gimple_call_fndecl (call);
2740
2741 cfun_va_list = targetm.fn_abi_va_list (callee);
2742 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2743 && (TREE_TYPE (cfun_va_list) == void_type_node
2744 || TREE_TYPE (cfun_va_list) == char_type_node);
2745
2746 switch (DECL_FUNCTION_CODE (callee))
2747 {
2748 case BUILT_IN_VA_START:
2749 if (!va_list_simple_ptr
2750 || targetm.expand_builtin_va_start != NULL
2751 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2752 return NULL_TREE;
2753
2754 if (gimple_call_num_args (call) != 2)
2755 return NULL_TREE;
2756
2757 lhs = gimple_call_arg (call, 0);
2758 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2759 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2760 != TYPE_MAIN_VARIANT (cfun_va_list))
2761 return NULL_TREE;
2762
2763 lhs = build_fold_indirect_ref_loc (loc, lhs);
2764 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2765 1, integer_zero_node);
2766 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2767 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2768
2769 case BUILT_IN_VA_COPY:
2770 if (!va_list_simple_ptr)
2771 return NULL_TREE;
2772
2773 if (gimple_call_num_args (call) != 2)
2774 return NULL_TREE;
2775
2776 lhs = gimple_call_arg (call, 0);
2777 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2778 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2779 != TYPE_MAIN_VARIANT (cfun_va_list))
2780 return NULL_TREE;
2781
2782 lhs = build_fold_indirect_ref_loc (loc, lhs);
2783 rhs = gimple_call_arg (call, 1);
2784 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2785 != TYPE_MAIN_VARIANT (cfun_va_list))
2786 return NULL_TREE;
2787
2788 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2789 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2790
2791 case BUILT_IN_VA_END:
2792 /* No effect, so the statement will be deleted. */
2793 return integer_zero_node;
2794
2795 default:
2796 gcc_unreachable ();
2797 }
2798 }
2799
2800 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2801 the incoming jumps. Return true if at least one jump was changed. */
2802
2803 static bool
2804 optimize_unreachable (gimple_stmt_iterator i)
2805 {
2806 basic_block bb = gsi_bb (i);
2807 gimple_stmt_iterator gsi;
2808 gimple *stmt;
2809 edge_iterator ei;
2810 edge e;
2811 bool ret;
2812
2813 if (flag_sanitize & SANITIZE_UNREACHABLE)
2814 return false;
2815
2816 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2817 {
2818 stmt = gsi_stmt (gsi);
2819
2820 if (is_gimple_debug (stmt))
2821 continue;
2822
2823 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2824 {
2825 /* Verify we do not need to preserve the label. */
2826 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2827 return false;
2828
2829 continue;
2830 }
2831
2832 /* Only handle the case that __builtin_unreachable is the first statement
2833 in the block. We rely on DCE to remove stmts without side-effects
2834 before __builtin_unreachable. */
2835 if (gsi_stmt (gsi) != gsi_stmt (i))
2836 return false;
2837 }
2838
2839 ret = false;
2840 FOR_EACH_EDGE (e, ei, bb->preds)
2841 {
2842 gsi = gsi_last_bb (e->src);
2843 if (gsi_end_p (gsi))
2844 continue;
2845
2846 stmt = gsi_stmt (gsi);
2847 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2848 {
2849 if (e->flags & EDGE_TRUE_VALUE)
2850 gimple_cond_make_false (cond_stmt);
2851 else if (e->flags & EDGE_FALSE_VALUE)
2852 gimple_cond_make_true (cond_stmt);
2853 else
2854 gcc_unreachable ();
2855 update_stmt (cond_stmt);
2856 }
2857 else
2858 {
2859 /* Todo: handle other cases. Note that unreachable switch case
2860 statements have already been removed. */
2861 continue;
2862 }
2863
2864 ret = true;
2865 }
2866
2867 return ret;
2868 }
2869
2870 /* Optimize
2871 mask_2 = 1 << cnt_1;
2872 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2873 _5 = _4 & mask_2;
2874 to
2875 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2876 _5 = _4;
2877 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2878 is passed instead of 0, and the builtin just returns a zero
2879 or 1 value instead of the actual bit.
2880 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2881 in there), and/or if mask_2 is a power of 2 constant.
