]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dom.c
* output.h (__gcc_host_wide_int__): Move to hwint.h.
[thirdparty/gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "cfgloop.h"
31 #include "function.h"
32 #include "tree-pretty-print.h"
33 #include "gimple-pretty-print.h"
34 #include "timevar.h"
35 #include "tree-dump.h"
36 #include "tree-flow.h"
37 #include "domwalk.h"
38 #include "tree-pass.h"
39 #include "tree-ssa-propagate.h"
40 #include "langhooks.h"
41 #include "params.h"
42
43 /* This file implements optimizations on the dominator tree. */
44
45 /* Representation of a "naked" right-hand-side expression, to be used
46 in recording available expressions in the expression hash table. */
47
48 enum expr_kind
49 {
50 EXPR_SINGLE,
51 EXPR_UNARY,
52 EXPR_BINARY,
53 EXPR_TERNARY,
54 EXPR_CALL,
55 EXPR_PHI
56 };
57
58 struct hashable_expr
59 {
60 tree type;
61 enum expr_kind kind;
62 union {
63 struct { tree rhs; } single;
64 struct { enum tree_code op; tree opnd; } unary;
65 struct { enum tree_code op; tree opnd0, opnd1; } binary;
66 struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
67 struct { gimple fn_from; bool pure; size_t nargs; tree *args; } call;
68 struct { size_t nargs; tree *args; } phi;
69 } ops;
70 };
71
72 /* Structure for recording known values of a conditional expression
73 at the exits from its block. */
74
75 typedef struct cond_equivalence_s
76 {
77 struct hashable_expr cond;
78 tree value;
79 } cond_equivalence;
80
81 DEF_VEC_O(cond_equivalence);
82 DEF_VEC_ALLOC_O(cond_equivalence,heap);
83
84 /* Structure for recording edge equivalences as well as any pending
85 edge redirections during the dominator optimizer.
86
87 Computing and storing the edge equivalences instead of creating
88 them on-demand can save significant amounts of time, particularly
89 for pathological cases involving switch statements.
90
91 These structures live for a single iteration of the dominator
92 optimizer in the edge's AUX field. At the end of an iteration we
93 free each of these structures and update the AUX field to point
94 to any requested redirection target (the code for updating the
95 CFG and SSA graph for edge redirection expects redirection edge
96 targets to be in the AUX field for each edge. */
97
98 struct edge_info
99 {
100 /* If this edge creates a simple equivalence, the LHS and RHS of
101 the equivalence will be stored here. */
102 tree lhs;
103 tree rhs;
104
105 /* Traversing an edge may also indicate one or more particular conditions
106 are true or false. */
107 VEC(cond_equivalence, heap) *cond_equivalences;
108 };
109
110 /* Hash table with expressions made available during the renaming process.
111 When an assignment of the form X_i = EXPR is found, the statement is
112 stored in this table. If the same expression EXPR is later found on the
113 RHS of another statement, it is replaced with X_i (thus performing
114 global redundancy elimination). Similarly as we pass through conditionals
115 we record the conditional itself as having either a true or false value
116 in this table. */
117 static htab_t avail_exprs;
118
119 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
120 expressions it enters into the hash table along with a marker entry
121 (null). When we finish processing the block, we pop off entries and
122 remove the expressions from the global hash table until we hit the
123 marker. */
124 typedef struct expr_hash_elt * expr_hash_elt_t;
125 DEF_VEC_P(expr_hash_elt_t);
126 DEF_VEC_ALLOC_P(expr_hash_elt_t,heap);
127
128 static VEC(expr_hash_elt_t,heap) *avail_exprs_stack;
129
130 /* Structure for entries in the expression hash table. */
131
132 struct expr_hash_elt
133 {
134 /* The value (lhs) of this expression. */
135 tree lhs;
136
137 /* The expression (rhs) we want to record. */
138 struct hashable_expr expr;
139
140 /* The stmt pointer if this element corresponds to a statement. */
141 gimple stmt;
142
143 /* The hash value for RHS. */
144 hashval_t hash;
145
146 /* A unique stamp, typically the address of the hash
147 element itself, used in removing entries from the table. */
148 struct expr_hash_elt *stamp;
149 };
150
151 /* Stack of dest,src pairs that need to be restored during finalization.
152
153 A NULL entry is used to mark the end of pairs which need to be
154 restored during finalization of this block. */
155 static VEC(tree,heap) *const_and_copies_stack;
156
157 /* Track whether or not we have changed the control flow graph. */
158 static bool cfg_altered;
159
160 /* Bitmap of blocks that have had EH statements cleaned. We should
161 remove their dead edges eventually. */
162 static bitmap need_eh_cleanup;
163
164 /* Statistics for dominator optimizations. */
165 struct opt_stats_d
166 {
167 long num_stmts;
168 long num_exprs_considered;
169 long num_re;
170 long num_const_prop;
171 long num_copy_prop;
172 };
173
174 static struct opt_stats_d opt_stats;
175
176 /* Local functions. */
177 static void optimize_stmt (basic_block, gimple_stmt_iterator);
178 static tree lookup_avail_expr (gimple, bool);
179 static hashval_t avail_expr_hash (const void *);
180 static hashval_t real_avail_expr_hash (const void *);
181 static int avail_expr_eq (const void *, const void *);
182 static void htab_statistics (FILE *, htab_t);
183 static void record_cond (cond_equivalence *);
184 static void record_const_or_copy (tree, tree);
185 static void record_equality (tree, tree);
186 static void record_equivalences_from_phis (basic_block);
187 static void record_equivalences_from_incoming_edge (basic_block);
188 static void eliminate_redundant_computations (gimple_stmt_iterator *);
189 static void record_equivalences_from_stmt (gimple, int);
190 static void dom_thread_across_edge (struct dom_walk_data *, edge);
191 static void dom_opt_leave_block (struct dom_walk_data *, basic_block);
192 static void dom_opt_enter_block (struct dom_walk_data *, basic_block);
193 static void remove_local_expressions_from_table (void);
194 static void restore_vars_to_original_value (void);
195 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
196
197
198 /* Given a statement STMT, initialize the hash table element pointed to
199 by ELEMENT. */
200
201 static void
202 initialize_hash_element (gimple stmt, tree lhs,
203 struct expr_hash_elt *element)
204 {
205 enum gimple_code code = gimple_code (stmt);
206 struct hashable_expr *expr = &element->expr;
207
208 if (code == GIMPLE_ASSIGN)
209 {
210 enum tree_code subcode = gimple_assign_rhs_code (stmt);
211
212 switch (get_gimple_rhs_class (subcode))
213 {
214 case GIMPLE_SINGLE_RHS:
215 expr->kind = EXPR_SINGLE;
216 expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
217 expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
218 break;
219 case GIMPLE_UNARY_RHS:
220 expr->kind = EXPR_UNARY;
221 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
222 expr->ops.unary.op = subcode;
223 expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
224 break;
225 case GIMPLE_BINARY_RHS:
226 expr->kind = EXPR_BINARY;
227 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
228 expr->ops.binary.op = subcode;
229 expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
230 expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
231 break;
232 case GIMPLE_TERNARY_RHS:
233 expr->kind = EXPR_TERNARY;
234 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
235 expr->ops.ternary.op = subcode;
236 expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
237 expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
238 expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
239 break;
240 default:
241 gcc_unreachable ();
242 }
243 }
244 else if (code == GIMPLE_COND)
245 {
246 expr->type = boolean_type_node;
247 expr->kind = EXPR_BINARY;
248 expr->ops.binary.op = gimple_cond_code (stmt);
249 expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
250 expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
251 }
252 else if (code == GIMPLE_CALL)
253 {
254 size_t nargs = gimple_call_num_args (stmt);
255 size_t i;
256
257 gcc_assert (gimple_call_lhs (stmt));
258
259 expr->type = TREE_TYPE (gimple_call_lhs (stmt));
260 expr->kind = EXPR_CALL;
261 expr->ops.call.fn_from = stmt;
262
263 if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
264 expr->ops.call.pure = true;
265 else
266 expr->ops.call.pure = false;
267
268 expr->ops.call.nargs = nargs;
269 expr->ops.call.args = XCNEWVEC (tree, nargs);
270 for (i = 0; i < nargs; i++)
271 expr->ops.call.args[i] = gimple_call_arg (stmt, i);
272 }
273 else if (code == GIMPLE_SWITCH)
274 {
275 expr->type = TREE_TYPE (gimple_switch_index (stmt));
276 expr->kind = EXPR_SINGLE;
277 expr->ops.single.rhs = gimple_switch_index (stmt);
278 }
279 else if (code == GIMPLE_GOTO)
280 {
281 expr->type = TREE_TYPE (gimple_goto_dest (stmt));
282 expr->kind = EXPR_SINGLE;
283 expr->ops.single.rhs = gimple_goto_dest (stmt);
284 }
285 else if (code == GIMPLE_PHI)
286 {
287 size_t nargs = gimple_phi_num_args (stmt);
288 size_t i;
289
290 expr->type = TREE_TYPE (gimple_phi_result (stmt));
291 expr->kind = EXPR_PHI;
292 expr->ops.phi.nargs = nargs;
293 expr->ops.phi.args = XCNEWVEC (tree, nargs);
294
295 for (i = 0; i < nargs; i++)
296 expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
297 }
298 else
299 gcc_unreachable ();
300
301 element->lhs = lhs;
302 element->stmt = stmt;
303 element->hash = avail_expr_hash (element);
304 element->stamp = element;
305 }
306
307 /* Given a conditional expression COND as a tree, initialize
308 a hashable_expr expression EXPR. The conditional must be a
309 comparison or logical negation. A constant or a variable is
310 not permitted. */
311
312 static void
313 initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
314 {
315 expr->type = boolean_type_node;
316
317 if (COMPARISON_CLASS_P (cond))
318 {
319 expr->kind = EXPR_BINARY;
320 expr->ops.binary.op = TREE_CODE (cond);
321 expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
322 expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
323 }
324 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
325 {
326 expr->kind = EXPR_UNARY;
327 expr->ops.unary.op = TRUTH_NOT_EXPR;
328 expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
329 }
330 else
331 gcc_unreachable ();
332 }
333
334 /* Given a hashable_expr expression EXPR and an LHS,
335 initialize the hash table element pointed to by ELEMENT. */
336
337 static void
338 initialize_hash_element_from_expr (struct hashable_expr *expr,
339 tree lhs,
340 struct expr_hash_elt *element)
341 {
342 element->expr = *expr;
343 element->lhs = lhs;
344 element->stmt = NULL;
345 element->hash = avail_expr_hash (element);
346 element->stamp = element;
347 }
348
349 /* Compare two hashable_expr structures for equivalence.
