]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ccp.c
re PR c/90898 (ICE in insert_clobber_before_stack_restore, at tree-ssa-ccp.c:2112)
[thirdparty/gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149
150 /* Possible lattice values. */
151 typedef enum
152 {
153 UNINITIALIZED,
154 UNDEFINED,
155 CONSTANT,
156 VARYING
157 } ccp_lattice_t;
158
159 class ccp_prop_value_t {
160 public:
161 /* Lattice value. */
162 ccp_lattice_t lattice_val;
163
164 /* Propagated value. */
165 tree value;
166
167 /* Mask that applies to the propagated value during CCP. For X
168 with a CONSTANT lattice value X & ~mask == value & ~mask. The
169 zero bits in the mask cover constant values. The ones mean no
170 information. */
171 widest_int mask;
172 };
173
174 class ccp_propagate : public ssa_propagation_engine
175 {
176 public:
177 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
178 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
179 };
180
181 /* Array of propagated constant values. After propagation,
182 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
183 the constant is held in an SSA name representing a memory store
184 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
185 memory reference used to store (i.e., the LHS of the assignment
186 doing the store). */
187 static ccp_prop_value_t *const_val;
188 static unsigned n_const_val;
189
190 static void canonicalize_value (ccp_prop_value_t *);
191 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
192
193 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
194
195 static void
196 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
197 {
198 switch (val.lattice_val)
199 {
200 case UNINITIALIZED:
201 fprintf (outf, "%sUNINITIALIZED", prefix);
202 break;
203 case UNDEFINED:
204 fprintf (outf, "%sUNDEFINED", prefix);
205 break;
206 case VARYING:
207 fprintf (outf, "%sVARYING", prefix);
208 break;
209 case CONSTANT:
210 if (TREE_CODE (val.value) != INTEGER_CST
211 || val.mask == 0)
212 {
213 fprintf (outf, "%sCONSTANT ", prefix);
214 print_generic_expr (outf, val.value, dump_flags);
215 }
216 else
217 {
218 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
219 val.mask);
220 fprintf (outf, "%sCONSTANT ", prefix);
221 print_hex (cval, outf);
222 fprintf (outf, " (");
223 print_hex (val.mask, outf);
224 fprintf (outf, ")");
225 }
226 break;
227 default:
228 gcc_unreachable ();
229 }
230 }
231
232
233 /* Print lattice value VAL to stderr. */
234
235 void debug_lattice_value (ccp_prop_value_t val);
236
237 DEBUG_FUNCTION void
238 debug_lattice_value (ccp_prop_value_t val)
239 {
240 dump_lattice_value (stderr, "", val);
241 fprintf (stderr, "\n");
242 }
243
244 /* Extend NONZERO_BITS to a full mask, based on sgn. */
245
246 static widest_int
247 extend_mask (const wide_int &nonzero_bits, signop sgn)
248 {
249 return widest_int::from (nonzero_bits, sgn);
250 }
251
252 /* Compute a default value for variable VAR and store it in the
253 CONST_VAL array. The following rules are used to get default
254 values:
255
256 1- Global and static variables that are declared constant are
257 considered CONSTANT.
258
259 2- Any other value is considered UNDEFINED. This is useful when
260 considering PHI nodes. PHI arguments that are undefined do not
261 change the constant value of the PHI node, which allows for more
262 constants to be propagated.
263
264 3- Variables defined by statements other than assignments and PHI
265 nodes are considered VARYING.
266
267 4- Initial values of variables that are not GIMPLE registers are
268 considered VARYING. */
269
270 static ccp_prop_value_t
271 get_default_value (tree var)
272 {
273 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
274 gimple *stmt;
275
276 stmt = SSA_NAME_DEF_STMT (var);
277
278 if (gimple_nop_p (stmt))
279 {
280 /* Variables defined by an empty statement are those used
281 before being initialized. If VAR is a local variable, we
282 can assume initially that it is UNDEFINED, otherwise we must
283 consider it VARYING. */
284 if (!virtual_operand_p (var)
285 && SSA_NAME_VAR (var)
286 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
287 val.lattice_val = UNDEFINED;
288 else
289 {
290 val.lattice_val = VARYING;
291 val.mask = -1;
292 if (flag_tree_bit_ccp)
293 {
294 wide_int nonzero_bits = get_nonzero_bits (var);
295 if (nonzero_bits != -1)
296 {
297 val.lattice_val = CONSTANT;
298 val.value = build_zero_cst (TREE_TYPE (var));
299 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
300 }
301 }
302 }
303 }
304 else if (is_gimple_assign (stmt))
305 {
306 tree cst;
307 if (gimple_assign_single_p (stmt)
308 && DECL_P (gimple_assign_rhs1 (stmt))
309 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
310 {
311 val.lattice_val = CONSTANT;
312 val.value = cst;
313 }
314 else
315 {
316 /* Any other variable defined by an assignment is considered
317 UNDEFINED. */
318 val.lattice_val = UNDEFINED;
319 }
320 }
321 else if ((is_gimple_call (stmt)
322 && gimple_call_lhs (stmt) != NULL_TREE)
323 || gimple_code (stmt) == GIMPLE_PHI)
324 {
325 /* A variable defined by a call or a PHI node is considered
326 UNDEFINED. */
327 val.lattice_val = UNDEFINED;
328 }
329 else
330 {
331 /* Otherwise, VAR will never take on a constant value. */
332 val.lattice_val = VARYING;
333 val.mask = -1;
334 }
335
336 return val;
337 }
338
339
340 /* Get the constant value associated with variable VAR. */
341
342 static inline ccp_prop_value_t *
343 get_value (tree var)
344 {
345 ccp_prop_value_t *val;
346
347 if (const_val == NULL
348 || SSA_NAME_VERSION (var) >= n_const_val)
349 return NULL;
350
351 val = &const_val[SSA_NAME_VERSION (var)];
352 if (val->lattice_val == UNINITIALIZED)
353 *val = get_default_value (var);
354
355 canonicalize_value (val);
356
357 return val;
358 }
359
360 /* Return the constant tree value associated with VAR. */
361
362 static inline tree
363 get_constant_value (tree var)
364 {
365 ccp_prop_value_t *val;
366 if (TREE_CODE (var) != SSA_NAME)
367 {
368 if (is_gimple_min_invariant (var))
369 return var;
370 return NULL_TREE;
371 }
372 val = get_value (var);
373 if (val
374 && val->lattice_val == CONSTANT
375 && (TREE_CODE (val->value) != INTEGER_CST
376 || val->mask == 0))
377 return val->value;
378 return NULL_TREE;
379 }
380
381 /* Sets the value associated with VAR to VARYING. */
382
383 static inline void
384 set_value_varying (tree var)
385 {
386 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
387
388 val->lattice_val = VARYING;
389 val->value = NULL_TREE;
390 val->mask = -1;
391 }
392
393 /* For integer constants, make sure to drop TREE_OVERFLOW. */
394
395 static void
396 canonicalize_value (ccp_prop_value_t *val)
397 {
398 if (val->lattice_val != CONSTANT)
399 return;
400
401 if (TREE_OVERFLOW_P (val->value))
402 val->value = drop_tree_overflow (val->value);
403 }
404
405 /* Return whether the lattice transition is valid. */
406
407 static bool
408 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
409 {
410 /* Lattice transitions must always be monotonically increasing in
411 value. */
412 if (old_val.lattice_val < new_val.lattice_val)
413 return true;
414
415 if (old_val.lattice_val != new_val.lattice_val)
416 return false;
417
418 if (!old_val.value && !new_val.value)
419 return true;
420
421 /* Now both lattice values are CONSTANT. */
422
423 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
424 when only a single copy edge is executable. */
425 if (TREE_CODE (old_val.value) == SSA_NAME
426 && TREE_CODE (new_val.value) == SSA_NAME)
427 return true;
428
429 /* Allow transitioning from a constant to a copy. */
430 if (is_gimple_min_invariant (old_val.value)
431 && TREE_CODE (new_val.value) == SSA_NAME)
432 return true;
433
434 /* Allow transitioning from PHI <&x, not executable> == &x
435 to PHI <&x, &y> == common alignment. */
436 if (TREE_CODE (old_val.value) != INTEGER_CST
437 && TREE_CODE (new_val.value) == INTEGER_CST)
438 return true;
439
440 /* Bit-lattices have to agree in the still valid bits. */
441 if (TREE_CODE (old_val.value) == INTEGER_CST
442 && TREE_CODE (new_val.value) == INTEGER_CST)
443 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
444 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
445
446 /* Otherwise constant values have to agree. */
447 if (operand_equal_p (old_val.value, new_val.value, 0))
448 return true;
449
450 /* At least the kinds and types should agree now. */
451 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
452 || !types_compatible_p (TREE_TYPE (old_val.value),
453 TREE_TYPE (new_val.value)))
454 return false;
455
456 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
457 to non-NaN. */
458 tree type = TREE_TYPE (new_val.value);
459 if (SCALAR_FLOAT_TYPE_P (type)
460 && !HONOR_NANS (type))
461 {
462 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
463 return true;
464 }
465 else if (VECTOR_FLOAT_TYPE_P (type)
466 && !HONOR_NANS (type))
467 {
468 unsigned int count
469 = tree_vector_builder::binary_encoded_nelts (old_val.value,
470 new_val.value);
471 for (unsigned int i = 0; i < count; ++i)
472 if (!REAL_VALUE_ISNAN
473 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
474 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
475 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
476 return false;
477 return true;
478 }
479 else if (COMPLEX_FLOAT_TYPE_P (type)
480 && !HONOR_NANS (type))
481 {
482 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
483 && !operand_equal_p (TREE_REALPART (old_val.value),
484 TREE_REALPART (new_val.value), 0))
485 return false;
486 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
487 && !operand_equal_p (TREE_IMAGPART (old_val.value),
488 TREE_IMAGPART (new_val.value), 0))
489 return false;
490 return true;
491 }
492 return false;
493 }
494
495 /* Set the value for variable VAR to NEW_VAL. Return true if the new
496 value is different from VAR's previous value. */
497
498 static bool
499 set_lattice_value (tree var, ccp_prop_value_t *new_val)
500 {
501 /* We can deal with old UNINITIALIZED values just fine here. */
502 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
503
504 canonicalize_value (new_val);
505
506 /* We have to be careful to not go up the bitwise lattice
507 represented by the mask. Instead of dropping to VARYING
508 use the meet operator to retain a conservative value.
509 Missed optimizations like PR65851 makes this necessary.
510 It also ensures we converge to a stable lattice solution. */
511 if (old_val->lattice_val != UNINITIALIZED)
512 ccp_lattice_meet (new_val, old_val);
513
514 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
515
516 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
517 caller that this was a non-transition. */
518 if (old_val->lattice_val != new_val->lattice_val
519 || (new_val->lattice_val == CONSTANT
520 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
521 || (TREE_CODE (new_val->value) == INTEGER_CST
522 && (new_val->mask != old_val->mask
523 || (wi::bit_and_not (wi::to_widest (old_val->value),
524 new_val->mask)
525 != wi::bit_and_not (wi::to_widest (new_val->value),
526 new_val->mask))))
527 || (TREE_CODE (new_val->value) != INTEGER_CST
528 && !operand_equal_p (new_val->value, old_val->value, 0)))))
529 {
530 /* ??? We would like to delay creation of INTEGER_CSTs from
531 partially constants here. */
532
533 if (dump_file && (dump_flags & TDF_DETAILS))
534 {
535 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
536 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
537 }
538
539 *old_val = *new_val;
540
541 gcc_assert (new_val->lattice_val != UNINITIALIZED);
542 return true;
543 }
544
545 return false;
546 }
547
548 static ccp_prop_value_t get_value_for_expr (tree, bool);
549 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
550 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
551 signop, int, const widest_int &, const widest_int &,
552 signop, int, const widest_int &, const widest_int &);
553
554 /* Return a widest_int that can be used for bitwise simplifications
555 from VAL. */
556
557 static widest_int
558 value_to_wide_int (ccp_prop_value_t val)
559 {
560 if (val.value
561 && TREE_CODE (val.value) == INTEGER_CST)
562 return wi::to_widest (val.value);
563
564 return 0;
565 }
566
567 /* Return the value for the address expression EXPR based on alignment
568 information. */
569
570 static ccp_prop_value_t
571 get_value_from_alignment (tree expr)
572 {
573 tree type = TREE_TYPE (expr);
574 ccp_prop_value_t val;
575 unsigned HOST_WIDE_INT bitpos;
576 unsigned int align;
577
578 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
579
580 get_pointer_alignment_1 (expr, &align, &bitpos);
581 val.mask = wi::bit_and_not
582 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
583 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
584 : -1,
585 align / BITS_PER_UNIT - 1);
586 val.lattice_val
587 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
588 if (val.lattice_val == CONSTANT)
589 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
590 else
591 val.value = NULL_TREE;
592
593 return val;
594 }
595
596 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
597 return constant bits extracted from alignment information for
598 invariant addresses. */
599
600 static ccp_prop_value_t
601 get_value_for_expr (tree expr, bool for_bits_p)
602 {
603 ccp_prop_value_t val;
604
605 if (TREE_CODE (expr) == SSA_NAME)
606 {
607 ccp_prop_value_t *val_ = get_value (expr);
608 if (val_)
609 val = *val_;
610 else
611 {
612 val.lattice_val = VARYING;
613 val.value = NULL_TREE;
614 val.mask = -1;
615 }
616 if (for_bits_p
617 && val.lattice_val == CONSTANT)
618 {
619 if (TREE_CODE (val.value) == ADDR_EXPR)
620 val = get_value_from_alignment (val.value);
621 else if (TREE_CODE (val.value) != INTEGER_CST)
622 {
623 val.lattice_val = VARYING;
624 val.value = NULL_TREE;
625 val.mask = -1;
626 }
627 }
628 /* Fall back to a copy value. */
629 if (!for_bits_p
630 && val.lattice_val == VARYING
631 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
632 {
633 val.lattice_val = CONSTANT;
634 val.value = expr;
635 val.mask = -1;
636 }
637 }
638 else if (is_gimple_min_invariant (expr)
639 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
640 {
641 val.lattice_val = CONSTANT;
642 val.value = expr;
643 val.mask = 0;
644 canonicalize_value (&val);
645 }
646 else if (TREE_CODE (expr) == ADDR_EXPR)
647 val = get_value_from_alignment (expr);
648 else
649 {
650 val.lattice_val = VARYING;
651 val.mask = -1;
652 val.value = NULL_TREE;
653 }
654
655 if (val.lattice_val == VARYING
656 && TYPE_UNSIGNED (TREE_TYPE (expr)))
657 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
658
659 return val;
660 }
661
662 /* Return the likely CCP lattice value for STMT.
