]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dom.c
Add new gswitch related functions into tree-cfg.c.
[thirdparty/gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "params.h"
43 #include "tree-ssa-scopedtables.h"
44 #include "tree-ssa-threadedge.h"
45 #include "tree-ssa-dom.h"
46 #include "gimplify.h"
47 #include "tree-cfgcleanup.h"
48 #include "dbgcnt.h"
49 #include "alloc-pool.h"
50 #include "tree-vrp.h"
51 #include "vr-values.h"
52 #include "gimple-ssa-evrp-analyze.h"
53
54 /* This file implements optimizations on the dominator tree. */
55
56 /* Structure for recording edge equivalences.
57
58 Computing and storing the edge equivalences instead of creating
59 them on-demand can save significant amounts of time, particularly
60 for pathological cases involving switch statements.
61
62 These structures live for a single iteration of the dominator
63 optimizer in the edge's AUX field. At the end of an iteration we
64 free each of these structures. */
65 class edge_info
66 {
67 public:
68 typedef std::pair <tree, tree> equiv_pair;
69 edge_info (edge);
70 ~edge_info ();
71
72 /* Record a simple LHS = RHS equivalence. This may trigger
73 calls to derive_equivalences. */
74 void record_simple_equiv (tree, tree);
75
76 /* If traversing this edge creates simple equivalences, we store
77 them as LHS/RHS pairs within this vector. */
78 vec<equiv_pair> simple_equivalences;
79
80 /* Traversing an edge may also indicate one or more particular conditions
81 are true or false. */
82 vec<cond_equivalence> cond_equivalences;
83
84 private:
85 /* Derive equivalences by walking the use-def chains. */
86 void derive_equivalences (tree, tree, int);
87 };
88
89 /* Track whether or not we have changed the control flow graph. */
90 static bool cfg_altered;
91
92 /* Bitmap of blocks that have had EH statements cleaned. We should
93 remove their dead edges eventually. */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96
97 /* Statistics for dominator optimizations. */
98 struct opt_stats_d
99 {
100 long num_stmts;
101 long num_exprs_considered;
102 long num_re;
103 long num_const_prop;
104 long num_copy_prop;
105 };
106
107 static struct opt_stats_d opt_stats;
108
109 /* Local functions. */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 class const_and_copies *,
114 class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 class const_and_copies *,
117 class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 hash_table<expr_elt_hasher> *);
122
123 /* Constructor for EDGE_INFO. An EDGE_INFO instance is always
124 associated with an edge E. */
125
126 edge_info::edge_info (edge e)
127 {
128 /* Free the old one associated with E, if it exists and
129 associate our new object with E. */
130 free_dom_edge_info (e);
131 e->aux = this;
132
133 /* And initialize the embedded vectors. */
134 simple_equivalences = vNULL;
135 cond_equivalences = vNULL;
136 }
137
138 /* Destructor just needs to release the vectors. */
139
140 edge_info::~edge_info (void)
141 {
142 this->cond_equivalences.release ();
143 this->simple_equivalences.release ();
144 }
145
146 /* NAME is known to have the value VALUE, which must be a constant.
147
148 Walk through its use-def chain to see if there are other equivalences
149 we might be able to derive.
150
151 RECURSION_LIMIT controls how far back we recurse through the use-def
152 chains. */
153
154 void
155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157 if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158 return;
159
160 /* This records the equivalence for the toplevel object. Do
161 this before checking the recursion limit. */
162 simple_equivalences.safe_push (equiv_pair (name, value));
163
164 /* Limit how far up the use-def chains we are willing to walk. */
165 if (recursion_limit == 0)
166 return;
167
168 /* We can walk up the use-def chains to potentially find more
169 equivalences. */
170 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171 if (is_gimple_assign (def_stmt))
172 {
173 /* We know the result of DEF_STMT was zero. See if that allows
174 us to deduce anything about the SSA_NAMEs used on the RHS. */
175 enum tree_code code = gimple_assign_rhs_code (def_stmt);
176 switch (code)
177 {
178 case BIT_IOR_EXPR:
179 if (integer_zerop (value))
180 {
181 tree rhs1 = gimple_assign_rhs1 (def_stmt);
182 tree rhs2 = gimple_assign_rhs2 (def_stmt);
183
184 value = build_zero_cst (TREE_TYPE (rhs1));
185 derive_equivalences (rhs1, value, recursion_limit - 1);
186 value = build_zero_cst (TREE_TYPE (rhs2));
187 derive_equivalences (rhs2, value, recursion_limit - 1);
188 }
189 break;
190
191 /* We know the result of DEF_STMT was one. See if that allows
192 us to deduce anything about the SSA_NAMEs used on the RHS. */
193 case BIT_AND_EXPR:
194 if (!integer_zerop (value))
195 {
196 tree rhs1 = gimple_assign_rhs1 (def_stmt);
197 tree rhs2 = gimple_assign_rhs2 (def_stmt);
198
199 /* If either operand has a boolean range, then we
200 know its value must be one, otherwise we just know it
201 is nonzero. The former is clearly useful, I haven't
202 seen cases where the latter is helpful yet. */
203 if (TREE_CODE (rhs1) == SSA_NAME)
204 {
205 if (ssa_name_has_boolean_range (rhs1))
206 {
207 value = build_one_cst (TREE_TYPE (rhs1));
208 derive_equivalences (rhs1, value, recursion_limit - 1);
209 }
210 }
211 if (TREE_CODE (rhs2) == SSA_NAME)
212 {
213 if (ssa_name_has_boolean_range (rhs2))
214 {
215 value = build_one_cst (TREE_TYPE (rhs2));
216 derive_equivalences (rhs2, value, recursion_limit - 1);
217 }
218 }
219 }
220 break;
221
222 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
223 set via a widening type conversion, then we may be able to record
224 additional equivalences. */
225 case NOP_EXPR:
226 case CONVERT_EXPR:
227 {
228 tree rhs = gimple_assign_rhs1 (def_stmt);
229 tree rhs_type = TREE_TYPE (rhs);
230 if (INTEGRAL_TYPE_P (rhs_type)
231 && (TYPE_PRECISION (TREE_TYPE (name))
232 >= TYPE_PRECISION (rhs_type))
233 && int_fits_type_p (value, rhs_type))
234 derive_equivalences (rhs,
235 fold_convert (rhs_type, value),
236 recursion_limit - 1);
237 break;
238 }
239
240 /* We can invert the operation of these codes trivially if
241 one of the RHS operands is a constant to produce a known
242 value for the other RHS operand. */
243 case POINTER_PLUS_EXPR:
244 case PLUS_EXPR:
245 {
246 tree rhs1 = gimple_assign_rhs1 (def_stmt);
247 tree rhs2 = gimple_assign_rhs2 (def_stmt);
248
249 /* If either argument is a constant, then we can compute
250 a constant value for the nonconstant argument. */
251 if (TREE_CODE (rhs1) == INTEGER_CST
252 && TREE_CODE (rhs2) == SSA_NAME)
253 derive_equivalences (rhs2,
254 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
255 value, rhs1),
256 recursion_limit - 1);
257 else if (TREE_CODE (rhs2) == INTEGER_CST
258 && TREE_CODE (rhs1) == SSA_NAME)
259 derive_equivalences (rhs1,
260 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
261 value, rhs2),
262 recursion_limit - 1);
263 break;
264 }
265
266 /* If one of the operands is a constant, then we can compute
267 the value of the other operand. If both operands are
268 SSA_NAMEs, then they must be equal if the result is zero. */
269 case MINUS_EXPR:
270 {
271 tree rhs1 = gimple_assign_rhs1 (def_stmt);
272 tree rhs2 = gimple_assign_rhs2 (def_stmt);
273
274 /* If either argument is a constant, then we can compute
275 a constant value for the nonconstant argument. */
276 if (TREE_CODE (rhs1) == INTEGER_CST
277 && TREE_CODE (rhs2) == SSA_NAME)
278 derive_equivalences (rhs2,
279 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
280 rhs1, value),
281 recursion_limit - 1);
282 else if (TREE_CODE (rhs2) == INTEGER_CST
283 && TREE_CODE (rhs1) == SSA_NAME)
284 derive_equivalences (rhs1,
285 fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
286 value, rhs2),
287 recursion_limit - 1);
288 else if (integer_zerop (value))
289 {
290 tree cond = build2 (EQ_EXPR, boolean_type_node,
291 gimple_assign_rhs1 (def_stmt),
292 gimple_assign_rhs2 (def_stmt));
293 tree inverted = invert_truthvalue (cond);
294 record_conditions (&this->cond_equivalences, cond, inverted);
295 }
296 break;
297 }
298
299
300 case EQ_EXPR:
301 case NE_EXPR:
302 {
303 if ((code == EQ_EXPR && integer_onep (value))
304 || (code == NE_EXPR && integer_zerop (value)))
305 {
306 tree rhs1 = gimple_assign_rhs1 (def_stmt);
307 tree rhs2 = gimple_assign_rhs2 (def_stmt);
308
309 /* If either argument is a constant, then record the
310 other argument as being the same as that constant.
