]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dom.c
dbgcnt.def (dom_unreachable_edges): New debug counter.
[thirdparty/gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "gimple-iterator.h"
36 #include "tree-cfg.h"
37 #include "tree-into-ssa.h"
38 #include "domwalk.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-ssa-threadupdate.h"
41 #include "params.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48
49 /* This file implements optimizations on the dominator tree. */
50
51 /* Structure for recording known values of a conditional expression
52 at the exits from its block. */
53
54 struct cond_equivalence
55 {
56 struct hashable_expr cond;
57 tree value;
58 };
59
60 /* Structure for recording edge equivalences.
61
62 Computing and storing the edge equivalences instead of creating
63 them on-demand can save significant amounts of time, particularly
64 for pathological cases involving switch statements.
65
66 These structures live for a single iteration of the dominator
67 optimizer in the edge's AUX field. At the end of an iteration we
68 free each of these structures. */
69
70 struct edge_info
71 {
72 /* If this edge creates a simple equivalence, the LHS and RHS of
73 the equivalence will be stored here. */
74 tree lhs;
75 tree rhs;
76
77 /* Traversing an edge may also indicate one or more particular conditions
78 are true or false. */
79 vec<cond_equivalence> cond_equivalences;
80 };
81
82 /* Track whether or not we have changed the control flow graph. */
83 static bool cfg_altered;
84
85 /* Bitmap of blocks that have had EH statements cleaned. We should
86 remove their dead edges eventually. */
87 static bitmap need_eh_cleanup;
88 static vec<gimple *> need_noreturn_fixup;
89
90 /* Statistics for dominator optimizations. */
91 struct opt_stats_d
92 {
93 long num_stmts;
94 long num_exprs_considered;
95 long num_re;
96 long num_const_prop;
97 long num_copy_prop;
98 };
99
100 static struct opt_stats_d opt_stats;
101
102 /* Local functions. */
103 static edge optimize_stmt (basic_block, gimple_stmt_iterator,
104 class const_and_copies *,
105 class avail_exprs_stack *);
106 static tree lookup_avail_expr (gimple *, bool, class avail_exprs_stack *);
107 static void record_cond (cond_equivalence *, class avail_exprs_stack *);
108 static void record_equality (tree, tree, class const_and_copies *);
109 static void record_equivalences_from_phis (basic_block);
110 static void record_equivalences_from_incoming_edge (basic_block,
111 class const_and_copies *,
112 class avail_exprs_stack *);
113 static void eliminate_redundant_computations (gimple_stmt_iterator *,
114 class const_and_copies *,
115 class avail_exprs_stack *);
116 static void record_equivalences_from_stmt (gimple *, int,
117 class avail_exprs_stack *);
118 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
119 static void dump_dominator_optimization_stats (FILE *file,
120 hash_table<expr_elt_hasher> *);
121
122
123 /* Free the edge_info data attached to E, if it exists. */
124
125 void
126 free_dom_edge_info (edge e)
127 {
128 struct edge_info *edge_info = (struct edge_info *)e->aux;
129
130 if (edge_info)
131 {
132 edge_info->cond_equivalences.release ();
133 free (edge_info);
134 }
135 }
136
137 /* Allocate an EDGE_INFO for edge E and attach it to E.
138 Return the new EDGE_INFO structure. */
139
140 static struct edge_info *
141 allocate_edge_info (edge e)
142 {
143 struct edge_info *edge_info;
144
145 /* Free the old one, if it exists. */
146 free_dom_edge_info (e);
147
148 edge_info = XCNEW (struct edge_info);
149
150 e->aux = edge_info;
151 return edge_info;
152 }
153
154 /* Free all EDGE_INFO structures associated with edges in the CFG.
155 If a particular edge can be threaded, copy the redirection
156 target from the EDGE_INFO structure into the edge's AUX field
157 as required by code to update the CFG and SSA graph for
158 jump threading. */
159
160 static void
161 free_all_edge_infos (void)
162 {
163 basic_block bb;
164 edge_iterator ei;
165 edge e;
166
167 FOR_EACH_BB_FN (bb, cfun)
168 {
169 FOR_EACH_EDGE (e, ei, bb->preds)
170 {
171 free_dom_edge_info (e);
172 e->aux = NULL;
173 }
174 }
175 }
176
177 /* Build a cond_equivalence record indicating that the comparison
178 CODE holds between operands OP0 and OP1 and push it to **P. */
179
180 static void
181 build_and_record_new_cond (enum tree_code code,
182 tree op0, tree op1,
183 vec<cond_equivalence> *p,
184 bool val = true)
185 {
186 cond_equivalence c;
187 struct hashable_expr *cond = &c.cond;
188
189 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
190
191 cond->type = boolean_type_node;
192 cond->kind = EXPR_BINARY;
193 cond->ops.binary.op = code;
194 cond->ops.binary.opnd0 = op0;
195 cond->ops.binary.opnd1 = op1;
196
197 c.value = val ? boolean_true_node : boolean_false_node;
198 p->safe_push (c);
199 }
200
201 /* Record that COND is true and INVERTED is false into the edge information
202 structure. Also record that any conditions dominated by COND are true
203 as well.
204
205 For example, if a < b is true, then a <= b must also be true. */
206
207 static void
208 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
209 {
210 tree op0, op1;
211 cond_equivalence c;
212
213 if (!COMPARISON_CLASS_P (cond))
214 return;
215
216 op0 = TREE_OPERAND (cond, 0);
217 op1 = TREE_OPERAND (cond, 1);
218
219 switch (TREE_CODE (cond))
220 {
221 case LT_EXPR:
222 case GT_EXPR:
223 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
224 {
225 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
226 &edge_info->cond_equivalences);
227 build_and_record_new_cond (LTGT_EXPR, op0, op1,
228 &edge_info->cond_equivalences);
229 }
230
231 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
232 ? LE_EXPR : GE_EXPR),
233 op0, op1, &edge_info->cond_equivalences);
234 build_and_record_new_cond (NE_EXPR, op0, op1,
235 &edge_info->cond_equivalences);
236 build_and_record_new_cond (EQ_EXPR, op0, op1,
237 &edge_info->cond_equivalences, false);
238 break;
239
240 case GE_EXPR:
241 case LE_EXPR:
242 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
243 {
244 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
245 &edge_info->cond_equivalences);
246 }
247 break;
248
249 case EQ_EXPR:
250 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
251 {
252 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
253 &edge_info->cond_equivalences);
254 }
255 build_and_record_new_cond (LE_EXPR, op0, op1,
256 &edge_info->cond_equivalences);
257 build_and_record_new_cond (GE_EXPR, op0, op1,
258 &edge_info->cond_equivalences);
259 break;
260
261 case UNORDERED_EXPR:
262 build_and_record_new_cond (NE_EXPR, op0, op1,
263 &edge_info->cond_equivalences);
264 build_and_record_new_cond (UNLE_EXPR, op0, op1,
265 &edge_info->cond_equivalences);
266 build_and_record_new_cond (UNGE_EXPR, op0, op1,
267 &edge_info->cond_equivalences);
268 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
269 &edge_info->cond_equivalences);
270 build_and_record_new_cond (UNLT_EXPR, op0, op1,
271 &edge_info->cond_equivalences);
272 build_and_record_new_cond (UNGT_EXPR, op0, op1,
273 &edge_info->cond_equivalences);
274 break;
275
276 case UNLT_EXPR:
277 case UNGT_EXPR:
278 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
279 ? UNLE_EXPR : UNGE_EXPR),
280 op0, op1, &edge_info->cond_equivalences);
281 build_and_record_new_cond (NE_EXPR, op0, op1,
282 &edge_info->cond_equivalences);
283 break;
284
285 case UNEQ_EXPR:
286 build_and_record_new_cond (UNLE_EXPR, op0, op1,
287 &edge_info->cond_equivalences);
288 build_and_record_new_cond (UNGE_EXPR, op0, op1,
289 &edge_info->cond_equivalences);
290 break;
291
292 case LTGT_EXPR:
293 build_and_record_new_cond (NE_EXPR, op0, op1,
294 &edge_info->cond_equivalences);
295 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
296 &edge_info->cond_equivalences);
297 break;
298
299 default:
300 break;
301 }
302
303 /* Now store the original true and false conditions into the first
304 two slots. */
305 initialize_expr_from_cond (cond, &c.cond);
306 c.value = boolean_true_node;
307 edge_info->cond_equivalences.safe_push (c);
308
309 /* It is possible for INVERTED to be the negation of a comparison,
310 and not a valid RHS or GIMPLE_COND condition. This happens because