663
664 If STMT has no operands, then return CONSTANT.
665
666 Else if undefinedness of operands of STMT cause its value to be
667 undefined, then return UNDEFINED.
668
669 Else if any operands of STMT are constants, then return CONSTANT.
670
671 Else return VARYING. */
672
673 static ccp_lattice_t
674 likely_value (gimple *stmt)
675 {
676 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
677 bool has_nsa_operand;
678 tree use;
679 ssa_op_iter iter;
680 unsigned i;
681
682 enum gimple_code code = gimple_code (stmt);
683
684 /* This function appears to be called only for assignments, calls,
685 conditionals, and switches, due to the logic in visit_stmt. */
686 gcc_assert (code == GIMPLE_ASSIGN
687 || code == GIMPLE_CALL
688 || code == GIMPLE_COND
689 || code == GIMPLE_SWITCH);
690
691 /* If the statement has volatile operands, it won't fold to a
692 constant value. */
693 if (gimple_has_volatile_ops (stmt))
694 return VARYING;
695
696 /* Arrive here for more complex cases. */
697 has_constant_operand = false;
698 has_undefined_operand = false;
699 all_undefined_operands = true;
700 has_nsa_operand = false;
701 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
702 {
703 ccp_prop_value_t *val = get_value (use);
704
705 if (val && val->lattice_val == UNDEFINED)
706 has_undefined_operand = true;
707 else
708 all_undefined_operands = false;
709
710 if (val && val->lattice_val == CONSTANT)
711 has_constant_operand = true;
712
713 if (SSA_NAME_IS_DEFAULT_DEF (use)
714 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
715 has_nsa_operand = true;
716 }
717
718 /* There may be constants in regular rhs operands. For calls we
719 have to ignore lhs, fndecl and static chain, otherwise only
720 the lhs. */
721 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
722 i < gimple_num_ops (stmt); ++i)
723 {
724 tree op = gimple_op (stmt, i);
725 if (!op || TREE_CODE (op) == SSA_NAME)
726 continue;
727 if (is_gimple_min_invariant (op))
728 has_constant_operand = true;
729 }
730
731 if (has_constant_operand)
732 all_undefined_operands = false;
733
734 if (has_undefined_operand
735 && code == GIMPLE_CALL
736 && gimple_call_internal_p (stmt))
737 switch (gimple_call_internal_fn (stmt))
738 {
739 /* These 3 builtins use the first argument just as a magic
740 way how to find out a decl uid. */
741 case IFN_GOMP_SIMD_LANE:
742 case IFN_GOMP_SIMD_VF:
743 case IFN_GOMP_SIMD_LAST_LANE:
744 has_undefined_operand = false;
745 break;
746 default:
747 break;
748 }
749
750 /* If the operation combines operands like COMPLEX_EXPR make sure to
751 not mark the result UNDEFINED if only one part of the result is
752 undefined. */
753 if (has_undefined_operand && all_undefined_operands)
754 return UNDEFINED;
755 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
756 {
757 switch (gimple_assign_rhs_code (stmt))
758 {
759 /* Unary operators are handled with all_undefined_operands. */
760 case PLUS_EXPR:
761 case MINUS_EXPR:
762 case POINTER_PLUS_EXPR:
763 case BIT_XOR_EXPR:
764 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
765 Not bitwise operators, one VARYING operand may specify the
766 result completely.
767 Not logical operators for the same reason, apart from XOR.
768 Not COMPLEX_EXPR as one VARYING operand makes the result partly
769 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
770 the undefined operand may be promoted. */
771 return UNDEFINED;
772
773 case ADDR_EXPR:
774 /* If any part of an address is UNDEFINED, like the index
775 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
776 return UNDEFINED;
777
778 default:
779 ;
780 }
781 }
782 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
783 fall back to CONSTANT. During iteration UNDEFINED may still drop
784 to CONSTANT. */
785 if (has_undefined_operand)
786 return CONSTANT;
787
788 /* We do not consider virtual operands here -- load from read-only
789 memory may have only VARYING virtual operands, but still be
790 constant. Also we can combine the stmt with definitions from
791 operands whose definitions are not simulated again. */
792 if (has_constant_operand
793 || has_nsa_operand
794 || gimple_references_memory_p (stmt))
795 return CONSTANT;
796
797 return VARYING;
798 }
799
800 /* Returns true if STMT cannot be constant. */
801
802 static bool
803 surely_varying_stmt_p (gimple *stmt)
804 {
805 /* If the statement has operands that we cannot handle, it cannot be
806 constant. */
807 if (gimple_has_volatile_ops (stmt))
808 return true;
809
810 /* If it is a call and does not return a value or is not a
811 builtin and not an indirect call or a call to function with
812 assume_aligned/alloc_align attribute, it is varying. */
813 if (is_gimple_call (stmt))
814 {
815 tree fndecl, fntype = gimple_call_fntype (stmt);
816 if (!gimple_call_lhs (stmt)
817 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
818 && !fndecl_built_in_p (fndecl)
819 && !lookup_attribute ("assume_aligned",
820 TYPE_ATTRIBUTES (fntype))
821 && !lookup_attribute ("alloc_align",
822 TYPE_ATTRIBUTES (fntype))))
823 return true;
824 }
825
826 /* Any other store operation is not interesting. */
827 else if (gimple_vdef (stmt))
828 return true;
829
830 /* Anything other than assignments and conditional jumps are not
831 interesting for CCP. */
832 if (gimple_code (stmt) != GIMPLE_ASSIGN
833 && gimple_code (stmt) != GIMPLE_COND
834 && gimple_code (stmt) != GIMPLE_SWITCH
835 && gimple_code (stmt) != GIMPLE_CALL)
836 return true;
837
838 return false;
839 }
840
841 /* Initialize local data structures for CCP. */
842
843 static void
844 ccp_initialize (void)
845 {
846 basic_block bb;
847
848 n_const_val = num_ssa_names;
849 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
850
851 /* Initialize simulation flags for PHI nodes and statements. */
852 FOR_EACH_BB_FN (bb, cfun)
853 {
854 gimple_stmt_iterator i;
855
856 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
857 {
858 gimple *stmt = gsi_stmt (i);
859 bool is_varying;
860
861 /* If the statement is a control insn, then we do not
862 want to avoid simulating the statement once. Failure
863 to do so means that those edges will never get added. */
864 if (stmt_ends_bb_p (stmt))
865 is_varying = false;
866 else
867 is_varying = surely_varying_stmt_p (stmt);
868
869 if (is_varying)
870 {
871 tree def;
872 ssa_op_iter iter;
873
874 /* If the statement will not produce a constant, mark
875 all its outputs VARYING. */
876 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
877 set_value_varying (def);
878 }
879 prop_set_simulate_again (stmt, !is_varying);
880 }
881 }
882
883 /* Now process PHI nodes. We never clear the simulate_again flag on
884 phi nodes, since we do not know which edges are executable yet,
885 except for phi nodes for virtual operands when we do not do store ccp. */
886 FOR_EACH_BB_FN (bb, cfun)
887 {
888 gphi_iterator i;
889
890 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
891 {
892 gphi *phi = i.phi ();
893
894 if (virtual_operand_p (gimple_phi_result (phi)))
895 prop_set_simulate_again (phi, false);
896 else
897 prop_set_simulate_again (phi, true);
898 }
899 }
900 }
901
902 /* Debug count support. Reset the values of ssa names
903 VARYING when the total number ssa names analyzed is
904 beyond the debug count specified. */
905
906 static void
907 do_dbg_cnt (void)
908 {
909 unsigned i;
910 for (i = 0; i < num_ssa_names; i++)
911 {
912 if (!dbg_cnt (ccp))
913 {
914 const_val[i].lattice_val = VARYING;
915 const_val[i].mask = -1;
916 const_val[i].value = NULL_TREE;
917 }
918 }
919 }
920
921
922 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
923 class ccp_folder : public substitute_and_fold_engine
924 {
925 public:
926 tree get_value (tree) FINAL OVERRIDE;
927 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
928 };
929
930 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
931 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
932 of calling member functions. */
933
934 tree
935 ccp_folder::get_value (tree op)
936 {
937 return get_constant_value (op);
938 }
939
940 /* Do final substitution of propagated values, cleanup the flowgraph and
941 free allocated storage. If NONZERO_P, record nonzero bits.
942
943 Return TRUE when something was optimized. */
944
945 static bool
946 ccp_finalize (bool nonzero_p)
947 {
948 bool something_changed;
949 unsigned i;
950 tree name;
951
952 do_dbg_cnt ();
953
954 /* Derive alignment and misalignment information from partially
955 constant pointers in the lattice or nonzero bits from partially
956 constant integers. */
957 FOR_EACH_SSA_NAME (i, name, cfun)
958 {
959 ccp_prop_value_t *val;
960 unsigned int tem, align;
961
962 if (!POINTER_TYPE_P (TREE_TYPE (name))
963 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
964 /* Don't record nonzero bits before IPA to avoid
965 using too much memory. */
966 || !nonzero_p))
967 continue;
968
969 val = get_value (name);
970 if (val->lattice_val != CONSTANT
971 || TREE_CODE (val->value) != INTEGER_CST
972 || val->mask == 0)
973 continue;
974
975 if (POINTER_TYPE_P (TREE_TYPE (name)))
976 {
977 /* Trailing mask bits specify the alignment, trailing value
978 bits the misalignment. */
979 tem = val->mask.to_uhwi ();
980 align = least_bit_hwi (tem);
981 if (align > 1)
982 set_ptr_info_alignment (get_ptr_info (name), align,
983 (TREE_INT_CST_LOW (val->value)
984 & (align - 1)));
985 }
986 else
987 {
988 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
989 wide_int nonzero_bits
990 = (wide_int::from (val->mask, precision, UNSIGNED)
991 | wi::to_wide (val->value));
992 nonzero_bits &= get_nonzero_bits (name);
993 set_nonzero_bits (name, nonzero_bits);
994 }
995 }
996
997 /* Perform substitutions based on the known constant values. */
998 class ccp_folder ccp_folder;
999 something_changed = ccp_folder.substitute_and_fold ();
1000
1001 free (const_val);
1002 const_val = NULL;
1003 return something_changed;
1004 }
1005
1006
1007 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1008 in VAL1.