311
312 If neither operand is a constant, then we have a
313 conditional name == name equivalence. */
314 if (TREE_CODE (rhs1) == INTEGER_CST)
315 derive_equivalences (rhs2, rhs1, recursion_limit - 1);
316 else if (TREE_CODE (rhs2) == INTEGER_CST)
317 derive_equivalences (rhs1, rhs2, recursion_limit - 1);
318 }
319 else
320 {
321 tree cond = build2 (code, boolean_type_node,
322 gimple_assign_rhs1 (def_stmt),
323 gimple_assign_rhs2 (def_stmt));
324 tree inverted = invert_truthvalue (cond);
325 if (integer_zerop (value))
326 std::swap (cond, inverted);
327 record_conditions (&this->cond_equivalences, cond, inverted);
328 }
329 break;
330 }
331
332 /* For BIT_NOT and NEGATE, we can just apply the operation to the
333 VALUE to get the new equivalence. It will always be a constant
334 so we can recurse. */
335 case BIT_NOT_EXPR:
336 case NEGATE_EXPR:
337 {
338 tree rhs = gimple_assign_rhs1 (def_stmt);
339 tree res = fold_build1 (code, TREE_TYPE (rhs), value);
340 derive_equivalences (rhs, res, recursion_limit - 1);
341 break;
342 }
343
344 default:
345 {
346 if (TREE_CODE_CLASS (code) == tcc_comparison)
347 {
348 tree cond = build2 (code, boolean_type_node,
349 gimple_assign_rhs1 (def_stmt),
350 gimple_assign_rhs2 (def_stmt));
351 tree inverted = invert_truthvalue (cond);
352 if (integer_zerop (value))
353 std::swap (cond, inverted);
354 record_conditions (&this->cond_equivalences, cond, inverted);
355 break;
356 }
357 break;
358 }
359 }
360 }
361 }
362
363 void
364 edge_info::record_simple_equiv (tree lhs, tree rhs)
365 {
366 /* If the RHS is a constant, then we may be able to derive
367 further equivalences. Else just record the name = name
368 equivalence. */
369 if (TREE_CODE (rhs) == INTEGER_CST)
370 derive_equivalences (lhs, rhs, 4);
371 else
372 simple_equivalences.safe_push (equiv_pair (lhs, rhs));
373 }
374
375 /* Free the edge_info data attached to E, if it exists. */
376
377 void
378 free_dom_edge_info (edge e)
379 {
380 class edge_info *edge_info = (struct edge_info *)e->aux;
381
382 if (edge_info)
383 delete edge_info;
384 }
385
386 /* Free all EDGE_INFO structures associated with edges in the CFG.
387 If a particular edge can be threaded, copy the redirection
388 target from the EDGE_INFO structure into the edge's AUX field
389 as required by code to update the CFG and SSA graph for
390 jump threading. */
391
392 static void
393 free_all_edge_infos (void)
394 {
395 basic_block bb;
396 edge_iterator ei;
397 edge e;
398
399 FOR_EACH_BB_FN (bb, cfun)
400 {
401 FOR_EACH_EDGE (e, ei, bb->preds)
402 {
403 free_dom_edge_info (e);
404 e->aux = NULL;
405 }
406 }
407 }
408
409 /* We have finished optimizing BB, record any information implied by
410 taking a specific outgoing edge from BB. */
411
412 static void
413 record_edge_info (basic_block bb)
414 {
415 gimple_stmt_iterator gsi = gsi_last_bb (bb);
416 class edge_info *edge_info;
417
418 if (! gsi_end_p (gsi))
419 {
420 gimple *stmt = gsi_stmt (gsi);
421 location_t loc = gimple_location (stmt);
422
423 if (gimple_code (stmt) == GIMPLE_SWITCH)
424 {
425 gswitch *switch_stmt = as_a <gswitch *> (stmt);
426 tree index = gimple_switch_index (switch_stmt);
427
428 if (TREE_CODE (index) == SSA_NAME)
429 {
430 int i;
431 int n_labels = gimple_switch_num_labels (switch_stmt);
432 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
433 edge e;
434 edge_iterator ei;
435
436 for (i = 0; i < n_labels; i++)
437 {
438 tree label = gimple_switch_label (switch_stmt, i);
439 basic_block target_bb
440 = label_to_block (cfun, CASE_LABEL (label));
441 if (CASE_HIGH (label)
442 || !CASE_LOW (label)
443 || info[target_bb->index])
444 info[target_bb->index] = error_mark_node;
445 else
446 info[target_bb->index] = label;
447 }
448
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 {
451 basic_block target_bb = e->dest;
452 tree label = info[target_bb->index];
453
454 if (label != NULL && label != error_mark_node)
455 {
456 tree x = fold_convert_loc (loc, TREE_TYPE (index),
457 CASE_LOW (label));
458 edge_info = new class edge_info (e);
459 edge_info->record_simple_equiv (index, x);
460 }
461 }
462 free (info);
463 }
464 }
465
466 /* A COND_EXPR may create equivalences too. */
467 if (gimple_code (stmt) == GIMPLE_COND)
468 {
469 edge true_edge;
470 edge false_edge;
471
472 tree op0 = gimple_cond_lhs (stmt);
473 tree op1 = gimple_cond_rhs (stmt);
474 enum tree_code code = gimple_cond_code (stmt);
475
476 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
477
478 /* Special case comparing booleans against a constant as we
479 know the value of OP0 on both arms of the branch. i.e., we
480 can record an equivalence for OP0 rather than COND.
481
482 However, don't do this if the constant isn't zero or one.
483 Such conditionals will get optimized more thoroughly during
484 the domwalk. */
485 if ((code == EQ_EXPR || code == NE_EXPR)
486 && TREE_CODE (op0) == SSA_NAME
487 && ssa_name_has_boolean_range (op0)
488 && is_gimple_min_invariant (op1)
489 && (integer_zerop (op1) || integer_onep (op1)))
490 {
491 tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
492 tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
493
494 if (code == EQ_EXPR)
495 {
496 edge_info = new class edge_info (true_edge);
497 edge_info->record_simple_equiv (op0,
498 (integer_zerop (op1)
499 ? false_val : true_val));
500 edge_info = new class edge_info (false_edge);
501 edge_info->record_simple_equiv (op0,
502 (integer_zerop (op1)
503 ? true_val : false_val));
504 }
505 else
506 {
507 edge_info = new class edge_info (true_edge);
508 edge_info->record_simple_equiv (op0,
509 (integer_zerop (op1)
510 ? true_val : false_val));
511 edge_info = new class edge_info (false_edge);
512 edge_info->record_simple_equiv (op0,
513 (integer_zerop (op1)
514 ? false_val : true_val));
515 }
516 }
517 /* This can show up in the IL as a result of copy propagation
518 it will eventually be canonicalized, but we have to cope
519 with this case within the pass. */
520 else if (is_gimple_min_invariant (op0)
521 && TREE_CODE (op1) == SSA_NAME)
522 {
523 tree cond = build2 (code, boolean_type_node, op0, op1);
524 tree inverted = invert_truthvalue_loc (loc, cond);
525 bool can_infer_simple_equiv
526 = !(HONOR_SIGNED_ZEROS (op0)
527 && real_zerop (op0));
528 struct edge_info *edge_info;
529
530 edge_info = new class edge_info (true_edge);
531 record_conditions (&edge_info->cond_equivalences, cond, inverted);
532
533 if (can_infer_simple_equiv && code == EQ_EXPR)
534 edge_info->record_simple_equiv (op1, op0);
535
536 edge_info = new class edge_info (false_edge);
537 record_conditions (&edge_info->cond_equivalences, inverted, cond);
538
539 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
540 edge_info->record_simple_equiv (op1, op0);
541 }
542
543 else if (TREE_CODE (op0) == SSA_NAME
544 && (TREE_CODE (op1) == SSA_NAME
545 || is_gimple_min_invariant (op1)))
546 {
547 tree cond = build2 (code, boolean_type_node, op0, op1);
548 tree inverted = invert_truthvalue_loc (loc, cond);
549 bool can_infer_simple_equiv
550 = !(HONOR_SIGNED_ZEROS (op1)
551 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
552 struct edge_info *edge_info;
553
554 edge_info = new class edge_info (true_edge);
555 record_conditions (&edge_info->cond_equivalences, cond, inverted);
556
557 if (can_infer_simple_equiv && code == EQ_EXPR)
558 edge_info->record_simple_equiv (op0, op1);
559
560 edge_info = new class edge_info (false_edge);
561 record_conditions (&edge_info->cond_equivalences, inverted, cond);
562
563 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
564 edge_info->record_simple_equiv (op0, op1);
565 }
566 }
567 }
568 }
569
570
571 class dom_opt_dom_walker : public dom_walker
572 {
573 public:
574 dom_opt_dom_walker (cdi_direction direction,
575 class const_and_copies *const_and_copies,
576 class avail_exprs_stack *avail_exprs_stack,
577 gcond *dummy_cond)
578 : dom_walker (direction, REACHABLE_BLOCKS),
579 m_const_and_copies (const_and_copies),
580 m_avail_exprs_stack (avail_exprs_stack),
581 m_dummy_cond (dummy_cond) { }
582
583 virtual edge before_dom_children (basic_block);
584 virtual void after_dom_children (basic_block);
585
586 private:
587
588 /* Unwindable equivalences, both const/copy and expression varieties. */
589 class const_and_copies *m_const_and_copies;
590 class avail_exprs_stack *m_avail_exprs_stack;
591
592 /* VRP data. */
593 class evrp_range_analyzer evrp_range_analyzer;
594
595 /* Dummy condition to avoid creating lots of throw away statements. */
596 gcond *m_dummy_cond;
597
598 /* Optimize a single statement within a basic block using the
599 various tables mantained by DOM. Returns the taken edge if
600 the statement is a conditional with a statically determined
601 value. */
602 edge optimize_stmt (basic_block, gimple_stmt_iterator);
603 };
604
605 /* Jump threading, redundancy elimination and const/copy propagation.
