]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-coalesce.c
gimple.h: Remove all includes.
[thirdparty/gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-pretty-print.h"
28 #include "bitmap.h"
29 #include "dumpfile.h"
30 #include "hash-table.h"
31 #include "basic-block.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-ssa-live.h"
44 #include "tree-ssa-coalesce.h"
45 #include "diagnostic-core.h"
46
47
48 /* This set of routines implements a coalesce_list. This is an object which
49 is used to track pairs of ssa_names which are desirable to coalesce
50 together to avoid copies. Costs are associated with each pair, and when
51 all desired information has been collected, the object can be used to
52 order the pairs for processing. */
53
54 /* This structure defines a pair entry. */
55
56 typedef struct coalesce_pair
57 {
58 int first_element;
59 int second_element;
60 int cost;
61 } * coalesce_pair_p;
62 typedef const struct coalesce_pair *const_coalesce_pair_p;
63
64 /* Coalesce pair hashtable helpers. */
65
66 struct coalesce_pair_hasher : typed_noop_remove <coalesce_pair>
67 {
68 typedef coalesce_pair value_type;
69 typedef coalesce_pair compare_type;
70 static inline hashval_t hash (const value_type *);
71 static inline bool equal (const value_type *, const compare_type *);
72 };
73
74 /* Hash function for coalesce list. Calculate hash for PAIR. */
75
76 inline hashval_t
77 coalesce_pair_hasher::hash (const value_type *pair)
78 {
79 hashval_t a = (hashval_t)(pair->first_element);
80 hashval_t b = (hashval_t)(pair->second_element);
81
82 return b * (b - 1) / 2 + a;
83 }
84
85 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
86 returning TRUE if the two pairs are equivalent. */
87
88 inline bool
89 coalesce_pair_hasher::equal (const value_type *p1, const compare_type *p2)
90 {
91 return (p1->first_element == p2->first_element
92 && p1->second_element == p2->second_element);
93 }
94
95 typedef hash_table <coalesce_pair_hasher> coalesce_table_type;
96 typedef coalesce_table_type::iterator coalesce_iterator_type;
97
98
99 typedef struct cost_one_pair_d
100 {
101 int first_element;
102 int second_element;
103 struct cost_one_pair_d *next;
104 } * cost_one_pair_p;
105
106 /* This structure maintains the list of coalesce pairs. */
107
108 typedef struct coalesce_list_d
109 {
110 coalesce_table_type list; /* Hash table. */
111 coalesce_pair_p *sorted; /* List when sorted. */
112 int num_sorted; /* Number in the sorted list. */
113 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
114 } *coalesce_list_p;
115
116 #define NO_BEST_COALESCE -1
117 #define MUST_COALESCE_COST INT_MAX
118
119
120 /* Return cost of execution of copy instruction with FREQUENCY. */
121
122 static inline int
123 coalesce_cost (int frequency, bool optimize_for_size)
124 {
125 /* Base costs on BB frequencies bounded by 1. */
126 int cost = frequency;
127
128 if (!cost)
129 cost = 1;
130
131 if (optimize_for_size)
132 cost = 1;
133
134 return cost;
135 }
136
137
138 /* Return the cost of executing a copy instruction in basic block BB. */
139
140 static inline int
141 coalesce_cost_bb (basic_block bb)
142 {
143 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
144 }
145
146
147 /* Return the cost of executing a copy instruction on edge E. */
148
149 static inline int
150 coalesce_cost_edge (edge e)
151 {
152 int mult = 1;
153
154 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
155 if (EDGE_CRITICAL_P (e))
156 mult = 2;
157 if (e->flags & EDGE_ABNORMAL)
158 return MUST_COALESCE_COST;
159 if (e->flags & EDGE_EH)
160 {
161 edge e2;
162 edge_iterator ei;
163 FOR_EACH_EDGE (e2, ei, e->dest->preds)
164 if (e2 != e)
165 {
166 /* Putting code on EH edge that leads to BB
167 with multiple predecestors imply splitting of
168 edge too. */
169 if (mult < 2)
170 mult = 2;
171 /* If there are multiple EH predecestors, we
172 also copy EH regions and produce separate
173 landing pad. This is expensive. */
174 if (e2->flags & EDGE_EH)
175 {
176 mult = 5;
177 break;
178 }
179 }
180 }
181
182 return coalesce_cost (EDGE_FREQUENCY (e),
183 optimize_edge_for_size_p (e)) * mult;
184 }
185
186
187 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
188 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
189 NO_BEST_COALESCE is returned if there aren't any. */
190
191 static inline int
192 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
193 {
194 cost_one_pair_p ptr;
195
196 ptr = cl->cost_one_list;
197 if (!ptr)
198 return NO_BEST_COALESCE;
199
200 *p1 = ptr->first_element;
201 *p2 = ptr->second_element;
202 cl->cost_one_list = ptr->next;
203
204 free (ptr);
205
206 return 1;
207 }
208
209 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
210 2 elements via P1 and P2. Their calculated cost is returned by the function.