1009
1010 any M UNDEFINED = any
1011 any M VARYING = VARYING
1012 Ci M Cj = Ci if (i == j)
1013 Ci M Cj = VARYING if (i != j)
1014 */
1015
1016 static void
1017 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1018 {
1019 if (val1->lattice_val == UNDEFINED
1020 /* For UNDEFINED M SSA we can't always SSA because its definition
1021 may not dominate the PHI node. Doing optimistic copy propagation
1022 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1023 && (val2->lattice_val != CONSTANT
1024 || TREE_CODE (val2->value) != SSA_NAME))
1025 {
1026 /* UNDEFINED M any = any */
1027 *val1 = *val2;
1028 }
1029 else if (val2->lattice_val == UNDEFINED
1030 /* See above. */
1031 && (val1->lattice_val != CONSTANT
1032 || TREE_CODE (val1->value) != SSA_NAME))
1033 {
1034 /* any M UNDEFINED = any
1035 Nothing to do. VAL1 already contains the value we want. */
1036 ;
1037 }
1038 else if (val1->lattice_val == VARYING
1039 || val2->lattice_val == VARYING)
1040 {
1041 /* any M VARYING = VARYING. */
1042 val1->lattice_val = VARYING;
1043 val1->mask = -1;
1044 val1->value = NULL_TREE;
1045 }
1046 else if (val1->lattice_val == CONSTANT
1047 && val2->lattice_val == CONSTANT
1048 && TREE_CODE (val1->value) == INTEGER_CST
1049 && TREE_CODE (val2->value) == INTEGER_CST)
1050 {
1051 /* Ci M Cj = Ci if (i == j)
1052 Ci M Cj = VARYING if (i != j)
1053
1054 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1055 drop to varying. */
1056 val1->mask = (val1->mask | val2->mask
1057 | (wi::to_widest (val1->value)
1058 ^ wi::to_widest (val2->value)));
1059 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1060 {
1061 val1->lattice_val = VARYING;
1062 val1->value = NULL_TREE;
1063 }
1064 }
1065 else if (val1->lattice_val == CONSTANT
1066 && val2->lattice_val == CONSTANT
1067 && operand_equal_p (val1->value, val2->value, 0))
1068 {
1069 /* Ci M Cj = Ci if (i == j)
1070 Ci M Cj = VARYING if (i != j)
1071
1072 VAL1 already contains the value we want for equivalent values. */
1073 }
1074 else if (val1->lattice_val == CONSTANT
1075 && val2->lattice_val == CONSTANT
1076 && (TREE_CODE (val1->value) == ADDR_EXPR
1077 || TREE_CODE (val2->value) == ADDR_EXPR))
1078 {
1079 /* When not equal addresses are involved try meeting for
1080 alignment. */
1081 ccp_prop_value_t tem = *val2;
1082 if (TREE_CODE (val1->value) == ADDR_EXPR)
1083 *val1 = get_value_for_expr (val1->value, true);
1084 if (TREE_CODE (val2->value) == ADDR_EXPR)
1085 tem = get_value_for_expr (val2->value, true);
1086 ccp_lattice_meet (val1, &tem);
1087 }
1088 else
1089 {
1090 /* Any other combination is VARYING. */
1091 val1->lattice_val = VARYING;
1092 val1->mask = -1;
1093 val1->value = NULL_TREE;
1094 }
1095 }
1096
1097
1098 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1099 lattice values to determine PHI_NODE's lattice value. The value of a
1100 PHI node is determined calling ccp_lattice_meet with all the arguments
1101 of the PHI node that are incoming via executable edges. */
1102
1103 enum ssa_prop_result
1104 ccp_propagate::visit_phi (gphi *phi)
1105 {
1106 unsigned i;
1107 ccp_prop_value_t new_val;
1108
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1110 {
1111 fprintf (dump_file, "\nVisiting PHI node: ");
1112 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1113 }
1114
1115 new_val.lattice_val = UNDEFINED;
1116 new_val.value = NULL_TREE;
1117 new_val.mask = 0;
1118
1119 bool first = true;
1120 bool non_exec_edge = false;
1121 for (i = 0; i < gimple_phi_num_args (phi); i++)
1122 {
1123 /* Compute the meet operator over all the PHI arguments flowing
1124 through executable edges. */
1125 edge e = gimple_phi_arg_edge (phi, i);
1126
1127 if (dump_file && (dump_flags & TDF_DETAILS))
1128 {
1129 fprintf (dump_file,
1130 "\tArgument #%d (%d -> %d %sexecutable)\n",
1131 i, e->src->index, e->dest->index,
1132 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1133 }
1134
1135 /* If the incoming edge is executable, Compute the meet operator for
1136 the existing value of the PHI node and the current PHI argument. */
1137 if (e->flags & EDGE_EXECUTABLE)
1138 {
1139 tree arg = gimple_phi_arg (phi, i)->def;
1140 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1141
1142 if (first)
1143 {
1144 new_val = arg_val;
1145 first = false;
1146 }
1147 else
1148 ccp_lattice_meet (&new_val, &arg_val);
1149
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1151 {
1152 fprintf (dump_file, "\t");
1153 print_generic_expr (dump_file, arg, dump_flags);
1154 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1155 fprintf (dump_file, "\n");
1156 }
1157
1158 if (new_val.lattice_val == VARYING)
1159 break;
1160 }
1161 else
1162 non_exec_edge = true;
1163 }
1164
1165 /* In case there were non-executable edges and the value is a copy
1166 make sure its definition dominates the PHI node. */
1167 if (non_exec_edge
1168 && new_val.lattice_val == CONSTANT
1169 && TREE_CODE (new_val.value) == SSA_NAME
1170 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1171 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1172 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1173 {
1174 new_val.lattice_val = VARYING;
1175 new_val.value = NULL_TREE;
1176 new_val.mask = -1;
1177 }
1178
1179 if (dump_file && (dump_flags & TDF_DETAILS))
1180 {
1181 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1182 fprintf (dump_file, "\n\n");
1183 }
1184
1185 /* Make the transition to the new value. */
1186 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1187 {
1188 if (new_val.lattice_val == VARYING)
1189 return SSA_PROP_VARYING;
1190 else
1191 return SSA_PROP_INTERESTING;
1192 }
1193 else
1194 return SSA_PROP_NOT_INTERESTING;
1195 }
1196
1197 /* Return the constant value for OP or OP otherwise. */
1198
1199 static tree
1200 valueize_op (tree op)
1201 {
1202 if (TREE_CODE (op) == SSA_NAME)
1203 {
1204 tree tem = get_constant_value (op);
1205 if (tem)
1206 return tem;
1207 }
1208 return op;
1209 }
1210
1211 /* Return the constant value for OP, but signal to not follow SSA
1212 edges if the definition may be simulated again. */
1213
1214 static tree
1215 valueize_op_1 (tree op)
1216 {
1217 if (TREE_CODE (op) == SSA_NAME)
1218 {
1219 /* If the definition may be simulated again we cannot follow
1220 this SSA edge as the SSA propagator does not necessarily
1221 re-visit the use. */
1222 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1223 if (!gimple_nop_p (def_stmt)
1224 && prop_simulate_again_p (def_stmt))
1225 return NULL_TREE;
1226 tree tem = get_constant_value (op);
1227 if (tem)
1228 return tem;
1229 }
1230 return op;
1231 }
1232
1233 /* CCP specific front-end to the non-destructive constant folding
1234 routines.
1235
1236 Attempt to simplify the RHS of STMT knowing that one or more
1237 operands are constants.
1238
1239 If simplification is possible, return the simplified RHS,
1240 otherwise return the original RHS or NULL_TREE. */
1241
1242 static tree
1243 ccp_fold (gimple *stmt)
1244 {
1245 location_t loc = gimple_location (stmt);
1246 switch (gimple_code (stmt))
1247 {
1248 case GIMPLE_COND:
1249 {
1250 /* Handle comparison operators that can appear in GIMPLE form. */
1251 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1252 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1253 enum tree_code code = gimple_cond_code (stmt);
1254 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1255 }
1256
1257 case GIMPLE_SWITCH:
1258 {
1259 /* Return the constant switch index. */
1260 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1261 }
1262
1263 case GIMPLE_ASSIGN:
1264 case GIMPLE_CALL:
1265 return gimple_fold_stmt_to_constant_1 (stmt,
1266 valueize_op, valueize_op_1);
1267
1268 default:
1269 gcc_unreachable ();
1270 }
1271 }
1272
1273 /* Apply the operation CODE in type TYPE to the value, mask pair
1274 RVAL and RMASK representing a value of type RTYPE and set
1275 the value, mask pair *VAL and *MASK to the result. */
1276
1277 void
1278 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1279 widest_int *val, widest_int *mask,
1280 signop rtype_sgn, int rtype_precision,
1281 const widest_int &rval, const widest_int &rmask)
1282 {
1283 switch (code)
1284 {
1285 case BIT_NOT_EXPR:
1286 *mask = rmask;
1287 *val = ~rval;
1288 break;
1289
1290 case NEGATE_EXPR:
1291 {
1292 widest_int temv, temm;
1293 /* Return ~rval + 1. */
1294 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1295 type_sgn, type_precision, rval, rmask);
1296 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1297 type_sgn, type_precision, temv, temm,
1298 type_sgn, type_precision, 1, 0);
1299 break;
1300 }
1301
1302 CASE_CONVERT:
1303 {
1304 /* First extend mask and value according to the original type. */
1305 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1306 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1307
1308 /* Then extend mask and value according to the target type. */
1309 *mask = wi::ext (*mask, type_precision, type_sgn);
1310 *val = wi::ext (*val, type_precision, type_sgn);
1311 break;
1312 }
1313
1314 default:
1315 *mask = -1;
1316 break;
1317 }
1318 }
1319
1320 /* Apply the operation CODE in type TYPE to the value, mask pairs
1321 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1322 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1323
1324 void
1325 bit_value_binop (enum tree_code code, signop sgn, int width,
1326 widest_int *val, widest_int *mask,
1327 signop r1type_sgn, int r1type_precision,
1328 const widest_int &r1val, const widest_int &r1mask,
1329 signop r2type_sgn, int r2type_precision,
1330 const widest_int &r2val, const widest_int &r2mask)
1331 {
1332 bool swap_p = false;
1333
1334 /* Assume we'll get a constant result. Use an initial non varying
1335 value, we fall back to varying in the end if necessary. */
1336 *mask = -1;
1337
1338 switch (code)
1339 {
1340 case BIT_AND_EXPR:
1341 /* The mask is constant where there is a known not
1342 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1343 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1344 *val = r1val & r2val;
1345 break;
1346
1347 case BIT_IOR_EXPR:
1348 /* The mask is constant where there is a known
1349 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1350 *mask = wi::bit_and_not (r1mask | r2mask,
1351 wi::bit_and_not (r1val, r1mask)
1352 | wi::bit_and_not (r2val, r2mask));
1353 *val = r1val | r2val;
1354 break;
1355
1356 case BIT_XOR_EXPR:
1357 /* m1 | m2 */
1358 *mask = r1mask | r2mask;
1359 *val = r1val ^ r2val;
1360 break;
1361
1362 case LROTATE_EXPR:
1363 case RROTATE_EXPR:
1364 if (r2mask == 0)
1365 {
1366 widest_int shift = r2val;
1367 if (shift == 0)
1368 {
1369 *mask = r1mask;
1370 *val = r1val;
1371 }
1372 else
1373 {
1374 if (wi::neg_p (shift))
1375 {
1376 shift = -shift;
1377 if (code == RROTATE_EXPR)
1378 code = LROTATE_EXPR;
1379 else
1380 code = RROTATE_EXPR;
1381 }
1382 if (code == RROTATE_EXPR)
1383 {
1384 *mask = wi::rrotate (r1mask, shift, width);
1385 *val = wi::rrotate (r1val, shift, width);
1386 }
1387 else
1388 {
1389 *mask = wi::lrotate (r1mask, shift, width);
1390 *val = wi::lrotate (r1val, shift, width);
1391 }
1392 }
1393 }
1394 break;
1395
1396 case LSHIFT_EXPR:
1397 case RSHIFT_EXPR:
1398 /* ??? We can handle partially known shift counts if we know
1399 its sign. That way we can tell that (x << (y | 8)) & 255