2882 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2883 in that case. And similarly for and instead of or, except that
2884 the second argument to the builtin needs to be one's complement
2885 of the mask instead of mask. */
2886
2887 static void
2888 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2889 enum internal_fn fn, bool has_model_arg,
2890 bool after)
2891 {
2892 gimple *call = gsi_stmt (*gsip);
2893 tree lhs = gimple_call_lhs (call);
2894 use_operand_p use_p;
2895 gimple *use_stmt;
2896 tree mask, bit;
2897 optab optab;
2898
2899 if (!flag_inline_atomics
2900 || optimize_debug
2901 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2902 || !lhs
2903 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2904 || !single_imm_use (lhs, &use_p, &use_stmt)
2905 || !is_gimple_assign (use_stmt)
2906 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2907 || !gimple_vdef (call))
2908 return;
2909
2910 switch (fn)
2911 {
2912 case IFN_ATOMIC_BIT_TEST_AND_SET:
2913 optab = atomic_bit_test_and_set_optab;
2914 break;
2915 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2916 optab = atomic_bit_test_and_complement_optab;
2917 break;
2918 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2919 optab = atomic_bit_test_and_reset_optab;
2920 break;
2921 default:
2922 return;
2923 }
2924
2925 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2926 return;
2927
2928 mask = gimple_call_arg (call, 1);
2929 tree use_lhs = gimple_assign_lhs (use_stmt);
2930 if (!use_lhs)
2931 return;
2932
2933 if (TREE_CODE (mask) == INTEGER_CST)
2934 {
2935 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2936 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2937 mask = fold_convert (TREE_TYPE (lhs), mask);
2938 int ibit = tree_log2 (mask);
2939 if (ibit < 0)
2940 return;
2941 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2942 }
2943 else if (TREE_CODE (mask) == SSA_NAME)
2944 {
2945 gimple *g = SSA_NAME_DEF_STMT (mask);
2946 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2947 {
2948 if (!is_gimple_assign (g)
2949 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2950 return;
2951 mask = gimple_assign_rhs1 (g);
2952 if (TREE_CODE (mask) != SSA_NAME)
2953 return;
2954 g = SSA_NAME_DEF_STMT (mask);
2955 }
2956 if (!is_gimple_assign (g)
2957 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2958 || !integer_onep (gimple_assign_rhs1 (g)))
2959 return;
2960 bit = gimple_assign_rhs2 (g);
2961 }
2962 else
2963 return;
2964
2965 if (gimple_assign_rhs1 (use_stmt) == lhs)
2966 {
2967 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2968 return;
2969 }
2970 else if (gimple_assign_rhs2 (use_stmt) != lhs
2971 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2972 return;
2973
2974 bool use_bool = true;
2975 bool has_debug_uses = false;
2976 imm_use_iterator iter;
2977 gimple *g;
2978
2979 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2980 use_bool = false;
2981 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2982 {
2983 enum tree_code code = ERROR_MARK;
2984 tree op0 = NULL_TREE, op1 = NULL_TREE;
2985 if (is_gimple_debug (g))
2986 {
2987 has_debug_uses = true;
2988 continue;
2989 }
2990 else if (is_gimple_assign (g))
2991 switch (gimple_assign_rhs_code (g))
2992 {
2993 case COND_EXPR:
2994 op1 = gimple_assign_rhs1 (g);
2995 code = TREE_CODE (op1);
2996 op0 = TREE_OPERAND (op1, 0);
2997 op1 = TREE_OPERAND (op1, 1);
2998 break;
2999 case EQ_EXPR:
3000 case NE_EXPR:
3001 code = gimple_assign_rhs_code (g);
3002 op0 = gimple_assign_rhs1 (g);
3003 op1 = gimple_assign_rhs2 (g);
3004 break;
3005 default:
3006 break;
3007 }
3008 else if (gimple_code (g) == GIMPLE_COND)
3009 {
3010 code = gimple_cond_code (g);
3011 op0 = gimple_cond_lhs (g);
3012 op1 = gimple_cond_rhs (g);
3013 }
3014
3015 if ((code == EQ_EXPR || code == NE_EXPR)
3016 && op0 == use_lhs
3017 && integer_zerop (op1))
3018 {
3019 use_operand_p use_p;
3020 int n = 0;
3021 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3022 n++;
3023 if (n == 1)
3024 continue;
3025 }
3026
3027 use_bool = false;
3028 BREAK_FROM_IMM_USE_STMT (iter);
3029 }
3030
3031 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3032 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3033 if (has_model_arg)