350 They are considered equivalent when the the expressions
351 they denote must necessarily be equal. The logic is intended
352 to follow that of operand_equal_p in fold-const.c */
353
354 static bool
355 hashable_expr_equal_p (const struct hashable_expr *expr0,
356 const struct hashable_expr *expr1)
357 {
358 tree type0 = expr0->type;
359 tree type1 = expr1->type;
360
361 /* If either type is NULL, there is nothing to check. */
362 if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
363 return false;
364
365 /* If both types don't have the same signedness, precision, and mode,
366 then we can't consider them equal. */
367 if (type0 != type1
368 && (TREE_CODE (type0) == ERROR_MARK
369 || TREE_CODE (type1) == ERROR_MARK
370 || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
371 || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
372 || TYPE_MODE (type0) != TYPE_MODE (type1)))
373 return false;
374
375 if (expr0->kind != expr1->kind)
376 return false;
377
378 switch (expr0->kind)
379 {
380 case EXPR_SINGLE:
381 return operand_equal_p (expr0->ops.single.rhs,
382 expr1->ops.single.rhs, 0);
383
384 case EXPR_UNARY:
385 if (expr0->ops.unary.op != expr1->ops.unary.op)
386 return false;
387
388 if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
389 || expr0->ops.unary.op == NON_LVALUE_EXPR)
390 && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
391 return false;
392
393 return operand_equal_p (expr0->ops.unary.opnd,
394 expr1->ops.unary.opnd, 0);
395
396 case EXPR_BINARY:
397 if (expr0->ops.binary.op != expr1->ops.binary.op)
398 return false;
399
400 if (operand_equal_p (expr0->ops.binary.opnd0,
401 expr1->ops.binary.opnd0, 0)
402 && operand_equal_p (expr0->ops.binary.opnd1,
403 expr1->ops.binary.opnd1, 0))
404 return true;
405
406 /* For commutative ops, allow the other order. */
407 return (commutative_tree_code (expr0->ops.binary.op)
408 && operand_equal_p (expr0->ops.binary.opnd0,
409 expr1->ops.binary.opnd1, 0)
410 && operand_equal_p (expr0->ops.binary.opnd1,
411 expr1->ops.binary.opnd0, 0));
412
413 case EXPR_TERNARY:
414 if (expr0->ops.ternary.op != expr1->ops.ternary.op
415 || !operand_equal_p (expr0->ops.ternary.opnd2,
416 expr1->ops.ternary.opnd2, 0))
417 return false;
418
419 if (operand_equal_p (expr0->ops.ternary.opnd0,
420 expr1->ops.ternary.opnd0, 0)
421 && operand_equal_p (expr0->ops.ternary.opnd1,
422 expr1->ops.ternary.opnd1, 0))
423 return true;
424
425 /* For commutative ops, allow the other order. */
426 return (commutative_ternary_tree_code (expr0->ops.ternary.op)
427 && operand_equal_p (expr0->ops.ternary.opnd0,
428 expr1->ops.ternary.opnd1, 0)
429 && operand_equal_p (expr0->ops.ternary.opnd1,
430 expr1->ops.ternary.opnd0, 0));
431
432 case EXPR_CALL:
433 {
434 size_t i;
435
436 /* If the calls are to different functions, then they
437 clearly cannot be equal. */
438 if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
439 expr1->ops.call.fn_from))
440 return false;
441
442 if (! expr0->ops.call.pure)
443 return false;
444
445 if (expr0->ops.call.nargs != expr1->ops.call.nargs)
446 return false;
447
448 for (i = 0; i < expr0->ops.call.nargs; i++)
449 if (! operand_equal_p (expr0->ops.call.args[i],
450 expr1->ops.call.args[i], 0))
451 return false;
452
453 return true;
454 }
455
456 case EXPR_PHI:
457 {
458 size_t i;
459
460 if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
461 return false;
462
463 for (i = 0; i < expr0->ops.phi.nargs; i++)
464 if (! operand_equal_p (expr0->ops.phi.args[i],
465 expr1->ops.phi.args[i], 0))
466 return false;
467
468 return true;
469 }
470
471 default:
472 gcc_unreachable ();
473 }
474 }
475
476 /* Compute a hash value for a hashable_expr value EXPR and a
477 previously accumulated hash value VAL. If two hashable_expr
478 values compare equal with hashable_expr_equal_p, they must
479 hash to the same value, given an identical value of VAL.
480 The logic is intended to follow iterative_hash_expr in tree.c. */
481
482 static hashval_t
483 iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val)
484 {
485 switch (expr->kind)
486 {
487 case EXPR_SINGLE:
488 val = iterative_hash_expr (expr->ops.single.rhs, val);
489 break;
490
491 case EXPR_UNARY:
492 val = iterative_hash_object (expr->ops.unary.op, val);
493
494 /* Make sure to include signedness in the hash computation.
495 Don't hash the type, that can lead to having nodes which
496 compare equal according to operand_equal_p, but which
497 have different hash codes. */
498 if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
499 || expr->ops.unary.op == NON_LVALUE_EXPR)
500 val += TYPE_UNSIGNED (expr->type);
501
502 val = iterative_hash_expr (expr->ops.unary.opnd, val);
503 break;
504
505 case EXPR_BINARY:
506 val = iterative_hash_object (expr->ops.binary.op, val);
507 if (commutative_tree_code (expr->ops.binary.op))
508 val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0,
509 expr->ops.binary.opnd1, val);
510 else
511 {
512 val = iterative_hash_expr (expr->ops.binary.opnd0, val);
513 val = iterative_hash_expr (expr->ops.binary.opnd1, val);
514 }
515 break;
516
517 case EXPR_TERNARY:
518 val = iterative_hash_object (expr->ops.ternary.op, val);
519 if (commutative_ternary_tree_code (expr->ops.ternary.op))
520 val = iterative_hash_exprs_commutative (expr->ops.ternary.opnd0,
521 expr->ops.ternary.opnd1, val);
522 else
523 {
524 val = iterative_hash_expr (expr->ops.ternary.opnd0, val);
525 val = iterative_hash_expr (expr->ops.ternary.opnd1, val);
526 }
527 val = iterative_hash_expr (expr->ops.ternary.opnd2, val);
528 break;
529
530 case EXPR_CALL:
531 {
532 size_t i;
533 enum tree_code code = CALL_EXPR;
534 gimple fn_from;
535
536 val = iterative_hash_object (code, val);
537 fn_from = expr->ops.call.fn_from;
538 if (gimple_call_internal_p (fn_from))
539 val = iterative_hash_hashval_t
540 ((hashval_t) gimple_call_internal_fn (fn_from), val);
541 else
542 val = iterative_hash_expr (gimple_call_fn (fn_from), val);
543 for (i = 0; i < expr->ops.call.nargs; i++)
544 val = iterative_hash_expr (expr->ops.call.args[i], val);
545 }
546 break;
547
548 case EXPR_PHI:
549 {
550 size_t i;
551
552 for (i = 0; i < expr->ops.phi.nargs; i++)
553 val = iterative_hash_expr (expr->ops.phi.args[i], val);
554 }
555 break;
556
557 default:
558 gcc_unreachable ();
559 }
560
561 return val;
562 }
563
564 /* Print a diagnostic dump of an expression hash table entry. */
565
566 static void
567 print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
568 {
569 if (element->stmt)
570 fprintf (stream, "STMT ");
571 else
572 fprintf (stream, "COND ");
573
574 if (element->lhs)
575 {
576 print_generic_expr (stream, element->lhs, 0);
577 fprintf (stream, " = ");
578 }
579
580 switch (element->expr.kind)
581 {
582 case EXPR_SINGLE:
583 print_generic_expr (stream, element->expr.ops.single.rhs, 0);
584 break;
585
586 case EXPR_UNARY:
587 fprintf (stream, "%s ", tree_code_name[element->expr.ops.unary.op]);
588 print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
589 break;
590
591 case EXPR_BINARY:
592 print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
593 fprintf (stream, " %s ", tree_code_name[element->expr.ops.binary.op]);
594 print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
595 break;
596
597 case EXPR_TERNARY:
598 fprintf (stream, " %s <", tree_code_name[element->expr.ops.ternary.op]);
599 print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
600 fputs (", ", stream);
601 print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
602 fputs (", ", stream);
603 print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
604 fputs (">", stream);
605 break;
606
607 case EXPR_CALL:
608 {
609 size_t i;
610 size_t nargs = element->expr.ops.call.nargs;
611 gimple fn_from;
612
613 fn_from = element->expr.ops.call.fn_from;
614 if (gimple_call_internal_p (fn_from))
615 fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
616 stream);
617 else
618 print_generic_expr (stream, gimple_call_fn (fn_from), 0);
619 fprintf (stream, " (");
620 for (i = 0; i < nargs; i++)
621 {
622 print_generic_expr (stream, element->expr.ops.call.args[i], 0);
623 if (i + 1 < nargs)
624 fprintf (stream, ", ");
625 }
626 fprintf (stream, ")");
627 }
628 break;
629
630 case EXPR_PHI:
631 {
632 size_t i;
633 size_t nargs = element->expr.ops.phi.nargs;
634
635 fprintf (stream, "PHI <");
636 for (i = 0; i < nargs; i++)
637 {
638 print_generic_expr (stream, element->expr.ops.phi.args[i], 0);
639 if (i + 1 < nargs)
640 fprintf (stream, ", ");
641 }
642 fprintf (stream, ">");
643 }
644 break;
645 }
646 fprintf (stream, "\n");
647
648 if (element->stmt)
649 {
650 fprintf (stream, " ");
651 print_gimple_stmt (stream, element->stmt, 0, 0);
652 }
653 }
654
655 /* Delete an expr_hash_elt and reclaim its storage. */
656
657 static void
658 free_expr_hash_elt (void *elt)
659 {
660 struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
661
662 if (element->expr.kind == EXPR_CALL)
663 free (element->expr.ops.call.args);
664
665 if (element->expr.kind == EXPR_PHI)
666 free (element->expr.ops.phi.args);
667
668 free (element);
669 }
670
671 /* Allocate an EDGE_INFO for edge E and attach it to E.
672 Return the new EDGE_INFO structure. */
673
674 static struct edge_info *
675 allocate_edge_info (edge e)
676 {
677 struct edge_info *edge_info;
678
679 edge_info = XCNEW (struct edge_info);
680
681 e->aux = edge_info;
682 return edge_info;
683 }
684
685 /* Free all EDGE_INFO structures associated with edges in the CFG.
686 If a particular edge can be threaded, copy the redirection
687 target from the EDGE_INFO structure into the edge's AUX field
688 as required by code to update the CFG and SSA graph for
689 jump threading. */
690
691 static void
692 free_all_edge_infos (void)
693 {
694 basic_block bb;
695 edge_iterator ei;
696 edge e;
697
698 FOR_EACH_BB (bb)
699 {
700 FOR_EACH_EDGE (e, ei, bb->preds)
701 {
702 struct edge_info *edge_info = (struct edge_info *) e->aux;
703
704 if (edge_info)
705 {
706 if (edge_info->cond_equivalences)
707 VEC_free (cond_equivalence, heap, edge_info->cond_equivalences);
708 free (edge_info);
709 e->aux = NULL;
710 }
711 }
712 }
713 }
714
715 /* Jump threading, redundancy elimination and const/copy propagation.
716
717 This pass may expose new symbols that need to be renamed into SSA. For
718 every new symbol exposed, its corresponding bit will be set in
719 VARS_TO_RENAME. */
720
721 static unsigned int
722 tree_ssa_dominator_optimize (void)
723 {
724 struct dom_walk_data walk_data;
725
726 memset (&opt_stats, 0, sizeof (opt_stats));
727
728 /* Create our hash tables. */
729 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free_expr_hash_elt);
730 avail_exprs_stack = VEC_alloc (expr_hash_elt_t, heap, 20);
731 const_and_copies_stack = VEC_alloc (tree, heap, 20);
732 need_eh_cleanup = BITMAP_ALLOC (NULL);
733
734 /* Setup callbacks for the generic dominator tree walker. */
735 walk_data.dom_direction = CDI_DOMINATORS;
736 walk_data.initialize_block_local_data = NULL;
737 walk_data.before_dom_children = dom_opt_enter_block;
738 walk_data.after_dom_children = dom_opt_leave_block;
739 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
740 When we attach more stuff we'll need to fill this out with a real
741 structure. */
742 walk_data.global_data = NULL;
743 walk_data.block_local_data_size = 0;
744
745 /* Now initialize the dominator walker. */
746 init_walk_dominator_tree (&walk_data);
747
748 calculate_dominance_info (CDI_DOMINATORS);
749 cfg_altered = false;
750
751 /* We need to know loop structures in order to avoid destroying them
752 in jump threading. Note that we still can e.g. thread through loop
753 headers to an exit edge, or through loop header to the loop body, assuming
754 that we update the loop info. */
755 loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES);
756
757 /* Initialize the value-handle array. */
758 threadedge_initialize_values ();
759
760 /* We need accurate information regarding back edges in the CFG
761 for jump threading; this may include back edges that are not part of
762 a single loop. */
763 mark_dfs_back_edges ();
764
765 /* Recursively walk the dominator tree optimizing statements. */
766 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
767
768 {
769 gimple_stmt_iterator gsi;
770 basic_block bb;
771 FOR_EACH_BB (bb)
772 {
773 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
774 update_stmt_if_modified (gsi_stmt (gsi));
775 }
776 }
777
778 /* If we exposed any new variables, go ahead and put them into
779 SSA form now, before we handle jump threading. This simplifies
780 interactions between rewriting of _DECL nodes into SSA form
781 and rewriting SSA_NAME nodes into SSA form after block
782 duplication and CFG manipulation. */
783 update_ssa (TODO_update_ssa);
784
785 free_all_edge_infos ();
786
787 /* Thread jumps, creating duplicate blocks as needed. */
788 cfg_altered |= thread_through_all_blocks (first_pass_instance);
789
790 if (cfg_altered)
791 free_dominance_info (CDI_DOMINATORS);
792
793 /* Removal of statements may make some EH edges dead. Purge
794 such edges from the CFG as needed. */
795 if (!bitmap_empty_p (need_eh_cleanup))
796 {
797 unsigned i;
798 bitmap_iterator bi;
799
800 /* Jump threading may have created forwarder blocks from blocks
801 needing EH cleanup; the new successor of these blocks, which
802 has inherited from the original block, needs the cleanup. */
803 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
804 {
805 basic_block bb = BASIC_BLOCK (i);
806 if (bb
807 && single_succ_p (bb)
808 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
809 {
810 bitmap_clear_bit (need_eh_cleanup, i);
811 bitmap_set_bit (need_eh_cleanup, single_succ (bb)->index);
812 }
813 }
814
815 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
816 bitmap_zero (need_eh_cleanup);
817 }
818
819 statistics_counter_event (cfun, "Redundant expressions eliminated",
820 opt_stats.num_re);
821 statistics_counter_event (cfun, "Constants propagated",
822 opt_stats.num_const_prop);
823 statistics_counter_event (cfun, "Copies propagated",
824 opt_stats.num_copy_prop);
825
826 /* Debugging dumps. */
827 if (dump_file && (dump_flags & TDF_STATS))
828 dump_dominator_optimization_stats (dump_file);
829
830 loop_optimizer_finalize ();
831
832 /* Delete our main hashtable. */
833 htab_delete (avail_exprs);
834
835 /* And finalize the dominator walker. */
836 fini_walk_dominator_tree (&walk_data);
837
838 /* Free asserted bitmaps and stacks. */
839 BITMAP_FREE (need_eh_cleanup);
840
841 VEC_free (expr_hash_elt_t, heap, avail_exprs_stack);
842 VEC_free (tree, heap, const_and_copies_stack);
843
844 /* Free the value-handle array. */
845 threadedge_finalize_values ();
846 ssa_name_values = NULL;
847
848 return 0;
849 }
850
851 static bool
852 gate_dominator (void)
853 {
854 return flag_tree_dom != 0;
855 }
856
857 struct gimple_opt_pass pass_dominator =
858 {
859 {
860 GIMPLE_PASS,
861 "dom", /* name */
862 gate_dominator, /* gate */
863 tree_ssa_dominator_optimize, /* execute */
864 NULL, /* sub */
865 NULL, /* next */
866 0, /* static_pass_number */
867 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
868 PROP_cfg | PROP_ssa, /* properties_required */
869 0, /* properties_provided */
870 0, /* properties_destroyed */
871 0, /* todo_flags_start */
872 TODO_cleanup_cfg
873 | TODO_update_ssa
874 | TODO_verify_ssa
875 | TODO_verify_flow /* todo_flags_finish */
876 }
877 };
878
879
880 /* Given a conditional statement CONDSTMT, convert the
881 condition to a canonical form. */
882
883 static void
884 canonicalize_comparison (gimple condstmt)
885 {
886 tree op0;
887 tree op1;
888 enum tree_code code;
889
890 gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
891
892 op0 = gimple_cond_lhs (condstmt);
893 op1 = gimple_cond_rhs (condstmt);
894
895 code = gimple_cond_code (condstmt);
896
897 /* If it would be profitable to swap the operands, then do so to
898 canonicalize the statement, enabling better optimization.