1400 is zero. */
1401 if (r2mask == 0)
1402 {
1403 widest_int shift = r2val;
1404 if (shift == 0)
1405 {
1406 *mask = r1mask;
1407 *val = r1val;
1408 }
1409 else
1410 {
1411 if (wi::neg_p (shift))
1412 {
1413 shift = -shift;
1414 if (code == RSHIFT_EXPR)
1415 code = LSHIFT_EXPR;
1416 else
1417 code = RSHIFT_EXPR;
1418 }
1419 if (code == RSHIFT_EXPR)
1420 {
1421 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1422 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1423 }
1424 else
1425 {
1426 *mask = wi::ext (r1mask << shift, width, sgn);
1427 *val = wi::ext (r1val << shift, width, sgn);
1428 }
1429 }
1430 }
1431 break;
1432
1433 case PLUS_EXPR:
1434 case POINTER_PLUS_EXPR:
1435 {
1436 /* Do the addition with unknown bits set to zero, to give carry-ins of
1437 zero wherever possible. */
1438 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1439 + wi::bit_and_not (r2val, r2mask));
1440 lo = wi::ext (lo, width, sgn);
1441 /* Do the addition with unknown bits set to one, to give carry-ins of
1442 one wherever possible. */
1443 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1444 hi = wi::ext (hi, width, sgn);
1445 /* Each bit in the result is known if (a) the corresponding bits in
1446 both inputs are known, and (b) the carry-in to that bit position
1447 is known. We can check condition (b) by seeing if we got the same
1448 result with minimised carries as with maximised carries. */
1449 *mask = r1mask | r2mask | (lo ^ hi);
1450 *mask = wi::ext (*mask, width, sgn);
1451 /* It shouldn't matter whether we choose lo or hi here. */
1452 *val = lo;
1453 break;
1454 }
1455
1456 case MINUS_EXPR:
1457 {
1458 widest_int temv, temm;
1459 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1460 r2type_sgn, r2type_precision, r2val, r2mask);
1461 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1462 r1type_sgn, r1type_precision, r1val, r1mask,
1463 r2type_sgn, r2type_precision, temv, temm);
1464 break;
1465 }
1466
1467 case MULT_EXPR:
1468 {
1469 /* Just track trailing zeros in both operands and transfer
1470 them to the other. */
1471 int r1tz = wi::ctz (r1val | r1mask);
1472 int r2tz = wi::ctz (r2val | r2mask);
1473 if (r1tz + r2tz >= width)
1474 {
1475 *mask = 0;
1476 *val = 0;
1477 }
1478 else if (r1tz + r2tz > 0)
1479 {
1480 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1481 width, sgn);
1482 *val = 0;
1483 }
1484 break;
1485 }
1486
1487 case EQ_EXPR:
1488 case NE_EXPR:
1489 {
1490 widest_int m = r1mask | r2mask;
1491 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1492 {
1493 *mask = 0;
1494 *val = ((code == EQ_EXPR) ? 0 : 1);
1495 }
1496 else
1497 {
1498 /* We know the result of a comparison is always one or zero. */
1499 *mask = 1;
1500 *val = 0;
1501 }
1502 break;
1503 }
1504
1505 case GE_EXPR:
1506 case GT_EXPR:
1507 swap_p = true;
1508 code = swap_tree_comparison (code);
1509 /* Fall through. */
1510 case LT_EXPR:
1511 case LE_EXPR:
1512 {
1513 int minmax, maxmin;
1514
1515 const widest_int &o1val = swap_p ? r2val : r1val;
1516 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1517 const widest_int &o2val = swap_p ? r1val : r2val;
1518 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1519
1520 /* If the most significant bits are not known we know nothing. */
1521 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1522 break;
1523
1524 /* For comparisons the signedness is in the comparison operands. */
1525 sgn = r1type_sgn;
1526
1527 /* If we know the most significant bits we know the values
1528 value ranges by means of treating varying bits as zero
1529 or one. Do a cross comparison of the max/min pairs. */
1530 maxmin = wi::cmp (o1val | o1mask,
1531 wi::bit_and_not (o2val, o2mask), sgn);
1532 minmax = wi::cmp (wi::bit_and_not (o1val, o1mask),
1533 o2val | o2mask, sgn);
1534 if (maxmin < 0) /* o1 is less than o2. */
1535 {
1536 *mask = 0;
1537 *val = 1;
1538 }
1539 else if (minmax > 0) /* o1 is not less or equal to o2. */
1540 {
1541 *mask = 0;
1542 *val = 0;
1543 }
1544 else if (maxmin == minmax) /* o1 and o2 are equal. */
1545 {
1546 /* This probably should never happen as we'd have
1547 folded the thing during fully constant value folding. */
1548 *mask = 0;
1549 *val = (code == LE_EXPR ? 1 : 0);
1550 }
1551 else
1552 {
1553 /* We know the result of a comparison is always one or zero. */
1554 *mask = 1;
1555 *val = 0;
1556 }
1557 break;
1558 }
1559
1560 default:;
1561 }
1562 }
1563
1564 /* Return the propagation value when applying the operation CODE to
1565 the value RHS yielding type TYPE. */
1566
1567 static ccp_prop_value_t
1568 bit_value_unop (enum tree_code code, tree type, tree rhs)
1569 {
1570 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1571 widest_int value, mask;
1572 ccp_prop_value_t val;
1573
1574 if (rval.lattice_val == UNDEFINED)
1575 return rval;
1576
1577 gcc_assert ((rval.lattice_val == CONSTANT
1578 && TREE_CODE (rval.value) == INTEGER_CST)
1579 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1580 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1581 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1582 value_to_wide_int (rval), rval.mask);
1583 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1584 {
1585 val.lattice_val = CONSTANT;
1586 val.mask = mask;
1587 /* ??? Delay building trees here. */
1588 val.value = wide_int_to_tree (type, value);
1589 }
1590 else
1591 {
1592 val.lattice_val = VARYING;
1593 val.value = NULL_TREE;
1594 val.mask = -1;
1595 }
1596 return val;
1597 }
1598
1599 /* Return the propagation value when applying the operation CODE to
1600 the values RHS1 and RHS2 yielding type TYPE. */
1601
1602 static ccp_prop_value_t
1603 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1604 {
1605 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1606 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1607 widest_int value, mask;
1608 ccp_prop_value_t val;
1609
1610 if (r1val.lattice_val == UNDEFINED
1611 || r2val.lattice_val == UNDEFINED)
1612 {
1613 val.lattice_val = VARYING;
1614 val.value = NULL_TREE;
1615 val.mask = -1;
1616 return val;
1617 }
1618
1619 gcc_assert ((r1val.lattice_val == CONSTANT
1620 && TREE_CODE (r1val.value) == INTEGER_CST)
1621 || wi::sext (r1val.mask,
1622 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1623 gcc_assert ((r2val.lattice_val == CONSTANT
1624 && TREE_CODE (r2val.value) == INTEGER_CST)
1625 || wi::sext (r2val.mask,
1626 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1627 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1628 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1629 value_to_wide_int (r1val), r1val.mask,
1630 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1631 value_to_wide_int (r2val), r2val.mask);
1632
1633 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1634 {
1635 val.lattice_val = CONSTANT;
1636 val.mask = mask;
1637 /* ??? Delay building trees here. */
1638 val.value = wide_int_to_tree (type, value);
1639 }
1640 else
1641 {
1642 val.lattice_val = VARYING;
1643 val.value = NULL_TREE;
1644 val.mask = -1;
1645 }
1646 return val;
1647 }
1648
1649 /* Return the propagation value for __builtin_assume_aligned
1650 and functions with assume_aligned or alloc_aligned attribute.
1651 For __builtin_assume_aligned, ATTR is NULL_TREE,
1652 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1653 is false, for alloc_aligned attribute ATTR is non-NULL and
1654 ALLOC_ALIGNED is true. */
1655
1656 static ccp_prop_value_t
1657 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1658 bool alloc_aligned)
1659 {
1660 tree align, misalign = NULL_TREE, type;
1661 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1662 ccp_prop_value_t alignval;
1663 widest_int value, mask;
1664 ccp_prop_value_t val;
1665
1666 if (attr == NULL_TREE)
1667 {
1668 tree ptr = gimple_call_arg (stmt, 0);
1669 type = TREE_TYPE (ptr);
1670 ptrval = get_value_for_expr (ptr, true);
1671 }
1672 else
1673 {
1674 tree lhs = gimple_call_lhs (stmt);
1675 type = TREE_TYPE (lhs);
1676 }
1677
1678 if (ptrval.lattice_val == UNDEFINED)
1679 return ptrval;
1680 gcc_assert ((ptrval.lattice_val == CONSTANT
1681 && TREE_CODE (ptrval.value) == INTEGER_CST)
1682 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1683 if (attr == NULL_TREE)
1684 {
1685 /* Get aligni and misaligni from __builtin_assume_aligned. */
1686 align = gimple_call_arg (stmt, 1);
1687 if (!tree_fits_uhwi_p (align))
1688 return ptrval;
1689 aligni = tree_to_uhwi (align);
1690 if (gimple_call_num_args (stmt) > 2)
1691 {
1692 misalign = gimple_call_arg (stmt, 2);
1693 if (!tree_fits_uhwi_p (misalign))
1694 return ptrval;
1695 misaligni = tree_to_uhwi (misalign);
1696 }
1697 }
1698 else
1699 {
1700 /* Get aligni and misaligni from assume_aligned or
1701 alloc_align attributes. */
1702 if (TREE_VALUE (attr) == NULL_TREE)
1703 return ptrval;
1704 attr = TREE_VALUE (attr);
1705 align = TREE_VALUE (attr);
1706 if (!tree_fits_uhwi_p (align))
1707 return ptrval;
1708 aligni = tree_to_uhwi (align);
1709 if (alloc_aligned)
1710 {
1711 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1712 return ptrval;
1713 align = gimple_call_arg (stmt, aligni - 1);
1714 if (!tree_fits_uhwi_p (align))
1715 return ptrval;
1716 aligni = tree_to_uhwi (align);
1717 }
1718 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1719 {
1720 misalign = TREE_VALUE (TREE_CHAIN (attr));
1721 if (!tree_fits_uhwi_p (misalign))
1722 return ptrval;
1723 misaligni = tree_to_uhwi (misalign);
1724 }
1725 }
1726 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1727 return ptrval;
1728
1729 align = build_int_cst_type (type, -aligni);
1730 alignval = get_value_for_expr (align, true);
1731 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1732 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1733 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1734
1735 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1736 {
1737 val.lattice_val = CONSTANT;
1738 val.mask = mask;
1739 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1740 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1741 value |= misaligni;
1742 /* ??? Delay building trees here. */
1743 val.value = wide_int_to_tree (type, value);
1744 }
1745 else
1746 {
1747 val.lattice_val = VARYING;
1748 val.value = NULL_TREE;
1749 val.mask = -1;
1750 }
1751 return val;
1752 }
1753
1754 /* Evaluate statement STMT.
1755 Valid only for assignments, calls, conditionals, and switches. */
1756
1757 static ccp_prop_value_t
1758 evaluate_stmt (gimple *stmt)
1759 {
1760 ccp_prop_value_t val;
1761 tree simplified = NULL_TREE;
1762 ccp_lattice_t likelyvalue = likely_value (stmt);
1763 bool is_constant = false;
1764 unsigned int align;
1765
1766 if (dump_file && (dump_flags & TDF_DETAILS))
1767 {
1768 fprintf (dump_file, "which is likely ");
1769 switch (likelyvalue)
1770 {
1771 case CONSTANT:
1772 fprintf (dump_file, "CONSTANT");
1773 break;
1774 case UNDEFINED:
1775 fprintf (dump_file, "UNDEFINED");
1776 break;
1777 case VARYING:
1778 fprintf (dump_file, "VARYING");
1779 break;
1780 default:;
1781 }
1782 fprintf (dump_file, "\n");
1783 }
1784
1785 /* If the statement is likely to have a CONSTANT result, then try
1786 to fold the statement to determine the constant value. */
1787 /* FIXME. This is the only place that we call ccp_fold.
