]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ccp.cc
check undefine_p for one more vr
[thirdparty/gcc.git] / gcc / tree-ssa-ccp.cc
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2023 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.cc). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-iterator.h"
133 #include "gimple-fold.h"
134 #include "tree-eh.h"
135 #include "gimplify.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
154 #include "internal-fn.h"
155
156 /* Possible lattice values. */
157 typedef enum
158 {
159 UNINITIALIZED,
160 UNDEFINED,
161 CONSTANT,
162 VARYING
163 } ccp_lattice_t;
164
165 class ccp_prop_value_t {
166 public:
167 /* Lattice value. */
168 ccp_lattice_t lattice_val;
169
170 /* Propagated value. */
171 tree value;
172
173 /* Mask that applies to the propagated value during CCP. For X
174 with a CONSTANT lattice value X & ~mask == value & ~mask. The
175 zero bits in the mask cover constant values. The ones mean no
176 information. */
177 widest_int mask;
178 };
179
180 class ccp_propagate : public ssa_propagation_engine
181 {
182 public:
183 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) final override;
184 enum ssa_prop_result visit_phi (gphi *) final override;
185 };
186
187 /* Array of propagated constant values. After propagation,
188 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
189 the constant is held in an SSA name representing a memory store
190 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
191 memory reference used to store (i.e., the LHS of the assignment
192 doing the store). */
193 static ccp_prop_value_t *const_val;
194 static unsigned n_const_val;
195
196 static void canonicalize_value (ccp_prop_value_t *);
197 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
198
199 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
200
201 static void
202 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
203 {
204 switch (val.lattice_val)
205 {
206 case UNINITIALIZED:
207 fprintf (outf, "%sUNINITIALIZED", prefix);
208 break;
209 case UNDEFINED:
210 fprintf (outf, "%sUNDEFINED", prefix);
211 break;
212 case VARYING:
213 fprintf (outf, "%sVARYING", prefix);
214 break;
215 case CONSTANT:
216 if (TREE_CODE (val.value) != INTEGER_CST
217 || val.mask == 0)
218 {
219 fprintf (outf, "%sCONSTANT ", prefix);
220 print_generic_expr (outf, val.value, dump_flags);
221 }
222 else
223 {
224 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
225 val.mask);
226 fprintf (outf, "%sCONSTANT ", prefix);
227 print_hex (cval, outf);
228 fprintf (outf, " (");
229 print_hex (val.mask, outf);
230 fprintf (outf, ")");
231 }
232 break;
233 default:
234 gcc_unreachable ();
235 }
236 }
237
238
239 /* Print lattice value VAL to stderr. */
240
241 void debug_lattice_value (ccp_prop_value_t val);
242
243 DEBUG_FUNCTION void
244 debug_lattice_value (ccp_prop_value_t val)
245 {
246 dump_lattice_value (stderr, "", val);
247 fprintf (stderr, "\n");
248 }
249
250 /* Extend NONZERO_BITS to a full mask, based on sgn. */
251
252 static widest_int
253 extend_mask (const wide_int &nonzero_bits, signop sgn)
254 {
255 return widest_int::from (nonzero_bits, sgn);
256 }
257
258 /* Compute a default value for variable VAR and store it in the
259 CONST_VAL array. The following rules are used to get default
260 values:
261
262 1- Global and static variables that are declared constant are
263 considered CONSTANT.
264
265 2- Any other value is considered UNDEFINED. This is useful when
266 considering PHI nodes. PHI arguments that are undefined do not
267 change the constant value of the PHI node, which allows for more
268 constants to be propagated.
269
270 3- Variables defined by statements other than assignments and PHI
271 nodes are considered VARYING.
272
273 4- Initial values of variables that are not GIMPLE registers are
274 considered VARYING. */
275
276 static ccp_prop_value_t
277 get_default_value (tree var)
278 {
279 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
280 gimple *stmt;
281
282 stmt = SSA_NAME_DEF_STMT (var);
283
284 if (gimple_nop_p (stmt))
285 {
286 /* Variables defined by an empty statement are those used
287 before being initialized. If VAR is a local variable, we
288 can assume initially that it is UNDEFINED, otherwise we must
289 consider it VARYING. */
290 if (!virtual_operand_p (var)
291 && SSA_NAME_VAR (var)
292 && VAR_P (SSA_NAME_VAR (var)))
293 val.lattice_val = UNDEFINED;
294 else
295 {
296 val.lattice_val = VARYING;
297 val.mask = -1;
298 if (flag_tree_bit_ccp)
299 {
300 wide_int nonzero_bits = get_nonzero_bits (var);
301 tree value;
302 widest_int mask;
303
304 if (SSA_NAME_VAR (var)
305 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
306 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
307 {
308 val.lattice_val = CONSTANT;
309 val.value = value;
310 widest_int ipa_value = wi::to_widest (value);
311 /* Unknown bits from IPA CP must be equal to zero. */
312 gcc_assert (wi::bit_and (ipa_value, mask) == 0);
313 val.mask = mask;
314 if (nonzero_bits != -1)
315 val.mask &= extend_mask (nonzero_bits,
316 TYPE_SIGN (TREE_TYPE (var)));
317 }
318 else if (nonzero_bits != -1)
319 {
320 val.lattice_val = CONSTANT;
321 val.value = build_zero_cst (TREE_TYPE (var));
322 val.mask = extend_mask (nonzero_bits,
323 TYPE_SIGN (TREE_TYPE (var)));
324 }
325 }
326 }
327 }
328 else if (is_gimple_assign (stmt))
329 {
330 tree cst;
331 if (gimple_assign_single_p (stmt)
332 && DECL_P (gimple_assign_rhs1 (stmt))
333 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
334 {
335 val.lattice_val = CONSTANT;
336 val.value = cst;
337 }
338 else
339 {
340 /* Any other variable defined by an assignment is considered
341 UNDEFINED. */
342 val.lattice_val = UNDEFINED;
343 }
344 }
345 else if ((is_gimple_call (stmt)
346 && gimple_call_lhs (stmt) != NULL_TREE)
347 || gimple_code (stmt) == GIMPLE_PHI)
348 {
349 /* A variable defined by a call or a PHI node is considered
350 UNDEFINED. */
351 val.lattice_val = UNDEFINED;
352 }
353 else
354 {
355 /* Otherwise, VAR will never take on a constant value. */
356 val.lattice_val = VARYING;
357 val.mask = -1;
358 }
359
360 return val;
361 }
362
363
364 /* Get the constant value associated with variable VAR. */
365
366 static inline ccp_prop_value_t *
367 get_value (tree var)
368 {
369 ccp_prop_value_t *val;
370
371 if (const_val == NULL
372 || SSA_NAME_VERSION (var) >= n_const_val)
373 return NULL;
374
375 val = &const_val[SSA_NAME_VERSION (var)];
376 if (val->lattice_val == UNINITIALIZED)
377 *val = get_default_value (var);
378
379 canonicalize_value (val);
380
381 return val;
382 }
383
384 /* Return the constant tree value associated with VAR. */
385
386 static inline tree
387 get_constant_value (tree var)
388 {
389 ccp_prop_value_t *val;
390 if (TREE_CODE (var) != SSA_NAME)
391 {
392 if (is_gimple_min_invariant (var))
393 return var;
394 return NULL_TREE;
395 }
396 val = get_value (var);
397 if (val
398 && val->lattice_val == CONSTANT
399 && (TREE_CODE (val->value) != INTEGER_CST
400 || val->mask == 0))
401 return val->value;
402 return NULL_TREE;
403 }
404
405 /* Sets the value associated with VAR to VARYING. */
406
407 static inline void
408 set_value_varying (tree var)
409 {
410 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
411
412 val->lattice_val = VARYING;
413 val->value = NULL_TREE;
414 val->mask = -1;
415 }
416
417 /* For integer constants, make sure to drop TREE_OVERFLOW. */
418
419 static void
420 canonicalize_value (ccp_prop_value_t *val)
421 {
422 if (val->lattice_val != CONSTANT)
423 return;
424
425 if (TREE_OVERFLOW_P (val->value))
426 val->value = drop_tree_overflow (val->value);
427 }
428
429 /* Return whether the lattice transition is valid. */
430
431 static bool
432 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
433 {
434 /* Lattice transitions must always be monotonically increasing in
435 value. */
436 if (old_val.lattice_val < new_val.lattice_val)
437 return true;
438
439 if (old_val.lattice_val != new_val.lattice_val)
440 return false;
441
442 if (!old_val.value && !new_val.value)
443 return true;
444
445 /* Now both lattice values are CONSTANT. */
446
447 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
448 when only a single copy edge is executable. */
449 if (TREE_CODE (old_val.value) == SSA_NAME
450 && TREE_CODE (new_val.value) == SSA_NAME)
451 return true;
452
453 /* Allow transitioning from a constant to a copy. */
454 if (is_gimple_min_invariant (old_val.value)
455 && TREE_CODE (new_val.value) == SSA_NAME)
456 return true;
457
458 /* Allow transitioning from PHI <&x, not executable> == &x
459 to PHI <&x, &y> == common alignment. */
460 if (TREE_CODE (old_val.value) != INTEGER_CST
461 && TREE_CODE (new_val.value) == INTEGER_CST)
462 return true;
463
464 /* Bit-lattices have to agree in the still valid bits. */
465 if (TREE_CODE (old_val.value) == INTEGER_CST
466 && TREE_CODE (new_val.value) == INTEGER_CST)
467 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
468 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
469
470 /* Otherwise constant values have to agree. */
471 if (operand_equal_p (old_val.value, new_val.value, 0))
472 return true;
473
474 /* At least the kinds and types should agree now. */
475 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
476 || !types_compatible_p (TREE_TYPE (old_val.value),
477 TREE_TYPE (new_val.value)))
478 return false;
479
480 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
481 to non-NaN. */
482 tree type = TREE_TYPE (new_val.value);
483 if (SCALAR_FLOAT_TYPE_P (type)
484 && !HONOR_NANS (type))
485 {
486 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
487 return true;
488 }
489 else if (VECTOR_FLOAT_TYPE_P (type)
490 && !HONOR_NANS (type))
491 {
492 unsigned int count
493 = tree_vector_builder::binary_encoded_nelts (old_val.value,
494 new_val.value);
495 for (unsigned int i = 0; i < count; ++i)
496 if (!REAL_VALUE_ISNAN
497 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
498 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
499 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
500 return false;
501 return true;
502 }
503 else if (COMPLEX_FLOAT_TYPE_P (type)
504 && !HONOR_NANS (type))
505 {
506 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
507 && !operand_equal_p (TREE_REALPART (old_val.value),
508 TREE_REALPART (new_val.value), 0))
509 return false;
510 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
511 && !operand_equal_p (TREE_IMAGPART (old_val.value),
512 TREE_IMAGPART (new_val.value), 0))
513 return false;
514 return true;
515 }
516 return false;
517 }
518
519 /* Set the value for variable VAR to NEW_VAL. Return true if the new
520 value is different from VAR's previous value. */
521
522 static bool
523 set_lattice_value (tree var, ccp_prop_value_t *new_val)
524 {
525 /* We can deal with old UNINITIALIZED values just fine here. */
526 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
527
528 canonicalize_value (new_val);
529
530 /* We have to be careful to not go up the bitwise lattice
531 represented by the mask. Instead of dropping to VARYING
532 use the meet operator to retain a conservative value.
533 Missed optimizations like PR65851 makes this necessary.
534 It also ensures we converge to a stable lattice solution. */
535 if (old_val->lattice_val != UNINITIALIZED
536 /* But avoid using meet for constant -> copy transitions. */
537 && !(old_val->lattice_val == CONSTANT
538 && CONSTANT_CLASS_P (old_val->value)
539 && new_val->lattice_val == CONSTANT
540 && TREE_CODE (new_val->value) == SSA_NAME))
541 ccp_lattice_meet (new_val, old_val);
542
543 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
544
545 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
546 caller that this was a non-transition. */
547 if (old_val->lattice_val != new_val->lattice_val
548 || (new_val->lattice_val == CONSTANT
549 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
550 || (TREE_CODE (new_val->value) == INTEGER_CST
551 && (new_val->mask != old_val->mask
552 || (wi::bit_and_not (wi::to_widest (old_val->value),
553 new_val->mask)
554 != wi::bit_and_not (wi::to_widest (new_val->value),
555 new_val->mask))))
556 || (TREE_CODE (new_val->value) != INTEGER_CST
557 && !operand_equal_p (new_val->value, old_val->value, 0)))))
558 {
559 /* ??? We would like to delay creation of INTEGER_CSTs from
560 partially constants here. */
561
562 if (dump_file && (dump_flags & TDF_DETAILS))
563 {
564 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
565 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
566 }
567
568 *old_val = *new_val;
569
570 gcc_assert (new_val->lattice_val != UNINITIALIZED);
571 return true;
572 }
573
574 return false;
575 }
576
577 static ccp_prop_value_t get_value_for_expr (tree, bool);
578 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
579 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
580 signop, int, const widest_int &, const widest_int &,
581 signop, int, const widest_int &, const widest_int &);
582
583 /* Return a widest_int that can be used for bitwise simplifications
584 from VAL. */
585
586 static widest_int
587 value_to_wide_int (ccp_prop_value_t val)
588 {
589 if (val.value
590 && TREE_CODE (val.value) == INTEGER_CST)
591 return wi::to_widest (val.value);
592
593 return 0;
594 }
595
596 /* Return the value for the address expression EXPR based on alignment
597 information. */
598
599 static ccp_prop_value_t
600 get_value_from_alignment (tree expr)
601 {
602 tree type = TREE_TYPE (expr);
603 ccp_prop_value_t val;
604 unsigned HOST_WIDE_INT bitpos;
605 unsigned int align;
606
607 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
608
609 get_pointer_alignment_1 (expr, &align, &bitpos);
610 val.mask = wi::bit_and_not
611 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
612 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
613 : -1,
614 align / BITS_PER_UNIT - 1);
615 val.lattice_val
616 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
617 if (val.lattice_val == CONSTANT)
618 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
619 else
620 val.value = NULL_TREE;
621
622 return val;
623 }
624
625 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
626 return constant bits extracted from alignment information for
627 invariant addresses. */
628
629 static ccp_prop_value_t
630 get_value_for_expr (tree expr, bool for_bits_p)
631 {
632 ccp_prop_value_t val;
633
634 if (TREE_CODE (expr) == SSA_NAME)
635 {
636 ccp_prop_value_t *val_ = get_value (expr);
637 if (val_)
638 val = *val_;
639 else
640 {
641 val.lattice_val = VARYING;
642 val.value = NULL_TREE;
643 val.mask = -1;
644 }
645 if (for_bits_p
646 && val.lattice_val == CONSTANT)
647 {
648 if (TREE_CODE (val.value) == ADDR_EXPR)
649 val = get_value_from_alignment (val.value);
650 else if (TREE_CODE (val.value) != INTEGER_CST)
651 {
652 val.lattice_val = VARYING;
653 val.value = NULL_TREE;
654 val.mask = -1;
655 }
656 }
657 /* Fall back to a copy value. */
658 if (!for_bits_p
659 && val.lattice_val == VARYING
660 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
661 {
662 val.lattice_val = CONSTANT;
663 val.value = expr;
664 val.mask = -1;
665 }
666 }
667 else if (is_gimple_min_invariant (expr)
668 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
669 {
670 val.lattice_val = CONSTANT;
671 val.value = expr;
672 val.mask = 0;
673 canonicalize_value (&val);
674 }
675 else if (TREE_CODE (expr) == ADDR_EXPR)
676 val = get_value_from_alignment (expr);
677 else
678 {
679 val.lattice_val = VARYING;
680 val.mask = -1;
681 val.value = NULL_TREE;
682 }
683
684 if (val.lattice_val == VARYING
685 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
686 && TYPE_UNSIGNED (TREE_TYPE (expr)))
687 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
688
689 return val;
690 }
691
692 /* Return the likely CCP lattice value for STMT.
693
694 If STMT has no operands, then return CONSTANT.
695
696 Else if undefinedness of operands of STMT cause its value to be
697 undefined, then return UNDEFINED.
698
699 Else if any operands of STMT are constants, then return CONSTANT.
700
701 Else return VARYING. */
702
703 static ccp_lattice_t
704 likely_value (gimple *stmt)
705 {
706 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
707 bool has_nsa_operand;
708 tree use;
709 ssa_op_iter iter;
710 unsigned i;
711
712 enum gimple_code code = gimple_code (stmt);
713
714 /* This function appears to be called only for assignments, calls,
715 conditionals, and switches, due to the logic in visit_stmt. */
716 gcc_assert (code == GIMPLE_ASSIGN
717 || code == GIMPLE_CALL
718 || code == GIMPLE_COND
719 || code == GIMPLE_SWITCH);
720
721 /* If the statement has volatile operands, it won't fold to a
722 constant value. */
723 if (gimple_has_volatile_ops (stmt))
724 return VARYING;
725
726 /* .DEFERRED_INIT produces undefined. */
727 if (gimple_call_internal_p (stmt, IFN_DEFERRED_INIT))
728 return UNDEFINED;
729
730 /* Arrive here for more complex cases. */
731 has_constant_operand = false;
732 has_undefined_operand = false;
733 all_undefined_operands = true;
734 has_nsa_operand = false;
735 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
736 {
737 ccp_prop_value_t *val = get_value (use);
738
739 if (val && val->lattice_val == UNDEFINED)
740 has_undefined_operand = true;
741 else
742 all_undefined_operands = false;
743
744 if (val && val->lattice_val == CONSTANT)
745 has_constant_operand = true;
746
747 if (SSA_NAME_IS_DEFAULT_DEF (use)
748 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
749 has_nsa_operand = true;
750 }
751
752 /* There may be constants in regular rhs operands. For calls we
753 have to ignore lhs, fndecl and static chain, otherwise only
754 the lhs. */
755 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
756 i < gimple_num_ops (stmt); ++i)
757 {
758 tree op = gimple_op (stmt, i);
759 if (!op || TREE_CODE (op) == SSA_NAME)
760 continue;
761 if (is_gimple_min_invariant (op))
762 has_constant_operand = true;
763 }
764
765 if (has_constant_operand)
766 all_undefined_operands = false;
767
768 if (has_undefined_operand
769 && code == GIMPLE_CALL
770 && gimple_call_internal_p (stmt))
771 switch (gimple_call_internal_fn (stmt))
772 {
773 /* These 3 builtins use the first argument just as a magic
774 way how to find out a decl uid. */
775 case IFN_GOMP_SIMD_LANE:
776 case IFN_GOMP_SIMD_VF:
777 case IFN_GOMP_SIMD_LAST_LANE:
778 has_undefined_operand = false;
779 break;
780 default:
781 break;
782 }
783
784 /* If the operation combines operands like COMPLEX_EXPR make sure to
785 not mark the result UNDEFINED if only one part of the result is
786 undefined. */
787 if (has_undefined_operand && all_undefined_operands)
788 return UNDEFINED;
789 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
790 {
791 switch (gimple_assign_rhs_code (stmt))
792 {
793 /* Unary operators are handled with all_undefined_operands. */
794 case PLUS_EXPR:
795 case MINUS_EXPR:
796 case POINTER_PLUS_EXPR:
797 case BIT_XOR_EXPR:
798 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
799 Not bitwise operators, one VARYING operand may specify the
800 result completely.
