]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dse.c
re PR tree-optimization/33562 (aggregate DSE disabled)
[thirdparty/gcc.git] / gcc / tree-ssa-dse.c
1 /* Dead store elimination
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-dfa.h"
34 #include "domwalk.h"
35 #include "tree-cfgcleanup.h"
36 #include "params.h"
37
38 /* This file implements dead store elimination.
39
40 A dead store is a store into a memory location which will later be
41 overwritten by another store without any intervening loads. In this
42 case the earlier store can be deleted.
43
44 In our SSA + virtual operand world we use immediate uses of virtual
45 operands to detect dead stores. If a store's virtual definition
46 is used precisely once by a later store to the same location which
47 post dominates the first store, then the first store is dead.
48
49 The single use of the store's virtual definition ensures that
50 there are no intervening aliased loads and the requirement that
51 the second load post dominate the first ensures that if the earlier
52 store executes, then the later stores will execute before the function
53 exits.
54
55 It may help to think of this as first moving the earlier store to
56 the point immediately before the later store. Again, the single
57 use of the virtual definition and the post-dominance relationship
58 ensure that such movement would be safe. Clearly if there are
59 back to back stores, then the second is redundant.
60
61 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
62 may also help in understanding this code since it discusses the
63 relationship between dead store and redundant load elimination. In
64 fact, they are the same transformation applied to different views of
65 the CFG. */
66
67
68 /* Bitmap of blocks that have had EH statements cleaned. We should
69 remove their dead edges eventually. */
70 static bitmap need_eh_cleanup;
71
72 /* Return value from dse_classify_store */
73 enum dse_store_status
74 {
75 DSE_STORE_LIVE,
76 DSE_STORE_MAYBE_PARTIAL_DEAD,
77 DSE_STORE_DEAD
78 };
79
80 /* STMT is a statement that may write into memory. Analyze it and
81 initialize WRITE to describe how STMT affects memory.
82
83 Return TRUE if the the statement was analyzed, FALSE otherwise.
84
85 It is always safe to return FALSE. But typically better optimziation
86 can be achieved by analyzing more statements. */
87
88 static bool
89 initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
90 {
91 /* It's advantageous to handle certain mem* functions. */
92 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
93 {
94 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
95 {
96 case BUILT_IN_MEMCPY:
97 case BUILT_IN_MEMMOVE:
98 case BUILT_IN_MEMSET:
99 {
100 tree size = NULL_TREE;
101 if (gimple_call_num_args (stmt) == 3)
102 size = gimple_call_arg (stmt, 2);
103 tree ptr = gimple_call_arg (stmt, 0);
104 ao_ref_init_from_ptr_and_size (write, ptr, size);
105 return true;
106 }
107 default:
108 break;
109 }
110 }
111 else if (is_gimple_assign (stmt))
112 {
113 ao_ref_init (write, gimple_assign_lhs (stmt));
114 return true;
115 }
116 return false;
117 }
118
119 /* Given REF from the the alias oracle, return TRUE if it is a valid
120 memory reference for dead store elimination, false otherwise.
121
122 In particular, the reference must have a known base, known maximum
123 size, start at a byte offset and have a size that is one or more
124 bytes. */
125
126 static bool
127 valid_ao_ref_for_dse (ao_ref *ref)
128 {
129 return (ao_ref_base (ref)
130 && ref->max_size != -1
131 && (ref->offset % BITS_PER_UNIT) == 0
132 && (ref->size % BITS_PER_UNIT) == 0
133 && (ref->size != -1));
134 }
135
136 /* Normalize COPY (an ao_ref) relative to REF. Essentially when we are
137 done COPY will only refer bytes found within REF.
138
139 We have already verified that COPY intersects at least one
140 byte with REF. */
141
142 static void
143 normalize_ref (ao_ref *copy, ao_ref *ref)
144 {
145 /* If COPY starts before REF, then reset the beginning of
146 COPY to match REF and decrease the size of COPY by the
147 number of bytes removed from COPY. */
148 if (copy->offset < ref->offset)
149 {
150 copy->size -= (ref->offset - copy->offset);
151 copy->offset = ref->offset;
152 }
153
154 /* If COPY extends beyond REF, chop off its size appropriately. */
155 if (copy->offset + copy->size > ref->offset + ref->size)
156 copy->size -= (copy->offset + copy->size - (ref->offset + ref->size));
157 }
158
159 /* Clear any bytes written by STMT from the bitmap LIVE_BYTES. The base
160 address written by STMT must match the one found in REF, which must
161 have its base address previously initialized.