1788 Since likely_value never returns CONSTANT for calls, we will
1789 not attempt to fold them, including builtins that may profit. */
1790 if (likelyvalue == CONSTANT)
1791 {
1792 fold_defer_overflow_warnings ();
1793 simplified = ccp_fold (stmt);
1794 if (simplified
1795 && TREE_CODE (simplified) == SSA_NAME)
1796 {
1797 /* We may not use values of something that may be simulated again,
1798 see valueize_op_1. */
1799 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
1800 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
1801 {
1802 ccp_prop_value_t *val = get_value (simplified);
1803 if (val && val->lattice_val != VARYING)
1804 {
1805 fold_undefer_overflow_warnings (true, stmt, 0);
1806 return *val;
1807 }
1808 }
1809 else
1810 /* We may also not place a non-valueized copy in the lattice
1811 as that might become stale if we never re-visit this stmt. */
1812 simplified = NULL_TREE;
1813 }
1814 is_constant = simplified && is_gimple_min_invariant (simplified);
1815 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1816 if (is_constant)
1817 {
1818 /* The statement produced a constant value. */
1819 val.lattice_val = CONSTANT;
1820 val.value = simplified;
1821 val.mask = 0;
1822 return val;
1823 }
1824 }
1825 /* If the statement is likely to have a VARYING result, then do not
1826 bother folding the statement. */
1827 else if (likelyvalue == VARYING)
1828 {
1829 enum gimple_code code = gimple_code (stmt);
1830 if (code == GIMPLE_ASSIGN)
1831 {
1832 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1833
1834 /* Other cases cannot satisfy is_gimple_min_invariant
1835 without folding. */
1836 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1837 simplified = gimple_assign_rhs1 (stmt);
1838 }
1839 else if (code == GIMPLE_SWITCH)
1840 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1841 else
1842 /* These cannot satisfy is_gimple_min_invariant without folding. */
1843 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1844 is_constant = simplified && is_gimple_min_invariant (simplified);
1845 if (is_constant)
1846 {
1847 /* The statement produced a constant value. */
1848 val.lattice_val = CONSTANT;
1849 val.value = simplified;
1850 val.mask = 0;
1851 }
1852 }
1853 /* If the statement result is likely UNDEFINED, make it so. */
1854 else if (likelyvalue == UNDEFINED)
1855 {
1856 val.lattice_val = UNDEFINED;
1857 val.value = NULL_TREE;
1858 val.mask = 0;
1859 return val;
1860 }
1861
1862 /* Resort to simplification for bitwise tracking. */
1863 if (flag_tree_bit_ccp
1864 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1865 || (gimple_assign_single_p (stmt)
1866 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1867 && !is_constant)
1868 {
1869 enum gimple_code code = gimple_code (stmt);
1870 val.lattice_val = VARYING;
1871 val.value = NULL_TREE;
1872 val.mask = -1;
1873 if (code == GIMPLE_ASSIGN)
1874 {
1875 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1876 tree rhs1 = gimple_assign_rhs1 (stmt);
1877 tree lhs = gimple_assign_lhs (stmt);
1878 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1879 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1880 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1881 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1882 switch (get_gimple_rhs_class (subcode))
1883 {
1884 case GIMPLE_SINGLE_RHS:
1885 val = get_value_for_expr (rhs1, true);
1886 break;
1887
1888 case GIMPLE_UNARY_RHS:
1889 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1890 break;
1891
1892 case GIMPLE_BINARY_RHS:
1893 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1894 gimple_assign_rhs2 (stmt));
1895 break;
1896
1897 default:;
1898 }
1899 }
1900 else if (code == GIMPLE_COND)
1901 {
1902 enum tree_code code = gimple_cond_code (stmt);
1903 tree rhs1 = gimple_cond_lhs (stmt);
1904 tree rhs2 = gimple_cond_rhs (stmt);
1905 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1906 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1907 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1908 }
1909 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1910 {
1911 tree fndecl = gimple_call_fndecl (stmt);
1912 switch (DECL_FUNCTION_CODE (fndecl))
1913 {
1914 case BUILT_IN_MALLOC:
1915 case BUILT_IN_REALLOC:
1916 case BUILT_IN_CALLOC:
1917 case BUILT_IN_STRDUP:
1918 case BUILT_IN_STRNDUP:
1919 val.lattice_val = CONSTANT;
1920 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1921 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1922 / BITS_PER_UNIT - 1);
1923 break;
1924
1925 CASE_BUILT_IN_ALLOCA:
1926 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
1927 ? BIGGEST_ALIGNMENT
1928 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
1929 val.lattice_val = CONSTANT;
1930 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1931 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1932 break;
1933
1934 /* These builtins return their first argument, unmodified. */
1935 case BUILT_IN_MEMCPY:
1936 case BUILT_IN_MEMMOVE:
1937 case BUILT_IN_MEMSET:
1938 case BUILT_IN_STRCPY:
1939 case BUILT_IN_STRNCPY:
1940 case BUILT_IN_MEMCPY_CHK:
1941 case BUILT_IN_MEMMOVE_CHK:
1942 case BUILT_IN_MEMSET_CHK:
1943 case BUILT_IN_STRCPY_CHK:
1944 case BUILT_IN_STRNCPY_CHK:
1945 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1946 break;
1947
1948 case BUILT_IN_ASSUME_ALIGNED:
1949 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1950 break;
1951
1952 case BUILT_IN_ALIGNED_ALLOC:
1953 {
1954 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1955 if (align
1956 && tree_fits_uhwi_p (align))
1957 {
1958 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1959 if (aligni > 1
1960 /* align must be power-of-two */
1961 && (aligni & (aligni - 1)) == 0)
1962 {
1963 val.lattice_val = CONSTANT;
1964 val.value = build_int_cst (ptr_type_node, 0);
1965 val.mask = -aligni;
1966 }
1967 }
1968 break;
1969 }
1970
1971 case BUILT_IN_BSWAP16:
1972 case BUILT_IN_BSWAP32:
1973 case BUILT_IN_BSWAP64:
1974 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1975 if (val.lattice_val == UNDEFINED)
1976 break;
1977 else if (val.lattice_val == CONSTANT
1978 && val.value
1979 && TREE_CODE (val.value) == INTEGER_CST)
1980 {
1981 tree type = TREE_TYPE (gimple_call_lhs (stmt));
1982 int prec = TYPE_PRECISION (type);
1983 wide_int wval = wi::to_wide (val.value);
1984 val.value
1985 = wide_int_to_tree (type,
1986 wide_int::from (wval, prec,
1987 UNSIGNED).bswap ());
1988 val.mask
1989 = widest_int::from (wide_int::from (val.mask, prec,
1990 UNSIGNED).bswap (),
1991 UNSIGNED);
1992 if (wi::sext (val.mask, prec) != -1)
1993 break;
1994 }
1995 val.lattice_val = VARYING;
1996 val.value = NULL_TREE;
1997 val.mask = -1;
1998 break;
1999
2000 default:;
2001 }
2002 }
2003 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2004 {
2005 tree fntype = gimple_call_fntype (stmt);
2006 if (fntype)
2007 {
2008 tree attrs = lookup_attribute ("assume_aligned",
2009 TYPE_ATTRIBUTES (fntype));
2010 if (attrs)
2011 val = bit_value_assume_aligned (stmt, attrs, val, false);
2012 attrs = lookup_attribute ("alloc_align",
2013 TYPE_ATTRIBUTES (fntype));
2014 if (attrs)
2015 val = bit_value_assume_aligned (stmt, attrs, val, true);
2016 }
2017 }
2018 is_constant = (val.lattice_val == CONSTANT);
2019 }
2020
2021 if (flag_tree_bit_ccp
2022 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2023 || !is_constant)
2024 && gimple_get_lhs (stmt)
2025 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2026 {
2027 tree lhs = gimple_get_lhs (stmt);
2028 wide_int nonzero_bits = get_nonzero_bits (lhs);
2029 if (nonzero_bits != -1)
2030 {
2031 if (!is_constant)
2032 {
2033 val.lattice_val = CONSTANT;
2034 val.value = build_zero_cst (TREE_TYPE (lhs));
2035 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2036 is_constant = true;
2037 }
2038 else
2039 {
2040 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2041 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2042 nonzero_bits
2043 & wi::to_wide (val.value));
2044 if (nonzero_bits == 0)
2045 val.mask = 0;
2046 else
2047 val.mask = val.mask & extend_mask (nonzero_bits,
2048 TYPE_SIGN (TREE_TYPE (lhs)));
2049 }
2050 }
2051 }
2052
2053 /* The statement produced a nonconstant value. */
2054 if (!is_constant)
2055 {
2056 /* The statement produced a copy. */
2057 if (simplified && TREE_CODE (simplified) == SSA_NAME
2058 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2059 {
2060 val.lattice_val = CONSTANT;
2061 val.value = simplified;
2062 val.mask = -1;
2063 }
2064 /* The statement is VARYING. */
2065 else
2066 {
2067 val.lattice_val = VARYING;
2068 val.value = NULL_TREE;
2069 val.mask = -1;
2070 }
2071 }
2072
2073 return val;
2074 }
2075
2076 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2077
2078 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2079 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2080
2081 static void
2082 insert_clobber_before_stack_restore (tree saved_val, tree var,
2083 gimple_htab **visited)
2084 {
2085 gimple *stmt;
2086 gassign *clobber_stmt;
2087 tree clobber;
2088 imm_use_iterator iter;
2089 gimple_stmt_iterator i;
2090 gimple **slot;
2091
2092 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2093 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2094 {
2095 clobber = build_clobber (TREE_TYPE (var));
2096 clobber_stmt = gimple_build_assign (var, clobber);
2097
2098 i = gsi_for_stmt (stmt);
2099 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2100 }
2101 else if (gimple_code (stmt) == GIMPLE_PHI)
2102 {
2103 if (!*visited)
2104 *visited = new gimple_htab (10);
2105
2106 slot = (*visited)->find_slot (stmt, INSERT);
2107 if (*slot != NULL)
2108 continue;
2109
2110 *slot = stmt;
2111 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2112 visited);
2113 }
2114 else if (gimple_assign_ssa_name_copy_p (stmt))
2115 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2116 visited);
2117 }
2118
2119 /* Advance the iterator to the previous non-debug gimple statement in the same
2120 or dominating basic block. */
2121
2122 static inline void
2123 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2124 {
2125 basic_block dom;
2126
2127 gsi_prev_nondebug (i);
2128 while (gsi_end_p (*i))
2129 {
2130 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2131 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2132 return;
2133
2134 *i = gsi_last_bb (dom);
2135 }
2136 }
2137
2138 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2139 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2140
2141 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2142 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2143 In that case the function gives up without inserting the clobbers. */
2144
2145 static void
2146 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2147 {
2148 gimple *stmt;
2149 tree saved_val;
2150 gimple_htab *visited = NULL;
2151
2152 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2153 {
2154 stmt = gsi_stmt (i);
2155
2156 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2157 continue;
2158
2159 saved_val = gimple_call_lhs (stmt);
2160 if (saved_val == NULL_TREE)
2161 continue;
2162
2163 insert_clobber_before_stack_restore (saved_val, var, &visited);
2164 break;
2165 }
2166
2167 delete visited;
2168 }
2169
2170 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2171 fixed-size array and returns the address, if found, otherwise returns
2172 NULL_TREE. */
2173
2174 static tree
2175 fold_builtin_alloca_with_align (gimple *stmt)
2176 {
2177 unsigned HOST_WIDE_INT size, threshold, n_elem;
2178 tree lhs, arg, block, var, elem_type, array_type;
2179
2180 /* Get lhs. */
2181 lhs = gimple_call_lhs (stmt);
2182 if (lhs == NULL_TREE)
2183 return NULL_TREE;
2184
2185 /* Detect constant argument. */
2186 arg = get_constant_value (gimple_call_arg (stmt, 0));
2187 if (arg == NULL_TREE
2188 || TREE_CODE (arg) != INTEGER_CST
2189 || !tree_fits_uhwi_p (arg))
2190 return NULL_TREE;
2191
2192 size = tree_to_uhwi (arg);
2193
2194 /* Heuristic: don't fold large allocas. */
2195 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2196 /* In case the alloca is located at function entry, it has the same lifetime
2197 as a declared array, so we allow a larger size. */
2198 block = gimple_block (stmt);
2199 if (!(cfun->after_inlining
2200 && block
2201 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2202 threshold /= 10;
2203 if (size > threshold)
2204 return NULL_TREE;
2205
2206 /* We have to be able to move points-to info. We used to assert
2207 that we can but IPA PTA might end up with two UIDs here
2208 as it might need to handle more than one instance being
2209 live at the same time. Instead of trying to detect this case
2210 (using the first UID would be OK) just give up for now. */
2211 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2212 unsigned uid = 0;
2213 if (pi != NULL
2214 && !pi->pt.anything
2215 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2216 return NULL_TREE;
2217
2218 /* Declare array. */
2219 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2220 n_elem = size * 8 / BITS_PER_UNIT;
2221 array_type = build_array_type_nelts (elem_type, n_elem);
2222
2223 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2224 {
2225 /* Give the temporary a name derived from the name of the VLA
2226 declaration so it can be referenced in diagnostics. */
2227 const char *name = IDENTIFIER_POINTER (ssa_name);
2228 var = create_tmp_var (array_type, name);
2229 }
2230 else