801 Not logical operators for the same reason, apart from XOR.
802 Not COMPLEX_EXPR as one VARYING operand makes the result partly
803 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
804 the undefined operand may be promoted. */
805 return UNDEFINED;
806
807 case ADDR_EXPR:
808 /* If any part of an address is UNDEFINED, like the index
809 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
810 return UNDEFINED;
811
812 default:
813 ;
814 }
815 }
816 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
817 fall back to CONSTANT. During iteration UNDEFINED may still drop
818 to CONSTANT. */
819 if (has_undefined_operand)
820 return CONSTANT;
821
822 /* We do not consider virtual operands here -- load from read-only
823 memory may have only VARYING virtual operands, but still be
824 constant. Also we can combine the stmt with definitions from
825 operands whose definitions are not simulated again. */
826 if (has_constant_operand
827 || has_nsa_operand
828 || gimple_references_memory_p (stmt))
829 return CONSTANT;
830
831 return VARYING;
832 }
833
834 /* Returns true if STMT cannot be constant. */
835
836 static bool
837 surely_varying_stmt_p (gimple *stmt)
838 {
839 /* If the statement has operands that we cannot handle, it cannot be
840 constant. */
841 if (gimple_has_volatile_ops (stmt))
842 return true;
843
844 /* If it is a call and does not return a value or is not a
845 builtin and not an indirect call or a call to function with
846 assume_aligned/alloc_align attribute, it is varying. */
847 if (is_gimple_call (stmt))
848 {
849 tree fndecl, fntype = gimple_call_fntype (stmt);
850 if (!gimple_call_lhs (stmt)
851 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
852 && !fndecl_built_in_p (fndecl)
853 && !lookup_attribute ("assume_aligned",
854 TYPE_ATTRIBUTES (fntype))
855 && !lookup_attribute ("alloc_align",
856 TYPE_ATTRIBUTES (fntype))))
857 return true;
858 }
859
860 /* Any other store operation is not interesting. */
861 else if (gimple_vdef (stmt))
862 return true;
863
864 /* Anything other than assignments and conditional jumps are not
865 interesting for CCP. */
866 if (gimple_code (stmt) != GIMPLE_ASSIGN
867 && gimple_code (stmt) != GIMPLE_COND
868 && gimple_code (stmt) != GIMPLE_SWITCH
869 && gimple_code (stmt) != GIMPLE_CALL)
870 return true;
871
872 return false;
873 }
874
875 /* Initialize local data structures for CCP. */
876
877 static void
878 ccp_initialize (void)
879 {
880 basic_block bb;
881
882 n_const_val = num_ssa_names;
883 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
884
885 /* Initialize simulation flags for PHI nodes and statements. */
886 FOR_EACH_BB_FN (bb, cfun)
887 {
888 gimple_stmt_iterator i;
889
890 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
891 {
892 gimple *stmt = gsi_stmt (i);
893 bool is_varying;
894
895 /* If the statement is a control insn, then we do not
896 want to avoid simulating the statement once. Failure
897 to do so means that those edges will never get added. */
898 if (stmt_ends_bb_p (stmt))
899 is_varying = false;
900 else
901 is_varying = surely_varying_stmt_p (stmt);
902
903 if (is_varying)
904 {
905 tree def;
906 ssa_op_iter iter;
907
908 /* If the statement will not produce a constant, mark
909 all its outputs VARYING. */
910 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
911 set_value_varying (def);
912 }
913 prop_set_simulate_again (stmt, !is_varying);
914 }
915 }
916
917 /* Now process PHI nodes. We never clear the simulate_again flag on
918 phi nodes, since we do not know which edges are executable yet,
919 except for phi nodes for virtual operands when we do not do store ccp. */
920 FOR_EACH_BB_FN (bb, cfun)
921 {
922 gphi_iterator i;
923
924 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
925 {
926 gphi *phi = i.phi ();
927
928 if (virtual_operand_p (gimple_phi_result (phi)))
929 prop_set_simulate_again (phi, false);
930 else
931 prop_set_simulate_again (phi, true);
932 }
933 }
934 }
935
936 /* Debug count support. Reset the values of ssa names
937 VARYING when the total number ssa names analyzed is
938 beyond the debug count specified. */
939
940 static void
941 do_dbg_cnt (void)
942 {
943 unsigned i;
944 for (i = 0; i < num_ssa_names; i++)
945 {
946 if (!dbg_cnt (ccp))
947 {
948 const_val[i].lattice_val = VARYING;
949 const_val[i].mask = -1;
950 const_val[i].value = NULL_TREE;
951 }
952 }
953 }
954
955
956 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
957 class ccp_folder : public substitute_and_fold_engine
958 {
959 public:
960 tree value_of_expr (tree, gimple *) final override;
961 bool fold_stmt (gimple_stmt_iterator *) final override;
962 };
963
964 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
965 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
966 of calling member functions. */
967
968 tree
969 ccp_folder::value_of_expr (tree op, gimple *)
970 {
971 return get_constant_value (op);
972 }
973
974 /* Do final substitution of propagated values, cleanup the flowgraph and
975 free allocated storage. If NONZERO_P, record nonzero bits.
976
977 Return TRUE when something was optimized. */
978
979 static bool
980 ccp_finalize (bool nonzero_p)
981 {
982 bool something_changed;
983 unsigned i;
984 tree name;
985
986 do_dbg_cnt ();
987
988 /* Derive alignment and misalignment information from partially
989 constant pointers in the lattice or nonzero bits from partially
990 constant integers. */
991 FOR_EACH_SSA_NAME (i, name, cfun)
992 {
993 ccp_prop_value_t *val;
994 unsigned int tem, align;
995
996 if (!POINTER_TYPE_P (TREE_TYPE (name))
997 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
998 /* Don't record nonzero bits before IPA to avoid
999 using too much memory. */
1000 || !nonzero_p))
1001 continue;
1002
1003 val = get_value (name);
1004 if (val->lattice_val != CONSTANT
1005 || TREE_CODE (val->value) != INTEGER_CST
1006 || val->mask == 0)
1007 continue;
1008
1009 if (POINTER_TYPE_P (TREE_TYPE (name)))
1010 {
1011 /* Trailing mask bits specify the alignment, trailing value
1012 bits the misalignment. */
1013 tem = val->mask.to_uhwi ();
1014 align = least_bit_hwi (tem);
1015 if (align > 1)
1016 set_ptr_info_alignment (get_ptr_info (name), align,
1017 (TREE_INT_CST_LOW (val->value)
1018 & (align - 1)));
1019 }
1020 else
1021 {
1022 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1023 wide_int value = wi::to_wide (val->value);
1024 wide_int mask = wide_int::from (val->mask, precision, UNSIGNED);
1025 set_bitmask (name, value, mask);
1026 }
1027 }
1028
1029 /* Perform substitutions based on the known constant values. */
1030 class ccp_folder ccp_folder;
1031 something_changed = ccp_folder.substitute_and_fold ();
1032
1033 free (const_val);
1034 const_val = NULL;
1035 return something_changed;
1036 }
1037
1038
1039 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1040 in VAL1.
1041
1042 any M UNDEFINED = any
1043 any M VARYING = VARYING
1044 Ci M Cj = Ci if (i == j)
1045 Ci M Cj = VARYING if (i != j)
1046 */
1047
1048 static void
1049 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1050 {
1051 if (val1->lattice_val == UNDEFINED
1052 /* For UNDEFINED M SSA we can't always SSA because its definition
1053 may not dominate the PHI node. Doing optimistic copy propagation
1054 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1055 && (val2->lattice_val != CONSTANT
1056 || TREE_CODE (val2->value) != SSA_NAME))
1057 {
1058 /* UNDEFINED M any = any */
1059 *val1 = *val2;
1060 }
1061 else if (val2->lattice_val == UNDEFINED
1062 /* See above. */
1063 && (val1->lattice_val != CONSTANT
1064 || TREE_CODE (val1->value) != SSA_NAME))
1065 {
1066 /* any M UNDEFINED = any
1067 Nothing to do. VAL1 already contains the value we want. */
1068 ;
1069 }
1070 else if (val1->lattice_val == VARYING
1071 || val2->lattice_val == VARYING)
1072 {
1073 /* any M VARYING = VARYING. */
1074 val1->lattice_val = VARYING;
1075 val1->mask = -1;
1076 val1->value = NULL_TREE;
1077 }
1078 else if (val1->lattice_val == CONSTANT
1079 && val2->lattice_val == CONSTANT
1080 && TREE_CODE (val1->value) == INTEGER_CST
1081 && TREE_CODE (val2->value) == INTEGER_CST)
1082 {
1083 /* Ci M Cj = Ci if (i == j)
1084 Ci M Cj = VARYING if (i != j)
1085
1086 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1087 drop to varying. */
1088 val1->mask = (val1->mask | val2->mask
1089 | (wi::to_widest (val1->value)
1090 ^ wi::to_widest (val2->value)));
1091 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1092 {
1093 val1->lattice_val = VARYING;
1094 val1->value = NULL_TREE;
1095 }
1096 }
1097 else if (val1->lattice_val == CONSTANT
1098 && val2->lattice_val == CONSTANT
1099 && operand_equal_p (val1->value, val2->value, 0))
1100 {
1101 /* Ci M Cj = Ci if (i == j)
1102 Ci M Cj = VARYING if (i != j)
1103
1104 VAL1 already contains the value we want for equivalent values. */
1105 }
1106 else if (val1->lattice_val == CONSTANT
1107 && val2->lattice_val == CONSTANT
1108 && (TREE_CODE (val1->value) == ADDR_EXPR
1109 || TREE_CODE (val2->value) == ADDR_EXPR))
1110 {
1111 /* When not equal addresses are involved try meeting for
1112 alignment. */
1113 ccp_prop_value_t tem = *val2;
1114 if (TREE_CODE (val1->value) == ADDR_EXPR)
1115 *val1 = get_value_for_expr (val1->value, true);
1116 if (TREE_CODE (val2->value) == ADDR_EXPR)
1117 tem = get_value_for_expr (val2->value, true);
1118 ccp_lattice_meet (val1, &tem);
1119 }
1120 else
1121 {
1122 /* Any other combination is VARYING. */
1123 val1->lattice_val = VARYING;
1124 val1->mask = -1;
1125 val1->value = NULL_TREE;
1126 }
1127 }
1128
1129
1130 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1131 lattice values to determine PHI_NODE's lattice value. The value of a
1132 PHI node is determined calling ccp_lattice_meet with all the arguments
1133 of the PHI node that are incoming via executable edges. */
1134
1135 enum ssa_prop_result
1136 ccp_propagate::visit_phi (gphi *phi)
1137 {
1138 unsigned i;
1139 ccp_prop_value_t new_val;
1140
1141 if (dump_file && (dump_flags & TDF_DETAILS))
1142 {
1143 fprintf (dump_file, "\nVisiting PHI node: ");
1144 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1145 }
1146
1147 new_val.lattice_val = UNDEFINED;
1148 new_val.value = NULL_TREE;
1149 new_val.mask = 0;
1150
1151 bool first = true;
1152 bool non_exec_edge = false;
1153 for (i = 0; i < gimple_phi_num_args (phi); i++)
1154 {
1155 /* Compute the meet operator over all the PHI arguments flowing
1156 through executable edges. */
1157 edge e = gimple_phi_arg_edge (phi, i);
1158
1159 if (dump_file && (dump_flags & TDF_DETAILS))
1160 {
1161 fprintf (dump_file,
1162 "\tArgument #%d (%d -> %d %sexecutable)\n",
1163 i, e->src->index, e->dest->index,
1164 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1165 }
1166
1167 /* If the incoming edge is executable, Compute the meet operator for
1168 the existing value of the PHI node and the current PHI argument. */
1169 if (e->flags & EDGE_EXECUTABLE)
1170 {
1171 tree arg = gimple_phi_arg (phi, i)->def;
1172 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1173
1174 if (first)
1175 {
1176 new_val = arg_val;
1177 first = false;
1178 }
1179 else
1180 ccp_lattice_meet (&new_val, &arg_val);
1181
1182 if (dump_file && (dump_flags & TDF_DETAILS))
1183 {
1184 fprintf (dump_file, "\t");
1185 print_generic_expr (dump_file, arg, dump_flags);
1186 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1187 fprintf (dump_file, "\n");
1188 }
1189
1190 if (new_val.lattice_val == VARYING)
1191 break;
1192 }
1193 else
1194 non_exec_edge = true;
1195 }
1196
1197 /* In case there were non-executable edges and the value is a copy
1198 make sure its definition dominates the PHI node. */
1199 if (non_exec_edge
1200 && new_val.lattice_val == CONSTANT
1201 && TREE_CODE (new_val.value) == SSA_NAME
1202 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1203 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1204 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1205 {
1206 new_val.lattice_val = VARYING;
1207 new_val.value = NULL_TREE;
1208 new_val.mask = -1;
1209 }
1210
1211 if (dump_file && (dump_flags & TDF_DETAILS))
1212 {
1213 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1214 fprintf (dump_file, "\n\n");
1215 }
1216
1217 /* Make the transition to the new value. */
1218 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1219 {
1220 if (new_val.lattice_val == VARYING)
1221 return SSA_PROP_VARYING;
1222 else
1223 return SSA_PROP_INTERESTING;
1224 }
1225 else
1226 return SSA_PROP_NOT_INTERESTING;
1227 }
1228
1229 /* Return the constant value for OP or OP otherwise. */
1230
1231 static tree
1232 valueize_op (tree op)
1233 {
1234 if (TREE_CODE (op) == SSA_NAME)
1235 {
1236 tree tem = get_constant_value (op);
1237 if (tem)
1238 return tem;
1239 }
1240 return op;
1241 }
1242
1243 /* Return the constant value for OP, but signal to not follow SSA
1244 edges if the definition may be simulated again. */
1245
1246 static tree
1247 valueize_op_1 (tree op)
1248 {
1249 if (TREE_CODE (op) == SSA_NAME)
1250 {
1251 /* If the definition may be simulated again we cannot follow
1252 this SSA edge as the SSA propagator does not necessarily
1253 re-visit the use. */
1254 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1255 if (!gimple_nop_p (def_stmt)
1256 && prop_simulate_again_p (def_stmt))
1257 return NULL_TREE;
1258 tree tem = get_constant_value (op);
1259 if (tem)
1260 return tem;
1261 }
1262 return op;
1263 }
1264
1265 /* CCP specific front-end to the non-destructive constant folding
1266 routines.
1267
1268 Attempt to simplify the RHS of STMT knowing that one or more
1269 operands are constants.