606
607 This pass may expose new symbols that need to be renamed into SSA. For
608 every new symbol exposed, its corresponding bit will be set in
609 VARS_TO_RENAME. */
610
611 namespace {
612
613 const pass_data pass_data_dominator =
614 {
615 GIMPLE_PASS, /* type */
616 "dom", /* name */
617 OPTGROUP_NONE, /* optinfo_flags */
618 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
619 ( PROP_cfg | PROP_ssa ), /* properties_required */
620 0, /* properties_provided */
621 0, /* properties_destroyed */
622 0, /* todo_flags_start */
623 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
624 };
625
626 class pass_dominator : public gimple_opt_pass
627 {
628 public:
629 pass_dominator (gcc::context *ctxt)
630 : gimple_opt_pass (pass_data_dominator, ctxt),
631 may_peel_loop_headers_p (false)
632 {}
633
634 /* opt_pass methods: */
635 opt_pass * clone () { return new pass_dominator (m_ctxt); }
636 void set_pass_param (unsigned int n, bool param)
637 {
638 gcc_assert (n == 0);
639 may_peel_loop_headers_p = param;
640 }
641 virtual bool gate (function *) { return flag_tree_dom != 0; }
642 virtual unsigned int execute (function *);
643
644 private:
645 /* This flag is used to prevent loops from being peeled repeatedly in jump
646 threading; it will be removed once we preserve loop structures throughout
647 the compilation -- we will be able to mark the affected loops directly in
648 jump threading, and avoid peeling them next time. */
649 bool may_peel_loop_headers_p;
650 }; // class pass_dominator
651
652 unsigned int
653 pass_dominator::execute (function *fun)
654 {
655 memset (&opt_stats, 0, sizeof (opt_stats));
656
657 /* Create our hash tables. */
658 hash_table<expr_elt_hasher> *avail_exprs
659 = new hash_table<expr_elt_hasher> (1024);
660 class avail_exprs_stack *avail_exprs_stack
661 = new class avail_exprs_stack (avail_exprs);
662 class const_and_copies *const_and_copies = new class const_and_copies ();
663 need_eh_cleanup = BITMAP_ALLOC (NULL);
664 need_noreturn_fixup.create (0);
665
666 calculate_dominance_info (CDI_DOMINATORS);
667 cfg_altered = false;
668
669 /* We need to know loop structures in order to avoid destroying them
670 in jump threading. Note that we still can e.g. thread through loop
671 headers to an exit edge, or through loop header to the loop body, assuming
672 that we update the loop info.
673
674 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
675 to several overly conservative bail-outs in jump threading, case
676 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
677 missing. We should improve jump threading in future then
678 LOOPS_HAVE_PREHEADERS won't be needed here. */
679 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
680
681 /* Initialize the value-handle array. */
682 threadedge_initialize_values ();
683
684 /* We need accurate information regarding back edges in the CFG
685 for jump threading; this may include back edges that are not part of
686 a single loop. */
687 mark_dfs_back_edges ();
688
689 /* We want to create the edge info structures before the dominator walk
690 so that they'll be in place for the jump threader, particularly when
691 threading through a join block.
692
693 The conditions will be lazily updated with global equivalences as
694 we reach them during the dominator walk. */
695 basic_block bb;
696 FOR_EACH_BB_FN (bb, fun)
697 record_edge_info (bb);
698
699 gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
700 integer_zero_node, NULL, NULL);
701
702 /* Recursively walk the dominator tree optimizing statements. */
703 dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
704 avail_exprs_stack, dummy_cond);
705 walker.walk (fun->cfg->x_entry_block_ptr);
706
707 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
708 edge. When found, remove jump threads which contain any outgoing
709 edge from the affected block. */
710 if (cfg_altered)
711 {
712 FOR_EACH_BB_FN (bb, fun)
713 {
714 edge_iterator ei;
715 edge e;
716
717 /* First see if there are any edges without EDGE_EXECUTABLE
718 set. */
719 bool found = false;
720 FOR_EACH_EDGE (e, ei, bb->succs)
721 {
722 if ((e->flags & EDGE_EXECUTABLE) == 0)
723 {
724 found = true;
725 break;
726 }
727 }
728
729 /* If there were any such edges found, then remove jump threads
730 containing any edge leaving BB. */
731 if (found)
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 remove_jump_threads_including (e);
734 }
735 }
736
737 {
738 gimple_stmt_iterator gsi;
739 basic_block bb;
740 FOR_EACH_BB_FN (bb, fun)
741 {
742 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
743 update_stmt_if_modified (gsi_stmt (gsi));
744 }
745 }
746
747 /* If we exposed any new variables, go ahead and put them into
748 SSA form now, before we handle jump threading. This simplifies
749 interactions between rewriting of _DECL nodes into SSA form
750 and rewriting SSA_NAME nodes into SSA form after block
751 duplication and CFG manipulation. */
752 update_ssa (TODO_update_ssa);
753
754 free_all_edge_infos ();
755
756 /* Thread jumps, creating duplicate blocks as needed. */
757 cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
758
759 if (cfg_altered)
760 free_dominance_info (CDI_DOMINATORS);
761
762 /* Removal of statements may make some EH edges dead. Purge
763 such edges from the CFG as needed. */
764 if (!bitmap_empty_p (need_eh_cleanup))
765 {
766 unsigned i;
767 bitmap_iterator bi;
768
769 /* Jump threading may have created forwarder blocks from blocks
770 needing EH cleanup; the new successor of these blocks, which
771 has inherited from the original block, needs the cleanup.