211 NO_BEST_COALESCE is returned if the coalesce list is empty. */
212
213 static inline int
214 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
215 {
216 coalesce_pair_p node;
217 int ret;
218
219 if (cl->sorted == NULL)
220 return pop_cost_one_pair (cl, p1, p2);
221
222 if (cl->num_sorted == 0)
223 return pop_cost_one_pair (cl, p1, p2);
224
225 node = cl->sorted[--(cl->num_sorted)];
226 *p1 = node->first_element;
227 *p2 = node->second_element;
228 ret = node->cost;
229 free (node);
230
231 return ret;
232 }
233
234
235 /* Create a new empty coalesce list object and return it. */
236
237 static inline coalesce_list_p
238 create_coalesce_list (void)
239 {
240 coalesce_list_p list;
241 unsigned size = num_ssa_names * 3;
242
243 if (size < 40)
244 size = 40;
245
246 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
247 list->list.create (size);
248 list->sorted = NULL;
249 list->num_sorted = 0;
250 list->cost_one_list = NULL;
251 return list;
252 }
253
254
255 /* Delete coalesce list CL. */
256
257 static inline void
258 delete_coalesce_list (coalesce_list_p cl)
259 {
260 gcc_assert (cl->cost_one_list == NULL);
261 cl->list.dispose ();
262 free (cl->sorted);
263 gcc_assert (cl->num_sorted == 0);
264 free (cl);
265 }
266
267
268 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
269 one isn't found, return NULL if CREATE is false, otherwise create a new
270 coalesce pair object and return it. */
271
272 static coalesce_pair_p
273 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
274 {
275 struct coalesce_pair p;
276 coalesce_pair **slot;
277 unsigned int hash;
278
279 /* Normalize so that p1 is the smaller value. */
280 if (p2 < p1)
281 {
282 p.first_element = p2;
283 p.second_element = p1;
284 }
285 else
286 {
287 p.first_element = p1;
288 p.second_element = p2;
289 }
290
291 hash = coalesce_pair_hasher::hash (&p);
292 slot = cl->list.find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
293 if (!slot)
294 return NULL;
295
296 if (!*slot)
297 {
298 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
299 gcc_assert (cl->sorted == NULL);
300 pair->first_element = p.first_element;
301 pair->second_element = p.second_element;
302 pair->cost = 0;
303 *slot = pair;
304 }
305
306 return (struct coalesce_pair *) *slot;
307 }
308
309 static inline void
310 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
311 {
312 cost_one_pair_p pair;
313
314 pair = XNEW (struct cost_one_pair_d);
315 pair->first_element = p1;
316 pair->second_element = p2;
317 pair->next = cl->cost_one_list;
318 cl->cost_one_list = pair;
319 }
320
321
322 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
323
324 static inline void
325 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
326 {
327 coalesce_pair_p node;
328
329 gcc_assert (cl->sorted == NULL);
330 if (p1 == p2)
331 return;
332
333 node = find_coalesce_pair (cl, p1, p2, true);
334
335 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
336 if (node->cost < MUST_COALESCE_COST - 1)
337 {
338 if (value < MUST_COALESCE_COST - 1)
339 node->cost += value;
340 else
341 node->cost = value;
342 }
343 }
344
345
346 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
347
348 static int
349 compare_pairs (const void *p1, const void *p2)
350 {
351 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
352 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
353 int result;
354
355 result = (* pp1)->cost - (* pp2)->cost;
356 /* Since qsort does not guarantee stability we use the elements
357 as a secondary key. This provides us with independence from
358 the host's implementation of the sorting algorithm. */
359 if (result == 0)
360 {
361 result = (* pp2)->first_element - (* pp1)->first_element;
362 if (result == 0)
363 result = (* pp2)->second_element - (* pp1)->second_element;
364 }
365
366 return result;
367 }
368
369
370 /* Return the number of unique coalesce pairs in CL. */
371
372 static inline int
373 num_coalesce_pairs (coalesce_list_p cl)
374 {
375 return cl->list.elements ();
376 }
377
378
379 /* Iterate over CL using ITER, returning values in PAIR. */
380
381 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
382 FOR_EACH_HASH_TABLE_ELEMENT ((CL)->list, (PAIR), coalesce_pair_p, (ITER))
383
384
385 /* Prepare CL for removal of preferred pairs. When finished they are sorted
386 in order from most important coalesce to least important. */
387
388 static void
389 sort_coalesce_list (coalesce_list_p cl)
390 {
391 unsigned x, num;
392 coalesce_pair_p p;
393 coalesce_iterator_type ppi;
394
395 gcc_assert (cl->sorted == NULL);
396
397 num = num_coalesce_pairs (cl);
398 cl->num_sorted = num;
399 if (num == 0)
400 return;
401
402 /* Allocate a vector for the pair pointers. */
403 cl->sorted = XNEWVEC (coalesce_pair_p, num);
404
405 /* Populate the vector with pointers to the pairs. */
406 x = 0;
407 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
408 cl->sorted[x++] = p;