1270
1271 If simplification is possible, return the simplified RHS,
1272 otherwise return the original RHS or NULL_TREE. */
1273
1274 static tree
1275 ccp_fold (gimple *stmt)
1276 {
1277 switch (gimple_code (stmt))
1278 {
1279 case GIMPLE_SWITCH:
1280 {
1281 /* Return the constant switch index. */
1282 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1283 }
1284
1285 case GIMPLE_COND:
1286 case GIMPLE_ASSIGN:
1287 case GIMPLE_CALL:
1288 return gimple_fold_stmt_to_constant_1 (stmt,
1289 valueize_op, valueize_op_1);
1290
1291 default:
1292 gcc_unreachable ();
1293 }
1294 }
1295
1296 /* Determine the minimum and maximum values, *MIN and *MAX respectively,
1297 represented by the mask pair VAL and MASK with signedness SGN and
1298 precision PRECISION. */
1299
1300 static void
1301 value_mask_to_min_max (widest_int *min, widest_int *max,
1302 const widest_int &val, const widest_int &mask,
1303 signop sgn, int precision)
1304 {
1305 *min = wi::bit_and_not (val, mask);
1306 *max = val | mask;
1307 if (sgn == SIGNED && wi::neg_p (mask))
1308 {
1309 widest_int sign_bit = wi::lshift (1, precision - 1);
1310 *min ^= sign_bit;
1311 *max ^= sign_bit;
1312 /* MAX is zero extended, and MIN is sign extended. */
1313 *min = wi::ext (*min, precision, sgn);
1314 *max = wi::ext (*max, precision, sgn);
1315 }
1316 }
1317
1318 /* Apply the operation CODE in type TYPE to the value, mask pair
1319 RVAL and RMASK representing a value of type RTYPE and set
1320 the value, mask pair *VAL and *MASK to the result. */
1321
1322 void
1323 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1324 widest_int *val, widest_int *mask,
1325 signop rtype_sgn, int rtype_precision,
1326 const widest_int &rval, const widest_int &rmask)
1327 {
1328 switch (code)
1329 {
1330 case BIT_NOT_EXPR:
1331 *mask = rmask;
1332 *val = ~rval;
1333 break;
1334
1335 case NEGATE_EXPR:
1336 {
1337 widest_int temv, temm;
1338 /* Return ~rval + 1. */
1339 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1340 type_sgn, type_precision, rval, rmask);
1341 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1342 type_sgn, type_precision, temv, temm,
1343 type_sgn, type_precision, 1, 0);
1344 break;
1345 }
1346
1347 CASE_CONVERT:
1348 {
1349 /* First extend mask and value according to the original type. */
1350 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1351 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1352
1353 /* Then extend mask and value according to the target type. */
1354 *mask = wi::ext (*mask, type_precision, type_sgn);
1355 *val = wi::ext (*val, type_precision, type_sgn);
1356 break;
1357 }
1358
1359 case ABS_EXPR:
1360 case ABSU_EXPR:
1361 if (wi::sext (rmask, rtype_precision) == -1)
1362 {
1363 *mask = -1;
1364 *val = 0;
1365 }
1366 else if (wi::neg_p (rmask))
1367 {
1368 /* Result is either rval or -rval. */
1369 widest_int temv, temm;
1370 bit_value_unop (NEGATE_EXPR, rtype_sgn, rtype_precision, &temv,
1371 &temm, type_sgn, type_precision, rval, rmask);
1372 temm |= (rmask | (rval ^ temv));
1373 /* Extend the result. */
1374 *mask = wi::ext (temm, type_precision, type_sgn);
1375 *val = wi::ext (temv, type_precision, type_sgn);
1376 }
1377 else if (wi::neg_p (rval))
1378 {
1379 bit_value_unop (NEGATE_EXPR, type_sgn, type_precision, val, mask,
1380 type_sgn, type_precision, rval, rmask);
1381 }
1382 else
1383 {
1384 *mask = rmask;
1385 *val = rval;
1386 }
1387 break;
1388
1389 default:
1390 *mask = -1;
1391 *val = 0;
1392 break;
1393 }
1394 }
1395
1396 /* Determine the mask pair *VAL and *MASK from multiplying the
1397 argument mask pair RVAL, RMASK by the unsigned constant C. */
1398 static void
1399 bit_value_mult_const (signop sgn, int width,
1400 widest_int *val, widest_int *mask,
1401 const widest_int &rval, const widest_int &rmask,
1402 widest_int c)
1403 {
1404 widest_int sum_mask = 0;
1405
1406 /* Ensure rval_lo only contains known bits. */
1407 widest_int rval_lo = wi::bit_and_not (rval, rmask);
1408
1409 if (rval_lo != 0)
1410 {
1411 /* General case (some bits of multiplicand are known set). */
1412 widest_int sum_val = 0;
1413 while (c != 0)
1414 {
1415 /* Determine the lowest bit set in the multiplier. */
1416 int bitpos = wi::ctz (c);
1417 widest_int term_mask = rmask << bitpos;
1418 widest_int term_val = rval_lo << bitpos;
1419
1420 /* sum += term. */
1421 widest_int lo = sum_val + term_val;
1422 widest_int hi = (sum_val | sum_mask) + (term_val | term_mask);
1423 sum_mask |= term_mask | (lo ^ hi);
1424 sum_val = lo;
1425
1426 /* Clear this bit in the multiplier. */
1427 c ^= wi::lshift (1, bitpos);
1428 }
1429 /* Correctly extend the result value. */
1430 *val = wi::ext (sum_val, width, sgn);
1431 }
1432 else
1433 {
1434 /* Special case (no bits of multiplicand are known set). */
1435 while (c != 0)
1436 {
1437 /* Determine the lowest bit set in the multiplier. */
1438 int bitpos = wi::ctz (c);
1439 widest_int term_mask = rmask << bitpos;
1440
1441 /* sum += term. */
1442 widest_int hi = sum_mask + term_mask;
1443 sum_mask |= term_mask | hi;
1444
1445 /* Clear this bit in the multiplier. */
1446 c ^= wi::lshift (1, bitpos);
1447 }
1448 *val = 0;
1449 }
1450
1451 /* Correctly extend the result mask. */
1452 *mask = wi::ext (sum_mask, width, sgn);
1453 }
1454
1455 /* Fill up to MAX values in the BITS array with values representing
1456 each of the non-zero bits in the value X. Returns the number of
1457 bits in X (capped at the maximum value MAX). For example, an X
1458 value 11, places 1, 2 and 8 in BITS and returns the value 3. */
1459
1460 static unsigned int
1461 get_individual_bits (widest_int *bits, widest_int x, unsigned int max)
1462 {
1463 unsigned int count = 0;
1464 while (count < max && x != 0)
1465 {
1466 int bitpos = wi::ctz (x);
1467 bits[count] = wi::lshift (1, bitpos);
1468 x ^= bits[count];
1469 count++;
1470 }
1471 return count;
1472 }
1473
1474 /* Array of 2^N - 1 values representing the bits flipped between
1475 consecutive Gray codes. This is used to efficiently enumerate
1476 all permutations on N bits using XOR. */
1477 static const unsigned char gray_code_bit_flips[63] = {
1478 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
1479 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5,
1480 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
1481 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
1482 };
1483
1484 /* Apply the operation CODE in type TYPE to the value, mask pairs
1485 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1486 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1487
1488 void
1489 bit_value_binop (enum tree_code code, signop sgn, int width,
1490 widest_int *val, widest_int *mask,
1491 signop r1type_sgn, int r1type_precision,
1492 const widest_int &r1val, const widest_int &r1mask,
1493 signop r2type_sgn, int r2type_precision ATTRIBUTE_UNUSED,
1494 const widest_int &r2val, const widest_int &r2mask)
1495 {
1496 bool swap_p = false;
1497
1498 /* Assume we'll get a constant result. Use an initial non varying
1499 value, we fall back to varying in the end if necessary. */
1500 *mask = -1;
1501 /* Ensure that VAL is initialized (to any value). */
1502 *val = 0;
1503
1504 switch (code)
1505 {
1506 case BIT_AND_EXPR:
1507 /* The mask is constant where there is a known not
1508 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1509 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1510 *val = r1val & r2val;
1511 break;
1512
1513 case BIT_IOR_EXPR:
1514 /* The mask is constant where there is a known
1515 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1516 *mask = wi::bit_and_not (r1mask | r2mask,
1517 wi::bit_and_not (r1val, r1mask)
1518 | wi::bit_and_not (r2val, r2mask));
1519 *val = r1val | r2val;
1520 break;
1521
1522 case BIT_XOR_EXPR:
1523 /* m1 | m2 */
1524 *mask = r1mask | r2mask;
1525 *val = r1val ^ r2val;
1526 break;
1527
1528 case LROTATE_EXPR:
1529 case RROTATE_EXPR:
1530 if (r2mask == 0)
1531 {
1532 widest_int shift = r2val;
1533 if (shift == 0)
1534 {
1535 *mask = r1mask;
1536 *val = r1val;
1537 }
1538 else
1539 {
1540 if (wi::neg_p (shift, r2type_sgn))
1541 {
1542 shift = -shift;
1543 if (code == RROTATE_EXPR)
1544 code = LROTATE_EXPR;
1545 else
1546 code = RROTATE_EXPR;
1547 }
1548 if (code == RROTATE_EXPR)
1549 {
1550 *mask = wi::rrotate (r1mask, shift, width);
1551 *val = wi::rrotate (r1val, shift, width);
1552 }
1553 else
1554 {
1555 *mask = wi::lrotate (r1mask, shift, width);
1556 *val = wi::lrotate (r1val, shift, width);
1557 }
1558 *mask = wi::ext (*mask, width, sgn);
1559 *val = wi::ext (*val, width, sgn);
1560 }
1561 }
1562 else if (wi::ltu_p (r2val | r2mask, width)
1563 && wi::popcount (r2mask) <= 4)
1564 {
1565 widest_int bits[4];
1566 widest_int res_val, res_mask;
1567 widest_int tmp_val, tmp_mask;
1568 widest_int shift = wi::bit_and_not (r2val, r2mask);
1569 unsigned int bit_count = get_individual_bits (bits, r2mask, 4);
1570 unsigned int count = (1 << bit_count) - 1;
1571
1572 /* Initialize result to rotate by smallest value of shift. */
1573 if (code == RROTATE_EXPR)
1574 {
1575 res_mask = wi::rrotate (r1mask, shift, width);
1576 res_val = wi::rrotate (r1val, shift, width);
1577 }
1578 else
1579 {
1580 res_mask = wi::lrotate (r1mask, shift, width);
1581 res_val = wi::lrotate (r1val, shift, width);
1582 }
1583
1584 /* Iterate through the remaining values of shift. */
1585 for (unsigned int i=0; i<count; i++)
1586 {
1587 shift ^= bits[gray_code_bit_flips[i]];
1588 if (code == RROTATE_EXPR)
1589 {
1590 tmp_mask = wi::rrotate (r1mask, shift, width);
1591 tmp_val = wi::rrotate (r1val, shift, width);
1592 }
1593 else
1594 {
1595 tmp_mask = wi::lrotate (r1mask, shift, width);
1596 tmp_val = wi::lrotate (r1val, shift, width);
1597 }
1598 /* Accumulate the result. */
1599 res_mask |= tmp_mask | (res_val ^ tmp_val);
1600 }
1601 *val = wi::ext (wi::bit_and_not (res_val, res_mask), width, sgn);
1602 *mask = wi::ext (res_mask, width, sgn);
1603 }
1604 break;
1605
1606 case LSHIFT_EXPR:
1607 case RSHIFT_EXPR:
1608 /* ??? We can handle partially known shift counts if we know
1609 its sign. That way we can tell that (x << (y | 8)) & 255
1610 is zero. */
1611 if (r2mask == 0)
1612 {
1613 widest_int shift = r2val;
1614 if (shift == 0)
1615 {
1616 *mask = r1mask;
1617 *val = r1val;
1618 }
1619 else
1620 {
1621 if (wi::neg_p (shift, r2type_sgn))
1622 break;
1623 if (code == RSHIFT_EXPR)
1624 {
1625 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1626 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1627 }
1628 else
1629 {
1630 *mask = wi::ext (r1mask << shift, width, sgn);
1631 *val = wi::ext (r1val << shift, width, sgn);
1632 }
1633 }
1634 }
1635 else if (wi::ltu_p (r2val | r2mask, width))
1636 {
1637 if (wi::popcount (r2mask) <= 4)
1638 {
1639 widest_int bits[4];
1640 widest_int arg_val, arg_mask;
1641 widest_int res_val, res_mask;
1642 widest_int tmp_val, tmp_mask;
1643 widest_int shift = wi::bit_and_not (r2val, r2mask);
1644 unsigned int bit_count = get_individual_bits (bits, r2mask, 4);
1645 unsigned int count = (1 << bit_count) - 1;
1646
1647 /* Initialize result to shift by smallest value of shift. */
1648 if (code == RSHIFT_EXPR)
1649 {
1650 arg_mask = wi::ext (r1mask, width, sgn);
1651 arg_val = wi::ext (r1val, width, sgn);
1652 res_mask = wi::rshift (arg_mask, shift, sgn);
1653 res_val = wi::rshift (arg_val, shift, sgn);
1654 }
1655 else
1656 {
1657 arg_mask = r1mask;
1658 arg_val = r1val;
1659 res_mask = arg_mask << shift;
1660 res_val = arg_val << shift;
1661 }
1662
1663 /* Iterate through the remaining values of shift. */
1664 for (unsigned int i=0; i<count; i++)
1665 {
1666 shift ^= bits[gray_code_bit_flips[i]];
1667 if (code == RSHIFT_EXPR)
1668 {
1669 tmp_mask = wi::rshift (arg_mask, shift, sgn);
1670 tmp_val = wi::rshift (arg_val, shift, sgn);
1671 }
1672 else
1673 {
1674 tmp_mask = arg_mask << shift;
1675 tmp_val = arg_val << shift;
1676 }
1677 /* Accumulate the result. */
1678 res_mask |= tmp_mask | (res_val ^ tmp_val);
1679 }
1680 res_mask = wi::ext (res_mask, width, sgn);
1681 res_val = wi::ext (res_val, width, sgn);
1682 *val = wi::bit_and_not (res_val, res_mask);
1683 *mask = res_mask;
1684 }
1685 else if ((r1val | r1mask) == 0)
1686 {
1687 /* Handle shifts of zero to avoid undefined wi::ctz below. */
1688 *mask = 0;
1689 *val = 0;
1690 }
1691 else if (code == LSHIFT_EXPR)
1692 {
1693 widest_int tmp = wi::mask <widest_int> (width, false);
1694 tmp <<= wi::ctz (r1val | r1mask);
1695 tmp <<= wi::bit_and_not (r2val, r2mask);
1696 *mask = wi::ext (tmp, width, sgn);
1697 *val = 0;
1698 }
1699 else if (!wi::neg_p (r1val | r1mask, sgn))
1700 {
1701 /* Logical right shift, or zero sign bit. */
1702 widest_int arg = r1val | r1mask;
1703 int lzcount = wi::clz (arg);
1704 if (lzcount)
1705 lzcount -= wi::get_precision (arg) - width;
1706 widest_int tmp = wi::mask <widest_int> (width, false);
1707 tmp = wi::lrshift (tmp, lzcount);
1708 tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask));
1709 *mask = wi::ext (tmp, width, sgn);
1710 *val = 0;
1711 }
1712 else if (!wi::neg_p (r1mask))
1713 {
1714 /* Arithmetic right shift with set sign bit. */
1715 widest_int arg = wi::bit_and_not (r1val, r1mask);
1716 int sbcount = wi::clrsb (arg);
1717 sbcount -= wi::get_precision (arg) - width;
1718 widest_int tmp = wi::mask <widest_int> (width, false);
1719 tmp = wi::lrshift (tmp, sbcount);
1720 tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask));
1721 *mask = wi::sext (tmp, width);
1722 tmp = wi::bit_not (tmp);
1723 *val = wi::sext (tmp, width);
1724 }
1725 }
1726 break;
1727
1728 case PLUS_EXPR:
1729 case POINTER_PLUS_EXPR:
1730 {
1731 /* Do the addition with unknown bits set to zero, to give carry-ins of
1732 zero wherever possible. */
1733 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1734 + wi::bit_and_not (r2val, r2mask));
1735 lo = wi::ext (lo, width, sgn);
1736 /* Do the addition with unknown bits set to one, to give carry-ins of
1737 one wherever possible. */
1738 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1739 hi = wi::ext (hi, width, sgn);
1740 /* Each bit in the result is known if (a) the corresponding bits in
1741 both inputs are known, and (b) the carry-in to that bit position
1742 is known. We can check condition (b) by seeing if we got the same
1743 result with minimised carries as with maximised carries. */
1744 *mask = r1mask | r2mask | (lo ^ hi);
1745 *mask = wi::ext (*mask, width, sgn);
1746 /* It shouldn't matter whether we choose lo or hi here. */
1747 *val = lo;
1748 break;
1749 }
1750
1751 case MINUS_EXPR:
1752 case POINTER_DIFF_EXPR:
1753 {
1754 /* Subtraction is derived from the addition algorithm above. */
1755 widest_int lo = wi::bit_and_not (r1val, r1mask) - (r2val | r2mask);
1756 lo = wi::ext (lo, width, sgn);
1757 widest_int hi = (r1val | r1mask) - wi::bit_and_not (r2val, r2mask);
1758 hi = wi::ext (hi, width, sgn);
1759 *mask = r1mask | r2mask | (lo ^ hi);
1760 *mask = wi::ext (*mask, width, sgn);
1761 *val = lo;
1762 break;
1763 }
1764
1765 case MULT_EXPR:
1766 if (r2mask == 0
1767 && !wi::neg_p (r2val, sgn)
1768 && (flag_expensive_optimizations || wi::popcount (r2val) < 8))
1769 bit_value_mult_const (sgn, width, val, mask, r1val, r1mask, r2val);
1770 else if (r1mask == 0
1771 && !wi::neg_p (r1val, sgn)
1772 && (flag_expensive_optimizations || wi::popcount (r1val) < 8))
1773 bit_value_mult_const (sgn, width, val, mask, r2val, r2mask, r1val);
1774 else
1775 {
1776 /* Just track trailing zeros in both operands and transfer
1777 them to the other. */
1778 int r1tz = wi::ctz (r1val | r1mask);
1779 int r2tz = wi::ctz (r2val | r2mask);
1780 if (r1tz + r2tz >= width)
1781 {
1782 *mask = 0;
1783 *val = 0;
1784 }
1785 else if (r1tz + r2tz > 0)
1786 {
1787 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1788 width, sgn);
1789 *val = 0;
1790 }
1791 }
1792 break;
1793
1794 case EQ_EXPR:
1795 case NE_EXPR:
1796 {
1797 widest_int m = r1mask | r2mask;
1798 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1799 {
1800 *mask = 0;
1801 *val = ((code == EQ_EXPR) ? 0 : 1);
1802 }
1803 else
1804 {
1805 /* We know the result of a comparison is always one or zero. */
1806 *mask = 1;
1807 *val = 0;
1808 }
1809 break;
1810 }
1811
1812 case GE_EXPR:
1813 case GT_EXPR:
1814 swap_p = true;
1815 code = swap_tree_comparison (code);
1816 /* Fall through. */
1817 case LT_EXPR:
1818 case LE_EXPR:
1819 {
1820 widest_int min1, max1, min2, max2;
1821 int minmax, maxmin;
1822
1823 const widest_int &o1val = swap_p ? r2val : r1val;
1824 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1825 const widest_int &o2val = swap_p ? r1val : r2val;
1826 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1827
1828 value_mask_to_min_max (&min1, &max1, o1val, o1mask,
1829 r1type_sgn, r1type_precision);
1830 value_mask_to_min_max (&min2, &max2, o2val, o2mask,
1831 r1type_sgn, r1type_precision);
1832
1833 /* For comparisons the signedness is in the comparison operands. */
1834 /* Do a cross comparison of the max/min pairs. */
1835 maxmin = wi::cmp (max1, min2, r1type_sgn);
1836 minmax = wi::cmp (min1, max2, r1type_sgn);
1837 if (maxmin < (code == LE_EXPR ? 1: 0)) /* o1 < or <= o2. */
1838 {
1839 *mask = 0;
1840 *val = 1;
1841 }
1842 else if (minmax > (code == LT_EXPR ? -1 : 0)) /* o1 >= or > o2. */
1843 {
1844 *mask = 0;
1845 *val = 0;
1846 }
1847 else if (maxmin == minmax) /* o1 and o2 are equal. */
1848 {
1849 /* This probably should never happen as we'd have
1850 folded the thing during fully constant value folding. */
1851 *mask = 0;
1852 *val = (code == LE_EXPR ? 1 : 0);
1853 }
1854 else
1855 {
1856 /* We know the result of a comparison is always one or zero. */
1857 *mask = 1;
1858 *val = 0;
1859 }
1860 break;
1861 }
1862
1863 case MIN_EXPR:
1864 case MAX_EXPR:
1865 {
1866 widest_int min1, max1, min2, max2;
1867
1868 value_mask_to_min_max (&min1, &max1, r1val, r1mask, sgn, width);
1869 value_mask_to_min_max (&min2, &max2, r2val, r2mask, sgn, width);
1870
1871 if (wi::cmp (max1, min2, sgn) <= 0) /* r1 is less than r2. */
1872 {
1873 if (code == MIN_EXPR)
1874 {
1875 *mask = r1mask;
1876 *val = r1val;
1877 }
1878 else
1879 {
1880 *mask = r2mask;
1881 *val = r2val;
1882 }
1883 }
1884 else if (wi::cmp (min1, max2, sgn) >= 0) /* r2 is less than r1. */
1885 {
1886 if (code == MIN_EXPR)
1887 {
1888 *mask = r2mask;
1889 *val = r2val;
1890 }
1891 else
1892 {
1893 *mask = r1mask;
1894 *val = r1val;
1895 }
1896 }
1897 else
1898 {
1899 /* The result is either r1 or r2. */
1900 *mask = r1mask | r2mask | (r1val ^ r2val);
1901 *val = r1val;
1902 }
1903 break;
1904 }
1905
1906 case TRUNC_MOD_EXPR:
1907 {
1908 widest_int r1max = r1val | r1mask;
1909 widest_int r2max = r2val | r2mask;
1910 if (sgn == UNSIGNED
1911 || (!wi::neg_p (r1max) && !wi::neg_p (r2max)))
1912 {
1913 /* Confirm R2 has some bits set, to avoid division by zero. */
1914 widest_int r2min = wi::bit_and_not (r2val, r2mask);
1915 if (r2min != 0)
1916 {
1917 /* R1 % R2 is R1 if R1 is always less than R2. */
1918 if (wi::ltu_p (r1max, r2min))
1919 {
1920 *mask = r1mask;
1921 *val = r1val;
1922 }
1923 else
1924 {
1925 /* R1 % R2 is always less than the maximum of R2. */
1926 unsigned int lzcount = wi::clz (r2max);
1927 unsigned int bits = wi::get_precision (r2max) - lzcount;
1928 if (r2max == wi::lshift (1, bits))
1929 bits--;
1930 *mask = wi::mask <widest_int> (bits, false);
1931 *val = 0;
1932 }
1933 }
1934 }
1935 }
1936 break;
1937
1938 case TRUNC_DIV_EXPR:
1939 {
1940 widest_int r1max = r1val | r1mask;
1941 widest_int r2max = r2val | r2mask;
1942 if (r2mask == 0 && !wi::neg_p (r1max))
1943 {
1944 widest_int shift = wi::exact_log2 (r2val);
1945 if (shift != -1)
1946 {
1947 // Handle division by a power of 2 as an rshift.