772 Don't clear bits in the bitmap, as that can break the bitmap
773 iterator. */
774 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
775 {
776 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
777 if (bb == NULL)
778 continue;
779 while (single_succ_p (bb)
780 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
781 bb = single_succ (bb);
782 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
783 continue;
784 if ((unsigned) bb->index != i)
785 bitmap_set_bit (need_eh_cleanup, bb->index);
786 }
787
788 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
789 bitmap_clear (need_eh_cleanup);
790 }
791
792 /* Fixup stmts that became noreturn calls. This may require splitting
793 blocks and thus isn't possible during the dominator walk or before
794 jump threading finished. Do this in reverse order so we don't
795 inadvertedly remove a stmt we want to fixup by visiting a dominating
796 now noreturn call first. */
797 while (!need_noreturn_fixup.is_empty ())
798 {
799 gimple *stmt = need_noreturn_fixup.pop ();
800 if (dump_file && dump_flags & TDF_DETAILS)
801 {
802 fprintf (dump_file, "Fixing up noreturn call ");
803 print_gimple_stmt (dump_file, stmt, 0);
804 fprintf (dump_file, "\n");
805 }
806 fixup_noreturn_call (stmt);
807 }
808
809 statistics_counter_event (fun, "Redundant expressions eliminated",
810 opt_stats.num_re);
811 statistics_counter_event (fun, "Constants propagated",
812 opt_stats.num_const_prop);
813 statistics_counter_event (fun, "Copies propagated",
814 opt_stats.num_copy_prop);
815
816 /* Debugging dumps. */
817 if (dump_file && (dump_flags & TDF_STATS))
818 dump_dominator_optimization_stats (dump_file, avail_exprs);
819
820 loop_optimizer_finalize ();
821
822 /* Delete our main hashtable. */
823 delete avail_exprs;
824 avail_exprs = NULL;
825
826 /* Free asserted bitmaps and stacks. */
827 BITMAP_FREE (need_eh_cleanup);
828 need_noreturn_fixup.release ();
829 delete avail_exprs_stack;
830 delete const_and_copies;
831
832 /* Free the value-handle array. */
833 threadedge_finalize_values ();
834
835 return 0;
836 }
837
838 } // anon namespace
839
840 gimple_opt_pass *
841 make_pass_dominator (gcc::context *ctxt)
842 {
843 return new pass_dominator (ctxt);
844 }
845
846 /* A hack until we remove threading from tree-vrp.c and bring the
847 simplification routine into the dom_opt_dom_walker class. */
848 static class vr_values *x_vr_values;
849
850 /* A trivial wrapper so that we can present the generic jump
851 threading code with a simple API for simplifying statements. */
852 static tree
853 simplify_stmt_for_jump_threading (gimple *stmt,
854 gimple *within_stmt ATTRIBUTE_UNUSED,
855 class avail_exprs_stack *avail_exprs_stack,
856 basic_block bb ATTRIBUTE_UNUSED)
857 {
858 /* First query our hash table to see if the the expression is available
859 there. A non-NULL return value will be either a constant or another
860 SSA_NAME. */
861 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
862 if (cached_lhs)
863 return cached_lhs;
864
865 /* If the hash table query failed, query VRP information. This is
866 essentially the same as tree-vrp's simplification routine. The
867 copy in tree-vrp is scheduled for removal in gcc-9. */
868 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
869 {
870 cached_lhs
871 = x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
872 gimple_cond_lhs (cond_stmt),
873 gimple_cond_rhs (cond_stmt),
874 within_stmt);
875 return cached_lhs;
876 }
877
878 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
879 {
880 tree op = gimple_switch_index (switch_stmt);
881 if (TREE_CODE (op) != SSA_NAME)
882 return NULL_TREE;
883
884 value_range *vr = x_vr_values->get_value_range (op);
885 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
886 || symbolic_range_p (vr))
887 return NULL_TREE;
888
889 if (vr->type == VR_RANGE)
890 {
891 size_t i, j;
892
893 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
894
895 if (i == j)
896 {
897 tree label = gimple_switch_label (switch_stmt, i);
898
899 if (CASE_HIGH (label) != NULL_TREE
900 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
901 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
902 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
903 && tree_int_cst_equal (vr->min, vr->max)))
904 return label;
905
906 if (i > j)
907 return gimple_switch_label (switch_stmt, 0);
908 }
909 }
910
911 if (vr->type == VR_ANTI_RANGE)
912 {
913 unsigned n = gimple_switch_num_labels (switch_stmt);
914 tree min_label = gimple_switch_label (switch_stmt, 1);
915 tree max_label = gimple_switch_label (switch_stmt, n - 1);
916
917 /* The default label will be taken only if the anti-range of the
918 operand is entirely outside the bounds of all the (non-default)
919 case labels. */
920 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
921 && (CASE_HIGH (max_label) != NULL_TREE
922 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
923 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
924 return gimple_switch_label (switch_stmt, 0);
925 }
926 return NULL_TREE;
927 }
928
929 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
930 {
931 tree lhs = gimple_assign_lhs (assign_stmt);
932 if (TREE_CODE (lhs) == SSA_NAME
933 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
934 || POINTER_TYPE_P (TREE_TYPE (lhs)))
935 && stmt_interesting_for_vrp (stmt))
936 {
937 edge dummy_e;
938 tree dummy_tree;
939 value_range new_vr = VR_INITIALIZER;
940 x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
941 &dummy_tree, &new_vr);
942 if (range_int_cst_singleton_p (&new_vr))
943 return new_vr.min;
944 }
945 }
946 return NULL;
947 }
948
949 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
950
951 static tree
952 dom_valueize (tree t)
953 {
954 if (TREE_CODE (t) == SSA_NAME)
955 {
956 tree tem = SSA_NAME_VALUE (t);
957 if (tem)
958 return tem;
959 }
960 return t;
961 }
962
963 /* We have just found an equivalence for LHS on an edge E.
964 Look backwards to other uses of LHS and see if we can derive
965 additional equivalences that are valid on edge E. */
966 static void
967 back_propagate_equivalences (tree lhs, edge e,
968 class const_and_copies *const_and_copies)
969 {
970 use_operand_p use_p;
971 imm_use_iterator iter;
972 bitmap domby = NULL;
973 basic_block dest = e->dest;
974
975 /* Iterate over the uses of LHS to see if any dominate E->dest.
976 If so, they may create useful equivalences too.
977
978 ??? If the code gets re-organized to a worklist to catch more
979 indirect opportunities and it is made to handle PHIs then this
980 should only consider use_stmts in basic-blocks we have already visited. */
981 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
982 {
983 gimple *use_stmt = USE_STMT (use_p);
984
985 /* Often the use is in DEST, which we trivially know we can't use.
986 This is cheaper than the dominator set tests below. */
987 if (dest == gimple_bb (use_stmt))
988 continue;
989
990 /* Filter out statements that can never produce a useful
991 equivalence. */
992 tree lhs2 = gimple_get_lhs (use_stmt);
993 if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
994 continue;
995
996 /* Profiling has shown the domination tests here can be fairly
997 expensive. We get significant improvements by building the
998 set of blocks that dominate BB. We can then just test
999 for set membership below.
1000
1001 We also initialize the set lazily since often the only uses
1002 are going to be in the same block as DEST. */
1003 if (!domby)
1004 {
1005 domby = BITMAP_ALLOC (NULL);
1006 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
1007 while (bb)
1008 {
1009 bitmap_set_bit (domby, bb->index);
1010 bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1011 }
1012 }
1013
1014 /* This tests if USE_STMT does not dominate DEST. */
1015 if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1016 continue;
1017
1018 /* At this point USE_STMT dominates DEST and may result in a
1019 useful equivalence. Try to simplify its RHS to a constant
1020 or SSA_NAME. */
1021 tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1022 no_follow_ssa_edges);
1023 if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1024 record_equality (lhs2, res, const_and_copies);
1025 }
1026
1027 if (domby)
1028 BITMAP_FREE (domby);
1029 }
1030
1031 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1032 by traversing edge E (which are cached in E->aux).
1033
1034 Callers are responsible for managing the unwinding markers. */
1035 void
1036 record_temporary_equivalences (edge e,
1037 class const_and_copies *const_and_copies,
1038 class avail_exprs_stack *avail_exprs_stack)
1039 {
1040 int i;
1041 class edge_info *edge_info = (class edge_info *) e->aux;
1042
1043 /* If we have info associated with this edge, record it into
1044 our equivalence tables. */
1045 if (edge_info)
1046 {
1047 cond_equivalence *eq;
1048 /* If we have 0 = COND or 1 = COND equivalences, record them
1049 into our expression hash tables. */
1050 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1051 avail_exprs_stack->record_cond (eq);
1052
1053 edge_info::equiv_pair *seq;
1054 for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1055 {
1056 tree lhs = seq->first;
1057 if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1058 continue;
1059
1060 /* Record the simple NAME = VALUE equivalence. */
1061 tree rhs = seq->second;
1062
1063 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1064 cheaper to compute than the other, then set up the equivalence
1065 such that we replace the expensive one with the cheap one.
1066
1067 If they are the same cost to compute, then do not record
1068 anything. */
1069 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1070 {
1071 gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1072 int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1073
1074 gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1075 int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1076
1077 if (rhs_cost > lhs_cost)
1078 record_equality (rhs, lhs, const_and_copies);
1079 else if (rhs_cost < lhs_cost)
1080 record_equality (lhs, rhs, const_and_copies);
1081 }
1082 else
1083 record_equality (lhs, rhs, const_and_copies);
1084
1085
1086 /* Any equivalence found for LHS may result in additional
1087 equivalences for other uses of LHS that we have already
1088 processed. */
1089 back_propagate_equivalences (lhs, e, const_and_copies);
1090 }
1091 }
1092 }
1093
1094 /* PHI nodes can create equivalences too.