409 gcc_assert (x == num);
410
411 /* Already sorted. */
412 if (num == 1)
413 return;
414
415 /* If there are only 2, just pick swap them if the order isn't correct. */
416 if (num == 2)
417 {
418 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
419 {
420 p = cl->sorted[0];
421 cl->sorted[0] = cl->sorted[1];
422 cl->sorted[1] = p;
423 }
424 return;
425 }
426
427 /* Only call qsort if there are more than 2 items. */
428 if (num > 2)
429 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
430 }
431
432
433 /* Send debug info for coalesce list CL to file F. */
434
435 static void
436 dump_coalesce_list (FILE *f, coalesce_list_p cl)
437 {
438 coalesce_pair_p node;
439 coalesce_iterator_type ppi;
440
441 int x;
442 tree var;
443
444 if (cl->sorted == NULL)
445 {
446 fprintf (f, "Coalesce List:\n");
447 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
448 {
449 tree var1 = ssa_name (node->first_element);
450 tree var2 = ssa_name (node->second_element);
451 print_generic_expr (f, var1, TDF_SLIM);
452 fprintf (f, " <-> ");
453 print_generic_expr (f, var2, TDF_SLIM);
454 fprintf (f, " (%1d), ", node->cost);
455 fprintf (f, "\n");
456 }
457 }
458 else
459 {
460 fprintf (f, "Sorted Coalesce list:\n");
461 for (x = cl->num_sorted - 1 ; x >=0; x--)
462 {
463 node = cl->sorted[x];
464 fprintf (f, "(%d) ", node->cost);
465 var = ssa_name (node->first_element);
466 print_generic_expr (f, var, TDF_SLIM);
467 fprintf (f, " <-> ");
468 var = ssa_name (node->second_element);
469 print_generic_expr (f, var, TDF_SLIM);
470 fprintf (f, "\n");
471 }
472 }
473 }
474
475
476 /* This represents a conflict graph. Implemented as an array of bitmaps.
477 A full matrix is used for conflicts rather than just upper triangular form.
478 this make sit much simpler and faster to perform conflict merges. */
479
480 typedef struct ssa_conflicts_d
481 {
482 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
483 vec<bitmap> conflicts;
484 } * ssa_conflicts_p;
485
486 /* Return an empty new conflict graph for SIZE elements. */
487
488 static inline ssa_conflicts_p
489 ssa_conflicts_new (unsigned size)
490 {
491 ssa_conflicts_p ptr;
492
493 ptr = XNEW (struct ssa_conflicts_d);
494 bitmap_obstack_initialize (&ptr->obstack);
495 ptr->conflicts.create (size);
496 ptr->conflicts.safe_grow_cleared (size);
497 return ptr;
498 }
499
500
501 /* Free storage for conflict graph PTR. */
502
503 static inline void
504 ssa_conflicts_delete (ssa_conflicts_p ptr)
505 {
506 bitmap_obstack_release (&ptr->obstack);
507 ptr->conflicts.release ();
508 free (ptr);
509 }
510
511
512 /* Test if elements X and Y conflict in graph PTR. */
513
514 static inline bool
515 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
516 {
517 bitmap bx = ptr->conflicts[x];
518 bitmap by = ptr->conflicts[y];
519
520 gcc_checking_assert (x != y);
521
522 if (bx)
523 /* Avoid the lookup if Y has no conflicts. */
524 return by ? bitmap_bit_p (bx, y) : false;
525 else
526 return false;
527 }
528
529
530 /* Add a conflict with Y to the bitmap for X in graph PTR. */
531
532 static inline void
533 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
534 {
535 bitmap bx = ptr->conflicts[x];
536 /* If there are no conflicts yet, allocate the bitmap and set bit. */
537 if (! bx)
538 bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
539 bitmap_set_bit (bx, y);
540 }
541
542
543 /* Add conflicts between X and Y in graph PTR. */
544
545 static inline void
546 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
547 {
548 gcc_checking_assert (x != y);
549 ssa_conflicts_add_one (ptr, x, y);
550 ssa_conflicts_add_one (ptr, y, x);
551 }
552
553
554 /* Merge all Y's conflict into X in graph PTR. */
555
556 static inline void
557 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
558 {
559 unsigned z;
560 bitmap_iterator bi;
561 bitmap bx = ptr->conflicts[x];
562 bitmap by = ptr->conflicts[y];
563
564 gcc_checking_assert (x != y);
565 if (! by)
566 return;
567
568 /* Add a conflict between X and every one Y has. If the bitmap doesn't
569 exist, then it has already been coalesced, and we don't need to add a
570 conflict. */
571 EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
572 {
573 bitmap bz = ptr->conflicts[z];
574 if (bz)
575 bitmap_set_bit (bz, x);
576 }
577
578 if (bx)
579 {
580 /* If X has conflicts, add Y's to X. */
581 bitmap_ior_into (bx, by);
582 BITMAP_FREE (by);
583 ptr->conflicts[y] = NULL;
584 }
585 else
586 {
587 /* If X has no conflicts, simply use Y's. */
588 ptr->conflicts[x] = by;
589 ptr->conflicts[y] = NULL;
590 }
591 }
592
593
594 /* Dump a conflicts graph. */
595
596 static void
597 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
598 {
599 unsigned x;
600 bitmap b;
601
602 fprintf (file, "\nConflict graph:\n");
603
604 FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
605 if (b)
606 {
607 fprintf (file, "%d: ", x);
608 dump_bitmap (file, b);