311 invert_truthvalue may return such an expression when asked to invert
312 a floating-point comparison. These comparisons are not assumed to
313 obey the trichotomy law. */
314 initialize_expr_from_cond (inverted, &c.cond);
315 c.value = boolean_false_node;
316 edge_info->cond_equivalences.safe_push (c);
317 }
318
319 /* We have finished optimizing BB, record any information implied by
320 taking a specific outgoing edge from BB. */
321
322 static void
323 record_edge_info (basic_block bb)
324 {
325 gimple_stmt_iterator gsi = gsi_last_bb (bb);
326 struct edge_info *edge_info;
327
328 if (! gsi_end_p (gsi))
329 {
330 gimple *stmt = gsi_stmt (gsi);
331 location_t loc = gimple_location (stmt);
332
333 if (gimple_code (stmt) == GIMPLE_SWITCH)
334 {
335 gswitch *switch_stmt = as_a <gswitch *> (stmt);
336 tree index = gimple_switch_index (switch_stmt);
337
338 if (TREE_CODE (index) == SSA_NAME)
339 {
340 int i;
341 int n_labels = gimple_switch_num_labels (switch_stmt);
342 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
343 edge e;
344 edge_iterator ei;
345
346 for (i = 0; i < n_labels; i++)
347 {
348 tree label = gimple_switch_label (switch_stmt, i);
349 basic_block target_bb = label_to_block (CASE_LABEL (label));
350 if (CASE_HIGH (label)
351 || !CASE_LOW (label)
352 || info[target_bb->index])
353 info[target_bb->index] = error_mark_node;
354 else
355 info[target_bb->index] = label;
356 }
357
358 FOR_EACH_EDGE (e, ei, bb->succs)
359 {
360 basic_block target_bb = e->dest;
361 tree label = info[target_bb->index];
362
363 if (label != NULL && label != error_mark_node)
364 {
365 tree x = fold_convert_loc (loc, TREE_TYPE (index),
366 CASE_LOW (label));
367 edge_info = allocate_edge_info (e);
368 edge_info->lhs = index;
369 edge_info->rhs = x;
370 }
371 }
372 free (info);
373 }
374 }
375
376 /* A COND_EXPR may create equivalences too. */
377 if (gimple_code (stmt) == GIMPLE_COND)
378 {
379 edge true_edge;
380 edge false_edge;
381
382 tree op0 = gimple_cond_lhs (stmt);
383 tree op1 = gimple_cond_rhs (stmt);
384 enum tree_code code = gimple_cond_code (stmt);
385
386 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
387
388 /* Special case comparing booleans against a constant as we
389 know the value of OP0 on both arms of the branch. i.e., we
390 can record an equivalence for OP0 rather than COND. */
391 if ((code == EQ_EXPR || code == NE_EXPR)
392 && TREE_CODE (op0) == SSA_NAME
393 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
394 && is_gimple_min_invariant (op1))
395 {
396 if (code == EQ_EXPR)
397 {
398 edge_info = allocate_edge_info (true_edge);
399 edge_info->lhs = op0;
400 edge_info->rhs = (integer_zerop (op1)
401 ? boolean_false_node
402 : boolean_true_node);
403
404 edge_info = allocate_edge_info (false_edge);
405 edge_info->lhs = op0;
406 edge_info->rhs = (integer_zerop (op1)
407 ? boolean_true_node
408 : boolean_false_node);
409 }
410 else
411 {
412 edge_info = allocate_edge_info (true_edge);
413 edge_info->lhs = op0;
414 edge_info->rhs = (integer_zerop (op1)
415 ? boolean_true_node
416 : boolean_false_node);
417
418 edge_info = allocate_edge_info (false_edge);
419 edge_info->lhs = op0;
420 edge_info->rhs = (integer_zerop (op1)
421 ? boolean_false_node
422 : boolean_true_node);
423 }
424 }
425 else if (is_gimple_min_invariant (op0)
426 && (TREE_CODE (op1) == SSA_NAME
427 || is_gimple_min_invariant (op1)))
428 {
429 tree cond = build2 (code, boolean_type_node, op0, op1);
430 tree inverted = invert_truthvalue_loc (loc, cond);
431 bool can_infer_simple_equiv
432 = !(HONOR_SIGNED_ZEROS (op0)
433 && real_zerop (op0));
434 struct edge_info *edge_info;
435
436 edge_info = allocate_edge_info (true_edge);
437 record_conditions (edge_info, cond, inverted);
438
439 if (can_infer_simple_equiv && code == EQ_EXPR)
440 {
441 edge_info->lhs = op1;
442 edge_info->rhs = op0;
443 }
444
445 edge_info = allocate_edge_info (false_edge);
446 record_conditions (edge_info, inverted, cond);
447
448 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
449 {
450 edge_info->lhs = op1;
451 edge_info->rhs = op0;
452 }
453 }
454
455 else if (TREE_CODE (op0) == SSA_NAME
456 && (TREE_CODE (op1) == SSA_NAME
457 || is_gimple_min_invariant (op1)))
458 {
459 tree cond = build2 (code, boolean_type_node, op0, op1);
460 tree inverted = invert_truthvalue_loc (loc, cond);
461 bool can_infer_simple_equiv
462 = !(HONOR_SIGNED_ZEROS (op1)
463 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
464 struct edge_info *edge_info;
465
466 edge_info = allocate_edge_info (true_edge);
467 record_conditions (edge_info, cond, inverted);
468
469 if (can_infer_simple_equiv && code == EQ_EXPR)
470 {
471 edge_info->lhs = op0;
472 edge_info->rhs = op1;
473 }
474
475 edge_info = allocate_edge_info (false_edge);
476 record_conditions (edge_info, inverted, cond);
477
478 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
479 {
480 edge_info->lhs = op0;
481 edge_info->rhs = op1;
482 }
483 }
484 }
485
486 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
487 }
488 }
489
490
491 class dom_opt_dom_walker : public dom_walker
492 {
493 public:
494 dom_opt_dom_walker (cdi_direction direction,
495 class const_and_copies *const_and_copies,
496 class avail_exprs_stack *avail_exprs_stack)
497 : dom_walker (direction, true),
498 m_const_and_copies (const_and_copies),
499 m_avail_exprs_stack (avail_exprs_stack),
500 m_dummy_cond (NULL) {}
501
502 virtual edge before_dom_children (basic_block);
503 virtual void after_dom_children (basic_block);
504
505 private:
506 void thread_across_edge (edge);
507
508 /* Unwindable equivalences, both const/copy and expression varieties. */
509 class const_and_copies *m_const_and_copies;
510 class avail_exprs_stack *m_avail_exprs_stack;
511
512 gcond *m_dummy_cond;
513 };
514
515 /* Jump threading, redundancy elimination and const/copy propagation.
516
517 This pass may expose new symbols that need to be renamed into SSA. For
518 every new symbol exposed, its corresponding bit will be set in
519 VARS_TO_RENAME. */
520
521 namespace {
522
523 const pass_data pass_data_dominator =
524 {
525 GIMPLE_PASS, /* type */
526 "dom", /* name */
527 OPTGROUP_NONE, /* optinfo_flags */
528 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
529 ( PROP_cfg | PROP_ssa ), /* properties_required */
530 0, /* properties_provided */
531 0, /* properties_destroyed */
532 0, /* todo_flags_start */
533 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
534 };
535
536 class pass_dominator : public gimple_opt_pass
537 {
538 public:
539 pass_dominator (gcc::context *ctxt)
540 : gimple_opt_pass (pass_data_dominator, ctxt),
541 may_peel_loop_headers_p (false)
542 {}
543
544 /* opt_pass methods: */
545 opt_pass * clone () { return new pass_dominator (m_ctxt); }
546 void set_pass_param (unsigned int n, bool param)
547 {
548 gcc_assert (n == 0);
549 may_peel_loop_headers_p = param;
550 }
551 virtual bool gate (function *) { return flag_tree_dom != 0; }
552 virtual unsigned int execute (function *);
553
554 private:
555 /* This flag is used to prevent loops from being peeled repeatedly in jump
556 threading; it will be removed once we preserve loop structures throughout
557 the compilation -- we will be able to mark the affected loops directly in
558 jump threading, and avoid peeling them next time. */
559 bool may_peel_loop_headers_p;
560 }; // class pass_dominator
561
562 unsigned int
563 pass_dominator::execute (function *fun)
564 {
565 memset (&opt_stats, 0, sizeof (opt_stats));
566
567 /* Create our hash tables. */
568 hash_table<expr_elt_hasher> *avail_exprs
569 = new hash_table<expr_elt_hasher> (1024);
570 class avail_exprs_stack *avail_exprs_stack
571 = new class avail_exprs_stack (avail_exprs);
572 class const_and_copies *const_and_copies = new class const_and_copies ();
573 need_eh_cleanup = BITMAP_ALLOC (NULL);
574 need_noreturn_fixup.create (0);
575
576 calculate_dominance_info (CDI_DOMINATORS);
577 cfg_altered = false;
578
579 /* We need to know loop structures in order to avoid destroying them
580 in jump threading. Note that we still can e.g. thread through loop
581 headers to an exit edge, or through loop header to the loop body, assuming
582 that we update the loop info.