1095
1096 Ignoring any alternatives which are the same as the result, if
1097 all the alternatives are equal, then the PHI node creates an
1098 equivalence. */
1099
1100 static void
1101 record_equivalences_from_phis (basic_block bb)
1102 {
1103 gphi_iterator gsi;
1104
1105 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1106 {
1107 gphi *phi = gsi.phi ();
1108
1109 tree lhs = gimple_phi_result (phi);
1110 tree rhs = NULL;
1111 size_t i;
1112
1113 for (i = 0; i < gimple_phi_num_args (phi); i++)
1114 {
1115 tree t = gimple_phi_arg_def (phi, i);
1116
1117 /* Ignore alternatives which are the same as our LHS. Since
1118 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1119 can simply compare pointers. */
1120 if (lhs == t)
1121 continue;
1122
1123 /* If the associated edge is not marked as executable, then it
1124 can be ignored. */
1125 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1126 continue;
1127
1128 t = dom_valueize (t);
1129
1130 /* If T is an SSA_NAME and its associated edge is a backedge,
1131 then quit as we can not utilize this equivalence. */
1132 if (TREE_CODE (t) == SSA_NAME
1133 && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1134 break;
1135
1136 /* If we have not processed an alternative yet, then set
1137 RHS to this alternative. */
1138 if (rhs == NULL)
1139 rhs = t;
1140 /* If we have processed an alternative (stored in RHS), then
1141 see if it is equal to this one. If it isn't, then stop
1142 the search. */
1143 else if (! operand_equal_for_phi_arg_p (rhs, t))
1144 break;
1145 }
1146
1147 /* If we had no interesting alternatives, then all the RHS alternatives
1148 must have been the same as LHS. */
1149 if (!rhs)
1150 rhs = lhs;
1151
1152 /* If we managed to iterate through each PHI alternative without
1153 breaking out of the loop, then we have a PHI which may create
1154 a useful equivalence. We do not need to record unwind data for
1155 this, since this is a true assignment and not an equivalence
1156 inferred from a comparison. All uses of this ssa name are dominated
1157 by this assignment, so unwinding just costs time and space. */
1158 if (i == gimple_phi_num_args (phi)
1159 && may_propagate_copy (lhs, rhs))
1160 set_ssa_name_value (lhs, rhs);
1161 }
1162 }
1163
1164 /* Record any equivalences created by the incoming edge to BB into
1165 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1166 incoming edge, then no equivalence is created. */
1167
1168 static void
1169 record_equivalences_from_incoming_edge (basic_block bb,
1170 class const_and_copies *const_and_copies,
1171 class avail_exprs_stack *avail_exprs_stack)
1172 {
1173 edge e;
1174 basic_block parent;
1175
1176 /* If our parent block ended with a control statement, then we may be
1177 able to record some equivalences based on which outgoing edge from
1178 the parent was followed. */
1179 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1180
1181 e = single_pred_edge_ignoring_loop_edges (bb, true);
1182
1183 /* If we had a single incoming edge from our parent block, then enter
1184 any data associated with the edge into our tables. */
1185 if (e && e->src == parent)
1186 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1187 }
1188
1189 /* Dump statistics for the hash table HTAB. */
1190
1191 static void
1192 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1193 {
1194 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1195 (long) htab.size (),
1196 (long) htab.elements (),
1197 htab.collisions ());
1198 }
1199
1200 /* Dump SSA statistics on FILE. */
1201
1202 static void
1203 dump_dominator_optimization_stats (FILE *file,
1204 hash_table<expr_elt_hasher> *avail_exprs)
1205 {
1206 fprintf (file, "Total number of statements: %6ld\n\n",
1207 opt_stats.num_stmts);
1208 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1209 opt_stats.num_exprs_considered);
1210
1211 fprintf (file, "\nHash table statistics:\n");
1212
1213 fprintf (file, " avail_exprs: ");
1214 htab_statistics (file, *avail_exprs);
1215 }
1216
1217
1218 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1219 This constrains the cases in which we may treat this as assignment. */
1220
1221 static void
1222 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1223 {
1224 tree prev_x = NULL, prev_y = NULL;
1225
1226 if (tree_swap_operands_p (x, y))
1227 std::swap (x, y);
1228
1229 /* Most of the time tree_swap_operands_p does what we want. But there
1230 are cases where we know one operand is better for copy propagation than
1231 the other. Given no other code cares about ordering of equality
1232 comparison operators for that purpose, we just handle the special cases
1233 here. */
1234 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1235 {
1236 /* If one operand is a single use operand, then make it
1237 X. This will preserve its single use properly and if this
1238 conditional is eliminated, the computation of X can be
1239 eliminated as well. */
1240 if (has_single_use (y) && ! has_single_use (x))
1241 std::swap (x, y);
1242 }
1243 if (TREE_CODE (x) == SSA_NAME)
1244 prev_x = SSA_NAME_VALUE (x);
1245 if (TREE_CODE (y) == SSA_NAME)
1246 prev_y = SSA_NAME_VALUE (y);
1247
1248 /* If one of the previous values is invariant, or invariant in more loops
1249 (by depth), then use that.
1250 Otherwise it doesn't matter which value we choose, just so
1251 long as we canonicalize on one value. */
1252 if (is_gimple_min_invariant (y))
1253 ;
1254 else if (is_gimple_min_invariant (x))
1255 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1256 else if (prev_x && is_gimple_min_invariant (prev_x))
1257 x = y, y = prev_x, prev_x = prev_y;
1258 else if (prev_y)
1259 y = prev_y;
1260
1261 /* After the swapping, we must have one SSA_NAME. */
1262 if (TREE_CODE (x) != SSA_NAME)
1263 return;
1264
1265 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1266 variable compared against zero. If we're honoring signed zeros,
1267 then we cannot record this value unless we know that the value is
1268 nonzero. */
1269 if (HONOR_SIGNED_ZEROS (x)
1270 && (TREE_CODE (y) != REAL_CST
1271 || real_equal (&dconst0, &TREE_REAL_CST (y))))
1272 return;
1273
1274 const_and_copies->record_const_or_copy (x, y, prev_x);
1275 }
1276
1277 /* Returns true when STMT is a simple iv increment. It detects the
1278 following situation:
1279
1280 i_1 = phi (..., i_k)
1281 [...]
1282 i_j = i_{j-1} for each j : 2 <= j <= k-1
1283 [...]
1284 i_k = i_{k-1} +/- ... */
1285
1286 bool
1287 simple_iv_increment_p (gimple *stmt)
1288 {
1289 enum tree_code code;
1290 tree lhs, preinc;
1291 gimple *phi;
1292 size_t i;
1293
1294 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1295 return false;
1296
1297 lhs = gimple_assign_lhs (stmt);
1298 if (TREE_CODE (lhs) != SSA_NAME)
1299 return false;
1300
1301 code = gimple_assign_rhs_code (stmt);
1302 if (code != PLUS_EXPR
1303 && code != MINUS_EXPR
1304 && code != POINTER_PLUS_EXPR)
1305 return false;
1306
1307 preinc = gimple_assign_rhs1 (stmt);
1308 if (TREE_CODE (preinc) != SSA_NAME)
1309 return false;
1310
1311 phi = SSA_NAME_DEF_STMT (preinc);
1312 while (gimple_code (phi) != GIMPLE_PHI)
1313 {
1314 /* Follow trivial copies, but not the DEF used in a back edge,
1315 so that we don't prevent coalescing. */
1316 if (!gimple_assign_ssa_name_copy_p (phi))
1317 return false;
1318 preinc = gimple_assign_rhs1 (phi);
1319 phi = SSA_NAME_DEF_STMT (preinc);
1320 }
1321
1322 for (i = 0; i < gimple_phi_num_args (phi); i++)
1323 if (gimple_phi_arg_def (phi, i) == lhs)
1324 return true;
1325
1326 return false;
1327 }
1328
1329 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1330 successors of BB. */
1331
1332 static void
1333 cprop_into_successor_phis (basic_block bb,
1334 class const_and_copies *const_and_copies)
1335 {
1336 edge e;
1337 edge_iterator ei;
1338
1339 FOR_EACH_EDGE (e, ei, bb->succs)
1340 {
1341 int indx;
1342 gphi_iterator gsi;
1343
1344 /* If this is an abnormal edge, then we do not want to copy propagate
1345 into the PHI alternative associated with this edge. */
1346 if (e->flags & EDGE_ABNORMAL)
1347 continue;
1348
1349 gsi = gsi_start_phis (e->dest);
1350 if (gsi_end_p (gsi))
1351 continue;
1352
1353 /* We may have an equivalence associated with this edge. While
1354 we can not propagate it into non-dominated blocks, we can
1355 propagate them into PHIs in non-dominated blocks. */
1356
1357 /* Push the unwind marker so we can reset the const and copies
1358 table back to its original state after processing this edge. */
1359 const_and_copies->push_marker ();
1360
1361 /* Extract and record any simple NAME = VALUE equivalences.