609 }
610 }
611
612
613 /* This structure is used to efficiently record the current status of live
614 SSA_NAMES when building a conflict graph.
615 LIVE_BASE_VAR has a bit set for each base variable which has at least one
616 ssa version live.
617 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
618 index, and is used to track what partitions of each base variable are
619 live. This makes it easy to add conflicts between just live partitions
620 with the same base variable.
621 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
622 marked as being live. This delays clearing of these bitmaps until
623 they are actually needed again. */
624
625 typedef struct live_track_d
626 {
627 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
628 bitmap live_base_var; /* Indicates if a basevar is live. */
629 bitmap *live_base_partitions; /* Live partitions for each basevar. */
630 var_map map; /* Var_map being used for partition mapping. */
631 } * live_track_p;
632
633
634 /* This routine will create a new live track structure based on the partitions
635 in MAP. */
636
637 static live_track_p
638 new_live_track (var_map map)
639 {
640 live_track_p ptr;
641 int lim, x;
642
643 /* Make sure there is a partition view in place. */
644 gcc_assert (map->partition_to_base_index != NULL);
645
646 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
647 ptr->map = map;
648 lim = num_basevars (map);
649 bitmap_obstack_initialize (&ptr->obstack);
650 ptr->live_base_partitions = (bitmap *) xmalloc (sizeof (bitmap *) * lim);
651 ptr->live_base_var = BITMAP_ALLOC (&ptr->obstack);
652 for (x = 0; x < lim; x++)
653 ptr->live_base_partitions[x] = BITMAP_ALLOC (&ptr->obstack);
654 return ptr;
655 }
656
657
658 /* This routine will free the memory associated with PTR. */
659
660 static void
661 delete_live_track (live_track_p ptr)
662 {
663 bitmap_obstack_release (&ptr->obstack);
664 free (ptr->live_base_partitions);
665 free (ptr);
666 }
667
668
669 /* This function will remove PARTITION from the live list in PTR. */
670
671 static inline void
672 live_track_remove_partition (live_track_p ptr, int partition)
673 {
674 int root;
675
676 root = basevar_index (ptr->map, partition);
677 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
678 /* If the element list is empty, make the base variable not live either. */
679 if (bitmap_empty_p (ptr->live_base_partitions[root]))
680 bitmap_clear_bit (ptr->live_base_var, root);
681 }
682
683
684 /* This function will adds PARTITION to the live list in PTR. */
685
686 static inline void
687 live_track_add_partition (live_track_p ptr, int partition)
688 {
689 int root;
690
691 root = basevar_index (ptr->map, partition);
692 /* If this base var wasn't live before, it is now. Clear the element list
693 since it was delayed until needed. */
694 if (bitmap_set_bit (ptr->live_base_var, root))
695 bitmap_clear (ptr->live_base_partitions[root]);
696 bitmap_set_bit (ptr->live_base_partitions[root], partition);
697
698 }
699
700
701 /* Clear the live bit for VAR in PTR. */
702
703 static inline void
704 live_track_clear_var (live_track_p ptr, tree var)
705 {
706 int p;
707
708 p = var_to_partition (ptr->map, var);
709 if (p != NO_PARTITION)
710 live_track_remove_partition (ptr, p);
711 }
712
713
714 /* Return TRUE if VAR is live in PTR. */
715
716 static inline bool
717 live_track_live_p (live_track_p ptr, tree var)
718 {
719 int p, root;
720
721 p = var_to_partition (ptr->map, var);
722 if (p != NO_PARTITION)
723 {
724 root = basevar_index (ptr->map, p);
725 if (bitmap_bit_p (ptr->live_base_var, root))
726 return bitmap_bit_p (ptr->live_base_partitions[root], p);
727 }
728 return false;
729 }
730
731
732 /* This routine will add USE to PTR. USE will be marked as live in both the
733 ssa live map and the live bitmap for the root of USE. */
734
735 static inline void