583
584 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
585 to several overly conservative bail-outs in jump threading, case
586 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
587 missing. We should improve jump threading in future then
588 LOOPS_HAVE_PREHEADERS won't be needed here. */
589 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
590
591 /* Initialize the value-handle array. */
592 threadedge_initialize_values ();
593
594 /* We need accurate information regarding back edges in the CFG
595 for jump threading; this may include back edges that are not part of
596 a single loop. */
597 mark_dfs_back_edges ();
598
599 /* We want to create the edge info structures before the dominator walk
600 so that they'll be in place for the jump threader, particularly when
601 threading through a join block.
602
603 The conditions will be lazily updated with global equivalences as
604 we reach them during the dominator walk. */
605 basic_block bb;
606 FOR_EACH_BB_FN (bb, fun)
607 record_edge_info (bb);
608
609 /* Recursively walk the dominator tree optimizing statements. */
610 dom_opt_dom_walker walker (CDI_DOMINATORS,
611 const_and_copies,
612 avail_exprs_stack);
613 walker.walk (fun->cfg->x_entry_block_ptr);
614
615 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
616 edge. When found, remove jump threads which contain any outgoing
617 edge from the affected block. */
618 if (cfg_altered)
619 {
620 FOR_EACH_BB_FN (bb, fun)
621 {
622 edge_iterator ei;
623 edge e;
624
625 /* First see if there are any edges without EDGE_EXECUTABLE
626 set. */
627 bool found = false;
628 FOR_EACH_EDGE (e, ei, bb->succs)
629 {
630 if ((e->flags & EDGE_EXECUTABLE) == 0)
631 {
632 found = true;
633 break;
634 }
635 }
636
637 /* If there were any such edges found, then remove jump threads
638 containing any edge leaving BB. */
639 if (found)
640 FOR_EACH_EDGE (e, ei, bb->succs)
641 remove_jump_threads_including (e);
642 }
643 }
644
645 {
646 gimple_stmt_iterator gsi;
647 basic_block bb;
648 FOR_EACH_BB_FN (bb, fun)
649 {
650 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
651 update_stmt_if_modified (gsi_stmt (gsi));
652 }
653 }
654
655 /* If we exposed any new variables, go ahead and put them into
656 SSA form now, before we handle jump threading. This simplifies
657 interactions between rewriting of _DECL nodes into SSA form
658 and rewriting SSA_NAME nodes into SSA form after block
659 duplication and CFG manipulation. */
660 update_ssa (TODO_update_ssa);
661
662 free_all_edge_infos ();
663
664 /* Thread jumps, creating duplicate blocks as needed. */
665 cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
666
667 if (cfg_altered)
668 free_dominance_info (CDI_DOMINATORS);
669
670 /* Removal of statements may make some EH edges dead. Purge
671 such edges from the CFG as needed. */
672 if (!bitmap_empty_p (need_eh_cleanup))
673 {
674 unsigned i;
675 bitmap_iterator bi;
676
677 /* Jump threading may have created forwarder blocks from blocks
678 needing EH cleanup; the new successor of these blocks, which
679 has inherited from the original block, needs the cleanup.
680 Don't clear bits in the bitmap, as that can break the bitmap
681 iterator. */
682 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
683 {
684 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
685 if (bb == NULL)
686 continue;
687 while (single_succ_p (bb)
688 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
689 bb = single_succ (bb);
690 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
691 continue;
692 if ((unsigned) bb->index != i)
693 bitmap_set_bit (need_eh_cleanup, bb->index);
694 }
695
696 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
697 bitmap_clear (need_eh_cleanup);
698 }
699
700 /* Fixup stmts that became noreturn calls. This may require splitting
701 blocks and thus isn't possible during the dominator walk or before
702 jump threading finished. Do this in reverse order so we don't
703 inadvertedly remove a stmt we want to fixup by visiting a dominating
704 now noreturn call first. */
705 while (!need_noreturn_fixup.is_empty ())
706 {
707 gimple *stmt = need_noreturn_fixup.pop ();
708 if (dump_file && dump_flags & TDF_DETAILS)
709 {
710 fprintf (dump_file, "Fixing up noreturn call ");
711 print_gimple_stmt (dump_file, stmt, 0, 0);
712 fprintf (dump_file, "\n");
713 }
714 fixup_noreturn_call (stmt);
715 }
716
717 statistics_counter_event (fun, "Redundant expressions eliminated",
718 opt_stats.num_re);
719 statistics_counter_event (fun, "Constants propagated",
720 opt_stats.num_const_prop);
721 statistics_counter_event (fun, "Copies propagated",
722 opt_stats.num_copy_prop);
723
724 /* Debugging dumps. */
725 if (dump_file && (dump_flags & TDF_STATS))
726 dump_dominator_optimization_stats (dump_file, avail_exprs);
727
728 loop_optimizer_finalize ();
729
730 /* Delete our main hashtable. */
731 delete avail_exprs;
732 avail_exprs = NULL;
733
734 /* Free asserted bitmaps and stacks. */
735 BITMAP_FREE (need_eh_cleanup);
736 need_noreturn_fixup.release ();
737 delete avail_exprs_stack;
738 delete const_and_copies;
739
740 /* Free the value-handle array. */
741 threadedge_finalize_values ();
742
743 return 0;
744 }
745
746 } // anon namespace
747
748 gimple_opt_pass *
749 make_pass_dominator (gcc::context *ctxt)
750 {
751 return new pass_dominator (ctxt);
752 }
753
754
755 /* Given a conditional statement CONDSTMT, convert the
756 condition to a canonical form. */
757
758 static void
759 canonicalize_comparison (gcond *condstmt)
760 {
761 tree op0;
762 tree op1;
763 enum tree_code code;
764
765 gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
766
767 op0 = gimple_cond_lhs (condstmt);
768 op1 = gimple_cond_rhs (condstmt);
769
770 code = gimple_cond_code (condstmt);
771
772 /* If it would be profitable to swap the operands, then do so to
773 canonicalize the statement, enabling better optimization.
774
775 By placing canonicalization of such expressions here we
776 transparently keep statements in canonical form, even
777 when the statement is modified. */
778 if (tree_swap_operands_p (op0, op1, false))
779 {
780 /* For relationals we need to swap the operands
781 and change the code. */
782 if (code == LT_EXPR
783 || code == GT_EXPR
784 || code == LE_EXPR
785 || code == GE_EXPR)
786 {
787 code = swap_tree_comparison (code);
788
789 gimple_cond_set_code (condstmt, code);
790 gimple_cond_set_lhs (condstmt, op1);
791 gimple_cond_set_rhs (condstmt, op0);
792
793 update_stmt (condstmt);
794 }
795 }
796 }
797
798 /* A trivial wrapper so that we can present the generic jump
799 threading code with a simple API for simplifying statements. */
800 static tree
801 simplify_stmt_for_jump_threading (gimple *stmt,
802 gimple *within_stmt ATTRIBUTE_UNUSED,
803 class avail_exprs_stack *avail_exprs_stack)
804 {
805 return lookup_avail_expr (stmt, false, avail_exprs_stack);
806 }
807
808 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
809
810 static tree
811 dom_valueize (tree t)
812 {
813 if (TREE_CODE (t) == SSA_NAME)
814 {
815 tree tem = SSA_NAME_VALUE (t);
816 if (tem)
817 return tem;
818 }
819 return t;
820 }
821
822 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
823 by traversing edge E (which are cached in E->aux).