1362
1363 Don't bother with [01] = COND equivalences, they're not useful
1364 here. */
1365 class edge_info *edge_info = (class edge_info *) e->aux;
1366
1367 if (edge_info)
1368 {
1369 edge_info::equiv_pair *seq;
1370 for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1371 {
1372 tree lhs = seq->first;
1373 tree rhs = seq->second;
1374
1375 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1376 const_and_copies->record_const_or_copy (lhs, rhs);
1377 }
1378
1379 }
1380
1381 indx = e->dest_idx;
1382 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1383 {
1384 tree new_val;
1385 use_operand_p orig_p;
1386 tree orig_val;
1387 gphi *phi = gsi.phi ();
1388
1389 /* The alternative may be associated with a constant, so verify
1390 it is an SSA_NAME before doing anything with it. */
1391 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1392 orig_val = get_use_from_ptr (orig_p);
1393 if (TREE_CODE (orig_val) != SSA_NAME)
1394 continue;
1395
1396 /* If we have *ORIG_P in our constant/copy table, then replace
1397 ORIG_P with its value in our constant/copy table. */
1398 new_val = SSA_NAME_VALUE (orig_val);
1399 if (new_val
1400 && new_val != orig_val
1401 && may_propagate_copy (orig_val, new_val))
1402 propagate_value (orig_p, new_val);
1403 }
1404
1405 const_and_copies->pop_to_marker ();
1406 }
1407 }
1408
1409 edge
1410 dom_opt_dom_walker::before_dom_children (basic_block bb)
1411 {
1412 gimple_stmt_iterator gsi;
1413
1414 if (dump_file && (dump_flags & TDF_DETAILS))
1415 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1416
1417 evrp_range_analyzer.enter (bb);
1418
1419 /* Push a marker on the stacks of local information so that we know how
1420 far to unwind when we finalize this block. */
1421 m_avail_exprs_stack->push_marker ();
1422 m_const_and_copies->push_marker ();
1423
1424 record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1425 m_avail_exprs_stack);
1426
1427 /* PHI nodes can create equivalences too. */
1428 record_equivalences_from_phis (bb);
1429
1430 /* Create equivalences from redundant PHIs. PHIs are only truly
1431 redundant when they exist in the same block, so push another
1432 marker and unwind right afterwards. */
1433 m_avail_exprs_stack->push_marker ();
1434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1435 eliminate_redundant_computations (&gsi, m_const_and_copies,
1436 m_avail_exprs_stack);
1437 m_avail_exprs_stack->pop_to_marker ();
1438
1439 edge taken_edge = NULL;
1440 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1441 {
1442 evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
1443 taken_edge = this->optimize_stmt (bb, gsi);
1444 }
1445
1446 /* Now prepare to process dominated blocks. */
1447 record_edge_info (bb);
1448 cprop_into_successor_phis (bb, m_const_and_copies);
1449 if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1450 return NULL;
1451
1452 return taken_edge;
1453 }
1454
1455 /* We have finished processing the dominator children of BB, perform
1456 any finalization actions in preparation for leaving this node in
1457 the dominator tree. */
1458
1459 void
1460 dom_opt_dom_walker::after_dom_children (basic_block bb)
1461 {
1462 x_vr_values = evrp_range_analyzer.get_vr_values ();
1463 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1464 m_avail_exprs_stack,
1465 &evrp_range_analyzer,
1466 simplify_stmt_for_jump_threading);
1467 x_vr_values = NULL;
1468
1469 /* These remove expressions local to BB from the tables. */
1470 m_avail_exprs_stack->pop_to_marker ();
1471 m_const_and_copies->pop_to_marker ();
1472 evrp_range_analyzer.leave (bb);
1473 }
1474
1475 /* Search for redundant computations in STMT. If any are found, then
1476 replace them with the variable holding the result of the computation.
1477
1478 If safe, record this expression into AVAIL_EXPRS_STACK and
1479 CONST_AND_COPIES. */
1480
1481 static void
1482 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1483 class const_and_copies *const_and_copies,
1484 class avail_exprs_stack *avail_exprs_stack)
1485 {
1486 tree expr_type;
1487 tree cached_lhs;
1488 tree def;
1489 bool insert = true;
1490 bool assigns_var_p = false;
1491
1492 gimple *stmt = gsi_stmt (*gsi);
1493
1494 if (gimple_code (stmt) == GIMPLE_PHI)
1495 def = gimple_phi_result (stmt);
1496 else
1497 def = gimple_get_lhs (stmt);
1498
1499 /* Certain expressions on the RHS can be optimized away, but can not
1500 themselves be entered into the hash tables. */
1501 if (! def
1502 || TREE_CODE (def) != SSA_NAME
1503 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1504 || gimple_vdef (stmt)
1505 /* Do not record equivalences for increments of ivs. This would create
1506 overlapping live ranges for a very questionable gain. */
1507 || simple_iv_increment_p (stmt))
1508 insert = false;
1509
1510 /* Check if the expression has been computed before. */
1511 cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1512
1513 opt_stats.num_exprs_considered++;
1514
1515 /* Get the type of the expression we are trying to optimize. */
1516 if (is_gimple_assign (stmt))
1517 {
1518 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1519 assigns_var_p = true;
1520 }
1521 else if (gimple_code (stmt) == GIMPLE_COND)
1522 expr_type = boolean_type_node;
1523 else if (is_gimple_call (stmt))
1524 {
1525 gcc_assert (gimple_call_lhs (stmt));
1526 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1527 assigns_var_p = true;
1528 }
1529 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1530 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1531 else if (gimple_code (stmt) == GIMPLE_PHI)
1532 /* We can't propagate into a phi, so the logic below doesn't apply.
1533 Instead record an equivalence between the cached LHS and the
1534 PHI result of this statement, provided they are in the same block.
1535 This should be sufficient to kill the redundant phi. */
1536 {
1537 if (def && cached_lhs)
1538 const_and_copies->record_const_or_copy (def, cached_lhs);
1539 return;
1540 }
1541 else
1542 gcc_unreachable ();
1543
1544 if (!cached_lhs)
1545 return;
1546
1547 /* It is safe to ignore types here since we have already done
1548 type checking in the hashing and equality routines. In fact
1549 type checking here merely gets in the way of constant
1550 propagation. Also, make sure that it is safe to propagate
1551 CACHED_LHS into the expression in STMT. */
1552 if ((TREE_CODE (cached_lhs) != SSA_NAME
1553 && (assigns_var_p
1554 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1555 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1556 {
1557 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1558 || is_gimple_min_invariant (cached_lhs));
1559
1560 if (dump_file && (dump_flags & TDF_DETAILS))
1561 {
1562 fprintf (dump_file, " Replaced redundant expr '");
1563 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1564 fprintf (dump_file, "' with '");
1565 print_generic_expr (dump_file, cached_lhs, dump_flags);
1566 fprintf (dump_file, "'\n");
1567 }
1568
1569 opt_stats.num_re++;
1570
1571 if (assigns_var_p
1572 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1573 cached_lhs = fold_convert (expr_type, cached_lhs);
1574
1575 propagate_tree_value_into_stmt (gsi, cached_lhs);
1576
1577 /* Since it is always necessary to mark the result as modified,
1578 perhaps we should move this into propagate_tree_value_into_stmt
1579 itself. */
1580 gimple_set_modified (gsi_stmt (*gsi), true);
1581 }
1582 }
1583
1584 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1585 the available expressions table or the const_and_copies table.