1948 bit_value_binop (RSHIFT_EXPR, sgn, width, val, mask,
1949 r1type_sgn, r1type_precision, r1val, r1mask,
1950 r2type_sgn, r2type_precision, shift, r2mask);
1951 return;
1952 }
1953 }
1954 if (sgn == UNSIGNED
1955 || (!wi::neg_p (r1max) && !wi::neg_p (r2max)))
1956 {
1957 /* Confirm R2 has some bits set, to avoid division by zero. */
1958 widest_int r2min = wi::bit_and_not (r2val, r2mask);
1959 if (r2min != 0)
1960 {
1961 /* R1 / R2 is zero if R1 is always less than R2. */
1962 if (wi::ltu_p (r1max, r2min))
1963 {
1964 *mask = 0;
1965 *val = 0;
1966 }
1967 else
1968 {
1969 widest_int upper = wi::udiv_trunc (r1max, r2min);
1970 unsigned int lzcount = wi::clz (upper);
1971 unsigned int bits = wi::get_precision (upper) - lzcount;
1972 *mask = wi::mask <widest_int> (bits, false);
1973 *val = 0;
1974 }
1975 }
1976 }
1977 }
1978 break;
1979
1980 default:;
1981 }
1982 }
1983
1984 /* Return the propagation value when applying the operation CODE to
1985 the value RHS yielding type TYPE. */
1986
1987 static ccp_prop_value_t
1988 bit_value_unop (enum tree_code code, tree type, tree rhs)
1989 {
1990 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1991 widest_int value, mask;
1992 ccp_prop_value_t val;
1993
1994 if (rval.lattice_val == UNDEFINED)
1995 return rval;
1996
1997 gcc_assert ((rval.lattice_val == CONSTANT
1998 && TREE_CODE (rval.value) == INTEGER_CST)
1999 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
2000 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
2001 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
2002 value_to_wide_int (rval), rval.mask);
2003 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2004 {
2005 val.lattice_val = CONSTANT;
2006 val.mask = mask;
2007 /* ??? Delay building trees here. */
2008 val.value = wide_int_to_tree (type, value);
2009 }
2010 else
2011 {
2012 val.lattice_val = VARYING;
2013 val.value = NULL_TREE;
2014 val.mask = -1;
2015 }
2016 return val;
2017 }
2018
2019 /* Return the propagation value when applying the operation CODE to
2020 the values RHS1 and RHS2 yielding type TYPE. */
2021
2022 static ccp_prop_value_t
2023 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
2024 {
2025 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
2026 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
2027 widest_int value, mask;
2028 ccp_prop_value_t val;
2029
2030 if (r1val.lattice_val == UNDEFINED
2031 || r2val.lattice_val == UNDEFINED)
2032 {
2033 val.lattice_val = VARYING;
2034 val.value = NULL_TREE;
2035 val.mask = -1;
2036 return val;
2037 }
2038
2039 gcc_assert ((r1val.lattice_val == CONSTANT
2040 && TREE_CODE (r1val.value) == INTEGER_CST)
2041 || wi::sext (r1val.mask,
2042 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
2043 gcc_assert ((r2val.lattice_val == CONSTANT
2044 && TREE_CODE (r2val.value) == INTEGER_CST)
2045 || wi::sext (r2val.mask,
2046 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
2047 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
2048 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
2049 value_to_wide_int (r1val), r1val.mask,
2050 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
2051 value_to_wide_int (r2val), r2val.mask);
2052
2053 /* (x * x) & 2 == 0. */
2054 if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
2055 {
2056 widest_int m = 2;
2057 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2058 value = wi::bit_and_not (value, m);
2059 else
2060 value = 0;
2061 mask = wi::bit_and_not (mask, m);
2062 }
2063
2064 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2065 {
2066 val.lattice_val = CONSTANT;
2067 val.mask = mask;
2068 /* ??? Delay building trees here. */
2069 val.value = wide_int_to_tree (type, value);
2070 }
2071 else
2072 {
2073 val.lattice_val = VARYING;
2074 val.value = NULL_TREE;
2075 val.mask = -1;
2076 }
2077 return val;
2078 }
2079
2080 /* Return the propagation value for __builtin_assume_aligned
2081 and functions with assume_aligned or alloc_aligned attribute.
2082 For __builtin_assume_aligned, ATTR is NULL_TREE,
2083 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
2084 is false, for alloc_aligned attribute ATTR is non-NULL and
2085 ALLOC_ALIGNED is true. */
2086
2087 static ccp_prop_value_t
2088 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
2089 bool alloc_aligned)
2090 {
2091 tree align, misalign = NULL_TREE, type;
2092 unsigned HOST_WIDE_INT aligni, misaligni = 0;
2093 ccp_prop_value_t alignval;
2094 widest_int value, mask;
2095 ccp_prop_value_t val;
2096
2097 if (attr == NULL_TREE)
2098 {
2099 tree ptr = gimple_call_arg (stmt, 0);
2100 type = TREE_TYPE (ptr);
2101 ptrval = get_value_for_expr (ptr, true);
2102 }
2103 else
2104 {
2105 tree lhs = gimple_call_lhs (stmt);
2106 type = TREE_TYPE (lhs);
2107 }
2108
2109 if (ptrval.lattice_val == UNDEFINED)
2110 return ptrval;
2111 gcc_assert ((ptrval.lattice_val == CONSTANT
2112 && TREE_CODE (ptrval.value) == INTEGER_CST)
2113 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
2114 if (attr == NULL_TREE)
2115 {
2116 /* Get aligni and misaligni from __builtin_assume_aligned. */
2117 align = gimple_call_arg (stmt, 1);
2118 if (!tree_fits_uhwi_p (align))
2119 return ptrval;
2120 aligni = tree_to_uhwi (align);
2121 if (gimple_call_num_args (stmt) > 2)
2122 {
2123 misalign = gimple_call_arg (stmt, 2);
2124 if (!tree_fits_uhwi_p (misalign))
2125 return ptrval;
2126 misaligni = tree_to_uhwi (misalign);
2127 }
2128 }
2129 else
2130 {
2131 /* Get aligni and misaligni from assume_aligned or
2132 alloc_align attributes. */
2133 if (TREE_VALUE (attr) == NULL_TREE)
2134 return ptrval;
2135 attr = TREE_VALUE (attr);
2136 align = TREE_VALUE (attr);
2137 if (!tree_fits_uhwi_p (align))
2138 return ptrval;
2139 aligni = tree_to_uhwi (align);
2140 if (alloc_aligned)
2141 {
2142 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
2143 return ptrval;
2144 align = gimple_call_arg (stmt, aligni - 1);
2145 if (!tree_fits_uhwi_p (align))
2146 return ptrval;
2147 aligni = tree_to_uhwi (align);
2148 }
2149 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
2150 {
2151 misalign = TREE_VALUE (TREE_CHAIN (attr));
2152 if (!tree_fits_uhwi_p (misalign))
2153 return ptrval;
2154 misaligni = tree_to_uhwi (misalign);
2155 }
2156 }
2157 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
2158 return ptrval;
2159
2160 align = build_int_cst_type (type, -aligni);
2161 alignval = get_value_for_expr (align, true);
2162 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
2163 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
2164 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
2165
2166 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2167 {
2168 val.lattice_val = CONSTANT;
2169 val.mask = mask;
2170 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
2171 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
2172 value |= misaligni;
2173 /* ??? Delay building trees here. */
2174 val.value = wide_int_to_tree (type, value);
2175 }
2176 else
2177 {
2178 val.lattice_val = VARYING;
2179 val.value = NULL_TREE;
2180 val.mask = -1;
2181 }
2182 return val;
2183 }
2184
2185 /* Evaluate statement STMT.
2186 Valid only for assignments, calls, conditionals, and switches. */
2187
2188 static ccp_prop_value_t
2189 evaluate_stmt (gimple *stmt)
2190 {
2191 ccp_prop_value_t val;
2192 tree simplified = NULL_TREE;
2193 ccp_lattice_t likelyvalue = likely_value (stmt);
2194 bool is_constant = false;
2195 unsigned int align;
2196 bool ignore_return_flags = false;
2197
2198 if (dump_file && (dump_flags & TDF_DETAILS))
2199 {
2200 fprintf (dump_file, "which is likely ");
2201 switch (likelyvalue)
2202 {
2203 case CONSTANT:
2204 fprintf (dump_file, "CONSTANT");
2205 break;
2206 case UNDEFINED:
2207 fprintf (dump_file, "UNDEFINED");
2208 break;
2209 case VARYING:
2210 fprintf (dump_file, "VARYING");
2211 break;
2212 default:;
2213 }
2214 fprintf (dump_file, "\n");
2215 }
2216
2217 /* If the statement is likely to have a CONSTANT result, then try
2218 to fold the statement to determine the constant value. */
2219 /* FIXME. This is the only place that we call ccp_fold.
2220 Since likely_value never returns CONSTANT for calls, we will
2221 not attempt to fold them, including builtins that may profit. */
2222 if (likelyvalue == CONSTANT)
2223 {
2224 fold_defer_overflow_warnings ();
2225 simplified = ccp_fold (stmt);
2226 if (simplified
2227 && TREE_CODE (simplified) == SSA_NAME)
2228 {
2229 /* We may not use values of something that may be simulated again,
2230 see valueize_op_1. */
2231 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
2232 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
2233 {
2234 ccp_prop_value_t *val = get_value (simplified);
2235 if (val && val->lattice_val != VARYING)
2236 {
2237 fold_undefer_overflow_warnings (true, stmt, 0);
2238 return *val;
2239 }
2240 }
2241 else
2242 /* We may also not place a non-valueized copy in the lattice
2243 as that might become stale if we never re-visit this stmt. */
2244 simplified = NULL_TREE;
2245 }
2246 is_constant = simplified && is_gimple_min_invariant (simplified);
2247 fold_undefer_overflow_warnings (is_constant, stmt, 0);
2248 if (is_constant)
2249 {
2250 /* The statement produced a constant value. */
2251 val.lattice_val = CONSTANT;
2252 val.value = simplified;
2253 val.mask = 0;
2254 return val;
2255 }
2256 }
2257 /* If the statement is likely to have a VARYING result, then do not
2258 bother folding the statement. */
2259 else if (likelyvalue == VARYING)
2260 {
2261 enum gimple_code code = gimple_code (stmt);
2262 if (code == GIMPLE_ASSIGN)
2263 {
2264 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2265
2266 /* Other cases cannot satisfy is_gimple_min_invariant
2267 without folding. */
2268 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
2269 simplified = gimple_assign_rhs1 (stmt);
2270 }
2271 else if (code == GIMPLE_SWITCH)
2272 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
2273 else
2274 /* These cannot satisfy is_gimple_min_invariant without folding. */
2275 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
2276 is_constant = simplified && is_gimple_min_invariant (simplified);
2277 if (is_constant)
2278 {
2279 /* The statement produced a constant value. */
2280 val.lattice_val = CONSTANT;
2281 val.value = simplified;
2282 val.mask = 0;
2283 }
2284 }
2285 /* If the statement result is likely UNDEFINED, make it so. */
2286 else if (likelyvalue == UNDEFINED)
2287 {
2288 val.lattice_val = UNDEFINED;
2289 val.value = NULL_TREE;
2290 val.mask = 0;
2291 return val;
2292 }
2293
2294 /* Resort to simplification for bitwise tracking. */
2295 if (flag_tree_bit_ccp
2296 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
2297 || (gimple_assign_single_p (stmt)
2298 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
2299 && !is_constant)
2300 {
2301 enum gimple_code code = gimple_code (stmt);
2302 val.lattice_val = VARYING;
2303 val.value = NULL_TREE;
2304 val.mask = -1;
2305 if (code == GIMPLE_ASSIGN)
2306 {
2307 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2308 tree rhs1 = gimple_assign_rhs1 (stmt);
2309 tree lhs = gimple_assign_lhs (stmt);
2310 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2311 || POINTER_TYPE_P (TREE_TYPE (lhs)))
2312 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2313 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
2314 switch (get_gimple_rhs_class (subcode))
2315 {
2316 case GIMPLE_SINGLE_RHS:
2317 val = get_value_for_expr (rhs1, true);
2318 break;
2319
2320 case GIMPLE_UNARY_RHS:
2321 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
2322 break;
2323
2324 case GIMPLE_BINARY_RHS:
2325 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
2326 gimple_assign_rhs2 (stmt));
2327 break;
2328
2329 default:;
2330 }
2331 }
2332 else if (code == GIMPLE_COND)
2333 {
2334 enum tree_code code = gimple_cond_code (stmt);
2335 tree rhs1 = gimple_cond_lhs (stmt);
2336 tree rhs2 = gimple_cond_rhs (stmt);
2337 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2338 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2339 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
2340 }
2341 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2342 {
2343 tree fndecl = gimple_call_fndecl (stmt);
2344 switch (DECL_FUNCTION_CODE (fndecl))
2345 {
2346 case BUILT_IN_MALLOC:
2347 case BUILT_IN_REALLOC:
2348 case BUILT_IN_CALLOC:
2349 case BUILT_IN_STRDUP:
2350 case BUILT_IN_STRNDUP:
2351 val.lattice_val = CONSTANT;
2352 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2353 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
2354 / BITS_PER_UNIT - 1);
2355 break;
2356
2357 CASE_BUILT_IN_ALLOCA:
2358 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
2359 ? BIGGEST_ALIGNMENT
2360 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2361 val.lattice_val = CONSTANT;
2362 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2363 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
2364 break;
2365
2366 case BUILT_IN_ASSUME_ALIGNED:
2367 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
2368 ignore_return_flags = true;
2369 break;
2370
2371 case BUILT_IN_ALIGNED_ALLOC:
2372 case BUILT_IN_GOMP_ALLOC:
2373 {
2374 tree align = get_constant_value (gimple_call_arg (stmt, 0));
2375 if (align
2376 && tree_fits_uhwi_p (align))
2377 {
2378 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
2379 if (aligni > 1
2380 /* align must be power-of-two */
2381 && (aligni & (aligni - 1)) == 0)
2382 {
2383 val.lattice_val = CONSTANT;
2384 val.value = build_int_cst (ptr_type_node, 0);
2385 val.mask = -aligni;
2386 }
2387 }
2388 break;
2389 }
2390
2391 case BUILT_IN_BSWAP16:
2392 case BUILT_IN_BSWAP32:
2393 case BUILT_IN_BSWAP64:
2394 case BUILT_IN_BSWAP128:
2395 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
2396 if (val.lattice_val == UNDEFINED)
2397 break;
2398 else if (val.lattice_val == CONSTANT
2399 && val.value
2400 && TREE_CODE (val.value) == INTEGER_CST)
2401 {
2402 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2403 int prec = TYPE_PRECISION (type);
2404 wide_int wval = wi::to_wide (val.value);
2405 val.value
2406 = wide_int_to_tree (type,
2407 wi::bswap (wide_int::from (wval, prec,
2408 UNSIGNED)));
2409 val.mask
2410 = widest_int::from (wi::bswap (wide_int::from (val.mask,
2411 prec,
2412 UNSIGNED)),
2413 UNSIGNED);
2414 if (wi::sext (val.mask, prec) != -1)
2415 break;
2416 }
2417 val.lattice_val = VARYING;
2418 val.value = NULL_TREE;
2419 val.mask = -1;
2420 break;
2421
2422 default:;
2423 }
2424 }
2425 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2426 {
2427 tree fntype = gimple_call_fntype (stmt);
2428 if (fntype)
2429 {
2430 tree attrs = lookup_attribute ("assume_aligned",
2431 TYPE_ATTRIBUTES (fntype));
2432 if (attrs)
2433 val = bit_value_assume_aligned (stmt, attrs, val, false);
2434 attrs = lookup_attribute ("alloc_align",
2435 TYPE_ATTRIBUTES (fntype));
2436 if (attrs)
2437 val = bit_value_assume_aligned (stmt, attrs, val, true);
2438 }
2439 int flags = ignore_return_flags
2440 ? 0 : gimple_call_return_flags (as_a <gcall *> (stmt));
2441 if (flags & ERF_RETURNS_ARG
2442 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
2443 {
2444 val = get_value_for_expr
2445 (gimple_call_arg (stmt,
2446 flags & ERF_RETURN_ARG_MASK), true);
2447 }
2448 }
2449 is_constant = (val.lattice_val == CONSTANT);
2450 }
2451
2452 if (flag_tree_bit_ccp
2453 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2454 || !is_constant)
2455 && gimple_get_lhs (stmt)
2456 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2457 {
2458 tree lhs = gimple_get_lhs (stmt);
2459 wide_int nonzero_bits = get_nonzero_bits (lhs);
2460 if (nonzero_bits != -1)
2461 {
2462 if (!is_constant)
2463 {
2464 val.lattice_val = CONSTANT;
2465 val.value = build_zero_cst (TREE_TYPE (lhs));
2466 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2467 is_constant = true;
2468 }
2469 else
2470 {
2471 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2472 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2473 nonzero_bits
2474 & wi::to_wide (val.value));
2475 if (nonzero_bits == 0)
2476 val.mask = 0;
2477 else
2478 val.mask = val.mask & extend_mask (nonzero_bits,
2479 TYPE_SIGN (TREE_TYPE (lhs)));
2480 }
2481 }
2482 }
2483
2484 /* The statement produced a nonconstant value. */
2485 if (!is_constant)
2486 {
2487 /* The statement produced a copy. */
2488 if (simplified && TREE_CODE (simplified) == SSA_NAME
2489 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2490 {
2491 val.lattice_val = CONSTANT;
2492 val.value = simplified;
2493 val.mask = -1;
2494 }
2495 /* The statement is VARYING. */
2496 else
2497 {
2498 val.lattice_val = VARYING;
2499 val.value = NULL_TREE;
2500 val.mask = -1;
2501 }
2502 }
2503
2504 return val;
2505 }
2506
2507 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2508
2509 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2510 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2511
2512 static void
2513 insert_clobber_before_stack_restore (tree saved_val, tree var,
2514 gimple_htab **visited)
2515 {
2516 gimple *stmt;
2517 gassign *clobber_stmt;
2518 tree clobber;
2519 imm_use_iterator iter;
2520 gimple_stmt_iterator i;
2521 gimple **slot;
2522
2523 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2524 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2525 {
2526 clobber = build_clobber (TREE_TYPE (var), CLOBBER_EOL);
2527 clobber_stmt = gimple_build_assign (var, clobber);
2528
2529 i = gsi_for_stmt (stmt);
2530 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2531 }
