]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dom.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2020 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48 #include "alloc-pool.h"
49 #include "tree-vrp.h"
50 #include "vr-values.h"
51 #include "gimple-ssa-evrp-analyze.h"
52 #include "alias.h"
53
54 /* This file implements optimizations on the dominator tree. */
55
56 /* Structure for recording edge equivalences.
57
58 Computing and storing the edge equivalences instead of creating
59 them on-demand can save significant amounts of time, particularly
60 for pathological cases involving switch statements.
61
62 These structures live for a single iteration of the dominator
63 optimizer in the edge's AUX field. At the end of an iteration we
64 free each of these structures. */
65 class edge_info
66 {
67 public:
68 typedef std::pair <tree, tree> equiv_pair;
69 edge_info (edge);
70 ~edge_info ();
71
72 /* Record a simple LHS = RHS equivalence. This may trigger
73 calls to derive_equivalences. */
74 void record_simple_equiv (tree, tree);
75
76 /* If traversing this edge creates simple equivalences, we store
77 them as LHS/RHS pairs within this vector. */
78 vec<equiv_pair> simple_equivalences;
79
80 /* Traversing an edge may also indicate one or more particular conditions
81 are true or false. */
82 vec<cond_equivalence> cond_equivalences;
83
84 private:
85 /* Derive equivalences by walking the use-def chains. */
86 void derive_equivalences (tree, tree, int);
87 };
88
89 /* Track whether or not we have changed the control flow graph. */
90 static bool cfg_altered;
91
92 /* Bitmap of blocks that have had EH statements cleaned. We should
93 remove their dead edges eventually. */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96
97 /* Statistics for dominator optimizations. */
98 struct opt_stats_d
99 {
100 long num_stmts;
101 long num_exprs_considered;
102 long num_re;
103 long num_const_prop;
104 long num_copy_prop;
105 };
106
107 static struct opt_stats_d opt_stats;
108
109 /* Local functions. */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 class const_and_copies *,
114 class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 class const_and_copies *,
117 class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 hash_table<expr_elt_hasher> *);
122
123 /* Constructor for EDGE_INFO. An EDGE_INFO instance is always
124 associated with an edge E. */
125
126 edge_info::edge_info (edge e)
127 {
128 /* Free the old one associated with E, if it exists and
129 associate our new object with E. */
130 free_dom_edge_info (e);
131 e->aux = this;
132
133 /* And initialize the embedded vectors. */
134 simple_equivalences = vNULL;
135 cond_equivalences = vNULL;
136 }
137
138 /* Destructor just needs to release the vectors. */
139
140 edge_info::~edge_info (void)
141 {
142 this->cond_equivalences.release ();
143 this->simple_equivalences.release ();
144 }
145
146 /* NAME is known to have the value VALUE, which must be a constant.
147
148 Walk through its use-def chain to see if there are other equivalences
149 we might be able to derive.
150
151 RECURSION_LIMIT controls how far back we recurse through the use-def
152 chains. */
153
154 void
155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157 if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158 return;
159
160 /* This records the equivalence for the toplevel object. Do
161 this before checking the recursion limit. */
162 simple_equivalences.safe_push (equiv_pair (name, value));
163
164 /* Limit how far up the use-def chains we are willing to walk. */
165 if (recursion_limit == 0)
166 return;
167
168 /* We can walk up the use-def chains to potentially find more
169 equivalences. */
170 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171 if (is_gimple_assign (def_stmt))
172 {
173 enum tree_code code = gimple_assign_rhs_code (def_stmt);
174 switch (code)
175 {
176 /* If the result of an OR is zero, then its operands are, too. */
177 case BIT_IOR_EXPR:
178 if (integer_zerop (value))
179 {
180 tree rhs1 = gimple_assign_rhs1 (def_stmt);
181 tree rhs2 = gimple_assign_rhs2 (def_stmt);
182
183 value = build_zero_cst (TREE_TYPE (rhs1));
184 derive_equivalences (rhs1, value, recursion_limit - 1);
185 value = build_zero_cst (TREE_TYPE (rhs2));
186 derive_equivalences (rhs2, value, recursion_limit - 1);
187 }
188 break;
189
190 /* If the result of an AND is nonzero, then its operands are, too. */
191 case BIT_AND_EXPR:
192 if (!integer_zerop (value))
193 {
194 tree rhs1 = gimple_assign_rhs1 (def_stmt);
195 tree rhs2 = gimple_assign_rhs2 (def_stmt);
196
197 /* If either operand has a boolean range, then we
198 know its value must be one, otherwise we just know it
199 is nonzero. The former is clearly useful, I haven't
200 seen cases where the latter is helpful yet. */
201 if (TREE_CODE (rhs1) == SSA_NAME)
202 {
203 if (ssa_name_has_boolean_range (rhs1))
204 {
205 value = build_one_cst (TREE_TYPE (rhs1));
206 derive_equivalences (rhs1, value, recursion_limit - 1);
207 }
208 }
209 if (TREE_CODE (rhs2) == SSA_NAME)
210 {
211 if (ssa_name_has_boolean_range (rhs2))
212 {
213 value = build_one_cst (TREE_TYPE (rhs2));
214 derive_equivalences (rhs2, value, recursion_limit - 1);
215 }
216 }
217 }
218 break;
219
220 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
221 set via a widening type conversion, then we may be able to record
222 additional equivalences. */
223 case NOP_EXPR:
224 case CONVERT_EXPR:
225 {
226 tree rhs = gimple_assign_rhs1 (def_stmt);
227 tree rhs_type = TREE_TYPE (rhs);
228 if (INTEGRAL_TYPE_P (rhs_type)
229 && (TYPE_PRECISION (TREE_TYPE (name))
230 >= TYPE_PRECISION (rhs_type))
231 && int_fits_type_p (value, rhs_type))
232 derive_equivalences (rhs,
233 fold_convert (rhs_type, value),
234 recursion_limit - 1);
235 break;
236 }
237
238 /* We can invert the operation of these codes trivially if
239 one of the RHS operands is a constant to produce a known
240 value for the other RHS operand. */
241 case POINTER_PLUS_EXPR:
242 case PLUS_EXPR:
243 {
244 tree rhs1 = gimple_assign_rhs1 (def_stmt);
245 tree rhs2 = gimple_assign_rhs2 (def_stmt);
246
247 /* If either argument is a constant, then we can compute
248 a constant value for the nonconstant argument. */
249 if (TREE_CODE (rhs1) == INTEGER_CST
250 && TREE_CODE (rhs2) == SSA_NAME)
251 derive_equivalences (rhs2,
252 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
253 value, rhs1),
254 recursion_limit - 1);
255 else if (TREE_CODE (rhs2) == INTEGER_CST
256 && TREE_CODE (rhs1) == SSA_NAME)
257 derive_equivalences (rhs1,
258 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
259 value, rhs2),
260 recursion_limit - 1);
261 break;
262 }
263
264 /* If one of the operands is a constant, then we can compute
265 the value of the other operand. If both operands are
266 SSA_NAMEs, then they must be equal if the result is zero. */
267 case MINUS_EXPR:
268 {
269 tree rhs1 = gimple_assign_rhs1 (def_stmt);
270 tree rhs2 = gimple_assign_rhs2 (def_stmt);
271
272 /* If either argument is a constant, then we can compute
273 a constant value for the nonconstant argument. */
274 if (TREE_CODE (rhs1) == INTEGER_CST
275 && TREE_CODE (rhs2) == SSA_NAME)
276 derive_equivalences (rhs2,
277 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
278 rhs1, value),
279 recursion_limit - 1);
280 else if (TREE_CODE (rhs2) == INTEGER_CST
281 && TREE_CODE (rhs1) == SSA_NAME)
282 derive_equivalences (rhs1,
283 fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
284 value, rhs2),
285 recursion_limit - 1);
286 else if (integer_zerop (value))
287 {
288 tree cond = build2 (EQ_EXPR, boolean_type_node,
289 gimple_assign_rhs1 (def_stmt),
290 gimple_assign_rhs2 (def_stmt));
291 tree inverted = invert_truthvalue (cond);
292 record_conditions (&this->cond_equivalences, cond, inverted);
293 }
294 break;
295 }
296
297 case EQ_EXPR:
298 case NE_EXPR:
299 {
300 if ((code == EQ_EXPR && integer_onep (value))
301 || (code == NE_EXPR && integer_zerop (value)))
302 {
303 tree rhs1 = gimple_assign_rhs1 (def_stmt);
304 tree rhs2 = gimple_assign_rhs2 (def_stmt);
305
306 /* If either argument is a constant, then record the
307 other argument as being the same as that constant.