736 live_track_process_use (live_track_p ptr, tree use)
737 {
738 int p;
739
740 p = var_to_partition (ptr->map, use);
741 if (p == NO_PARTITION)
742 return;
743
744 /* Mark as live in the appropriate live list. */
745 live_track_add_partition (ptr, p);
746 }
747
748
749 /* This routine will process a DEF in PTR. DEF will be removed from the live
750 lists, and if there are any other live partitions with the same base
751 variable, conflicts will be added to GRAPH. */
752
753 static inline void
754 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
755 {
756 int p, root;
757 bitmap b;
758 unsigned x;
759 bitmap_iterator bi;
760
761 p = var_to_partition (ptr->map, def);
762 if (p == NO_PARTITION)
763 return;
764
765 /* Clear the liveness bit. */
766 live_track_remove_partition (ptr, p);
767
768 /* If the bitmap isn't empty now, conflicts need to be added. */
769 root = basevar_index (ptr->map, p);
770 if (bitmap_bit_p (ptr->live_base_var, root))
771 {
772 b = ptr->live_base_partitions[root];
773 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
774 ssa_conflicts_add (graph, p, x);
775 }
776 }
777
778
779 /* Initialize PTR with the partitions set in INIT. */
780
781 static inline void
782 live_track_init (live_track_p ptr, bitmap init)
783 {
784 unsigned p;
785 bitmap_iterator bi;
786
787 /* Mark all live on exit partitions. */
788 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
789 live_track_add_partition (ptr, p);
790 }
791
792
793 /* This routine will clear all live partitions in PTR. */
794
795 static inline void
796 live_track_clear_base_vars (live_track_p ptr)
797 {
798 /* Simply clear the live base list. Anything marked as live in the element
799 lists will be cleared later if/when the base variable ever comes alive
800 again. */
801 bitmap_clear (ptr->live_base_var);
802 }
803
804
805 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
806 partition view of the var_map liveinfo is based on get entries in the
807 conflict graph. Only conflicts between ssa_name partitions with the same
808 base variable are added. */
809
810 static ssa_conflicts_p
811 build_ssa_conflict_graph (tree_live_info_p liveinfo)
812 {
813 ssa_conflicts_p graph;
814 var_map map;
815 basic_block bb;
816 ssa_op_iter iter;
817 live_track_p live;
818
819 map = live_var_map (liveinfo);
820 graph = ssa_conflicts_new (num_var_partitions (map));
821
822 live = new_live_track (map);
823
824 FOR_EACH_BB (bb)
825 {
826 gimple_stmt_iterator gsi;
827
828 /* Start with live on exit temporaries. */
829 live_track_init (live, live_on_exit (liveinfo, bb));
830
831 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
832 {
833 tree var;
834 gimple stmt = gsi_stmt (gsi);
835
836 /* A copy between 2 partitions does not introduce an interference
837 by itself. If they did, you would never be able to coalesce
838 two things which are copied. If the two variables really do
839 conflict, they will conflict elsewhere in the program.
840
841 This is handled by simply removing the SRC of the copy from the
842 live list, and processing the stmt normally. */
843 if (is_gimple_assign (stmt))
844 {
845 tree lhs = gimple_assign_lhs (stmt);
846 tree rhs1 = gimple_assign_rhs1 (stmt);
847 if (gimple_assign_copy_p (stmt)
848 && TREE_CODE (lhs) == SSA_NAME
849 && TREE_CODE (rhs1) == SSA_NAME)
850 live_track_clear_var (live, rhs1);
851 }
852 else if (is_gimple_debug (stmt))
853 continue;
854
855 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
856 live_track_process_def (live, var, graph);
857
858 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
859 live_track_process_use (live, var);
860 }
861
862 /* If result of a PHI is unused, looping over the statements will not
863 record any conflicts since the def was never live. Since the PHI node
864 is going to be translated out of SSA form, it will insert a copy.