3034 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3035 bit, flag, gimple_call_arg (call, 2));
3036 else
3037 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3038 bit, flag);
3039 gimple_call_set_lhs (g, new_lhs);
3040 gimple_set_location (g, gimple_location (call));
3041 gimple_move_vops (g, call);
3042 bool throws = stmt_can_throw_internal (cfun, call);
3043 gimple_call_set_nothrow (as_a <gcall *> (g),
3044 gimple_call_nothrow_p (as_a <gcall *> (call)));
3045 gimple_stmt_iterator gsi = *gsip;
3046 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3047 edge e = NULL;
3048 if (throws)
3049 {
3050 maybe_clean_or_replace_eh_stmt (call, g);
3051 if (after || (use_bool && has_debug_uses))
3052 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3053 }
3054 if (after)
3055 {
3056 /* The internal function returns the value of the specified bit
3057 before the atomic operation. If we are interested in the value
3058 of the specified bit after the atomic operation (makes only sense
3059 for xor, otherwise the bit content is compile time known),
3060 we need to invert the bit. */
3061 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3062 BIT_XOR_EXPR, new_lhs,
3063 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3064 : mask);
3065 new_lhs = gimple_assign_lhs (g);
3066 if (throws)
3067 {
3068 gsi_insert_on_edge_immediate (e, g);
3069 gsi = gsi_for_stmt (g);
3070 }
3071 else
3072 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3073 }
3074 if (use_bool && has_debug_uses)
3075 {
3076 tree temp = NULL_TREE;
3077 if (!throws || after || single_pred_p (e->dest))
3078 {
3079 temp = make_node (DEBUG_EXPR_DECL);
3080 DECL_ARTIFICIAL (temp) = 1;
3081 TREE_TYPE (temp) = TREE_TYPE (lhs);
3082 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3083 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3084 g = gimple_build_debug_bind (temp, t, g);
3085 if (throws && !after)
3086 {
3087 gsi = gsi_after_labels (e->dest);
3088 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3089 }
3090 else
3091 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3092 }
3093 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3094 if (is_gimple_debug (g))
3095 {
3096 use_operand_p use_p;
3097 if (temp == NULL_TREE)
3098 gimple_debug_bind_reset_value (g);
3099 else
3100 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3101 SET_USE (use_p, temp);
3102 update_stmt (g);
3103 }
3104 }
3105 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3106 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3107 replace_uses_by (use_lhs, new_lhs);
3108 gsi = gsi_for_stmt (use_stmt);
3109 gsi_remove (&gsi, true);
3110 release_defs (use_stmt);
3111 gsi_remove (gsip, true);
3112 release_ssa_name (lhs);
3113 }
3114
3115 /* Optimize
3116 a = {};
3117 b = a;
3118 into
3119 a = {};
3120 b = {};
3121 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3122 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3123
3124 static void
3125 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3126 {
3127 gimple *stmt = gsi_stmt (*gsip);
3128 if (gimple_has_volatile_ops (stmt))
3129 return;
3130
3131 tree vuse = gimple_vuse (stmt);
3132 if (vuse == NULL)
3133 return;
3134
3135 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3136 tree src2 = NULL_TREE, len2 = NULL_TREE;
3137 poly_int64 offset, offset2;
3138 tree val = integer_zero_node;
3139 if (gimple_store_p (defstmt)
3140 && gimple_assign_single_p (defstmt)
3141 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3142 && !gimple_clobber_p (defstmt))
3143 src2 = gimple_assign_lhs (defstmt);
3144 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3145 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3146 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3147 {
3148 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3149 len2 = gimple_call_arg (defstmt, 2);
3150 val = gimple_call_arg (defstmt, 1);
3151 /* For non-0 val, we'd have to transform stmt from assignment
3152 into memset (only if dest is addressable). */
3153 if (!integer_zerop (val) && is_gimple_assign (stmt))
3154 src2 = NULL_TREE;
3155 }
3156
3157 if (src2 == NULL_TREE)
3158 return;
3159
3160 if (len == NULL_TREE)
3161 len = (TREE_CODE (src) == COMPONENT_REF
3162 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3163 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3164 if (len2 == NULL_TREE)