308
309 If neither operand is a constant, then we have a
310 conditional name == name equivalence. */
311 if (TREE_CODE (rhs1) == INTEGER_CST)
312 derive_equivalences (rhs2, rhs1, recursion_limit - 1);
313 else if (TREE_CODE (rhs2) == INTEGER_CST)
314 derive_equivalences (rhs1, rhs2, recursion_limit - 1);
315 }
316 else
317 {
318 tree cond = build2 (code, boolean_type_node,
319 gimple_assign_rhs1 (def_stmt),
320 gimple_assign_rhs2 (def_stmt));
321 tree inverted = invert_truthvalue (cond);
322 if (integer_zerop (value))
323 std::swap (cond, inverted);
324 record_conditions (&this->cond_equivalences, cond, inverted);
325 }
326 break;
327 }
328
329 /* For BIT_NOT and NEGATE, we can just apply the operation to the
330 VALUE to get the new equivalence. It will always be a constant
331 so we can recurse. */
332 case BIT_NOT_EXPR:
333 case NEGATE_EXPR:
334 {
335 tree rhs = gimple_assign_rhs1 (def_stmt);
336 tree res;
337 /* If this is a NOT and the operand has a boolean range, then we
338 know its value must be zero or one. We are not supposed to
339 have a BIT_NOT_EXPR for boolean types with precision > 1 in
340 the general case, see e.g. the handling of TRUTH_NOT_EXPR in
341 the gimplifier, but it can be generated by match.pd out of
342 a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR. Now the handling
343 of BIT_AND_EXPR above already forces a specific semantics for
344 boolean types with precision > 1 so we must do the same here,
345 otherwise we could change the semantics of TRUTH_NOT_EXPR for
346 boolean types with precision > 1. */
347 if (code == BIT_NOT_EXPR
348 && TREE_CODE (rhs) == SSA_NAME
349 && ssa_name_has_boolean_range (rhs))
350 {
351 if ((TREE_INT_CST_LOW (value) & 1) == 0)
352 res = build_one_cst (TREE_TYPE (rhs));
353 else
354 res = build_zero_cst (TREE_TYPE (rhs));
355 }
356 else
357 res = fold_build1 (code, TREE_TYPE (rhs), value);
358 derive_equivalences (rhs, res, recursion_limit - 1);
359 break;
360 }
361
362 default:
363 {
364 if (TREE_CODE_CLASS (code) == tcc_comparison)
365 {
366 tree cond = build2 (code, boolean_type_node,
367 gimple_assign_rhs1 (def_stmt),
368 gimple_assign_rhs2 (def_stmt));
369 tree inverted = invert_truthvalue (cond);
370 if (integer_zerop (value))
371 std::swap (cond, inverted);
372 record_conditions (&this->cond_equivalences, cond, inverted);
373 break;
374 }
375 break;
376 }
377 }
378 }
379 }
380
381 void
382 edge_info::record_simple_equiv (tree lhs, tree rhs)
383 {
384 /* If the RHS is a constant, then we may be able to derive
385 further equivalences. Else just record the name = name
386 equivalence. */
387 if (TREE_CODE (rhs) == INTEGER_CST)
388 derive_equivalences (lhs, rhs, 4);
389 else
390 simple_equivalences.safe_push (equiv_pair (lhs, rhs));
391 }
392
393 /* Free the edge_info data attached to E, if it exists. */
394
395 void
396 free_dom_edge_info (edge e)
397 {
398 class edge_info *edge_info = (class edge_info *)e->aux;
399
400 if (edge_info)
401 delete edge_info;
402 }
403
404 /* Free all EDGE_INFO structures associated with edges in the CFG.
405 If a particular edge can be threaded, copy the redirection
406 target from the EDGE_INFO structure into the edge's AUX field
407 as required by code to update the CFG and SSA graph for
408 jump threading. */
409
410 static void
411 free_all_edge_infos (void)
412 {
413 basic_block bb;
414 edge_iterator ei;
415 edge e;
416
417 FOR_EACH_BB_FN (bb, cfun)
418 {
419 FOR_EACH_EDGE (e, ei, bb->preds)
420 {
421 free_dom_edge_info (e);
422 e->aux = NULL;
423 }
424 }
425 }
426
427 /* We have finished optimizing BB, record any information implied by
428 taking a specific outgoing edge from BB. */
429
430 static void
431 record_edge_info (basic_block bb)
432 {
433 gimple_stmt_iterator gsi = gsi_last_bb (bb);
434 class edge_info *edge_info;
435
436 if (! gsi_end_p (gsi))
437 {
438 gimple *stmt = gsi_stmt (gsi);
439 location_t loc = gimple_location (stmt);
440
441 if (gimple_code (stmt) == GIMPLE_SWITCH)
442 {
443 gswitch *switch_stmt = as_a <gswitch *> (stmt);
444 tree index = gimple_switch_index (switch_stmt);
445
446 if (TREE_CODE (index) == SSA_NAME)
447 {
448 int i;
449 int n_labels = gimple_switch_num_labels (switch_stmt);
450 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
451 edge e;
452 edge_iterator ei;
453
454 for (i = 0; i < n_labels; i++)
455 {
456 tree label = gimple_switch_label (switch_stmt, i);
457 basic_block target_bb
458 = label_to_block (cfun, CASE_LABEL (label));
459 if (CASE_HIGH (label)
460 || !CASE_LOW (label)
461 || info[target_bb->index])
462 info[target_bb->index] = error_mark_node;
463 else
464 info[target_bb->index] = label;
465 }
466
467 FOR_EACH_EDGE (e, ei, bb->succs)
468 {
469 basic_block target_bb = e->dest;
470 tree label = info[target_bb->index];
471
472 if (label != NULL && label != error_mark_node)
473 {
474 tree x = fold_convert_loc (loc, TREE_TYPE (index),
475 CASE_LOW (label));
476 edge_info = new class edge_info (e);
477 edge_info->record_simple_equiv (index, x);
478 }
479 }
480 free (info);
481 }
482 }
483
484 /* A COND_EXPR may create equivalences too. */
485 if (gimple_code (stmt) == GIMPLE_COND)
486 {
487 edge true_edge;
488 edge false_edge;
489
490 tree op0 = gimple_cond_lhs (stmt);
491 tree op1 = gimple_cond_rhs (stmt);
492 enum tree_code code = gimple_cond_code (stmt);
493
494 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
495
496 /* Special case comparing booleans against a constant as we
497 know the value of OP0 on both arms of the branch. i.e., we
498 can record an equivalence for OP0 rather than COND.
499
500 However, don't do this if the constant isn't zero or one.
501 Such conditionals will get optimized more thoroughly during
502 the domwalk. */
503 if ((code == EQ_EXPR || code == NE_EXPR)
504 && TREE_CODE (op0) == SSA_NAME
505 && ssa_name_has_boolean_range (op0)
506 && is_gimple_min_invariant (op1)
507 && (integer_zerop (op1) || integer_onep (op1)))
508 {
509 tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
510 tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
511
512 if (code == EQ_EXPR)
513 {
514 edge_info = new class edge_info (true_edge);
515 edge_info->record_simple_equiv (op0,
516 (integer_zerop (op1)
517 ? false_val : true_val));
518 edge_info = new class edge_info (false_edge);
519 edge_info->record_simple_equiv (op0,
520 (integer_zerop (op1)
521 ? true_val : false_val));
522 }
523 else
524 {
525 edge_info = new class edge_info (true_edge);
526 edge_info->record_simple_equiv (op0,
527 (integer_zerop (op1)
528 ? true_val : false_val));
529 edge_info = new class edge_info (false_edge);
530 edge_info->record_simple_equiv (op0,
531 (integer_zerop (op1)
532 ? false_val : true_val));
533 }
534 }
535 /* This can show up in the IL as a result of copy propagation
536 it will eventually be canonicalized, but we have to cope
537 with this case within the pass. */
538 else if (is_gimple_min_invariant (op0)
539 && TREE_CODE (op1) == SSA_NAME)
540 {
541 tree cond = build2 (code, boolean_type_node, op0, op1);
542 tree inverted = invert_truthvalue_loc (loc, cond);
543 bool can_infer_simple_equiv
544 = !(HONOR_SIGNED_ZEROS (op0)
545 && real_zerop (op0));
546 class edge_info *edge_info;
547
548 edge_info = new class edge_info (true_edge);
549 record_conditions (&edge_info->cond_equivalences, cond, inverted);
550
551 if (can_infer_simple_equiv && code == EQ_EXPR)
552 edge_info->record_simple_equiv (op1, op0);
553
554 edge_info = new class edge_info (false_edge);
555 record_conditions (&edge_info->cond_equivalences, inverted, cond);
556
557 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
558 edge_info->record_simple_equiv (op1, op0);
559 }
560
561 else if (TREE_CODE (op0) == SSA_NAME
562 && (TREE_CODE (op1) == SSA_NAME
563 || is_gimple_min_invariant (op1)))
564 {
565 tree cond = build2 (code, boolean_type_node, op0, op1);
566 tree inverted = invert_truthvalue_loc (loc, cond);
567 bool can_infer_simple_equiv
568 = !(HONOR_SIGNED_ZEROS (op1)
569 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
570 class edge_info *edge_info;
571
572 edge_info = new class edge_info (true_edge);
573 record_conditions (&edge_info->cond_equivalences, cond, inverted);
574
575 if (can_infer_simple_equiv && code == EQ_EXPR)
576 edge_info->record_simple_equiv (op0, op1);
577
578 edge_info = new class edge_info (false_edge);
579 record_conditions (&edge_info->cond_equivalences, inverted, cond);
580
581 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
582 edge_info->record_simple_equiv (op0, op1);
583 }
584 }
585 }
586 }
587
588
589 class dom_opt_dom_walker : public dom_walker
590 {
591 public:
592 dom_opt_dom_walker (cdi_direction direction,
593 class const_and_copies *const_and_copies,
594 class avail_exprs_stack *avail_exprs_stack,
595 gcond *dummy_cond)
596 : dom_walker (direction, REACHABLE_BLOCKS),
597 m_const_and_copies (const_and_copies),
598 m_avail_exprs_stack (avail_exprs_stack),
599 evrp_range_analyzer (true),
600 m_dummy_cond (dummy_cond) { }
601
602 virtual edge before_dom_children (basic_block);
603 virtual void after_dom_children (basic_block);
604
605 private:
606
607 /* Unwindable equivalences, both const/copy and expression varieties. */
608 class const_and_copies *m_const_and_copies;
609 class avail_exprs_stack *m_avail_exprs_stack;
610
611 /* VRP data. */
612 class evrp_range_analyzer evrp_range_analyzer;
613
614 /* Dummy condition to avoid creating lots of throw away statements. */
615 gcond *m_dummy_cond;
616
617 /* Optimize a single statement within a basic block using the
618 various tables mantained by DOM. Returns the taken edge if
619 the statement is a conditional with a statically determined
620 value. */
621 edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
622 };
623
624 /* Jump threading, redundancy elimination and const/copy propagation.