1586 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1587
1588 We handle only very simple copy equivalences here. The heavy
1589 lifing is done by eliminate_redundant_computations. */
1590
1591 static void
1592 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1593 class avail_exprs_stack *avail_exprs_stack)
1594 {
1595 tree lhs;
1596 enum tree_code lhs_code;
1597
1598 gcc_assert (is_gimple_assign (stmt));
1599
1600 lhs = gimple_assign_lhs (stmt);
1601 lhs_code = TREE_CODE (lhs);
1602
1603 if (lhs_code == SSA_NAME
1604 && gimple_assign_single_p (stmt))
1605 {
1606 tree rhs = gimple_assign_rhs1 (stmt);
1607
1608 /* If the RHS of the assignment is a constant or another variable that
1609 may be propagated, register it in the CONST_AND_COPIES table. We
1610 do not need to record unwind data for this, since this is a true
1611 assignment and not an equivalence inferred from a comparison. All
1612 uses of this ssa name are dominated by this assignment, so unwinding
1613 just costs time and space. */
1614 if (may_optimize_p
1615 && (TREE_CODE (rhs) == SSA_NAME
1616 || is_gimple_min_invariant (rhs)))
1617 {
1618 rhs = dom_valueize (rhs);
1619
1620 if (dump_file && (dump_flags & TDF_DETAILS))
1621 {
1622 fprintf (dump_file, "==== ASGN ");
1623 print_generic_expr (dump_file, lhs);
1624 fprintf (dump_file, " = ");
1625 print_generic_expr (dump_file, rhs);
1626 fprintf (dump_file, "\n");
1627 }
1628
1629 set_ssa_name_value (lhs, rhs);
1630 }
1631 }
1632
1633 /* Make sure we can propagate &x + CST. */
1634 if (lhs_code == SSA_NAME
1635 && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1636 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1637 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1638 {
1639 tree op0 = gimple_assign_rhs1 (stmt);
1640 tree op1 = gimple_assign_rhs2 (stmt);
1641 tree new_rhs
1642 = build_fold_addr_expr (fold_build2 (MEM_REF,
1643 TREE_TYPE (TREE_TYPE (op0)),
1644 unshare_expr (op0),
1645 fold_convert (ptr_type_node,
1646 op1)));
1647 if (dump_file && (dump_flags & TDF_DETAILS))
1648 {
1649 fprintf (dump_file, "==== ASGN ");
1650 print_generic_expr (dump_file, lhs);
1651 fprintf (dump_file, " = ");
1652 print_generic_expr (dump_file, new_rhs);
1653 fprintf (dump_file, "\n");
1654 }
1655
1656 set_ssa_name_value (lhs, new_rhs);
1657 }
1658
1659 /* A memory store, even an aliased store, creates a useful
1660 equivalence. By exchanging the LHS and RHS, creating suitable
1661 vops and recording the result in the available expression table,
1662 we may be able to expose more redundant loads. */
1663 if (!gimple_has_volatile_ops (stmt)
1664 && gimple_references_memory_p (stmt)
1665 && gimple_assign_single_p (stmt)
1666 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1667 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1668 && !is_gimple_reg (lhs))
1669 {
1670 tree rhs = gimple_assign_rhs1 (stmt);
1671 gassign *new_stmt;
1672
1673 /* Build a new statement with the RHS and LHS exchanged. */
1674 if (TREE_CODE (rhs) == SSA_NAME)
1675 {
1676 /* NOTE tuples. The call to gimple_build_assign below replaced
1677 a call to build_gimple_modify_stmt, which did not set the
1678 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1679 may cause an SSA validation failure, as the LHS may be a
1680 default-initialized name and should have no definition. I'm
1681 a bit dubious of this, as the artificial statement that we
1682 generate here may in fact be ill-formed, but it is simply
1683 used as an internal device in this pass, and never becomes
1684 part of the CFG. */
1685 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1686 new_stmt = gimple_build_assign (rhs, lhs);
1687 SSA_NAME_DEF_STMT (rhs) = defstmt;
1688 }
1689 else
1690 new_stmt = gimple_build_assign (rhs, lhs);
1691
1692 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1693
1694 /* Finally enter the statement into the available expression
1695 table. */
1696 avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1697 }
1698 }
1699
1700 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1701 CONST_AND_COPIES. */
1702
1703 static void
1704 cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
1705 {
1706 tree val;
1707 tree op = USE_FROM_PTR (op_p);
1708
1709 /* If the operand has a known constant value or it is known to be a
1710 copy of some other variable, use the value or copy stored in
1711 CONST_AND_COPIES. */
1712 val = SSA_NAME_VALUE (op);
1713 if (!val)
1714 val = vr_values->op_with_constant_singleton_value_range (op);
1715
1716 if (val && val != op)
1717 {
1718 /* Do not replace hard register operands in asm statements. */
1719 if (gimple_code (stmt) == GIMPLE_ASM
1720 && !may_propagate_copy_into_asm (op))
1721 return;
1722
1723 /* Certain operands are not allowed to be copy propagated due
1724 to their interaction with exception handling and some GCC
1725 extensions. */
1726 if (!may_propagate_copy (op, val))
1727 return;
1728
1729 /* Do not propagate copies into BIVs.
1730 See PR23821 and PR62217 for how this can disturb IV and
1731 number of iteration analysis. */
1732 if (TREE_CODE (val) != INTEGER_CST)
1733 {
1734 gimple *def = SSA_NAME_DEF_STMT (op);
1735 if (gimple_code (def) == GIMPLE_PHI
1736 && gimple_bb (def)->loop_father->header == gimple_bb (def))
1737 return;
1738 }
1739
1740 /* Dump details. */
1741 if (dump_file && (dump_flags & TDF_DETAILS))
1742 {
1743 fprintf (dump_file, " Replaced '");
1744 print_generic_expr (dump_file, op, dump_flags);
1745 fprintf (dump_file, "' with %s '",
1746 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1747 print_generic_expr (dump_file, val, dump_flags);
1748 fprintf (dump_file, "'\n");
1749 }
1750
1751 if (TREE_CODE (val) != SSA_NAME)
1752 opt_stats.num_const_prop++;
1753 else
1754 opt_stats.num_copy_prop++;
1755
1756 propagate_value (op_p, val);
1757
1758 /* And note that we modified this statement. This is now
1759 safe, even if we changed virtual operands since we will
1760 rescan the statement and rewrite its operands again. */
1761 gimple_set_modified (stmt, true);
1762 }
1763 }
1764
1765 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1766 known value for that SSA_NAME (or NULL if no value is known).
1767
1768 Propagate values from CONST_AND_COPIES into the uses, vuses and
1769 vdef_ops of STMT. */
1770
1771 static void
1772 cprop_into_stmt (gimple *stmt, vr_values *vr_values)
1773 {
1774 use_operand_p op_p;
1775 ssa_op_iter iter;
1776 tree last_copy_propagated_op = NULL;
1777
1778 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1779 {
1780 tree old_op = USE_FROM_PTR (op_p);
1781
1782 /* If we have A = B and B = A in the copy propagation tables
1783 (due to an equality comparison), avoid substituting B for A
1784 then A for B in the trivially discovered cases. This allows
1785 optimization of statements were A and B appear as input
1786 operands. */
1787 if (old_op != last_copy_propagated_op)
1788 {
1789 cprop_operand (stmt, op_p, vr_values);
1790
1791 tree new_op = USE_FROM_PTR (op_p);
1792 if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1793 last_copy_propagated_op = new_op;
1794 }
1795 }
1796 }
1797
1798 /* If STMT contains a relational test, try to convert it into an
1799 equality test if there is only a single value which can ever
1800 make the test true.
1801
1802 For example, if the expression hash table contains:
1803
1804 TRUE = (i <= 1)
1805
1806 And we have a test within statement of i >= 1, then we can safely
1807 rewrite the test as i == 1 since there only a single value where
1808 the test is true.
1809
1810 This is similar to code in VRP. */
1811
1812 static void
1813 test_for_singularity (gimple *stmt, gcond *dummy_cond,
1814 avail_exprs_stack *avail_exprs_stack)
1815 {
1816 /* We want to support gimple conditionals as well as assignments
1817 where the RHS contains a conditional. */
1818 if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1819 {
1820 enum tree_code code = ERROR_MARK;
1821 tree lhs, rhs;
1822
1823 /* Extract the condition of interest from both forms we support. */
1824 if (is_gimple_assign (stmt))
1825 {
1826 code = gimple_assign_rhs_code (stmt);
1827 lhs = gimple_assign_rhs1 (stmt);
1828 rhs = gimple_assign_rhs2 (stmt);
1829 }
1830 else if (gimple_code (stmt) == GIMPLE_COND)
1831 {
1832 code = gimple_cond_code (as_a <gcond *> (stmt));
1833 lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1834 rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1835 }
1836
1837 /* We're looking for a relational test using LE/GE. Also note we can
1838 canonicalize LT/GT tests against constants into LE/GT tests. */
1839 if (code == LE_EXPR || code == GE_EXPR
1840 || ((code == LT_EXPR || code == GT_EXPR)
1841 && TREE_CODE (rhs) == INTEGER_CST))
1842 {
1843 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */
1844 if (code == LT_EXPR)
1845 rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1846 rhs, build_int_cst (TREE_TYPE (rhs), 1));
1847
1848 if (code == GT_EXPR)
1849 rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1850 rhs, build_int_cst (TREE_TYPE (rhs), 1));
1851
1852 /* Determine the code we want to check for in the hash table. */
1853 enum tree_code test_code;
1854 if (code == GE_EXPR || code == GT_EXPR)
1855 test_code = LE_EXPR;
1856 else
1857 test_code = GE_EXPR;
1858
1859 /* Update the dummy statement so we can query the hash tables. */
1860 gimple_cond_set_code (dummy_cond, test_code);
1861 gimple_cond_set_lhs (dummy_cond, lhs);
1862 gimple_cond_set_rhs (dummy_cond, rhs);
1863 tree cached_lhs
1864 = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);
1865
1866 /* If the lookup returned 1 (true), then the expression we
1867 queried was in the hash table. As a result there is only
1868 one value that makes the original conditional true. Update
1869 STMT accordingly. */
1870 if (cached_lhs && integer_onep (cached_lhs))
1871 {
1872 if (is_gimple_assign (stmt))
1873 {
1874 gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1875 gimple_assign_set_rhs2 (stmt, rhs);
1876 gimple_set_modified (stmt, true);
1877 }
1878 else
1879 {
1880 gimple_set_modified (stmt, true);
1881 gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1882 gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1883 gimple_set_modified (stmt, true);
1884 }
1885 }
1886 }
1887 }
1888 }
1889
1890 /* Optimize the statement in block BB pointed to by iterator SI.
1891
1892 We try to perform some simplistic global redundancy elimination and
1893 constant propagation:
1894
1895 1- To detect global redundancy, we keep track of expressions that have
1896 been computed in this block and its dominators. If we find that the
1897 same expression is computed more than once, we eliminate repeated
1898 computations by using the target of the first one.
1899
1900 2- Constant values and copy assignments. This is used to do very
1901 simplistic constant and copy propagation. When a constant or copy
1902 assignment is found, we map the value on the RHS of the assignment to
1903 the variable in the LHS in the CONST_AND_COPIES table.
1904
1905 3- Very simple redundant store elimination is performed.