2231 var = create_tmp_var (array_type);
2232
2233 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2234 {
2235 /* Set the temporary's location to that of the VLA declaration
2236 so it can be pointed to in diagnostics. */
2237 location_t loc = gimple_location (lhsdef);
2238 DECL_SOURCE_LOCATION (var) = loc;
2239 }
2240
2241 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2242 if (uid != 0)
2243 SET_DECL_PT_UID (var, uid);
2244
2245 /* Fold alloca to the address of the array. */
2246 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2247 }
2248
2249 /* Fold the stmt at *GSI with CCP specific information that propagating
2250 and regular folding does not catch. */
2251
2252 bool
2253 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2254 {
2255 gimple *stmt = gsi_stmt (*gsi);
2256
2257 switch (gimple_code (stmt))
2258 {
2259 case GIMPLE_COND:
2260 {
2261 gcond *cond_stmt = as_a <gcond *> (stmt);
2262 ccp_prop_value_t val;
2263 /* Statement evaluation will handle type mismatches in constants
2264 more gracefully than the final propagation. This allows us to
2265 fold more conditionals here. */
2266 val = evaluate_stmt (stmt);
2267 if (val.lattice_val != CONSTANT
2268 || val.mask != 0)
2269 return false;
2270
2271 if (dump_file)
2272 {
2273 fprintf (dump_file, "Folding predicate ");
2274 print_gimple_expr (dump_file, stmt, 0);
2275 fprintf (dump_file, " to ");
2276 print_generic_expr (dump_file, val.value);
2277 fprintf (dump_file, "\n");
2278 }
2279
2280 if (integer_zerop (val.value))
2281 gimple_cond_make_false (cond_stmt);
2282 else
2283 gimple_cond_make_true (cond_stmt);
2284
2285 return true;
2286 }
2287
2288 case GIMPLE_CALL:
2289 {
2290 tree lhs = gimple_call_lhs (stmt);
2291 int flags = gimple_call_flags (stmt);
2292 tree val;
2293 tree argt;
2294 bool changed = false;
2295 unsigned i;
2296
2297 /* If the call was folded into a constant make sure it goes
2298 away even if we cannot propagate into all uses because of
2299 type issues. */
2300 if (lhs
2301 && TREE_CODE (lhs) == SSA_NAME
2302 && (val = get_constant_value (lhs))
2303 /* Don't optimize away calls that have side-effects. */
2304 && (flags & (ECF_CONST|ECF_PURE)) != 0
2305 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2306 {
2307 tree new_rhs = unshare_expr (val);
2308 bool res;
2309 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2310 TREE_TYPE (new_rhs)))
2311 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2312 res = update_call_from_tree (gsi, new_rhs);
2313 gcc_assert (res);
2314 return true;
2315 }
2316
2317 /* Internal calls provide no argument types, so the extra laxity
2318 for normal calls does not apply. */
2319 if (gimple_call_internal_p (stmt))
2320 return false;
2321
2322 /* The heuristic of fold_builtin_alloca_with_align differs before and
2323 after inlining, so we don't require the arg to be changed into a
2324 constant for folding, but just to be constant. */
2325 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2326 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2327 {
2328 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2329 if (new_rhs)
2330 {
2331 bool res = update_call_from_tree (gsi, new_rhs);
2332 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2333 gcc_assert (res);
2334 insert_clobbers_for_var (*gsi, var);
2335 return true;
2336 }
2337 }
2338
2339 /* If there's no extra info from an assume_aligned call,
2340 drop it so it doesn't act as otherwise useless dataflow
2341 barrier. */
2342 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2343 {
2344 tree ptr = gimple_call_arg (stmt, 0);
2345 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2346 if (ptrval.lattice_val == CONSTANT
2347 && TREE_CODE (ptrval.value) == INTEGER_CST
2348 && ptrval.mask != 0)
2349 {
2350 ccp_prop_value_t val
2351 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2352 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2353 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2354 if (ptralign == align
2355 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2356 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2357 {
2358 bool res = update_call_from_tree (gsi, ptr);
2359 gcc_assert (res);
2360 return true;
2361 }
2362 }
2363 }
2364
2365 /* Propagate into the call arguments. Compared to replace_uses_in
2366 this can use the argument slot types for type verification
2367 instead of the current argument type. We also can safely
2368 drop qualifiers here as we are dealing with constants anyway. */
2369 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2370 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2371 ++i, argt = TREE_CHAIN (argt))
2372 {
2373 tree arg = gimple_call_arg (stmt, i);
2374 if (TREE_CODE (arg) == SSA_NAME
2375 && (val = get_constant_value (arg))
2376 && useless_type_conversion_p
2377 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2378 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2379 {
2380 gimple_call_set_arg (stmt, i, unshare_expr (val));
2381 changed = true;
2382 }
2383 }
2384
2385 return changed;
2386 }
2387
2388 case GIMPLE_ASSIGN:
2389 {
2390 tree lhs = gimple_assign_lhs (stmt);
2391 tree val;
2392
2393 /* If we have a load that turned out to be constant replace it
2394 as we cannot propagate into all uses in all cases. */
2395 if (gimple_assign_single_p (stmt)
2396 && TREE_CODE (lhs) == SSA_NAME
2397 && (val = get_constant_value (lhs)))
2398 {
2399 tree rhs = unshare_expr (val);
2400 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2401 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2402 gimple_assign_set_rhs_from_tree (gsi, rhs);
2403 return true;
2404 }
2405
2406 return false;
2407 }
2408
2409 default:
2410 return false;
2411 }
2412 }
2413
2414 /* Visit the assignment statement STMT. Set the value of its LHS to the
2415 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2416 creates virtual definitions, set the value of each new name to that
2417 of the RHS (if we can derive a constant out of the RHS).
2418 Value-returning call statements also perform an assignment, and
2419 are handled here. */
2420
2421 static enum ssa_prop_result
2422 visit_assignment (gimple *stmt, tree *output_p)
2423 {
2424 ccp_prop_value_t val;
2425 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2426
2427 tree lhs = gimple_get_lhs (stmt);
2428 if (TREE_CODE (lhs) == SSA_NAME)
2429 {
2430 /* Evaluate the statement, which could be
2431 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2432 val = evaluate_stmt (stmt);
2433
2434 /* If STMT is an assignment to an SSA_NAME, we only have one
2435 value to set. */
2436 if (set_lattice_value (lhs, &val))
2437 {
2438 *output_p = lhs;
2439 if (val.lattice_val == VARYING)
2440 retval = SSA_PROP_VARYING;
2441 else
2442 retval = SSA_PROP_INTERESTING;
2443 }
2444 }
2445
2446 return retval;
2447 }
2448
2449
2450 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2451 if it can determine which edge will be taken. Otherwise, return
2452 SSA_PROP_VARYING. */
2453
2454 static enum ssa_prop_result
2455 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2456 {
2457 ccp_prop_value_t val;
2458 basic_block block;
2459
2460 block = gimple_bb (stmt);
2461 val = evaluate_stmt (stmt);
2462 if (val.lattice_val != CONSTANT
2463 || val.mask != 0)
2464 return SSA_PROP_VARYING;
2465
2466 /* Find which edge out of the conditional block will be taken and add it
2467 to the worklist. If no single edge can be determined statically,
2468 return SSA_PROP_VARYING to feed all the outgoing edges to the
2469 propagation engine. */
2470 *taken_edge_p = find_taken_edge (block, val.value);
2471 if (*taken_edge_p)
2472 return SSA_PROP_INTERESTING;
2473 else
2474 return SSA_PROP_VARYING;
2475 }
2476
2477
2478 /* Evaluate statement STMT. If the statement produces an output value and
2479 its evaluation changes the lattice value of its output, return
2480 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2481 output value.
2482
2483 If STMT is a conditional branch and we can determine its truth
2484 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2485 value, return SSA_PROP_VARYING. */
2486
2487 enum ssa_prop_result
2488 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2489 {
2490 tree def;
2491 ssa_op_iter iter;
2492
2493 if (dump_file && (dump_flags & TDF_DETAILS))
2494 {
2495 fprintf (dump_file, "\nVisiting statement:\n");
2496 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2497 }
2498
2499 switch (gimple_code (stmt))
2500 {
2501 case GIMPLE_ASSIGN:
2502 /* If the statement is an assignment that produces a single
2503 output value, evaluate its RHS to see if the lattice value of
2504 its output has changed. */
2505 return visit_assignment (stmt, output_p);
2506
2507 case GIMPLE_CALL:
2508 /* A value-returning call also performs an assignment. */
2509 if (gimple_call_lhs (stmt) != NULL_TREE)
2510 return visit_assignment (stmt, output_p);
2511 break;
2512
2513 case GIMPLE_COND:
2514 case GIMPLE_SWITCH:
2515 /* If STMT is a conditional branch, see if we can determine
2516 which branch will be taken. */
2517 /* FIXME. It appears that we should be able to optimize
2518 computed GOTOs here as well. */
2519 return visit_cond_stmt (stmt, taken_edge_p);
2520
2521 default:
2522 break;
2523 }
2524
2525 /* Any other kind of statement is not interesting for constant
2526 propagation and, therefore, not worth simulating. */
2527 if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2529
2530 /* Definitions made by statements other than assignments to
2531 SSA_NAMEs represent unknown modifications to their outputs.
2532 Mark them VARYING. */
2533 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2534 set_value_varying (def);
2535
2536 return SSA_PROP_VARYING;
2537 }
2538
2539
2540 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2541 record nonzero bits. */
2542
2543 static unsigned int
2544 do_ssa_ccp (bool nonzero_p)
2545 {
2546 unsigned int todo = 0;
2547 calculate_dominance_info (CDI_DOMINATORS);
2548
2549 ccp_initialize ();
2550 class ccp_propagate ccp_propagate;
2551 ccp_propagate.ssa_propagate ();
2552 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2553 {
2554 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2555
2556 /* ccp_finalize does not preserve loop-closed ssa. */
2557 loops_state_clear (LOOP_CLOSED_SSA);
2558 }
2559
2560 free_dominance_info (CDI_DOMINATORS);
2561 return todo;
2562 }
2563
2564
2565 namespace {
2566
2567 const pass_data pass_data_ccp =
2568 {
2569 GIMPLE_PASS, /* type */
2570 "ccp", /* name */
2571 OPTGROUP_NONE, /* optinfo_flags */
2572 TV_TREE_CCP, /* tv_id */
2573 ( PROP_cfg | PROP_ssa ), /* properties_required */
2574 0, /* properties_provided */
2575 0, /* properties_destroyed */
2576 0, /* todo_flags_start */
2577 TODO_update_address_taken, /* todo_flags_finish */
2578 };
2579
2580 class pass_ccp : public gimple_opt_pass
2581 {
2582 public:
2583 pass_ccp (gcc::context *ctxt)
2584 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2585 {}
2586
2587 /* opt_pass methods: */
2588 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2589 void set_pass_param (unsigned int n, bool param)
2590 {
2591 gcc_assert (n == 0);
2592 nonzero_p = param;
2593 }
2594 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2595 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2596
2597 private:
2598 /* Determines whether the pass instance records nonzero bits. */
2599 bool nonzero_p;
2600 }; // class pass_ccp
2601
2602 } // anon namespace
2603
2604 gimple_opt_pass *
2605 make_pass_ccp (gcc::context *ctxt)
2606 {
2607 return new pass_ccp (ctxt);
2608 }
2609
2610
2611
2612 /* Try to optimize out __builtin_stack_restore. Optimize it out
2613 if there is another __builtin_stack_restore in the same basic
2614 block and no calls or ASM_EXPRs are in between, or if this block's
2615 only outgoing edge is to EXIT_BLOCK and there are no calls or
2616 ASM_EXPRs after this __builtin_stack_restore. */
2617
2618 static tree
2619 optimize_stack_restore (gimple_stmt_iterator i)
2620 {
2621 tree callee;
2622 gimple *stmt;
2623
2624 basic_block bb = gsi_bb (i);
2625 gimple *call = gsi_stmt (i);
2626
2627 if (gimple_code (call) != GIMPLE_CALL
2628 || gimple_call_num_args (call) != 1
2629 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2630 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2631 return NULL_TREE;
2632
2633 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2634 {
2635 stmt = gsi_stmt (i);
2636 if (gimple_code (stmt) == GIMPLE_ASM)
2637 return NULL_TREE;
2638 if (gimple_code (stmt) != GIMPLE_CALL)
2639 continue;
2640
2641 callee = gimple_call_fndecl (stmt);
2642 if (!callee
2643 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
2644 /* All regular builtins are ok, just obviously not alloca. */
2645 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
2646 return NULL_TREE;
2647
2648 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
2649 goto second_stack_restore;
2650 }
2651
2652 if (!gsi_end_p (i))
2653 return NULL_TREE;
2654
2655 /* Allow one successor of the exit block, or zero successors. */
2656 switch (EDGE_COUNT (bb->succs))
2657 {
2658 case 0:
2659 break;
2660 case 1:
2661 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2662 return NULL_TREE;
2663 break;
2664 default:
2665 return NULL_TREE;
2666 }
2667 second_stack_restore:
2668
2669 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2670 If there are multiple uses, then the last one should remove the call.