824
825 Callers are responsible for managing the unwinding markers. */
826 void
827 record_temporary_equivalences (edge e,
828 class const_and_copies *const_and_copies,
829 class avail_exprs_stack *avail_exprs_stack)
830 {
831 int i;
832 struct edge_info *edge_info = (struct edge_info *) e->aux;
833
834 /* If we have info associated with this edge, record it into
835 our equivalence tables. */
836 if (edge_info)
837 {
838 cond_equivalence *eq;
839 tree lhs = edge_info->lhs;
840 tree rhs = edge_info->rhs;
841
842 /* If we have a simple NAME = VALUE equivalence, record it. */
843 if (lhs)
844 record_equality (lhs, rhs, const_and_copies);
845
846 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
847 set via a widening type conversion, then we may be able to record
848 additional equivalences. */
849 if (lhs
850 && TREE_CODE (lhs) == SSA_NAME
851 && TREE_CODE (rhs) == INTEGER_CST)
852 {
853 gimple *defstmt = SSA_NAME_DEF_STMT (lhs);
854
855 if (defstmt
856 && is_gimple_assign (defstmt)
857 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt)))
858 {
859 tree old_rhs = gimple_assign_rhs1 (defstmt);
860
861 /* If the conversion widens the original value and
862 the constant is in the range of the type of OLD_RHS,
863 then convert the constant and record the equivalence.
864
865 Note that int_fits_type_p does not check the precision
866 if the upper and lower bounds are OK. */
867 if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs))
868 && (TYPE_PRECISION (TREE_TYPE (lhs))
869 > TYPE_PRECISION (TREE_TYPE (old_rhs)))
870 && int_fits_type_p (rhs, TREE_TYPE (old_rhs)))
871 {
872 tree newval = fold_convert (TREE_TYPE (old_rhs), rhs);
873 record_equality (old_rhs, newval, const_and_copies);
874 }
875 }
876 }
877
878 /* If LHS is an SSA_NAME with a new equivalency then try if
879 stmts with uses of that LHS that dominate the edge destination
880 simplify and allow further equivalences to be recorded. */
881 if (lhs && TREE_CODE (lhs) == SSA_NAME)
882 {
883 use_operand_p use_p;
884 imm_use_iterator iter;
885 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
886 {
887 gimple *use_stmt = USE_STMT (use_p);
888
889 /* Only bother to record more equivalences for lhs that
890 can be directly used by e->dest.
891 ??? If the code gets re-organized to a worklist to
892 catch more indirect opportunities and it is made to
893 handle PHIs then this should only consider use_stmts
894 in basic-blocks we have already visited. */
895 if (e->dest == gimple_bb (use_stmt)
896 || !dominated_by_p (CDI_DOMINATORS,
897 e->dest, gimple_bb (use_stmt)))
898 continue;
899 tree lhs2 = gimple_get_lhs (use_stmt);
900 if (lhs2 && TREE_CODE (lhs2) == SSA_NAME)
901 {
902 tree res
903 = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
904 no_follow_ssa_edges);
905 if (res
906 && (TREE_CODE (res) == SSA_NAME
907 || is_gimple_min_invariant (res)))
908 record_equality (lhs2, res, const_and_copies);
909 }
910 }
911 }
912
913 /* If we have 0 = COND or 1 = COND equivalences, record them
914 into our expression hash tables. */
915 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
916 record_cond (eq, avail_exprs_stack);
917 }
918 }
919
920 /* Wrapper for common code to attempt to thread an edge. For example,
921 it handles lazily building the dummy condition and the bookkeeping
922 when jump threading is successful. */
923
924 void
925 dom_opt_dom_walker::thread_across_edge (edge e)
926 {
927 if (! m_dummy_cond)
928 m_dummy_cond =
929 gimple_build_cond (NE_EXPR,
930 integer_zero_node, integer_zero_node,
931 NULL, NULL);
932
933 /* Push a marker on both stacks so we can unwind the tables back to their
934 current state. */
935 m_avail_exprs_stack->push_marker ();
936 m_const_and_copies->push_marker ();
937
938 /* Traversing E may result in equivalences we can utilize. */
939 record_temporary_equivalences (e, m_const_and_copies, m_avail_exprs_stack);
940
941 /* With all the edge equivalences in the tables, go ahead and attempt
942 to thread through E->dest. */
943 ::thread_across_edge (m_dummy_cond, e, false,
944 m_const_and_copies, m_avail_exprs_stack,
945 simplify_stmt_for_jump_threading);
946
947 /* And restore the various tables to their state before
948 we threaded this edge.
949
950 XXX The code in tree-ssa-threadedge.c will restore the state of
951 the const_and_copies table. We we just have to restore the expression
952 table. */
953 m_avail_exprs_stack->pop_to_marker ();
954 }
955
956 /* PHI nodes can create equivalences too.
957
958 Ignoring any alternatives which are the same as the result, if
959 all the alternatives are equal, then the PHI node creates an
960 equivalence. */
961
962 static void
963 record_equivalences_from_phis (basic_block bb)
964 {
965 gphi_iterator gsi;
966
967 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
968 {
969 gphi *phi = gsi.phi ();
970
971 tree lhs = gimple_phi_result (phi);
972 tree rhs = NULL;
973 size_t i;
974
975 for (i = 0; i < gimple_phi_num_args (phi); i++)
976 {
977 tree t = gimple_phi_arg_def (phi, i);
978
979 /* Ignore alternatives which are the same as our LHS. Since
980 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
981 can simply compare pointers. */
982 if (lhs == t)
983 continue;
984
985 /* If the associated edge is not marked as executable, then it
986 can be ignored. */
987 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
988 continue;
989
990 t = dom_valueize (t);
991
992 /* If we have not processed an alternative yet, then set
993 RHS to this alternative. */
994 if (rhs == NULL)
995 rhs = t;
996 /* If we have processed an alternative (stored in RHS), then
997 see if it is equal to this one. If it isn't, then stop
998 the search. */
999 else if (! operand_equal_for_phi_arg_p (rhs, t))
1000 break;
1001 }
1002
1003 /* If we had no interesting alternatives, then all the RHS alternatives
1004 must have been the same as LHS. */
1005 if (!rhs)
1006 rhs = lhs;
1007
1008 /* If we managed to iterate through each PHI alternative without
1009 breaking out of the loop, then we have a PHI which may create
1010 a useful equivalence. We do not need to record unwind data for
1011 this, since this is a true assignment and not an equivalence
1012 inferred from a comparison. All uses of this ssa name are dominated
1013 by this assignment, so unwinding just costs time and space. */
1014 if (i == gimple_phi_num_args (phi)
1015 && may_propagate_copy (lhs, rhs))
1016 set_ssa_name_value (lhs, rhs);
1017 }
1018 }
1019
1020 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1021 return that edge. Otherwise return NULL. */
1022 static edge
1023 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1024 {
1025 edge retval = NULL;
1026 edge e;
1027 edge_iterator ei;
1028
1029 FOR_EACH_EDGE (e, ei, bb->preds)
1030 {
1031 /* A loop back edge can be identified by the destination of
1032 the edge dominating the source of the edge. */
1033 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1034 continue;
1035
1036 /* We can safely ignore edges that are not executable. */
1037 if ((e->flags & EDGE_EXECUTABLE) == 0)
1038 continue;
1039
1040 /* If we have already seen a non-loop edge, then we must have
1041 multiple incoming non-loop edges and thus we return NULL. */
1042 if (retval)
1043 return NULL;
1044
1045 /* This is the first non-loop incoming edge we have found. Record
1046 it. */
1047 retval = e;
1048 }
1049
1050 return retval;
1051 }
1052
1053 /* Record any equivalences created by the incoming edge to BB into
1054 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1055 incoming edge, then no equivalence is created. */
1056
1057 static void
1058 record_equivalences_from_incoming_edge (basic_block bb,
1059 class const_and_copies *const_and_copies,
1060 class avail_exprs_stack *avail_exprs_stack)
1061 {
1062 edge e;
1063 basic_block parent;
1064
1065 /* If our parent block ended with a control statement, then we may be
1066 able to record some equivalences based on which outgoing edge from
1067 the parent was followed. */
1068 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1069
1070 e = single_incoming_edge_ignoring_loop_edges (bb);
1071
1072 /* If we had a single incoming edge from our parent block, then enter
1073 any data associated with the edge into our tables. */
1074 if (e && e->src == parent)
1075 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1076 }
1077
1078 /* Dump statistics for the hash table HTAB. */
1079
1080 static void
1081 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1082 {
1083 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1084 (long) htab.size (),
1085 (long) htab.elements (),
1086 htab.collisions ());
1087 }
1088
1089 /* Dump SSA statistics on FILE. */
1090
1091 static void
1092 dump_dominator_optimization_stats (FILE *file,
1093 hash_table<expr_elt_hasher> *avail_exprs)
1094 {
1095 fprintf (file, "Total number of statements: %6ld\n\n",
1096 opt_stats.num_stmts);
1097 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1098 opt_stats.num_exprs_considered);
1099
1100 fprintf (file, "\nHash table statistics:\n");
1101
1102 fprintf (file, " avail_exprs: ");
1103 htab_statistics (file, *avail_exprs);
1104 }
1105
1106
1107 /* Enter condition equivalence P into AVAIL_EXPRS_HASH.