865 There must be a conflict recorded between the result of the PHI and
866 any variables that are live. Otherwise the out-of-ssa translation
867 may create incorrect code. */
868 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
869 {
870 gimple phi = gsi_stmt (gsi);
871 tree result = PHI_RESULT (phi);
872 if (live_track_live_p (live, result))
873 live_track_process_def (live, result, graph);
874 }
875
876 live_track_clear_base_vars (live);
877 }
878
879 delete_live_track (live);
880 return graph;
881 }
882
883
884 /* Shortcut routine to print messages to file F of the form:
885 "STR1 EXPR1 STR2 EXPR2 STR3." */
886
887 static inline void
888 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
889 tree expr2, const char *str3)
890 {
891 fprintf (f, "%s", str1);
892 print_generic_expr (f, expr1, TDF_SLIM);
893 fprintf (f, "%s", str2);
894 print_generic_expr (f, expr2, TDF_SLIM);
895 fprintf (f, "%s", str3);
896 }
897
898
899 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
900
901 static inline void
902 fail_abnormal_edge_coalesce (int x, int y)
903 {
904 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
905 fprintf (stderr, " which are marked as MUST COALESCE.\n");
906 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
907 fprintf (stderr, " and ");
908 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
909
910 internal_error ("SSA corruption");
911 }
912
913
914 /* This function creates a var_map for the current function as well as creating
915 a coalesce list for use later in the out of ssa process. */
916
917 static var_map
918 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
919 {
920 gimple_stmt_iterator gsi;
921 basic_block bb;
922 tree var;
923 gimple stmt;
924 tree first;
925 var_map map;
926 ssa_op_iter iter;
927 int v1, v2, cost;
928 unsigned i;
929
930 map = init_var_map (num_ssa_names);
931
932 FOR_EACH_BB (bb)
933 {
934 tree arg;
935
936 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
937 {
938 gimple phi = gsi_stmt (gsi);
939 size_t i;
940 int ver;
941 tree res;
942 bool saw_copy = false;
943
944 res = gimple_phi_result (phi);
945 ver = SSA_NAME_VERSION (res);
946 register_ssa_partition (map, res);
947
948 /* Register ssa_names and coalesces between the args and the result
949 of all PHI. */
950 for (i = 0; i < gimple_phi_num_args (phi); i++)
951 {
952 edge e = gimple_phi_arg_edge (phi, i);
953 arg = PHI_ARG_DEF (phi, i);
954 if (TREE_CODE (arg) != SSA_NAME)
955 continue;
956
957 register_ssa_partition (map, arg);
958 if (gimple_can_coalesce_p (arg, res)
959 || (e->flags & EDGE_ABNORMAL))
960 {
961 saw_copy = true;
962 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
963 if ((e->flags & EDGE_ABNORMAL) == 0)
964 {
965 int cost = coalesce_cost_edge (e);
966 if (cost == 1 && has_single_use (arg))
967 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
968 else
969 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
970 }
971 }
972 }
973 if (saw_copy)
974 bitmap_set_bit (used_in_copy, ver);
975 }
976
977 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
978 {
979 stmt = gsi_stmt (gsi);
980
981 if (is_gimple_debug (stmt))
982 continue;
983
984 /* Register USE and DEF operands in each statement. */
985 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
986 register_ssa_partition (map, var);
987
988 /* Check for copy coalesces. */
989 switch (gimple_code (stmt))
990 {
991 case GIMPLE_ASSIGN:
992 {
993 tree lhs = gimple_assign_lhs (stmt);
994 tree rhs1 = gimple_assign_rhs1 (stmt);
995 if (gimple_assign_ssa_name_copy_p (stmt)
996 && gimple_can_coalesce_p (lhs, rhs1))
997 {
998 v1 = SSA_NAME_VERSION (lhs);
999 v2 = SSA_NAME_VERSION (rhs1);
1000 cost = coalesce_cost_bb (bb);
1001 add_coalesce (cl, v1, v2, cost);
1002 bitmap_set_bit (used_in_copy, v1);
1003 bitmap_set_bit (used_in_copy, v2);
1004 }
1005 }
1006 break;
1007
1008 case GIMPLE_ASM:
1009 {
1010 unsigned long noutputs, i;
1011 unsigned long ninputs;
1012 tree *outputs, link;
1013 noutputs = gimple_asm_noutputs (stmt);
1014 ninputs = gimple_asm_ninputs (stmt);
1015 outputs = (tree *) alloca (noutputs * sizeof (tree));
1016 for (i = 0; i < noutputs; ++i)
1017 {
1018 link = gimple_asm_output_op (stmt, i);
1019 outputs[i] = TREE_VALUE (link);
1020 }
1021
1022 for (i = 0; i < ninputs; ++i)
1023 {
1024 const char *constraint;
1025 tree input;
1026 char *end;
1027 unsigned long match;
1028
1029 link = gimple_asm_input_op (stmt, i);
1030 constraint
1031 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1032 input = TREE_VALUE (link);
1033