2671 In any case, whether the call to __builtin_stack_save can be removed
2672 or not is irrelevant to removing the call to __builtin_stack_restore. */
2673 if (has_single_use (gimple_call_arg (call, 0)))
2674 {
2675 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2676 if (is_gimple_call (stack_save))
2677 {
2678 callee = gimple_call_fndecl (stack_save);
2679 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
2680 {
2681 gimple_stmt_iterator stack_save_gsi;
2682 tree rhs;
2683
2684 stack_save_gsi = gsi_for_stmt (stack_save);
2685 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2686 update_call_from_tree (&stack_save_gsi, rhs);
2687 }
2688 }
2689 }
2690
2691 /* No effect, so the statement will be deleted. */
2692 return integer_zero_node;
2693 }
2694
2695 /* If va_list type is a simple pointer and nothing special is needed,
2696 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2697 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2698 pointer assignment. */
2699
2700 static tree
2701 optimize_stdarg_builtin (gimple *call)
2702 {
2703 tree callee, lhs, rhs, cfun_va_list;
2704 bool va_list_simple_ptr;
2705 location_t loc = gimple_location (call);
2706
2707 callee = gimple_call_fndecl (call);
2708
2709 cfun_va_list = targetm.fn_abi_va_list (callee);
2710 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2711 && (TREE_TYPE (cfun_va_list) == void_type_node
2712 || TREE_TYPE (cfun_va_list) == char_type_node);
2713
2714 switch (DECL_FUNCTION_CODE (callee))
2715 {
2716 case BUILT_IN_VA_START:
2717 if (!va_list_simple_ptr
2718 || targetm.expand_builtin_va_start != NULL
2719 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2720 return NULL_TREE;
2721
2722 if (gimple_call_num_args (call) != 2)
2723 return NULL_TREE;
2724
2725 lhs = gimple_call_arg (call, 0);
2726 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2727 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2728 != TYPE_MAIN_VARIANT (cfun_va_list))
2729 return NULL_TREE;
2730
2731 lhs = build_fold_indirect_ref_loc (loc, lhs);
2732 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2733 1, integer_zero_node);
2734 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2735 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2736
2737 case BUILT_IN_VA_COPY:
2738 if (!va_list_simple_ptr)
2739 return NULL_TREE;
2740
2741 if (gimple_call_num_args (call) != 2)
2742 return NULL_TREE;
2743
2744 lhs = gimple_call_arg (call, 0);
2745 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2746 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2747 != TYPE_MAIN_VARIANT (cfun_va_list))
2748 return NULL_TREE;
2749
2750 lhs = build_fold_indirect_ref_loc (loc, lhs);
2751 rhs = gimple_call_arg (call, 1);
2752 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2753 != TYPE_MAIN_VARIANT (cfun_va_list))
2754 return NULL_TREE;
2755
2756 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2757 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2758
2759 case BUILT_IN_VA_END:
2760 /* No effect, so the statement will be deleted. */
2761 return integer_zero_node;
2762
2763 default:
2764 gcc_unreachable ();
2765 }
2766 }
2767
2768 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2769 the incoming jumps. Return true if at least one jump was changed. */
2770
2771 static bool
2772 optimize_unreachable (gimple_stmt_iterator i)
2773 {
2774 basic_block bb = gsi_bb (i);
2775 gimple_stmt_iterator gsi;
2776 gimple *stmt;
2777 edge_iterator ei;
2778 edge e;
2779 bool ret;
2780
2781 if (flag_sanitize & SANITIZE_UNREACHABLE)
2782 return false;
2783
2784 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2785 {
2786 stmt = gsi_stmt (gsi);
2787
2788 if (is_gimple_debug (stmt))
2789 continue;
2790
2791 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2792 {
2793 /* Verify we do not need to preserve the label. */
2794 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2795 return false;
2796
2797 continue;
2798 }
2799
2800 /* Only handle the case that __builtin_unreachable is the first statement
2801 in the block. We rely on DCE to remove stmts without side-effects
2802 before __builtin_unreachable. */
2803 if (gsi_stmt (gsi) != gsi_stmt (i))
2804 return false;
2805 }
2806
2807 ret = false;
2808 FOR_EACH_EDGE (e, ei, bb->preds)
2809 {
2810 gsi = gsi_last_bb (e->src);
2811 if (gsi_end_p (gsi))
2812 continue;
2813
2814 stmt = gsi_stmt (gsi);
2815 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2816 {
2817 if (e->flags & EDGE_TRUE_VALUE)
2818 gimple_cond_make_false (cond_stmt);
2819 else if (e->flags & EDGE_FALSE_VALUE)
2820 gimple_cond_make_true (cond_stmt);
2821 else
2822 gcc_unreachable ();
2823 update_stmt (cond_stmt);
2824 }
2825 else
2826 {
2827 /* Todo: handle other cases. Note that unreachable switch case
2828 statements have already been removed. */
2829 continue;
2830 }
2831
2832 ret = true;
2833 }
2834
2835 return ret;
2836 }
2837
2838 /* Optimize
2839 mask_2 = 1 << cnt_1;
2840 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2841 _5 = _4 & mask_2;
2842 to
2843 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2844 _5 = _4;
2845 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2846 is passed instead of 0, and the builtin just returns a zero
2847 or 1 value instead of the actual bit.
2848 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2849 in there), and/or if mask_2 is a power of 2 constant.
2850 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2851 in that case. And similarly for and instead of or, except that
2852 the second argument to the builtin needs to be one's complement
2853 of the mask instead of mask. */
2854
2855 static void
2856 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2857 enum internal_fn fn, bool has_model_arg,
2858 bool after)
2859 {
2860 gimple *call = gsi_stmt (*gsip);
2861 tree lhs = gimple_call_lhs (call);
2862 use_operand_p use_p;
2863 gimple *use_stmt;
2864 tree mask, bit;
2865 optab optab;
2866
2867 if (!flag_inline_atomics
2868 || optimize_debug
2869 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2870 || !lhs
2871 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2872 || !single_imm_use (lhs, &use_p, &use_stmt)
2873 || !is_gimple_assign (use_stmt)
2874 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2875 || !gimple_vdef (call))
2876 return;
2877
2878 switch (fn)
2879 {
2880 case IFN_ATOMIC_BIT_TEST_AND_SET:
2881 optab = atomic_bit_test_and_set_optab;
2882 break;
2883 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2884 optab = atomic_bit_test_and_complement_optab;
2885 break;
2886 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2887 optab = atomic_bit_test_and_reset_optab;
2888 break;
2889 default:
2890 return;
2891 }
2892
2893 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2894 return;
2895
2896 mask = gimple_call_arg (call, 1);
2897 tree use_lhs = gimple_assign_lhs (use_stmt);
2898 if (!use_lhs)
2899 return;
2900
2901 if (TREE_CODE (mask) == INTEGER_CST)
2902 {
2903 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2904 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2905 mask = fold_convert (TREE_TYPE (lhs), mask);
2906 int ibit = tree_log2 (mask);
2907 if (ibit < 0)
2908 return;
2909 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2910 }
2911 else if (TREE_CODE (mask) == SSA_NAME)
2912 {
2913 gimple *g = SSA_NAME_DEF_STMT (mask);
2914 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2915 {
2916 if (!is_gimple_assign (g)
2917 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2918 return;
2919 mask = gimple_assign_rhs1 (g);
2920 if (TREE_CODE (mask) != SSA_NAME)
2921 return;
2922 g = SSA_NAME_DEF_STMT (mask);
2923 }
2924 if (!is_gimple_assign (g)
2925 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2926 || !integer_onep (gimple_assign_rhs1 (g)))
2927 return;
2928 bit = gimple_assign_rhs2 (g);
2929 }
2930 else
2931 return;
2932
2933 if (gimple_assign_rhs1 (use_stmt) == lhs)
2934 {
2935 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2936 return;
2937 }
2938 else if (gimple_assign_rhs2 (use_stmt) != lhs
2939 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2940 return;
2941
2942 bool use_bool = true;
2943 bool has_debug_uses = false;
2944 imm_use_iterator iter;
2945 gimple *g;
2946
2947 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2948 use_bool = false;
2949 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2950 {
2951 enum tree_code code = ERROR_MARK;
2952 tree op0 = NULL_TREE, op1 = NULL_TREE;
2953 if (is_gimple_debug (g))
2954 {
2955 has_debug_uses = true;
2956 continue;
2957 }
2958 else if (is_gimple_assign (g))
2959 switch (gimple_assign_rhs_code (g))
2960 {
2961 case COND_EXPR:
2962 op1 = gimple_assign_rhs1 (g);
2963 code = TREE_CODE (op1);
2964 op0 = TREE_OPERAND (op1, 0);
2965 op1 = TREE_OPERAND (op1, 1);
2966 break;
2967 case EQ_EXPR:
2968 case NE_EXPR:
2969 code = gimple_assign_rhs_code (g);
2970 op0 = gimple_assign_rhs1 (g);
2971 op1 = gimple_assign_rhs2 (g);
2972 break;
2973 default:
2974 break;
2975 }
2976 else if (gimple_code (g) == GIMPLE_COND)
2977 {
2978 code = gimple_cond_code (g);
2979 op0 = gimple_cond_lhs (g);
2980 op1 = gimple_cond_rhs (g);
2981 }
2982
2983 if ((code == EQ_EXPR || code == NE_EXPR)
2984 && op0 == use_lhs
2985 && integer_zerop (op1))
2986 {
2987 use_operand_p use_p;
2988 int n = 0;
2989 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2990 n++;
2991 if (n == 1)
2992 continue;
2993 }
2994
2995 use_bool = false;
2996 BREAK_FROM_IMM_USE_STMT (iter);
2997 }
2998
2999 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3000 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3001 if (has_model_arg)
3002 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3003 bit, flag, gimple_call_arg (call, 2));
3004 else
3005 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3006 bit, flag);
3007 gimple_call_set_lhs (g, new_lhs);
3008 gimple_set_location (g, gimple_location (call));
3009 gimple_move_vops (g, call);
3010 bool throws = stmt_can_throw_internal (cfun, call);
3011 gimple_call_set_nothrow (as_a <gcall *> (g),
3012 gimple_call_nothrow_p (as_a <gcall *> (call)));
3013 gimple_stmt_iterator gsi = *gsip;
3014 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3015 edge e = NULL;
3016 if (throws)
3017 {
3018 maybe_clean_or_replace_eh_stmt (call, g);
3019 if (after || (use_bool && has_debug_uses))
3020 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3021 }
3022 if (after)
3023 {
3024 /* The internal function returns the value of the specified bit
3025 before the atomic operation. If we are interested in the value
3026 of the specified bit after the atomic operation (makes only sense
3027 for xor, otherwise the bit content is compile time known),
3028 we need to invert the bit. */
3029 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3030 BIT_XOR_EXPR, new_lhs,
3031 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3032 : mask);
3033 new_lhs = gimple_assign_lhs (g);
3034 if (throws)
3035 {
3036 gsi_insert_on_edge_immediate (e, g);
3037 gsi = gsi_for_stmt (g);
3038 }
3039 else
3040 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3041 }
3042 if (use_bool && has_debug_uses)
3043 {
3044 tree temp = NULL_TREE;
3045 if (!throws || after || single_pred_p (e->dest))
3046 {
3047 temp = make_node (DEBUG_EXPR_DECL);
3048 DECL_ARTIFICIAL (temp) = 1;
3049 TREE_TYPE (temp) = TREE_TYPE (lhs);
3050 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3051 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3052 g = gimple_build_debug_bind (temp, t, g);
3053 if (throws && !after)
3054 {
3055 gsi = gsi_after_labels (e->dest);
3056 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3057 }
3058 else
3059 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3060 }
3061 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3062 if (is_gimple_debug (g))
3063 {
3064 use_operand_p use_p;
3065 if (temp == NULL_TREE)
3066 gimple_debug_bind_reset_value (g);
3067 else
3068 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3069 SET_USE (use_p, temp);
3070 update_stmt (g);
3071 }
3072 }
3073 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3074 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3075 replace_uses_by (use_lhs, new_lhs);
3076 gsi = gsi_for_stmt (use_stmt);
3077 gsi_remove (&gsi, true);
3078 release_defs (use_stmt);
3079 gsi_remove (gsip, true);
3080 release_ssa_name (lhs);
3081 }
3082
3083 /* Optimize
3084 a = {};
3085 b = a;
3086 into
3087 a = {};
3088 b = {};
3089 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3090 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3091
3092 static void
3093 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3094 {
3095 gimple *stmt = gsi_stmt (*gsip);
3096 if (gimple_has_volatile_ops (stmt))
3097 return;
3098
3099 tree vuse = gimple_vuse (stmt);
3100 if (vuse == NULL)
3101 return;
3102
3103 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3104 tree src2 = NULL_TREE, len2 = NULL_TREE;
3105 poly_int64 offset, offset2;
3106 tree val = integer_zero_node;
3107 if (gimple_store_p (defstmt)
3108 && gimple_assign_single_p (defstmt)
3109 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3110 && !gimple_clobber_p (defstmt))
3111 src2 = gimple_assign_lhs (defstmt);
3112 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3113 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3114 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3115 {