899
900 By placing canonicalization of such expressions here we
901 transparently keep statements in canonical form, even
902 when the statement is modified. */
903 if (tree_swap_operands_p (op0, op1, false))
904 {
905 /* For relationals we need to swap the operands
906 and change the code. */
907 if (code == LT_EXPR
908 || code == GT_EXPR
909 || code == LE_EXPR
910 || code == GE_EXPR)
911 {
912 code = swap_tree_comparison (code);
913
914 gimple_cond_set_code (condstmt, code);
915 gimple_cond_set_lhs (condstmt, op1);
916 gimple_cond_set_rhs (condstmt, op0);
917
918 update_stmt (condstmt);
919 }
920 }
921 }
922
923 /* Initialize local stacks for this optimizer and record equivalences
924 upon entry to BB. Equivalences can come from the edge traversed to
925 reach BB or they may come from PHI nodes at the start of BB. */
926
927 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
928 LIMIT entries left in LOCALs. */
929
930 static void
931 remove_local_expressions_from_table (void)
932 {
933 /* Remove all the expressions made available in this block. */
934 while (VEC_length (expr_hash_elt_t, avail_exprs_stack) > 0)
935 {
936 expr_hash_elt_t victim = VEC_pop (expr_hash_elt_t, avail_exprs_stack);
937 void **slot;
938
939 if (victim == NULL)
940 break;
941
942 /* This must precede the actual removal from the hash table,
943 as ELEMENT and the table entry may share a call argument
944 vector which will be freed during removal. */
945 if (dump_file && (dump_flags & TDF_DETAILS))
946 {
947 fprintf (dump_file, "<<<< ");
948 print_expr_hash_elt (dump_file, victim);
949 }
950
951 slot = htab_find_slot_with_hash (avail_exprs,
952 victim, victim->hash, NO_INSERT);
953 gcc_assert (slot && *slot == (void *) victim);
954 htab_clear_slot (avail_exprs, slot);
955 }
956 }
957
958 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
959 CONST_AND_COPIES to its original state, stopping when we hit a
960 NULL marker. */
961
962 static void
963 restore_vars_to_original_value (void)
964 {
965 while (VEC_length (tree, const_and_copies_stack) > 0)
966 {
967 tree prev_value, dest;
968
969 dest = VEC_pop (tree, const_and_copies_stack);
970
971 if (dest == NULL)
972 break;
973
974 if (dump_file && (dump_flags & TDF_DETAILS))
975 {
976 fprintf (dump_file, "<<<< COPY ");
977 print_generic_expr (dump_file, dest, 0);
978 fprintf (dump_file, " = ");
979 print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
980 fprintf (dump_file, "\n");
981 }
982
983 prev_value = VEC_pop (tree, const_and_copies_stack);
984 set_ssa_name_value (dest, prev_value);
985 }
986 }
987
988 /* A trivial wrapper so that we can present the generic jump
989 threading code with a simple API for simplifying statements. */
990 static tree
991 simplify_stmt_for_jump_threading (gimple stmt,
992 gimple within_stmt ATTRIBUTE_UNUSED)
993 {
994 return lookup_avail_expr (stmt, false);
995 }
996
997 /* Wrapper for common code to attempt to thread an edge. For example,
998 it handles lazily building the dummy condition and the bookkeeping
999 when jump threading is successful. */
1000
1001 static void
1002 dom_thread_across_edge (struct dom_walk_data *walk_data, edge e)
1003 {
1004 if (! walk_data->global_data)
1005 {
1006 gimple dummy_cond =
1007 gimple_build_cond (NE_EXPR,
1008 integer_zero_node, integer_zero_node,
1009 NULL, NULL);
1010 walk_data->global_data = dummy_cond;
1011 }
1012
1013 thread_across_edge ((gimple) walk_data->global_data, e, false,
1014 &const_and_copies_stack,
1015 simplify_stmt_for_jump_threading);
1016 }
1017
1018 /* PHI nodes can create equivalences too.
1019
1020 Ignoring any alternatives which are the same as the result, if
1021 all the alternatives are equal, then the PHI node creates an
1022 equivalence. */
1023
1024 static void
1025 record_equivalences_from_phis (basic_block bb)
1026 {
1027 gimple_stmt_iterator gsi;
1028
1029 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1030 {
1031 gimple phi = gsi_stmt (gsi);
1032
1033 tree lhs = gimple_phi_result (phi);
1034 tree rhs = NULL;
1035 size_t i;
1036
1037 for (i = 0; i < gimple_phi_num_args (phi); i++)
1038 {
1039 tree t = gimple_phi_arg_def (phi, i);
1040
1041 /* Ignore alternatives which are the same as our LHS. Since
1042 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1043 can simply compare pointers. */
1044 if (lhs == t)
1045 continue;
1046
1047 /* If we have not processed an alternative yet, then set
1048 RHS to this alternative. */
1049 if (rhs == NULL)
1050 rhs = t;
1051 /* If we have processed an alternative (stored in RHS), then
1052 see if it is equal to this one. If it isn't, then stop
1053 the search. */
1054 else if (! operand_equal_for_phi_arg_p (rhs, t))
1055 break;
1056 }
1057
1058 /* If we had no interesting alternatives, then all the RHS alternatives
1059 must have been the same as LHS. */
1060 if (!rhs)
1061 rhs = lhs;
1062
1063 /* If we managed to iterate through each PHI alternative without
1064 breaking out of the loop, then we have a PHI which may create
1065 a useful equivalence. We do not need to record unwind data for
1066 this, since this is a true assignment and not an equivalence
1067 inferred from a comparison. All uses of this ssa name are dominated
1068 by this assignment, so unwinding just costs time and space. */
1069 if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs))
1070 set_ssa_name_value (lhs, rhs);
1071 }
1072 }
1073
1074 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1075 return that edge. Otherwise return NULL. */
1076 static edge
1077 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1078 {
1079 edge retval = NULL;
1080 edge e;
1081 edge_iterator ei;
1082
1083 FOR_EACH_EDGE (e, ei, bb->preds)
1084 {
1085 /* A loop back edge can be identified by the destination of
1086 the edge dominating the source of the edge. */
1087 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1088 continue;
1089
1090 /* If we have already seen a non-loop edge, then we must have
1091 multiple incoming non-loop edges and thus we return NULL. */
1092 if (retval)
1093 return NULL;
1094
1095 /* This is the first non-loop incoming edge we have found. Record
1096 it. */
1097 retval = e;
1098 }
1099
1100 return retval;
1101 }
1102
1103 /* Record any equivalences created by the incoming edge to BB. If BB
1104 has more than one incoming edge, then no equivalence is created. */
1105
1106 static void
1107 record_equivalences_from_incoming_edge (basic_block bb)
1108 {
1109 edge e;
1110 basic_block parent;
1111 struct edge_info *edge_info;
1112
1113 /* If our parent block ended with a control statement, then we may be
1114 able to record some equivalences based on which outgoing edge from
1115 the parent was followed. */
1116 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1117
1118 e = single_incoming_edge_ignoring_loop_edges (bb);
1119
1120 /* If we had a single incoming edge from our parent block, then enter
1121 any data associated with the edge into our tables. */
1122 if (e && e->src == parent)
1123 {
1124 unsigned int i;
1125
1126 edge_info = (struct edge_info *) e->aux;
1127
1128 if (edge_info)
1129 {
1130 tree lhs = edge_info->lhs;
1131 tree rhs = edge_info->rhs;
1132 cond_equivalence *eq;
1133
1134 if (lhs)
1135 record_equality (lhs, rhs);
1136
1137 for (i = 0; VEC_iterate (cond_equivalence,
1138 edge_info->cond_equivalences, i, eq); ++i)
1139 record_cond (eq);
1140 }
1141 }
1142 }
1143
1144 /* Dump SSA statistics on FILE. */
1145
1146 void
1147 dump_dominator_optimization_stats (FILE *file)
1148 {
1149 fprintf (file, "Total number of statements: %6ld\n\n",
1150 opt_stats.num_stmts);
1151 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1152 opt_stats.num_exprs_considered);
1153
1154 fprintf (file, "\nHash table statistics:\n");
1155
1156 fprintf (file, " avail_exprs: ");
1157 htab_statistics (file, avail_exprs);
1158 }
1159
1160
1161 /* Dump SSA statistics on stderr. */
1162
1163 DEBUG_FUNCTION void
1164 debug_dominator_optimization_stats (void)
1165 {
1166 dump_dominator_optimization_stats (stderr);
1167 }
1168
1169
1170 /* Dump statistics for the hash table HTAB. */
1171
1172 static void
1173 htab_statistics (FILE *file, htab_t htab)
1174 {
1175 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1176 (long) htab_size (htab),
1177 (long) htab_elements (htab),
1178 htab_collisions (htab));
1179 }
1180
1181
1182 /* Enter condition equivalence into the expression hash table.
1183 This indicates that a conditional expression has a known
1184 boolean value. */
1185
1186 static void
1187 record_cond (cond_equivalence *p)
1188 {
1189 struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
1190 void **slot;
1191
1192 initialize_hash_element_from_expr (&p->cond, p->value, element);
1193
1194 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1195 element->hash, INSERT);
1196 if (*slot == NULL)
1197 {
1198 *slot = (void *) element;
1199
1200 if (dump_file && (dump_flags & TDF_DETAILS))
1201 {
1202 fprintf (dump_file, "1>>> ");
1203 print_expr_hash_elt (dump_file, element);
1204 }
1205
1206 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element);
1207 }
1208 else
1209 free (element);
1210 }
1211
1212 /* Build a cond_equivalence record indicating that the comparison
1213 CODE holds between operands OP0 and OP1 and push it to **P. */
1214
1215 static void
1216 build_and_record_new_cond (enum tree_code code,
1217 tree op0, tree op1,
1218 VEC(cond_equivalence, heap) **p)
1219 {
1220 cond_equivalence c;
1221 struct hashable_expr *cond = &c.cond;
1222
1223 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
1224
1225 cond->type = boolean_type_node;
1226 cond->kind = EXPR_BINARY;
1227 cond->ops.binary.op = code;
1228 cond->ops.binary.opnd0 = op0;
1229 cond->ops.binary.opnd1 = op1;
1230
1231 c.value = boolean_true_node;
1232 VEC_safe_push (cond_equivalence, heap, *p, &c);
1233 }
1234
1235 /* Record that COND is true and INVERTED is false into the edge information
1236 structure. Also record that any conditions dominated by COND are true
1237 as well.