1034 if (TREE_CODE (input) != SSA_NAME)
1035 continue;
1036
1037 match = strtoul (constraint, &end, 10);
1038 if (match >= noutputs || end == constraint)
1039 continue;
1040
1041 if (TREE_CODE (outputs[match]) != SSA_NAME)
1042 continue;
1043
1044 v1 = SSA_NAME_VERSION (outputs[match]);
1045 v2 = SSA_NAME_VERSION (input);
1046
1047 if (gimple_can_coalesce_p (outputs[match], input))
1048 {
1049 cost = coalesce_cost (REG_BR_PROB_BASE,
1050 optimize_bb_for_size_p (bb));
1051 add_coalesce (cl, v1, v2, cost);
1052 bitmap_set_bit (used_in_copy, v1);
1053 bitmap_set_bit (used_in_copy, v2);
1054 }
1055 }
1056 break;
1057 }
1058
1059 default:
1060 break;
1061 }
1062 }
1063 }
1064
1065 /* Now process result decls and live on entry variables for entry into
1066 the coalesce list. */
1067 first = NULL_TREE;
1068 for (i = 1; i < num_ssa_names; i++)
1069 {
1070 var = ssa_name (i);
1071 if (var != NULL_TREE && !virtual_operand_p (var))
1072 {
1073 /* Add coalesces between all the result decls. */
1074 if (SSA_NAME_VAR (var)
1075 && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1076 {
1077 if (first == NULL_TREE)
1078 first = var;
1079 else
1080 {
1081 gcc_assert (gimple_can_coalesce_p (var, first));
1082 v1 = SSA_NAME_VERSION (first);
1083 v2 = SSA_NAME_VERSION (var);
1084 bitmap_set_bit (used_in_copy, v1);
1085 bitmap_set_bit (used_in_copy, v2);
1086 cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
1087 add_coalesce (cl, v1, v2, cost);
1088 }
1089 }
1090 /* Mark any default_def variables as being in the coalesce list
1091 since they will have to be coalesced with the base variable. If
1092 not marked as present, they won't be in the coalesce view. */
1093 if (SSA_NAME_IS_DEFAULT_DEF (var)
1094 && !has_zero_uses (var))
1095 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1096 }
1097 }
1098
1099 return map;
1100 }
1101
1102
1103 /* Attempt to coalesce ssa versions X and Y together using the partition
1104 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1105 DEBUG, if it is nun-NULL. */
1106
1107 static inline bool
1108 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1109 FILE *debug)
1110 {
1111 int z;
1112 tree var1, var2;
1113 int p1, p2;
1114
1115 p1 = var_to_partition (map, ssa_name (x));
1116 p2 = var_to_partition (map, ssa_name (y));
1117
1118 if (debug)
1119 {
1120 fprintf (debug, "(%d)", x);
1121 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1122 fprintf (debug, " & (%d)", y);
1123 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1124 }
1125
1126 if (p1 == p2)
1127 {
1128 if (debug)
1129 fprintf (debug, ": Already Coalesced.\n");
1130 return true;
1131 }
1132
1133 if (debug)
1134 fprintf (debug, " [map: %d, %d] ", p1, p2);
1135
1136
1137 if (!ssa_conflicts_test_p (graph, p1, p2))
1138 {
1139 var1 = partition_to_var (map, p1);
1140 var2 = partition_to_var (map, p2);
1141 z = var_union (map, var1, var2);
1142 if (z == NO_PARTITION)
1143 {
1144 if (debug)
1145 fprintf (debug, ": Unable to perform partition union.\n");
1146 return false;
1147 }
1148
1149 /* z is the new combined partition. Remove the other partition from
1150 the list, and merge the conflicts. */
1151 if (z == p1)
1152 ssa_conflicts_merge (graph, p1, p2);
1153 else
1154 ssa_conflicts_merge (graph, p2, p1);
1155
1156 if (debug)
1157 fprintf (debug, ": Success -> %d\n", z);
1158 return true;
1159 }
1160
1161 if (debug)
1162 fprintf (debug, ": Fail due to conflict\n");
1163
1164 return false;
1165 }
1166
1167
1168 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1169 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1170
1171 static void
1172 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1173 FILE *debug)
1174 {
1175 int x = 0, y = 0;
1176 tree var1, var2;
1177 int cost;
1178 basic_block bb;
1179 edge e;
1180 edge_iterator ei;
1181
1182 /* First, coalesce all the copies across abnormal edges. These are not placed
1183 in the coalesce list because they do not need to be sorted, and simply
1184 consume extra memory/compilation time in large programs. */
1185
1186 FOR_EACH_BB (bb)
1187 {
1188 FOR_EACH_EDGE (e, ei, bb->preds)
1189 if (e->flags & EDGE_ABNORMAL)
1190 {
1191 gimple_stmt_iterator gsi;
1192 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1193 gsi_next (&gsi))
1194 {
1195 gimple phi = gsi_stmt (gsi);
1196 tree res = PHI_RESULT (phi);
1197 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1198 int v1 = SSA_NAME_VERSION (res);
1199 int v2 = SSA_NAME_VERSION (arg);
1200
1201 if (debug)
1202 fprintf (debug, "Abnormal coalesce: ");
1203