625
626 This pass may expose new symbols that need to be renamed into SSA. For
627 every new symbol exposed, its corresponding bit will be set in
628 VARS_TO_RENAME. */
629
630 namespace {
631
632 const pass_data pass_data_dominator =
633 {
634 GIMPLE_PASS, /* type */
635 "dom", /* name */
636 OPTGROUP_NONE, /* optinfo_flags */
637 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
638 ( PROP_cfg | PROP_ssa ), /* properties_required */
639 0, /* properties_provided */
640 0, /* properties_destroyed */
641 0, /* todo_flags_start */
642 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
643 };
644
645 class pass_dominator : public gimple_opt_pass
646 {
647 public:
648 pass_dominator (gcc::context *ctxt)
649 : gimple_opt_pass (pass_data_dominator, ctxt),
650 may_peel_loop_headers_p (false)
651 {}
652
653 /* opt_pass methods: */
654 opt_pass * clone () { return new pass_dominator (m_ctxt); }
655 void set_pass_param (unsigned int n, bool param)
656 {
657 gcc_assert (n == 0);
658 may_peel_loop_headers_p = param;
659 }
660 virtual bool gate (function *) { return flag_tree_dom != 0; }
661 virtual unsigned int execute (function *);
662
663 private:
664 /* This flag is used to prevent loops from being peeled repeatedly in jump
665 threading; it will be removed once we preserve loop structures throughout
666 the compilation -- we will be able to mark the affected loops directly in
667 jump threading, and avoid peeling them next time. */
668 bool may_peel_loop_headers_p;
669 }; // class pass_dominator
670
671 unsigned int
672 pass_dominator::execute (function *fun)
673 {
674 memset (&opt_stats, 0, sizeof (opt_stats));
675
676 /* Create our hash tables. */
677 hash_table<expr_elt_hasher> *avail_exprs
678 = new hash_table<expr_elt_hasher> (1024);
679 class avail_exprs_stack *avail_exprs_stack
680 = new class avail_exprs_stack (avail_exprs);
681 class const_and_copies *const_and_copies = new class const_and_copies ();
682 need_eh_cleanup = BITMAP_ALLOC (NULL);
683 need_noreturn_fixup.create (0);
684
685 calculate_dominance_info (CDI_DOMINATORS);
686 cfg_altered = false;
687
688 /* We need to know loop structures in order to avoid destroying them
689 in jump threading. Note that we still can e.g. thread through loop
690 headers to an exit edge, or through loop header to the loop body, assuming
691 that we update the loop info.
692
693 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
694 to several overly conservative bail-outs in jump threading, case
695 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
696 missing. We should improve jump threading in future then
697 LOOPS_HAVE_PREHEADERS won't be needed here. */
698 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
699
700 /* Initialize the value-handle array. */
701 threadedge_initialize_values ();
702
703 /* We need accurate information regarding back edges in the CFG
704 for jump threading; this may include back edges that are not part of
705 a single loop. */
706 mark_dfs_back_edges ();
707
708 /* We want to create the edge info structures before the dominator walk
709 so that they'll be in place for the jump threader, particularly when
710 threading through a join block.
711
712 The conditions will be lazily updated with global equivalences as
713 we reach them during the dominator walk. */
714 basic_block bb;
715 FOR_EACH_BB_FN (bb, fun)
716 record_edge_info (bb);
717
718 gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
719 integer_zero_node, NULL, NULL);
720
721 /* Recursively walk the dominator tree optimizing statements. */
722 dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
723 avail_exprs_stack, dummy_cond);
724 walker.walk (fun->cfg->x_entry_block_ptr);
725
726 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
727 edge. When found, remove jump threads which contain any outgoing
728 edge from the affected block. */
729 if (cfg_altered)
730 {
731 FOR_EACH_BB_FN (bb, fun)
732 {
733 edge_iterator ei;
734 edge e;
735
736 /* First see if there are any edges without EDGE_EXECUTABLE
737 set. */
738 bool found = false;
739 FOR_EACH_EDGE (e, ei, bb->succs)
740 {
741 if ((e->flags & EDGE_EXECUTABLE) == 0)
742 {
743 found = true;
744 break;
745 }
746 }
747
748 /* If there were any such edges found, then remove jump threads
749 containing any edge leaving BB. */
750 if (found)
751 FOR_EACH_EDGE (e, ei, bb->succs)
752 remove_jump_threads_including (e);
753 }
754 }
755
756 {
757 gimple_stmt_iterator gsi;
758 basic_block bb;
759 FOR_EACH_BB_FN (bb, fun)
760 {
761 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
762 update_stmt_if_modified (gsi_stmt (gsi));
763 }
764 }
765
766 /* If we exposed any new variables, go ahead and put them into
767 SSA form now, before we handle jump threading. This simplifies
768 interactions between rewriting of _DECL nodes into SSA form
769 and rewriting SSA_NAME nodes into SSA form after block
770 duplication and CFG manipulation. */
771 update_ssa (TODO_update_ssa);
772
773 free_all_edge_infos ();
774
775 /* Thread jumps, creating duplicate blocks as needed. */
776 cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
777
778 if (cfg_altered)
779 free_dominance_info (CDI_DOMINATORS);
780
781 /* Removal of statements may make some EH edges dead. Purge
782 such edges from the CFG as needed. */
783 if (!bitmap_empty_p (need_eh_cleanup))
784 {
785 unsigned i;
786 bitmap_iterator bi;
787
788 /* Jump threading may have created forwarder blocks from blocks
789 needing EH cleanup; the new successor of these blocks, which
790 has inherited from the original block, needs the cleanup.