3116 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3117 len2 = gimple_call_arg (defstmt, 2);
3118 val = gimple_call_arg (defstmt, 1);
3119 /* For non-0 val, we'd have to transform stmt from assignment
3120 into memset (only if dest is addressable). */
3121 if (!integer_zerop (val) && is_gimple_assign (stmt))
3122 src2 = NULL_TREE;
3123 }
3124
3125 if (src2 == NULL_TREE)
3126 return;
3127
3128 if (len == NULL_TREE)
3129 len = (TREE_CODE (src) == COMPONENT_REF
3130 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3131 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3132 if (len2 == NULL_TREE)
3133 len2 = (TREE_CODE (src2) == COMPONENT_REF
3134 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3135 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3136 if (len == NULL_TREE
3137 || !poly_int_tree_p (len)
3138 || len2 == NULL_TREE
3139 || !poly_int_tree_p (len2))
3140 return;
3141
3142 src = get_addr_base_and_unit_offset (src, &offset);
3143 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3144 if (src == NULL_TREE
3145 || src2 == NULL_TREE
3146 || maybe_lt (offset, offset2))
3147 return;
3148
3149 if (!operand_equal_p (src, src2, 0))
3150 return;
3151
3152 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3153 Make sure that
3154 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3155 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3156 wi::to_poly_offset (len2)))
3157 return;
3158
3159 if (dump_file && (dump_flags & TDF_DETAILS))
3160 {
3161 fprintf (dump_file, "Simplified\n ");
3162 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3163 fprintf (dump_file, "after previous\n ");
3164 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3165 }
3166
3167 /* For simplicity, don't change the kind of the stmt,
3168 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3169 into memset (&dest, val, len);
3170 In theory we could change dest = src into memset if dest
3171 is addressable (maybe beneficial if val is not 0), or
3172 memcpy (&dest, &src, len) into dest = {} if len is the size
3173 of dest, dest isn't volatile. */
3174 if (is_gimple_assign (stmt))
3175 {
3176 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3177 gimple_assign_set_rhs_from_tree (gsip, ctor);
3178 update_stmt (stmt);
3179 }
3180 else /* If stmt is memcpy, transform it into memset. */
3181 {
3182 gcall *call = as_a <gcall *> (stmt);
3183 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3184 gimple_call_set_fndecl (call, fndecl);
3185 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3186 gimple_call_set_arg (call, 1, val);
3187 update_stmt (stmt);
3188 }
3189
3190 if (dump_file && (dump_flags & TDF_DETAILS))
3191 {
3192 fprintf (dump_file, "into\n ");
3193 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3194 }
3195 }
3196
3197 /* A simple pass that attempts to fold all builtin functions. This pass
3198 is run after we've propagated as many constants as we can. */
3199
3200 namespace {
3201
3202 const pass_data pass_data_fold_builtins =
3203 {
3204 GIMPLE_PASS, /* type */
3205 "fab", /* name */
3206 OPTGROUP_NONE, /* optinfo_flags */
3207 TV_NONE, /* tv_id */
3208 ( PROP_cfg | PROP_ssa ), /* properties_required */
3209 0, /* properties_provided */
3210 0, /* properties_destroyed */
3211 0, /* todo_flags_start */
3212 TODO_update_ssa, /* todo_flags_finish */
3213 };
3214
3215 class pass_fold_builtins : public gimple_opt_pass
3216 {
3217 public:
3218 pass_fold_builtins (gcc::context *ctxt)
3219 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3220 {}
3221
3222 /* opt_pass methods: */
3223 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3224 virtual unsigned int execute (function *);
3225
3226 }; // class pass_fold_builtins
3227
3228 unsigned int
3229 pass_fold_builtins::execute (function *fun)
3230 {
3231 bool cfg_changed = false;
3232 basic_block bb;
3233 unsigned int todoflags = 0;
3234
3235 FOR_EACH_BB_FN (bb, fun)
3236 {
3237 gimple_stmt_iterator i;
3238 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3239 {
3240 gimple *stmt, *old_stmt;
3241 tree callee;
3242 enum built_in_function fcode;
3243
3244 stmt = gsi_stmt (i);
3245
3246 if (gimple_code (stmt) != GIMPLE_CALL)
3247 {
3248 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3249 after the last GIMPLE DSE they aren't needed and might
3250 unnecessarily keep the SSA_NAMEs live. */
3251 if (gimple_clobber_p (stmt))
3252 {
3253 tree lhs = gimple_assign_lhs (stmt);
3254 if (TREE_CODE (lhs) == MEM_REF
3255 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3256 {
3257 unlink_stmt_vdef (stmt);
3258 gsi_remove (&i, true);
3259 release_defs (stmt);
3260 continue;
3261 }
3262 }
3263 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3264 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3265 gimple_assign_rhs1 (stmt), NULL_TREE);
3266 gsi_next (&i);
3267 continue;
3268 }
3269
3270 callee = gimple_call_fndecl (stmt);
3271 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3272 {
3273 gsi_next (&i);
3274 continue;
3275 }
3276
3277 fcode = DECL_FUNCTION_CODE (callee);
3278 if (fold_stmt (&i))
3279 ;
3280 else
3281 {
3282 tree result = NULL_TREE;
3283 switch (DECL_FUNCTION_CODE (callee))
3284 {
3285 case BUILT_IN_CONSTANT_P:
3286 /* Resolve __builtin_constant_p. If it hasn't been
3287 folded to integer_one_node by now, it's fairly
3288 certain that the value simply isn't constant. */
3289 result = integer_zero_node;
3290 break;
3291
3292 case BUILT_IN_ASSUME_ALIGNED:
3293 /* Remove __builtin_assume_aligned. */
3294 result = gimple_call_arg (stmt, 0);
3295 break;
3296
3297 case BUILT_IN_STACK_RESTORE:
3298 result = optimize_stack_restore (i);
3299 if (result)
3300 break;
3301 gsi_next (&i);
3302 continue;
3303
3304 case BUILT_IN_UNREACHABLE:
3305 if (optimize_unreachable (i))
3306 cfg_changed = true;
3307 break;
3308
3309 case BUILT_IN_ATOMIC_FETCH_OR_1:
3310 case BUILT_IN_ATOMIC_FETCH_OR_2:
3311 case BUILT_IN_ATOMIC_FETCH_OR_4:
3312 case BUILT_IN_ATOMIC_FETCH_OR_8:
3313 case BUILT_IN_ATOMIC_FETCH_OR_16:
3314 optimize_atomic_bit_test_and (&i,
3315 IFN_ATOMIC_BIT_TEST_AND_SET,
3316 true, false);
3317 break;
3318 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3319 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3320 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3321 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3322 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3323 optimize_atomic_bit_test_and (&i,
3324 IFN_ATOMIC_BIT_TEST_AND_SET,
3325 false, false);
3326 break;
3327
3328 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3329 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3330 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3331 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3332 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3333 optimize_atomic_bit_test_and
3334 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3335 break;
3336 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3337 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3338 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3339 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3340 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3341 optimize_atomic_bit_test_and
3342 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3343 break;
3344
3345 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3346 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3347 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3348 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3349 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3350 optimize_atomic_bit_test_and
3351 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3352 break;
3353 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3354 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3355 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3356 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3357 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3358 optimize_atomic_bit_test_and
3359 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3360 break;
3361
3362 case BUILT_IN_ATOMIC_FETCH_AND_1:
3363 case BUILT_IN_ATOMIC_FETCH_AND_2:
3364 case BUILT_IN_ATOMIC_FETCH_AND_4:
3365 case BUILT_IN_ATOMIC_FETCH_AND_8:
3366 case BUILT_IN_ATOMIC_FETCH_AND_16:
3367 optimize_atomic_bit_test_and (&i,
3368 IFN_ATOMIC_BIT_TEST_AND_RESET,
3369 true, false);
3370 break;
3371 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3372 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3373 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3374 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3375 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3376 optimize_atomic_bit_test_and (&i,
3377 IFN_ATOMIC_BIT_TEST_AND_RESET,
3378 false, false);
3379 break;
3380
3381 case BUILT_IN_MEMCPY:
3382 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3383 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3384 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3385 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3386 {
3387 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3388 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3389 tree len = gimple_call_arg (stmt, 2);
3390 optimize_memcpy (&i, dest, src, len);
3391 }
3392 break;
3393
3394 case BUILT_IN_VA_START:
3395 case BUILT_IN_VA_END:
3396 case BUILT_IN_VA_COPY:
3397 /* These shouldn't be folded before pass_stdarg. */
3398 result = optimize_stdarg_builtin (stmt);
3399 break;
3400
3401 default:;
3402 }
3403
3404 if (!result)
3405 {
3406 gsi_next (&i);
3407 continue;
3408 }
3409
3410 if (!update_call_from_tree (&i, result))
3411 gimplify_and_update_call_from_tree (&i, result);
3412 }
3413
3414 todoflags |= TODO_update_address_taken;
3415
3416 if (dump_file && (dump_flags & TDF_DETAILS))
3417 {
3418 fprintf (dump_file, "Simplified\n ");
3419 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3420 }
3421
3422 old_stmt = stmt;
3423 stmt = gsi_stmt (i);
3424 update_stmt (stmt);
3425
3426 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3427 && gimple_purge_dead_eh_edges (bb))
3428 cfg_changed = true;
3429
3430 if (dump_file && (dump_flags & TDF_DETAILS))
3431 {
3432 fprintf (dump_file, "to\n ");
3433 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3434 fprintf (dump_file, "\n");
3435 }
3436
3437 /* Retry the same statement if it changed into another
3438 builtin, there might be new opportunities now. */
3439 if (gimple_code (stmt) != GIMPLE_CALL)
3440 {
3441 gsi_next (&i);
3442 continue;
3443 }
3444 callee = gimple_call_fndecl (stmt);
3445 if (!callee
3446 || !fndecl_built_in_p (callee, fcode))
3447 gsi_next (&i);
3448 }
3449 }
3450
3451 /* Delete unreachable blocks. */
3452 if (cfg_changed)
3453 todoflags |= TODO_cleanup_cfg;
3454
3455 return todoflags;
3456 }
3457
3458 } // anon namespace
3459
3460 gimple_opt_pass *
3461 make_pass_fold_builtins (gcc::context *ctxt)
3462 {
3463 return new pass_fold_builtins (ctxt);
3464 }
3465
3466 /* A simple pass that emits some warnings post IPA. */
3467
3468 namespace {
3469
3470 const pass_data pass_data_post_ipa_warn =
3471 {
3472 GIMPLE_PASS, /* type */
3473 "post_ipa_warn", /* name */
3474 OPTGROUP_NONE, /* optinfo_flags */
3475 TV_NONE, /* tv_id */
3476 ( PROP_cfg | PROP_ssa ), /* properties_required */
3477 0, /* properties_provided */
3478 0, /* properties_destroyed */
3479 0, /* todo_flags_start */
3480 0, /* todo_flags_finish */
3481 };
3482
3483 class pass_post_ipa_warn : public gimple_opt_pass
3484 {
3485 public:
3486 pass_post_ipa_warn (gcc::context *ctxt)
3487 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3488 {}
3489
3490 /* opt_pass methods: */
3491 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3492 virtual bool gate (function *) { return warn_nonnull != 0; }
3493 virtual unsigned int execute (function *);
3494
3495 }; // class pass_fold_builtins
3496
3497 unsigned int
3498 pass_post_ipa_warn::execute (function *fun)
3499 {
3500 basic_block bb;
3501
3502 FOR_EACH_BB_FN (bb, fun)
3503 {
3504 gimple_stmt_iterator gsi;
3505 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3506 {
3507 gimple *stmt = gsi_stmt (gsi);
3508 if (!is_gimple_call (stmt) || gimple_no_warning_p (stmt))
3509 continue;
3510
3511 if (warn_nonnull)
3512 {
3513 bitmap nonnullargs
3514 = get_nonnull_args (gimple_call_fntype (stmt));
3515 if (nonnullargs)
3516 {
3517 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3518 {
3519 tree arg = gimple_call_arg (stmt, i);
3520 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3521 continue;
3522 if (!integer_zerop (arg))
3523 continue;
3524 if (!bitmap_empty_p (nonnullargs)
3525 && !bitmap_bit_p (nonnullargs, i))
3526 continue;
3527
3528 location_t loc = gimple_location (stmt);
3529 auto_diagnostic_group d;
3530 if (warning_at (loc, OPT_Wnonnull,
3531 "%Gargument %u null where non-null "
3532 "expected", stmt, i + 1))
3533 {
3534 tree fndecl = gimple_call_fndecl (stmt);
3535 if (fndecl && DECL_IS_BUILTIN (fndecl))
3536 inform (loc, "in a call to built-in function %qD",
3537 fndecl);
3538 else if (fndecl)
3539 inform (DECL_SOURCE_LOCATION (fndecl),
3540 "in a call to function %qD declared here",
3541 fndecl);
3542
3543 }
3544 }
3545 BITMAP_FREE (nonnullargs);
3546 }
3547 }
3548 }
3549 }
3550 return 0;
3551 }
3552
3553 } // anon namespace
3554
3555 gimple_opt_pass *
3556 make_pass_post_ipa_warn (gcc::context *ctxt)
3557 {
3558 return new pass_post_ipa_warn (ctxt);
3559 }