1204 if (!attempt_coalesce (map, graph, v1, v2, debug))
1205 fail_abnormal_edge_coalesce (v1, v2);
1206 }
1207 }
1208 }
1209
1210 /* Now process the items in the coalesce list. */
1211
1212 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1213 {
1214 var1 = ssa_name (x);
1215 var2 = ssa_name (y);
1216
1217 /* Assert the coalesces have the same base variable. */
1218 gcc_assert (gimple_can_coalesce_p (var1, var2));
1219
1220 if (debug)
1221 fprintf (debug, "Coalesce list: ");
1222 attempt_coalesce (map, graph, x, y, debug);
1223 }
1224 }
1225
1226
1227 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1228
1229 struct ssa_name_var_hash : typed_noop_remove <tree_node>
1230 {
1231 typedef union tree_node value_type;
1232 typedef union tree_node compare_type;
1233 static inline hashval_t hash (const value_type *);
1234 static inline int equal (const value_type *, const compare_type *);
1235 };
1236
1237 inline hashval_t
1238 ssa_name_var_hash::hash (const_tree n)
1239 {
1240 return DECL_UID (SSA_NAME_VAR (n));
1241 }
1242
1243 inline int
1244 ssa_name_var_hash::equal (const value_type *n1, const compare_type *n2)
1245 {
1246 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1247 }
1248
1249
1250 /* Reduce the number of copies by coalescing variables in the function. Return
1251 a partition map with the resulting coalesces. */
1252
1253 extern var_map
1254 coalesce_ssa_name (void)
1255 {
1256 tree_live_info_p liveinfo;
1257 ssa_conflicts_p graph;
1258 coalesce_list_p cl;
1259 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1260 var_map map;
1261 unsigned int i;
1262
1263 cl = create_coalesce_list ();
1264 map = create_outofssa_var_map (cl, used_in_copies);
1265
1266 /* If optimization is disabled, we need to coalesce all the names originating
1267 from the same SSA_NAME_VAR so debug info remains undisturbed. */
1268 if (!optimize)
1269 {
1270 hash_table <ssa_name_var_hash> ssa_name_hash;
1271
1272 ssa_name_hash.create (10);
1273 for (i = 1; i < num_ssa_names; i++)
1274 {
1275 tree a = ssa_name (i);
1276
1277 if (a
1278 && SSA_NAME_VAR (a)
1279 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1280 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1281 {
1282 tree *slot = ssa_name_hash.find_slot (a, INSERT);
1283
1284 if (!*slot)
1285 *slot = a;
1286 else
1287 {
1288 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1289 _require_ that all the names originating from it be
1290 coalesced, because there must be a single partition
1291 containing all the names so that it can be assigned
1292 the canonical RTL location of the DECL safely. */
1293 const int cost
1294 = TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL
1295 ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
1296 add_coalesce (cl, SSA_NAME_VERSION (a),
1297 SSA_NAME_VERSION (*slot), cost);
1298 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1299 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1300 }
1301 }
1302 }
1303 ssa_name_hash.dispose ();
1304 }
1305 if (dump_file && (dump_flags & TDF_DETAILS))
1306 dump_var_map (dump_file, map);
1307
1308 /* Don't calculate live ranges for variables not in the coalesce list. */
1309 partition_view_bitmap (map, used_in_copies, true);
1310 BITMAP_FREE (used_in_copies);
1311
1312 if (num_var_partitions (map) < 1)
1313 {
1314 delete_coalesce_list (cl);
1315 return map;
1316 }
1317
1318 if (dump_file && (dump_flags & TDF_DETAILS))
1319 dump_var_map (dump_file, map);
1320
1321 liveinfo = calculate_live_ranges (map);
1322
1323 if (dump_file && (dump_flags & TDF_DETAILS))
1324 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1325
1326 /* Build a conflict graph. */
1327 graph = build_ssa_conflict_graph (liveinfo);
1328 delete_tree_live_info (liveinfo);
1329 if (dump_file && (dump_flags & TDF_DETAILS))
1330 ssa_conflicts_dump (dump_file, graph);
1331
1332 sort_coalesce_list (cl);
1333
1334 if (dump_file && (dump_flags & TDF_DETAILS))
1335 {
1336 fprintf (dump_file, "\nAfter sorting:\n");
1337 dump_coalesce_list (dump_file, cl);
1338 }
1339
1340 /* First, coalesce all live on entry variables to their base variable.
1341 This will ensure the first use is coming from the correct location. */
1342
1343 if (dump_file && (dump_flags & TDF_DETAILS))
1344 dump_var_map (dump_file, map);
1345
1346 /* Now coalesce everything in the list. */
1347 coalesce_partitions (map, graph, cl,
1348 ((dump_flags & TDF_DETAILS) ? dump_file
1349 : NULL));
1350
1351 delete_coalesce_list (cl);
1352 ssa_conflicts_delete (graph);
1353
1354 return map;
1355 }