1108
1109 This indicates that a conditional expression has a known
1110 boolean value. */
1111
1112 static void
1113 record_cond (cond_equivalence *p,
1114 class avail_exprs_stack *avail_exprs_stack)
1115 {
1116 class expr_hash_elt *element = new expr_hash_elt (&p->cond, p->value);
1117 expr_hash_elt **slot;
1118
1119 hash_table<expr_elt_hasher> *avail_exprs = avail_exprs_stack->avail_exprs ();
1120 slot = avail_exprs->find_slot_with_hash (element, element->hash (), INSERT);
1121 if (*slot == NULL)
1122 {
1123 *slot = element;
1124 avail_exprs_stack->record_expr (element, NULL, '1');
1125 }
1126 else
1127 delete element;
1128 }
1129
1130 /* Return the loop depth of the basic block of the defining statement of X.
1131 This number should not be treated as absolutely correct because the loop
1132 information may not be completely up-to-date when dom runs. However, it
1133 will be relatively correct, and as more passes are taught to keep loop info
1134 up to date, the result will become more and more accurate. */
1135
1136 static int
1137 loop_depth_of_name (tree x)
1138 {
1139 gimple *defstmt;
1140 basic_block defbb;
1141
1142 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1143 if (TREE_CODE (x) != SSA_NAME)
1144 return 0;
1145
1146 /* Otherwise return the loop depth of the defining statement's bb.
1147 Note that there may not actually be a bb for this statement, if the
1148 ssa_name is live on entry. */
1149 defstmt = SSA_NAME_DEF_STMT (x);
1150 defbb = gimple_bb (defstmt);
1151 if (!defbb)
1152 return 0;
1153
1154 return bb_loop_depth (defbb);
1155 }
1156
1157 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1158 This constrains the cases in which we may treat this as assignment. */
1159
1160 static void
1161 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1162 {
1163 tree prev_x = NULL, prev_y = NULL;
1164
1165 if (tree_swap_operands_p (x, y, false))
1166 std::swap (x, y);
1167
1168 /* Most of the time tree_swap_operands_p does what we want. But there
1169 are cases where we know one operand is better for copy propagation than
1170 the other. Given no other code cares about ordering of equality
1171 comparison operators for that purpose, we just handle the special cases
1172 here. */
1173 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1174 {
1175 /* If one operand is a single use operand, then make it
1176 X. This will preserve its single use properly and if this
1177 conditional is eliminated, the computation of X can be
1178 eliminated as well. */
1179 if (has_single_use (y) && ! has_single_use (x))
1180 std::swap (x, y);
1181 }
1182 if (TREE_CODE (x) == SSA_NAME)
1183 prev_x = SSA_NAME_VALUE (x);
1184 if (TREE_CODE (y) == SSA_NAME)
1185 prev_y = SSA_NAME_VALUE (y);
1186
1187 /* If one of the previous values is invariant, or invariant in more loops
1188 (by depth), then use that.
1189 Otherwise it doesn't matter which value we choose, just so
1190 long as we canonicalize on one value. */
1191 if (is_gimple_min_invariant (y))
1192 ;
1193 else if (is_gimple_min_invariant (x)
1194 /* ??? When threading over backedges the following is important
1195 for correctness. See PR61757. */
1196 || (loop_depth_of_name (x) < loop_depth_of_name (y)))
1197 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1198 else if (prev_x && is_gimple_min_invariant (prev_x))
1199 x = y, y = prev_x, prev_x = prev_y;
1200 else if (prev_y)
1201 y = prev_y;
1202
1203 /* After the swapping, we must have one SSA_NAME. */
1204 if (TREE_CODE (x) != SSA_NAME)
1205 return;
1206
1207 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1208 variable compared against zero. If we're honoring signed zeros,
1209 then we cannot record this value unless we know that the value is
1210 nonzero. */
1211 if (HONOR_SIGNED_ZEROS (x)
1212 && (TREE_CODE (y) != REAL_CST
1213 || real_equal (&dconst0, &TREE_REAL_CST (y))))
1214 return;
1215
1216 const_and_copies->record_const_or_copy (x, y, prev_x);
1217 }
1218
1219 /* Returns true when STMT is a simple iv increment. It detects the
1220 following situation:
1221
1222 i_1 = phi (..., i_2)
1223 i_2 = i_1 +/- ... */
1224
1225 bool
1226 simple_iv_increment_p (gimple *stmt)
1227 {
1228 enum tree_code code;
1229 tree lhs, preinc;
1230 gimple *phi;
1231 size_t i;
1232
1233 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1234 return false;
1235
1236 lhs = gimple_assign_lhs (stmt);
1237 if (TREE_CODE (lhs) != SSA_NAME)
1238 return false;
1239
1240 code = gimple_assign_rhs_code (stmt);
1241 if (code != PLUS_EXPR
1242 && code != MINUS_EXPR
1243 && code != POINTER_PLUS_EXPR)
1244 return false;
1245
1246 preinc = gimple_assign_rhs1 (stmt);
1247 if (TREE_CODE (preinc) != SSA_NAME)
1248 return false;
1249
1250 phi = SSA_NAME_DEF_STMT (preinc);
1251 if (gimple_code (phi) != GIMPLE_PHI)
1252 return false;
1253
1254 for (i = 0; i < gimple_phi_num_args (phi); i++)
1255 if (gimple_phi_arg_def (phi, i) == lhs)
1256 return true;
1257
1258 return false;
1259 }
1260
1261 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1262 successors of BB. */
1263
1264 static void
1265 cprop_into_successor_phis (basic_block bb,
1266 class const_and_copies *const_and_copies)
1267 {
1268 edge e;
1269 edge_iterator ei;
1270
1271 FOR_EACH_EDGE (e, ei, bb->succs)
1272 {
1273 int indx;
1274 gphi_iterator gsi;
1275
1276 /* If this is an abnormal edge, then we do not want to copy propagate
1277 into the PHI alternative associated with this edge. */
1278 if (e->flags & EDGE_ABNORMAL)
1279 continue;
1280
1281 gsi = gsi_start_phis (e->dest);
1282 if (gsi_end_p (gsi))
1283 continue;
1284
1285 /* We may have an equivalence associated with this edge. While
1286 we can not propagate it into non-dominated blocks, we can
1287 propagate them into PHIs in non-dominated blocks. */
1288
1289 /* Push the unwind marker so we can reset the const and copies
1290 table back to its original state after processing this edge. */
1291 const_and_copies->push_marker ();
1292
1293 /* Extract and record any simple NAME = VALUE equivalences.