791 Don't clear bits in the bitmap, as that can break the bitmap
792 iterator. */
793 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
794 {
795 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
796 if (bb == NULL)
797 continue;
798 while (single_succ_p (bb)
799 && (single_succ_edge (bb)->flags
800 & (EDGE_EH|EDGE_DFS_BACK)) == 0)
801 bb = single_succ (bb);
802 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
803 continue;
804 if ((unsigned) bb->index != i)
805 bitmap_set_bit (need_eh_cleanup, bb->index);
806 }
807
808 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
809 bitmap_clear (need_eh_cleanup);
810 }
811
812 /* Fixup stmts that became noreturn calls. This may require splitting
813 blocks and thus isn't possible during the dominator walk or before
814 jump threading finished. Do this in reverse order so we don't
815 inadvertedly remove a stmt we want to fixup by visiting a dominating
816 now noreturn call first. */
817 while (!need_noreturn_fixup.is_empty ())
818 {
819 gimple *stmt = need_noreturn_fixup.pop ();
820 if (dump_file && dump_flags & TDF_DETAILS)
821 {
822 fprintf (dump_file, "Fixing up noreturn call ");
823 print_gimple_stmt (dump_file, stmt, 0);
824 fprintf (dump_file, "\n");
825 }
826 fixup_noreturn_call (stmt);
827 }
828
829 statistics_counter_event (fun, "Redundant expressions eliminated",
830 opt_stats.num_re);
831 statistics_counter_event (fun, "Constants propagated",
832 opt_stats.num_const_prop);
833 statistics_counter_event (fun, "Copies propagated",
834 opt_stats.num_copy_prop);
835
836 /* Debugging dumps. */
837 if (dump_file && (dump_flags & TDF_STATS))
838 dump_dominator_optimization_stats (dump_file, avail_exprs);
839
840 loop_optimizer_finalize ();
841
842 /* Delete our main hashtable. */
843 delete avail_exprs;
844 avail_exprs = NULL;
845
846 /* Free asserted bitmaps and stacks. */
847 BITMAP_FREE (need_eh_cleanup);
848 need_noreturn_fixup.release ();
849 delete avail_exprs_stack;
850 delete const_and_copies;
851
852 /* Free the value-handle array. */
853 threadedge_finalize_values ();
854
855 return 0;
856 }
857
858 } // anon namespace
859
860 gimple_opt_pass *
861 make_pass_dominator (gcc::context *ctxt)
862 {
863 return new pass_dominator (ctxt);
864 }
865
866 /* A hack until we remove threading from tree-vrp.c and bring the
867 simplification routine into the dom_opt_dom_walker class. */
868 static class vr_values *x_vr_values;
869
870 /* A trivial wrapper so that we can present the generic jump
871 threading code with a simple API for simplifying statements. */
872 static tree
873 simplify_stmt_for_jump_threading (gimple *stmt,
874 gimple *within_stmt ATTRIBUTE_UNUSED,
875 class avail_exprs_stack *avail_exprs_stack,
876 basic_block bb ATTRIBUTE_UNUSED)
877 {
878 /* First query our hash table to see if the expression is available
879 there. A non-NULL return value will be either a constant or another
880 SSA_NAME. */
881 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
882 if (cached_lhs)
883 return cached_lhs;
884
885 /* If the hash table query failed, query VRP information. This is
886 essentially the same as tree-vrp's simplification routine. The
887 copy in tree-vrp is scheduled for removal in gcc-9. */
888 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
889 {
890 cached_lhs
891 = x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
892 gimple_cond_lhs (cond_stmt),
893 gimple_cond_rhs (cond_stmt),
894 within_stmt);
895 return cached_lhs;
896 }
897
898 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
899 {
900 tree op = gimple_switch_index (switch_stmt);
901 if (TREE_CODE (op) != SSA_NAME)
902 return NULL_TREE;
903
904 const value_range_equiv *vr = x_vr_values->get_value_range (op);
905 if (vr->undefined_p ()
906 || vr->varying_p ()
907 || vr->symbolic_p ())
908 return NULL_TREE;
909
910 if (vr->kind () == VR_RANGE)
911 {
912 size_t i, j;
913
914 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
915
916 /* Is there only one such label? */
917 if (i == j)
918 {
919 tree label = gimple_switch_label (switch_stmt, i);
920 tree singleton;
921
922 /* The i'th label will only be taken if the value range of the
923 operand is entirely within the bounds of this label. */
924 if (CASE_HIGH (label) != NULL_TREE
925 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
926 && tree_int_cst_compare (CASE_HIGH (label), vr->max ()) >= 0)
927 : (vr->singleton_p (&singleton)
928 && tree_int_cst_equal (CASE_LOW (label), singleton)))
929 return label;
930 }
931
932 /* If there are no such labels, then the default label
933 will be taken. */
934 if (i > j)
935 return gimple_switch_label (switch_stmt, 0);
936 }
937
938 if (vr->kind () == VR_ANTI_RANGE)
939 {
940 unsigned n = gimple_switch_num_labels (switch_stmt);
941 tree min_label = gimple_switch_label (switch_stmt, 1);
942 tree max_label = gimple_switch_label (switch_stmt, n - 1);
943
944 /* The default label will be taken only if the anti-range of the
945 operand is entirely outside the bounds of all the (non-default)
946 case labels. */
947 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
948 && (CASE_HIGH (max_label) != NULL_TREE
949 ? tree_int_cst_compare (vr->max (), CASE_HIGH (max_label)) >= 0
950 : tree_int_cst_compare (vr->max (), CASE_LOW (max_label)) >= 0))
951 return gimple_switch_label (switch_stmt, 0);
952 }
953 return NULL_TREE;
954 }
955
956 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
957 {
958 tree lhs = gimple_assign_lhs (assign_stmt);
959 if (TREE_CODE (lhs) == SSA_NAME
960 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
961 || POINTER_TYPE_P (TREE_TYPE (lhs)))
962 && stmt_interesting_for_vrp (stmt))
963 {
964 edge dummy_e;
965 tree dummy_tree;
966 value_range_equiv new_vr;
967 x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
968 &dummy_tree, &new_vr);
969 tree singleton;
970 if (new_vr.singleton_p (&singleton))
971 return singleton;
972 }
973 }
974 return NULL;
975 }
976
977 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
978
979 static tree
980 dom_valueize (tree t)
981 {
982 if (TREE_CODE (t) == SSA_NAME)
983 {
984 tree tem = SSA_NAME_VALUE (t);
985 if (tem)
986 return tem;
987 }
988 return t;
989 }
990
991 /* We have just found an equivalence for LHS on an edge E.
992 Look backwards to other uses of LHS and see if we can derive
993 additional equivalences that are valid on edge E. */
994 static void
995 back_propagate_equivalences (tree lhs, edge e,
996 class const_and_copies *const_and_copies)
997 {
998 use_operand_p use_p;
999 imm_use_iterator iter;
1000 bitmap domby = NULL;
1001 basic_block dest = e->dest;
1002
1003 /* Iterate over the uses of LHS to see if any dominate E->dest.
1004 If so, they may create useful equivalences too.
1005
1006 ??? If the code gets re-organized to a worklist to catch more
1007 indirect opportunities and it is made to handle PHIs then this
1008 should only consider use_stmts in basic-blocks we have already visited. */
1009 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1010 {
1011 gimple *use_stmt = USE_STMT (use_p);
1012
1013 /* Often the use is in DEST, which we trivially know we can't use.
1014 This is cheaper than the dominator set tests below. */
1015 if (dest == gimple_bb (use_stmt))
1016 continue;
1017
1018 /* Filter out statements that can never produce a useful
1019 equivalence. */
1020 tree lhs2 = gimple_get_lhs (use_stmt);
1021 if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1022 continue;
1023
1024 /* Profiling has shown the domination tests here can be fairly
1025 expensive. We get significant improvements by building the
1026 set of blocks that dominate BB. We can then just test
1027 for set membership below.
1028
1029 We also initialize the set lazily since often the only uses
1030 are going to be in the same block as DEST. */
1031 if (!domby)
1032 {
1033 domby = BITMAP_ALLOC (NULL);
1034 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
1035 while (bb)
1036 {
1037 bitmap_set_bit (domby, bb->index);
1038 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1039 }
1040 }
1041
1042 /* This tests if USE_STMT does not dominate DEST. */
1043 if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1044 continue;
1045
1046 /* At this point USE_STMT dominates DEST and may result in a
1047 useful equivalence. Try to simplify its RHS to a constant
1048 or SSA_NAME. */
1049 tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1050 no_follow_ssa_edges);
1051 if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1052 record_equality (lhs2, res, const_and_copies);
1053 }
1054
1055 if (domby)
1056 BITMAP_FREE (domby);
1057 }
1058
1059 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1060 by traversing edge E (which are cached in E->aux).
1061
1062 Callers are responsible for managing the unwinding markers. */
1063 void
1064 record_temporary_equivalences (edge e,
1065 class const_and_copies *const_and_copies,
1066 class avail_exprs_stack *avail_exprs_stack)
1067 {
1068 int i;
1069 class edge_info *edge_info = (class edge_info *) e->aux;
1070
1071 /* If we have info associated with this edge, record it into
1072 our equivalence tables. */
1073 if (edge_info)
1074 {
1075 cond_equivalence *eq;
1076 /* If we have 0 = COND or 1 = COND equivalences, record them
1077 into our expression hash tables. */
1078 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1079 avail_exprs_stack->record_cond (eq);
1080
1081 edge_info::equiv_pair *seq;
1082 for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1083 {
1084 tree lhs = seq->first;
1085 if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1086 continue;
1087
1088 /* Record the simple NAME = VALUE equivalence. */
1089 tree rhs = seq->second;
1090
1091 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1092 cheaper to compute than the other, then set up the equivalence
1093 such that we replace the expensive one with the cheap one.
1094
1095 If they are the same cost to compute, then do not record
1096 anything. */
1097 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1098 {
1099 gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1100 int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1101
1102 gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1103 int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1104
1105 if (rhs_cost > lhs_cost)
1106 record_equality (rhs, lhs, const_and_copies);
1107 else if (rhs_cost < lhs_cost)
1108 record_equality (lhs, rhs, const_and_copies);
1109 }
1110 else
1111 record_equality (lhs, rhs, const_and_copies);
1112
1113
1114 /* Any equivalence found for LHS may result in additional
1115 equivalences for other uses of LHS that we have already
1116 processed. */
1117 back_propagate_equivalences (lhs, e, const_and_copies);
1118 }
1119 }
1120 }
1121
1122 /* PHI nodes can create equivalences too.