2532 else if (gimple_code (stmt) == GIMPLE_PHI)
2533 {
2534 if (!*visited)
2535 *visited = new gimple_htab (10);
2536
2537 slot = (*visited)->find_slot (stmt, INSERT);
2538 if (*slot != NULL)
2539 continue;
2540
2541 *slot = stmt;
2542 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2543 visited);
2544 }
2545 else if (gimple_assign_ssa_name_copy_p (stmt))
2546 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2547 visited);
2548 }
2549
2550 /* Advance the iterator to the previous non-debug gimple statement in the same
2551 or dominating basic block. */
2552
2553 static inline void
2554 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2555 {
2556 basic_block dom;
2557
2558 gsi_prev_nondebug (i);
2559 while (gsi_end_p (*i))
2560 {
2561 dom = get_immediate_dominator (CDI_DOMINATORS, gsi_bb (*i));
2562 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2563 return;
2564
2565 *i = gsi_last_bb (dom);
2566 }
2567 }
2568
2569 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2570 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2571
2572 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2573 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2574 In that case the function gives up without inserting the clobbers. */
2575
2576 static void
2577 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2578 {
2579 gimple *stmt;
2580 tree saved_val;
2581 gimple_htab *visited = NULL;
2582
2583 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2584 {
2585 stmt = gsi_stmt (i);
2586
2587 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2588 continue;
2589
2590 saved_val = gimple_call_lhs (stmt);
2591 if (saved_val == NULL_TREE)
2592 continue;
2593
2594 insert_clobber_before_stack_restore (saved_val, var, &visited);
2595 break;
2596 }
2597
2598 delete visited;
2599 }
2600
2601 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2602 fixed-size array and returns the address, if found, otherwise returns
2603 NULL_TREE. */
2604
2605 static tree
2606 fold_builtin_alloca_with_align (gimple *stmt)
2607 {
2608 unsigned HOST_WIDE_INT size, threshold, n_elem;
2609 tree lhs, arg, block, var, elem_type, array_type;
2610
2611 /* Get lhs. */
2612 lhs = gimple_call_lhs (stmt);
2613 if (lhs == NULL_TREE)
2614 return NULL_TREE;
2615
2616 /* Detect constant argument. */
2617 arg = get_constant_value (gimple_call_arg (stmt, 0));
2618 if (arg == NULL_TREE
2619 || TREE_CODE (arg) != INTEGER_CST
2620 || !tree_fits_uhwi_p (arg))
2621 return NULL_TREE;
2622
2623 size = tree_to_uhwi (arg);
2624
2625 /* Heuristic: don't fold large allocas. */
2626 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2627 /* In case the alloca is located at function entry, it has the same lifetime
2628 as a declared array, so we allow a larger size. */
2629 block = gimple_block (stmt);
2630 if (!(cfun->after_inlining
2631 && block
2632 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2633 threshold /= 10;
2634 if (size > threshold)
2635 return NULL_TREE;
2636
2637 /* We have to be able to move points-to info. We used to assert
2638 that we can but IPA PTA might end up with two UIDs here
2639 as it might need to handle more than one instance being
2640 live at the same time. Instead of trying to detect this case
2641 (using the first UID would be OK) just give up for now. */
2642 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2643 unsigned uid = 0;
2644 if (pi != NULL
2645 && !pi->pt.anything
2646 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2647 return NULL_TREE;
2648
2649 /* Declare array. */
2650 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2651 n_elem = size * 8 / BITS_PER_UNIT;
2652 array_type = build_array_type_nelts (elem_type, n_elem);
2653
2654 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2655 {
2656 /* Give the temporary a name derived from the name of the VLA
2657 declaration so it can be referenced in diagnostics. */
2658 const char *name = IDENTIFIER_POINTER (ssa_name);
2659 var = create_tmp_var (array_type, name);
2660 }
2661 else
2662 var = create_tmp_var (array_type);
2663
2664 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2665 {
2666 /* Set the temporary's location to that of the VLA declaration
2667 so it can be pointed to in diagnostics. */
2668 location_t loc = gimple_location (lhsdef);
2669 DECL_SOURCE_LOCATION (var) = loc;
2670 }
2671
2672 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2673 if (uid != 0)
2674 SET_DECL_PT_UID (var, uid);
2675
2676 /* Fold alloca to the address of the array. */
2677 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2678 }
2679
2680 /* Fold the stmt at *GSI with CCP specific information that propagating
2681 and regular folding does not catch. */
2682
2683 bool
2684 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2685 {
2686 gimple *stmt = gsi_stmt (*gsi);
2687
2688 switch (gimple_code (stmt))
2689 {
2690 case GIMPLE_COND:
2691 {
2692 gcond *cond_stmt = as_a <gcond *> (stmt);
2693 ccp_prop_value_t val;
2694 /* Statement evaluation will handle type mismatches in constants
2695 more gracefully than the final propagation. This allows us to
2696 fold more conditionals here. */
2697 val = evaluate_stmt (stmt);
2698 if (val.lattice_val != CONSTANT
2699 || val.mask != 0)
2700 return false;
2701
2702 if (dump_file)
2703 {
2704 fprintf (dump_file, "Folding predicate ");
2705 print_gimple_expr (dump_file, stmt, 0);
2706 fprintf (dump_file, " to ");
2707 print_generic_expr (dump_file, val.value);
2708 fprintf (dump_file, "\n");
2709 }
2710
2711 if (integer_zerop (val.value))
2712 gimple_cond_make_false (cond_stmt);
2713 else
2714 gimple_cond_make_true (cond_stmt);
2715
2716 return true;
2717 }
2718
2719 case GIMPLE_CALL:
2720 {
2721 tree lhs = gimple_call_lhs (stmt);
2722 int flags = gimple_call_flags (stmt);
2723 tree val;
2724 tree argt;
2725 bool changed = false;
2726 unsigned i;
2727
2728 /* If the call was folded into a constant make sure it goes
2729 away even if we cannot propagate into all uses because of
2730 type issues. */
2731 if (lhs
2732 && TREE_CODE (lhs) == SSA_NAME
2733 && (val = get_constant_value (lhs))
2734 /* Don't optimize away calls that have side-effects. */
2735 && (flags & (ECF_CONST|ECF_PURE)) != 0
2736 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2737 {
2738 tree new_rhs = unshare_expr (val);
2739 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2740 TREE_TYPE (new_rhs)))
2741 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2742 gimplify_and_update_call_from_tree (gsi, new_rhs);
2743 return true;
2744 }
2745
2746 /* Internal calls provide no argument types, so the extra laxity
2747 for normal calls does not apply. */
2748 if (gimple_call_internal_p (stmt))
2749 return false;
2750
2751 /* The heuristic of fold_builtin_alloca_with_align differs before and
2752 after inlining, so we don't require the arg to be changed into a
2753 constant for folding, but just to be constant. */
2754 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2755 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2756 {
2757 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2758 if (new_rhs)
2759 {
2760 gimplify_and_update_call_from_tree (gsi, new_rhs);
2761 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2762 insert_clobbers_for_var (*gsi, var);
2763 return true;
2764 }
2765 }
2766
2767 /* If there's no extra info from an assume_aligned call,
2768 drop it so it doesn't act as otherwise useless dataflow
2769 barrier. */
2770 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2771 {
2772 tree ptr = gimple_call_arg (stmt, 0);
2773 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2774 if (ptrval.lattice_val == CONSTANT
2775 && TREE_CODE (ptrval.value) == INTEGER_CST
2776 && ptrval.mask != 0)
2777 {
2778 ccp_prop_value_t val
2779 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2780 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2781 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2782 if (ptralign == align
2783 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2784 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2785 {
2786 replace_call_with_value (gsi, ptr);
2787 return true;
2788 }
2789 }
2790 }
2791
2792 /* Propagate into the call arguments. Compared to replace_uses_in
2793 this can use the argument slot types for type verification
2794 instead of the current argument type. We also can safely
2795 drop qualifiers here as we are dealing with constants anyway. */
2796 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2797 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2798 ++i, argt = TREE_CHAIN (argt))
2799 {
2800 tree arg = gimple_call_arg (stmt, i);
2801 if (TREE_CODE (arg) == SSA_NAME
2802 && (val = get_constant_value (arg))
2803 && useless_type_conversion_p
2804 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2805 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2806 {
2807 gimple_call_set_arg (stmt, i, unshare_expr (val));
2808 changed = true;
2809 }
2810 }
2811
2812 return changed;
2813 }
2814
2815 case GIMPLE_ASSIGN:
2816 {
2817 tree lhs = gimple_assign_lhs (stmt);
2818 tree val;
2819
2820 /* If we have a load that turned out to be constant replace it
2821 as we cannot propagate into all uses in all cases. */
2822 if (gimple_assign_single_p (stmt)
2823 && TREE_CODE (lhs) == SSA_NAME
2824 && (val = get_constant_value (lhs)))
2825 {
2826 tree rhs = unshare_expr (val);
2827 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2828 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2829 gimple_assign_set_rhs_from_tree (gsi, rhs);
2830 return true;
2831 }
2832
2833 return false;
2834 }
2835
2836 default:
2837 return false;
2838 }
2839 }
2840
2841 /* Visit the assignment statement STMT. Set the value of its LHS to the
2842 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2843 creates virtual definitions, set the value of each new name to that
2844 of the RHS (if we can derive a constant out of the RHS).
2845 Value-returning call statements also perform an assignment, and
2846 are handled here. */
2847
2848 static enum ssa_prop_result
2849 visit_assignment (gimple *stmt, tree *output_p)
2850 {
2851 ccp_prop_value_t val;
2852 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2853
2854 tree lhs = gimple_get_lhs (stmt);
2855 if (TREE_CODE (lhs) == SSA_NAME)
2856 {
2857 /* Evaluate the statement, which could be
2858 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2859 val = evaluate_stmt (stmt);
2860
2861 /* If STMT is an assignment to an SSA_NAME, we only have one
2862 value to set. */
2863 if (set_lattice_value (lhs, &val))
2864 {
2865 *output_p = lhs;
2866 if (val.lattice_val == VARYING)
2867 retval = SSA_PROP_VARYING;
2868 else
2869 retval = SSA_PROP_INTERESTING;
2870 }
2871 }
2872
2873 return retval;
2874 }
2875
2876
2877 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2878 if it can determine which edge will be taken. Otherwise, return
2879 SSA_PROP_VARYING. */
2880
2881 static enum ssa_prop_result
2882 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2883 {
2884 ccp_prop_value_t val;
2885 basic_block block;
2886
2887 block = gimple_bb (stmt);
2888 val = evaluate_stmt (stmt);
2889 if (val.lattice_val != CONSTANT
2890 || val.mask != 0)
2891 return SSA_PROP_VARYING;
2892
2893 /* Find which edge out of the conditional block will be taken and add it
2894 to the worklist. If no single edge can be determined statically,
2895 return SSA_PROP_VARYING to feed all the outgoing edges to the
2896 propagation engine. */
2897 *taken_edge_p = find_taken_edge (block, val.value);
2898 if (*taken_edge_p)
2899 return SSA_PROP_INTERESTING;
2900 else
2901 return SSA_PROP_VARYING;
2902 }
2903
2904
2905 /* Evaluate statement STMT. If the statement produces an output value and
2906 its evaluation changes the lattice value of its output, return
2907 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2908 output value.
2909
2910 If STMT is a conditional branch and we can determine its truth
2911 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2912 value, return SSA_PROP_VARYING. */
2913
2914 enum ssa_prop_result
2915 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2916 {
2917 tree def;
2918 ssa_op_iter iter;
2919
2920 if (dump_file && (dump_flags & TDF_DETAILS))
2921 {
2922 fprintf (dump_file, "\nVisiting statement:\n");
2923 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2924 }
2925
2926 switch (gimple_code (stmt))
2927 {
2928 case GIMPLE_ASSIGN:
2929 /* If the statement is an assignment that produces a single
2930 output value, evaluate its RHS to see if the lattice value of
2931 its output has changed. */
2932 return visit_assignment (stmt, output_p);
2933
2934 case GIMPLE_CALL:
2935 /* A value-returning call also performs an assignment. */
2936 if (gimple_call_lhs (stmt) != NULL_TREE)
2937 return visit_assignment (stmt, output_p);
2938 break;
2939
2940 case GIMPLE_COND:
2941 case GIMPLE_SWITCH:
2942 /* If STMT is a conditional branch, see if we can determine
2943 which branch will be taken. */
2944 /* FIXME. It appears that we should be able to optimize
2945 computed GOTOs here as well. */
2946 return visit_cond_stmt (stmt, taken_edge_p);
2947
2948 default:
2949 break;
2950 }
2951
2952 /* Any other kind of statement is not interesting for constant
2953 propagation and, therefore, not worth simulating. */
2954 if (dump_file && (dump_flags & TDF_DETAILS))
2955 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2956
2957 /* Definitions made by statements other than assignments to
2958 SSA_NAMEs represent unknown modifications to their outputs.
2959 Mark them VARYING. */
2960 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2961 set_value_varying (def);
2962
2963 return SSA_PROP_VARYING;
2964 }
2965
2966
2967 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2968 record nonzero bits. */
2969
2970 static unsigned int
2971 do_ssa_ccp (bool nonzero_p)
2972 {
2973 unsigned int todo = 0;
2974 calculate_dominance_info (CDI_DOMINATORS);
2975
2976 ccp_initialize ();
2977 class ccp_propagate ccp_propagate;
2978 ccp_propagate.ssa_propagate ();
2979 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2980 {
2981 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2982
2983 /* ccp_finalize does not preserve loop-closed ssa. */
2984 loops_state_clear (LOOP_CLOSED_SSA);
2985 }
2986
2987 free_dominance_info (CDI_DOMINATORS);
2988 return todo;
2989 }
2990
2991
2992 namespace {
2993
2994 const pass_data pass_data_ccp =
2995 {
2996 GIMPLE_PASS, /* type */
2997 "ccp", /* name */
2998 OPTGROUP_NONE, /* optinfo_flags */
2999 TV_TREE_CCP, /* tv_id */
3000 ( PROP_cfg | PROP_ssa ), /* properties_required */
3001 0, /* properties_provided */
3002 0, /* properties_destroyed */
3003 0, /* todo_flags_start */
3004 TODO_update_address_taken, /* todo_flags_finish */
3005 };
3006
3007 class pass_ccp : public gimple_opt_pass
3008 {
3009 public:
3010 pass_ccp (gcc::context *ctxt)
3011 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
3012 {}
3013
3014 /* opt_pass methods: */
3015 opt_pass * clone () final override { return new pass_ccp (m_ctxt); }
3016 void set_pass_param (unsigned int n, bool param) final override
3017 {
3018 gcc_assert (n == 0);
3019 nonzero_p = param;
3020 }
3021 bool gate (function *) final override { return flag_tree_ccp != 0; }
3022 unsigned int execute (function *) final override
3023 {
3024 return do_ssa_ccp (nonzero_p);
3025 }
3026
3027 private:
3028 /* Determines whether the pass instance records nonzero bits. */
3029 bool nonzero_p;
3030 }; // class pass_ccp
3031
3032 } // anon namespace
3033
3034 gimple_opt_pass *
3035 make_pass_ccp (gcc::context *ctxt)
3036 {
3037 return new pass_ccp (ctxt);
3038 }
3039
3040
3041
3042 /* Try to optimize out __builtin_stack_restore. Optimize it out
3043 if there is another __builtin_stack_restore in the same basic
3044 block and no calls or ASM_EXPRs are in between, or if this block's
3045 only outgoing edge is to EXIT_BLOCK and there are no calls or
3046 ASM_EXPRs after this __builtin_stack_restore. */
3047
3048 static tree
3049 optimize_stack_restore (gimple_stmt_iterator i)
3050 {
3051 tree callee;
3052 gimple *stmt;
3053
3054 basic_block bb = gsi_bb (i);
3055 gimple *call = gsi_stmt (i);
3056
3057 if (gimple_code (call) != GIMPLE_CALL
3058 || gimple_call_num_args (call) != 1
3059 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
3060 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
3061 return NULL_TREE;
3062
3063 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
3064 {
3065 stmt = gsi_stmt (i);
3066 if (gimple_code (stmt) == GIMPLE_ASM)
3067 return NULL_TREE;
3068 if (gimple_code (stmt) != GIMPLE_CALL)
3069 continue;
3070
3071 callee = gimple_call_fndecl (stmt);
3072 if (!callee
3073 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
3074 /* All regular builtins are ok, just obviously not alloca. */
3075 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
3076 return NULL_TREE;
3077
3078 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
3079 goto second_stack_restore;
3080 }
3081
3082 if (!gsi_end_p (i))
3083 return NULL_TREE;
3084
3085 /* Allow one successor of the exit block, or zero successors. */
3086 switch (EDGE_COUNT (bb->succs))
3087 {
3088 case 0:
3089 break;
3090 case 1:
3091 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3092 return NULL_TREE;
3093 break;
3094 default:
3095 return NULL_TREE;
3096 }
3097 second_stack_restore:
3098
3099 /* If there's exactly one use, then zap the call to __builtin_stack_save.