3165 len2 = (TREE_CODE (src2) == COMPONENT_REF
3166 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3167 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3168 if (len == NULL_TREE
3169 || !poly_int_tree_p (len)
3170 || len2 == NULL_TREE
3171 || !poly_int_tree_p (len2))
3172 return;
3173
3174 src = get_addr_base_and_unit_offset (src, &offset);
3175 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3176 if (src == NULL_TREE
3177 || src2 == NULL_TREE
3178 || maybe_lt (offset, offset2))
3179 return;
3180
3181 if (!operand_equal_p (src, src2, 0))
3182 return;
3183
3184 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3185 Make sure that
3186 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3187 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3188 wi::to_poly_offset (len2)))
3189 return;
3190
3191 if (dump_file && (dump_flags & TDF_DETAILS))
3192 {
3193 fprintf (dump_file, "Simplified\n ");
3194 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3195 fprintf (dump_file, "after previous\n ");
3196 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3197 }
3198
3199 /* For simplicity, don't change the kind of the stmt,
3200 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3201 into memset (&dest, val, len);
3202 In theory we could change dest = src into memset if dest
3203 is addressable (maybe beneficial if val is not 0), or
3204 memcpy (&dest, &src, len) into dest = {} if len is the size
3205 of dest, dest isn't volatile. */
3206 if (is_gimple_assign (stmt))
3207 {
3208 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3209 gimple_assign_set_rhs_from_tree (gsip, ctor);
3210 update_stmt (stmt);
3211 }
3212 else /* If stmt is memcpy, transform it into memset. */
3213 {
3214 gcall *call = as_a <gcall *> (stmt);
3215 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3216 gimple_call_set_fndecl (call, fndecl);
3217 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3218 gimple_call_set_arg (call, 1, val);
3219 update_stmt (stmt);
3220 }
3221
3222 if (dump_file && (dump_flags & TDF_DETAILS))
3223 {
3224 fprintf (dump_file, "into\n ");
3225 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3226 }
3227 }
3228
3229 /* A simple pass that attempts to fold all builtin functions. This pass
3230 is run after we've propagated as many constants as we can. */
3231
3232 namespace {
3233
3234 const pass_data pass_data_fold_builtins =
3235 {
3236 GIMPLE_PASS, /* type */
3237 "fab", /* name */
3238 OPTGROUP_NONE, /* optinfo_flags */
3239 TV_NONE, /* tv_id */
3240 ( PROP_cfg | PROP_ssa ), /* properties_required */
3241 0, /* properties_provided */
3242 0, /* properties_destroyed */
3243 0, /* todo_flags_start */
3244 TODO_update_ssa, /* todo_flags_finish */
3245 };
3246
3247 class pass_fold_builtins : public gimple_opt_pass
3248 {
3249 public:
3250 pass_fold_builtins (gcc::context *ctxt)
3251 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3252 {}
3253
3254 /* opt_pass methods: */
3255 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3256 virtual unsigned int execute (function *);
3257
3258 }; // class pass_fold_builtins
3259
3260 unsigned int
3261 pass_fold_builtins::execute (function *fun)
3262 {
3263 bool cfg_changed = false;
3264 basic_block bb;
3265 unsigned int todoflags = 0;
3266
3267 FOR_EACH_BB_FN (bb, fun)
3268 {
3269 gimple_stmt_iterator i;
3270 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3271 {
3272 gimple *stmt, *old_stmt;
3273 tree callee;
3274 enum built_in_function fcode;
3275
3276 stmt = gsi_stmt (i);
3277
3278 if (gimple_code (stmt) != GIMPLE_CALL)
3279 {
3280 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3281 after the last GIMPLE DSE they aren't needed and might
3282 unnecessarily keep the SSA_NAMEs live. */
3283 if (gimple_clobber_p (stmt))
3284 {
3285 tree lhs = gimple_assign_lhs (stmt);
3286 if (TREE_CODE (lhs) == MEM_REF
3287 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3288 {
3289 unlink_stmt_vdef (stmt);
3290 gsi_remove (&i, true);
3291 release_defs (stmt);
3292 continue;
3293 }
3294 }
3295 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3296 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3297 gimple_assign_rhs1 (stmt), NULL_TREE);
3298 gsi_next (&i);
3299 continue;
3300 }
3301