1123
1124 Ignoring any alternatives which are the same as the result, if
1125 all the alternatives are equal, then the PHI node creates an
1126 equivalence. */
1127
1128 static void
1129 record_equivalences_from_phis (basic_block bb)
1130 {
1131 gphi_iterator gsi;
1132
1133 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1134 {
1135 gphi *phi = gsi.phi ();
1136
1137 /* We might eliminate the PHI, so advance GSI now. */
1138 gsi_next (&gsi);
1139
1140 tree lhs = gimple_phi_result (phi);
1141 tree rhs = NULL;
1142 size_t i;
1143
1144 for (i = 0; i < gimple_phi_num_args (phi); i++)
1145 {
1146 tree t = gimple_phi_arg_def (phi, i);
1147
1148 /* Ignore alternatives which are the same as our LHS. Since
1149 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1150 can simply compare pointers. */
1151 if (lhs == t)
1152 continue;
1153
1154 /* If the associated edge is not marked as executable, then it
1155 can be ignored. */
1156 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1157 continue;
1158
1159 t = dom_valueize (t);
1160
1161 /* If T is an SSA_NAME and its associated edge is a backedge,
1162 then quit as we cannot utilize this equivalence. */
1163 if (TREE_CODE (t) == SSA_NAME
1164 && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1165 break;
1166
1167 /* If we have not processed an alternative yet, then set
1168 RHS to this alternative. */
1169 if (rhs == NULL)
1170 rhs = t;
1171 /* If we have processed an alternative (stored in RHS), then
1172 see if it is equal to this one. If it isn't, then stop
1173 the search. */
1174 else if (! operand_equal_for_phi_arg_p (rhs, t))
1175 break;
1176 }
1177
1178 /* If we had no interesting alternatives, then all the RHS alternatives
1179 must have been the same as LHS. */
1180 if (!rhs)
1181 rhs = lhs;
1182
1183 /* If we managed to iterate through each PHI alternative without
1184 breaking out of the loop, then we have a PHI which may create
1185 a useful equivalence. We do not need to record unwind data for
1186 this, since this is a true assignment and not an equivalence
1187 inferred from a comparison. All uses of this ssa name are dominated
1188 by this assignment, so unwinding just costs time and space. */
1189 if (i == gimple_phi_num_args (phi))
1190 {
1191 if (may_propagate_copy (lhs, rhs))
1192 set_ssa_name_value (lhs, rhs);
1193 else if (virtual_operand_p (lhs))
1194 {
1195 gimple *use_stmt;
1196 imm_use_iterator iter;
1197 use_operand_p use_p;
1198 /* For virtual operands we have to propagate into all uses as
1199 otherwise we will create overlapping life-ranges. */
1200 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1201 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1202 SET_USE (use_p, rhs);
1203 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1204 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1205 gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1206 remove_phi_node (&tmp_gsi, true);
1207 }
1208 }
1209 }
1210 }
1211
1212 /* Record any equivalences created by the incoming edge to BB into
1213 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1214 incoming edge, then no equivalence is created. */
1215
1216 static void
1217 record_equivalences_from_incoming_edge (basic_block bb,
1218 class const_and_copies *const_and_copies,
1219 class avail_exprs_stack *avail_exprs_stack)
1220 {
1221 edge e;
1222 basic_block parent;
1223
1224 /* If our parent block ended with a control statement, then we may be
1225 able to record some equivalences based on which outgoing edge from
1226 the parent was followed. */
1227 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1228
1229 e = single_pred_edge_ignoring_loop_edges (bb, true);
1230
1231 /* If we had a single incoming edge from our parent block, then enter
1232 any data associated with the edge into our tables. */
1233 if (e && e->src == parent)
1234 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1235 }
1236
1237 /* Dump statistics for the hash table HTAB. */
1238
1239 static void
1240 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1241 {
1242 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1243 (long) htab.size (),
1244 (long) htab.elements (),
1245 htab.collisions ());
1246 }
1247
1248 /* Dump SSA statistics on FILE. */
1249
1250 static void
1251 dump_dominator_optimization_stats (FILE *file,
1252 hash_table<expr_elt_hasher> *avail_exprs)
1253 {
1254 fprintf (file, "Total number of statements: %6ld\n\n",
1255 opt_stats.num_stmts);
1256 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1257 opt_stats.num_exprs_considered);
1258
1259 fprintf (file, "\nHash table statistics:\n");
1260
1261 fprintf (file, " avail_exprs: ");
1262 htab_statistics (file, *avail_exprs);
1263 }
1264
1265
1266 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1267 This constrains the cases in which we may treat this as assignment. */
1268
1269 static void
1270 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1271 {
1272 tree prev_x = NULL, prev_y = NULL;
1273
1274 if (tree_swap_operands_p (x, y))
1275 std::swap (x, y);
1276
1277 /* Most of the time tree_swap_operands_p does what we want. But there
1278 are cases where we know one operand is better for copy propagation than
1279 the other. Given no other code cares about ordering of equality
1280 comparison operators for that purpose, we just handle the special cases
1281 here. */
1282 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1283 {
1284 /* If one operand is a single use operand, then make it
1285 X. This will preserve its single use properly and if this
1286 conditional is eliminated, the computation of X can be
1287 eliminated as well. */
1288 if (has_single_use (y) && ! has_single_use (x))
1289 std::swap (x, y);
1290 }
1291 if (TREE_CODE (x) == SSA_NAME)
1292 prev_x = SSA_NAME_VALUE (x);
1293 if (TREE_CODE (y) == SSA_NAME)
1294 prev_y = SSA_NAME_VALUE (y);
1295
1296 /* If one of the previous values is invariant, or invariant in more loops
1297 (by depth), then use that.
1298 Otherwise it doesn't matter which value we choose, just so
1299 long as we canonicalize on one value. */
1300 if (is_gimple_min_invariant (y))
1301 ;
1302 else if (is_gimple_min_invariant (x))
1303 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1304 else if (prev_x && is_gimple_min_invariant (prev_x))
1305 x = y, y = prev_x, prev_x = prev_y;
1306 else if (prev_y)
1307 y = prev_y;
1308
1309 /* After the swapping, we must have one SSA_NAME. */
1310 if (TREE_CODE (x) != SSA_NAME)
1311 return;
1312
1313 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1314 variable compared against zero. If we're honoring signed zeros,
1315 then we cannot record this value unless we know that the value is
1316 nonzero. */
1317 if (HONOR_SIGNED_ZEROS (x)
1318 && (TREE_CODE (y) != REAL_CST
1319 || real_equal (&dconst0, &TREE_REAL_CST (y))))
1320 return;
1321
1322 const_and_copies->record_const_or_copy (x, y, prev_x);
1323 }
1324
1325 /* Returns true when STMT is a simple iv increment. It detects the
1326 following situation:
1327
1328 i_1 = phi (..., i_k)
1329 [...]
1330 i_j = i_{j-1} for each j : 2 <= j <= k-1
1331 [...]
1332 i_k = i_{k-1} +/- ... */
1333
1334 bool
1335 simple_iv_increment_p (gimple *stmt)
1336 {
1337 enum tree_code code;
1338 tree lhs, preinc;
1339 gimple *phi;
1340 size_t i;
1341
1342 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1343 return false;
1344
1345 lhs = gimple_assign_lhs (stmt);
1346 if (TREE_CODE (lhs) != SSA_NAME)
1347 return false;
1348
1349 code = gimple_assign_rhs_code (stmt);
1350 if (code != PLUS_EXPR
1351 && code != MINUS_EXPR
1352 && code != POINTER_PLUS_EXPR)
1353 return false;
1354
1355 preinc = gimple_assign_rhs1 (stmt);
1356 if (TREE_CODE (preinc) != SSA_NAME)
1357 return false;
1358
1359 phi = SSA_NAME_DEF_STMT (preinc);
1360 while (gimple_code (phi) != GIMPLE_PHI)
1361 {
1362 /* Follow trivial copies, but not the DEF used in a back edge,
1363 so that we don't prevent coalescing. */
1364 if (!gimple_assign_ssa_name_copy_p (phi))
1365 return false;
1366 preinc = gimple_assign_rhs1 (phi);
1367 phi = SSA_NAME_DEF_STMT (preinc);
1368 }
1369
1370 for (i = 0; i < gimple_phi_num_args (phi); i++)
1371 if (gimple_phi_arg_def (phi, i) == lhs)
1372 return true;
1373
1374 return false;
1375 }
1376
1377 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1378 successors of BB. */
1379
1380 static void
1381 cprop_into_successor_phis (basic_block bb,
1382 class const_and_copies *const_and_copies)
1383 {
1384 edge e;
1385 edge_iterator ei;
1386
1387 FOR_EACH_EDGE (e, ei, bb->succs)
1388 {
1389 int indx;
1390 gphi_iterator gsi;
1391
1392 /* If this is an abnormal edge, then we do not want to copy propagate
1393 into the PHI alternative associated with this edge. */
1394 if (e->flags & EDGE_ABNORMAL)
1395 continue;
1396
1397 gsi = gsi_start_phis (e->dest);
1398 if (gsi_end_p (gsi))
1399 continue;
1400
1401 /* We may have an equivalence associated with this edge. While
1402 we cannot propagate it into non-dominated blocks, we can
1403 propagate them into PHIs in non-dominated blocks. */
1404
1405 /* Push the unwind marker so we can reset the const and copies
1406 table back to its original state after processing this edge. */
1407 const_and_copies->push_marker ();
1408
1409 /* Extract and record any simple NAME = VALUE equivalences.