3100 If there are multiple uses, then the last one should remove the call.
3101 In any case, whether the call to __builtin_stack_save can be removed
3102 or not is irrelevant to removing the call to __builtin_stack_restore. */
3103 if (has_single_use (gimple_call_arg (call, 0)))
3104 {
3105 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
3106 if (is_gimple_call (stack_save))
3107 {
3108 callee = gimple_call_fndecl (stack_save);
3109 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
3110 {
3111 gimple_stmt_iterator stack_save_gsi;
3112 tree rhs;
3113
3114 stack_save_gsi = gsi_for_stmt (stack_save);
3115 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
3116 replace_call_with_value (&stack_save_gsi, rhs);
3117 }
3118 }
3119 }
3120
3121 /* No effect, so the statement will be deleted. */
3122 return integer_zero_node;
3123 }
3124
3125 /* If va_list type is a simple pointer and nothing special is needed,
3126 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
3127 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
3128 pointer assignment. */
3129
3130 static tree
3131 optimize_stdarg_builtin (gimple *call)
3132 {
3133 tree callee, lhs, rhs, cfun_va_list;
3134 bool va_list_simple_ptr;
3135 location_t loc = gimple_location (call);
3136
3137 callee = gimple_call_fndecl (call);
3138
3139 cfun_va_list = targetm.fn_abi_va_list (callee);
3140 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
3141 && (TREE_TYPE (cfun_va_list) == void_type_node
3142 || TREE_TYPE (cfun_va_list) == char_type_node);
3143
3144 switch (DECL_FUNCTION_CODE (callee))
3145 {
3146 case BUILT_IN_VA_START:
3147 if (!va_list_simple_ptr
3148 || targetm.expand_builtin_va_start != NULL
3149 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
3150 return NULL_TREE;
3151
3152 if (gimple_call_num_args (call) != 2)
3153 return NULL_TREE;
3154
3155 lhs = gimple_call_arg (call, 0);
3156 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
3157 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
3158 != TYPE_MAIN_VARIANT (cfun_va_list))
3159 return NULL_TREE;
3160
3161 lhs = build_fold_indirect_ref_loc (loc, lhs);
3162 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
3163 1, integer_zero_node);
3164 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
3165 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
3166
3167 case BUILT_IN_VA_COPY:
3168 if (!va_list_simple_ptr)
3169 return NULL_TREE;
3170
3171 if (gimple_call_num_args (call) != 2)
3172 return NULL_TREE;
3173
3174 lhs = gimple_call_arg (call, 0);
3175 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
3176 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
3177 != TYPE_MAIN_VARIANT (cfun_va_list))
3178 return NULL_TREE;
3179
3180 lhs = build_fold_indirect_ref_loc (loc, lhs);
3181 rhs = gimple_call_arg (call, 1);
3182 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
3183 != TYPE_MAIN_VARIANT (cfun_va_list))
3184 return NULL_TREE;
3185
3186 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
3187 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
3188
3189 case BUILT_IN_VA_END:
3190 /* No effect, so the statement will be deleted. */
3191 return integer_zero_node;
3192
3193 default:
3194 gcc_unreachable ();
3195 }
3196 }
3197
3198 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
3199 the incoming jumps. Return true if at least one jump was changed. */
3200
3201 static bool
3202 optimize_unreachable (gimple_stmt_iterator i)
3203 {
3204 basic_block bb = gsi_bb (i);
3205 gimple_stmt_iterator gsi;
3206 gimple *stmt;
3207 edge_iterator ei;
3208 edge e;
3209 bool ret;
3210
3211 if (flag_sanitize & SANITIZE_UNREACHABLE)
3212 return false;
3213
3214 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3215 {
3216 stmt = gsi_stmt (gsi);
3217
3218 if (is_gimple_debug (stmt))
3219 continue;
3220
3221 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
3222 {
3223 /* Verify we do not need to preserve the label. */
3224 if (FORCED_LABEL (gimple_label_label (label_stmt)))
3225 return false;
3226
3227 continue;
3228 }
3229
3230 /* Only handle the case that __builtin_unreachable is the first statement
3231 in the block. We rely on DCE to remove stmts without side-effects
3232 before __builtin_unreachable. */
3233 if (gsi_stmt (gsi) != gsi_stmt (i))
3234 return false;
3235 }
3236
3237 ret = false;
3238 FOR_EACH_EDGE (e, ei, bb->preds)
3239 {
3240 gsi = gsi_last_bb (e->src);
3241 if (gsi_end_p (gsi))
3242 continue;
3243
3244 stmt = gsi_stmt (gsi);
3245 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
3246 {
3247 if (e->flags & EDGE_TRUE_VALUE)
3248 gimple_cond_make_false (cond_stmt);
3249 else if (e->flags & EDGE_FALSE_VALUE)
3250 gimple_cond_make_true (cond_stmt);
3251 else
3252 gcc_unreachable ();
3253 update_stmt (cond_stmt);
3254 }
3255 else
3256 {
3257 /* Todo: handle other cases. Note that unreachable switch case
3258 statements have already been removed. */
3259 continue;
3260 }
3261
3262 ret = true;
3263 }
3264
3265 return ret;
3266 }
3267
3268 /* Convert
3269 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3270 _7 = ~_1;
3271 _5 = (_Bool) _7;
3272 to
3273 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3274 _8 = _1 & 1;
3275 _5 = _8 == 0;
3276 and convert
3277 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3278 _7 = ~_1;
3279 _4 = (_Bool) _7;
3280 to
3281 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3282 _8 = _1 & 1;
3283 _4 = (_Bool) _8;
3284
3285 USE_STMT is the gimplt statement which uses the return value of
3286 __atomic_fetch_or_*. LHS is the return value of __atomic_fetch_or_*.
3287 MASK is the mask passed to __atomic_fetch_or_*.
3288 */
3289
3290 static gimple *
3291 convert_atomic_bit_not (enum internal_fn fn, gimple *use_stmt,
3292 tree lhs, tree mask)
3293 {
3294 tree and_mask;
3295 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3296 {
3297 /* MASK must be ~1. */
3298 if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs),
3299 ~HOST_WIDE_INT_1), mask, 0))
3300 return nullptr;
3301 and_mask = build_int_cst (TREE_TYPE (lhs), 1);
3302 }
3303 else
3304 {
3305 /* MASK must be 1. */
3306 if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs), 1), mask, 0))
3307 return nullptr;
3308 and_mask = mask;
3309 }
3310
3311 tree use_lhs = gimple_assign_lhs (use_stmt);
3312
3313 use_operand_p use_p;
3314 gimple *use_not_stmt;
3315
3316 if (!single_imm_use (use_lhs, &use_p, &use_not_stmt)
3317 || !is_gimple_assign (use_not_stmt))
3318 return nullptr;
3319
3320 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_not_stmt)))
3321 return nullptr;
3322
3323 tree use_not_lhs = gimple_assign_lhs (use_not_stmt);
3324 if (TREE_CODE (TREE_TYPE (use_not_lhs)) != BOOLEAN_TYPE)
3325 return nullptr;
3326
3327 gimple_stmt_iterator gsi;
3328 gsi = gsi_for_stmt (use_stmt);
3329 gsi_remove (&gsi, true);
3330 tree var = make_ssa_name (TREE_TYPE (lhs));
3331 use_stmt = gimple_build_assign (var, BIT_AND_EXPR, lhs, and_mask);
3332 gsi = gsi_for_stmt (use_not_stmt);
3333 gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
3334 lhs = gimple_assign_lhs (use_not_stmt);
3335 gimple *g = gimple_build_assign (lhs, EQ_EXPR, var,
3336 build_zero_cst (TREE_TYPE (mask)));
3337 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3338 gsi = gsi_for_stmt (use_not_stmt);
3339 gsi_remove (&gsi, true);
3340 return use_stmt;
3341 }
3342
3343 /* match.pd function to match atomic_bit_test_and pattern which
3344 has nop_convert:
3345 _1 = __atomic_fetch_or_4 (&v, 1, 0);
3346 _2 = (int) _1;
3347 _5 = _2 & 1;
3348 */
3349 extern bool gimple_nop_atomic_bit_test_and_p (tree, tree *,
3350 tree (*) (tree));
3351 extern bool gimple_nop_convert (tree, tree*, tree (*) (tree));
3352
3353 /* Optimize
3354 mask_2 = 1 << cnt_1;
3355 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
3356 _5 = _4 & mask_2;
3357 to
3358 _4 = .ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
3359 _5 = _4;
3360 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
3361 is passed instead of 0, and the builtin just returns a zero
3362 or 1 value instead of the actual bit.
3363 Similarly for __sync_fetch_and_or_* (without the ", _3" part
3364 in there), and/or if mask_2 is a power of 2 constant.
3365 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
3366 in that case. And similarly for and instead of or, except that
3367 the second argument to the builtin needs to be one's complement
3368 of the mask instead of mask. */
3369
3370 static bool
3371 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
3372 enum internal_fn fn, bool has_model_arg,
3373 bool after)
3374 {
3375 gimple *call = gsi_stmt (*gsip);
3376 tree lhs = gimple_call_lhs (call);
3377 use_operand_p use_p;
3378 gimple *use_stmt;
3379 tree mask;
3380 optab optab;
3381
3382 if (!flag_inline_atomics
3383 || optimize_debug
3384 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
3385 || !lhs
3386 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
3387 || !single_imm_use (lhs, &use_p, &use_stmt)
3388 || !is_gimple_assign (use_stmt)
3389 || !gimple_vdef (call))
3390 return false;
3391
3392 switch (fn)
3393 {
3394 case IFN_ATOMIC_BIT_TEST_AND_SET:
3395 optab = atomic_bit_test_and_set_optab;
3396 break;
3397 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
3398 optab = atomic_bit_test_and_complement_optab;
3399 break;
3400 case IFN_ATOMIC_BIT_TEST_AND_RESET:
3401 optab = atomic_bit_test_and_reset_optab;
3402 break;
3403 default:
3404 return false;
3405 }
3406
3407 tree bit = nullptr;
3408
3409 mask = gimple_call_arg (call, 1);
3410 tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
3411 if (rhs_code != BIT_AND_EXPR)
3412 {
3413 if (rhs_code != NOP_EXPR && rhs_code != BIT_NOT_EXPR)
3414 return false;
3415
3416 tree use_lhs = gimple_assign_lhs (use_stmt);
3417 if (TREE_CODE (use_lhs) == SSA_NAME
3418 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
3419 return false;
3420
3421 tree use_rhs = gimple_assign_rhs1 (use_stmt);
3422 if (lhs != use_rhs)
3423 return false;
3424
3425 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)))
3426 == CODE_FOR_nothing)
3427 return false;
3428
3429 gimple *g;
3430 gimple_stmt_iterator gsi;
3431 tree var;
3432 int ibit = -1;
3433
3434 if (rhs_code == BIT_NOT_EXPR)
3435 {
3436 g = convert_atomic_bit_not (fn, use_stmt, lhs, mask);
3437 if (!g)
3438 return false;
3439 use_stmt = g;
3440 ibit = 0;
3441 }
3442 else if (TREE_CODE (TREE_TYPE (use_lhs)) == BOOLEAN_TYPE)
3443 {
3444 tree and_mask;
3445 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3446 {
3447 /* MASK must be ~1. */
3448 if (!operand_equal_p (build_int_cst (TREE_TYPE (lhs),
3449 ~HOST_WIDE_INT_1),
3450 mask, 0))
3451 return false;
3452
3453 /* Convert
3454 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3455 _4 = (_Bool) _1;
3456 to
3457 _1 = __atomic_fetch_and_* (ptr_6, ~1, _3);
3458 _5 = _1 & 1;
3459 _4 = (_Bool) _5;
3460 */
3461 and_mask = build_int_cst (TREE_TYPE (lhs), 1);
3462 }
3463 else
3464 {
3465 and_mask = build_int_cst (TREE_TYPE (lhs), 1);
3466 if (!operand_equal_p (and_mask, mask, 0))
3467 return false;
3468
3469 /* Convert
3470 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3471 _4 = (_Bool) _1;
3472 to
3473 _1 = __atomic_fetch_or_* (ptr_6, 1, _3);
3474 _5 = _1 & 1;
3475 _4 = (_Bool) _5;
3476 */
3477 }
3478 var = make_ssa_name (TREE_TYPE (use_rhs));
3479 replace_uses_by (use_rhs, var);
3480 g = gimple_build_assign (var, BIT_AND_EXPR, use_rhs,
3481 and_mask);
3482 gsi = gsi_for_stmt (use_stmt);
3483 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3484 use_stmt = g;
3485 ibit = 0;
3486 }
3487 else if (TYPE_PRECISION (TREE_TYPE (use_lhs))
3488 <= TYPE_PRECISION (TREE_TYPE (use_rhs)))
3489 {
3490 gimple *use_nop_stmt;
3491 if (!single_imm_use (use_lhs, &use_p, &use_nop_stmt)
3492 || (!is_gimple_assign (use_nop_stmt)
3493 && gimple_code (use_nop_stmt) != GIMPLE_COND))
3494 return false;
3495 /* Handle both
3496 _4 = _5 < 0;
3497 and
3498 if (_5 < 0)
3499 */
3500 tree use_nop_lhs = nullptr;
3501 rhs_code = ERROR_MARK;
3502 if (is_gimple_assign (use_nop_stmt))
3503 {
3504 use_nop_lhs = gimple_assign_lhs (use_nop_stmt);
3505 rhs_code = gimple_assign_rhs_code (use_nop_stmt);
3506 }
3507 if (!use_nop_lhs || rhs_code != BIT_AND_EXPR)
3508 {
3509 /* Also handle
3510 if (_5 < 0)
3511 */
3512 if (use_nop_lhs
3513 && TREE_CODE (use_nop_lhs) == SSA_NAME
3514 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_nop_lhs))
3515 return false;
3516 if (use_nop_lhs && rhs_code == BIT_NOT_EXPR)
3517 {
3518 /* Handle
3519 _7 = ~_2;
3520 */
3521 g = convert_atomic_bit_not (fn, use_nop_stmt, lhs,
3522 mask);
3523 if (!g)
3524 return false;
3525 /* Convert
3526 _1 = __atomic_fetch_or_4 (ptr_6, 1, _3);
3527 _2 = (int) _1;
3528 _7 = ~_2;
3529 _5 = (_Bool) _7;
3530 to
3531 _1 = __atomic_fetch_or_4 (ptr_6, ~1, _3);
3532 _8 = _1 & 1;
3533 _5 = _8 == 0;
3534 and convert
3535 _1 = __atomic_fetch_and_4 (ptr_6, ~1, _3);
3536 _2 = (int) _1;
3537 _7 = ~_2;
3538 _5 = (_Bool) _7;
3539 to
3540 _1 = __atomic_fetch_and_4 (ptr_6, 1, _3);
3541 _8 = _1 & 1;
3542 _5 = _8 == 0;
3543 */
3544 gsi = gsi_for_stmt (use_stmt);
3545 gsi_remove (&gsi, true);
3546 use_stmt = g;
3547 ibit = 0;
3548 }
3549 else
3550 {
3551 tree cmp_rhs1, cmp_rhs2;
3552 if (use_nop_lhs)
3553 {
3554 /* Handle
3555 _4 = _5 < 0;
3556 */
3557 if (TREE_CODE (TREE_TYPE (use_nop_lhs))
3558 != BOOLEAN_TYPE)
3559 return false;
3560 cmp_rhs1 = gimple_assign_rhs1 (use_nop_stmt);
3561 cmp_rhs2 = gimple_assign_rhs2 (use_nop_stmt);
3562 }
3563 else
3564 {
3565 /* Handle
3566 if (_5 < 0)
3567 */
3568 rhs_code = gimple_cond_code (use_nop_stmt);
3569 cmp_rhs1 = gimple_cond_lhs (use_nop_stmt);
3570 cmp_rhs2 = gimple_cond_rhs (use_nop_stmt);
3571 }
3572 if (rhs_code != GE_EXPR && rhs_code != LT_EXPR)
3573 return false;
3574 if (use_lhs != cmp_rhs1)
3575 return false;
3576 if (!integer_zerop (cmp_rhs2))
3577 return false;
3578
3579 tree and_mask;
3580
3581 unsigned HOST_WIDE_INT bytes
3582 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (use_rhs)));
3583 ibit = bytes * BITS_PER_UNIT - 1;
3584 unsigned HOST_WIDE_INT highest
3585 = HOST_WIDE_INT_1U << ibit;
3586
3587 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3588 {
3589 /* Get the signed maximum of the USE_RHS type. */
3590 and_mask = build_int_cst (TREE_TYPE (use_rhs),
3591 highest - 1);
3592 if (!operand_equal_p (and_mask, mask, 0))
3593 return false;
3594
3595 /* Convert
3596 _1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
3597 _5 = (signed int) _1;
3598 _4 = _5 < 0 or _5 >= 0;
3599 to
3600 _1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
3601 _6 = _1 & 0x80000000;
3602 _4 = _6 != 0 or _6 == 0;
3603 and convert
3604 _1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
3605 _5 = (signed int) _1;
3606 if (_5 < 0 or _5 >= 0)
3607 to
3608 _1 = __atomic_fetch_and_4 (ptr_6, 0x7fffffff, _3);
3609 _6 = _1 & 0x80000000;
3610 if (_6 != 0 or _6 == 0)
3611 */
3612 and_mask = build_int_cst (TREE_TYPE (use_rhs),
3613 highest);
3614 }
3615 else
3616 {
3617 /* Get the signed minimum of the USE_RHS type. */
3618 and_mask = build_int_cst (TREE_TYPE (use_rhs),
3619 highest);
3620 if (!operand_equal_p (and_mask, mask, 0))
3621 return false;
3622
3623 /* Convert
3624 _1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
3625 _5 = (signed int) _1;
3626 _4 = _5 < 0 or _5 >= 0;
3627 to
3628 _1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
3629 _6 = _1 & 0x80000000;
3630 _4 = _6 != 0 or _6 == 0;
3631 and convert
3632 _1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
3633 _5 = (signed int) _1;
3634 if (_5 < 0 or _5 >= 0)
3635 to
3636 _1 = __atomic_fetch_or_4 (ptr_6, 0x80000000, _3);
3637 _6 = _1 & 0x80000000;
3638 if (_6 != 0 or _6 == 0)
3639 */
3640 }
3641 var = make_ssa_name (TREE_TYPE (use_rhs));
3642 gsi = gsi_for_stmt (use_stmt);
3643 gsi_remove (&gsi, true);
3644 g = gimple_build_assign (var, BIT_AND_EXPR, use_rhs,
3645 and_mask);
3646 gsi = gsi_for_stmt (use_nop_stmt);
3647 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3648 use_stmt = g;
3649 rhs_code = rhs_code == GE_EXPR ? EQ_EXPR : NE_EXPR;