1238
1239 For example, if a < b is true, then a <= b must also be true. */
1240
1241 static void
1242 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1243 {
1244 tree op0, op1;
1245 cond_equivalence c;
1246
1247 if (!COMPARISON_CLASS_P (cond))
1248 return;
1249
1250 op0 = TREE_OPERAND (cond, 0);
1251 op1 = TREE_OPERAND (cond, 1);
1252
1253 switch (TREE_CODE (cond))
1254 {
1255 case LT_EXPR:
1256 case GT_EXPR:
1257 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1258 {
1259 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1260 &edge_info->cond_equivalences);
1261 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1262 &edge_info->cond_equivalences);
1263 }
1264
1265 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1266 ? LE_EXPR : GE_EXPR),
1267 op0, op1, &edge_info->cond_equivalences);
1268 build_and_record_new_cond (NE_EXPR, op0, op1,
1269 &edge_info->cond_equivalences);
1270 break;
1271
1272 case GE_EXPR:
1273 case LE_EXPR:
1274 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1275 {
1276 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1277 &edge_info->cond_equivalences);
1278 }
1279 break;
1280
1281 case EQ_EXPR:
1282 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1283 {
1284 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1285 &edge_info->cond_equivalences);
1286 }
1287 build_and_record_new_cond (LE_EXPR, op0, op1,
1288 &edge_info->cond_equivalences);
1289 build_and_record_new_cond (GE_EXPR, op0, op1,
1290 &edge_info->cond_equivalences);
1291 break;
1292
1293 case UNORDERED_EXPR:
1294 build_and_record_new_cond (NE_EXPR, op0, op1,
1295 &edge_info->cond_equivalences);
1296 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1297 &edge_info->cond_equivalences);
1298 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1299 &edge_info->cond_equivalences);
1300 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1301 &edge_info->cond_equivalences);
1302 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1303 &edge_info->cond_equivalences);
1304 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1305 &edge_info->cond_equivalences);
1306 break;
1307
1308 case UNLT_EXPR:
1309 case UNGT_EXPR:
1310 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1311 ? UNLE_EXPR : UNGE_EXPR),
1312 op0, op1, &edge_info->cond_equivalences);
1313 build_and_record_new_cond (NE_EXPR, op0, op1,
1314 &edge_info->cond_equivalences);
1315 break;
1316
1317 case UNEQ_EXPR:
1318 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1319 &edge_info->cond_equivalences);
1320 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1321 &edge_info->cond_equivalences);
1322 break;
1323
1324 case LTGT_EXPR:
1325 build_and_record_new_cond (NE_EXPR, op0, op1,
1326 &edge_info->cond_equivalences);
1327 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1328 &edge_info->cond_equivalences);
1329 break;
1330
1331 default:
1332 break;
1333 }
1334
1335 /* Now store the original true and false conditions into the first
1336 two slots. */
1337 initialize_expr_from_cond (cond, &c.cond);
1338 c.value = boolean_true_node;
1339 VEC_safe_push (cond_equivalence, heap, edge_info->cond_equivalences, &c);
1340
1341 /* It is possible for INVERTED to be the negation of a comparison,
1342 and not a valid RHS or GIMPLE_COND condition. This happens because
1343 invert_truthvalue may return such an expression when asked to invert
1344 a floating-point comparison. These comparisons are not assumed to
1345 obey the trichotomy law. */
1346 initialize_expr_from_cond (inverted, &c.cond);
1347 c.value = boolean_false_node;
1348 VEC_safe_push (cond_equivalence, heap, edge_info->cond_equivalences, &c);
1349 }
1350
1351 /* A helper function for record_const_or_copy and record_equality.
1352 Do the work of recording the value and undo info. */
1353
1354 static void
1355 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1356 {
1357 set_ssa_name_value (x, y);
1358
1359 if (dump_file && (dump_flags & TDF_DETAILS))
1360 {
1361 fprintf (dump_file, "0>>> COPY ");
1362 print_generic_expr (dump_file, x, 0);
1363 fprintf (dump_file, " = ");
1364 print_generic_expr (dump_file, y, 0);
1365 fprintf (dump_file, "\n");
1366 }
1367
1368 VEC_reserve (tree, heap, const_and_copies_stack, 2);
1369 VEC_quick_push (tree, const_and_copies_stack, prev_x);
1370 VEC_quick_push (tree, const_and_copies_stack, x);
1371 }
1372
1373 /* Return the loop depth of the basic block of the defining statement of X.
1374 This number should not be treated as absolutely correct because the loop
1375 information may not be completely up-to-date when dom runs. However, it
1376 will be relatively correct, and as more passes are taught to keep loop info
1377 up to date, the result will become more and more accurate. */
1378
1379 int
1380 loop_depth_of_name (tree x)
1381 {
1382 gimple defstmt;
1383 basic_block defbb;
1384
1385 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1386 if (TREE_CODE (x) != SSA_NAME)
1387 return 0;
1388
1389 /* Otherwise return the loop depth of the defining statement's bb.
1390 Note that there may not actually be a bb for this statement, if the
1391 ssa_name is live on entry. */
1392 defstmt = SSA_NAME_DEF_STMT (x);
1393 defbb = gimple_bb (defstmt);
1394 if (!defbb)
1395 return 0;
1396
1397 return defbb->loop_depth;
1398 }
1399
1400 /* Record that X is equal to Y in const_and_copies. Record undo
1401 information in the block-local vector. */
1402
1403 static void
1404 record_const_or_copy (tree x, tree y)
1405 {
1406 tree prev_x = SSA_NAME_VALUE (x);
1407
1408 gcc_assert (TREE_CODE (x) == SSA_NAME);
1409
1410 if (TREE_CODE (y) == SSA_NAME)
1411 {
1412 tree tmp = SSA_NAME_VALUE (y);
1413 if (tmp)
1414 y = tmp;
1415 }
1416
1417 record_const_or_copy_1 (x, y, prev_x);
1418 }
1419
1420 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1421 This constrains the cases in which we may treat this as assignment. */
1422
1423 static void
1424 record_equality (tree x, tree y)
1425 {
1426 tree prev_x = NULL, prev_y = NULL;
1427
1428 if (TREE_CODE (x) == SSA_NAME)
1429 prev_x = SSA_NAME_VALUE (x);
1430 if (TREE_CODE (y) == SSA_NAME)
1431 prev_y = SSA_NAME_VALUE (y);
1432
1433 /* If one of the previous values is invariant, or invariant in more loops
1434 (by depth), then use that.
1435 Otherwise it doesn't matter which value we choose, just so
1436 long as we canonicalize on one value. */
1437 if (is_gimple_min_invariant (y))
1438 ;
1439 else if (is_gimple_min_invariant (x)
1440 || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1441 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1442 else if (prev_x && is_gimple_min_invariant (prev_x))
1443 x = y, y = prev_x, prev_x = prev_y;
1444 else if (prev_y)
1445 y = prev_y;
1446
1447 /* After the swapping, we must have one SSA_NAME. */
1448 if (TREE_CODE (x) != SSA_NAME)
1449 return;
1450
1451 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1452 variable compared against zero. If we're honoring signed zeros,
1453 then we cannot record this value unless we know that the value is
1454 nonzero. */
1455 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1456 && (TREE_CODE (y) != REAL_CST
1457 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1458 return;
1459
1460 record_const_or_copy_1 (x, y, prev_x);
1461 }
1462
1463 /* Returns true when STMT is a simple iv increment. It detects the
1464 following situation:
1465
1466 i_1 = phi (..., i_2)
1467 i_2 = i_1 +/- ... */
1468
1469 bool
1470 simple_iv_increment_p (gimple stmt)
1471 {
1472 enum tree_code code;
1473 tree lhs, preinc;
1474 gimple phi;
1475 size_t i;
1476
1477 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1478 return false;
1479
1480 lhs = gimple_assign_lhs (stmt);
1481 if (TREE_CODE (lhs) != SSA_NAME)
1482 return false;
1483
1484 code = gimple_assign_rhs_code (stmt);
1485 if (code != PLUS_EXPR
1486 && code != MINUS_EXPR
1487 && code != POINTER_PLUS_EXPR)
1488 return false;
1489
1490 preinc = gimple_assign_rhs1 (stmt);
1491 if (TREE_CODE (preinc) != SSA_NAME)
1492 return false;
1493
1494 phi = SSA_NAME_DEF_STMT (preinc);
1495 if (gimple_code (phi) != GIMPLE_PHI)
1496 return false;
1497
1498 for (i = 0; i < gimple_phi_num_args (phi); i++)
1499 if (gimple_phi_arg_def (phi, i) == lhs)
1500 return true;
1501
1502 return false;
1503 }
1504
1505 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1506 known value for that SSA_NAME (or NULL if no value is known).