1410
1411 Don't bother with [01] = COND equivalences, they're not useful
1412 here. */
1413 class edge_info *edge_info = (class edge_info *) e->aux;
1414
1415 if (edge_info)
1416 {
1417 edge_info::equiv_pair *seq;
1418 for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1419 {
1420 tree lhs = seq->first;
1421 tree rhs = seq->second;
1422
1423 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1424 const_and_copies->record_const_or_copy (lhs, rhs);
1425 }
1426
1427 }
1428
1429 indx = e->dest_idx;
1430 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1431 {
1432 tree new_val;
1433 use_operand_p orig_p;
1434 tree orig_val;
1435 gphi *phi = gsi.phi ();
1436
1437 /* The alternative may be associated with a constant, so verify
1438 it is an SSA_NAME before doing anything with it. */
1439 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1440 orig_val = get_use_from_ptr (orig_p);
1441 if (TREE_CODE (orig_val) != SSA_NAME)
1442 continue;
1443
1444 /* If we have *ORIG_P in our constant/copy table, then replace
1445 ORIG_P with its value in our constant/copy table. */
1446 new_val = SSA_NAME_VALUE (orig_val);
1447 if (new_val
1448 && new_val != orig_val
1449 && may_propagate_copy (orig_val, new_val))
1450 propagate_value (orig_p, new_val);
1451 }
1452
1453 const_and_copies->pop_to_marker ();
1454 }
1455 }
1456
1457 edge
1458 dom_opt_dom_walker::before_dom_children (basic_block bb)
1459 {
1460 gimple_stmt_iterator gsi;
1461
1462 if (dump_file && (dump_flags & TDF_DETAILS))
1463 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1464
1465 evrp_range_analyzer.enter (bb);
1466
1467 /* Push a marker on the stacks of local information so that we know how
1468 far to unwind when we finalize this block. */
1469 m_avail_exprs_stack->push_marker ();
1470 m_const_and_copies->push_marker ();
1471
1472 record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1473 m_avail_exprs_stack);
1474
1475 /* PHI nodes can create equivalences too. */
1476 record_equivalences_from_phis (bb);
1477
1478 /* Create equivalences from redundant PHIs. PHIs are only truly
1479 redundant when they exist in the same block, so push another
1480 marker and unwind right afterwards. */
1481 m_avail_exprs_stack->push_marker ();
1482 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1483 eliminate_redundant_computations (&gsi, m_const_and_copies,
1484 m_avail_exprs_stack);
1485 m_avail_exprs_stack->pop_to_marker ();
1486
1487 edge taken_edge = NULL;
1488 /* Initialize visited flag ahead of us, it has undefined state on
1489 pass entry. */
1490 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1491 gimple_set_visited (gsi_stmt (gsi), false);
1492 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1493 {
1494 /* Do not optimize a stmt twice, substitution might end up with
1495 _3 = _3 which is not valid. */
1496 if (gimple_visited_p (gsi_stmt (gsi)))
1497 {
1498 gsi_next (&gsi);
1499 continue;
1500 }
1501
1502 /* Compute range information and optimize the stmt. */
1503 evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
1504 bool removed_p = false;
1505 taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1506 if (!removed_p)
1507 gimple_set_visited (gsi_stmt (gsi), true);
1508
1509 /* Go back and visit stmts inserted by folding after substituting
1510 into the stmt at gsi. */
1511 if (gsi_end_p (gsi))
1512 {
1513 gcc_checking_assert (removed_p);
1514 gsi = gsi_last_bb (bb);
1515 while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1516 gsi_prev (&gsi);
1517 }
1518 else
1519 {
1520 do
1521 {
1522 gsi_prev (&gsi);
1523 }
1524 while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1525 }
1526 if (gsi_end_p (gsi))
1527 gsi = gsi_start_bb (bb);
1528 else
1529 gsi_next (&gsi);
1530 }
1531
1532 /* Now prepare to process dominated blocks. */
1533 record_edge_info (bb);
1534 cprop_into_successor_phis (bb, m_const_and_copies);
1535 if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1536 return NULL;
1537
1538 return taken_edge;
1539 }
1540
1541 /* We have finished processing the dominator children of BB, perform
1542 any finalization actions in preparation for leaving this node in
1543 the dominator tree. */
1544
1545 void
1546 dom_opt_dom_walker::after_dom_children (basic_block bb)
1547 {
1548 x_vr_values = evrp_range_analyzer.get_vr_values ();
1549 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1550 m_avail_exprs_stack,
1551 &evrp_range_analyzer,
1552 simplify_stmt_for_jump_threading);
1553 x_vr_values = NULL;
1554
1555 /* These remove expressions local to BB from the tables. */
1556 m_avail_exprs_stack->pop_to_marker ();
1557 m_const_and_copies->pop_to_marker ();
1558 evrp_range_analyzer.leave (bb);
1559 }
1560
1561 /* Search for redundant computations in STMT. If any are found, then
1562 replace them with the variable holding the result of the computation.
1563
1564 If safe, record this expression into AVAIL_EXPRS_STACK and
1565 CONST_AND_COPIES. */
1566
1567 static void
1568 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1569 class const_and_copies *const_and_copies,
1570 class avail_exprs_stack *avail_exprs_stack)
1571 {
1572 tree expr_type;
1573 tree cached_lhs;
1574 tree def;
1575 bool insert = true;
1576 bool assigns_var_p = false;
1577
1578 gimple *stmt = gsi_stmt (*gsi);
1579
1580 if (gimple_code (stmt) == GIMPLE_PHI)
1581 def = gimple_phi_result (stmt);
1582 else
1583 def = gimple_get_lhs (stmt);
1584
1585 /* Certain expressions on the RHS can be optimized away, but cannot
1586 themselves be entered into the hash tables. */
1587 if (! def
1588 || TREE_CODE (def) != SSA_NAME
1589 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1590 || gimple_vdef (stmt)
1591 /* Do not record equivalences for increments of ivs. This would create
1592 overlapping live ranges for a very questionable gain. */
1593 || simple_iv_increment_p (stmt))
1594 insert = false;
1595
1596 /* Check if the expression has been computed before. */
1597 cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1598
1599 opt_stats.num_exprs_considered++;
1600
1601 /* Get the type of the expression we are trying to optimize. */
1602 if (is_gimple_assign (stmt))
1603 {
1604 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1605 assigns_var_p = true;
1606 }
1607 else if (gimple_code (stmt) == GIMPLE_COND)
1608 expr_type = boolean_type_node;
1609 else if (is_gimple_call (stmt))
1610 {
1611 gcc_assert (gimple_call_lhs (stmt));
1612 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1613 assigns_var_p = true;
1614 }
1615 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1616 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1617 else if (gimple_code (stmt) == GIMPLE_PHI)
1618 /* We can't propagate into a phi, so the logic below doesn't apply.
1619 Instead record an equivalence between the cached LHS and the
1620 PHI result of this statement, provided they are in the same block.
1621 This should be sufficient to kill the redundant phi. */
1622 {
1623 if (def && cached_lhs)
1624 const_and_copies->record_const_or_copy (def, cached_lhs);
1625 return;
1626 }
1627 else
1628 gcc_unreachable ();
1629
1630 if (!cached_lhs)
1631 return;
1632
1633 /* It is safe to ignore types here since we have already done
1634 type checking in the hashing and equality routines. In fact
1635 type checking here merely gets in the way of constant
1636 propagation. Also, make sure that it is safe to propagate
1637 CACHED_LHS into the expression in STMT. */
1638 if ((TREE_CODE (cached_lhs) != SSA_NAME
1639 && (assigns_var_p
1640 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1641 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1642 {
1643 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1644 || is_gimple_min_invariant (cached_lhs));
1645
1646 if (dump_file && (dump_flags & TDF_DETAILS))
1647 {
1648 fprintf (dump_file, " Replaced redundant expr '");
1649 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1650 fprintf (dump_file, "' with '");
1651 print_generic_expr (dump_file, cached_lhs, dump_flags);
1652 fprintf (dump_file, "'\n");
1653 }
1654
1655 opt_stats.num_re++;
1656
1657 if (assigns_var_p
1658 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1659 cached_lhs = fold_convert (expr_type, cached_lhs);
1660
1661 propagate_tree_value_into_stmt (gsi, cached_lhs);
1662
1663 /* Since it is always necessary to mark the result as modified,
1664 perhaps we should move this into propagate_tree_value_into_stmt
1665 itself. */
1666 gimple_set_modified (gsi_stmt (*gsi), true);
1667 }
1668 }
1669
1670 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1671 the available expressions table or the const_and_copies table.