3302 callee = gimple_call_fndecl (stmt);
3303 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3304 {
3305 gsi_next (&i);
3306 continue;
3307 }
3308
3309 fcode = DECL_FUNCTION_CODE (callee);
3310 if (fold_stmt (&i))
3311 ;
3312 else
3313 {
3314 tree result = NULL_TREE;
3315 switch (DECL_FUNCTION_CODE (callee))
3316 {
3317 case BUILT_IN_CONSTANT_P:
3318 /* Resolve __builtin_constant_p. If it hasn't been
3319 folded to integer_one_node by now, it's fairly
3320 certain that the value simply isn't constant. */
3321 result = integer_zero_node;
3322 break;
3323
3324 case BUILT_IN_ASSUME_ALIGNED:
3325 /* Remove __builtin_assume_aligned. */
3326 result = gimple_call_arg (stmt, 0);
3327 break;
3328
3329 case BUILT_IN_STACK_RESTORE:
3330 result = optimize_stack_restore (i);
3331 if (result)
3332 break;
3333 gsi_next (&i);
3334 continue;
3335
3336 case BUILT_IN_UNREACHABLE:
3337 if (optimize_unreachable (i))
3338 cfg_changed = true;
3339 break;
3340
3341 case BUILT_IN_ATOMIC_FETCH_OR_1:
3342 case BUILT_IN_ATOMIC_FETCH_OR_2:
3343 case BUILT_IN_ATOMIC_FETCH_OR_4:
3344 case BUILT_IN_ATOMIC_FETCH_OR_8:
3345 case BUILT_IN_ATOMIC_FETCH_OR_16:
3346 optimize_atomic_bit_test_and (&i,
3347 IFN_ATOMIC_BIT_TEST_AND_SET,
3348 true, false);
3349 break;
3350 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3351 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3352 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3353 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3354 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3355 optimize_atomic_bit_test_and (&i,
3356 IFN_ATOMIC_BIT_TEST_AND_SET,
3357 false, false);
3358 break;
3359
3360 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3361 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3362 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3363 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3364 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3365 optimize_atomic_bit_test_and
3366 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3367 break;
3368 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3369 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3370 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3371 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3372 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3373 optimize_atomic_bit_test_and
3374 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3375 break;
3376
3377 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3378 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3379 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3380 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3381 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3382 optimize_atomic_bit_test_and
3383 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3384 break;
3385 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3386 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3387 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3388 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3389 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3390 optimize_atomic_bit_test_and
3391 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3392 break;
3393
3394 case BUILT_IN_ATOMIC_FETCH_AND_1:
3395 case BUILT_IN_ATOMIC_FETCH_AND_2:
3396 case BUILT_IN_ATOMIC_FETCH_AND_4:
3397 case BUILT_IN_ATOMIC_FETCH_AND_8:
3398 case BUILT_IN_ATOMIC_FETCH_AND_16:
3399 optimize_atomic_bit_test_and (&i,
3400 IFN_ATOMIC_BIT_TEST_AND_RESET,
3401 true, false);
3402 break;
3403 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3404 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3405 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3406 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3407 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3408 optimize_atomic_bit_test_and (&i,
3409 IFN_ATOMIC_BIT_TEST_AND_RESET,
3410 false, false);
3411 break;
3412
3413 case BUILT_IN_MEMCPY:
3414 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3415 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3416 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3417 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3418 {
3419 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3420 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3421 tree len = gimple_call_arg (stmt, 2);