1507
1508 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1509 successors of BB. */
1510
1511 static void
1512 cprop_into_successor_phis (basic_block bb)
1513 {
1514 edge e;
1515 edge_iterator ei;
1516
1517 FOR_EACH_EDGE (e, ei, bb->succs)
1518 {
1519 int indx;
1520 gimple_stmt_iterator gsi;
1521
1522 /* If this is an abnormal edge, then we do not want to copy propagate
1523 into the PHI alternative associated with this edge. */
1524 if (e->flags & EDGE_ABNORMAL)
1525 continue;
1526
1527 gsi = gsi_start_phis (e->dest);
1528 if (gsi_end_p (gsi))
1529 continue;
1530
1531 indx = e->dest_idx;
1532 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1533 {
1534 tree new_val;
1535 use_operand_p orig_p;
1536 tree orig_val;
1537 gimple phi = gsi_stmt (gsi);
1538
1539 /* The alternative may be associated with a constant, so verify
1540 it is an SSA_NAME before doing anything with it. */
1541 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1542 orig_val = get_use_from_ptr (orig_p);
1543 if (TREE_CODE (orig_val) != SSA_NAME)
1544 continue;
1545
1546 /* If we have *ORIG_P in our constant/copy table, then replace
1547 ORIG_P with its value in our constant/copy table. */
1548 new_val = SSA_NAME_VALUE (orig_val);
1549 if (new_val
1550 && new_val != orig_val
1551 && (TREE_CODE (new_val) == SSA_NAME
1552 || is_gimple_min_invariant (new_val))
1553 && may_propagate_copy (orig_val, new_val))
1554 propagate_value (orig_p, new_val);
1555 }
1556 }
1557 }
1558
1559 /* We have finished optimizing BB, record any information implied by
1560 taking a specific outgoing edge from BB. */
1561
1562 static void
1563 record_edge_info (basic_block bb)
1564 {
1565 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1566 struct edge_info *edge_info;
1567
1568 if (! gsi_end_p (gsi))
1569 {
1570 gimple stmt = gsi_stmt (gsi);
1571 location_t loc = gimple_location (stmt);
1572
1573 if (gimple_code (stmt) == GIMPLE_SWITCH)
1574 {
1575 tree index = gimple_switch_index (stmt);
1576
1577 if (TREE_CODE (index) == SSA_NAME)
1578 {
1579 int i;
1580 int n_labels = gimple_switch_num_labels (stmt);
1581 tree *info = XCNEWVEC (tree, last_basic_block);
1582 edge e;
1583 edge_iterator ei;
1584
1585 for (i = 0; i < n_labels; i++)
1586 {
1587 tree label = gimple_switch_label (stmt, i);
1588 basic_block target_bb = label_to_block (CASE_LABEL (label));
1589 if (CASE_HIGH (label)
1590 || !CASE_LOW (label)
1591 || info[target_bb->index])
1592 info[target_bb->index] = error_mark_node;
1593 else
1594 info[target_bb->index] = label;
1595 }
1596
1597 FOR_EACH_EDGE (e, ei, bb->succs)
1598 {
1599 basic_block target_bb = e->dest;
1600 tree label = info[target_bb->index];
1601
1602 if (label != NULL && label != error_mark_node)
1603 {
1604 tree x = fold_convert_loc (loc, TREE_TYPE (index),
1605 CASE_LOW (label));
1606 edge_info = allocate_edge_info (e);
1607 edge_info->lhs = index;
1608 edge_info->rhs = x;
1609 }
1610 }
1611 free (info);
1612 }
1613 }
1614
1615 /* A COND_EXPR may create equivalences too. */
1616 if (gimple_code (stmt) == GIMPLE_COND)
1617 {
1618 edge true_edge;
1619 edge false_edge;
1620
1621 tree op0 = gimple_cond_lhs (stmt);
1622 tree op1 = gimple_cond_rhs (stmt);
1623 enum tree_code code = gimple_cond_code (stmt);
1624
1625 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1626
1627 /* Special case comparing booleans against a constant as we
1628 know the value of OP0 on both arms of the branch. i.e., we
1629 can record an equivalence for OP0 rather than COND. */
1630 if ((code == EQ_EXPR || code == NE_EXPR)
1631 && TREE_CODE (op0) == SSA_NAME
1632 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
1633 && is_gimple_min_invariant (op1))
1634 {
1635 if (code == EQ_EXPR)
1636 {
1637 edge_info = allocate_edge_info (true_edge);
1638 edge_info->lhs = op0;
1639 edge_info->rhs = (integer_zerop (op1)
1640 ? boolean_false_node
1641 : boolean_true_node);
1642
1643 edge_info = allocate_edge_info (false_edge);
1644 edge_info->lhs = op0;
1645 edge_info->rhs = (integer_zerop (op1)
1646 ? boolean_true_node
1647 : boolean_false_node);
1648 }
1649 else
1650 {
1651 edge_info = allocate_edge_info (true_edge);
1652 edge_info->lhs = op0;
1653 edge_info->rhs = (integer_zerop (op1)
1654 ? boolean_true_node
1655 : boolean_false_node);
1656
1657 edge_info = allocate_edge_info (false_edge);
1658 edge_info->lhs = op0;
1659 edge_info->rhs = (integer_zerop (op1)
1660 ? boolean_false_node
1661 : boolean_true_node);
1662 }
1663 }
1664 else if (is_gimple_min_invariant (op0)
1665 && (TREE_CODE (op1) == SSA_NAME
1666 || is_gimple_min_invariant (op1)))
1667 {
1668 tree cond = build2 (code, boolean_type_node, op0, op1);
1669 tree inverted = invert_truthvalue_loc (loc, cond);
1670 bool can_infer_simple_equiv
1671 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
1672 && real_zerop (op0));
1673 struct edge_info *edge_info;
1674
1675 edge_info = allocate_edge_info (true_edge);
1676 record_conditions (edge_info, cond, inverted);
1677
1678 if (can_infer_simple_equiv && code == EQ_EXPR)
1679 {
1680 edge_info->lhs = op1;
1681 edge_info->rhs = op0;
1682 }
1683
1684 edge_info = allocate_edge_info (false_edge);
1685 record_conditions (edge_info, inverted, cond);
1686
1687 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1688 {
1689 edge_info->lhs = op1;
1690 edge_info->rhs = op0;
1691 }
1692 }
1693
1694 else if (TREE_CODE (op0) == SSA_NAME
1695 && (TREE_CODE (op1) == SSA_NAME
1696 || is_gimple_min_invariant (op1)))
1697 {
1698 tree cond = build2 (code, boolean_type_node, op0, op1);
1699 tree inverted = invert_truthvalue_loc (loc, cond);
1700 bool can_infer_simple_equiv
1701 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op1)))
1702 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
1703 struct edge_info *edge_info;
1704
1705 edge_info = allocate_edge_info (true_edge);
1706 record_conditions (edge_info, cond, inverted);
1707
1708 if (can_infer_simple_equiv && code == EQ_EXPR)
1709 {
1710 edge_info->lhs = op0;
1711 edge_info->rhs = op1;
1712 }
1713
1714 edge_info = allocate_edge_info (false_edge);
1715 record_conditions (edge_info, inverted, cond);
1716
1717 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1718 {
1719 edge_info->lhs = op0;
1720 edge_info->rhs = op1;
1721 }
1722 }
1723 }
1724
1725 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1726 }
1727 }
1728
1729 static void
1730 dom_opt_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1731 basic_block bb)
1732 {
1733 gimple_stmt_iterator gsi;
1734
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1736 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1737
1738 /* Push a marker on the stacks of local information so that we know how
1739 far to unwind when we finalize this block. */
1740 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
1741 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1742
1743 record_equivalences_from_incoming_edge (bb);
1744
1745 /* PHI nodes can create equivalences too. */
1746 record_equivalences_from_phis (bb);
1747
1748 /* Create equivalences from redundant PHIs. PHIs are only truly
1749 redundant when they exist in the same block, so push another
1750 marker and unwind right afterwards. */
1751 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
1752 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1753 eliminate_redundant_computations (&gsi);
1754 remove_local_expressions_from_table ();
1755
1756 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1757 optimize_stmt (bb, gsi);
1758
1759 /* Now prepare to process dominated blocks. */
1760 record_edge_info (bb);
1761 cprop_into_successor_phis (bb);
1762 }
1763
1764 /* We have finished processing the dominator children of BB, perform
1765 any finalization actions in preparation for leaving this node in
1766 the dominator tree. */
1767
1768 static void
1769 dom_opt_leave_block (struct dom_walk_data *walk_data, basic_block bb)
1770 {
1771 gimple last;
1772
1773 /* If we have an outgoing edge to a block with multiple incoming and
1774 outgoing edges, then we may be able to thread the edge, i.e., we
1775 may be able to statically determine which of the outgoing edges
1776 will be traversed when the incoming edge from BB is traversed. */
1777 if (single_succ_p (bb)
1778 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1779 && potentially_threadable_block (single_succ (bb)))
1780 {
1781 /* Push a marker on the stack, which thread_across_edge expects
1782 and will remove. */
1783 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1784 dom_thread_across_edge (walk_data, single_succ_edge (bb));
1785 }
1786 else if ((last = last_stmt (bb))
1787 && gimple_code (last) == GIMPLE_COND
1788 && EDGE_COUNT (bb->succs) == 2
1789 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1790 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1791 {
1792 edge true_edge, false_edge;
1793
1794 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1795
1796 /* Only try to thread the edge if it reaches a target block with
1797 more than one predecessor and more than one successor. */
1798 if (potentially_threadable_block (true_edge->dest))
1799 {
1800 struct edge_info *edge_info;
1801 unsigned int i;
1802
1803 /* Push a marker onto the available expression stack so that we
1804 unwind any expressions related to the TRUE arm before processing
1805 the false arm below. */
1806 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
1807 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1808
1809 edge_info = (struct edge_info *) true_edge->aux;
1810
1811 /* If we have info associated with this edge, record it into
1812 our equivalence tables. */
1813 if (edge_info)
1814 {
1815 cond_equivalence *eq;
1816 tree lhs = edge_info->lhs;
1817 tree rhs = edge_info->rhs;
1818
1819 /* If we have a simple NAME = VALUE equivalence, record it. */
1820 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1821 record_const_or_copy (lhs, rhs);
1822
1823 /* If we have 0 = COND or 1 = COND equivalences, record them
1824 into our expression hash tables. */
1825 for (i = 0; VEC_iterate (cond_equivalence,
1826 edge_info->cond_equivalences, i, eq); ++i)
1827 record_cond (eq);
1828 }
1829
1830 dom_thread_across_edge (walk_data, true_edge);
1831
1832 /* And restore the various tables to their state before
1833 we threaded this edge. */
1834 remove_local_expressions_from_table ();
1835 }
1836
1837 /* Similarly for the ELSE arm. */
1838 if (potentially_threadable_block (false_edge->dest))
1839 {
1840 struct edge_info *edge_info;
1841 unsigned int i;
1842
1843 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1844 edge_info = (struct edge_info *) false_edge->aux;
1845
1846 /* If we have info associated with this edge, record it into
1847 our equivalence tables. */
1848 if (edge_info)
1849 {
1850 cond_equivalence *eq;
1851 tree lhs = edge_info->lhs;
1852 tree rhs = edge_info->rhs;
1853
1854 /* If we have a simple NAME = VALUE equivalence, record it. */
1855 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1856 record_const_or_copy (lhs, rhs);
1857
1858 /* If we have 0 = COND or 1 = COND equivalences, record them
1859 into our expression hash tables. */
1860 for (i = 0; VEC_iterate (cond_equivalence,
1861 edge_info->cond_equivalences, i, eq); ++i)
1862 record_cond (eq);
1863 }
1864
1865 /* Now thread the edge. */
1866 dom_thread_across_edge (walk_data, false_edge);
1867
1868 /* No need to remove local expressions from our tables
1869 or restore vars to their original value as that will
1870 be done immediately below. */
1871 }
1872 }
1873
1874 remove_local_expressions_from_table ();
1875 restore_vars_to_original_value ();
1876 }
1877
1878 /* Search for redundant computations in STMT. If any are found, then
1879 replace them with the variable holding the result of the computation.
1880
1881 If safe, record this expression into the available expression hash
1882 table. */
1883
1884 static void
1885 eliminate_redundant_computations (gimple_stmt_iterator* gsi)
1886 {
1887 tree expr_type;
1888 tree cached_lhs;
1889 tree def;
1890 bool insert = true;
1891 bool assigns_var_p = false;
1892
1893 gimple stmt = gsi_stmt (*gsi);
1894
1895 if (gimple_code (stmt) == GIMPLE_PHI)
1896 def = gimple_phi_result (stmt);
1897 else
1898 def = gimple_get_lhs (stmt);
1899
1900 /* Certain expressions on the RHS can be optimized away, but can not
1901 themselves be entered into the hash tables. */
1902 if (! def
1903 || TREE_CODE (def) != SSA_NAME
1904 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1905 || gimple_vdef (stmt)
1906 /* Do not record equivalences for increments of ivs. This would create
1907 overlapping live ranges for a very questionable gain. */
1908 || simple_iv_increment_p (stmt))
1909 insert = false;
1910
1911 /* Check if the expression has been computed before. */
1912 cached_lhs = lookup_avail_expr (stmt, insert);
1913
1914 opt_stats.num_exprs_considered++;
1915
1916 /* Get the type of the expression we are trying to optimize. */
1917 if (is_gimple_assign (stmt))
1918 {
1919 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1920 assigns_var_p = true;
1921 }
1922 else if (gimple_code (stmt) == GIMPLE_COND)
1923 expr_type = boolean_type_node;
1924 else if (is_gimple_call (stmt))
1925 {
1926 gcc_assert (gimple_call_lhs (stmt));
1927 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1928 assigns_var_p = true;
1929 }
1930 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1931 expr_type = TREE_TYPE (gimple_switch_index (stmt));
1932 else if (gimple_code (stmt) == GIMPLE_PHI)
1933 /* We can't propagate into a phi, so the logic below doesn't apply.
1934 Instead record an equivalence between the cached LHS and the
1935 PHI result of this statement, provided they are in the same block.
1936 This should be sufficient to kill the redundant phi. */
1937 {
1938 if (def && cached_lhs)
1939 record_const_or_copy (def, cached_lhs);
1940 return;
1941 }
1942 else
1943 gcc_unreachable ();
1944
1945 if (!cached_lhs)
1946 return;
1947
1948 /* It is safe to ignore types here since we have already done
1949 type checking in the hashing and equality routines. In fact
1950 type checking here merely gets in the way of constant
1951 propagation. Also, make sure that it is safe to propagate
1952 CACHED_LHS into the expression in STMT. */
1953 if ((TREE_CODE (cached_lhs) != SSA_NAME
1954 && (assigns_var_p
1955 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1956 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1957 {
1958 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1959 || is_gimple_min_invariant (cached_lhs));
1960
1961 if (dump_file && (dump_flags & TDF_DETAILS))
1962 {
1963 fprintf (dump_file, " Replaced redundant expr '");
1964 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1965 fprintf (dump_file, "' with '");
1966 print_generic_expr (dump_file, cached_lhs, dump_flags);
1967 fprintf (dump_file, "'\n");
1968 }
1969
1970 opt_stats.num_re++;
1971
1972 if (assigns_var_p
1973 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1974 cached_lhs = fold_convert (expr_type, cached_lhs);
1975
1976 propagate_tree_value_into_stmt (gsi, cached_lhs);
1977
1978 /* Since it is always necessary to mark the result as modified,
1979 perhaps we should move this into propagate_tree_value_into_stmt
1980 itself. */
1981 gimple_set_modified (gsi_stmt (*gsi), true);
1982 }
1983 }
1984
1985 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1986 the available expressions table or the const_and_copies table.