1294
1295 Don't bother with [01] = COND equivalences, they're not useful
1296 here. */
1297 struct edge_info *edge_info = (struct edge_info *) e->aux;
1298 if (edge_info)
1299 {
1300 tree lhs = edge_info->lhs;
1301 tree rhs = edge_info->rhs;
1302
1303 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1304 const_and_copies->record_const_or_copy (lhs, rhs);
1305 }
1306
1307 indx = e->dest_idx;
1308 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1309 {
1310 tree new_val;
1311 use_operand_p orig_p;
1312 tree orig_val;
1313 gphi *phi = gsi.phi ();
1314
1315 /* The alternative may be associated with a constant, so verify
1316 it is an SSA_NAME before doing anything with it. */
1317 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1318 orig_val = get_use_from_ptr (orig_p);
1319 if (TREE_CODE (orig_val) != SSA_NAME)
1320 continue;
1321
1322 /* If we have *ORIG_P in our constant/copy table, then replace
1323 ORIG_P with its value in our constant/copy table. */
1324 new_val = SSA_NAME_VALUE (orig_val);
1325 if (new_val
1326 && new_val != orig_val
1327 && (TREE_CODE (new_val) == SSA_NAME
1328 || is_gimple_min_invariant (new_val))
1329 && may_propagate_copy (orig_val, new_val))
1330 propagate_value (orig_p, new_val);
1331 }
1332
1333 const_and_copies->pop_to_marker ();
1334 }
1335 }
1336
1337 edge
1338 dom_opt_dom_walker::before_dom_children (basic_block bb)
1339 {
1340 gimple_stmt_iterator gsi;
1341
1342 if (dump_file && (dump_flags & TDF_DETAILS))
1343 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1344
1345 /* Push a marker on the stacks of local information so that we know how
1346 far to unwind when we finalize this block. */
1347 m_avail_exprs_stack->push_marker ();
1348 m_const_and_copies->push_marker ();
1349
1350 record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1351 m_avail_exprs_stack);
1352
1353 /* PHI nodes can create equivalences too. */
1354 record_equivalences_from_phis (bb);
1355
1356 /* Create equivalences from redundant PHIs. PHIs are only truly
1357 redundant when they exist in the same block, so push another
1358 marker and unwind right afterwards. */
1359 m_avail_exprs_stack->push_marker ();
1360 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1361 eliminate_redundant_computations (&gsi, m_const_and_copies,
1362 m_avail_exprs_stack);
1363 m_avail_exprs_stack->pop_to_marker ();
1364
1365 edge taken_edge = NULL;
1366 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1367 taken_edge
1368 = optimize_stmt (bb, gsi, m_const_and_copies, m_avail_exprs_stack);
1369
1370 /* Now prepare to process dominated blocks. */
1371 record_edge_info (bb);
1372 cprop_into_successor_phis (bb, m_const_and_copies);
1373 if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1374 return NULL;
1375
1376 return taken_edge;
1377 }
1378
1379 /* We have finished processing the dominator children of BB, perform
1380 any finalization actions in preparation for leaving this node in
1381 the dominator tree. */
1382
1383 void
1384 dom_opt_dom_walker::after_dom_children (basic_block bb)
1385 {
1386 gimple *last;
1387
1388 /* If we have an outgoing edge to a block with multiple incoming and
1389 outgoing edges, then we may be able to thread the edge, i.e., we
1390 may be able to statically determine which of the outgoing edges
1391 will be traversed when the incoming edge from BB is traversed. */
1392 if (single_succ_p (bb)
1393 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1394 && potentially_threadable_block (single_succ (bb)))
1395 {
1396 thread_across_edge (single_succ_edge (bb));
1397 }
1398 else if ((last = last_stmt (bb))
1399 && gimple_code (last) == GIMPLE_COND
1400 && EDGE_COUNT (bb->succs) == 2
1401 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1402 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1403 {
1404 edge true_edge, false_edge;
1405
1406 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1407
1408 /* Only try to thread the edge if it reaches a target block with
1409 more than one predecessor and more than one successor. */
1410 if (potentially_threadable_block (true_edge->dest))
1411 thread_across_edge (true_edge);
1412
1413 /* Similarly for the ELSE arm. */
1414 if (potentially_threadable_block (false_edge->dest))
1415 thread_across_edge (false_edge);
1416
1417 }
1418
1419 /* These remove expressions local to BB from the tables. */
1420 m_avail_exprs_stack->pop_to_marker ();
1421 m_const_and_copies->pop_to_marker ();
1422 }
1423
1424 /* Search for redundant computations in STMT. If any are found, then
1425 replace them with the variable holding the result of the computation.
1426
1427 If safe, record this expression into AVAIL_EXPRS_STACK and
1428 CONST_AND_COPIES. */
1429
1430 static void
1431 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1432 class const_and_copies *const_and_copies,
1433 class avail_exprs_stack *avail_exprs_stack)
1434 {
1435 tree expr_type;
1436 tree cached_lhs;
1437 tree def;
1438 bool insert = true;
1439 bool assigns_var_p = false;
1440
1441 gimple *stmt = gsi_stmt (*gsi);
1442
1443 if (gimple_code (stmt) == GIMPLE_PHI)
1444 def = gimple_phi_result (stmt);
1445 else
1446 def = gimple_get_lhs (stmt);
1447
1448 /* Certain expressions on the RHS can be optimized away, but can not
1449 themselves be entered into the hash tables. */
1450 if (! def
1451 || TREE_CODE (def) != SSA_NAME
1452 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1453 || gimple_vdef (stmt)
1454 /* Do not record equivalences for increments of ivs. This would create
1455 overlapping live ranges for a very questionable gain. */
1456 || simple_iv_increment_p (stmt))
1457 insert = false;
1458
1459 /* Check if the expression has been computed before. */
1460 cached_lhs = lookup_avail_expr (stmt, insert, avail_exprs_stack);
1461
1462 opt_stats.num_exprs_considered++;
1463
1464 /* Get the type of the expression we are trying to optimize. */
1465 if (is_gimple_assign (stmt))
1466 {
1467 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1468 assigns_var_p = true;
1469 }
1470 else if (gimple_code (stmt) == GIMPLE_COND)
1471 expr_type = boolean_type_node;
1472 else if (is_gimple_call (stmt))
1473 {
1474 gcc_assert (gimple_call_lhs (stmt));
1475 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1476 assigns_var_p = true;
1477 }
1478 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1479 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1480 else if (gimple_code (stmt) == GIMPLE_PHI)
1481 /* We can't propagate into a phi, so the logic below doesn't apply.
1482 Instead record an equivalence between the cached LHS and the
1483 PHI result of this statement, provided they are in the same block.
1484 This should be sufficient to kill the redundant phi. */
1485 {
1486 if (def && cached_lhs)
1487 const_and_copies->record_const_or_copy (def, cached_lhs);
1488 return;
1489 }
1490 else
1491 gcc_unreachable ();
1492
1493 if (!cached_lhs)
1494 return;
1495
1496 /* It is safe to ignore types here since we have already done
1497 type checking in the hashing and equality routines. In fact
1498 type checking here merely gets in the way of constant
1499 propagation. Also, make sure that it is safe to propagate
1500 CACHED_LHS into the expression in STMT. */
1501 if ((TREE_CODE (cached_lhs) != SSA_NAME
1502 && (assigns_var_p
1503 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1504 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1505 {
1506 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1507 || is_gimple_min_invariant (cached_lhs));
1508
1509 if (dump_file && (dump_flags & TDF_DETAILS))
1510 {
1511 fprintf (dump_file, " Replaced redundant expr '");
1512 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1513 fprintf (dump_file, "' with '");
1514 print_generic_expr (dump_file, cached_lhs, dump_flags);
1515 fprintf (dump_file, "'\n");
1516 }
1517
1518 opt_stats.num_re++;
1519
1520 if (assigns_var_p
1521 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1522 cached_lhs = fold_convert (expr_type, cached_lhs);
1523
1524 propagate_tree_value_into_stmt (gsi, cached_lhs);
1525
1526 /* Since it is always necessary to mark the result as modified,
1527 perhaps we should move this into propagate_tree_value_into_stmt
1528 itself. */
1529 gimple_set_modified (gsi_stmt (*gsi), true);
1530 }
1531 }
1532
1533 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1534 the available expressions table or the const_and_copies table.