162
163 This routine must be conservative. If we don't know the offset or
164 actual size written, assume nothing was written. */
165
166 static void
167 clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
168 {
169 ao_ref write;
170 if (!initialize_ao_ref_for_dse (stmt, &write))
171 return;
172
173 /* Verify we have the same base memory address, the write
174 has a known size and overlaps with REF. */
175 if (valid_ao_ref_for_dse (&write)
176 && write.base == ref->base
177 && write.size == write.max_size
178 && ((write.offset < ref->offset
179 && write.offset + write.size > ref->offset)
180 || (write.offset >= ref->offset
181 && write.offset < ref->offset + ref->size)))
182 {
183 normalize_ref (&write, ref);
184 bitmap_clear_range (live_bytes,
185 (write.offset - ref->offset) / BITS_PER_UNIT,
186 write.size / BITS_PER_UNIT);
187 }
188 }
189
190 /* REF is a memory write. Extract relevant information from it and
191 initialize the LIVE_BYTES bitmap. If successful, return TRUE.
192 Otherwise return FALSE. */
193
194 static bool
195 setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
196 {
197 if (valid_ao_ref_for_dse (ref)
198 && (ref->size / BITS_PER_UNIT
199 <= PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)))
200 {
201 bitmap_clear (live_bytes);
202 bitmap_set_range (live_bytes, 0, ref->size / BITS_PER_UNIT);
203 return true;
204 }
205 return false;
206 }
207
208 /* Compute the number of elements that we can trim from the head and
209 tail of ORIG resulting in a bitmap that is a superset of LIVE.
210
211 Store the number of elements trimmed from the head and tail in
212 TRIM_HEAD and TRIM_TAIL. */
213
214 static void
215 compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail)
216 {
217 /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
218 extends through ref->size. So we know that in the original bitmap
219 bits 0..ref->size were true. We don't actually need the bitmap, just
220 the REF to compute the trims. */
221
222 /* Now identify how much, if any of the tail we can chop off. */
223 *trim_tail = 0;
224 int last_orig = (ref->size / BITS_PER_UNIT) - 1;
225 int last_live = bitmap_last_set_bit (live);
226 *trim_tail = (last_orig - last_live) & ~0x1;
227
228 /* Identify how much, if any of the head we can chop off. */
229 int first_orig = 0;
230 int first_live = bitmap_first_set_bit (live);
231 *trim_head = (first_live - first_orig) & ~0x1;
232 }
233
234 /* STMT initializes an object from COMPLEX_CST where one or more of the
235 bytes written may be dead stores. REF is a representation of the
236 memory written. LIVE is the bitmap of stores that are actually live.
237
238 Attempt to rewrite STMT so that only the real or imaginary part of
239 the object is actually stored. */
240
241 static void
242 maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
243 {
244 int trim_head, trim_tail;
245 compute_trims (ref, live, &trim_head, &trim_tail);
246
247 /* The amount of data trimmed from the head or tail must be at
248 least half the size of the object to ensure we're trimming
249 the entire real or imaginary half. By writing things this
250 way we avoid more O(n) bitmap operations. */
251 if (trim_tail * 2 >= ref->size / BITS_PER_UNIT)
252 {
253 /* TREE_REALPART is live */
254 tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
255 tree y = gimple_assign_lhs (stmt);
256 y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
257 gimple_assign_set_lhs (stmt, y);
258 gimple_assign_set_rhs1 (stmt, x);
259 }
260 else if (trim_head * 2 >= ref->size / BITS_PER_UNIT)
261 {
262 /* TREE_IMAGPART is live */
263 tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
264 tree y = gimple_assign_lhs (stmt);
265 y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
266 gimple_assign_set_lhs (stmt, y);
267 gimple_assign_set_rhs1 (stmt, x);
268 }
269
270 /* Other cases indicate parts of both the real and imag subobjects
271 are live. We do not try to optimize those cases. */
272 }
273
274 /* STMT is a memory write where one or more bytes written are dead
275 stores. ORIG is the bitmap of bytes stored by STMT. LIVE is the
276 bitmap of stores that are actually live.
277
278 Attempt to rewrite STMT so that it writes fewer memory locations. Right
279 now we only support trimming at the start or end of the memory region.