1987 Detect and record those equivalences. */
1988 /* We handle only very simple copy equivalences here. The heavy
1989 lifing is done by eliminate_redundant_computations. */
1990
1991 static void
1992 record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
1993 {
1994 tree lhs;
1995 enum tree_code lhs_code;
1996
1997 gcc_assert (is_gimple_assign (stmt));
1998
1999 lhs = gimple_assign_lhs (stmt);
2000 lhs_code = TREE_CODE (lhs);
2001
2002 if (lhs_code == SSA_NAME
2003 && gimple_assign_single_p (stmt))
2004 {
2005 tree rhs = gimple_assign_rhs1 (stmt);
2006
2007 /* If the RHS of the assignment is a constant or another variable that
2008 may be propagated, register it in the CONST_AND_COPIES table. We
2009 do not need to record unwind data for this, since this is a true
2010 assignment and not an equivalence inferred from a comparison. All
2011 uses of this ssa name are dominated by this assignment, so unwinding
2012 just costs time and space. */
2013 if (may_optimize_p
2014 && (TREE_CODE (rhs) == SSA_NAME
2015 || is_gimple_min_invariant (rhs)))
2016 {
2017 if (dump_file && (dump_flags & TDF_DETAILS))
2018 {
2019 fprintf (dump_file, "==== ASGN ");
2020 print_generic_expr (dump_file, lhs, 0);
2021 fprintf (dump_file, " = ");
2022 print_generic_expr (dump_file, rhs, 0);
2023 fprintf (dump_file, "\n");
2024 }
2025
2026 set_ssa_name_value (lhs, rhs);
2027 }
2028 }
2029
2030 /* A memory store, even an aliased store, creates a useful
2031 equivalence. By exchanging the LHS and RHS, creating suitable
2032 vops and recording the result in the available expression table,
2033 we may be able to expose more redundant loads. */
2034 if (!gimple_has_volatile_ops (stmt)
2035 && gimple_references_memory_p (stmt)
2036 && gimple_assign_single_p (stmt)
2037 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
2038 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
2039 && !is_gimple_reg (lhs))
2040 {
2041 tree rhs = gimple_assign_rhs1 (stmt);
2042 gimple new_stmt;
2043
2044 /* Build a new statement with the RHS and LHS exchanged. */
2045 if (TREE_CODE (rhs) == SSA_NAME)
2046 {
2047 /* NOTE tuples. The call to gimple_build_assign below replaced
2048 a call to build_gimple_modify_stmt, which did not set the
2049 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
2050 may cause an SSA validation failure, as the LHS may be a
2051 default-initialized name and should have no definition. I'm
2052 a bit dubious of this, as the artificial statement that we
2053 generate here may in fact be ill-formed, but it is simply
2054 used as an internal device in this pass, and never becomes
2055 part of the CFG. */
2056 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2057 new_stmt = gimple_build_assign (rhs, lhs);
2058 SSA_NAME_DEF_STMT (rhs) = defstmt;
2059 }
2060 else
2061 new_stmt = gimple_build_assign (rhs, lhs);
2062
2063 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
2064
2065 /* Finally enter the statement into the available expression
2066 table. */
2067 lookup_avail_expr (new_stmt, true);
2068 }
2069 }
2070
2071 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2072 CONST_AND_COPIES. */
2073
2074 static void
2075 cprop_operand (gimple stmt, use_operand_p op_p)
2076 {
2077 tree val;
2078 tree op = USE_FROM_PTR (op_p);
2079
2080 /* If the operand has a known constant value or it is known to be a
2081 copy of some other variable, use the value or copy stored in
2082 CONST_AND_COPIES. */
2083 val = SSA_NAME_VALUE (op);
2084 if (val && val != op)
2085 {
2086 /* Do not replace hard register operands in asm statements. */
2087 if (gimple_code (stmt) == GIMPLE_ASM
2088 && !may_propagate_copy_into_asm (op))
2089 return;
2090
2091 /* Certain operands are not allowed to be copy propagated due
2092 to their interaction with exception handling and some GCC
2093 extensions. */
2094 if (!may_propagate_copy (op, val))
2095 return;
2096
2097 /* Do not propagate addresses that point to volatiles into memory
2098 stmts without volatile operands. */
2099 if (POINTER_TYPE_P (TREE_TYPE (val))
2100 && TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val)))
2101 && gimple_has_mem_ops (stmt)
2102 && !gimple_has_volatile_ops (stmt))
2103 return;
2104
2105 /* Do not propagate copies if the propagated value is at a deeper loop
2106 depth than the propagatee. Otherwise, this may move loop variant
2107 variables outside of their loops and prevent coalescing
2108 opportunities. If the value was loop invariant, it will be hoisted
2109 by LICM and exposed for copy propagation. */
2110 if (loop_depth_of_name (val) > loop_depth_of_name (op))
2111 return;
2112
2113 /* Do not propagate copies into simple IV increment statements.
2114 See PR23821 for how this can disturb IV analysis. */
2115 if (TREE_CODE (val) != INTEGER_CST
2116 && simple_iv_increment_p (stmt))
2117 return;
2118
2119 /* Dump details. */
2120 if (dump_file && (dump_flags & TDF_DETAILS))
2121 {
2122 fprintf (dump_file, " Replaced '");
2123 print_generic_expr (dump_file, op, dump_flags);
2124 fprintf (dump_file, "' with %s '",
2125 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2126 print_generic_expr (dump_file, val, dump_flags);
2127 fprintf (dump_file, "'\n");
2128 }
2129
2130 if (TREE_CODE (val) != SSA_NAME)
2131 opt_stats.num_const_prop++;
2132 else
2133 opt_stats.num_copy_prop++;
2134
2135 propagate_value (op_p, val);
2136
2137 /* And note that we modified this statement. This is now
2138 safe, even if we changed virtual operands since we will
2139 rescan the statement and rewrite its operands again. */
2140 gimple_set_modified (stmt, true);
2141 }
2142 }
2143
2144 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2145 known value for that SSA_NAME (or NULL if no value is known).
2146
2147 Propagate values from CONST_AND_COPIES into the uses, vuses and
2148 vdef_ops of STMT. */
2149
2150 static void
2151 cprop_into_stmt (gimple stmt)
2152 {
2153 use_operand_p op_p;
2154 ssa_op_iter iter;
2155
2156 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
2157 cprop_operand (stmt, op_p);
2158 }
2159
2160 /* Optimize the statement pointed to by iterator SI.
2161
2162 We try to perform some simplistic global redundancy elimination and
2163 constant propagation:
2164
2165 1- To detect global redundancy, we keep track of expressions that have
2166 been computed in this block and its dominators. If we find that the
2167 same expression is computed more than once, we eliminate repeated
2168 computations by using the target of the first one.
2169
2170 2- Constant values and copy assignments. This is used to do very
2171 simplistic constant and copy propagation. When a constant or copy
2172 assignment is found, we map the value on the RHS of the assignment to
2173 the variable in the LHS in the CONST_AND_COPIES table. */
2174
2175 static void
2176 optimize_stmt (basic_block bb, gimple_stmt_iterator si)
2177 {
2178 gimple stmt, old_stmt;
2179 bool may_optimize_p;
2180 bool modified_p = false;
2181
2182 old_stmt = stmt = gsi_stmt (si);
2183
2184 if (dump_file && (dump_flags & TDF_DETAILS))
2185 {
2186 fprintf (dump_file, "Optimizing statement ");
2187 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2188 }
2189
2190 if (gimple_code (stmt) == GIMPLE_COND)
2191 canonicalize_comparison (stmt);
2192
2193 update_stmt_if_modified (stmt);
2194 opt_stats.num_stmts++;
2195
2196 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2197 cprop_into_stmt (stmt);
2198
2199 /* If the statement has been modified with constant replacements,
2200 fold its RHS before checking for redundant computations. */
2201 if (gimple_modified_p (stmt))
2202 {
2203 tree rhs = NULL;
2204
2205 /* Try to fold the statement making sure that STMT is kept
2206 up to date. */
2207 if (fold_stmt (&si))
2208 {
2209 stmt = gsi_stmt (si);
2210 gimple_set_modified (stmt, true);
2211
2212 if (dump_file && (dump_flags & TDF_DETAILS))
2213 {
2214 fprintf (dump_file, " Folded to: ");
2215 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2216 }
2217 }
2218
2219 /* We only need to consider cases that can yield a gimple operand. */
2220 if (gimple_assign_single_p (stmt))
2221 rhs = gimple_assign_rhs1 (stmt);
2222 else if (gimple_code (stmt) == GIMPLE_GOTO)
2223 rhs = gimple_goto_dest (stmt);
2224 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2225 /* This should never be an ADDR_EXPR. */
2226 rhs = gimple_switch_index (stmt);
2227
2228 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2229 recompute_tree_invariant_for_addr_expr (rhs);
2230
2231 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2232 even if fold_stmt updated the stmt already and thus cleared
2233 gimple_modified_p flag on it. */
2234 modified_p = true;
2235 }
2236
2237 /* Check for redundant computations. Do this optimization only
2238 for assignments that have no volatile ops and conditionals. */
2239 may_optimize_p = (!gimple_has_side_effects (stmt)
2240 && (is_gimple_assign (stmt)
2241 || (is_gimple_call (stmt)
2242 && gimple_call_lhs (stmt) != NULL_TREE)
2243 || gimple_code (stmt) == GIMPLE_COND
2244 || gimple_code (stmt) == GIMPLE_SWITCH));
2245
2246 if (may_optimize_p)
2247 {
2248 if (gimple_code (stmt) == GIMPLE_CALL)
2249 {
2250 /* Resolve __builtin_constant_p. If it hasn't been
2251 folded to integer_one_node by now, it's fairly
2252 certain that the value simply isn't constant. */
2253 tree callee = gimple_call_fndecl (stmt);
2254 if (callee
2255 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2256 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
2257 {
2258 propagate_tree_value_into_stmt (&si, integer_zero_node);
2259 stmt = gsi_stmt (si);
2260 }
2261 }
2262
2263 update_stmt_if_modified (stmt);
2264 eliminate_redundant_computations (&si);
2265 stmt = gsi_stmt (si);
2266
2267 /* Perform simple redundant store elimination. */
2268 if (gimple_assign_single_p (stmt)
2269 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2270 {
2271 tree lhs = gimple_assign_lhs (stmt);
2272 tree rhs = gimple_assign_rhs1 (stmt);
2273 tree cached_lhs;
2274 gimple new_stmt;
2275 if (TREE_CODE (rhs) == SSA_NAME)
2276 {
2277 tree tem = SSA_NAME_VALUE (rhs);
2278 if (tem)
2279 rhs = tem;
2280 }
2281 /* Build a new statement with the RHS and LHS exchanged. */
2282 if (TREE_CODE (rhs) == SSA_NAME)
2283 {
2284 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2285 new_stmt = gimple_build_assign (rhs, lhs);
2286 SSA_NAME_DEF_STMT (rhs) = defstmt;
2287 }
2288 else
2289 new_stmt = gimple_build_assign (rhs, lhs);
2290 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2291 cached_lhs = lookup_avail_expr (new_stmt, false);
2292 if (cached_lhs
2293 && rhs == cached_lhs)
2294 {
2295 basic_block bb = gimple_bb (stmt);
2296 unlink_stmt_vdef (stmt);
2297 if (gsi_remove (&si, true))
2298 {
2299 bitmap_set_bit (need_eh_cleanup, bb->index);
2300 if (dump_file && (dump_flags & TDF_DETAILS))
2301 fprintf (dump_file, " Flagged to clear EH edges.\n");
2302 }
2303 release_defs (stmt);
2304 return;
2305 }
2306 }
2307 }
2308
2309 /* Record any additional equivalences created by this statement. */
2310 if (is_gimple_assign (stmt))
2311 record_equivalences_from_stmt (stmt, may_optimize_p);
2312
2313 /* If STMT is a COND_EXPR and it was modified, then we may know
2314 where it goes. If that is the case, then mark the CFG as altered.
2315
2316 This will cause us to later call remove_unreachable_blocks and
2317 cleanup_tree_cfg when it is safe to do so. It is not safe to
2318 clean things up here since removal of edges and such can trigger
2319 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2320 the manager.
2321
2322 That's all fine and good, except that once SSA_NAMEs are released
2323 to the manager, we must not call create_ssa_name until all references
2324 to released SSA_NAMEs have been eliminated.
2325
2326 All references to the deleted SSA_NAMEs can not be eliminated until
2327 we remove unreachable blocks.