1535 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1536
1537 We handle only very simple copy equivalences here. The heavy
1538 lifing is done by eliminate_redundant_computations. */
1539
1540 static void
1541 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1542 class avail_exprs_stack *avail_exprs_stack)
1543 {
1544 tree lhs;
1545 enum tree_code lhs_code;
1546
1547 gcc_assert (is_gimple_assign (stmt));
1548
1549 lhs = gimple_assign_lhs (stmt);
1550 lhs_code = TREE_CODE (lhs);
1551
1552 if (lhs_code == SSA_NAME
1553 && gimple_assign_single_p (stmt))
1554 {
1555 tree rhs = gimple_assign_rhs1 (stmt);
1556
1557 /* If the RHS of the assignment is a constant or another variable that
1558 may be propagated, register it in the CONST_AND_COPIES table. We
1559 do not need to record unwind data for this, since this is a true
1560 assignment and not an equivalence inferred from a comparison. All
1561 uses of this ssa name are dominated by this assignment, so unwinding
1562 just costs time and space. */
1563 if (may_optimize_p
1564 && (TREE_CODE (rhs) == SSA_NAME
1565 || is_gimple_min_invariant (rhs)))
1566 {
1567 rhs = dom_valueize (rhs);
1568
1569 if (dump_file && (dump_flags & TDF_DETAILS))
1570 {
1571 fprintf (dump_file, "==== ASGN ");
1572 print_generic_expr (dump_file, lhs, 0);
1573 fprintf (dump_file, " = ");
1574 print_generic_expr (dump_file, rhs, 0);
1575 fprintf (dump_file, "\n");
1576 }
1577
1578 set_ssa_name_value (lhs, rhs);
1579 }
1580 }
1581
1582 /* Make sure we can propagate &x + CST. */
1583 if (lhs_code == SSA_NAME
1584 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1585 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1586 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1587 {
1588 tree op0 = gimple_assign_rhs1 (stmt);
1589 tree op1 = gimple_assign_rhs2 (stmt);
1590 tree new_rhs
1591 = build_fold_addr_expr (fold_build2 (MEM_REF,
1592 TREE_TYPE (TREE_TYPE (op0)),
1593 unshare_expr (op0),
1594 fold_convert (ptr_type_node,
1595 op1)));
1596 if (dump_file && (dump_flags & TDF_DETAILS))
1597 {
1598 fprintf (dump_file, "==== ASGN ");
1599 print_generic_expr (dump_file, lhs, 0);
1600 fprintf (dump_file, " = ");
1601 print_generic_expr (dump_file, new_rhs, 0);
1602 fprintf (dump_file, "\n");
1603 }
1604
1605 set_ssa_name_value (lhs, new_rhs);
1606 }
1607
1608 /* A memory store, even an aliased store, creates a useful
1609 equivalence. By exchanging the LHS and RHS, creating suitable
1610 vops and recording the result in the available expression table,
1611 we may be able to expose more redundant loads. */
1612 if (!gimple_has_volatile_ops (stmt)
1613 && gimple_references_memory_p (stmt)
1614 && gimple_assign_single_p (stmt)
1615 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1616 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1617 && !is_gimple_reg (lhs))
1618 {
1619 tree rhs = gimple_assign_rhs1 (stmt);
1620 gassign *new_stmt;
1621
1622 /* Build a new statement with the RHS and LHS exchanged. */
1623 if (TREE_CODE (rhs) == SSA_NAME)
1624 {
1625 /* NOTE tuples. The call to gimple_build_assign below replaced
1626 a call to build_gimple_modify_stmt, which did not set the
1627 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1628 may cause an SSA validation failure, as the LHS may be a
1629 default-initialized name and should have no definition. I'm
1630 a bit dubious of this, as the artificial statement that we
1631 generate here may in fact be ill-formed, but it is simply
1632 used as an internal device in this pass, and never becomes
1633 part of the CFG. */
1634 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1635 new_stmt = gimple_build_assign (rhs, lhs);
1636 SSA_NAME_DEF_STMT (rhs) = defstmt;
1637 }
1638 else
1639 new_stmt = gimple_build_assign (rhs, lhs);
1640
1641 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1642
1643 /* Finally enter the statement into the available expression
1644 table. */
1645 lookup_avail_expr (new_stmt, true, avail_exprs_stack);
1646 }
1647 }
1648
1649 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1650 CONST_AND_COPIES. */
1651
1652 static void
1653 cprop_operand (gimple *stmt, use_operand_p op_p)
1654 {
1655 tree val;
1656 tree op = USE_FROM_PTR (op_p);
1657
1658 /* If the operand has a known constant value or it is known to be a
1659 copy of some other variable, use the value or copy stored in
1660 CONST_AND_COPIES. */
1661 val = SSA_NAME_VALUE (op);
1662 if (val && val != op)
1663 {
1664 /* Do not replace hard register operands in asm statements. */
1665 if (gimple_code (stmt) == GIMPLE_ASM
1666 && !may_propagate_copy_into_asm (op))
1667 return;
1668
1669 /* Certain operands are not allowed to be copy propagated due
1670 to their interaction with exception handling and some GCC
1671 extensions. */
1672 if (!may_propagate_copy (op, val))
1673 return;
1674
1675 /* Do not propagate copies into BIVs.
1676 See PR23821 and PR62217 for how this can disturb IV and
1677 number of iteration analysis. */
1678 if (TREE_CODE (val) != INTEGER_CST)
1679 {
1680 gimple *def = SSA_NAME_DEF_STMT (op);
1681 if (gimple_code (def) == GIMPLE_PHI
1682 && gimple_bb (def)->loop_father->header == gimple_bb (def))
1683 return;
1684 }
1685
1686 /* Dump details. */
1687 if (dump_file && (dump_flags & TDF_DETAILS))
1688 {
1689 fprintf (dump_file, " Replaced '");
1690 print_generic_expr (dump_file, op, dump_flags);
1691 fprintf (dump_file, "' with %s '",
1692 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1693 print_generic_expr (dump_file, val, dump_flags);
1694 fprintf (dump_file, "'\n");
1695 }
1696
1697 if (TREE_CODE (val) != SSA_NAME)
1698 opt_stats.num_const_prop++;
1699 else
1700 opt_stats.num_copy_prop++;
1701
1702 propagate_value (op_p, val);
1703
1704 /* And note that we modified this statement. This is now
1705 safe, even if we changed virtual operands since we will
1706 rescan the statement and rewrite its operands again. */
1707 gimple_set_modified (stmt, true);
1708 }
1709 }
1710
1711 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1712 known value for that SSA_NAME (or NULL if no value is known).
1713
1714 Propagate values from CONST_AND_COPIES into the uses, vuses and
1715 vdef_ops of STMT. */
1716
1717 static void
1718 cprop_into_stmt (gimple *stmt)
1719 {
1720 use_operand_p op_p;
1721 ssa_op_iter iter;
1722
1723 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1724 cprop_operand (stmt, op_p);
1725 }
1726
1727 /* Optimize the statement in block BB pointed to by iterator SI
1728 using equivalences from CONST_AND_COPIES and AVAIL_EXPRS_STACK.
1729
1730 We try to perform some simplistic global redundancy elimination and
1731 constant propagation:
1732
1733 1- To detect global redundancy, we keep track of expressions that have
1734 been computed in this block and its dominators. If we find that the
1735 same expression is computed more than once, we eliminate repeated
1736 computations by using the target of the first one.
1737
1738 2- Constant values and copy assignments. This is used to do very
1739 simplistic constant and copy propagation. When a constant or copy
1740 assignment is found, we map the value on the RHS of the assignment to
1741 the variable in the LHS in the CONST_AND_COPIES table. */
1742
1743 static edge
1744 optimize_stmt (basic_block bb, gimple_stmt_iterator si,
1745 class const_and_copies *const_and_copies,
1746 class avail_exprs_stack *avail_exprs_stack)
1747 {
1748 gimple *stmt, *old_stmt;
1749 bool may_optimize_p;
1750 bool modified_p = false;
1751 bool was_noreturn;
1752 edge retval = NULL;
1753
1754 old_stmt = stmt = gsi_stmt (si);
1755 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
1756
1757 if (dump_file && (dump_flags & TDF_DETAILS))
1758 {
1759 fprintf (dump_file, "Optimizing statement ");
1760 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1761 }
1762
1763 if (gimple_code (stmt) == GIMPLE_COND)
1764 canonicalize_comparison (as_a <gcond *> (stmt));
1765
1766 update_stmt_if_modified (stmt);
1767 opt_stats.num_stmts++;
1768
1769 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
1770 cprop_into_stmt (stmt);
1771
1772 /* If the statement has been modified with constant replacements,
1773 fold its RHS before checking for redundant computations. */
1774 if (gimple_modified_p (stmt))
1775 {
1776 tree rhs = NULL;
1777
1778 /* Try to fold the statement making sure that STMT is kept
1779 up to date. */
1780 if (fold_stmt (&si))
1781 {
1782 stmt = gsi_stmt (si);
1783 gimple_set_modified (stmt, true);
1784
1785 if (dump_file && (dump_flags & TDF_DETAILS))
1786 {
1787 fprintf (dump_file, " Folded to: ");
1788 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1789 }
1790 }
1791
1792 /* We only need to consider cases that can yield a gimple operand. */