1906
1907 4- We can simpify a condition to a constant or from a relational
1908 condition to an equality condition. */
1909
1910 edge
1911 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator si)
1912 {
1913 gimple *stmt, *old_stmt;
1914 bool may_optimize_p;
1915 bool modified_p = false;
1916 bool was_noreturn;
1917 edge retval = NULL;
1918
1919 old_stmt = stmt = gsi_stmt (si);
1920 was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
1921
1922 if (dump_file && (dump_flags & TDF_DETAILS))
1923 {
1924 fprintf (dump_file, "Optimizing statement ");
1925 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1926 }
1927
1928 update_stmt_if_modified (stmt);
1929 opt_stats.num_stmts++;
1930
1931 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
1932 cprop_into_stmt (stmt, evrp_range_analyzer.get_vr_values ());
1933
1934 /* If the statement has been modified with constant replacements,
1935 fold its RHS before checking for redundant computations. */
1936 if (gimple_modified_p (stmt))
1937 {
1938 tree rhs = NULL;
1939
1940 /* Try to fold the statement making sure that STMT is kept
1941 up to date. */
1942 if (fold_stmt (&si))
1943 {
1944 stmt = gsi_stmt (si);
1945 gimple_set_modified (stmt, true);
1946
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 {
1949 fprintf (dump_file, " Folded to: ");
1950 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1951 }
1952 }
1953
1954 /* We only need to consider cases that can yield a gimple operand. */
1955 if (gimple_assign_single_p (stmt))
1956 rhs = gimple_assign_rhs1 (stmt);
1957 else if (gimple_code (stmt) == GIMPLE_GOTO)
1958 rhs = gimple_goto_dest (stmt);
1959 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1960 /* This should never be an ADDR_EXPR. */
1961 rhs = gimple_switch_index (swtch_stmt);
1962
1963 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
1964 recompute_tree_invariant_for_addr_expr (rhs);
1965
1966 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
1967 even if fold_stmt updated the stmt already and thus cleared
1968 gimple_modified_p flag on it. */
1969 modified_p = true;
1970 }
1971
1972 /* Check for redundant computations. Do this optimization only
1973 for assignments that have no volatile ops and conditionals. */
1974 may_optimize_p = (!gimple_has_side_effects (stmt)
1975 && (is_gimple_assign (stmt)
1976 || (is_gimple_call (stmt)
1977 && gimple_call_lhs (stmt) != NULL_TREE)
1978 || gimple_code (stmt) == GIMPLE_COND
1979 || gimple_code (stmt) == GIMPLE_SWITCH));
1980
1981 if (may_optimize_p)
1982 {
1983 if (gimple_code (stmt) == GIMPLE_CALL)
1984 {
1985 /* Resolve __builtin_constant_p. If it hasn't been
1986 folded to integer_one_node by now, it's fairly
1987 certain that the value simply isn't constant. */
1988 tree callee = gimple_call_fndecl (stmt);
1989 if (callee
1990 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1991 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
1992 {
1993 propagate_tree_value_into_stmt (&si, integer_zero_node);
1994 stmt = gsi_stmt (si);
1995 }
1996 }
1997
1998 if (gimple_code (stmt) == GIMPLE_COND)
1999 {
2000 tree lhs = gimple_cond_lhs (stmt);
2001 tree rhs = gimple_cond_rhs (stmt);
2002
2003 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2004 then this conditional is computable at compile time. We can just
2005 shove either 0 or 1 into the LHS, mark the statement as modified
2006 and all the right things will just happen below.
2007
2008 Note this would apply to any case where LHS has a range
2009 narrower than its type implies and RHS is outside that
2010 narrower range. Future work. */
2011 if (TREE_CODE (lhs) == SSA_NAME
2012 && ssa_name_has_boolean_range (lhs)
2013 && TREE_CODE (rhs) == INTEGER_CST
2014 && ! (integer_zerop (rhs) || integer_onep (rhs)))
2015 {
2016 gimple_cond_set_lhs (as_a <gcond *> (stmt),
2017 fold_convert (TREE_TYPE (lhs),
2018 integer_zero_node));
2019 gimple_set_modified (stmt, true);
2020 }
2021 else if (TREE_CODE (lhs) == SSA_NAME)
2022 {
2023 /* Exploiting EVRP data is not yet fully integrated into DOM
2024 but we need to do something for this case to avoid regressing
2025 udr4.f90 and new1.C which have unexecutable blocks with
2026 undefined behavior that get diagnosed if they're left in the
2027 IL because we've attached range information to new
2028 SSA_NAMES. */
2029 update_stmt_if_modified (stmt);
2030 edge taken_edge = NULL;
2031 evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
2032 &taken_edge);
2033 if (taken_edge)
2034 {
2035 if (taken_edge->flags & EDGE_TRUE_VALUE)
2036 gimple_cond_make_true (as_a <gcond *> (stmt));
2037 else if (taken_edge->flags & EDGE_FALSE_VALUE)
2038 gimple_cond_make_false (as_a <gcond *> (stmt));
2039 else
2040 gcc_unreachable ();
2041 gimple_set_modified (stmt, true);
2042 update_stmt (stmt);
2043 cfg_altered = true;
2044 return taken_edge;
2045 }
2046 }
2047 }
2048
2049 update_stmt_if_modified (stmt);
2050 eliminate_redundant_computations (&si, m_const_and_copies,
2051 m_avail_exprs_stack);
2052 stmt = gsi_stmt (si);
2053
2054 /* Perform simple redundant store elimination. */
2055 if (gimple_assign_single_p (stmt)
2056 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2057 {
2058 tree lhs = gimple_assign_lhs (stmt);
2059 tree rhs = gimple_assign_rhs1 (stmt);
2060 tree cached_lhs;
2061 gassign *new_stmt;
2062 rhs = dom_valueize (rhs);
2063 /* Build a new statement with the RHS and LHS exchanged. */
2064 if (TREE_CODE (rhs) == SSA_NAME)
2065 {
2066 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2067 new_stmt = gimple_build_assign (rhs, lhs);
2068 SSA_NAME_DEF_STMT (rhs) = defstmt;
2069 }
2070 else
2071 new_stmt = gimple_build_assign (rhs, lhs);
2072 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2073 cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2074 false);
2075 if (cached_lhs && operand_equal_p (rhs, cached_lhs, 0))
2076 {
2077 basic_block bb = gimple_bb (stmt);
2078 unlink_stmt_vdef (stmt);
2079 if (gsi_remove (&si, true))
2080 {
2081 bitmap_set_bit (need_eh_cleanup, bb->index);
2082 if (dump_file && (dump_flags & TDF_DETAILS))
2083 fprintf (dump_file, " Flagged to clear EH edges.\n");
2084 }
2085 release_defs (stmt);
2086 return retval;
2087 }
2088 }
2089
2090 /* If this statement was not redundant, we may still be able to simplify
2091 it, which may in turn allow other part of DOM or other passes to do
2092 a better job. */
2093 test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
2094 }
2095
2096 /* Record any additional equivalences created by this statement. */
2097 if (is_gimple_assign (stmt))
2098 record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2099
2100 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2101 know where it goes. */
2102 if (gimple_modified_p (stmt) || modified_p)
2103 {
2104 tree val = NULL;
2105
2106 if (gimple_code (stmt) == GIMPLE_COND)
2107 val = fold_binary_loc (gimple_location (stmt),
2108 gimple_cond_code (stmt), boolean_type_node,
2109 gimple_cond_lhs (stmt),
2110 gimple_cond_rhs (stmt));
2111 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2112 val = gimple_switch_index (swtch_stmt);
2113
2114 if (val && TREE_CODE (val) == INTEGER_CST)
2115 {
2116 retval = find_taken_edge (bb, val);
2117 if (retval)
2118 {
2119 /* Fix the condition to be either true or false. */
2120 if (gimple_code (stmt) == GIMPLE_COND)
2121 {
2122 if (integer_zerop (val))
2123 gimple_cond_make_false (as_a <gcond *> (stmt));
2124 else if (integer_onep (val))
2125 gimple_cond_make_true (as_a <gcond *> (stmt));
2126 else
2127 gcc_unreachable ();
2128
2129 gimple_set_modified (stmt, true);
2130 }
2131
2132 /* Further simplifications may be possible. */
2133 cfg_altered = true;
2134 }
2135 }
2136
2137 update_stmt_if_modified (stmt);
2138
2139 /* If we simplified a statement in such a way as to be shown that it
2140 cannot trap, update the eh information and the cfg to match. */
2141 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2142 {
2143 bitmap_set_bit (need_eh_cleanup, bb->index);
2144 if (dump_file && (dump_flags & TDF_DETAILS))
2145 fprintf (dump_file, " Flagged to clear EH edges.\n");
2146 }
2147
2148 if (!was_noreturn
2149 && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2150 need_noreturn_fixup.safe_push (stmt);
2151 }
2152 return retval;
2153 }