280 It's not clear how much there is to be gained by trimming from the middle
281 of the region. */
282
283 static void
284 maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
285 {
286 if (is_gimple_assign (stmt))
287 {
288 switch (gimple_assign_rhs_code (stmt))
289 {
290 case COMPLEX_CST:
291 maybe_trim_complex_store (ref, live, stmt);
292 break;
293 default:
294 break;
295 }
296 }
297 }
298
299 /* A helper of dse_optimize_stmt.
300 Given a GIMPLE_ASSIGN in STMT that writes to REF, find a candidate
301 statement *USE_STMT that may prove STMT to be dead.
302 Return TRUE if the above conditions are met, otherwise FALSE. */
303
304 static dse_store_status
305 dse_classify_store (ao_ref *ref, gimple *stmt, gimple **use_stmt,
306 bool byte_tracking_enabled, sbitmap live_bytes)
307 {
308 gimple *temp;
309 unsigned cnt = 0;
310
311 *use_stmt = NULL;
312
313 /* Find the first dominated statement that clobbers (part of) the
314 memory stmt stores to with no intermediate statement that may use
315 part of the memory stmt stores. That is, find a store that may
316 prove stmt to be a dead store. */
317 temp = stmt;
318 do
319 {
320 gimple *use_stmt, *defvar_def;
321 imm_use_iterator ui;
322 bool fail = false;
323 tree defvar;
324
325 /* Limit stmt walking to be linear in the number of possibly
326 dead stores. */
327 if (++cnt > 256)
328 return DSE_STORE_LIVE;
329
330 if (gimple_code (temp) == GIMPLE_PHI)
331 defvar = PHI_RESULT (temp);
332 else
333 defvar = gimple_vdef (temp);
334 defvar_def = temp;
335 temp = NULL;
336 FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
337 {
338 cnt++;
339
340 /* If we ever reach our DSE candidate stmt again fail. We
341 cannot handle dead stores in loops. */
342 if (use_stmt == stmt)
343 {
344 fail = true;
345 BREAK_FROM_IMM_USE_STMT (ui);
346 }
347 /* In simple cases we can look through PHI nodes, but we
348 have to be careful with loops and with memory references
349 containing operands that are also operands of PHI nodes.
350 See gcc.c-torture/execute/20051110-*.c. */
351 else if (gimple_code (use_stmt) == GIMPLE_PHI)
352 {
353 if (temp
354 /* Make sure we are not in a loop latch block. */
355 || gimple_bb (stmt) == gimple_bb (use_stmt)
356 || dominated_by_p (CDI_DOMINATORS,
357 gimple_bb (stmt), gimple_bb (use_stmt))
358 /* We can look through PHIs to regions post-dominating
359 the DSE candidate stmt. */
360 || !dominated_by_p (CDI_POST_DOMINATORS,
361 gimple_bb (stmt), gimple_bb (use_stmt)))
362 {
363 fail = true;
364 BREAK_FROM_IMM_USE_STMT (ui);
365 }
366 /* Do not consider the PHI as use if it dominates the
367 stmt defining the virtual operand we are processing,
368 we have processed it already in this case. */
369 if (gimple_bb (defvar_def) != gimple_bb (use_stmt)
370 && !dominated_by_p (CDI_DOMINATORS,
371 gimple_bb (defvar_def),
372 gimple_bb (use_stmt)))
373 temp = use_stmt;
374 }
375 /* If the statement is a use the store is not dead. */
376 else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
377 {
378 fail = true;
379 BREAK_FROM_IMM_USE_STMT (ui);
380 }
381 /* If this is a store, remember it or bail out if we have
382 multiple ones (the will be in different CFG parts then). */
383 else if (gimple_vdef (use_stmt))
384 {
385 if (temp)
386 {
387 fail = true;
388 BREAK_FROM_IMM_USE_STMT (ui);
389 }
390 temp = use_stmt;
391 }
392 }
393
394 if (fail)
395 {
396 /* STMT might be partially dead and we may be able to reduce