3650 tree const_zero = build_zero_cst (TREE_TYPE (use_rhs));
3651 if (use_nop_lhs)
3652 g = gimple_build_assign (use_nop_lhs, rhs_code,
3653 var, const_zero);
3654 else
3655 g = gimple_build_cond (rhs_code, var, const_zero,
3656 nullptr, nullptr);
3657 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3658 gsi = gsi_for_stmt (use_nop_stmt);
3659 gsi_remove (&gsi, true);
3660 }
3661 }
3662 else
3663 {
3664 tree match_op[3];
3665 gimple *g;
3666 if (!gimple_nop_atomic_bit_test_and_p (use_nop_lhs,
3667 &match_op[0], NULL)
3668 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (match_op[2])
3669 || !single_imm_use (match_op[2], &use_p, &g)
3670 || !is_gimple_assign (g))
3671 return false;
3672 mask = match_op[0];
3673 if (TREE_CODE (match_op[1]) == INTEGER_CST)
3674 {
3675 ibit = tree_log2 (match_op[1]);
3676 gcc_assert (ibit >= 0);
3677 }
3678 else
3679 {
3680 g = SSA_NAME_DEF_STMT (match_op[1]);
3681 gcc_assert (is_gimple_assign (g));
3682 bit = gimple_assign_rhs2 (g);
3683 }
3684 /* Convert
3685 _1 = __atomic_fetch_or_4 (ptr_6, mask, _3);
3686 _2 = (int) _1;
3687 _5 = _2 & mask;
3688 to
3689 _1 = __atomic_fetch_or_4 (ptr_6, mask, _3);
3690 _6 = _1 & mask;
3691 _5 = (int) _6;
3692 and convert
3693 _1 = ~mask_7;
3694 _2 = (unsigned int) _1;
3695 _3 = __atomic_fetch_and_4 (ptr_6, _2, 0);
3696 _4 = (int) _3;
3697 _5 = _4 & mask_7;
3698 to
3699 _1 = __atomic_fetch_and_* (ptr_6, ~mask_7, _3);
3700 _12 = _3 & mask_7;
3701 _5 = (int) _12;
3702
3703 and Convert
3704 _1 = __atomic_fetch_and_4 (ptr_6, ~mask, _3);
3705 _2 = (short int) _1;
3706 _5 = _2 & mask;
3707 to
3708 _1 = __atomic_fetch_and_4 (ptr_6, ~mask, _3);
3709 _8 = _1 & mask;
3710 _5 = (short int) _8;
3711 */
3712 gimple_seq stmts = NULL;
3713 match_op[1] = gimple_convert (&stmts,
3714 TREE_TYPE (use_rhs),
3715 match_op[1]);
3716 var = gimple_build (&stmts, BIT_AND_EXPR,
3717 TREE_TYPE (use_rhs), use_rhs, match_op[1]);
3718 gsi = gsi_for_stmt (use_stmt);
3719 gsi_remove (&gsi, true);
3720 release_defs (use_stmt);
3721 use_stmt = gimple_seq_last_stmt (stmts);
3722 gsi = gsi_for_stmt (use_nop_stmt);
3723 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
3724 gimple_assign_set_rhs_with_ops (&gsi, CONVERT_EXPR, var);
3725 update_stmt (use_nop_stmt);
3726 }
3727 }
3728 else
3729 return false;
3730
3731 if (!bit)
3732 {
3733 if (ibit < 0)
3734 gcc_unreachable ();
3735 bit = build_int_cst (TREE_TYPE (lhs), ibit);
3736 }
3737 }
3738 else if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)))
3739 == CODE_FOR_nothing)
3740 return false;
3741
3742 tree use_lhs = gimple_assign_lhs (use_stmt);
3743 if (!use_lhs)
3744 return false;
3745
3746 if (!bit)
3747 {
3748 if (TREE_CODE (mask) == INTEGER_CST)
3749 {
3750 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3751 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
3752 mask = fold_convert (TREE_TYPE (lhs), mask);
3753 int ibit = tree_log2 (mask);
3754 if (ibit < 0)
3755 return false;
3756 bit = build_int_cst (TREE_TYPE (lhs), ibit);
3757 }
3758 else if (TREE_CODE (mask) == SSA_NAME)
3759 {
3760 gimple *g = SSA_NAME_DEF_STMT (mask);
3761 tree match_op;
3762 if (gimple_nop_convert (mask, &match_op, NULL))
3763 {
3764 mask = match_op;
3765 if (TREE_CODE (mask) != SSA_NAME)
3766 return false;
3767 g = SSA_NAME_DEF_STMT (mask);
3768 }
3769 if (!is_gimple_assign (g))
3770 return false;
3771
3772 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3773 {
3774 if (gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
3775 return false;
3776 mask = gimple_assign_rhs1 (g);
3777 if (TREE_CODE (mask) != SSA_NAME)
3778 return false;
3779 g = SSA_NAME_DEF_STMT (mask);
3780 }
3781
3782 if (!is_gimple_assign (g)
3783 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
3784 || !integer_onep (gimple_assign_rhs1 (g)))
3785 return false;
3786 bit = gimple_assign_rhs2 (g);
3787 }
3788 else
3789 return false;
3790
3791 tree cmp_mask;
3792 if (gimple_assign_rhs1 (use_stmt) == lhs)
3793 cmp_mask = gimple_assign_rhs2 (use_stmt);
3794 else
3795 cmp_mask = gimple_assign_rhs1 (use_stmt);
3796
3797 tree match_op;
3798 if (gimple_nop_convert (cmp_mask, &match_op, NULL))
3799 cmp_mask = match_op;
3800
3801 if (!operand_equal_p (cmp_mask, mask, 0))
3802 return false;
3803 }
3804
3805 bool use_bool = true;
3806 bool has_debug_uses = false;
3807 imm_use_iterator iter;
3808 gimple *g;
3809
3810 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
3811 use_bool = false;
3812 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3813 {
3814 enum tree_code code = ERROR_MARK;
3815 tree op0 = NULL_TREE, op1 = NULL_TREE;
3816 if (is_gimple_debug (g))
3817 {
3818 has_debug_uses = true;
3819 continue;
3820 }
3821 else if (is_gimple_assign (g))
3822 switch (gimple_assign_rhs_code (g))
3823 {
3824 case COND_EXPR:
3825 op1 = gimple_assign_rhs1 (g);
3826 code = TREE_CODE (op1);
3827 if (TREE_CODE_CLASS (code) != tcc_comparison)
3828 break;
3829 op0 = TREE_OPERAND (op1, 0);
3830 op1 = TREE_OPERAND (op1, 1);
3831 break;
3832 case EQ_EXPR:
3833 case NE_EXPR:
3834 code = gimple_assign_rhs_code (g);
3835 op0 = gimple_assign_rhs1 (g);
3836 op1 = gimple_assign_rhs2 (g);
3837 break;
3838 default:
3839 break;
3840 }
3841 else if (gimple_code (g) == GIMPLE_COND)
3842 {
3843 code = gimple_cond_code (g);
3844 op0 = gimple_cond_lhs (g);
3845 op1 = gimple_cond_rhs (g);
3846 }
3847
3848 if ((code == EQ_EXPR || code == NE_EXPR)
3849 && op0 == use_lhs
3850 && integer_zerop (op1))
3851 {
3852 use_operand_p use_p;
3853 int n = 0;
3854 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3855 n++;
3856 if (n == 1)
3857 continue;
3858 }
3859
3860 use_bool = false;
3861 break;
3862 }
3863
3864 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3865 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3866 if (has_model_arg)
3867 g = gimple_build_call_internal (fn, 5, gimple_call_arg (call, 0),
3868 bit, flag, gimple_call_arg (call, 2),
3869 gimple_call_fn (call));
3870 else
3871 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3872 bit, flag, gimple_call_fn (call));
3873 gimple_call_set_lhs (g, new_lhs);
3874 gimple_set_location (g, gimple_location (call));
3875 gimple_move_vops (g, call);
3876 bool throws = stmt_can_throw_internal (cfun, call);
3877 gimple_call_set_nothrow (as_a <gcall *> (g),
3878 gimple_call_nothrow_p (as_a <gcall *> (call)));
3879 gimple_stmt_iterator gsi = *gsip;
3880 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3881 edge e = NULL;
3882 if (throws)
3883 {
3884 maybe_clean_or_replace_eh_stmt (call, g);
3885 if (after || (use_bool && has_debug_uses))
3886 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3887 }
3888 if (after)
3889 {
3890 /* The internal function returns the value of the specified bit
3891 before the atomic operation. If we are interested in the value
3892 of the specified bit after the atomic operation (makes only sense
3893 for xor, otherwise the bit content is compile time known),
3894 we need to invert the bit. */
3895 tree mask_convert = mask;
3896 gimple_seq stmts = NULL;
3897 if (!use_bool)
3898 mask_convert = gimple_convert (&stmts, TREE_TYPE (lhs), mask);
3899 new_lhs = gimple_build (&stmts, BIT_XOR_EXPR, TREE_TYPE (lhs), new_lhs,
3900 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3901 : mask_convert);
3902 if (throws)
3903 {
3904 gsi_insert_seq_on_edge_immediate (e, stmts);
3905 gsi = gsi_for_stmt (gimple_seq_last (stmts));
3906 }
3907 else
3908 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
3909 }
3910 if (use_bool && has_debug_uses)
3911 {
3912 tree temp = NULL_TREE;
3913 if (!throws || after || single_pred_p (e->dest))
3914 {
3915 temp = build_debug_expr_decl (TREE_TYPE (lhs));
3916 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3917 g = gimple_build_debug_bind (temp, t, g);
3918 if (throws && !after)
3919 {
3920 gsi = gsi_after_labels (e->dest);
3921 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3922 }
3923 else
3924 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3925 }
3926 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3927 if (is_gimple_debug (g))
3928 {
3929 use_operand_p use_p;
3930 if (temp == NULL_TREE)
3931 gimple_debug_bind_reset_value (g);
3932 else
3933 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3934 SET_USE (use_p, temp);
3935 update_stmt (g);
3936 }
3937 }
3938 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3939 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3940 replace_uses_by (use_lhs, new_lhs);
3941 gsi = gsi_for_stmt (use_stmt);
3942 gsi_remove (&gsi, true);
3943 release_defs (use_stmt);
3944 gsi_remove (gsip, true);
3945 release_ssa_name (lhs);
3946 return true;
3947 }
3948
3949 /* Optimize
3950 _4 = __atomic_add_fetch_* (ptr_6, arg_2, _3);
3951 _5 = _4 == 0;
3952 to
3953 _4 = .ATOMIC_ADD_FETCH_CMP_0 (EQ_EXPR, ptr_6, arg_2, _3);
3954 _5 = _4;
3955 Similarly for __sync_add_and_fetch_* (without the ", _3" part
3956 in there). */
3957
3958 static bool
3959 optimize_atomic_op_fetch_cmp_0 (gimple_stmt_iterator *gsip,
3960 enum internal_fn fn, bool has_model_arg)
3961 {
3962 gimple *call = gsi_stmt (*gsip);
3963 tree lhs = gimple_call_lhs (call);
3964 use_operand_p use_p;
3965 gimple *use_stmt;
3966
3967 if (!flag_inline_atomics
3968 || optimize_debug
3969 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
3970 || !lhs
3971 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
3972 || !single_imm_use (lhs, &use_p, &use_stmt)
3973 || !gimple_vdef (call))
3974 return false;
3975
3976 optab optab;
3977 switch (fn)
3978 {
3979 case IFN_ATOMIC_ADD_FETCH_CMP_0:
3980 optab = atomic_add_fetch_cmp_0_optab;
3981 break;
3982 case IFN_ATOMIC_SUB_FETCH_CMP_0:
3983 optab = atomic_sub_fetch_cmp_0_optab;
3984 break;
3985 case IFN_ATOMIC_AND_FETCH_CMP_0:
3986 optab = atomic_and_fetch_cmp_0_optab;
3987 break;
3988 case IFN_ATOMIC_OR_FETCH_CMP_0:
3989 optab = atomic_or_fetch_cmp_0_optab;
3990 break;
3991 case IFN_ATOMIC_XOR_FETCH_CMP_0:
3992 optab = atomic_xor_fetch_cmp_0_optab;
3993 break;
3994 default:
3995 return false;
3996 }
3997
3998 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)))
3999 == CODE_FOR_nothing)
4000 return false;
4001
4002 tree use_lhs = lhs;
4003 if (gimple_assign_cast_p (use_stmt))
4004 {
4005 use_lhs = gimple_assign_lhs (use_stmt);
4006 if (!tree_nop_conversion_p (TREE_TYPE (use_lhs), TREE_TYPE (lhs))
4007 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
4008 && !POINTER_TYPE_P (TREE_TYPE (use_lhs)))
4009 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs)
4010 || !single_imm_use (use_lhs, &use_p, &use_stmt))
4011 return false;
4012 }
4013 enum tree_code code = ERROR_MARK;
4014 tree op0 = NULL_TREE, op1 = NULL_TREE;
4015 if (is_gimple_assign (use_stmt))
4016 switch (gimple_assign_rhs_code (use_stmt))
4017 {
4018 case COND_EXPR:
4019 op1 = gimple_assign_rhs1 (use_stmt);
4020 code = TREE_CODE (op1);
4021 if (TREE_CODE_CLASS (code) == tcc_comparison)
4022 {
4023 op0 = TREE_OPERAND (op1, 0);
4024 op1 = TREE_OPERAND (op1, 1);
4025 }
4026 break;
4027 default:
4028 code = gimple_assign_rhs_code (use_stmt);
4029 if (TREE_CODE_CLASS (code) == tcc_comparison)
4030 {
4031 op0 = gimple_assign_rhs1 (use_stmt);
4032 op1 = gimple_assign_rhs2 (use_stmt);
4033 }
4034 break;
4035 }
4036 else if (gimple_code (use_stmt) == GIMPLE_COND)
4037 {
4038 code = gimple_cond_code (use_stmt);
4039 op0 = gimple_cond_lhs (use_stmt);
4040 op1 = gimple_cond_rhs (use_stmt);
4041 }
4042
4043 switch (code)
4044 {
4045 case LT_EXPR:
4046 case LE_EXPR:
4047 case GT_EXPR:
4048 case GE_EXPR:
4049 if (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
4050 || TREE_CODE (TREE_TYPE (use_lhs)) == BOOLEAN_TYPE
4051 || TYPE_UNSIGNED (TREE_TYPE (use_lhs)))
4052 return false;
4053 /* FALLTHRU */
4054 case EQ_EXPR:
4055 case NE_EXPR:
4056 if (op0 == use_lhs && integer_zerop (op1))
4057 break;
4058 return false;
4059 default:
4060 return false;
4061 }
4062
4063 int encoded;
4064 switch (code)
4065 {
4066 /* Use special encoding of the operation. We want to also
4067 encode the mode in the first argument and for neither EQ_EXPR
4068 etc. nor EQ etc. we can rely it will fit into QImode. */
4069 case EQ_EXPR: encoded = ATOMIC_OP_FETCH_CMP_0_EQ; break;
4070 case NE_EXPR: encoded = ATOMIC_OP_FETCH_CMP_0_NE; break;
4071 case LT_EXPR: encoded = ATOMIC_OP_FETCH_CMP_0_LT; break;
4072 case LE_EXPR: encoded = ATOMIC_OP_FETCH_CMP_0_LE; break;
4073 case GT_EXPR: encoded = ATOMIC_OP_FETCH_CMP_0_GT; break;
4074 case GE_EXPR: encoded = ATOMIC_OP_FETCH_CMP_0_GE; break;
4075 default: gcc_unreachable ();
4076 }
4077
4078 tree new_lhs = make_ssa_name (boolean_type_node);
4079 gimple *g;
4080 tree flag = build_int_cst (TREE_TYPE (lhs), encoded);
4081 if (has_model_arg)
4082 g = gimple_build_call_internal (fn, 5, flag,
4083 gimple_call_arg (call, 0),
4084 gimple_call_arg (call, 1),
4085 gimple_call_arg (call, 2),
4086 gimple_call_fn (call));
4087 else
4088 g = gimple_build_call_internal (fn, 4, flag,
4089 gimple_call_arg (call, 0),
4090 gimple_call_arg (call, 1),
4091 gimple_call_fn (call));
4092 gimple_call_set_lhs (g, new_lhs);
4093 gimple_set_location (g, gimple_location (call));
4094 gimple_move_vops (g, call);
4095 bool throws = stmt_can_throw_internal (cfun, call);
4096 gimple_call_set_nothrow (as_a <gcall *> (g),
4097 gimple_call_nothrow_p (as_a <gcall *> (call)));
4098 gimple_stmt_iterator gsi = *gsip;
4099 gsi_insert_after (&gsi, g, GSI_SAME_STMT);
4100 if (throws)
4101 maybe_clean_or_replace_eh_stmt (call, g);
4102 if (is_gimple_assign (use_stmt))
4103 switch (gimple_assign_rhs_code (use_stmt))
4104 {
4105 case COND_EXPR:
4106 gimple_assign_set_rhs1 (use_stmt, new_lhs);
4107 break;
4108 default:
4109 gsi = gsi_for_stmt (use_stmt);
4110 if (tree ulhs = gimple_assign_lhs (use_stmt))
4111 if (useless_type_conversion_p (TREE_TYPE (ulhs),
4112 boolean_type_node))
4113 {
4114 gimple_assign_set_rhs_with_ops (&gsi, SSA_NAME, new_lhs);
4115 break;
4116 }
4117 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, new_lhs);
4118 break;
4119 }
4120 else if (gimple_code (use_stmt) == GIMPLE_COND)
4121 {
4122 gcond *use_cond = as_a <gcond *> (use_stmt);
4123 gimple_cond_set_code (use_cond, NE_EXPR);
4124 gimple_cond_set_lhs (use_cond, new_lhs);
4125 gimple_cond_set_rhs (use_cond, boolean_false_node);
4126 }
4127
4128 update_stmt (use_stmt);
4129 if (use_lhs != lhs)
4130 {
4131 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (use_lhs));
4132 gsi_remove (&gsi, true);
4133 release_ssa_name (use_lhs);
4134 }
4135 gsi_remove (gsip, true);
4136 release_ssa_name (lhs);
4137 return true;
4138 }
4139
4140 /* Optimize
4141 a = {};
4142 b = a;
4143 into
4144 a = {};
4145 b = {};
4146 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
4147 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
4148
4149 static void
4150 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
4151 {
4152 gimple *stmt = gsi_stmt (*gsip);
4153 if (gimple_has_volatile_ops (stmt))
4154 return;
4155
4156 tree vuse = gimple_vuse (stmt);
4157 if (vuse == NULL)
4158 return;
4159
4160 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
4161 tree src2 = NULL_TREE, len2 = NULL_TREE;
4162 poly_int64 offset, offset2;
4163 tree val = integer_zero_node;
4164 if (gimple_store_p (defstmt)
4165 && gimple_assign_single_p (defstmt)
4166 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
4167 && !gimple_clobber_p (defstmt))
4168 src2 = gimple_assign_lhs (defstmt);
4169 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
4170 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
4171 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
4172 {
4173 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
4174 len2 = gimple_call_arg (defstmt, 2);
4175 val = gimple_call_arg (defstmt, 1);
4176 /* For non-0 val, we'd have to transform stmt from assignment
4177 into memset (only if dest is addressable). */
4178 if (!integer_zerop (val) && is_gimple_assign (stmt))
4179 src2 = NULL_TREE;
4180 }
4181
4182 if (src2 == NULL_TREE)
4183 return;
4184
4185 if (len == NULL_TREE)