1672 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1673
1674 We handle only very simple copy equivalences here. The heavy
1675 lifing is done by eliminate_redundant_computations. */
1676
1677 static void
1678 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1679 class avail_exprs_stack *avail_exprs_stack)
1680 {
1681 tree lhs;
1682 enum tree_code lhs_code;
1683
1684 gcc_assert (is_gimple_assign (stmt));
1685
1686 lhs = gimple_assign_lhs (stmt);
1687 lhs_code = TREE_CODE (lhs);
1688
1689 if (lhs_code == SSA_NAME
1690 && gimple_assign_single_p (stmt))
1691 {
1692 tree rhs = gimple_assign_rhs1 (stmt);
1693
1694 /* If the RHS of the assignment is a constant or another variable that
1695 may be propagated, register it in the CONST_AND_COPIES table. We
1696 do not need to record unwind data for this, since this is a true
1697 assignment and not an equivalence inferred from a comparison. All
1698 uses of this ssa name are dominated by this assignment, so unwinding
1699 just costs time and space. */
1700 if (may_optimize_p
1701 && (TREE_CODE (rhs) == SSA_NAME
1702 || is_gimple_min_invariant (rhs)))
1703 {
1704 rhs = dom_valueize (rhs);
1705
1706 if (dump_file && (dump_flags & TDF_DETAILS))
1707 {
1708 fprintf (dump_file, "==== ASGN ");
1709 print_generic_expr (dump_file, lhs);
1710 fprintf (dump_file, " = ");
1711 print_generic_expr (dump_file, rhs);
1712 fprintf (dump_file, "\n");
1713 }
1714
1715 set_ssa_name_value (lhs, rhs);
1716 }
1717 }
1718
1719 /* Make sure we can propagate &x + CST. */
1720 if (lhs_code == SSA_NAME
1721 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1722 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1723 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1724 {
1725 tree op0 = gimple_assign_rhs1 (stmt);
1726 tree op1 = gimple_assign_rhs2 (stmt);
1727 tree new_rhs
1728 = build1 (ADDR_EXPR, TREE_TYPE (op0),
1729 fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
1730 unshare_expr (op0), fold_convert (ptr_type_node,
1731 op1)));
1732 if (dump_file && (dump_flags & TDF_DETAILS))
1733 {
1734 fprintf (dump_file, "==== ASGN ");
1735 print_generic_expr (dump_file, lhs);
1736 fprintf (dump_file, " = ");
1737 print_generic_expr (dump_file, new_rhs);
1738 fprintf (dump_file, "\n");
1739 }
1740
1741 set_ssa_name_value (lhs, new_rhs);
1742 }
1743
1744 /* A memory store, even an aliased store, creates a useful
1745 equivalence. By exchanging the LHS and RHS, creating suitable
1746 vops and recording the result in the available expression table,
1747 we may be able to expose more redundant loads. */
1748 if (!gimple_has_volatile_ops (stmt)
1749 && gimple_references_memory_p (stmt)
1750 && gimple_assign_single_p (stmt)
1751 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1752 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1753 && !is_gimple_reg (lhs))
1754 {
1755 tree rhs = gimple_assign_rhs1 (stmt);
1756 gassign *new_stmt;
1757
1758 /* Build a new statement with the RHS and LHS exchanged. */
1759 if (TREE_CODE (rhs) == SSA_NAME)
1760 {
1761 /* NOTE tuples. The call to gimple_build_assign below replaced
1762 a call to build_gimple_modify_stmt, which did not set the
1763 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1764 may cause an SSA validation failure, as the LHS may be a
1765 default-initialized name and should have no definition. I'm
1766 a bit dubious of this, as the artificial statement that we
1767 generate here may in fact be ill-formed, but it is simply
1768 used as an internal device in this pass, and never becomes
1769 part of the CFG. */
1770 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1771 new_stmt = gimple_build_assign (rhs, lhs);
1772 SSA_NAME_DEF_STMT (rhs) = defstmt;
1773 }
1774 else
1775 new_stmt = gimple_build_assign (rhs, lhs);
1776
1777 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1778
1779 /* Finally enter the statement into the available expression
1780 table. */
1781 avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1782 }
1783 }
1784
1785 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1786 CONST_AND_COPIES. */
1787
1788 static void
1789 cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
1790 {
1791 tree val;
1792 tree op = USE_FROM_PTR (op_p);
1793
1794 /* If the operand has a known constant value or it is known to be a
1795 copy of some other variable, use the value or copy stored in
1796 CONST_AND_COPIES. */
1797 val = SSA_NAME_VALUE (op);
1798 if (!val)
1799 val = vr_values->op_with_constant_singleton_value_range (op);
1800
1801 if (val && val != op)
1802 {
1803 /* Do not replace hard register operands in asm statements. */
1804 if (gimple_code (stmt) == GIMPLE_ASM
1805 && !may_propagate_copy_into_asm (op))
1806 return;
1807
1808 /* Certain operands are not allowed to be copy propagated due
1809 to their interaction with exception handling and some GCC
1810 extensions. */
1811 if (!may_propagate_copy (op, val))
1812 return;
1813
1814 /* Do not propagate copies into BIVs.
1815 See PR23821 and PR62217 for how this can disturb IV and
1816 number of iteration analysis. */
1817 if (TREE_CODE (val) != INTEGER_CST)
1818 {
1819 gimple *def = SSA_NAME_DEF_STMT (op);
1820 if (gimple_code (def) == GIMPLE_PHI
1821 && gimple_bb (def)->loop_father->header == gimple_bb (def))
1822 return;
1823 }
1824
1825 /* Dump details. */
1826 if (dump_file && (dump_flags & TDF_DETAILS))
1827 {
1828 fprintf (dump_file, " Replaced '");
1829 print_generic_expr (dump_file, op, dump_flags);
1830 fprintf (dump_file, "' with %s '",
1831 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1832 print_generic_expr (dump_file, val, dump_flags);
1833 fprintf (dump_file, "'\n");
1834 }
1835
1836 if (TREE_CODE (val) != SSA_NAME)
1837 opt_stats.num_const_prop++;
1838 else
1839 opt_stats.num_copy_prop++;
1840
1841 propagate_value (op_p, val);
1842
1843 /* And note that we modified this statement. This is now
1844 safe, even if we changed virtual operands since we will
1845 rescan the statement and rewrite its operands again. */
1846 gimple_set_modified (stmt, true);
1847 }
1848 }
1849
1850 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1851 known value for that SSA_NAME (or NULL if no value is known).
1852
1853 Propagate values from CONST_AND_COPIES into the uses, vuses and
1854 vdef_ops of STMT. */
1855
1856 static void
1857 cprop_into_stmt (gimple *stmt, vr_values *vr_values)
1858 {
1859 use_operand_p op_p;
1860 ssa_op_iter iter;
1861 tree last_copy_propagated_op = NULL;
1862
1863 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1864 {
1865 tree old_op = USE_FROM_PTR (op_p);
1866
1867 /* If we have A = B and B = A in the copy propagation tables
1868 (due to an equality comparison), avoid substituting B for A
1869 then A for B in the trivially discovered cases. This allows
1870 optimization of statements were A and B appear as input
1871 operands. */
1872 if (old_op != last_copy_propagated_op)
1873 {
1874 cprop_operand (stmt, op_p, vr_values);
1875
1876 tree new_op = USE_FROM_PTR (op_p);
1877 if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1878 last_copy_propagated_op = new_op;
1879 }
1880 }
1881 }
1882
1883 /* If STMT contains a relational test, try to convert it into an
1884 equality test if there is only a single value which can ever
1885 make the test true.
1886
1887 For example, if the expression hash table contains:
1888
1889 TRUE = (i <= 1)
1890
1891 And we have a test within statement of i >= 1, then we can safely
1892 rewrite the test as i == 1 since there only a single value where
1893 the test is true.
1894
1895 This is similar to code in VRP. */
1896
1897 static void
1898 test_for_singularity (gimple *stmt, gcond *dummy_cond,
1899 avail_exprs_stack *avail_exprs_stack)
1900 {
1901 /* We want to support gimple conditionals as well as assignments
1902 where the RHS contains a conditional. */
1903 if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1904 {
1905 enum tree_code code = ERROR_MARK;
1906 tree lhs, rhs;
1907
1908 /* Extract the condition of interest from both forms we support. */
1909 if (is_gimple_assign (stmt))
1910 {
1911 code = gimple_assign_rhs_code (stmt);
1912 lhs = gimple_assign_rhs1 (stmt);
1913 rhs = gimple_assign_rhs2 (stmt);
1914 }
1915 else if (gimple_code (stmt) == GIMPLE_COND)
1916 {
1917 code = gimple_cond_code (as_a <gcond *> (stmt));
1918 lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1919 rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1920 }
1921
1922 /* We're looking for a relational test using LE/GE. Also note we can
1923 canonicalize LT/GT tests against constants into LE/GT tests. */
1924 if (code == LE_EXPR || code == GE_EXPR
1925 || ((code == LT_EXPR || code == GT_EXPR)
1926 && TREE_CODE (rhs) == INTEGER_CST))
1927 {
1928 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */
1929 if (code == LT_EXPR)
1930 rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1931 rhs, build_int_cst (TREE_TYPE (rhs), 1));
1932
1933 if (code == GT_EXPR)
1934 rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1935 rhs, build_int_cst (TREE_TYPE (rhs), 1));
1936
1937 /* Determine the code we want to check for in the hash table. */
1938 enum tree_code test_code;
1939 if (code == GE_EXPR || code == GT_EXPR)
1940 test_code = LE_EXPR;
1941 else
1942 test_code = GE_EXPR;
1943
1944 /* Update the dummy statement so we can query the hash tables. */
1945 gimple_cond_set_code (dummy_cond, test_code);
1946 gimple_cond_set_lhs (dummy_cond, lhs);
1947 gimple_cond_set_rhs (dummy_cond, rhs);
1948 tree cached_lhs
1949 = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);
1950
1951 /* If the lookup returned 1 (true), then the expression we
1952 queried was in the hash table. As a result there is only
1953 one value that makes the original conditional true. Update
1954 STMT accordingly. */
1955 if (cached_lhs && integer_onep (cached_lhs))
1956 {
1957 if (is_gimple_assign (stmt))
1958 {
1959 gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1960 gimple_assign_set_rhs2 (stmt, rhs);
1961 gimple_set_modified (stmt, true);
1962 }
1963 else
1964 {
1965 gimple_set_modified (stmt, true);
1966 gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1967 gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1968 gimple_set_modified (stmt, true);
1969 }
1970 }
1971 }
1972 }
1973 }
1974
1975 /* Optimize the statement in block BB pointed to by iterator SI.
1976
1977 We try to perform some simplistic global redundancy elimination and
1978 constant propagation:
1979
1980 1- To detect global redundancy, we keep track of expressions that have
1981 been computed in this block and its dominators. If we find that the
1982 same expression is computed more than once, we eliminate repeated
1983 computations by using the target of the first one.
1984
1985 2- Constant values and copy assignments. This is used to do very
1986 simplistic constant and copy propagation. When a constant or copy
1987 assignment is found, we map the value on the RHS of the assignment to
1988 the variable in the LHS in the CONST_AND_COPIES table.