397 how many memory locations it stores into. */
398 if (byte_tracking_enabled && !gimple_clobber_p (stmt))
399 return DSE_STORE_MAYBE_PARTIAL_DEAD;
400 return DSE_STORE_LIVE;
401 }
402
403 /* If we didn't find any definition this means the store is dead
404 if it isn't a store to global reachable memory. In this case
405 just pretend the stmt makes itself dead. Otherwise fail. */
406 if (!temp)
407 {
408 if (ref_may_alias_global_p (ref))
409 return DSE_STORE_LIVE;
410
411 temp = stmt;
412 break;
413 }
414
415 if (byte_tracking_enabled && temp)
416 clear_bytes_written_by (live_bytes, temp, ref);
417 }
418 /* Continue walking until we reach a full kill as a single statement
419 or there are no more live bytes. */
420 while (!stmt_kills_ref_p (temp, ref)
421 && !(byte_tracking_enabled && bitmap_empty_p (live_bytes)));
422
423 *use_stmt = temp;
424 return DSE_STORE_DEAD;
425 }
426
427
428 class dse_dom_walker : public dom_walker
429 {
430 public:
431 dse_dom_walker (cdi_direction direction)
432 : dom_walker (direction), m_byte_tracking_enabled (false)
433
434 { m_live_bytes = sbitmap_alloc (PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)); }
435
436 ~dse_dom_walker () { sbitmap_free (m_live_bytes); }
437
438 virtual edge before_dom_children (basic_block);
439
440 private:
441 sbitmap m_live_bytes;
442 bool m_byte_tracking_enabled;
443 void dse_optimize_stmt (gimple_stmt_iterator *);
444 };
445
446 /* Delete a dead call STMT, which is mem* call of some kind. */
447 static void
448 delete_dead_call (gimple *stmt)
449 {
450 if (dump_file && (dump_flags & TDF_DETAILS))
451 {
452 fprintf (dump_file, " Deleted dead call: ");
453 print_gimple_stmt (dump_file, stmt, dump_flags, 0);
454 fprintf (dump_file, "\n");
455 }
456
457 tree lhs = gimple_call_lhs (stmt);
458 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
459 if (lhs)
460 {
461 tree ptr = gimple_call_arg (stmt, 0);
462 gimple *new_stmt = gimple_build_assign (lhs, ptr);
463 unlink_stmt_vdef (stmt);
464 if (gsi_replace (&gsi, new_stmt, true))
465 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
466 }
467 else
468 {
469 /* Then we need to fix the operand of the consuming stmt. */
470 unlink_stmt_vdef (stmt);
471
472 /* Remove the dead store. */
473 if (gsi_remove (&gsi, true))
474 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
475 release_defs (stmt);
476 }
477 }
478
479 /* Delete a dead store STMT, which is a gimple assignment. */
480
481 static void
482 delete_dead_assignment (gimple *stmt)
483 {
484 if (dump_file && (dump_flags & TDF_DETAILS))
485 {
486 fprintf (dump_file, " Deleted dead store: ");
487 print_gimple_stmt (dump_file, stmt, dump_flags, 0);
488 fprintf (dump_file, "\n");
489 }
490
491 /* Then we need to fix the operand of the consuming stmt. */
492 unlink_stmt_vdef (stmt);
493
494 /* Remove the dead store. */
495 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
496 basic_block bb = gimple_bb (stmt);
497 if (gsi_remove (&gsi, true))
498 bitmap_set_bit (need_eh_cleanup, bb->index);
499
500 /* And release any SSA_NAMEs set in this statement back to the
501 SSA_NAME manager. */
502 release_defs (stmt);
503 }
504
505 /* Attempt to eliminate dead stores in the statement referenced by BSI.
506
507 A dead store is a store into a memory location which will later be
508 overwritten by another store without any intervening loads. In this
509 case the earlier store can be deleted.