2328
2329 We can not remove unreachable blocks until after we have completed
2330 any queued jump threading.
2331
2332 We can not complete any queued jump threads until we have taken
2333 appropriate variables out of SSA form. Taking variables out of
2334 SSA form can call create_ssa_name and thus we lose.
2335
2336 Ultimately I suspect we're going to need to change the interface
2337 into the SSA_NAME manager. */
2338 if (gimple_modified_p (stmt) || modified_p)
2339 {
2340 tree val = NULL;
2341
2342 update_stmt_if_modified (stmt);
2343
2344 if (gimple_code (stmt) == GIMPLE_COND)
2345 val = fold_binary_loc (gimple_location (stmt),
2346 gimple_cond_code (stmt), boolean_type_node,
2347 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
2348 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2349 val = gimple_switch_index (stmt);
2350
2351 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
2352 cfg_altered = true;
2353
2354 /* If we simplified a statement in such a way as to be shown that it
2355 cannot trap, update the eh information and the cfg to match. */
2356 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2357 {
2358 bitmap_set_bit (need_eh_cleanup, bb->index);
2359 if (dump_file && (dump_flags & TDF_DETAILS))
2360 fprintf (dump_file, " Flagged to clear EH edges.\n");
2361 }
2362 }
2363 }
2364
2365 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2366 If found, return its LHS. Otherwise insert STMT in the table and
2367 return NULL_TREE.
2368
2369 Also, when an expression is first inserted in the table, it is also
2370 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2371 we finish processing this block and its children. */
2372
2373 static tree
2374 lookup_avail_expr (gimple stmt, bool insert)
2375 {
2376 void **slot;
2377 tree lhs;
2378 tree temp;
2379 struct expr_hash_elt element;
2380
2381 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
2382 if (gimple_code (stmt) == GIMPLE_PHI)
2383 lhs = gimple_phi_result (stmt);
2384 else
2385 lhs = gimple_get_lhs (stmt);
2386
2387 initialize_hash_element (stmt, lhs, &element);
2388
2389 if (dump_file && (dump_flags & TDF_DETAILS))
2390 {
2391 fprintf (dump_file, "LKUP ");
2392 print_expr_hash_elt (dump_file, &element);
2393 }
2394
2395 /* Don't bother remembering constant assignments and copy operations.
2396 Constants and copy operations are handled by the constant/copy propagator
2397 in optimize_stmt. */
2398 if (element.expr.kind == EXPR_SINGLE
2399 && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
2400 || is_gimple_min_invariant (element.expr.ops.single.rhs)))
2401 return NULL_TREE;
2402
2403 /* Finally try to find the expression in the main expression hash table. */
2404 slot = htab_find_slot_with_hash (avail_exprs, &element, element.hash,
2405 (insert ? INSERT : NO_INSERT));
2406 if (slot == NULL)
2407 return NULL_TREE;
2408
2409 if (*slot == NULL)
2410 {
2411 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2412 *element2 = element;
2413 element2->stamp = element2;
2414 *slot = (void *) element2;
2415
2416 if (dump_file && (dump_flags & TDF_DETAILS))
2417 {
2418 fprintf (dump_file, "2>>> ");
2419 print_expr_hash_elt (dump_file, element2);
2420 }
2421
2422 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element2);
2423 return NULL_TREE;
2424 }
2425
2426 /* Extract the LHS of the assignment so that it can be used as the current
2427 definition of another variable. */
2428 lhs = ((struct expr_hash_elt *)*slot)->lhs;
2429
2430 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2431 use the value from the const_and_copies table. */
2432 if (TREE_CODE (lhs) == SSA_NAME)
2433 {
2434 temp = SSA_NAME_VALUE (lhs);
2435 if (temp)
2436 lhs = temp;
2437 }
2438
2439 if (dump_file && (dump_flags & TDF_DETAILS))
2440 {
2441 fprintf (dump_file, "FIND: ");
2442 print_generic_expr (dump_file, lhs, 0);
2443 fprintf (dump_file, "\n");
2444 }
2445
2446 return lhs;
2447 }
2448
2449 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2450 for expressions using the code of the expression and the SSA numbers of
2451 its operands. */
2452
2453 static hashval_t
2454 avail_expr_hash (const void *p)
2455 {
2456 gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
2457 const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
2458 tree vuse;
2459 hashval_t val = 0;
2460
2461 val = iterative_hash_hashable_expr (expr, val);
2462
2463 /* If the hash table entry is not associated with a statement, then we
2464 can just hash the expression and not worry about virtual operands
2465 and such. */
2466 if (!stmt)
2467 return val;
2468
2469 /* Add the SSA version numbers of the vuse operand. This is important
2470 because compound variables like arrays are not renamed in the
2471 operands. Rather, the rename is done on the virtual variable
2472 representing all the elements of the array. */
2473 if ((vuse = gimple_vuse (stmt)))
2474 val = iterative_hash_expr (vuse, val);
2475
2476 return val;
2477 }
2478
2479 static hashval_t
2480 real_avail_expr_hash (const void *p)
2481 {
2482 return ((const struct expr_hash_elt *)p)->hash;
2483 }
2484
2485 static int
2486 avail_expr_eq (const void *p1, const void *p2)
2487 {
2488 gimple stmt1 = ((const struct expr_hash_elt *)p1)->stmt;
2489 const struct hashable_expr *expr1 = &((const struct expr_hash_elt *)p1)->expr;
2490 const struct expr_hash_elt *stamp1 = ((const struct expr_hash_elt *)p1)->stamp;
2491 gimple stmt2 = ((const struct expr_hash_elt *)p2)->stmt;
2492 const struct hashable_expr *expr2 = &((const struct expr_hash_elt *)p2)->expr;
2493 const struct expr_hash_elt *stamp2 = ((const struct expr_hash_elt *)p2)->stamp;
2494
2495 /* This case should apply only when removing entries from the table. */
2496 if (stamp1 == stamp2)
2497 return true;
2498
2499 /* FIXME tuples:
2500 We add stmts to a hash table and them modify them. To detect the case
2501 that we modify a stmt and then search for it, we assume that the hash
2502 is always modified by that change.
2503 We have to fully check why this doesn't happen on trunk or rewrite
2504 this in a more reliable (and easier to understand) way. */
2505 if (((const struct expr_hash_elt *)p1)->hash
2506 != ((const struct expr_hash_elt *)p2)->hash)
2507 return false;
2508
2509 /* In case of a collision, both RHS have to be identical and have the
2510 same VUSE operands. */
2511 if (hashable_expr_equal_p (expr1, expr2)
2512 && types_compatible_p (expr1->type, expr2->type))
2513 {
2514 /* Note that STMT1 and/or STMT2 may be NULL. */
2515 return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
2516 == (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
2517 }
2518
2519 return false;
2520 }
2521
2522 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2523 up degenerate PHIs created by or exposed by jump threading. */
2524
2525 /* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
2526 NULL. */
2527
2528 tree
2529 degenerate_phi_result (gimple phi)
2530 {
2531 tree lhs = gimple_phi_result (phi);
2532 tree val = NULL;
2533 size_t i;
2534
2535 /* Ignoring arguments which are the same as LHS, if all the remaining
2536 arguments are the same, then the PHI is a degenerate and has the
2537 value of that common argument. */
2538 for (i = 0; i < gimple_phi_num_args (phi); i++)
2539 {
2540 tree arg = gimple_phi_arg_def (phi, i);
2541
2542 if (arg == lhs)
2543 continue;
2544 else if (!arg)
2545 break;
2546 else if (!val)
2547 val = arg;
2548 else if (arg == val)
2549 continue;
2550 /* We bring in some of operand_equal_p not only to speed things
2551 up, but also to avoid crashing when dereferencing the type of
2552 a released SSA name. */
2553 else if (TREE_CODE (val) != TREE_CODE (arg)
2554 || TREE_CODE (val) == SSA_NAME
2555 || !operand_equal_p (arg, val, 0))
2556 break;
2557 }
2558 return (i == gimple_phi_num_args (phi) ? val : NULL);
2559 }
2560
2561 /* Given a statement STMT, which is either a PHI node or an assignment,
2562 remove it from the IL. */
2563
2564 static void
2565 remove_stmt_or_phi (gimple stmt)
2566 {
2567 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2568
2569 if (gimple_code (stmt) == GIMPLE_PHI)
2570 remove_phi_node (&gsi, true);
2571 else
2572 {
2573 gsi_remove (&gsi, true);
2574 release_defs (stmt);
2575 }
2576 }
2577
2578 /* Given a statement STMT, which is either a PHI node or an assignment,
2579 return the "rhs" of the node, in the case of a non-degenerate
2580 phi, NULL is returned. */
2581
2582 static tree
2583 get_rhs_or_phi_arg (gimple stmt)
2584 {
2585 if (gimple_code (stmt) == GIMPLE_PHI)
2586 return degenerate_phi_result (stmt);
2587 else if (gimple_assign_single_p (stmt))
2588 return gimple_assign_rhs1 (stmt);
2589 else
2590 gcc_unreachable ();
2591 }
2592
2593
2594 /* Given a statement STMT, which is either a PHI node or an assignment,
2595 return the "lhs" of the node. */
2596
2597 static tree
2598 get_lhs_or_phi_result (gimple stmt)
2599 {
2600 if (gimple_code (stmt) == GIMPLE_PHI)
2601 return gimple_phi_result (stmt);
2602 else if (is_gimple_assign (stmt))
2603 return gimple_assign_lhs (stmt);
2604 else
2605 gcc_unreachable ();
2606 }
2607
2608 /* Propagate RHS into all uses of LHS (when possible).
2609
2610 RHS and LHS are derived from STMT, which is passed in solely so
2611 that we can remove it if propagation is successful.
2612
2613 When propagating into a PHI node or into a statement which turns
2614 into a trivial copy or constant initialization, set the
2615 appropriate bit in INTERESTING_NAMEs so that we will visit those
2616 nodes as well in an effort to pick up secondary optimization
2617 opportunities. */
2618
2619 static void
2620 propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
2621 {
2622 /* First verify that propagation is valid and isn't going to move a
2623 loop variant variable outside its loop. */
2624 if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2625 && (TREE_CODE (rhs) != SSA_NAME
2626 || ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
2627 && may_propagate_copy (lhs, rhs)
2628 && loop_depth_of_name (lhs) >= loop_depth_of_name (rhs))
2629 {
2630 use_operand_p use_p;
2631 imm_use_iterator iter;
2632 gimple use_stmt;
2633 bool all = true;
2634
2635 /* Dump details. */
2636 if (dump_file && (dump_flags & TDF_DETAILS))
2637 {
2638 fprintf (dump_file, " Replacing '");
2639 print_generic_expr (dump_file, lhs, dump_flags);
2640 fprintf (dump_file, "' with %s '",
2641 (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
2642 print_generic_expr (dump_file, rhs, dump_flags);
2643 fprintf (dump_file, "'\n");
2644 }
2645
2646 /* Walk over every use of LHS and try to replace the use with RHS.
2647 At this point the only reason why such a propagation would not
2648 be successful would be if the use occurs in an ASM_EXPR. */
2649 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2650 {
2651 /* Leave debug stmts alone. If we succeed in propagating
2652 all non-debug uses, we'll drop the DEF, and propagation
2653 into debug stmts will occur then. */
2654 if (gimple_debug_bind_p (use_stmt))
2655 continue;
2656
2657 /* It's not always safe to propagate into an ASM_EXPR. */
2658 if (gimple_code (use_stmt) == GIMPLE_ASM
2659 && ! may_propagate_copy_into_asm (lhs))
2660 {
2661 all = false;
2662 continue;
2663 }
2664
2665 /* It's not ok to propagate into the definition stmt of RHS.
2666 <bb 9>:
2667 # prephitmp.12_36 = PHI <g_67.1_6(9)>
2668 g_67.1_6 = prephitmp.12_36;
2669 goto <bb 9>;
2670 While this is strictly all dead code we do not want to
2671 deal with this here. */
2672 if (TREE_CODE (rhs) == SSA_NAME
2673 && SSA_NAME_DEF_STMT (rhs) == use_stmt)
2674 {
2675 all = false;
2676 continue;
2677 }
2678
2679 /* Dump details. */
2680 if (dump_file && (dump_flags & TDF_DETAILS))
2681 {
2682 fprintf (dump_file, " Original statement:");
2683 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2684 }
2685
2686 /* Propagate the RHS into this use of the LHS. */
2687 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2688 propagate_value (use_p, rhs);
2689
2690 /* Special cases to avoid useless calls into the folding
2691 routines, operand scanning, etc.