1989
1990 3- Very simple redundant store elimination is performed.
1991
1992 4- We can simplify a condition to a constant or from a relational
1993 condition to an equality condition. */
1994
1995 edge
1996 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
1997 bool *removed_p)
1998 {
1999 gimple *stmt, *old_stmt;
2000 bool may_optimize_p;
2001 bool modified_p = false;
2002 bool was_noreturn;
2003 edge retval = NULL;
2004
2005 old_stmt = stmt = gsi_stmt (*si);
2006 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
2007
2008 if (dump_file && (dump_flags & TDF_DETAILS))
2009 {
2010 fprintf (dump_file, "Optimizing statement ");
2011 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2012 }
2013
2014 update_stmt_if_modified (stmt);
2015 opt_stats.num_stmts++;
2016
2017 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2018 cprop_into_stmt (stmt, evrp_range_analyzer.get_vr_values ());
2019
2020 /* If the statement has been modified with constant replacements,
2021 fold its RHS before checking for redundant computations. */
2022 if (gimple_modified_p (stmt))
2023 {
2024 tree rhs = NULL;
2025
2026 /* Try to fold the statement making sure that STMT is kept
2027 up to date. */
2028 if (fold_stmt (si))
2029 {
2030 stmt = gsi_stmt (*si);
2031 gimple_set_modified (stmt, true);
2032
2033 if (dump_file && (dump_flags & TDF_DETAILS))
2034 {
2035 fprintf (dump_file, " Folded to: ");
2036 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2037 }
2038 }
2039
2040 /* We only need to consider cases that can yield a gimple operand. */
2041 if (gimple_assign_single_p (stmt))
2042 rhs = gimple_assign_rhs1 (stmt);
2043 else if (gimple_code (stmt) == GIMPLE_GOTO)
2044 rhs = gimple_goto_dest (stmt);
2045 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2046 /* This should never be an ADDR_EXPR. */
2047 rhs = gimple_switch_index (swtch_stmt);
2048
2049 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2050 recompute_tree_invariant_for_addr_expr (rhs);
2051
2052 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2053 even if fold_stmt updated the stmt already and thus cleared
2054 gimple_modified_p flag on it. */
2055 modified_p = true;
2056 }
2057
2058 /* Check for redundant computations. Do this optimization only
2059 for assignments that have no volatile ops and conditionals. */
2060 may_optimize_p = (!gimple_has_side_effects (stmt)
2061 && (is_gimple_assign (stmt)
2062 || (is_gimple_call (stmt)
2063 && gimple_call_lhs (stmt) != NULL_TREE)
2064 || gimple_code (stmt) == GIMPLE_COND
2065 || gimple_code (stmt) == GIMPLE_SWITCH));
2066
2067 if (may_optimize_p)
2068 {
2069 if (gimple_code (stmt) == GIMPLE_CALL)
2070 {
2071 /* Resolve __builtin_constant_p. If it hasn't been
2072 folded to integer_one_node by now, it's fairly
2073 certain that the value simply isn't constant. */
2074 tree callee = gimple_call_fndecl (stmt);
2075 if (callee
2076 && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
2077 {
2078 propagate_tree_value_into_stmt (si, integer_zero_node);
2079 stmt = gsi_stmt (*si);
2080 }
2081 }
2082
2083 if (gimple_code (stmt) == GIMPLE_COND)
2084 {
2085 tree lhs = gimple_cond_lhs (stmt);
2086 tree rhs = gimple_cond_rhs (stmt);
2087
2088 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2089 then this conditional is computable at compile time. We can just
2090 shove either 0 or 1 into the LHS, mark the statement as modified
2091 and all the right things will just happen below.
2092
2093 Note this would apply to any case where LHS has a range
2094 narrower than its type implies and RHS is outside that
2095 narrower range. Future work. */
2096 if (TREE_CODE (lhs) == SSA_NAME
2097 && ssa_name_has_boolean_range (lhs)
2098 && TREE_CODE (rhs) == INTEGER_CST
2099 && ! (integer_zerop (rhs) || integer_onep (rhs)))
2100 {
2101 gimple_cond_set_lhs (as_a <gcond *> (stmt),
2102 fold_convert (TREE_TYPE (lhs),
2103 integer_zero_node));
2104 gimple_set_modified (stmt, true);
2105 }
2106 else if (TREE_CODE (lhs) == SSA_NAME)
2107 {
2108 /* Exploiting EVRP data is not yet fully integrated into DOM
2109 but we need to do something for this case to avoid regressing
2110 udr4.f90 and new1.C which have unexecutable blocks with
2111 undefined behavior that get diagnosed if they're left in the
2112 IL because we've attached range information to new
2113 SSA_NAMES. */
2114 update_stmt_if_modified (stmt);
2115 edge taken_edge = NULL;
2116 evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
2117 &taken_edge);
2118 if (taken_edge)
2119 {
2120 if (taken_edge->flags & EDGE_TRUE_VALUE)
2121 gimple_cond_make_true (as_a <gcond *> (stmt));
2122 else if (taken_edge->flags & EDGE_FALSE_VALUE)
2123 gimple_cond_make_false (as_a <gcond *> (stmt));
2124 else
2125 gcc_unreachable ();
2126 gimple_set_modified (stmt, true);
2127 update_stmt (stmt);
2128 cfg_altered = true;
2129 return taken_edge;
2130 }
2131 }
2132 }
2133
2134 update_stmt_if_modified (stmt);
2135 eliminate_redundant_computations (si, m_const_and_copies,
2136 m_avail_exprs_stack);
2137 stmt = gsi_stmt (*si);
2138
2139 /* Perform simple redundant store elimination. */
2140 if (gimple_assign_single_p (stmt)
2141 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2142 {
2143 tree lhs = gimple_assign_lhs (stmt);
2144 tree rhs = gimple_assign_rhs1 (stmt);
2145 tree cached_lhs;
2146 gassign *new_stmt;
2147 rhs = dom_valueize (rhs);
2148 /* Build a new statement with the RHS and LHS exchanged. */
2149 if (TREE_CODE (rhs) == SSA_NAME)
2150 {
2151 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2152 new_stmt = gimple_build_assign (rhs, lhs);
2153 SSA_NAME_DEF_STMT (rhs) = defstmt;
2154 }
2155 else
2156 new_stmt = gimple_build_assign (rhs, lhs);
2157 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2158 expr_hash_elt *elt = NULL;
2159 cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2160 false, &elt);
2161 if (cached_lhs
2162 && operand_equal_p (rhs, cached_lhs, 0)
2163 && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
2164 ? elt->expr ()->ops.single.rhs
2165 : NULL_TREE, lhs))
2166 {
2167 basic_block bb = gimple_bb (stmt);
2168 unlink_stmt_vdef (stmt);
2169 if (gsi_remove (si, true))
2170 {
2171 bitmap_set_bit (need_eh_cleanup, bb->index);
2172 if (dump_file && (dump_flags & TDF_DETAILS))
2173 fprintf (dump_file, " Flagged to clear EH edges.\n");
2174 }
2175 release_defs (stmt);
2176 *removed_p = true;
2177 return retval;
2178 }
2179 }
2180
2181 /* If this statement was not redundant, we may still be able to simplify
2182 it, which may in turn allow other part of DOM or other passes to do
2183 a better job. */
2184 test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
2185 }
2186
2187 /* Record any additional equivalences created by this statement. */
2188 if (is_gimple_assign (stmt))
2189 record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2190
2191 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2192 know where it goes. */
2193 if (gimple_modified_p (stmt) || modified_p)
2194 {
2195 tree val = NULL;
2196
2197 if (gimple_code (stmt) == GIMPLE_COND)
2198 val = fold_binary_loc (gimple_location (stmt),
2199 gimple_cond_code (stmt), boolean_type_node,
2200 gimple_cond_lhs (stmt),
2201 gimple_cond_rhs (stmt));
2202 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2203 val = gimple_switch_index (swtch_stmt);
2204
2205 if (val && TREE_CODE (val) == INTEGER_CST)
2206 {
2207 retval = find_taken_edge (bb, val);
2208 if (retval)
2209 {
2210 /* Fix the condition to be either true or false. */
2211 if (gimple_code (stmt) == GIMPLE_COND)
2212 {
2213 if (integer_zerop (val))
2214 gimple_cond_make_false (as_a <gcond *> (stmt));
2215 else if (integer_onep (val))
2216 gimple_cond_make_true (as_a <gcond *> (stmt));
2217 else
2218 gcc_unreachable ();
2219
2220 gimple_set_modified (stmt, true);
2221 }
2222
2223 /* Further simplifications may be possible. */
2224 cfg_altered = true;
2225 }
2226 }
2227
2228 update_stmt_if_modified (stmt);
2229
2230 /* If we simplified a statement in such a way as to be shown that it
2231 cannot trap, update the eh information and the cfg to match. */
2232 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2233 {
2234 bitmap_set_bit (need_eh_cleanup, bb->index);
2235 if (dump_file && (dump_flags & TDF_DETAILS))
2236 fprintf (dump_file, " Flagged to clear EH edges.\n");
2237 }
2238
2239 if (!was_noreturn
2240 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2241 need_noreturn_fixup.safe_push (stmt);
2242 }
2243 return retval;
2244 }