510
511 In our SSA + virtual operand world we use immediate uses of virtual
512 operands to detect dead stores. If a store's virtual definition
513 is used precisely once by a later store to the same location which
514 post dominates the first store, then the first store is dead. */
515
516 void
517 dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
518 {
519 gimple *stmt = gsi_stmt (*gsi);
520
521 /* If this statement has no virtual defs, then there is nothing
522 to do. */
523 if (!gimple_vdef (stmt))
524 return;
525
526 /* Don't return early on *this_2(D) ={v} {CLOBBER}. */
527 if (gimple_has_volatile_ops (stmt)
528 && (!gimple_clobber_p (stmt)
529 || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
530 return;
531
532 ao_ref ref;
533 if (!initialize_ao_ref_for_dse (stmt, &ref))
534 return;
535
536 /* We know we have virtual definitions. We can handle assignments and
537 some builtin calls. */
538 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
539 {
540 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
541 {
542 case BUILT_IN_MEMCPY:
543 case BUILT_IN_MEMMOVE:
544 case BUILT_IN_MEMSET:
545 {
546 gimple *use_stmt;
547 enum dse_store_status store_status;
548 m_byte_tracking_enabled
549 = setup_live_bytes_from_ref (&ref, m_live_bytes);
550 store_status = dse_classify_store (&ref, stmt, &use_stmt,
551 m_byte_tracking_enabled,
552 m_live_bytes);
553 if (store_status == DSE_STORE_LIVE)
554 return;
555
556 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
557 {
558 maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
559 return;
560 }
561
562 if (store_status == DSE_STORE_DEAD)
563 delete_dead_call (stmt);
564 return;
565 }
566
567 default:
568 return;
569 }
570 }
571
572 if (is_gimple_assign (stmt))
573 {
574 gimple *use_stmt;
575
576 /* Self-assignments are zombies. */
577 if (operand_equal_p (gimple_assign_rhs1 (stmt),
578 gimple_assign_lhs (stmt), 0))
579 use_stmt = stmt;
580 else
581 {
582 m_byte_tracking_enabled
583 = setup_live_bytes_from_ref (&ref, m_live_bytes);
584 enum dse_store_status store_status;
585 store_status = dse_classify_store (&ref, stmt, &use_stmt,
586 m_byte_tracking_enabled,
587 m_live_bytes);
588 if (store_status == DSE_STORE_LIVE)
589 return;
590
591 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
592 {
593 maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
594 return;
595 }
596 }
597
598 /* Now we know that use_stmt kills the LHS of stmt. */
599
600 /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
601 another clobber stmt. */
602 if (gimple_clobber_p (stmt)
603 && !gimple_clobber_p (use_stmt))
604 return;
605
606 delete_dead_assignment (stmt);
607 }
608 }
609
610 edge
611 dse_dom_walker::before_dom_children (basic_block bb)
612 {
613 gimple_stmt_iterator gsi;
614
615 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
616 {
617 dse_optimize_stmt (&gsi);
618 if (gsi_end_p (gsi))
619 gsi = gsi_last_bb (bb);
620 else
621 gsi_prev (&gsi);
622 }
623 return NULL;
624 }
625
626 namespace {
627
628 const pass_data pass_data_dse =
629 {
630 GIMPLE_PASS, /* type */
631 "dse", /* name */
632 OPTGROUP_NONE, /* optinfo_flags */
633 TV_TREE_DSE, /* tv_id */
634 ( PROP_cfg | PROP_ssa ), /* properties_required */
635 0, /* properties_provided */
636 0, /* properties_destroyed */
637 0, /* todo_flags_start */
638 0, /* todo_flags_finish */
639 };
640
641 class pass_dse : public gimple_opt_pass
642 {
643 public:
644 pass_dse (gcc::context *ctxt)
645 : gimple_opt_pass (pass_data_dse, ctxt)
646 {}
647
648 /* opt_pass methods: */
649 opt_pass * clone () { return new pass_dse (m_ctxt); }
650 virtual bool gate (function *) { return flag_tree_dse != 0; }
651 virtual unsigned int execute (function *);
652
653 }; // class pass_dse
654
655 unsigned int
656 pass_dse::execute (function *fun)
657 {
658 need_eh_cleanup = BITMAP_ALLOC (NULL);
659
660 renumber_gimple_stmt_uids ();
661
662 /* We might consider making this a property of each pass so that it
663 can be [re]computed on an as-needed basis. Particularly since
664 this pass could be seen as an extension of DCE which needs post
665 dominators. */
666 calculate_dominance_info (CDI_POST_DOMINATORS);
667 calculate_dominance_info (CDI_DOMINATORS);
668
669 /* Dead store elimination is fundamentally a walk of the post-dominator
670 tree and a backwards walk of statements within each block. */
671 dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);
672
673 /* Removal of stores may make some EH edges dead. Purge such edges from
674 the CFG as needed. */
675 if (!bitmap_empty_p (need_eh_cleanup))
676 {
677 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
678 cleanup_tree_cfg ();
679 }
680
681 BITMAP_FREE (need_eh_cleanup);
682
683 /* For now, just wipe the post-dominator information. */
684 free_dominance_info (CDI_POST_DOMINATORS);
685 return 0;
686 }
687
688 } // anon namespace
689
690 gimple_opt_pass *
691 make_pass_dse (gcc::context *ctxt)
692 {
693 return new pass_dse (ctxt);
694 }