2692
2693 First, propagation into a PHI may cause the PHI to become
2694 a degenerate, so mark the PHI as interesting. No other
2695 actions are necessary.
2696
2697 Second, if we're propagating a virtual operand and the
2698 propagation does not change the underlying _DECL node for
2699 the virtual operand, then no further actions are necessary. */
2700 if (gimple_code (use_stmt) == GIMPLE_PHI
2701 || (! is_gimple_reg (lhs)
2702 && TREE_CODE (rhs) == SSA_NAME
2703 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs)))
2704 {
2705 /* Dump details. */
2706 if (dump_file && (dump_flags & TDF_DETAILS))
2707 {
2708 fprintf (dump_file, " Updated statement:");
2709 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2710 }
2711
2712 /* Propagation into a PHI may expose new degenerate PHIs,
2713 so mark the result of the PHI as interesting. */
2714 if (gimple_code (use_stmt) == GIMPLE_PHI)
2715 {
2716 tree result = get_lhs_or_phi_result (use_stmt);
2717 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2718 }
2719
2720 continue;
2721 }
2722
2723 /* From this point onward we are propagating into a
2724 real statement. Folding may (or may not) be possible,
2725 we may expose new operands, expose dead EH edges,
2726 etc. */
2727 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2728 cannot fold a call that simplifies to a constant,
2729 because the GIMPLE_CALL must be replaced by a
2730 GIMPLE_ASSIGN, and there is no way to effect such a
2731 transformation in-place. We might want to consider
2732 using the more general fold_stmt here. */
2733 {
2734 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2735 fold_stmt_inplace (&gsi);
2736 }
2737
2738 /* Sometimes propagation can expose new operands to the
2739 renamer. */
2740 update_stmt (use_stmt);
2741
2742 /* Dump details. */
2743 if (dump_file && (dump_flags & TDF_DETAILS))
2744 {
2745 fprintf (dump_file, " Updated statement:");
2746 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2747 }
2748
2749 /* If we replaced a variable index with a constant, then
2750 we would need to update the invariant flag for ADDR_EXPRs. */
2751 if (gimple_assign_single_p (use_stmt)
2752 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
2753 recompute_tree_invariant_for_addr_expr
2754 (gimple_assign_rhs1 (use_stmt));
2755
2756 /* If we cleaned up EH information from the statement,
2757 mark its containing block as needing EH cleanups. */
2758 if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
2759 {
2760 bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
2761 if (dump_file && (dump_flags & TDF_DETAILS))
2762 fprintf (dump_file, " Flagged to clear EH edges.\n");
2763 }
2764
2765 /* Propagation may expose new trivial copy/constant propagation
2766 opportunities. */
2767 if (gimple_assign_single_p (use_stmt)
2768 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
2769 && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
2770 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
2771 {
2772 tree result = get_lhs_or_phi_result (use_stmt);
2773 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2774 }
2775
2776 /* Propagation into these nodes may make certain edges in
2777 the CFG unexecutable. We want to identify them as PHI nodes
2778 at the destination of those unexecutable edges may become
2779 degenerates. */
2780 else if (gimple_code (use_stmt) == GIMPLE_COND
2781 || gimple_code (use_stmt) == GIMPLE_SWITCH
2782 || gimple_code (use_stmt) == GIMPLE_GOTO)
2783 {
2784 tree val;
2785
2786 if (gimple_code (use_stmt) == GIMPLE_COND)
2787 val = fold_binary_loc (gimple_location (use_stmt),
2788 gimple_cond_code (use_stmt),
2789 boolean_type_node,
2790 gimple_cond_lhs (use_stmt),
2791 gimple_cond_rhs (use_stmt));
2792 else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
2793 val = gimple_switch_index (use_stmt);
2794 else
2795 val = gimple_goto_dest (use_stmt);
2796
2797 if (val && is_gimple_min_invariant (val))
2798 {
2799 basic_block bb = gimple_bb (use_stmt);
2800 edge te = find_taken_edge (bb, val);
2801 edge_iterator ei;
2802 edge e;
2803 gimple_stmt_iterator gsi, psi;
2804
2805 /* Remove all outgoing edges except TE. */
2806 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
2807 {
2808 if (e != te)
2809 {
2810 /* Mark all the PHI nodes at the destination of
2811 the unexecutable edge as interesting. */
2812 for (psi = gsi_start_phis (e->dest);
2813 !gsi_end_p (psi);
2814 gsi_next (&psi))
2815 {
2816 gimple phi = gsi_stmt (psi);
2817
2818 tree result = gimple_phi_result (phi);
2819 int version = SSA_NAME_VERSION (result);
2820
2821 bitmap_set_bit (interesting_names, version);
2822 }
2823
2824 te->probability += e->probability;
2825
2826 te->count += e->count;
2827 remove_edge (e);
2828 cfg_altered = true;
2829 }
2830 else
2831 ei_next (&ei);
2832 }
2833
2834 gsi = gsi_last_bb (gimple_bb (use_stmt));
2835 gsi_remove (&gsi, true);
2836
2837 /* And fixup the flags on the single remaining edge. */
2838 te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
2839 te->flags &= ~EDGE_ABNORMAL;
2840 te->flags |= EDGE_FALLTHRU;
2841 if (te->probability > REG_BR_PROB_BASE)
2842 te->probability = REG_BR_PROB_BASE;
2843 }
2844 }
2845 }
2846
2847 /* Ensure there is nothing else to do. */
2848 gcc_assert (!all || has_zero_uses (lhs));
2849
2850 /* If we were able to propagate away all uses of LHS, then
2851 we can remove STMT. */
2852 if (all)
2853 remove_stmt_or_phi (stmt);
2854 }
2855 }
2856
2857 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2858 a statement that is a trivial copy or constant initialization.
2859
2860 Attempt to eliminate T by propagating its RHS into all uses of
2861 its LHS. This may in turn set new bits in INTERESTING_NAMES
2862 for nodes we want to revisit later.
2863
2864 All exit paths should clear INTERESTING_NAMES for the result
2865 of STMT. */
2866
2867 static void
2868 eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
2869 {
2870 tree lhs = get_lhs_or_phi_result (stmt);
2871 tree rhs;
2872 int version = SSA_NAME_VERSION (lhs);
2873
2874 /* If the LHS of this statement or PHI has no uses, then we can
2875 just eliminate it. This can occur if, for example, the PHI
2876 was created by block duplication due to threading and its only
2877 use was in the conditional at the end of the block which was
2878 deleted. */
2879 if (has_zero_uses (lhs))
2880 {
2881 bitmap_clear_bit (interesting_names, version);
2882 remove_stmt_or_phi (stmt);
2883 return;
2884 }
2885
2886 /* Get the RHS of the assignment or PHI node if the PHI is a
2887 degenerate. */
2888 rhs = get_rhs_or_phi_arg (stmt);
2889 if (!rhs)
2890 {
2891 bitmap_clear_bit (interesting_names, version);
2892 return;
2893 }
2894
2895 propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
2896
2897 /* Note that STMT may well have been deleted by now, so do
2898 not access it, instead use the saved version # to clear
2899 T's entry in the worklist. */
2900 bitmap_clear_bit (interesting_names, version);
2901 }
2902
2903 /* The first phase in degenerate PHI elimination.
2904
2905 Eliminate the degenerate PHIs in BB, then recurse on the
2906 dominator children of BB. */
2907
2908 static void
2909 eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
2910 {
2911 gimple_stmt_iterator gsi;
2912 basic_block son;
2913
2914 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2915 {
2916 gimple phi = gsi_stmt (gsi);
2917
2918 eliminate_const_or_copy (phi, interesting_names);
2919 }
2920
2921 /* Recurse into the dominator children of BB. */
2922 for (son = first_dom_son (CDI_DOMINATORS, bb);
2923 son;
2924 son = next_dom_son (CDI_DOMINATORS, son))
2925 eliminate_degenerate_phis_1 (son, interesting_names);
2926 }
2927
2928
2929 /* A very simple pass to eliminate degenerate PHI nodes from the
2930 IL. This is meant to be fast enough to be able to be run several
2931 times in the optimization pipeline.
2932
2933 Certain optimizations, particularly those which duplicate blocks
2934 or remove edges from the CFG can create or expose PHIs which are
2935 trivial copies or constant initializations.
2936
2937 While we could pick up these optimizations in DOM or with the
2938 combination of copy-prop and CCP, those solutions are far too
2939 heavy-weight for our needs.
2940
2941 This implementation has two phases so that we can efficiently
2942 eliminate the first order degenerate PHIs and second order
2943 degenerate PHIs.
2944
2945 The first phase performs a dominator walk to identify and eliminate
2946 the vast majority of the degenerate PHIs. When a degenerate PHI
2947 is identified and eliminated any affected statements or PHIs
2948 are put on a worklist.
2949
2950 The second phase eliminates degenerate PHIs and trivial copies
2951 or constant initializations using the worklist. This is how we
2952 pick up the secondary optimization opportunities with minimal
2953 cost. */
2954
2955 static unsigned int
2956 eliminate_degenerate_phis (void)
2957 {
2958 bitmap interesting_names;
2959 bitmap interesting_names1;
2960
2961 /* Bitmap of blocks which need EH information updated. We can not
2962 update it on-the-fly as doing so invalidates the dominator tree. */
2963 need_eh_cleanup = BITMAP_ALLOC (NULL);
2964
2965 /* INTERESTING_NAMES is effectively our worklist, indexed by
2966 SSA_NAME_VERSION.
2967
2968 A set bit indicates that the statement or PHI node which
2969 defines the SSA_NAME should be (re)examined to determine if
2970 it has become a degenerate PHI or trivial const/copy propagation
2971 opportunity.
2972
2973 Experiments have show we generally get better compilation
2974 time behavior with bitmaps rather than sbitmaps. */
2975 interesting_names = BITMAP_ALLOC (NULL);
2976 interesting_names1 = BITMAP_ALLOC (NULL);
2977
2978 calculate_dominance_info (CDI_DOMINATORS);
2979 cfg_altered = false;
2980
2981 /* First phase. Eliminate degenerate PHIs via a dominator
2982 walk of the CFG.
2983
2984 Experiments have indicated that we generally get better
2985 compile-time behavior by visiting blocks in the first
2986 phase in dominator order. Presumably this is because walking
2987 in dominator order leaves fewer PHIs for later examination
2988 by the worklist phase. */
2989 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR, interesting_names);
2990
2991 /* Second phase. Eliminate second order degenerate PHIs as well
2992 as trivial copies or constant initializations identified by
2993 the first phase or this phase. Basically we keep iterating
2994 until our set of INTERESTING_NAMEs is empty. */
2995 while (!bitmap_empty_p (interesting_names))
2996 {
2997 unsigned int i;
2998 bitmap_iterator bi;
2999
3000 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
3001 changed during the loop. Copy it to another bitmap and
3002 use that. */
3003 bitmap_copy (interesting_names1, interesting_names);
3004
3005 EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
3006 {
3007 tree name = ssa_name (i);
3008
3009 /* Ignore SSA_NAMEs that have been released because
3010 their defining statement was deleted (unreachable). */
3011 if (name)
3012 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
3013 interesting_names);
3014 }
3015 }
3016
3017 if (cfg_altered)
3018 free_dominance_info (CDI_DOMINATORS);
3019
3020 /* Propagation of const and copies may make some EH edges dead. Purge
3021 such edges from the CFG as needed. */
3022 if (!bitmap_empty_p (need_eh_cleanup))
3023 {
3024 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
3025 BITMAP_FREE (need_eh_cleanup);
3026 }
3027
3028 BITMAP_FREE (interesting_names);
3029 BITMAP_FREE (interesting_names1);
3030 return 0;
3031 }
3032
3033 struct gimple_opt_pass pass_phi_only_cprop =
3034 {
3035 {
3036 GIMPLE_PASS,
3037 "phicprop", /* name */
3038 gate_dominator, /* gate */
3039 eliminate_degenerate_phis, /* execute */
3040 NULL, /* sub */
3041 NULL, /* next */
3042 0, /* static_pass_number */
3043 TV_TREE_PHI_CPROP, /* tv_id */
3044 PROP_cfg | PROP_ssa, /* properties_required */
3045 0, /* properties_provided */
3046 0, /* properties_destroyed */
3047 0, /* todo_flags_start */
3048 TODO_cleanup_cfg
3049 | TODO_ggc_collect
3050 | TODO_verify_ssa
3051 | TODO_verify_stmts
3052 | TODO_update_ssa /* todo_flags_finish */
3053 }
3054 };