3422 optimize_memcpy (&i, dest, src, len);
3423 }
3424 break;
3425
3426 case BUILT_IN_VA_START:
3427 case BUILT_IN_VA_END:
3428 case BUILT_IN_VA_COPY:
3429 /* These shouldn't be folded before pass_stdarg. */
3430 result = optimize_stdarg_builtin (stmt);
3431 break;
3432
3433 default:;
3434 }
3435
3436 if (!result)
3437 {
3438 gsi_next (&i);
3439 continue;
3440 }
3441
3442 if (!update_call_from_tree (&i, result))
3443 gimplify_and_update_call_from_tree (&i, result);
3444 }
3445
3446 todoflags |= TODO_update_address_taken;
3447
3448 if (dump_file && (dump_flags & TDF_DETAILS))
3449 {
3450 fprintf (dump_file, "Simplified\n ");
3451 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3452 }
3453
3454 old_stmt = stmt;
3455 stmt = gsi_stmt (i);
3456 update_stmt (stmt);
3457
3458 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3459 && gimple_purge_dead_eh_edges (bb))
3460 cfg_changed = true;
3461
3462 if (dump_file && (dump_flags & TDF_DETAILS))
3463 {
3464 fprintf (dump_file, "to\n ");
3465 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3466 fprintf (dump_file, "\n");
3467 }
3468
3469 /* Retry the same statement if it changed into another
3470 builtin, there might be new opportunities now. */
3471 if (gimple_code (stmt) != GIMPLE_CALL)
3472 {
3473 gsi_next (&i);
3474 continue;
3475 }
3476 callee = gimple_call_fndecl (stmt);
3477 if (!callee
3478 || !fndecl_built_in_p (callee, fcode))
3479 gsi_next (&i);
3480 }
3481 }
3482
3483 /* Delete unreachable blocks. */
3484 if (cfg_changed)
3485 todoflags |= TODO_cleanup_cfg;
3486
3487 return todoflags;
3488 }
3489
3490 } // anon namespace
3491
3492 gimple_opt_pass *
3493 make_pass_fold_builtins (gcc::context *ctxt)
3494 {
3495 return new pass_fold_builtins (ctxt);
3496 }
3497
3498 /* A simple pass that emits some warnings post IPA. */
3499
3500 namespace {
3501
3502 const pass_data pass_data_post_ipa_warn =
3503 {
3504 GIMPLE_PASS, /* type */
3505 "post_ipa_warn", /* name */
3506 OPTGROUP_NONE, /* optinfo_flags */
3507 TV_NONE, /* tv_id */
3508 ( PROP_cfg | PROP_ssa ), /* properties_required */
3509 0, /* properties_provided */
3510 0, /* properties_destroyed */
3511 0, /* todo_flags_start */
3512 0, /* todo_flags_finish */
3513 };
3514
3515 class pass_post_ipa_warn : public gimple_opt_pass
3516 {
3517 public:
3518 pass_post_ipa_warn (gcc::context *ctxt)
3519 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3520 {}
3521
3522 /* opt_pass methods: */
3523 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3524 virtual bool gate (function *) { return warn_nonnull != 0; }
3525 virtual unsigned int execute (function *);
3526
3527 }; // class pass_fold_builtins
3528
3529 unsigned int
3530 pass_post_ipa_warn::execute (function *fun)
3531 {
3532 basic_block bb;
3533
3534 FOR_EACH_BB_FN (bb, fun)
3535 {
3536 gimple_stmt_iterator gsi;
3537 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3538 {
3539 gimple *stmt = gsi_stmt (gsi);
3540 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3541 continue;
3542
3543 if (warn_nonnull)
3544 {
3545 bitmap nonnullargs
3546 = get_nonnull_args (gimple_call_fntype (stmt));
3547 if (nonnullargs)
3548 {
3549 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3550 {
3551 tree arg = gimple_call_arg (stmt, i);
3552 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3553 continue;
3554 if (!integer_zerop (arg))
3555 continue;
3556 if (!bitmap_empty_p (nonnullargs)
3557 && !bitmap_bit_p (nonnullargs, i))
3558 continue;
3559
3560 location_t loc = gimple_location (stmt);
3561 auto_diagnostic_group d;
3562 if (warning_at (loc, OPT_Wnonnull,
3563 "%Gargument %u null where non-null "
3564 "expected", stmt, i + 1))
3565 {
3566 tree fndecl = gimple_call_fndecl (stmt);
3567 if (fndecl && DECL_IS_BUILTIN (fndecl))
3568 inform (loc, "in a call to built-in function %qD",
3569 fndecl);
3570 else if (fndecl)
3571 inform (DECL_SOURCE_LOCATION (fndecl),
3572 "in a call to function %qD declared here",
3573 fndecl);
3574
3575 }
3576 }
3577 BITMAP_FREE (nonnullargs);
3578 }
3579 }
3580 }
3581 }
3582 return 0;
3583 }
3584
3585 } // anon namespace
3586
3587 gimple_opt_pass *
3588 make_pass_post_ipa_warn (gcc::context *ctxt)
3589 {
3590 return new pass_post_ipa_warn (ctxt);
3591 }