4186 len = (TREE_CODE (src) == COMPONENT_REF
4187 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
4188 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
4189 if (len2 == NULL_TREE)
4190 len2 = (TREE_CODE (src2) == COMPONENT_REF
4191 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
4192 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
4193 if (len == NULL_TREE
4194 || !poly_int_tree_p (len)
4195 || len2 == NULL_TREE
4196 || !poly_int_tree_p (len2))
4197 return;
4198
4199 src = get_addr_base_and_unit_offset (src, &offset);
4200 src2 = get_addr_base_and_unit_offset (src2, &offset2);
4201 if (src == NULL_TREE
4202 || src2 == NULL_TREE
4203 || maybe_lt (offset, offset2))
4204 return;
4205
4206 if (!operand_equal_p (src, src2, 0))
4207 return;
4208
4209 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
4210 Make sure that
4211 [ src + offset, src + offset + len - 1 ] is a subset of that. */
4212 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
4213 wi::to_poly_offset (len2)))
4214 return;
4215
4216 if (dump_file && (dump_flags & TDF_DETAILS))
4217 {
4218 fprintf (dump_file, "Simplified\n ");
4219 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
4220 fprintf (dump_file, "after previous\n ");
4221 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
4222 }
4223
4224 /* For simplicity, don't change the kind of the stmt,
4225 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
4226 into memset (&dest, val, len);
4227 In theory we could change dest = src into memset if dest
4228 is addressable (maybe beneficial if val is not 0), or
4229 memcpy (&dest, &src, len) into dest = {} if len is the size
4230 of dest, dest isn't volatile. */
4231 if (is_gimple_assign (stmt))
4232 {
4233 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
4234 gimple_assign_set_rhs_from_tree (gsip, ctor);
4235 update_stmt (stmt);
4236 }
4237 else /* If stmt is memcpy, transform it into memset. */
4238 {
4239 gcall *call = as_a <gcall *> (stmt);
4240 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
4241 gimple_call_set_fndecl (call, fndecl);
4242 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
4243 gimple_call_set_arg (call, 1, val);
4244 update_stmt (stmt);
4245 }
4246
4247 if (dump_file && (dump_flags & TDF_DETAILS))
4248 {
4249 fprintf (dump_file, "into\n ");
4250 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
4251 }
4252 }
4253
4254 /* A simple pass that attempts to fold all builtin functions. This pass
4255 is run after we've propagated as many constants as we can. */
4256
4257 namespace {
4258
4259 const pass_data pass_data_fold_builtins =
4260 {
4261 GIMPLE_PASS, /* type */
4262 "fab", /* name */
4263 OPTGROUP_NONE, /* optinfo_flags */
4264 TV_NONE, /* tv_id */
4265 ( PROP_cfg | PROP_ssa ), /* properties_required */
4266 0, /* properties_provided */
4267 0, /* properties_destroyed */
4268 0, /* todo_flags_start */
4269 TODO_update_ssa, /* todo_flags_finish */
4270 };
4271
4272 class pass_fold_builtins : public gimple_opt_pass
4273 {
4274 public:
4275 pass_fold_builtins (gcc::context *ctxt)
4276 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
4277 {}
4278
4279 /* opt_pass methods: */
4280 opt_pass * clone () final override { return new pass_fold_builtins (m_ctxt); }
4281 unsigned int execute (function *) final override;
4282
4283 }; // class pass_fold_builtins
4284
4285 unsigned int
4286 pass_fold_builtins::execute (function *fun)
4287 {
4288 bool cfg_changed = false;
4289 basic_block bb;
4290 unsigned int todoflags = 0;
4291
4292 FOR_EACH_BB_FN (bb, fun)
4293 {
4294 gimple_stmt_iterator i;
4295 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
4296 {
4297 gimple *stmt, *old_stmt;
4298 tree callee;
4299 enum built_in_function fcode;
4300
4301 stmt = gsi_stmt (i);
4302
4303 if (gimple_code (stmt) != GIMPLE_CALL)
4304 {
4305 if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
4306 optimize_memcpy (&i, gimple_assign_lhs (stmt),
4307 gimple_assign_rhs1 (stmt), NULL_TREE);
4308 gsi_next (&i);
4309 continue;
4310 }
4311
4312 callee = gimple_call_fndecl (stmt);
4313 if (!callee
4314 && gimple_call_internal_p (stmt, IFN_ASSUME))
4315 {
4316 gsi_remove (&i, true);
4317 continue;
4318 }
4319 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
4320 {
4321 gsi_next (&i);
4322 continue;
4323 }
4324
4325 fcode = DECL_FUNCTION_CODE (callee);
4326 if (fold_stmt (&i))
4327 ;
4328 else
4329 {
4330 tree result = NULL_TREE;
4331 switch (DECL_FUNCTION_CODE (callee))
4332 {
4333 case BUILT_IN_CONSTANT_P:
4334 /* Resolve __builtin_constant_p. If it hasn't been
4335 folded to integer_one_node by now, it's fairly
4336 certain that the value simply isn't constant. */
4337 result = integer_zero_node;
4338 break;
4339
4340 case BUILT_IN_ASSUME_ALIGNED:
4341 /* Remove __builtin_assume_aligned. */
4342 result = gimple_call_arg (stmt, 0);
4343 break;
4344
4345 case BUILT_IN_STACK_RESTORE:
4346 result = optimize_stack_restore (i);
4347 if (result)
4348 break;
4349 gsi_next (&i);
4350 continue;
4351
4352 case BUILT_IN_UNREACHABLE:
4353 if (optimize_unreachable (i))
4354 cfg_changed = true;
4355 break;
4356
4357 case BUILT_IN_ATOMIC_ADD_FETCH_1:
4358 case BUILT_IN_ATOMIC_ADD_FETCH_2:
4359 case BUILT_IN_ATOMIC_ADD_FETCH_4:
4360 case BUILT_IN_ATOMIC_ADD_FETCH_8:
4361 case BUILT_IN_ATOMIC_ADD_FETCH_16:
4362 optimize_atomic_op_fetch_cmp_0 (&i,
4363 IFN_ATOMIC_ADD_FETCH_CMP_0,
4364 true);
4365 break;
4366 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
4367 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
4368 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
4369 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
4370 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
4371 optimize_atomic_op_fetch_cmp_0 (&i,
4372 IFN_ATOMIC_ADD_FETCH_CMP_0,
4373 false);
4374 break;
4375
4376 case BUILT_IN_ATOMIC_SUB_FETCH_1:
4377 case BUILT_IN_ATOMIC_SUB_FETCH_2:
4378 case BUILT_IN_ATOMIC_SUB_FETCH_4:
4379 case BUILT_IN_ATOMIC_SUB_FETCH_8:
4380 case BUILT_IN_ATOMIC_SUB_FETCH_16:
4381 optimize_atomic_op_fetch_cmp_0 (&i,
4382 IFN_ATOMIC_SUB_FETCH_CMP_0,
4383 true);
4384 break;
4385 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
4386 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
4387 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
4388 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
4389 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
4390 optimize_atomic_op_fetch_cmp_0 (&i,
4391 IFN_ATOMIC_SUB_FETCH_CMP_0,
4392 false);
4393 break;
4394
4395 case BUILT_IN_ATOMIC_FETCH_OR_1:
4396 case BUILT_IN_ATOMIC_FETCH_OR_2:
4397 case BUILT_IN_ATOMIC_FETCH_OR_4:
4398 case BUILT_IN_ATOMIC_FETCH_OR_8:
4399 case BUILT_IN_ATOMIC_FETCH_OR_16:
4400 optimize_atomic_bit_test_and (&i,
4401 IFN_ATOMIC_BIT_TEST_AND_SET,
4402 true, false);
4403 break;
4404 case BUILT_IN_SYNC_FETCH_AND_OR_1:
4405 case BUILT_IN_SYNC_FETCH_AND_OR_2:
4406 case BUILT_IN_SYNC_FETCH_AND_OR_4:
4407 case BUILT_IN_SYNC_FETCH_AND_OR_8:
4408 case BUILT_IN_SYNC_FETCH_AND_OR_16:
4409 optimize_atomic_bit_test_and (&i,
4410 IFN_ATOMIC_BIT_TEST_AND_SET,
4411 false, false);
4412 break;
4413
4414 case BUILT_IN_ATOMIC_FETCH_XOR_1:
4415 case BUILT_IN_ATOMIC_FETCH_XOR_2:
4416 case BUILT_IN_ATOMIC_FETCH_XOR_4:
4417 case BUILT_IN_ATOMIC_FETCH_XOR_8:
4418 case BUILT_IN_ATOMIC_FETCH_XOR_16:
4419 optimize_atomic_bit_test_and
4420 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
4421 break;
4422 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
4423 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
4424 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
4425 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
4426 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
4427 optimize_atomic_bit_test_and
4428 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
4429 break;
4430
4431 case BUILT_IN_ATOMIC_XOR_FETCH_1:
4432 case BUILT_IN_ATOMIC_XOR_FETCH_2:
4433 case BUILT_IN_ATOMIC_XOR_FETCH_4:
4434 case BUILT_IN_ATOMIC_XOR_FETCH_8:
4435 case BUILT_IN_ATOMIC_XOR_FETCH_16:
4436 if (optimize_atomic_bit_test_and
4437 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true))
4438 break;
4439 optimize_atomic_op_fetch_cmp_0 (&i,
4440 IFN_ATOMIC_XOR_FETCH_CMP_0,
4441 true);
4442 break;
4443 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
4444 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
4445 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
4446 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
4447 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
4448 if (optimize_atomic_bit_test_and
4449 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true))
4450 break;
4451 optimize_atomic_op_fetch_cmp_0 (&i,
4452 IFN_ATOMIC_XOR_FETCH_CMP_0,
4453 false);
4454 break;
4455
4456 case BUILT_IN_ATOMIC_FETCH_AND_1:
4457 case BUILT_IN_ATOMIC_FETCH_AND_2:
4458 case BUILT_IN_ATOMIC_FETCH_AND_4:
4459 case BUILT_IN_ATOMIC_FETCH_AND_8:
4460 case BUILT_IN_ATOMIC_FETCH_AND_16:
4461 optimize_atomic_bit_test_and (&i,
4462 IFN_ATOMIC_BIT_TEST_AND_RESET,
4463 true, false);
4464 break;
4465 case BUILT_IN_SYNC_FETCH_AND_AND_1:
4466 case BUILT_IN_SYNC_FETCH_AND_AND_2:
4467 case BUILT_IN_SYNC_FETCH_AND_AND_4:
4468 case BUILT_IN_SYNC_FETCH_AND_AND_8:
4469 case BUILT_IN_SYNC_FETCH_AND_AND_16:
4470 optimize_atomic_bit_test_and (&i,
4471 IFN_ATOMIC_BIT_TEST_AND_RESET,
4472 false, false);
4473 break;
4474
4475 case BUILT_IN_ATOMIC_AND_FETCH_1:
4476 case BUILT_IN_ATOMIC_AND_FETCH_2:
4477 case BUILT_IN_ATOMIC_AND_FETCH_4:
4478 case BUILT_IN_ATOMIC_AND_FETCH_8:
4479 case BUILT_IN_ATOMIC_AND_FETCH_16:
4480 optimize_atomic_op_fetch_cmp_0 (&i,
4481 IFN_ATOMIC_AND_FETCH_CMP_0,
4482 true);
4483 break;
4484 case BUILT_IN_SYNC_AND_AND_FETCH_1:
4485 case BUILT_IN_SYNC_AND_AND_FETCH_2:
4486 case BUILT_IN_SYNC_AND_AND_FETCH_4:
4487 case BUILT_IN_SYNC_AND_AND_FETCH_8:
4488 case BUILT_IN_SYNC_AND_AND_FETCH_16:
4489 optimize_atomic_op_fetch_cmp_0 (&i,
4490 IFN_ATOMIC_AND_FETCH_CMP_0,
4491 false);
4492 break;
4493
4494 case BUILT_IN_ATOMIC_OR_FETCH_1:
4495 case BUILT_IN_ATOMIC_OR_FETCH_2:
4496 case BUILT_IN_ATOMIC_OR_FETCH_4:
4497 case BUILT_IN_ATOMIC_OR_FETCH_8:
4498 case BUILT_IN_ATOMIC_OR_FETCH_16:
4499 optimize_atomic_op_fetch_cmp_0 (&i,
4500 IFN_ATOMIC_OR_FETCH_CMP_0,
4501 true);
4502 break;
4503 case BUILT_IN_SYNC_OR_AND_FETCH_1:
4504 case BUILT_IN_SYNC_OR_AND_FETCH_2:
4505 case BUILT_IN_SYNC_OR_AND_FETCH_4:
4506 case BUILT_IN_SYNC_OR_AND_FETCH_8:
4507 case BUILT_IN_SYNC_OR_AND_FETCH_16:
4508 optimize_atomic_op_fetch_cmp_0 (&i,
4509 IFN_ATOMIC_OR_FETCH_CMP_0,
4510 false);
4511 break;
4512
4513 case BUILT_IN_MEMCPY:
4514 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
4515 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
4516 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
4517 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
4518 {
4519 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
4520 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
4521 tree len = gimple_call_arg (stmt, 2);
4522 optimize_memcpy (&i, dest, src, len);
4523 }
4524 break;
4525
4526 case BUILT_IN_VA_START:
4527 case BUILT_IN_VA_END:
4528 case BUILT_IN_VA_COPY:
4529 /* These shouldn't be folded before pass_stdarg. */
4530 result = optimize_stdarg_builtin (stmt);
4531 break;
4532
4533 default:;
4534 }
4535
4536 if (!result)
4537 {
4538 gsi_next (&i);
4539 continue;
4540 }
4541
4542 gimplify_and_update_call_from_tree (&i, result);
4543 }
4544
4545 todoflags |= TODO_update_address_taken;
4546
4547 if (dump_file && (dump_flags & TDF_DETAILS))
4548 {
4549 fprintf (dump_file, "Simplified\n ");
4550 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
4551 }
4552
4553 old_stmt = stmt;
4554 stmt = gsi_stmt (i);
4555 update_stmt (stmt);
4556
4557 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
4558 && gimple_purge_dead_eh_edges (bb))
4559 cfg_changed = true;
4560
4561 if (dump_file && (dump_flags & TDF_DETAILS))
4562 {
4563 fprintf (dump_file, "to\n ");
4564 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
4565 fprintf (dump_file, "\n");
4566 }
4567
4568 /* Retry the same statement if it changed into another
4569 builtin, there might be new opportunities now. */
4570 if (gimple_code (stmt) != GIMPLE_CALL)
4571 {
4572 gsi_next (&i);
4573 continue;
4574 }
4575 callee = gimple_call_fndecl (stmt);
4576 if (!callee
4577 || !fndecl_built_in_p (callee, fcode))
4578 gsi_next (&i);
4579 }
4580 }
4581
4582 /* Delete unreachable blocks. */
4583 if (cfg_changed)
4584 todoflags |= TODO_cleanup_cfg;
4585
4586 return todoflags;
4587 }
4588
4589 } // anon namespace
4590
4591 gimple_opt_pass *
4592 make_pass_fold_builtins (gcc::context *ctxt)
4593 {
4594 return new pass_fold_builtins (ctxt);
4595 }
4596
4597 /* A simple pass that emits some warnings post IPA. */
4598
4599 namespace {
4600
4601 const pass_data pass_data_post_ipa_warn =
4602 {
4603 GIMPLE_PASS, /* type */
4604 "post_ipa_warn", /* name */
4605 OPTGROUP_NONE, /* optinfo_flags */
4606 TV_NONE, /* tv_id */
4607 ( PROP_cfg | PROP_ssa ), /* properties_required */
4608 0, /* properties_provided */
4609 0, /* properties_destroyed */
4610 0, /* todo_flags_start */
4611 0, /* todo_flags_finish */
4612 };
4613
4614 class pass_post_ipa_warn : public gimple_opt_pass
4615 {
4616 public:
4617 pass_post_ipa_warn (gcc::context *ctxt)
4618 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
4619 {}
4620
4621 /* opt_pass methods: */
4622 opt_pass * clone () final override { return new pass_post_ipa_warn (m_ctxt); }
4623 bool gate (function *) final override { return warn_nonnull != 0; }
4624 unsigned int execute (function *) final override;
4625
4626 }; // class pass_fold_builtins
4627
4628 unsigned int
4629 pass_post_ipa_warn::execute (function *fun)
4630 {
4631 basic_block bb;
4632
4633 FOR_EACH_BB_FN (bb, fun)
4634 {
4635 gimple_stmt_iterator gsi;
4636 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4637 {
4638 gimple *stmt = gsi_stmt (gsi);
4639 if (!is_gimple_call (stmt) || warning_suppressed_p (stmt, OPT_Wnonnull))
4640 continue;
4641
4642 tree fntype = gimple_call_fntype (stmt);
4643 bitmap nonnullargs = get_nonnull_args (fntype);
4644 if (!nonnullargs)
4645 continue;
4646
4647 tree fndecl = gimple_call_fndecl (stmt);
4648 const bool closure = fndecl && DECL_LAMBDA_FUNCTION_P (fndecl);
4649
4650 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
4651 {
4652 tree arg = gimple_call_arg (stmt, i);
4653 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
4654 continue;
4655 if (!integer_zerop (arg))
4656 continue;
4657 if (i == 0 && closure)
4658 /* Avoid warning for the first argument to lambda functions. */
4659 continue;
4660 if (!bitmap_empty_p (nonnullargs)
4661 && !bitmap_bit_p (nonnullargs, i))
4662 continue;
4663
4664 /* In C++ non-static member functions argument 0 refers
4665 to the implicit this pointer. Use the same one-based
4666 numbering for ordinary arguments. */
4667 unsigned argno = TREE_CODE (fntype) == METHOD_TYPE ? i : i + 1;
4668 location_t loc = (EXPR_HAS_LOCATION (arg)
4669 ? EXPR_LOCATION (arg)
4670 : gimple_location (stmt));
4671 auto_diagnostic_group d;
4672 if (argno == 0)
4673 {
4674 if (warning_at (loc, OPT_Wnonnull,
4675 "%qs pointer is null", "this")
4676 && fndecl)
4677 inform (DECL_SOURCE_LOCATION (fndecl),
4678 "in a call to non-static member function %qD",
4679 fndecl);
4680 continue;
4681 }
4682
4683 if (!warning_at (loc, OPT_Wnonnull,
4684 "argument %u null where non-null "
4685 "expected", argno))
4686 continue;
4687
4688 tree fndecl = gimple_call_fndecl (stmt);
4689 if (fndecl && DECL_IS_UNDECLARED_BUILTIN (fndecl))
4690 inform (loc, "in a call to built-in function %qD",
4691 fndecl);
4692 else if (fndecl)
4693 inform (DECL_SOURCE_LOCATION (fndecl),
4694 "in a call to function %qD declared %qs",
4695 fndecl, "nonnull");
4696 }
4697 BITMAP_FREE (nonnullargs);
4698 }
4699 }
4700 return 0;
4701 }
4702
4703 } // anon namespace
4704
4705 gimple_opt_pass *
4706 make_pass_post_ipa_warn (gcc::context *ctxt)
4707 {
4708 return new pass_post_ipa_warn (ctxt);
4709 }