1793 if (gimple_assign_single_p (stmt))
1794 rhs = gimple_assign_rhs1 (stmt);
1795 else if (gimple_code (stmt) == GIMPLE_GOTO)
1796 rhs = gimple_goto_dest (stmt);
1797 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1798 /* This should never be an ADDR_EXPR. */
1799 rhs = gimple_switch_index (swtch_stmt);
1800
1801 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
1802 recompute_tree_invariant_for_addr_expr (rhs);
1803
1804 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
1805 even if fold_stmt updated the stmt already and thus cleared
1806 gimple_modified_p flag on it. */
1807 modified_p = true;
1808 }
1809
1810 /* Check for redundant computations. Do this optimization only
1811 for assignments that have no volatile ops and conditionals. */
1812 may_optimize_p = (!gimple_has_side_effects (stmt)
1813 && (is_gimple_assign (stmt)
1814 || (is_gimple_call (stmt)
1815 && gimple_call_lhs (stmt) != NULL_TREE)
1816 || gimple_code (stmt) == GIMPLE_COND
1817 || gimple_code (stmt) == GIMPLE_SWITCH));
1818
1819 if (may_optimize_p)
1820 {
1821 if (gimple_code (stmt) == GIMPLE_CALL)
1822 {
1823 /* Resolve __builtin_constant_p. If it hasn't been
1824 folded to integer_one_node by now, it's fairly
1825 certain that the value simply isn't constant. */
1826 tree callee = gimple_call_fndecl (stmt);
1827 if (callee
1828 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1829 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
1830 {
1831 propagate_tree_value_into_stmt (&si, integer_zero_node);
1832 stmt = gsi_stmt (si);
1833 }
1834 }
1835
1836 update_stmt_if_modified (stmt);
1837 eliminate_redundant_computations (&si, const_and_copies,
1838 avail_exprs_stack);
1839 stmt = gsi_stmt (si);
1840
1841 /* Perform simple redundant store elimination. */
1842 if (gimple_assign_single_p (stmt)
1843 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
1844 {
1845 tree lhs = gimple_assign_lhs (stmt);
1846 tree rhs = gimple_assign_rhs1 (stmt);
1847 tree cached_lhs;
1848 gassign *new_stmt;
1849 rhs = dom_valueize (rhs);
1850 /* Build a new statement with the RHS and LHS exchanged. */
1851 if (TREE_CODE (rhs) == SSA_NAME)
1852 {
1853 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1854 new_stmt = gimple_build_assign (rhs, lhs);
1855 SSA_NAME_DEF_STMT (rhs) = defstmt;
1856 }
1857 else
1858 new_stmt = gimple_build_assign (rhs, lhs);
1859 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
1860 cached_lhs = lookup_avail_expr (new_stmt, false, avail_exprs_stack);
1861 if (cached_lhs
1862 && rhs == cached_lhs)
1863 {
1864 basic_block bb = gimple_bb (stmt);
1865 unlink_stmt_vdef (stmt);
1866 if (gsi_remove (&si, true))
1867 {
1868 bitmap_set_bit (need_eh_cleanup, bb->index);
1869 if (dump_file && (dump_flags & TDF_DETAILS))
1870 fprintf (dump_file, " Flagged to clear EH edges.\n");
1871 }
1872 release_defs (stmt);
1873 return retval;
1874 }
1875 }
1876 }
1877
1878 /* Record any additional equivalences created by this statement. */
1879 if (is_gimple_assign (stmt))
1880 record_equivalences_from_stmt (stmt, may_optimize_p, avail_exprs_stack);
1881
1882 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
1883 know where it goes. */
1884 if (gimple_modified_p (stmt) || modified_p)
1885 {
1886 tree val = NULL;
1887
1888 update_stmt_if_modified (stmt);
1889
1890 if (gimple_code (stmt) == GIMPLE_COND)
1891 val = fold_binary_loc (gimple_location (stmt),
1892 gimple_cond_code (stmt), boolean_type_node,
1893 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
1894 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1895 val = gimple_switch_index (swtch_stmt);
1896
1897 if (val && TREE_CODE (val) == INTEGER_CST)
1898 {
1899 retval = find_taken_edge (bb, val);
1900 if (retval)
1901 {
1902 /* Fix the condition to be either true or false. */
1903 if (gimple_code (stmt) == GIMPLE_COND)
1904 {
1905 if (integer_zerop (val))
1906 gimple_cond_make_false (as_a <gcond *> (stmt));
1907 else if (integer_onep (val))
1908 gimple_cond_make_true (as_a <gcond *> (stmt));
1909 else
1910 gcc_unreachable ();
1911 }
1912
1913 /* Further simplifications may be possible. */
1914 cfg_altered = true;
1915 }
1916 }
1917
1918 /* If we simplified a statement in such a way as to be shown that it
1919 cannot trap, update the eh information and the cfg to match. */
1920 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1921 {
1922 bitmap_set_bit (need_eh_cleanup, bb->index);
1923 if (dump_file && (dump_flags & TDF_DETAILS))
1924 fprintf (dump_file, " Flagged to clear EH edges.\n");
1925 }
1926
1927 if (!was_noreturn
1928 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
1929 need_noreturn_fixup.safe_push (stmt);
1930 }
1931 return retval;
1932 }
1933
1934 /* Helper for walk_non_aliased_vuses. Determine if we arrived at
1935 the desired memory state. */
1936
1937 static void *
1938 vuse_eq (ao_ref *, tree vuse1, unsigned int cnt, void *data)
1939 {
1940 tree vuse2 = (tree) data;
1941 if (vuse1 == vuse2)
1942 return data;
1943
1944 /* This bounds the stmt walks we perform on reference lookups
1945 to O(1) instead of O(N) where N is the number of dominating
1946 stores leading to a candidate. We re-use the SCCVN param
1947 for this as it is basically the same complexity. */
1948 if (cnt > (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS))
1949 return (void *)-1;
1950
1951 return NULL;
1952 }
1953
1954 /* Search for an existing instance of STMT in the AVAIL_EXPRS_STACK table.
1955 If found, return its LHS. Otherwise insert STMT in the table and
1956 return NULL_TREE.
1957
1958 Also, when an expression is first inserted in the table, it is also
1959 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
1960 we finish processing this block and its children. */
1961
1962 static tree
1963 lookup_avail_expr (gimple *stmt, bool insert,
1964 class avail_exprs_stack *avail_exprs_stack)
1965 {
1966 expr_hash_elt **slot;
1967 tree lhs;
1968
1969 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
1970 if (gimple_code (stmt) == GIMPLE_PHI)
1971 lhs = gimple_phi_result (stmt);
1972 else
1973 lhs = gimple_get_lhs (stmt);
1974
1975 class expr_hash_elt element (stmt, lhs);
1976
1977 if (dump_file && (dump_flags & TDF_DETAILS))
1978 {
1979 fprintf (dump_file, "LKUP ");
1980 element.print (dump_file);
1981 }
1982
1983 /* Don't bother remembering constant assignments and copy operations.
1984 Constants and copy operations are handled by the constant/copy propagator
1985 in optimize_stmt. */
1986 if (element.expr()->kind == EXPR_SINGLE
1987 && (TREE_CODE (element.expr()->ops.single.rhs) == SSA_NAME
1988 || is_gimple_min_invariant (element.expr()->ops.single.rhs)))
1989 return NULL_TREE;
1990
1991 /* Finally try to find the expression in the main expression hash table. */
1992 hash_table<expr_elt_hasher> *avail_exprs = avail_exprs_stack->avail_exprs ();
1993 slot = avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT));
1994 if (slot == NULL)
1995 {
1996 return NULL_TREE;
1997 }
1998 else if (*slot == NULL)
1999 {
2000 class expr_hash_elt *element2 = new expr_hash_elt (element);
2001 *slot = element2;
2002
2003 avail_exprs_stack->record_expr (element2, NULL, '2');
2004 return NULL_TREE;
2005 }
2006
2007 /* If we found a redundant memory operation do an alias walk to
2008 check if we can re-use it. */
2009 if (gimple_vuse (stmt) != (*slot)->vop ())
2010 {
2011 tree vuse1 = (*slot)->vop ();
2012 tree vuse2 = gimple_vuse (stmt);
2013 /* If we have a load of a register and a candidate in the
2014 hash with vuse1 then try to reach its stmt by walking
2015 up the virtual use-def chain using walk_non_aliased_vuses.
2016 But don't do this when removing expressions from the hash. */
2017 ao_ref ref;
2018 if (!(vuse1 && vuse2
2019 && gimple_assign_single_p (stmt)
2020 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
2021 && (ao_ref_init (&ref, gimple_assign_rhs1 (stmt)), true)
2022 && walk_non_aliased_vuses (&ref, vuse2,
2023 vuse_eq, NULL, NULL, vuse1) != NULL))
2024 {
2025 if (insert)
2026 {
2027 class expr_hash_elt *element2 = new expr_hash_elt (element);
2028
2029 /* Insert the expr into the hash by replacing the current
2030 entry and recording the value to restore in the
2031 avail_exprs_stack. */
2032 avail_exprs_stack->record_expr (element2, *slot, '2');
2033 *slot = element2;
2034 }
2035 return NULL_TREE;
2036 }
2037 }
2038
2039 /* Extract the LHS of the assignment so that it can be used as the current
2040 definition of another variable. */
2041 lhs = (*slot)->lhs ();
2042
2043 lhs = dom_valueize (lhs);
2044
2045 if (dump_file && (dump_flags & TDF_DETAILS))
2046 {
2047 fprintf (dump_file, "FIND: ");
2048 print_generic_expr (dump_file, lhs, 0);
2049 fprintf (dump_file, "\n");
2050 }
2051
2052 return lhs;
2053 }